1
|
Bae S, Lee JN, Hyun CG. Anti-Melanogenic and Anti-Inflammatory Effects of 2'-Hydroxy-4',6'-dimethoxychalcone in B16F10 and RAW264.7 Cells. Curr Issues Mol Biol 2024; 46:6018-6040. [PMID: 38921030 PMCID: PMC11202956 DOI: 10.3390/cimb46060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Chalcone is a type of flavonoid compound that is widely biosynthesized in plants. Studies have shown that consuming flavonoids from fruits and vegetables or applying individual ingredients reduces the risk of skin disease. However, the effects of chalcone on melanogenesis and inflammation have not been fully investigated. The aim of this study was to evaluate the anti-melanogenic and anti-inflammatory effects of 2'-hydroxy-3,4'-dimethoxychalcone (3,4'-DMC), 2'-hydroxy-4,4'-dimethoxychalcone (4,4'-DMC), 2'-hydroxy-3',4'-dimethoxychalcone (3',4'-DMC), and 2'-hydroxy-4',6'-dimethoxychalcone (4',6'-DMC). Among the derivatives of 2'-hydroxy-4'-methoxychalcone, 4',6'-DMC demonstrated the most potent melanogenesis-inhibitory and anti-inflammatory effects. As evidenced by various biological assays, 4',6'-DMC showed no cytotoxicity and notably decreased the expression of tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 enzymes. Furthermore, it reduced cellular melanin content and intracellular tyrosinase activity in B16F10 melanoma cells by downregulating microphthalmia-associated transcription factor (MITF), cAMP-dependent protein kinase (PKA), cAMP response element-binding protein (CREB), p38, c-Jun N-terminal kinase (JNK), β-catenin, glycogen synthase kinase-3β (GSK3β), and protein kinase B (AKT) proteins, while upregulating extracellular signal-regulated kinase (ERK) and p-β-catenin. Additionally, treatment with 4',6'-DMC significantly mitigated the lipopolysaccharide (LPS)-induced expression of NO, PGE2, inflammatory cytokines, COX-2, and iNOS proteins. Overall, 4',6'-DMC treatment notably alleviated LPS-induced damage by reducing nuclear factor kappa B (NF-κB), p38, JNK protein levels, and NF-kB/p65 nuclear translocation. Finally, the topical applicability of 4',6'-DMC was evaluated in a preliminary human skin irritation test and no adverse effects were found. These findings suggest that 4',6'-DMC may offer new possibilities for use as functional ingredients in cosmeceuticals and ointments.
Collapse
Affiliation(s)
- Sungmin Bae
- Department of Beauty and Cosmetology, Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju 63243, Republic of Korea;
| | - Jung-No Lee
- Bio Convergence R&D Center, CoSeedBioPharm Corporation, Heungdeok-gu, Cheongju 28161, Republic of Korea;
| | - Chang-Gu Hyun
- Department of Beauty and Cosmetology, Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
2
|
Khan KN, Guo SW, Ogawa K, Fujishita A, Mori T. The role of innate and adaptive immunity in endometriosis. J Reprod Immunol 2024; 163:104242. [PMID: 38503076 DOI: 10.1016/j.jri.2024.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
The innate and adaptive immune systems are the two key branches that determine host protection at all mucosal surfaces in human body, including the female reproductive tract. The pattern recognition receptors within the host that recognize pathogen-associated molecular patterns are expressed on the cells of the innate immune system. Rapidly reactive, theinnate immune system, responds immediately to the presence of infectious or other non-self agents, thereby launching an inflammatory response to protect the host until the activation of slower adaptive immune system. Macrophages, dendritic cells, and toll-like receptors are integral components of the innate immune system. In contrast, T-helper (Th1/Th2/Th17) cells and regulatory T (Treg) cells are the primary components of adaptive immune system. Studies showed that the growth and progression of endometriosis continue even in unilateral ovariectomized animal suggesting that besides ovarian steroid hormones, the growth of endometriosis could be regulated by innate/adaptive immune systems in pelvic environment. Recent reports demonstrated a potential role of Th1/Th2/Th17/Treg cells either individually or collectively in the initiation, maintenance, and progression of endometriosis. Herewe review the fundamental knowledge of innate and adaptive immunity and elaborate the role of innate and adaptive immunity in endometriosis based on both human and experimental data.
Collapse
Affiliation(s)
- Khaleque N Khan
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Shanghai 200011, China.
| | - Kanae Ogawa
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Akira Fujishita
- Department of Gynecology, Saiseikai Nagasaki Hospital, Nagasaki 850-0003, Japan
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
3
|
Balan I, Aurelian L, Williams KS, Campbell B, Meeker RB, Morrow AL. Inhibition of human macrophage activation via pregnane neurosteroid interactions with toll-like receptors: Sex differences and structural requirements. Front Immunol 2022; 13:940095. [PMID: 35967446 PMCID: PMC9373802 DOI: 10.3389/fimmu.2022.940095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
We recently discovered that (3α,5α)3-hydroxypregnan-20-one (allopregnanolone) inhibits pro-inflammatory toll-like receptor (TLR) activation and cytokine/chemokine production in mouse macrophage RAW264.7 cells. The present studies evaluate neurosteroid actions upon TLR activation in human macrophages from male and female healthy donors. Buffy coat leukocytes were obtained from donors at the New York Blood Center (http://nybloodcenter.org/), and peripheral blood mononuclear cells were isolated and cultured to achieve macrophage differentiation. TLR4 and TLR7 were activated by lipopolysaccharide (LPS) or imiquimod in the presence/absence of allopregnanolone or related neurosteroids and pro-inflammatory markers were detected by ELISA or western blotting. Cultured human monocyte-derived-macrophages exhibited typical morphology, a mixed immune profile of both inflammatory and anti-inflammatory markers, with no sex difference at baseline. Allopregnanolone inhibited TLR4 activation in male and female donors, preventing LPS-induced elevations of TNF-α, MCP-1, pCREB and pSTAT1. In contrast, 3α,5α-THDOC and SGE-516 inhibited the TLR4 pathway activation in female, but not male donors. Allopregnanolone completely inhibited TLR7 activation by imiquimod, blocking IL-1-β, IL-6, pSTAT1 and pIRF7 elevations in females only. 3α,5α-THDOC and SGE-516 partially inhibited TLR7 activation, only in female donors. The results indicate that allopregnanolone inhibits TLR4 and TLR7 activation in cultured human macrophages resulting in diminished cytokine/chemokine production. Allopregnanolone inhibition of TLR4 activation was found in males and females, but inhibition of TLR7 signals exhibited specificity for female donors. 3α,5α-THDOC and SGE-516 inhibited TLR4 and TLR7 pathways only in females. These studies demonstrate anti-inflammatory effects of allopregnanolone in human macrophages for the first time and suggest that inhibition of pro-inflammatory cytokines/chemokines may contribute to its therapeutic actions.
Collapse
Affiliation(s)
- Irina Balan
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Laure Aurelian
- Stanford University School of Medicine, Stanford, CA, United States
| | - Kimberly S. Williams
- Department of Neurology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Brian Campbell
- Translational Sciences, Sage Therapeutics Inc., Cambridge, MA, United States
| | - Rick B. Meeker
- Department of Neurology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - A. Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
- *Correspondence: A. Leslie Morrow,
| |
Collapse
|
4
|
Sibi JM, Mohan V, Munisankar S, Babu S, Aravindhan V. Augmented Innate and Adaptive Immune Responses Under Conditions of Diabetes-Filariasis Comorbidity. Front Immunol 2021; 12:716515. [PMID: 34566972 PMCID: PMC8462934 DOI: 10.3389/fimmu.2021.716515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Metainflammation, as seen in chronic diabetes subjects, impairs immunity and increases the susceptibility to infections. In the present study, the effect of diabetes on immune response against filariasis was studied. Both toll-like receptor (TLR)-mediated and crude antigen-induced immune responses were quantified, in whole blood cultures from filariasis-infected subjects (LF+), with and without diabetes. Blood cultures were stimulated with TLR ligands (TLR2 and TLR4) or filarial antigen or were left unstimulated (control) for 18 h. Cytokine, chemokine, and defensin secretion was quantified by ELISA. Expression of HLA-DR, B7-1, B7-2, activation marker (CD69), and Th (Th1, Th2, Th17, and Th9) phenotypes was quantified by flow cytometry. Expression of immunomodulatory effectors (Cox-2, HO-1, IDO-1, and p47Phox) and Th-polarizing transcription factors (T-bet, GATA3, and ROR-γt) was quantified by quantitative PCR. Secretion of IL-27, IL-1Ra, IL-12, IL-33, IL-9, and SDF-1 was increased under diabetes conditions with increased Th9 polarization and increased expression of Cox-2 and IDO. Overall, diabetes was found to augment both TLR-mediated and antigen-induced inflammation, which can promote chronic pathology in LF+ subjects.
Collapse
Affiliation(s)
- Joy Manohar Sibi
- Department of Genetics, Dr A. L. Mudaliar Post Graduate Institute of Basic Medical Sciences (ALM PG IBMS), University of Madras, Chennai, India
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Chennai, India
| | - Saravanan Munisankar
- National Institute of Health-International Centre for Excellence in Research, National Institute for Research in Tuberculosis, Chennai, India
| | - Subash Babu
- National Institute of Health-International Centre for Excellence in Research, National Institute for Research in Tuberculosis, Chennai, India
| | - Vivekanandhan Aravindhan
- Department of Genetics, Dr A. L. Mudaliar Post Graduate Institute of Basic Medical Sciences (ALM PG IBMS), University of Madras, Chennai, India
| |
Collapse
|
5
|
Ollington B, Colley HE, Murdoch C. Immunoresponsive Tissue-Engineered Oral Mucosal Equivalents Containing Macrophages. Tissue Eng Part C Methods 2021; 27:462-471. [PMID: 34210153 PMCID: PMC8403184 DOI: 10.1089/ten.tec.2021.0124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Macrophages play a key role in orchestrating the host immune response toward invading organisms or non-self molecules in the oral mucosa. Three-dimensional (3D) oral mucosal equivalents (OME) containing oral fibroblasts and keratinocytes are used extensively to mimic the human oral mucosa where they have been employed to examine innate immune responses to both bacterial and fungal pathogens as well as to biomaterials. Although the presence of immune cells is critical in generating an immune response, very few studies have incorporated leukocytes into OME, and to date, none have contained primary human macrophages. In this study, we report the generation of an immunocompetent OME to investigate immune responses toward bacterial challenge. Primary human monocyte-derived macrophages (MDM) were as responsive to bacterial lipopolysaccharide (LPS) challenge when cultured within a 3D hydrogel in terms of proinflammatory cytokine (IL-6, CXCL8, and TNF-α) gene expression and protein secretion compared with culture as two-dimensional monolayers. MDM were incorporated into a type 1 collagen hydrogel along with oral fibroblasts and the apical surface seeded with oral keratinocytes to generate an MDM-containing OME. Full-thickness MDM-OME displayed a stratified squamous epithelium and a fibroblast-populated connective tissue containing CD68-positive MDM that could be readily isolated to a single-cell population for further analysis by collagenase treatment followed by flow cytometry. When stimulated with LPS, MDM-OME responded with increased proinflammatory cytokine secretion, most notably for TNF-α that increased 12-fold when compared with OME alone. Moreover, this proinflammatory response was inhibited by pretreatment with dexamethasone, showing that MDM-OME are also amenable to drug treatment. Dual-labeled immunofluorescence confocal microscopy revealed that MDM were the sole source of TNF-α production within MDM-OME. These data show functional activity of MDM-OME and illustrate their usefulness for investigations aimed at monitoring the immune response of the oral mucosa to pathogens, biomaterials, and for tissue toxicity and anti-inflammatory drug delivery studies.
Collapse
Affiliation(s)
- Bethany Ollington
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Helen E Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
The gut microbiota metabolite urolithin A inhibits NF-κB activation in LPS stimulated BMDMs. Sci Rep 2021; 11:7117. [PMID: 33782464 PMCID: PMC8007722 DOI: 10.1038/s41598-021-86514-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a natural defense process of the innate immune system, associated with the release of proinflammatory cytokines such as interleukin-1β, interleukin-6, interleukin-12 and TNFα; and enzymes including iNOS through the activation and nuclear translocation of NF-κB p65 due to the phosphorylation of IκBα. Regulation of intracellular Ca2+ is considered a promising strategy for the prevention of reactive oxygen species (ROS) production and accumulation of DNA double strand breaks (DSBs) that occurs in inflammatory-associated-diseases. Among the metabolites of ellagitannins that are produced in the gut microbiome, urolithin A (UA) has received an increasing attention as a novel candidate with anti-inflammatory and anti-oxidant effects. Here, we investigated the effect of UA on the suppression of pro-inflammatory molecules and NF-κB activation by targeting TLR4 signalling pathway. We also identified the influence of UA on Ca2+ entry, ROS production and DSBs availability in murine bone-marrow-derived macrophages challenged with lipopolysaccharides (LPS). We found that UA inhibits IκBα phosphorylation and supresses MAPK and PI3K activation. In addition, UA was able to reduce calcium entry, ROS production and DSBs availability. In conclusion, we suggest that urolithin A is a promising therapeutic agent for treating inflammatory diseases through suppression of NF-κB and preserving DNA through maintaining intracellular calcium and ROS homeostasis.
Collapse
|
7
|
Measurement of Macrophage Toll-Like Receptor 4 Expression After Morphine Treatment. Methods Mol Biol 2020. [PMID: 32975802 DOI: 10.1007/978-1-0716-0884-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The immune system is a complex and finely orchestrated system, and many soluble molecules and receptors contribute to its regulation.Recent studies have suggested that many of the modulatory effects induced by morphine on innate immunity, and in particular the effects on macrophage activation and function, can be due to the modulation of an important macrophage surface receptor, the toll-like receptor (TLR), that is primarily involved in early regulatory steps. In this chapter we describe a RT-real-time PCR method for assessing TLR expression in macrophage after in vivo morphine treatment.
Collapse
|
8
|
Molecular hydrogen protects against oxidative stress-induced RAW 264.7 macrophage cells through the activation of Nrf2 and inhibition of MAPK signaling pathway. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00074-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Zhang L, Pavicic PG, Datta S, Song Q, Xu X, Wei W, Su F, Rayman PA, Zhao C, Hamilton T. Unfolded Protein Response Differentially Regulates TLR4-Induced Cytokine Expression in Distinct Macrophage Populations. Front Immunol 2019; 10:1390. [PMID: 31293572 PMCID: PMC6598306 DOI: 10.3389/fimmu.2019.01390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022] Open
Abstract
Cellular stress responses are often engaged at sites of inflammation and can alter macrophage cytokine production. We now report that macrophages in distinct states of differentiation or in different temporal stages of inflammatory response exhibit differential sensitivity to cell stress mediated alterations in M1-like polarized inflammatory cytokine production. Tunicamycin (Tm) treatment of bone marrow derived macrophages (BMDM) cultured with M-CSF cultured bone marrow derived macrophages (M-BMDM) had markedly amplified M1-like responses to LPS, exhibiting higher levels of IL12p40 and IL12p35 mRNAs while BMDM cultured with GM-CSF, which normally express high IL12 subunit production in response to LPS, were relatively unaltered. Anti-inflammatory IL10 mRNA production in LPS-stimulated M-BMDM was greatly reduced by cell stress. These changes in cytokine mRNA levels resulted from altered rates of transcription and mRNA decay. Stress also altered cytokine protein production. Resident liver macrophages isolated from mice treated with Tm showed elevated levels of IL12 subunit mRNA production following LPS stimulation. Furthermore, macrophages infiltrating the liver during the early phase of acetaminophen injury (24 h) had little stress-mediated change in cytokine mRNA production while cells isolated in the later phase (48-72 h) exhibited higher sensitivity for stress elevated cytokine production. Hence cultured macrophages developed using different growth/differentiation factors and macrophages from different temporal stages of injury in vivo show markedly different sensitivity to cell stress for altered inflammatory cytokine production. These findings suggest that cellular stress can be an important modulator of the magnitude and character of myeloid inflammatory activity.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Paul G. Pavicic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Shyamasree Datta
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wei Wei
- School of Life Science, Lanzhou University, Lanzhou, China
| | - Fan Su
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Patricia A. Rayman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Thomas Hamilton
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
10
|
Atopic Dermatitis-Related Inflammation in Macrophages and Keratinocytes: The Inhibitory Effects of Bee Venom. JOURNAL OF ACUPUNCTURE RESEARCH 2019. [DOI: 10.13045/jar.2019.00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
11
|
Skivka LM, Prylutska SV, Rudyk MP, Khranovska NM, Opeida IV, Hurmach VV, Prylutskyy YI, Sukhodub LF, Ritter U. C 60 fullerene and its nanocomplexes with anticancer drugs modulate circulating phagocyte functions and dramatically increase ROS generation in transformed monocytes. Cancer Nanotechnol 2018; 9:8. [PMID: 30416604 PMCID: PMC6208740 DOI: 10.1186/s12645-017-0034-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/25/2017] [Indexed: 12/16/2022] Open
Abstract
Background C60 fullerene-based nanoformulations are proposed to have a direct toxic effect on tumor cells. Previous investigations demonstrated that C60 fullerene used alone or being conjugated with chemotherapeutic agents possesses a potent anticancer activity. The main aim of this study was to investigate the effect of C60 fullerene and its nanocomplexes with anticancer drugs on human phagocyte metabolic profile in vitro. Methods Analysis of the metabolic profile of phagocytes exposed to C60 fullerene in vitro revealed augmented phagocytic activity and down-regulated reactive nitrogen species generation in these cells. Additionally, cytofluorimetric analysis showed that C60 fullerene can exert direct cytotoxic effect on normal and transformed phagocytes through the vigorous induction of intracellular reactive oxygen species generation. Results Cytotoxic action as well as the pro-oxidant effect of C60 fullerene was more pronounced toward malignant phagocytes. At the same time, C60 fullerenes have the ability to down-regulate the pro-oxidant effect of cisplatin on normal cells. These results indicate that C60 fullerenes may influence phagocyte metabolism and have both pro-oxidant and antioxidant properties. Conclusions The antineoplastic effect of C60 fullerene has been observed by direct toxic effect on tumor cells, as well as through the modulation of the functions of effector cells of antitumor immunity.
Collapse
Affiliation(s)
- Larysa M Skivka
- 1Taras Shevchenko National University of Kyiv, 64 Volodymyrska str., Kiev, 01601 Ukraine
| | - Svitlana V Prylutska
- 1Taras Shevchenko National University of Kyiv, 64 Volodymyrska str., Kiev, 01601 Ukraine
| | - Mariia P Rudyk
- 1Taras Shevchenko National University of Kyiv, 64 Volodymyrska str., Kiev, 01601 Ukraine
| | | | - Ievgeniia V Opeida
- 1Taras Shevchenko National University of Kyiv, 64 Volodymyrska str., Kiev, 01601 Ukraine
| | - Vasyl V Hurmach
- 1Taras Shevchenko National University of Kyiv, 64 Volodymyrska str., Kiev, 01601 Ukraine
| | - Yuriy I Prylutskyy
- 1Taras Shevchenko National University of Kyiv, 64 Volodymyrska str., Kiev, 01601 Ukraine
| | - Leonid F Sukhodub
- 3Sumy State University, 2 Rymskogo-Korsakova str., Sumy, 40007 Ukraine
| | - Uwe Ritter
- 4Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Weimarer str. 25, 98693 Ilmenau, Germany
| |
Collapse
|
12
|
Fang X, Zaman MH, Guo X, Ding H, Xie C, Zhang X, Deng GM. Role of Hepatic Deposited Immunoglobulin G in the Pathogenesis of Liver Damage in Systemic Lupus Erythematosus. Front Immunol 2018; 9:1457. [PMID: 29988500 PMCID: PMC6026631 DOI: 10.3389/fimmu.2018.01457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022] Open
Abstract
The onset of hepatic disorders in patients with systemic lupus erythematosus (SLE) is frequent; however, the etiology and liver pathogenesis of SLE remain unknown. In the present study, the role of hepatic deposited immunoglobulin G (IgG) in SLE-derived liver damage was investigated. From a retrospective analysis of the medical records of 404 patients with lupus and from experimental studies on mice models, we found that liver dysfunction is common in SLE and liver damage with IgG deposition spontaneously develops in lupus-prone mice. Liver injury was recreated in mice by injecting IgG from lupus serum intrahepatically. The inflammation intensity in the liver decreased with IgG depletion and the lupus IgG-induced liver inflammation in FcγRIII-deficient mice was comparatively low; while, inflammation was increased in FcγRIIb-deficient mice. Macrophages, Kupffer cells, natural killer cells, and their products, but not lymphocytes, are required for the initiation of SLE-associated liver inflammation. Blocking IgG signaling using a spleen tyrosine kinase (Syk) inhibitor suppressed the liver damage. Our findings provided evidence of spontaneously established liver damage in SLE. They also suggested that hepatic-deposited lupus IgG is an important pathological factor in the development of liver injury and that hepatic inflammation is regulated by the Syk signaling pathway. Thus, Syk inhibition might promote the development of a therapeutic strategy to control liver damage in patients with SLE.
Collapse
Affiliation(s)
- Xiang Fang
- Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, China
| | - Muhammad Haidar Zaman
- Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, China
| | - Xuanxuan Guo
- Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, China
| | - Huimin Ding
- Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, China
| | - Changhao Xie
- Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, China
| | - Xiaojun Zhang
- First affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Min Deng
- Key Laboratory of Antibody Technology, National Health and Family Planning Commission, Nanjing Medical University, Nanjing, China.,First affiliated Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Khan KN, Fujishita A, Hiraki K, Kitajima M, Nakashima M, Fushiki S, Kitawaki J. Bacterial contamination hypothesis: a new concept in endometriosis. Reprod Med Biol 2018; 17:125-133. [PMID: 29692669 PMCID: PMC5902457 DOI: 10.1002/rmb2.12083] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/03/2017] [Indexed: 11/11/2022] Open
Abstract
Background Endometriosis is a multifactorial disease that mainly affects women of reproductive age. The exact pathogenesis of this disease is still debatable. The role of bacterial endotoxin (lipopolysaccharide, LPS) and Toll-like receptor 4 (TLR4) in endometriosis were investigated and the possible source of endotoxin in the pelvic environment was examined. Methods The limulus amoebocyte lysate test was used to measure the endotoxin levels in the menstrual fluid and peritoneal fluid and their potential role in the growth of endometriosis was investigated. Menstrual blood and endometrial samples were cultured for the presence of microbes. The effect of gonadotrophin-releasing hormone agonist (GnRHa) treatment on intrauterine microbial colonization (IUMC) and the occurrence of endometritis was investigated. Main findings Results Lipopolysaccharide regulates the pro-inflammatory response in the pelvis and growth of endometriosis via the LPS/TLR4 cascade. The menstrual blood was highly contaminated with Escherichea coli and the endometrial samples were colonized with other microbes. A cross-talk between inflammation and ovarian steroids or the stress reaction also was observed in the pelvis. Treatment with GnRHa further worsens intrauterine microbial colonization, with the consequent occurrence of endometritis in women with endometriosis. Conclusion For the first time, a new concept called the "bacterial contamination hypothesis" is proposed in endometriosis. This study's findings of IUMC in women with endometriosis could hold new therapeutic potential in addition to the conventional estrogen-suppressing agent.
Collapse
Affiliation(s)
- Khaleque N Khan
- Graduate School of Medical Science Department of Obstetrics and Gynecology Kyoto Prefectural University of Medicine Kyoto Japan
| | - Akira Fujishita
- Department of Gynecology Saiseikai Nagasaki Hospital Nagasaki Japan
| | - Koichi Hiraki
- Department of Gynecology Saiseikai Nagasaki Hospital Nagasaki Japan
| | - Michio Kitajima
- Department of Obstetrics and Gynecology Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology Atomic Bomb Disease Institute Nagasaki Japan
| | - Shinji Fushiki
- Center for Quality Assurance in Research and Development Kyoto Prefectural University of Medicine Kyoto Japan
| | - Jo Kitawaki
- Graduate School of Medical Science Department of Obstetrics and Gynecology Kyoto Prefectural University of Medicine Kyoto Japan
| |
Collapse
|
14
|
Beta Interferon Production Is Regulated by p38 Mitogen-Activated Protein Kinase in Macrophages via both MSK1/2- and Tristetraprolin-Dependent Pathways. Mol Cell Biol 2016; 37:MCB.00454-16. [PMID: 27795299 PMCID: PMC5192081 DOI: 10.1128/mcb.00454-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023] Open
Abstract
Autocrine or paracrine signaling by beta interferon (IFN-β) is essential for many of the responses of macrophages to pathogen-associated molecular patterns. This feedback loop contributes to pathological responses to infectious agents and is therefore tightly regulated. We demonstrate here that macrophage expression of IFN-β is negatively regulated by mitogen- and stress-activated kinases 1 and 2 (MSK1/2). Lipopolysaccharide (LPS)-induced expression of IFN-β was elevated in both MSK1/2 knockout mice and macrophages. Although MSK1 and -2 promote the expression of the anti-inflammatory cytokine interleukin 10, it did not strongly contribute to the ability of MSKs to regulate IFN-β expression. Instead, MSK1 and -2 inhibit IFN-β expression via the induction of dual-specificity phosphatase 1 (DUSP1), which dephosphorylates and inactivates the mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK). Prolonged LPS-induced activation of p38 and JNK, phosphorylation of downstream transcription factors, and overexpression of IFN-β mRNA and protein were similar in MSK1/2 and DUSP1 knockout macrophages. Two distinct mechanisms were implicated in the overexpression of IFN-β: first, JNK-mediated activation of c-jun, which binds to the IFN-β promoter, and second, p38-mediated inactivation of the mRNA-destabilizing factor tristetraprolin, which we show is able to target the IFN-β mRNA.
Collapse
|
15
|
Tomer S, Chawla YK, Duseja A, Arora SK. Dominating expression of negative regulatory factors downmodulates major histocompatibility complex Class-II expression on dendritic cells in chronic hepatitis C infection. World J Gastroenterol 2016; 22:5173-82. [PMID: 27298560 PMCID: PMC4893464 DOI: 10.3748/wjg.v22.i22.5173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/26/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To elucidate the molecular mechanisms leading to development of functionally impaired dendritic cells (DCs) in chronic hepatitis C (CHC) patients infected with genotype 3 virus. METHODS This prospective study was conducted on the cohorts of CHC individuals identified as responders or non-responders to antiviral therapy. Myeloid DCs were isolated from the peripheral blood of each subject using CD1c (BDCA1)(+) DC isolation Kit. Monocytes from healthy donor were cultured with DC growth factors such as IL-4 and GM-CSF either in the presence or absence of hepatitis C virus (HCV) viral proteins followed by LPS stimulation. Phenotyping was done by flowcytometry and gene expression profiling was evaluated by real-time PCR. RESULTS Non-responders [sustained virological response (SVR)-ve] to conventional antiviral therapy had significantly higher expression of genes associated with interferon responsive element such as IDO1 and PD-L1 (6-fold) and negative regulators of JAK-STAT pathway such as SOCS (6-fold) as compared to responders (SVR+ve) to antiviral therapy. The down-regulated genes in non-responders included factors involved in antigen processing and presentation mainly belonging to major histocompatibility complex (MHC) Class-II family as HLA-DP, HLA-DQ (2-fold) and superoxide dismutase (2-fold). Cells grown in the presence of HCV viral proteins had genes down-regulated for factors involved in innate response, interferon signaling, DC maturation and co-stimulatory signaling to T-cells, while the genes for cytokine signaling and Toll-like receptors (4-fold) were up-regulated as compared to cells grown in absence of viral proteins. CONCLUSION Underexpressed MHC class-II genes and upregulated negative regulators in non-responders indicate diminished capacity to present antigen and may constitute mechanism of functionally defective state of DCs.
Collapse
|
16
|
Seo DW, Cho YI, Gu S, Kim DH, Park JH, Yi YJ, Lee SM. A hot water extract ofAralia cordataactivates bone marrow-derived macrophages via a myeloid differentiation protein 88-dependent pathway and protects mice from bacterial infection. Microbiol Immunol 2016; 60:343-55. [DOI: 10.1111/1348-0421.12376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Dong-Won Seo
- Division of Biotechnology; Advanced Institute of Environment and Bioscience, College of Environmental and Bioresources; Chonbuk National University; Iksan-si Jeollabuk-do 54596
| | - Yong-Il Cho
- National Institute of Animal Science; Rural Development Administration; Cheonan-si Chungcheongnam-do 441-706 South Korea
| | - Suna Gu
- Division of Biotechnology; Advanced Institute of Environment and Bioscience, College of Environmental and Bioresources; Chonbuk National University; Iksan-si Jeollabuk-do 54596
| | - Da-Hee Kim
- Division of Biotechnology; Advanced Institute of Environment and Bioscience, College of Environmental and Bioresources; Chonbuk National University; Iksan-si Jeollabuk-do 54596
| | - Jung-Hee Park
- Division of Biotechnology; Advanced Institute of Environment and Bioscience, College of Environmental and Bioresources; Chonbuk National University; Iksan-si Jeollabuk-do 54596
| | - Young-Joo Yi
- Division of Biotechnology; Advanced Institute of Environment and Bioscience, College of Environmental and Bioresources; Chonbuk National University; Iksan-si Jeollabuk-do 54596
| | - Sang-Myeong Lee
- Division of Biotechnology; Advanced Institute of Environment and Bioscience, College of Environmental and Bioresources; Chonbuk National University; Iksan-si Jeollabuk-do 54596
| |
Collapse
|
17
|
Donor Hepatic Steatosis Induce Exacerbated Ischemia-Reperfusion Injury Through Activation of Innate Immune Response Molecular Pathways. Transplantation 2016; 99:2523-33. [PMID: 26285018 DOI: 10.1097/tp.0000000000000857] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Severe liver steatosis is a known risk factor for increased ischemia-reperfusion injury (IRI) and poor outcomes after liver transplantation (LT). This study aimed to identify steatosis-related molecular mechanisms associated with IRI exacerbation after LT. METHODS Paired graft biopsies (n = 60) were collected before implantation (L1) and 90 minutes after reperfusion (L2). The LT recipients (n = 30) were classified by graft macrosteatosis: without steatosis (WS) of 5% or less (n = 13) and with steatosis (S) of 25% or greater (n = 17). Plasma samples were collected at L1, L2, and 1 day after LT (postoperative [POD]1) for cytokines evaluation. Tissue RNA was isolated for gene expression microarrays. Probeset summaries were obtained using robust multiarray average algorithm. Pairwise comparisons were fit using 2-sample t test. P values 0.01 or less were significant (false discovery rate <5%). Molecular pathway analyses were conducted using Ingenuity Pathway Analysis tool. RESULTS Significantly differentially expressed genes were identified for WS and S grafts after reperfusion. Comprehensive comparison analysis of molecular profiles revealed significant association of S grafts molecular profile with innate immune response activation, macrophage production of nitric oxide and reactive oxygen species, IL-6, IL-8, IL-10 signaling activation, recruitment of granulocytes, and accumulation of myeloid cells. Postreperfusion histological patterns of S grafts revealed neutrophilic infiltration surrounding fat accumulation. Circulating proinflammatory cytokines after reperfusion and 24 hours after LT concurred with intragraft-deregulated molecular pathways. All tested cytokines were significantly increased in plasma of S grafts recipients after reperfusion when compared with WS group at same time. CONCLUSIONS Increases of graft steatosis exacerbate IRI by exacerbation of innate immune response after LT. Preemptive strategies should consider it for safety usage of steatotic livers.
Collapse
|
18
|
Seo DW, Yi YJ, Lee MS, Yun BS, Lee SM. Differential Modulation of Lipopolysaccharide-Induced Inflammatory Cytokine Production by and Antioxidant Activity of Fomentariol in RAW264.7 Cells. MYCOBIOLOGY 2015; 43:450-7. [PMID: 26839505 PMCID: PMC4731650 DOI: 10.5941/myco.2015.43.4.450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 05/17/2023]
Abstract
Medicinal mushrooms have been used worldwide to treat cancer and modulate the immune system. Over the last several years, there has been increasing interest in isolating bioactive compounds from medicinal mushrooms and evaluating their health beneficial effects. Fomes fomentarius is used in traditional oriental medicine and is known to possess antioxidant, anti-inflammatory, antidiabetic, and antitumor effects. In the present study, we isolated fomentariol from Fomes fomentarius and investigated its anti-inflammatory effect in murine macrophages (RAW264.7 cells) stimulated with lipopolysaccharides. Fomentariol inhibited the production of nitric oxide and intracellular reactive oxygen species triggered by lipopolysaccharides. Interestingly, fomentariol differentially regulated cytokine production triggered by lipopolysaccharides. Fomentariol effectively suppressed the production of interleukin-1β and interleukin-6 but not tumor necrosis factor-α. The inhibitory effect of fomentariol against nitric oxide, interleukin-1β, and interleukin-6 production was possibly mediated by downregulation of the extracellular signal-regulated kinase signaling pathway. Taken together, our results suggest that fomentariol differentially modulated inflammatory responses triggered by lipopolysaccharides in macrophages and is one of the bioactive compounds that mediate the physiological effects of Fomes fomentarius.
Collapse
Affiliation(s)
- Dong-Won Seo
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresources, Chonbuk National University, Iksan 54596, Korea
| | - Young-Joo Yi
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresources, Chonbuk National University, Iksan 54596, Korea
| | - Myeong-Seok Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresources, Chonbuk National University, Iksan 54596, Korea
| | - Bong-Sik Yun
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresources, Chonbuk National University, Iksan 54596, Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresources, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|
19
|
Interleukin-18 increases TLR4 and mannose receptor expression and modulates cytokine production in human monocytes. Mediators Inflamm 2015; 2015:236839. [PMID: 25873755 PMCID: PMC4383410 DOI: 10.1155/2015/236839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022] Open
Abstract
Interleukin-18 is a proinflammatory cytokine belonging to the interleukin-1 family of cytokines. This cytokine exerts many unique biological and immunological effects. To explore the role of IL-18 in inflammatory innate immune responses, we investigated its impact on expression of two toll-like receptors (TLR2 and TLR4) and mannose receptor (MR) by human peripheral blood monocytes and its effect on TNF-α, IL-12, IL-15, and IL-10 production. Monocytes from healthy donors were stimulated or not with IL-18 for 18 h, and then the TLR2, TLR4, and MR expression and intracellular TNF-α, IL-12, and IL-10 production were assessed by flow cytometry and the levels of TNF-α, IL-12, IL-15, and IL-10 in culture supernatants were measured by ELISA. IL-18 treatment was able to increase TLR4 and MR expression by monocytes. The production of TNF-α and IL-10 was also increased by cytokine treatment. However, IL-18 was unable to induce neither IL-12 nor IL-15 production by these cells. Taken together, these results show an important role of IL-18 on the early phase of inflammatory response by promoting the expression of some pattern recognition receptors (PRRs) that are important during the microbe recognition phase and by inducing some important cytokines such as TNF-α and IL-10.
Collapse
|
20
|
Bacterial flagellin induces IL-6 expression in human basophils. Mol Immunol 2015; 65:168-76. [PMID: 25660969 DOI: 10.1016/j.molimm.2015.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 01/13/2023]
Abstract
Binding of allergen to IgE on basophils positively affects allergic inflammation by releasing inflammatory mediators. Recently, basophils were shown to express pattern-recognition receptors, such as toll-like receptors (TLRs), for recognizing microbe-associated molecular patterns (MAMPs) that are independent of allergen-IgE binding. In this study, we investigated whether MAMP alone can induce IL-6 production in a human basophil cell line, KU812. Stimulation with flagellin in the absence of allergen-IgE association induced IL-6 expression in KU812 cells, while stimulation with lipoteichoic acid, peptidoglycan, or poly I:C did not under the same condition. Flagellin-induced IL-6 expression was also observed in human primary basophils. Flow cytometric analysis showed that KU812 cells expressed flagellin-recognizing TLR5 both on the cell surface and in the cytoplasm while TLR2 and TLR3 were observed only in the cytoplasm. We further demonstrated that although flagellin augmented the phosphorylation of mitogen-activated protein kinases including p38 kinase, ERK, and JNK, flagellin-induced IL-6 production was attenuated by inhibitors for p38 kinase and ERK, but not by JNK inhibitors. In addition, flagellin enhanced phosphorylation of signaling molecules including CREB, PKCδ, and AKT. The inhibitors for PKA and PKC also showed inhibitory effects. Interestingly, flagellin-induced IL-6 production was further enhanced by pretreatment with inhibitors for PI3K, implying that PI3K negatively affects the flagellin-induced IL-6 production. Furthermore, DNA binding activities of NF-κB, AP-1, and CREB, which play pivotal roles in the induction of IL-6 gene expression, were increased by flagellin. These results suggest that flagellin alone is sufficient to induce IL-6 gene expression via TLR5 signaling pathways in human basophils.
Collapse
|
21
|
Castelli M, Panerai A, Sacerdote P, Franchi S. Measurement of macrophage toll-like receptor 4 expression after morphine treatment. Methods Mol Biol 2015; 1230:263-271. [PMID: 25293333 DOI: 10.1007/978-1-4939-1708-2_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The immune system is a complex and finely orchestrated system, and many soluble molecules and receptors contribute to its regulation.Recent studies have suggested that many of the modulatory effects induced by morphine on innate immunity, and in particular the effects on macrophage activation and function, can be due to the modulation of an important macrophage surface receptor, the toll-like receptor (TLR), that is primarily involved in early regulatory steps. In the present chapter we describe a Reverse transcription (RT)-real time PCR method for assessing TLR expression in macrophage after in vivo morphine treatment.
Collapse
Affiliation(s)
- Mara Castelli
- Department of Pharmacological and Biomolecular Science, University of Milano, Via Vanvitelli 32, Milan, 20129, Italy
| | | | | | | |
Collapse
|
22
|
Triggering TLR2, -3, -4, -5, and -8 reinforces the restrictive nature of M1- and M2-polarized macrophages to HIV. J Virol 2014; 88:9769-81. [PMID: 24942590 DOI: 10.1128/jvi.01053-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Macrophages must react to a large number of pathogens and their effects. In chronic HIV infection, the microenvironment changes with an influx of microbial products that trigger Toll-like receptors (TLRs). That dynamic nature can be replicated ex vivo by the proinflammatory (M1-polarized) and alternatively activated (M2-polarized) macrophages. Thus, we determined how polarized macrophages primed by various TLR agonists support HIV replication. Triggering of TLR2, -3, -4, -5, and -8 reinforced the low level of permissiveness in polarized macrophages. HIV was inhibited even more in M1-polarized macrophages than in macrophages activated only by TLR agonists. HIV was inhibited before its integration into the host chromosome. Polarization and triggering by various TLR agonists resulted in distinct cytokine profiles, endocytic activity, and distinct upregulation of restriction factors of HIV. Thus, different mechanisms likely contribute to the HIV-inhibitory effects. In chronic HIV infection, macrophages might become less permissive to HIV due to changes in the microenvironment. The high level of reactivity of polarized macrophages to TLR triggering may be exploited for immunotherapeutic strategies. IMPORTANCE Macrophages are a major target of HIV-1 infection. Different cell types in this very heterogeneous cell population respond differently to stimuli. In vitro, the heterogeneity is mimicked by their polarization into proinflammatory and alternatively activated macrophages. Here we explored the extent to which agonists triggering the TLR family affect HIV replication in polarized macrophages. We found that a number of TLR agonists blocked HIV replication substantially when given before infection. We also report the mechanisms of how TLR agonists exert their inhibitory action. Our findings may advance our understanding of which and how TLR agonists block HIV infection in polarized macrophages and may facilitate the design of novel immunotherapeutic approaches.
Collapse
|
23
|
Jiang X, Tian W, Sung YK, Qian J, Nicolls MR. Macrophages in solid organ transplantation. Vasc Cell 2014; 6:5. [PMID: 24612731 PMCID: PMC3975229 DOI: 10.1186/2045-824x-6-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/25/2014] [Indexed: 12/19/2022] Open
Abstract
Macrophages are highly plastic hematopoietic cells with diversified functions related to their anatomic location and differentiation states. A number of recent studies have examined the role of macrophages in solid organ transplantation. These studies show that macrophages can induce allograft injury but, conversely, can also promote tissue repair in ischemia-reperfusion injury and acute rejection. Therapeutic strategies that target macrophages to improve outcomes in solid organ transplant recipients are being examined in preclinical and clinical models. In this review, we discuss the role of macrophages in different types of injury and rejection, with a focus on macrophage-mediated tissue injury, specifically vascular injury, repair and remodeling. We also discuss emerging macrophage-centered therapeutic opportunities in solid organ transplantation.
Collapse
Affiliation(s)
- Xinguo Jiang
- Department of Medicine, VA Palo Alto Health Care System/Division of Pulmonary/Critical Care, Stanford University School of Medicine, Stanford, CA 94304, USA.
| | | | | | | | | |
Collapse
|
24
|
Jitprasertwong P, Jaedicke KM, Nile CJ, Preshaw PM, Taylor JJ. Leptin enhances the secretion of interleukin (IL)-18, but not IL-1β, from human monocytes via activation of caspase-1. Cytokine 2013; 65:222-30. [PMID: 24275551 DOI: 10.1016/j.cyto.2013.10.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/10/2013] [Accepted: 10/28/2013] [Indexed: 01/22/2023]
Abstract
Circulating levels of leptin are elevated in type-2 diabetes mellitus (T2DM) and leptin plays a role in immune responses. Elevated circulating IL-18 levels are associated with clinical complications of T2DM. IL-18 regulates cytokine secretion and the function of a number of immune cells including T-cells, neutrophils and macrophages and as such has a key role in immunity and inflammation. Pro-inflammatory monocytes exhibiting elevated cytokine secretion are closely associated with inflammation in T2DM, however, little is known about the role of leptin in modifying monocyte IL-18 secretion. We therefore aimed to investigate the effect of leptin on IL-18 secretion by monocytes. We report herein that leptin increases IL-18 secretion in THP-1 and primary human monocytes but has no effect on IL-18mRNA. Leptin and LPS signalling in monocytes occurs by overlapping but distinct pathways. Thus, in contrast to a strong stimulation by LPS, leptin has no effect on IL-1βmRNA levels or IL-1β secretion. In addition, LPS stimulates the secretion of IL-6 but leptin did not whereas both treatments up regulate IL-8 secretion from the same cells. Although leptin (and LPS) has a synergistic effect with exogenous ATP on IL-18 secretion in both THP-1 and primary monocytes, experiments involving ATP assays and pharmacological inhibition of ATP signalling failed to provide any evidence that endogenous ATP secreted by leptin-stimulated monocytes was responsible for enhancement of monocyte IL-18 secretion by leptin. Analysis of the action of caspase-1 revealed that leptin up regulates caspase-1 activity and the effect of leptin on IL-18 release is prevented by caspase-1 inhibitor (Ac-YVAD-cmk). These data suggest that leptin activates IL-18 processing rather than IL-18 transcription. In conclusion, leptin enhances IL-18 secretion via modulation of the caspase-1 inflammasome function and acts synergistically with ATP in this regard. This process may contribute to aberrant immune responses in T2DM and other conditions of hyperleptinemia.
Collapse
Affiliation(s)
- Paiboon Jitprasertwong
- Centre for Oral Health Research and Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4BW, UK.
| | - Katrin M Jaedicke
- Centre for Oral Health Research and Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4BW, UK.
| | - Christopher J Nile
- Centre for Oral Health Research and Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4BW, UK.
| | - Philip M Preshaw
- Centre for Oral Health Research and Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4BW, UK.
| | - John J Taylor
- Centre for Oral Health Research and Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4BW, UK.
| |
Collapse
|
25
|
Valladares RD, Nich C, Zwingenberger S, Li C, Swank KR, Gibon E, Rao AJ, Yao Z, Goodman SB. Toll-like receptors-2 and 4 are overexpressed in an experimental model of particle-induced osteolysis. J Biomed Mater Res A 2013; 102:3004-11. [PMID: 24115330 DOI: 10.1002/jbm.a.34972] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/13/2013] [Accepted: 09/23/2013] [Indexed: 12/22/2022]
Abstract
Aseptic loosening secondary to particle-associated periprosthetic osteolysis remains a major cause of failure of total joint replacements (TJR) in the mid- and long term. As sentinels of the innate immune system, macrophages are central to the recognition and initiation of the inflammatory cascade, which results in the activation of bone resorbing osteoclasts. Toll-like receptors (TLRs) are involved in the recognition of pathogen-associated molecular patterns and danger-associated molecular patterns. Experimentally, polymethylmethacrylate and polyethylene (PE) particles have been shown to activate macrophages via the TLR pathway. The specific TLRs involved in PE particle-induced osteolysis remain largely unknown. We hypothesized that TLR-2, -4, and -9 mediated responses play a critical role in the development of PE wear particle-induced osteolysis in the murine calvarium model. To test this hypothesis, we first demonstrated that PE particles caused observable osteolysis, visible by microCT and bone histomorphometry when the particles were applied to the calvarium of C57BL/6 mice. The number of TRAP positive osteoclasts was significantly greater in the PE-treated group when compared to the control group without particles. Finally, using immunohistochemistry, TLR-2 and TLR-4 were highly expressed in PE particle-induced osteolytic lesions, whereas TLR-9 was downregulated. TLR-2 and -4 may represent novel therapeutic targets for prevention of wear particle-induced osteolysis and accompanying TJR failure.
Collapse
Affiliation(s)
- Roberto D Valladares
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Potter KA, Buck AC, Self WK, Callanan ME, Sunil S, Capadona JR. The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes. Biomaterials 2013; 34:7001-15. [PMID: 23791503 DOI: 10.1016/j.biomaterials.2013.05.035] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/18/2013] [Indexed: 12/23/2022]
Abstract
The current study seeks to elucidate a biological mechanism which may mediate neuroinflammation, and decreases in both blood-brain barrier stability and neuron viability at the intracortical microelectrode-tissue interface. Here, we have focused on the role of pro-inflammatory reactive oxygen species. Specifically, adult rats implanted within intracortical microelectrodes were systemically administered the anti-oxidant, resveratrol, both the day before and the day of surgery. Animals were sacrificed at two or four weeks post-implantation for histological analysis of the neuroinflammatory and neurodegenerative responses to the microelectrode. At two weeks post-implantation, we found animals treated with resveratrol demonstrated suppression of reactive oxygen species accumulation and blood-brain barrier instability, accompanied with increased density of neurons at the intracortical microelectrode-tissue interface. Four weeks post-implantation, animals treated with resveratrol exhibited indistinguishable levels of markers for reactive oxygen species and neuronal nuclei density in comparison to untreated control animals. However, of the neurons that remained, resveratrol treated animals were seen to display reductions in the density of degenerative neurons compared to control animals at both two and four weeks post-implantation. Initial mechanistic evaluation suggested the roles of both anti-oxidative enzymes and toll-like receptor 4 expression in facilitating microglia activation and the propagation of neurodegenerative inflammatory pathways. Collectively, our data suggests that short-term attenuation of reactive oxygen species accumulation and blood-brain barrier instability can result in prolonged improvements in neuronal viability around implanted intracortical microelectrodes, while also identifying potential therapeutic targets to reduce chronic intracortical microelectrode-mediated neurodegeneration.
Collapse
Affiliation(s)
- Kelsey A Potter
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr Drive, Wickenden Bldg., Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
27
|
Khan KN, Kitajima M, Fujishita A, Nakashima M, Masuzaki H. Toll-like receptor system and endometriosis. J Obstet Gynaecol Res 2013; 39:1281-92. [PMID: 23855795 DOI: 10.1111/jog.12117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endometriosis is an estrogen-dependent chronic inflammatory condition associated with variable degrees of pelvic pain and infertility. Studies have showed that the growth and progression of endometriosis continue even in ovariectomized animals. This indicates that besides ovarian steroid hormones, the growth of endometriosis can be regulated by the innate immune system in the pelvic environment. As a component of innate immune system, increased infiltration of macrophages has been described in the intact tissue and peritoneal fluid of women with endometriosis. Different immune cells and dendritic cells express Toll-like receptors (TLR) and exhibit functional activity in response to microbial products. In this review article, we discuss the role of the TLR system in endometrium and endometriosis and outline the involvement of cytokines/endotoxin in causing adverse reproductive outcome. In the first part of this review article, the fundamentals of innate immune system, functional characteristics of TLR and signaling pathways of TLR4 are discussed for easy understanding by the readers.
Collapse
Affiliation(s)
- Khaleque Newaz Khan
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | | | | | |
Collapse
|
28
|
Howell J, Angus P, Gow P, Visvanathan K. Toll-like receptors in hepatitis C infection: implications for pathogenesis and treatment. J Gastroenterol Hepatol 2013; 28:766-76. [PMID: 23432473 DOI: 10.1111/jgh.12170] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2013] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection is a significant global health problem, affecting over 150 million people worldwide. While the critical role of the adaptive immune system in HCV infection is well-established, the importance of the innate immune system in HCV infection has only been recognized in more recent years. Toll-like receptors form the cornerstone of the innate immune response, and there is considerable evidence for their crucial role in hepatitis C infection. This review outlines recent advances made in our understanding of the role of Toll-like receptor function in HCV infection, exploring how HCV manipulates host immunity to evade immune clearance and establish persistent infection despite leading to inflammatory hepatic damage.
Collapse
Affiliation(s)
- Jessica Howell
- Liver Transplant Unit, Austin Hospital, Victoria, Australia.
| | | | | | | |
Collapse
|
29
|
Li J, Wang X, Zhang F, Yin H. Toll-like receptors as therapeutic targets for autoimmune connective tissue diseases. Pharmacol Ther 2013; 138:441-51. [PMID: 23531543 DOI: 10.1016/j.pharmthera.2013.03.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 02/06/2023]
Abstract
Autoimmune connective tissue diseases (ACTDs) are a family of consistent systemic autoimmune inflammatory disorders, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc) and Sjögren's syndrome (SS). IL-1R-like receptors (TLRs) are located on various cellular membranes and sense exogenous and endogenous danger-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), playing a critical role in innate immune responses. During the past decade, the investigation of TLRs in inflammatory autoimmune diseases has been fruitful. In this report, we review the significant biochemical, physiological and pathological studies of the key functions of TLRs in ACTDs. Several proteins in the TLR signaling pathways (e.g., IKK-2 and MyD88) have been identified as potential therapeutic targets for the treatment of ACTDs. Antibodies, oligodeoxyribonucleotides (ODNs) and small molecular inhibitors (SMIs) have been tested to modulate TLR signaling. Some drug-like SMIs of TLR signaling, such as RDP58, ST2825, ML120B and PHA-408, have demonstrated remarkable potential, with promising safety and efficacy profiles, which should warrant further clinical investigation. Nonetheless, one should bear in mind that all TLRs exert both protective and pathogenic functions; the function of TLR4 in inflammatory bowel disease represents such an example. Therefore, an important aspect of TLR modulator development involves the identification of a balance between the suppression of disease-inducing inflammation, while retaining the beneficiary host immune response.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry and Biochemistry and Biofrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309-0596, USA
| | | | | | | |
Collapse
|
30
|
Role of macrophages in the pathogenesis of atopic dermatitis. Mediators Inflamm 2013; 2013:942375. [PMID: 23533313 PMCID: PMC3603294 DOI: 10.1155/2013/942375] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 01/22/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common and most intensively studied chronic inflammatory skin diseases. Several cofactors, such as an impaired skin barrier function, modifications of the immune system, and a complex genetic background, direct the course of AD. Within this complex network, macrophages play a pivotal role in enhanced susceptibility to cutaneous infections and act as central connecting components in the pathogenesis of AD on the cellular level. In AD, macrophages are known to accumulate in acutely and chronically inflamed skin. During the early and short inflammatory phase, macrophages exert proinflammatory functions like antigen-presenting phagocytosis and the production of inflammatory cytokines and growth factors that facilitate the resolution of inflammation. However, persistence of pro-inflammatory activity and altered function of macrophages result in the development of chronic inflammatory diseases such as AD. The exact mechanism of macrophages activation in these processes is not yet completely understood. Further studies should be performed to clarify the dysregulated mechanism of macrophages activation in AD, and this would allow us to target these cells with versatile functions for therapeutic purpose and improve and control the disease.
In this paper, we highlight the new findings on dysregulated function of macrophages and the importance of these cells in the pathogenesis of AD in general and the contribution of these cells in enhanced susceptibility against microbial infections in particular.
Collapse
|
31
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013. [PMID: 23386811 DOI: 10.3389/fncel.2013.00006/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
32
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013; 7:6. [PMID: 23386811 PMCID: PMC3558702 DOI: 10.3389/fncel.2013.00006] [Citation(s) in RCA: 440] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/09/2013] [Indexed: 02/04/2023] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
33
|
The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol 2012; 13:1155-61. [PMID: 23142775 PMCID: PMC3501571 DOI: 10.1038/ni.2460] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/26/2012] [Indexed: 12/13/2022]
Abstract
The induction of type I interferons by the bacterial secondary messengers cyclic di-GMP (c-di-GMP) or cyclic di-AMP (c-di-AMP) is dependent on a signaling axis that involves the adaptor STING, the kinase TBK1 and the transcription factor IRF3. Here we identified the heliase DDX41 as a pattern-recognition receptor (PRR) that sensed both c-di-GMP and c-di-AMP. DDX41 specifically and directly interacted with c-di-GMP. Knockdown of DDX41 via short hairpin RNA in mouse or human cells inhibited the induction of genes encoding molecules involved in the innate immune response and resulted in defective activation of STING, TBK1 and IRF3 in response to c-di-GMP or c-di-AMP. Our results suggest a mechanism whereby c-di-GMP and c-di-AMP are detected by DDX41, which forms a complex with STING to signal to TBK1-IRF3 and activate the interferon response.
Collapse
|
34
|
Pone EJ, Xu Z, White CA, Zan H, Casali P. B cell TLRs and induction of immunoglobulin class-switch DNA recombination. Front Biosci (Landmark Ed) 2012; 17:2594-615. [PMID: 22652800 DOI: 10.2741/4073] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) are a family of conserved pattern recognition receptors (PRRs). Engagement of B cell TLRs by microbe-associated molecular patterns (MAMPs) induces T-independent (TI) antibody responses and plays an important role in the early stages of T-dependent (TD) antibody responses before specific T cell help becomes available. The role of B cell TLRs in the antibody response is magnified by the synergy of B cell receptor (BCR) crosslinking and TLR engagement in inducing immunoglobulin (Ig) class switch DNA recombination (CSR), which crucially diversifies the antibody biological effector functions. Dual BCR/TLR engagement induces CSR to all Ig isotypes, as directed by cytokines, while TLR engagement alone induces marginal CSR. Integration of BCR and TLR signaling results in activation of the canonical and non-canonical NF-κB pathways, induction of activation-induced cytidine deaminase (AID) and germline transcription of IgH switch (S) regions. A critical role of B cell TLRs in CSR and the antibody response is emphasized by the emergence of several TLR ligands as integral components of vaccines that greatly boost humoral immunity in a B cell-intrinsic fashion.
Collapse
Affiliation(s)
- Egest J Pone
- Institute for Immunology, School of Medicine, University of California, Irvine, CA 92697-4120, USA
| | | | | | | | | |
Collapse
|
35
|
Franchi S, Moretti S, Castelli M, Lattuada D, Scavullo C, Panerai AE, Sacerdote P. Mu opioid receptor activation modulates Toll like receptor 4 in murine macrophages. Brain Behav Immun 2012; 26:480-8. [PMID: 22240038 DOI: 10.1016/j.bbi.2011.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 12/13/2022] Open
Abstract
Opioids have been shown to affect both innate and adaptive immunity. We previously showed that morphine affects the macrophage production of pro-inflammatory cytokines after LPS in a NFkB dependent manner. Toll like receptors (TLRs) play a crucial role in the signaling pathways which lead to NFkB activation. TLR4 is considered the Lipopolysaccaride (LPS) receptor. The data here presented show that, in murine macrophages, morphine impacts on the immune function acting on the early step of pathogen recognition. Morphine, when added to RAW 264.7 cells and when injected into mice (s.c. 20mg/kg) is in fact able to decrease TLR4 both at mRNA and protein level in RAW cells and peritoneal macrophages. In the same cells, the mu opioid receptor (MOR) antagonist Naltrexone increases TLR4 levels, thus suggesting a role of the endogenous opioid system in TLR4 regulation. The effect of the two drugs is moreover lost in case of co-administration. Experiments with MOR KO mice and with DAMGO (MOR specific agonist) confirm that the effect of morphine on TLR4 mRNA in peritoneal macrophages is due to the MOR activation. Moreover the effect on TLR4 is blocked by PTX thus indicating the involvement of a G(i) protein after MOR binding. This work unveils a clear link between MOR activation and TLR4, suggesting a new possible mechanism at the basis of the peripheral immunosuppressive effect of opioids.
Collapse
Affiliation(s)
- Silvia Franchi
- Dipartimento di Farmacologia Chemioterapia e Tossicologia medica, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Recent development of the mononuclear phagocyte system: in memory of Metchnikoff and Ehrlich on the 100th Anniversary of the 1908 Nobel Prize in Physiology or Medicine. Biol Cell 2012; 101:709-21. [DOI: 10.1042/bc20080227] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Jain S, Chodisetti SB, Agrewala JN. CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells. PLoS One 2011; 6:e20651. [PMID: 21674065 PMCID: PMC3107243 DOI: 10.1371/journal.pone.0020651] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/06/2011] [Indexed: 12/15/2022] Open
Abstract
Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB) cells, by involving TLR-2 and CD40 - molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID), signifying class switch recombination (CSR). Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response.
Collapse
Affiliation(s)
- Shweta Jain
- Immunology Laboratory, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Sathi Babu Chodisetti
- Immunology Laboratory, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Javed N. Agrewala
- Immunology Laboratory, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
- * E-mail: .
| |
Collapse
|
38
|
Ryan A, Lynch M, Smith SM, Amu S, Nel HJ, McCoy CE, Dowling JK, Draper E, O'Reilly V, McCarthy C, O'Brien J, Ní Eidhin D, O'Connell MJ, Keogh B, Morton CO, Rogers TR, Fallon PG, O'Neill LA, Kelleher D, Loscher CE. A role for TLR4 in Clostridium difficile infection and the recognition of surface layer proteins. PLoS Pathog 2011; 7:e1002076. [PMID: 21738466 PMCID: PMC3128122 DOI: 10.1371/journal.ppat.1002076] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 04/07/2011] [Indexed: 11/18/2022] Open
Abstract
Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H/HeN and C3H/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H/HeJ mice and failed to induce a subsequent Th cell response. TLR4⁻/⁻ and Myd88⁻/⁻, but not TRIF⁻/⁻ mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system.
Collapse
Affiliation(s)
- Anthony Ryan
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Ireland
| | - Mark Lynch
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Ireland
| | - Sinead M. Smith
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Sylvie Amu
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Hendrik J. Nel
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Claire E. McCoy
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Jennifer K. Dowling
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Ireland
| | - Eve Draper
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Ireland
| | - Vincent O'Reilly
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Ireland
| | - Ciara McCarthy
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Ireland
| | - Julie O'Brien
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Déirdre Ní Eidhin
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Mary J. O'Connell
- Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland
| | - Brian Keogh
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Charles O. Morton
- Department of Clinical Microbiology, St James Hospital, Trinity College, Dublin, Ireland
| | - Thomas R. Rogers
- Department of Clinical Microbiology, St James Hospital, Trinity College, Dublin, Ireland
| | - Padraic G. Fallon
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Luke A. O'Neill
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Dermot Kelleher
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Christine E. Loscher
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Ireland
| |
Collapse
|
39
|
OˈNeill LAJ. Editorial: Synergism between NOD-like receptors and Toll-like receptors in human B lymphocytes. J Leukoc Biol 2011; 89:173-5. [DOI: 10.1189/jlb.0910521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
40
|
Abstract
Macrophages are present within the transplanted kidney in varying numbers throughout its lifespan. Because of their prominence during acute rejection episodes, macrophages traditionally have been viewed as contributors to T-cell-directed graft injury. With growing appreciation of macrophage biology, it has become evident that different types of macrophages exist within the kidney, subserving a range of functions that include promotion or attenuation of inflammation, participation in innate and adaptive immune responses, and mediation of tissue injury and fibrosis, as well as tissue repair. A deeper understanding of how macrophages accumulate within the kidney and of what factors control their differentiation and function may identify novel therapeutic targets in transplantation.
Collapse
|
41
|
Mittal R, Gonzalez-Gomez I, Panigrahy A, Goth K, Bonnet R, Prasadarao NV. IL-10 administration reduces PGE-2 levels and promotes CR3-mediated clearance of Escherichia coli K1 by phagocytes in meningitis. ACTA ACUST UNITED AC 2010; 207:1307-19. [PMID: 20498022 PMCID: PMC2882833 DOI: 10.1084/jem.20092265] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ineffectiveness of antibiotics in treating neonatal Escherichia coli K1 meningitis and the emergence of antibiotic-resistant strains evidently warrants new prevention strategies. We observed that administration of interleukin (IL)-10 during high-grade bacteremia clears antibiotic-sensitive and -resistant E. coli from blood of infected mice. Micro-CT studies of brains from infected animals displayed gross morphological changes similar to those observed in infected human neonates. In mice, IL-10, but not antibiotic or anti-TNF antibody treatment prevented brain damage caused by E. coli. IL-10 administration elevated CR3 expression in neutrophils and macrophages of infected mice, whereas infected and untreated mice displayed increased expression of FcγRI and TLR2. Neutrophils or macrophages pretreated with IL-10 ex vivo exhibited a significantly greater microbicidal activity against E. coli compared with cells isolated from wild-type or IL-10−/− mice. The protective effect of IL-10 was abrogated when CR3 was knocked-down in vivo by siRNA. The increased expression of CR3 in phagocytes was caused by inhibition of prostaglandin E-2 (PGE-2) levels, which were significantly increased in neutrophils and macrophages upon E. coli infection. These findings describe a novel modality of IL-10–mediated E. coli clearance by diverting the entry of bacteria via CR3 and preventing PGE-2 formation in neonatal meningitis.
Collapse
Affiliation(s)
- Rahul Mittal
- Division of Infectious Diseases, Department of Pathology, Childrens Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, CA 90027, USA
| | | | | | | | | | | |
Collapse
|
42
|
Vogl C, Flatt T, Fuhrmann B, Hofmann E, Wallner B, Stiefvater R, Kovarik P, Strobl B, Müller M. Transcriptome analysis reveals a major impact of JAK protein tyrosine kinase 2 (Tyk2) on the expression of interferon-responsive and metabolic genes. BMC Genomics 2010; 11:199. [PMID: 20338026 PMCID: PMC2864243 DOI: 10.1186/1471-2164-11-199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 03/25/2010] [Indexed: 12/15/2022] Open
Abstract
Background Tyrosine kinase 2 (Tyk2), a central component of Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, has major effects on innate immunity and inflammation. Mice lacking Tyk2 are resistant to endotoxin shock induced by lipopolysaccharide (LPS), and Tyk2 deficient macrophages fail to efficiently induce interferon α/β after LPS treatment. However, how Tyk2 globally regulates transcription of downstream target genes remains unknown. Here we examine the regulatory role of Tyk2 in basal and inflammatory transcription by comparing gene expression profiles of peritoneal macrophages from Tyk2 mutant and wildtype control mice that were either kept untreated or exposed to LPS for six hours. Results Untreated Tyk2-deficient macrophages exhibited reduced expression of immune response genes relative to wildtype, in particular those that contain interferon response elements (IRF/ISRE), whereas metabolic genes showed higher expression. Upon LPS challenge, IFN-inducible genes (including those with an IRF/ISRE transcription factor binding-site) were strongly upregulated in both Tyk2 mutant and wildtype cells and reached similar expression levels. In contrast, metabolic gene expression was strongly decreased in wildtype cells upon LPS treatment, while in Tyk2 mutant cells the expression of these genes remained relatively unchanged, which exaggerated differences already present at the basal level. We also identified several 5'UR transcription factor binding-sites and 3'UTR regulatory elements that were differentially induced between Tyk2 deficient and wildtype macrophages and that have not previously been implicated in immunity. Conclusions Although Tyk2 is essential for the full LPS response, its function is mainly required for baseline expression but not LPS-induced upregulation of IFN-inducible genes. Moreover, Tyk2 function is critical for the downregulation of metabolic genes upon immune challenge, in particular genes involved in lipid metabolism. Together, our findings suggest an important regulatory role for Tyk2 in modulating the relationship between immunity and metabolism.
Collapse
Affiliation(s)
- Claus Vogl
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pone EJ, Zan H, Zhang J, Al-Qahtani A, Xu Z, Casali P. Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: relevance to microbial antibody responses. Crit Rev Immunol 2010; 30:1-29. [PMID: 20370617 PMCID: PMC3038989 DOI: 10.1615/critrevimmunol.v30.i1.10] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Differentiation of naïve B cells, including immunoglobulin class-switch DNA recombination, is critical for the immune response and depends on the extensive integration of signals from the B-cell receptor (BCR), tumor necrosis factor (TNF) family members, Toll-like receptors (TLRs), and cytokine receptors. TLRs and BCR synergize to induce class-switch DNA recombination in T cell-dependent and T cell-independent antibody responses to microbial pathogens. BCR triggering together with simultaneous endosomal TLR engagement leads to enhanced B-cell differentiation and antibody responses. Te requirement of both BCR and TLR engagement would ensure appropriate antigen-specific activation in an infection. Co-stimulation of TLRs and BCR likely plays a significant role in anti-microbial antibody responses to contain pathogen loads until the T cell-dependent antibody responses peak. Furthermore, the temporal sequence of different signals is also critical for optimal B cell responses, as exemplified by the activation of B cells by initial TLR engagement, leading to the up-regulation of co-stimulatory CD80 and MCH-II receptors, which result in more efficient interactions with T cells, thereby enhancing the germinal center reaction and antibody affinity maturation. Overall, BCR and TLR stimulation and the integration with signals from the pathogen or immune cells and their products determine the ensuing B-cell antibody response.
Collapse
Affiliation(s)
- Egest J. Pone
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Hong Zan
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Jinsong Zhang
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Ahmed Al-Qahtani
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Zhenming Xu
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Paolo Casali
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| |
Collapse
|
44
|
Li J, Uetrecht JP. D-penicillamine-induced autoimmunity: relationship to macrophage activation. Chem Res Toxicol 2009; 22:1526-33. [PMID: 19575532 DOI: 10.1021/tx900128p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Idiosyncratic drug reactions represent a serious health problem, and they remain unpredictable largely due to our limited understanding of the mechanisms involved. Penicillamine-induced autoimmunity in Brown Norway (BN) rats represents one model of an idiosyncratic reaction, and this drug can also cause autoimmune reactions in humans. We previously demonstrated that penicillamine binds to aldehydes on the surface of macrophages. There is evidence that an imine bond formed by aldehyde groups on macrophages and amine groups on T cells is one type of interaction between these two cells that is involved in the induction of an immune response. We proposed that the binding of penicillamine with aldehyde groups on macrophages could lead to their activation and in some patients could lead to autoimmunity. In this study, the transcriptome profile of spleen macrophages 6 h after penicillamine treatment was used to detect effects of penicillamine on macrophages with a focus on 20 genes known to be macrophage activation biomarkers. One biological consequence of macrophage activation was investigated by determining mRNA levels for IL-15 and IL-1 beta which are crucial for NK cell activation, as well as levels of mRNA for selected cytokines in spleen NK cells. Up-regulation of the macrophage activating cytokines, IFN-gamma and GM-CSF, and down-regulation of IL-13 indicated activation of NK cells, which suggests a positive feedback loop between macrophages and NK cells. Furthermore, treatment of a murine macrophage cell line, RAW264.7, with penicillamine increased the production of TNF-alpha, IL-6, and IL-23, providing additional evidence that penicillamine activates macrophages. Hydralazine and isoniazid cause a lupus-like syndrome in humans and also bind to aldehyde groups. These drugs were also found to activate RAW264.7 macrophages. Together, these data support the hypothesis that drugs that bind irreversibly with aldehydes lead to macrophage activation, which in some patients can lead to an autoimmune syndrome.
Collapse
Affiliation(s)
- Jinze Li
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Ontario M5S 3M2, Canada
| | | |
Collapse
|
45
|
Montero Vega M, de Andrés Martín A. The significance of toll-like receptors in human diseases. Allergol Immunopathol (Madr) 2009; 37:252-63. [PMID: 19853360 DOI: 10.1016/j.aller.2009.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/13/2009] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are a family of transmembrane receptors that have been preserved throughout evolution and which selectively recognize a broad spectrum of microbial components and endogenous molecules released by injured tissue. Identification of these ligands by TLRs triggers signalling pathways which lead to the expression of numerous genes involved in a defensive response. In mammals, the products of these genes initiate inflammation, coordinate the effector functions of innate immunity, instruct and modulate adaptive immunity and initiate tissue repair and regeneration. Different mutations and experimental models which alter TLR function have revealed the significance of these receptors in susceptibility to infection and their involvement in the pathogenesis of a large number of non-infective inflammatory disorders such as cancer, allergy, autoimmunity, inflammatory bowel disease, or atherosclerosis. TLRs are currently viewed as important targets for the development of new vaccines and innovative therapies to prevent and treat human diseases.
Collapse
|
46
|
Innate immune sensing and activation of cell surface Toll-like receptors. Semin Immunol 2009; 21:175-84. [DOI: 10.1016/j.smim.2009.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 05/06/2009] [Indexed: 12/30/2022]
|
47
|
The role of Toll-like receptor 2 in inflammation and fibrosis during progressive renal injury. PLoS One 2009; 4:e5704. [PMID: 19479087 PMCID: PMC2682651 DOI: 10.1371/journal.pone.0005704] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 04/26/2009] [Indexed: 12/20/2022] Open
Abstract
Tissue fibrosis and chronic inflammation are common causes of progressive organ damage, including progressive renal disease, leading to loss of physiological functions. Recently, it was shown that Toll-like receptor 2 (TLR2) is expressed in the kidney and activated by endogenous danger signals. The expression and function of TLR2 during renal fibrosis and chronic inflammation has however not yet been elucidated. Therefore, we studied TLR2 expression in human and murine progressive renal diseases and explored its role by inducing obstructive nephropathy in TLR2−/− or TLR2+/+ mice. We found that TLR2 is markedly upregulated on tubular and tubulointerstitial cells in patients with chronic renal injury. In mice with obstructive nephropathy, renal injury was associated with a marked upregulation and change in distribution of TLR2 and upregulation of murine TLR2 danger ligands Gp96, biglycan, and HMGB1. Notably, TLR2 enhanced inflammation as reflected by a significantly reduced influx of neutrophils and production of chemokines and TGF-β in kidneys of TLR2−/− mice compared with TLR2+/+ animals. Although, the obstructed kidneys of TLR2−/− mice had less interstitial myofibroblasts in the later phase of obstructive nephropathy, tubular injury and renal matrix accumulation was similar in both mouse strains. Together, these data demonstrate that TLR2 can initiate renal inflammation during progressive renal injury and that the absence of TLR2 does not affect the development of chronic renal injury and fibrosis.
Collapse
|
48
|
Hou X, Zhou R, Wei H, Sun R, Tian Z. NKG2D-retinoic acid early inducible-1 recognition between natural killer cells and Kupffer cells in a novel murine natural killer cell-dependent fulminant hepatitis. Hepatology 2009; 49:940-9. [PMID: 19177594 DOI: 10.1002/hep.22725] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
UNLABELLED Increasing evidence suggests the contribution of natural killer (NK) cells to pathogenesis of human hepatitis, but the detailed mechanisms have yet to be clearly elucidated. In this study, injection of polyinosinic:polycytidylic acid (poly I:C) and D-galactosamine (D-GalN) was used to establish a novel murine fulminant hepatitis model: results showed that predepletion of either NK cells or Kupffer cells could completely abolish the liver injury. Injection of poly I:C/D-GalN into mice could promote tumor necrosis factor-alpha production and surface retinoic acid early inducible-1 (Rae1) protein expression by Kupffer cells, which then activated NK cells to produce interferon-gamma via NKG2D-Rae1 recognition. NK cell-derived interferon-gamma and Kupffer cell-derived tumor necrosis factor-alpha synergistically mediated the severe liver injury. Moreover, Kupffer cell-derived interleukin-12 and interleukin-18 were also found to improve cross talk between NK cells and Kupffer cells. CONCLUSION These results provide the first in vivo evidence that NKG2D/ligand interaction is involved in the synergic effects of NK cells and Kupffer cells on acute liver injury.
Collapse
Affiliation(s)
- Xin Hou
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | | | | | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW To provide a critical update of the literature linking depression and inflammation, together with possible underlying mechanisms and longer term risk of cardiovascular disease. RECENT FINDINGS The current literature lends further support to the view that major depression is associated with a proinflammatory response, as indexed by elevation in C-reactive protein and cytokines such as interleukin 6 and tumour necrosis factor-alpha. Antidepressants suppress the inflammatory response, whereas electroconvulsive therapy acutely increases proinflammatory cytokine levels. Most, though not all, studies support a link between depression, inflammation and cardiovascular events. SUMMARY Depression is an inflammatory state that may increase the risk of cardiac disease. Whether or not the immune system is an appropriate target for antidepressant development has yet to be established.
Collapse
|
50
|
Abstract
Toll-like receptors (TLRs) belong to a family of pattern-recognition receptors for microbial products and endogenous molecules released by stressed cells. Experimental studies show that TLRs are involved in the process of acute allograft rejection and that their activation can prevent transplantation tolerance. Herein, we review the expression of TLRs and the impact of TLR signaling in different cell types in grafted organs including antigen-presenting cells, T and B lymphocytes, epithelial and endothelial cells. We then discuss the involvement of TLRs in the different phases of the rejection phenomenon and the impact of TLR-mediated events on regulatory circuits which dampen alloimmune responses.
Collapse
|