1
|
Zlotver I, Shechtman N, Sosnik A. Hybrid amorphous titanium dioxide/polymeric nano-sonosensitizers towards the actively targeted sonodynamic therapy of brain cancer. J Colloid Interface Sci 2025; 694:137702. [PMID: 40311316 DOI: 10.1016/j.jcis.2025.137702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
This work investigates hybrid ceramic/polymeric sono-responsive nanomaterials made of amorphous titanium dioxide (aTiO2) and a branched poly(ethylene oxide)-poly(propylene oxide) block copolymer surface-modified with the shuttle peptide cyclic Arg-Gly-Asp-d-Phe-Val that targets the αvβ3 integrin overexpressed in the blood-brain barrier endothelium and glioblastoma cells for the actively targeted sonodynamic therapy of brain cancer. The size of the nanoparticles is ∼100 nm, as measured by dynamic light scattering. Nanostructural analysis by high resolution-electron microscopies reveals that the nanoparticles consist of a porous aTiO2 matrix with the polymeric amphiphile homogeneously incorporated in it. High-resolution X-ray photoelectron spectroscopy demonstrates the exposure of the shuttle peptide on the nanoparticle surface. The compatibility, uptake, and sonodynamic efficacy in vitro are studied in 2D and 3D cultures of the glioblastoma cell line U87. Results confirm the good cell compatibility of the nanoparticles and the contribution of the shuttle peptide to significantly increase their uptake and anticancer efficacy in vitro. Moreover, the shuttle peptide modification leads to a 6-fold increase in the nanoparticle accumulation in the brain and a sharp decrease in the accumulation in the liver of healthy mice upon one single intravenous injection, highlighting the promise of this platform for the targeted SDT of brain tumors.
Collapse
Affiliation(s)
- Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Noa Shechtman
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
2
|
Palagi L, Longo DL, Tóth É, Quattrocchi CC, van der Molen AJ, Aime S, Gianolio E. Molecular and supramolecular routes to enhance Gadolinium-based contrast agents relaxivity: How far are we from the theoretical optimalvalue? Eur J Med Chem 2025; 292:117668. [PMID: 40288123 DOI: 10.1016/j.ejmech.2025.117668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Gadolinium Based Contrast Agents (GBCAs) are routinely used in the clinical practice to enhance the diagnostic potential of MRI. Their contrast enhancing capabilities rely on their ability to increase the relaxation rate of tissue water protons. This property is expressed by the relaxivity, whose value is determined by structural, electronic and dynamic characteristics of the GBCA. Based on extensive experimental work over the past four decades and the well-established theory of paramagnetic relaxation, it is usually possible to correlate observed relaxivity values to specific molecular properties. Key determinants include the number of water molecules and/or exchangeable protons in the first and second coordination spheres, their distance from the paramagnetic Gd3+ ion, the ion's electronic relaxation time, molecular reorientation time, and the exchange rate of the coordinated water molecules. Understanding the key factors that affect relaxivity has enabled the design of systems with optimized structural and dynamic properties. However, some examples demonstrate exceptional relaxivity which cannot be fully explained by the established theory. In particular, GBCAs within confined environments show significant promise for developing high-relaxivity agents. Overall, one may state that nowadays it is possible to attain highly efficient GBCAs thanks to the in-depth understanding of the structural and dynamic determinants of their relaxivity, together with the optimization of their in vivo stability and biodistribution/excretion properties. This knowledge is crucial for the rational design of the next generation of MRI CAs. The domain of Molecular Imaging will also largely benefit from these efforts.
Collapse
Affiliation(s)
- Lorenzo Palagi
- Department of Molecular Biotechnologies and Health Science, Molecular Imaging Center, University of Turin, Turin, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Éva Tóth
- Centre for Molecular Biophysics, CNRS UPR4301, rue Charles Sadron, 45071, Orléans, France
| | | | - Aart J van der Molen
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Eliana Gianolio
- Department of Molecular Biotechnologies and Health Science, Molecular Imaging Center, University of Turin, Turin, Italy.
| |
Collapse
|
3
|
Pal J, Khan A, Samanta P, Khamrai M, Mallick AI, Dhara D. Raspberry-like gold nano-conjugates of block copolymer prodrug based bicontinuous nanoparticles for cancer theranostics. J Colloid Interface Sci 2025; 687:817-829. [PMID: 39986010 DOI: 10.1016/j.jcis.2025.02.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Theranostic nanoparticles like polymer conjugated gold nanoparticles are at the cutting edge of cancer therapy, offering an integrated platform for simultaneous diagnosis and treatment. In this study, we report a nanoconjugate (P2AuNPs) by combining doxorubicin (DOX) tethered polymeric prodrug based bicontinuous nanoparticles (P2NPs), developed recently by us, with gold nanoparticles (AuNPs). The AuNPs were generated by in situ reduction of HAuCl4, where different polymer functionalities served the role of reducing and stabilizing agents. The bicontinuous morphology of P2NPs provided a unique template for the growth of gold nanoparticles, resulting in an overall raspberry-like morphology. Compared to existing small-sized theranostic AuNPs, which often trigger systematic cytotoxicity, the synthesized P2AuNPs had an ideal size of ∼90 nm for passive targeting of cancer cells through leaky tumor blood vessels. Furthermore, the embedded gold nanoparticles in P2AuNPs nanoconjugate served as a nanometal surface energy transfer (NSET) pair with the covalently attached DOX molecules, resulting in the significant quenching of DOX (turned 'OFF' state) fluorescence at physiological pH (7.4) as confirmed through steady-state and time-resolved fluorescence measurements. It was also possible to recover the quenched DOX fluorescence (turned 'ON' state) with the release of DOX selectively in cancer cell lines, plausibly due to higher glutathione (GSH) levels and acidic pH. In vitro cellular studies asserted the safe nature of P2NPs against non-cancerous cells (HEK-293T) while exhibiting significantly higher drug-induced cytotoxicity against cancerous cells (MCF-7) compared to free DOX. Moreover, when P2AuNPs were incubated with HEK-293T and MCF-7 cells, a fluorescence turn 'ON' for DOX was observed only in MCF-7 cells after the release of DOX, thereby providing an opportunity to improve the sensitivity of imaging and real-time monitoring of drug release. Together, this integrated theranostic system not only has the potential to enhance the precision and effectiveness of cancer therapy but also offers improved monitoring capabilities, representing a significant advancement in tailored nanomedicine.
Collapse
Affiliation(s)
- Juthi Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741 246 West Bengal, India
| | - Pousali Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manisha Khamrai
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741 246 West Bengal, India.
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
4
|
Yao F, Gao W, Li L, Huang Y, Sang W, Zhang R. Nanomedical Strategies for Kidney Disease: Diagnostic Innovations and Therapeutic Advancements. Adv Healthc Mater 2025:e2500657. [PMID: 40405755 DOI: 10.1002/adhm.202500657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/04/2025] [Indexed: 05/24/2025]
Abstract
Kidney diseases, posing significant global public health challenges due to their complex pathogenesis and diagnostic/therapeutic difficulties, have seen emerging advancements through nanomedicine. In diagnostics, nanoparticles leverage unique physicochemical properties to enhance imaging precision. Superparamagnetic iron oxide nanoparticles improve magnetic resonance imaging sensitivity by amplifying T2-weighted contrast, while microbubbles/nanobubbles enhance ultrasound resolution via signal reflection. Quantum dots and gold nanoparticles optimize photoacoustic imaging with superior fluorescence and photostability. Therapeutically, nanoparticle-based drug delivery systems demonstrate targeted delivery, reduced systemic toxicity, and improved drug stability and bioavailability in preclinical studies. Nanocarrier-integrated stem cell and gene therapies further show potential in repairing renal cells and mitigating kidney injury. This review systematically examines nanomedicine's dual diagnostic and therapeutic roles in kidney diseases, compares strengths and limitations of various nanodelivery platforms, and addresses current challenges in clinical translation. By exploring novel nanotechnology-driven strategies, it aims to guide future research toward effective, tailored therapies for improved renal disease management.
Collapse
Affiliation(s)
- Fengyang Yao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Weiqi Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Academy of Advanced Research and Innovation (SAARl), Taiyuan, 030032, China
| | - Limeng Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Yijun Huang
- The First Clinical Medical School, Shanxi Medical University, Taiyuan, 030001, China
| | - Wei Sang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
5
|
Mann P, Bourke S, Urbano L, Morgan DJ, Dailey LA, Centelles M, Thanou M, Long NJ, Green MA. The synthesis and optical properties of Cu-In-S/ZnS nanocrystals in buffer solution for near-infrared fluorescence imaging. J Mater Chem B 2025; 13:5871-5879. [PMID: 40293353 DOI: 10.1039/d5tb00359h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In this report, we present a novel one-pot synthesis of Cu-In-S/ZnS quantum dots (QDs) in buffer solution as a facile route to biocompatible nanoscale imaging probes, with emission wavelengths as far as 675 nm in the biologically important near-infrared spectral region and quantum yields of up to 16%. Whilst a simple route, our method produced particles that displayed exceptionally high cell viability with facile applications in in vivo imaging, highlighting the potential of these QDs as advanced imaging probes.
Collapse
Affiliation(s)
- Patrick Mann
- Department of Physics, King's College London, The Strand, London, WC2R 2LS, UK.
| | - Struan Bourke
- Department of Physics, King's College London, The Strand, London, WC2R 2LS, UK.
| | - Laura Urbano
- Centre for Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - David J Morgan
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Lea Ann Dailey
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Miguel Centelles
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Maya Thanou
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, W12 0BZ, UK
| | - Mark A Green
- Department of Physics, King's College London, The Strand, London, WC2R 2LS, UK.
| |
Collapse
|
6
|
Yu M, Liu D, Shah P, Qiu B, Mathew A, Yao L, Guan T, Cong H, Zhang N. Optimizing Microfluidic Channel Design with Tilted Rectangular Baffles for Enhanced mRNA-Lipid Nanoparticle Preparation. ACS Biomater Sci Eng 2025. [PMID: 40396945 DOI: 10.1021/acsbiomaterials.4c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
RNA therapeutics represent a pivotal advancement in contemporary medicine, pioneering innovative treatments in oncology and vaccine production. The inherent instability of RNA and its delivery challenges necessitate the use of lipid-based nanoparticles as crucial transport vehicles. This research focuses on the design, simulation, and optimization of various microfluidic channel configurations for fabricating poly(dimethylsiloxane) (PDMS) microfluidic chips, aimed at producing lipid nanoparticles (LNPs) encapsulating green fluorescent protein mRNA (GFP mRNA). Aiming for high mixing efficiency and acceptable pressure drop suitable for scale-up, we designed and improved multiple microfluidic channels featuring flow focusing and diverse tilted rectangular baffle structures via computational fluid dynamics (CFD). Simulation results indicated that baffle angles ranging from 70 to 90° exhibited similar mixing efficiencies at different total flow rates, with pressure drops increasing alongside the baffle angle. Additionally, increasing the baffle length at a fixed angle of 70° not only improved mixing efficiency but also increased the pressure drop. To validate these findings, PDMS microfluidic chips were fabricated for all designs to prepare empty LNPs. The baffle structure with a 70° angle and 150 μm length was identified as the best configuration based on both simulation and experimental results. This optimal design was then used to prepare LNPs with varying GFP mRNA concentrations, demonstrating that an N/P ratio of 5.6 yielded the highest transfection efficiency from in vitro experiments. This work not only advances the production of lipid-based nanoparticles through microfluidics but also provides a scalable and reproducible method that can potentially enhance the clinical translation of RNA therapeutics.
Collapse
Affiliation(s)
- Mingzhi Yu
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Dongsheng Liu
- Department of Aerospace and Mechanical Engineering, South East Technological University, Carlow R93 V960, Ireland
- The Centre for Research and Enterprise in Engineering (engCORE), South East Technological University, Carlow R93 V960, Ireland
| | - Pranay Shah
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Bei Qiu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland
| | - Allen Mathew
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Liang Yao
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland
| | - Tianyu Guan
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Hengji Cong
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin 4 D04 V1W8, Ireland
| |
Collapse
|
7
|
Petrov GV, Koldina AM, Ledenev OV, Tumasov VN, Nazarov AA, Syroeshkin AV. Nanoparticles and Nanomaterials: A Review from the Standpoint of Pharmacy and Medicine. Pharmaceutics 2025; 17:655. [PMID: 40430945 DOI: 10.3390/pharmaceutics17050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Nanoparticles (NPs) represent a unique class of structures in the modern world. In comparison to macro- and microparticles, NPs exhibit advantages due to their physicochemical properties. This has resulted in their extensive application not only in technical and engineering sciences, but also in pharmacy and medicine. A recent analysis of the scientific literature revealed that the number of articles related to the search term "nanoparticle drugs" has exceeded 65,000 in the last decade alone, according to PubMed. The growth of scientific publications on NPs and nanomaterials (NMs) in pharmacy demonstrates the rapidly developing interest of scientists in exploring alternative ways to deliver drugs, thereby improving their pharmacokinetic and pharmacodynamic properties, and the increased biocompatibility of many nanopharmaceuticals is a unique key to two mandatory pharmaceutical requirements-drug efficacy and safety. A comprehensive review of the literature indicates that the modern pharmaceutical industry is increasingly employing nanostructures. The exploration of their physicochemical properties with a subsequent modern approach to quality control remains the main task of modern pharmaceutical chemistry. The primary objective of this review is to provide a comprehensive overview of data on NPs, their physicochemical properties, and modern approaches to their synthesis, modification of their surface, and application in pharmacy.
Collapse
Affiliation(s)
- Gleb V Petrov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Alena M Koldina
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Oleg V Ledenev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Vladimir N Tumasov
- Department of Pharmaceutical Chemistry and Organization of Pharmaceutical Business, Faculty of Medicine, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Aleksandr A Nazarov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Anton V Syroeshkin
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
8
|
Tang L, Wang Y, Mao S, Yu Z, Chen Y, Xu X, Cai W, Lai K, Yang G, Huang T. Engineered bone-targeting apoptotic vesicles as a minimally invasive nanotherapy for heterotopic ossification. J Nanobiotechnology 2025; 23:348. [PMID: 40369573 PMCID: PMC12077018 DOI: 10.1186/s12951-025-03431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025] Open
Abstract
Heterotopic Ossification (HO), refers to pathological extra skeletal bone formation, and there are currently no reliable methods except surgery to reverse these unexpected calcified tissues. Apoptotic vesicles (ApoEVs) are membrane-bound vesicles released by apoptotic cells, which are involved in metabolism regulation and intercellular communication. Due to its superior trauma-healing ability, the hard palate mucosa is expected to become an essential resource for tissue engineering. This work presents a minimally invasive nanotherapy based on an engineered apoEV. Briefly, apoEVs were extracted from hard palate mucosa and engineered with bone-targeting peptide SDSSD to treat HO. This engineered apoEV not only can achieve directed localization of heterotopic bones but also has the compelling dual function of promoting osteoclastic differentiation while inhibiting osteogenic differentiation. The underlying mechanism involves the activation of Hippo and Notch pathways, as well as the regulation of pyrimidine metabolism. We envision that this engineered apoEV may be a feasible and effective strategy for reversing HO.
Collapse
Affiliation(s)
- Like Tang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Yuchen Wang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Shihua Mao
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Yitong Chen
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Xiaoqiao Xu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wenjin Cai
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Tingben Huang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
9
|
Scorzafave L, Manti EN, Fiorillo M, Curcio M, Cirillo G, Frattaruolo L, Nicoletta FP, Cappello AR, Iemma F. Merging fusogenic DOPE and a tumour targeted self-assembling biopolymer: Smart hybrid liposomes for drug vectorization in cancer therapy. Colloids Surf B Biointerfaces 2025; 253:114786. [PMID: 40378459 DOI: 10.1016/j.colsurfb.2025.114786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/16/2025] [Accepted: 05/09/2025] [Indexed: 05/19/2025]
Abstract
In this study, a smart hybrid liposome system was achieved combining a self-assembling biopolymer conjugate (human serum albumin-hyaluronic acid) with targeting and redox-responsive activity with dioleoyl phosphatidylethanolamine, a fusogenic phospholipid. The obtained hybrid liposomal structures were found to possess suitable physicochemical properties for cancer therapy application, with mean size of 65 nm, negative surface charge (-27 mV) and the ability to efficiently encapsulate Doxorubicin in the inner liposomal core with high efficiency. The drug loaded hybrid liposomes (DOX@HBLs) were able to trigger the drug release under simulated acidic and redox conditions of the tumor environment, whereas the biological characterization demonstrated the safety and the selectivity of the formulation, able to target the cancer cells (toxicity similar to that of the free drug) while sparing the healthy cells (viability > 90 % in all cases). Furthermore, compared to free drug, DOX@HBLs were able to reduce cell motility, impair metabolic pathways essential for cancer progression, and effectively inhibit spheroid formation (by almost 50 % after 20 days incubation) in both Estrogen Receptor-positive and Triple Negative Breast Cancer cells, demonstrating their high potential as unconventional drug delivery vectors in cancer therapy.
Collapse
Affiliation(s)
- Ludovica Scorzafave
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy
| | - Eugenia Nicol Manti
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy
| | - Marco Fiorillo
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy.
| | - Manuela Curcio
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy.
| | - Giuseppe Cirillo
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy
| | - Luca Frattaruolo
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy
| | - Anna Rita Cappello
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy
| | - Francesca Iemma
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy
| |
Collapse
|
10
|
Guo P, Zhu B, Bai T, Guo X, Shi D, Jiang C, Kong J, Huang Q, Shi J, Shao D. Nanomaterial-Interleukin Combination for Boosting NK Cell-Based Tumor Immunotherapy. ACS Biomater Sci Eng 2025. [PMID: 40340300 DOI: 10.1021/acsbiomaterials.4c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The use of natural killer (NK) cell-based immunotherapy has been extensively explored in clinical trials for multiple types of tumors and has surfaced as a promising approach in tumor immunotherapy. Interleukins (ILs), a vital class of cytokines, play a crucial role in regulating several functions of NK cells, thereby becoming a focal point in the advancement of NK cell-based therapies. Nonetheless, the use of ILs as single agents is significantly constrained by their short half-life, limited efficacy, and adverse reactions. Currently, nanomaterials are being progressively employed in the delivery of ILs to enhance NK cell-based immunotherapy. However, there is currently a lack of comprehensive reviews summarizing the design of NK-cell-targeted nanomaterials and related systems for delivery of ILs. Furthermore, certain nanomaterials, either alone or in conjunction with other therapeutics, can also promote the secretion of ILs, representing a promising avenue for further exploration. Accordingly, this review begins by outlining various types of ILs and subsequently discusses the advancements in applying nanomaterials for IL delivery. It also examines the potential of nanomaterials to enhance IL secretion from other immune cells, thereby influencing the NK cell functionality. Lastly, this review addresses the challenges associated with using nanomaterials in these contexts and offers perspectives for future research. This study aims to provide valuable insights into the development of NK cell immunotherapy and innovative nanomaterial-based drug delivery systems.
Collapse
Affiliation(s)
- Ping Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Bobo Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ting Bai
- School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Xiaojia Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dingyu Shi
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45th, Gaoxin South Ninth Road, Nanshan District, Shenzhen City, 518063, P. R. China
| |
Collapse
|
11
|
Han J, Kanelli M, Liu Y, Daristotle JL, Pardeshi A, Forster TA, Karchin A, Folk B, Murmann L, Tostanoski LH, Carrasco SE, Alsaiari SK, Wang EY, Tran K, Zhang L, Eshaghi B, Levy L, Pyon S, Sloane C, Lin SQ, Lau A, Perkinson CF, Bawendi MG, Barouch DH, Durand F, Langer R, Jaklenec A. On-patient medical record and mRNA therapeutics using intradermal microneedles. NATURE MATERIALS 2025; 24:794-803. [PMID: 39994390 PMCID: PMC12048341 DOI: 10.1038/s41563-024-02115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/20/2024] [Indexed: 02/26/2025]
Abstract
Medical interventions often require timed series of doses, thus necessitating accurate medical record-keeping. In many global settings, these records are unreliable or unavailable at the point of care, leading to less effective treatments or disease prevention. Here we present an invisible-to-the-naked-eye on-patient medical record-keeping technology that accurately stores medical information in the patient skin as part of microneedles that are used for intradermal therapeutics. We optimize the microneedle design for both a reliable delivery of messenger RNA (mRNA) therapeutics and the near-infrared fluorescent microparticles that encode the on-patient medical record-keeping. Deep learning-based image processing enables encoding and decoding of the information with excellent temporal and spatial robustness. Long-term studies in a swine model demonstrate the safety, efficacy and reliability of this approach for the co-delivery of on-patient medical record-keeping and the mRNA vaccine encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This technology could help healthcare workers make informed decisions in circumstances where reliable record-keeping is unavailable, thus contributing to global healthcare equity.
Collapse
Affiliation(s)
- Jooli Han
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Maria Kanelli
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yang Liu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John L Daristotle
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Apurva Pardeshi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy A Forster
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Lukas Murmann
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa H Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sebastian E Carrasco
- Laboratory of Comparative Pathology, Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center, Rockefeller University, New York, NY, USA
| | - Shahad K Alsaiari
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Erika Yan Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Khanh Tran
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Linzixuan Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Behnaz Eshaghi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lauren Levy
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sydney Pyon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles Sloane
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacey Qiaohui Lin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alicia Lau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Collin F Perkinson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Ragon Institute of Mass General Brigham, MIT, and Harvard, Cambridge, MA, USA
| | - Frédo Durand
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Ana Jaklenec
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
12
|
Mossburg KJ, Barragan D, O NH, Kian AC, Maidment ADA, Cormode DP. Emerging nanoparticle-based x-ray imaging contrast agents for breast cancer screening. Nanomedicine (Lond) 2025; 20:1149-1166. [PMID: 40261216 PMCID: PMC12068350 DOI: 10.1080/17435889.2025.2496129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025] Open
Abstract
Breast cancer is one of the most common types of cancer, however, preventive screening has contributed to a significant reduction in mortality over the past four decades. The first-line screening methods for breast cancer, such as mammography and tomosynthesis, are x-ray-based modalities. Unfortunately, their cancer detection rates are low in patients with dense breasts. These, and other high-risk women, are now encouraged to receive supplemental screening. The supplemental imaging methods are diverse, including ultrasound, MRI, nuclear imaging, and X-ray-based modalities such as breast CT and contrast-enhanced mammography/tomosynthesis. Due to their low cost and wide availability, x-ray-based modalities see significant clinical use worldwide. These techniques benefit from the use of contrast agents, which are currently iodinated small molecules designed for other purposes. Consequently, developing new contrast agents that are specifically for breast cancer screening is of interest. This review describes these modalities and the nanoparticle-based contrast agents being researched for their enhanced performance. The relevant parameters for nanoparticle-based contrast agent design are evaluated, including contrast generation and potential biointeractions. Iodinated agents are discussed for comparison. Nanoparticles covered include silver sulfide, silver telluride, gold, and bismuth sulfide-based agents, among others. Finally, perspectives on future developments in this field are offered.
Collapse
Affiliation(s)
- Katherine J. Mossburg
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Diego Barragan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel H. O
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pharmaceutical Sciences, St. Joseph’s University, Philadelphia, PA, USA
- Department of Physics, St. Joseph’s University, Philadelphia, PA, USA
| | - Andrea C. Kian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D. A. Maidment
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David P. Cormode
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Xie L, Liu J, Yang Z, Chen H, Wang Y, Du X, Fu Y, Song P, Yu J. Microrobotic Swarms for Cancer Therapy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0686. [PMID: 40302783 PMCID: PMC12038165 DOI: 10.34133/research.0686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
Microrobotic swarms hold great promise for the revolution of cancer treatment. The coordination of miniaturized microrobots offers a unique approach to treating cancers at the cellular level with enhanced delivery efficiency and environmental adaptability. Prior studies have summarized the design, functionalization, and biomedical applications of microrobotic swarms. The strategies for actuation and motion control of swarms have also been introduced. In this review, we first give a detailed introduction to microrobot swarming. We then explore the design of microrobots and microrobotic swarms specifically engineered for cancer therapy, with a focus on tumor targeting, infiltration, and therapeutic efficacy. Moreover, the latest developments in active delivery methods and imaging techniques that enhance the precision of these systems are discussed. Finally, we categorize and analyze the various cancer therapies facilitated by functional microrobotic swarms, highlighting their potential to revolutionize treatment strategies for different cancer types.
Collapse
Affiliation(s)
- Leiming Xie
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Jinbo Liu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Zhen Yang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Hui Chen
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yibin Wang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Xingzhou Du
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yongping Fu
- Department of Cardiovascular Medicine,
Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Peng Song
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Jiangfan Yu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| |
Collapse
|
14
|
Azmi F, Xu X, Duong H, Ye P, Chen T, Li H, Chen J, Ardekani SM, Dehghani A, Zheng G, Harris D, Lu H, Wang Y, Cao Q. Renal clearable sucrose carbon dots for doxorubicin delivery to treat renal carcinoma. NANOSCALE ADVANCES 2025; 7:2751-2760. [PMID: 40160256 PMCID: PMC11951162 DOI: 10.1039/d4na01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Renal Cell Carcinoma (RCC) poses challenges for conventional treatment methods, but recent advancements indicate the potential of nanoparticles (NPs) in enhancing chemotherapy efficacy. This study focuses on developing non-toxic NPs from sucrose and l-serine via hydrothermal synthesis to produce Sucrose Carbon Dots (Suc CDs), designed for renal clearance to deliver hydrophilic drugs for the treatment of RCC. Suc CDs with a size of 4 nm exhibit high fluorescence with a fluorescence quantum yield of 58% and high drug loading capacity without toxicity to normal cell lines (renal tubular cells). Under in vitro conditions, Suc CDs alone are non-toxic, while Suc CDs with DOX display improved anticancer effects on Renca cells (cancer cell line). Under in vivo conditions, Suc CDs loaded with DOX outperform DOX alone with reduced toxicity to normal cells. Biodistribution study of Suc CDs revealed prolonged tumour site accumulation. This research demonstrates that renal clearable Suc CDs loaded with DOX exhibit superior anti-cancer activity, and are free of side effects, suggesting promising therapeutic potential for human RCC.
Collapse
Affiliation(s)
- Farhana Azmi
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney NSW Australia
- Faculty of Medicine and Health, The University of Sydney NSW Australia
| | - Xiaoxue Xu
- Institute for Biomedical Materials and Devices, University of Technology Sydney Australia
| | - Hien Duong
- Faculty of Medicine and Health, The University of Sydney NSW Australia
| | - Ping Ye
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney NSW Australia
| | - Titi Chen
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney NSW Australia
- Faculty of Medicine and Health, The University of Sydney NSW Australia
| | - Hongxi Li
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney NSW Australia
| | - Jianwei Chen
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney NSW Australia
- Faculty of Medicine and Health, The University of Sydney NSW Australia
| | - Sara Madadi Ardekani
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney NSW Australia
| | - Alireza Dehghani
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney NSW Australia
| | - Guoping Zheng
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney NSW Australia
- Faculty of Medicine and Health, The University of Sydney NSW Australia
| | - David Harris
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney NSW Australia
- Faculty of Medicine and Health, The University of Sydney NSW Australia
| | - Hongxu Lu
- Institute for Biomedical Materials and Devices, University of Technology Sydney Australia
| | - Yiping Wang
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney NSW Australia
- Faculty of Medicine and Health, The University of Sydney NSW Australia
| | - Qi Cao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney NSW Australia
- Faculty of Medicine and Health, The University of Sydney NSW Australia
| |
Collapse
|
15
|
Suresh A, Suresh D, Li Z, Sansalone J, Aluru N, Upendran A, Kannan R. Self-Assembled Multilayered Concentric Supraparticle Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502055. [PMID: 40285599 DOI: 10.1002/adma.202502055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Supraparticles (SPs) with unique properties are emerging as versatile platforms for applications in catalysis, photonics, and medicine. However, the synthesis of novel SPs with complex internal structures remains a challenge. Self-Assembled Multilayered Supraparticles (SAMS) presented here are composed of concentric lamellar spherical structures made from metallic nanoparticles, formed from a synergistic three-way interaction phenomenon between gold nanoparticles, lipidoid, and gelatin, exhibiting interlayer spacing of 3.5 ± 0.2 nm within a self-limited 156.8 ± 56.6 nm diameter. The formation is critically influenced by both physical (including nanoparticle size, lipidoid chain length) and chemical factors (including elemental composition, nanoparticle cap, and organic material), which collectively modulate the surface chemistry and hydrophobicity, affecting interparticle interactions. SAMS can efficiently deliver labile payloads such as siRNA, achieving dose-dependent silencing in vivo, while also showing potential for complex payloads such as mRNA. This work not only advances the field of SP design by introducing a new structure and interaction phenomenon but also demonstrates its potential in nanomedicine.
Collapse
Affiliation(s)
- Agasthya Suresh
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, 65211, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, 65212, USA
| | - Dhananjay Suresh
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | - Zhaohui Li
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | - John Sansalone
- Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Narayana Aluru
- Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anandhi Upendran
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, 65211, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, 65212, USA
| |
Collapse
|
16
|
Baek MJ, Hur W, Kashiwagi S, Choi HS. Design Considerations for Organ-Selective Nanoparticles. ACS NANO 2025; 19:14605-14626. [PMID: 40193849 DOI: 10.1021/acsnano.5c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Nanoparticles (NPs) have been extensively researched for targeted diagnostic imaging and drug delivery, yet their clinical translation remains limited, with only a few achieving Food and Drug Administration approval. This limited success is primarily due to challenges in achieving precise organ- or tissue-specific targeting, which arise from off-target tissue accumulation and suboptimal clearance profiles. Herein we examine the critical role of physicochemical properties, including size, surface charge, shape, elasticity, hardness, and density, in governing the biodistribution, targetability, and clearance of NPs. We highlight recent advancements in engineering NPs for targeted imaging and drug delivery, showcasing both significant progress and the remaining challenges in the field of nanomedicine. Additionally, we discuss emerging tools and technologies that are being developed to address these challenges. Based on recent insights from materials science, biomedical engineering, computational biology, and clinical research, we propose key design considerations for next-generation nanomedicines with enhanced organ selectivity.
Collapse
Affiliation(s)
- Min-Jun Baek
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Won Hur
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
17
|
Ghazi R, Ibrahim TK, Nasir JA, Gai S, Ali G, Boukhris I, Rehman Z. Iron oxide based magnetic nanoparticles for hyperthermia, MRI and drug delivery applications: a review. RSC Adv 2025; 15:11587-11616. [PMID: 40230636 PMCID: PMC11995399 DOI: 10.1039/d5ra00728c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Iron-oxide nanoparticles (IONPs) have garnered substantial attention in both research and technological domains due to their exceptional chemical and physical properties. These nanoparticles have mitigated the adverse effects of conventional treatment procedures by facilitating advanced theranostic approaches in integration with biomedicine. These IONPs have been extensively utilized in MRI (as contrast agents in diagnosis), drug delivery (as drug carriers), and hyperthermia (treatment), demonstrating promising results with potential for further enhancement. This study elucidates the operational principles of these NPs during diagnosis, drug delivery, and treatment, and emphasizes their precision and efficacy in transporting therapeutic agents to targeted sites without drug loss. It also analyses various challenges associated with the application of these IONPs in this field, such as biocompatibility, agglomeration, and toxicity. Furthermore, diverse strategies have been delineated to address these challenges. Overall, this review provides a comprehensive overview of the applications of IONPs in the field of biomedicine and treatment, along with the associated challenges. It offers significant assistance to researchers, professionals, and clinicians in the field of biomedicine.
Collapse
Affiliation(s)
- Rizwana Ghazi
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Talib K Ibrahim
- Department of Petroleum Engineering, College of Engineering, Knowledge University Erbil Iraq
- Department of Petroleum Engineering, Al-Kitab University Altun Kupri Iraq
| | - Jamal Abdul Nasir
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 P. R. China
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH Nilore Islamabad Pakistan
| | - Imed Boukhris
- Department of Physics, Faculty of Science, King Khalid University P. O. Box 9004 Abha Saudi Arabia
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92-(051)90642241 +92-(051)90642245
| |
Collapse
|
18
|
Xu S, Yu Y, Zhang B, Zhu K, Cheng Y, Zhang T. Boron carbide nanoparticles for boron neutron capture therapy. RSC Adv 2025; 15:10717-10730. [PMID: 40196817 PMCID: PMC11973571 DOI: 10.1039/d5ra00734h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Boron agent is widely accepted as one of the most important factors in boron neutron capture therapy (BNCT). In this study, boron carbide (B4C) nanoparticles were subjected to chemical modification, with the folic acid moiety linked to the surface of the particles by varying the segments of the covalent linker polyethylene glycol (PEG) through γ-aminopropyltriethoxysilane (APTES) functionalization. The resultant products were three boron agents, termed as B4C-APTES-FA, B4C-APTES-PEG2K-FA, and B4C-APTES-PEG5K-FA. A comparison was made between these products and the pristine B4C nanoparticles by investigating their physicochemical properties and biological performances, including hemolysis, cytotoxicity, and cellular uptake. Subsequently, the modified B4C-APTES-PEG2K-FA nanoparticles were subjected to in vivo safety assays and biodistribution investigations in mice at various dosages. Upon characterization using ICP-OES, it was found that the boron contents were the highest in the lungs, followed by the liver, spleen, kidneys, hearts, and tumors, and the lowest in the brain and muscles. The boron content in the tumor reached as high as 50 μg per g of dried tissue weight after 24 h of intravenous injection (I.V.), while the tumor-to-muscle and tumor-to-brain ratios of boron contents were found to exceed 3 following 24 hours of intravenous injection. These findings suggest that B4C nanoparticles are promising for BNCT owing to their high boron content, satisfactory biocompatibility, and abundant chemical modification sites.
Collapse
Affiliation(s)
- Shiwei Xu
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Ying Yu
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Boyu Zhang
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Kejia Zhu
- Wuxi Xishan NJU Institute of Applied Biotechnology Wuxi 214104 China
| | - Yuan Cheng
- Wuxi Xishan NJU Institute of Applied Biotechnology Wuxi 214104 China
| | - Tao Zhang
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
- MOE Key Laboratory of High-Performance Polymer Materials and Technology, Nanjing University Nanjing 210023 China
- Wuxi Xishan NJU Institute of Applied Biotechnology Wuxi 214104 China
- School of Engineering, Qinghai Institute of Technology Xining 810016 China
| |
Collapse
|
19
|
Belyaev IB, Griaznova OY, Yaremenko AV, Deyev SM, Zelepukin IV. Beyond the EPR effect: Intravital microscopy analysis of nanoparticle drug delivery to tumors. Adv Drug Deliv Rev 2025; 219:115550. [PMID: 40021012 DOI: 10.1016/j.addr.2025.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Delivery of nanoparticles (NPs) to solid tumors has long relied on enhanced permeability and retention (EPR) effect, involving permeation of NPs through a leaky vasculature with prolonged retention by reduced lymphatic drainage in tumor. Recent research studies and clinical data challenge EPR concept, revealing alternative pathways and approaches of NP delivery. The area was significantly impacted by the implementation of intravital optical microscopy, unraveling delivery mechanisms at cellular level in vivo. This review presents analysis of the reasons for EPR heterogeneity in tumors and describes non-EPR based concepts for drug delivery, which can supplement the current paradigm. One of the approaches is targeting tumor endothelium by NPs with subsequent intravascular drug release and gradient-driven drug transport to tumor interstitium. Others exploit various immune cells for tumor infiltration and breaking endothelial barriers. Finally, we discuss the involvement of active transcytosis through endothelial cells in NP delivery. This review aims to inspire further understanding of the process of NP extravasation in tumors and provide insights for developing next-generation nanomedicines with improved delivery.
Collapse
Affiliation(s)
- Iaroslav B Belyaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Olga Yu Griaznova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75123, Sweden.
| |
Collapse
|
20
|
Li M, Liu Z, Peng D, Liu Y, Cheng L, Chen B, Liu J. Multifunctional porous organic polymer-based hybrid nanoparticles for sonodynamically enhanced cuproptosis and synergistic tumor therapy. Acta Biomater 2025; 196:350-363. [PMID: 39993518 DOI: 10.1016/j.actbio.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Cuproptosis has gained significant attention among different cell death pathways in cancer therapy, which relies on the excessive accumulation of Cu2+ in mitochondria of tumor cells. Nevertheless, the high levels of glutathione in tumor microenvironment chelates with Cu2+ and thereby reducing its cytotoxicity. In this study, we designed core-shell porous organic polymers (POPs) nanoparticles to deliver and accumulate Cu2+ in tumor cells for enhanced cuproptosis. The porous organic polymers, containing bipyridine structural units, were synthesized on the aminated silica template, followed by the coordination of Cu2+ and the loading of artesunate (ART) as the sonosensitizer, yielding the Cu/ART@Hpy nanoparticles. In the acidic tumor microenvironment, the nanoparticles realized pH-responsive release of Cu2+. Meanwhile, the generation of ROS under ultrasound irradiation depleted intracellular glutathione, leading to the increased intracellular accumulation of Cu2+ for cuproptosis and triggering multiple cell death mechanisms for sonodynamically enhanced tumor therapy. Our study highlights the potential of the porous organic polymer as a platform for cuproptosis and synergistic tumor therapy. STATEMENT OF SIGNIFICANCE: Cuproptosis is induced by the excessive accumulation of Cu²⁺ within the mitochondria of tumor cells. However, the high level of glutathione in the tumor microenvironment can chelate Cu²⁺, thereby reducing the therapeutic efficacy. In this study, we developed the core-shell structured Cu/ART@Hpy nanoparticles for pH-responsive delivery of Cu²⁺. Under ultrasound irradiation, the generated reactive oxygen species deplete intracellular glutathione, enhancing Cu²⁺ accumulation for cuproptosis and activating multiple cell death pathways. The Cu/ART@Hpy nanoparticles enable sonodynamically enhanced cuproptosis, achieving synergistic tumor therapy.
Collapse
Affiliation(s)
- Meiting Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Zhuoyin Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Dan Peng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Lili Cheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, PR China.
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
21
|
Saripilli R, Sharma DK. Nanotechnology-based drug delivery system for the diagnosis and treatment of ovarian cancer. Discov Oncol 2025; 16:422. [PMID: 40155504 PMCID: PMC11953507 DOI: 10.1007/s12672-025-02062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
Current research in nanotechnology is improving or developing novel applications that could improve disease diagnosis or treatment. This study highlights several nanoscale drug delivery technologies, such as nano micelles, nanocapsules, nanoparticles, liposomes, branching dendrimers, and nanostructured lipid formulations for the targeted therapy of ovarian cancer (OC), to overcome the limitations of traditional delivery. Because traditional drug delivery to malignant cells has intrinsic flaws, new nanotechnological-based treatments have been developed to address these conditions. Ovarian cancer is the most common gynecological cancer and has a higher death rate because of its late diagnosis and recurrence. This review emphasizes the discipline of medical nanotechnology, which has made great strides in recent years to solve current issues and enhance the detection and treatment of many diseases, including cancer. This system has the potential to provide real-time monitoring and diagnostics for ovarian cancer treatment, as well as simultaneous delivery of therapeutic agents.
Collapse
Affiliation(s)
- Rajeswari Saripilli
- School of Pharmacy, Centurion University of Technology and Management, Gajapati, Odisha, India
| | - Dinesh Kumar Sharma
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
22
|
Le TTH, Phan KS, Doan BT, Mai TTT, Bui HBH, Pham HN, Ung TDT, Wang Y, Tran NQ, Dang LH, Ha PT. Different conjugates of Fe 3O 4 nanoparticles, drug, and dye: optical and magnetic properties for in vivo bimodal imaging. RSC Adv 2025; 15:9644-9656. [PMID: 40165912 PMCID: PMC11955827 DOI: 10.1039/d4ra07910h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/23/2025] [Indexed: 04/02/2025] Open
Abstract
Bioimaging is very important in medicine, especially in cancer diagnosis and treatment. In this study, we determined the impact of different components on the optical and magnetic properties of various conjugates. The three components, i.e., Fe3O4 nanoparticles (NPs), drug (doxorubicin - Dox), and dye (Cyanine 5.5 - Cy 5.5), were incorporated to form the four conjugates of A1 (Fe3O4-Cy 5.5), A2 (Fe3O4-Dox), A3 (Fe3O4-Cy 5.5-Dox), and A4 (Cy 5.5-Dox). The conjugates were characterized by DLS, UV-Vis spectra, fluorescence spectra, VSM, XRD, and TEM methods. After that, in vitro near-infrared (NIR) fluorescence imaging and magnetic resonance imaging (MRI) experiments were carried out to determine the conjugate suitable for bimodal imaging. The results show that A3 exhibits the highest quantum yield and radiance ratio and also has the highest ratio of r 2/r 1. The in vivo MRI and NIR fluorescent imaging results of CT26-bearing mice injected with A3 conjugates prove that the conjugate has potential in bimodal cancer imaging applications.
Collapse
Affiliation(s)
- Thi Thu Huong Le
- Faculty of Natural Resources and Environment, Vietnam National University of Agriculture Hanoi Vietnam
| | - Ke Son Phan
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Bich Thuy Doan
- The Institute I-CLeHS Institute of Chemistry for Life and Health Sciences, ENSCP Chimie ParisTech, PSL Université, CNRS UMR 8060 Paris France
| | - Thi Thu Trang Mai
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Ha Bao Hung Bui
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Hong Nam Pham
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Thi Dieu Thuy Ung
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Yiqian Wang
- The Institute I-CLeHS Institute of Chemistry for Life and Health Sciences, ENSCP Chimie ParisTech, PSL Université, CNRS UMR 8060 Paris France
| | - Ngoc Quyen Tran
- Institute of Advanced Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - Le Hang Dang
- Institute of Advanced Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - Phuong Thu Ha
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| |
Collapse
|
23
|
Hossam Abdelmonem B, Kamal LT, Wardy LW, Ragheb M, Hanna MM, Elsharkawy M, Abdelnaser A. Non-coding RNAs: emerging biomarkers and therapeutic targets in cancer and inflammatory diseases. Front Oncol 2025; 15:1534862. [PMID: 40129920 PMCID: PMC11931079 DOI: 10.3389/fonc.2025.1534862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Non-coding RNAs (ncRNAs) have a significant role in gene regulation, especially in cancer and inflammatory diseases. ncRNAs, such as microRNA, long non-coding RNAs, and circular RNAs, alter the transcriptional, post-transcriptional, and epigenetic gene expression levels. These molecules act as biomarkers and possible therapeutic targets because aberrant ncRNA expression has been directly connected to tumor progression, metastasis, and response to therapy in cancer research. ncRNAs' interactions with multiple cellular pathways, including MAPK, Wnt, and PI3K/AKT/mTOR, impact cellular processes like proliferation, apoptosis, and immune responses. The potential of RNA-based therapeutics, such as anti-microRNA and microRNA mimics, to restore normal gene expression is being actively studied. Additionally, the tissue-specific expression patterns of ncRNAs offer unique opportunities for targeted therapy. Specificity, stability, and immune responses are obstacles to the therapeutic use of ncRNAs; however, novel strategies, such as modified oligonucleotides and targeted delivery systems, are being developed. ncRNA profiling may result in more individualized and successful treatments as precision medicine advances, improving patient outcomes and creating early diagnosis and monitoring opportunities. The current review aims to investigate the roles of ncRNAs as potential biomarkers and therapeutic targets in cancer and inflammatory diseases, focusing on their mechanisms in gene regulation and their implications for non-invasive diagnostics and targeted therapies. A comprehensive literature review was conducted using PubMed and Google Scholar, focusing on research published between 2014 and 2025. Studies were selected based on rigorous inclusion criteria, including peer-reviewed status and relevance to ncRNA roles in cancer and inflammatory diseases. Non-English, non-peer-reviewed, and inconclusive studies were excluded. This approach ensures that the findings presented are based on high-quality and relevant sources.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- Basic Sciences Department, Faculty of Physical Therapy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Lereen T. Kamal
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Lilian Waheed Wardy
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- Research and Development Department, Eva Pharma for Pharmaceuticals Industries, Cairo, Egypt
| | - Manon Ragheb
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- School of Medicine, New Giza University (NGU), Giza, Egypt
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Mohamed Elsharkawy
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
24
|
Tang Z, Huang Z, Huang Y, Huang M, Liu H, Du J, Jia B. Nanomedicine's shining armor: understanding and leveraging the metal-phenolic networks. J Nanobiotechnology 2025; 23:158. [PMID: 40025537 PMCID: PMC11874145 DOI: 10.1186/s12951-025-03210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/09/2025] [Indexed: 03/04/2025] Open
Abstract
Metal-phenolic networks (MPNs), which comprise supramolecular amorphous networks formed by interlinking polyphenols with metal ions, garner escalating interest within the realm of nanomedicine. Presently, a comprehensive synthesis of the cumulative research advancements and utilizations of MPNs in nanomedicine remains absent. Thus, this review endeavors to firstly delineate the characteristic polyphenols, metal ions, and their intricate interaction modalities within MPNs. Subsequently, it elucidates the merits and demerits of diverse synthesis methodologies employed for MPNs, alongside exploring their potential functional attributes. Furthermore, it consolidates the diverse applications of MPNs across various nanomedical domains encompassing tumor therapy, antimicrobial interventions, medical imaging, among others. Moreover, a meticulous exposition of the journey of MPNs from their ingress into the human body to eventual excretion is provided. Lastly, the persistent challenges and promising avenues pertaining to MPNs are delineated. Hence, this review offering a comprehensive exposition on the current advancements of MPNs in nanomedicine, consequently offering indirect insights into their potential clinical implementation.
Collapse
Affiliation(s)
- Zhengming Tang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhijie Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Yuexiu District Stomatological Hospital, Guangzhou, Guangdong, China
| | - Mingshu Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - JianZhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | - Bo Jia
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Kumar S, Koseki Y, Tanita K, Shibata A, Mizutani A, Kasai H. SN-38-indoximod conjugate: carrier free nano-prodrug for cancer therapy. Ther Deliv 2025; 16:217-226. [PMID: 39887189 PMCID: PMC11875466 DOI: 10.1080/20415990.2025.2458449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The integration of immunotherapy alongside chemotherapy represents a crucial approach in the treatment of cancer. Herein we report the SN-38-indoximod conjugate nano-prodrug to address the difficulties encountered by individuals. In this prodrug, SN-38 is connected to indoximod through a specific disulfide linker, which enables the release of the components in response to the tumor microenvironment characterized by elevated levels of glutathione, thereby facilitating programmed chemoimmunotherapy. RESULTS SN-38-indoximod conjugate was synthesized and fabricated to nano-prodrug by reprecipitation method. It showed comparable anti-cancer activity against A549 cells than SN-38 (IC50 = 0.24 ± 0.01 µM) with IC50 value 0.32 ± 0.04 µM. It inhibited 90% A549 cell at very lower concentration (IC90 = 6.07 ± 0.41 µM) as compared with SN-38 (IC90 = 24.60 ± 1.24 µM) and mixture of SN-38: indoximod (1:1, IC90 >30 µM). The nano-prodrug showed better size distribution profile and dispersion stability contains nanoparticles in effective size range (80-160 nm) required for the EPR effect. CONCLUSION This research offers valuable insights into the advancement of conjugate nano-prodrugs exhibiting synergistic pharmacological effects, while also presenting novel opportunities for the design of prodrug molecules capable of releasing drugs in response to diverse triggers.
Collapse
Affiliation(s)
- Sanjay Kumar
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Yoshitaka Koseki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Keita Tanita
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Aki Shibata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Asuka Mizutani
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| |
Collapse
|
26
|
Li Y, Fu B, Jiang W. Emerging Roles of Nanozyme in Tumor Metabolism Regulation: Mechanisms, Applications, and Future Directions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11552-11577. [PMID: 39936939 DOI: 10.1021/acsami.4c20417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Nanozymes, nanomaterials with intrinsic enzyme activity, have garnered significant attention in recent years due to their catalytic abilities comparable to natural enzymes, cost-effectiveness, high catalytic activities, and stability against environmental fluctuations. As functional analogs of natural enzymes, nanozymes participate in various critical metabolic processes, including glucose metabolism, lactate metabolism, and the maintenance of redox homeostasis, all of which are essential for normal cellular functions. However, disruptions in these metabolic pathways frequently promote tumorigenesis and progression, making them potential therapeutic targets. While several therapies targeting tumor metabolism are currently in clinical or preclinical stages, their efficacy requires further enhancement. Consequently, nanozymes that target tumor metabolism are regarded as a promising therapeutic strategy. Despite extensive studies investigating the application of nanozymes in tumor metabolism, relevant reviews are relatively scarce. This article first introduces the physicochemical properties and biological behaviors of nanozymes. Subsequently, we analyze the role of nanozymes in tumor metabolism and explore their potential applications in tumor therapy. In conclusion, this review aims to foster innovative research in related fields and advance the development of nanozyme-based strategies for cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yikai Li
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, Jilin 130000, China
| | - Bowen Fu
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, Jilin 130000, China
| | - Wei Jiang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450002, China
| |
Collapse
|
27
|
Guo Y, Pan X, Zhang Y, Su K, Xie RJ, Liao J, Mei L, Liao L. Crystal Phase and Morphology Control for Enhanced Luminescence in K 3GaF 6:Er 3. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:318. [PMID: 39997881 PMCID: PMC11858277 DOI: 10.3390/nano15040318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Upconversion luminescent materials (UCLMs) have garnered significant attention due to their broad potential applications in fields such as display technology, biological imaging, and optical sensing. However, optimizing crystal phase and morphology remains a challenge. This study systematically investigates the effects of phase transformation and morphology control on the upconversion luminescent properties of K3GaF6:Er3+. By comparing different synthesis methods, we found that the hydrothermal method effectively facilitated the transformation of the NaxK3-xGaF6 crystal phase from cubic to monoclinic, with Na+/K+ ions playing a key role in the preparation process. Furthermore, the hydrothermal method significantly optimized the particle morphology, resulting in the formation of uniform octahedral structures. The 657 nm red emission intensity of the monoclinic phase sample doped with Er3+ was enhanced by 30 times compared to that of the cubic phase, clearly demonstrating the crucial role of phase transformation in luminescent performance. This study emphasizes the synergistic optimization of crystal phase and morphology through phase engineering, which substantially improves the upconversion luminescence efficiency of K3GaF6:Er3+, paving the way for further advancements in the design of efficient upconversion materials.
Collapse
Affiliation(s)
- Yilin Guo
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; (Y.G.); (Y.Z.); (K.S.); (L.L.)
| | - Xin Pan
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yidi Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; (Y.G.); (Y.Z.); (K.S.); (L.L.)
| | - Ke Su
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; (Y.G.); (Y.Z.); (K.S.); (L.L.)
| | - Rong-Jun Xie
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China
| | - Jiayan Liao
- Institute for Biomedical Materials & Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Lefu Mei
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; (Y.G.); (Y.Z.); (K.S.); (L.L.)
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; (Y.G.); (Y.Z.); (K.S.); (L.L.)
| |
Collapse
|
28
|
Ressnerova A, Heger Z, Pumera M. Translational nanorobotics breaking through biological membranes. Chem Soc Rev 2025; 54:1924-1956. [PMID: 39807638 DOI: 10.1039/d4cs00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the dynamic realm of translational nanorobotics, the endeavor to develop nanorobots carrying therapeutics in rational in vivo applications necessitates a profound understanding of the biological landscape of the human body and its complexity. Within this landscape, biological membranes stand as critical barriers to the successful delivery of therapeutic cargo to the target site. Their crossing is not only a challenge for nanorobotics but also a pivotal criterion for the clinical success of therapeutic-carrying nanorobots. Nevertheless, despite their urgency, strategies for membrane crossing in translational nanorobotics remain relatively underrepresented in the scientific literature, signaling an opportunity for further research and innovation. This review focuses on nanorobots with various propulsion mechanisms from chemical and physical to hybrid mechanisms, and it identifies and describes four essential biological membranes that represent the barriers needed to be crossed in the therapeutic journey of nanorobots in in vivo applications. First is the entry point into the blood stream, which is the skin or mucosa or intravenous injection; next is the exit from the bloodstream across the endothelium to the target site; further is the entry to the cell through the plasma membrane and, finally, the escape from the lysosome, which otherwise destroys the cargo. The review also discusses design challenges inherent in translating nanorobot technologies to real-world applications and provides a critical overview of documented membrane crossings. The aim is to underscore the need for further interdisciplinary collaborations between chemists, materials scientists and chemical biologists in this vital domain of translational nanorobotics that has the potential to revolutionize the field of precision medicine.
Collapse
Affiliation(s)
- Alzbeta Ressnerova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
- Research Group for Molecular Biology and Nanomedicine, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Zbynek Heger
- Research Group for Molecular Biology and Nanomedicine, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Center of Advanced Innovation Technologies, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, 70800 Ostrava, Czech Republic
| | - Martin Pumera
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
29
|
Wu Y, Darland DC, Combs CK, Zhao JX. Multifunctional Near Infrared Polymer Dots for Enhanced Synergistic Photodynamic/Photothermal Effect In Vitro. ACS APPLIED BIO MATERIALS 2025; 8:1278-1291. [PMID: 39841131 DOI: 10.1021/acsabm.4c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Synergistic photodynamic/photothermal therapy (PDT/PTT) can be used to target cancer cells by locally generating singlet oxygen species or increasing temperature under laser irradiation. This approach offers higher tumor ablation efficiency, lower therapeutic dose requirements, and reduced side effects compared to single treatment approaches. However, the therapeutic efficiency of PDT/PTT is still limited by the low oxygen levels within the solid tumors caused by abnormal vasculature and altered cancer cell metabolism. To address these challenges, we developed multifunctional nanoparticles with high catalytic activity for converting tumor hydrogen peroxide (H2O2) into oxygen (O2). Using poly(styrene-co-maleic anhydride) (PSMA) as a cross-linker, we generated compact, highly fluorescent Pdots, used poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) as a near-infrared photosensitizer for both photodynamic and photothermal applications, and incorporated manganese (Mn) ions to catalyze the H2O2-to-O2 conversion. These Mn-doped Pdots significantly enhance O2 production, achieving an enhanced 1O2 quantum yield from 0.46 to 0.64 with the addition of H2O2, achieving the goal of improving PDT efficiency. With this rational design, we produced Pdots with enhanced H2O2-to-1O2 converting ability for potential use in PDT. For photothermal applications, our Pdots generate a photothermal conversion efficiency of 53%. In vitro studies using human MCF7 adenocarcinoma cells confirmed the biocompatibility of these Pdots in the absence of laser exposure with a pronounced cell killing effect under laser irradiation for synergistic PDT/PTT. These results highlight the promise of Pdots in overcoming oxygen limitations, balancing the performance of PDT/PTT, and enhancing the therapeutic efficacy of PDT/PTT in cancer cells in vitro.
Collapse
Affiliation(s)
- Yingfen Wu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Diane C Darland
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Colin K Combs
- School of Medicine & Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
30
|
Fries LM, Montrazi ET, Allouche-Arnon H, Opazo F, Bar-Shir A, Frydman L, Glöggler S. Deuterated Nanopolymers for Renal and Lymphatic Imaging via Quantitative Deuterium MRI. NANO LETTERS 2025; 25:1758-1764. [PMID: 39841010 PMCID: PMC11803745 DOI: 10.1021/acs.nanolett.4c03036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
Deuterium (2H) MRI is an emerging tool for noninvasive imaging. We explore the integration of 2H MRI with deuterated multifunctional nanopolymers for deuterated particle imaging (DPI). To this end, amine-terminated G5-polyamidoamine (PAMAM) dendrimers were labeled with deuterated acetyl surface groups, leading to highly 2H-loaded bioparticles, making them ideal for imaging studies. The accumulation of ∼5 nm PAMAM dendrimers in the kidneys could then be seen by 2H MRI with high submillimeter resolution. The natural abundance HDO signal provided an internal concentration reference to these measurements, leading to quantitative dynamic maps showing distinct nanopolymer uptakes within the renal compartments. Further, these nanopolymers allowed us to obtain in vivo maps of activity in the lymph nodes in an inflammatory rodent leg model, demonstrating these deuterated nanopolymers' potential as a novel class of contrast agents for the quantitative mapping of physiological processes.
Collapse
Affiliation(s)
- Lisa M. Fries
- NMR
Signal Enhancement Group, Max Planck Institute
for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Center
for Biostructural Imaging of Neurodegeneration of the University Medical
Center, 37075 Göttingen, Germany
| | - Elton T. Montrazi
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Hyla Allouche-Arnon
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felipe Opazo
- Center
for Biostructural Imaging of Neurodegeneration of the University Medical
Center, 37075 Göttingen, Germany
- Institute
for Neuro- and Sensory Physiology, University
Medical Center, 37075 Göttingen, Germany
| | - Amnon Bar-Shir
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lucio Frydman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Stefan Glöggler
- NMR
Signal Enhancement Group, Max Planck Institute
for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Center
for Biostructural Imaging of Neurodegeneration of the University Medical
Center, 37075 Göttingen, Germany
| |
Collapse
|
31
|
Paranjape S, Choi KY, Kashiwagi S, Choi HS. H-Dots: Renal Clearable Zwitterionic Nanocarriers for Disease Diagnosis and Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2111-2123. [PMID: 39823416 DOI: 10.1021/acs.langmuir.4c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Nanocarriers have shown significant promise in the diagnosis and treatment of various diseases, utilizing a wide range of biocompatible materials such as metals, inorganic substances, and organic components. Despite diverse design strategies, key physicochemical properties, including hydrodynamic diameter, shape, surface charge, and hydrophilicity/lipophilicity, are crucial for optimizing biodistribution, pharmacokinetics, and therapeutic efficacy. However, these properties are often influenced by drug payload, presenting an ongoing challenge in developing versatile platform technologies for theranostics. To enable tissue- and organ-specific targeting while minimizing nonspecific uptake, renal clearable Harvard dots (H-dots) have emerged as a promising organic nanocarrier platform. Composed of an ε-polylysine backbone for a tunable charge, near-infrared fluorophores for tracking their fate in living organisms, and β-cyclodextrins for potential drug delivery, H-dots offer a multifunctional approach to theranostic nanomedicine. Recent studies demonstrate that H-dots are effective for targeted imaging and drug delivery to solid tumors. This review highlights current nanocarrier design strategies and recent advances in H-dot applications for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Swarali Paranjape
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Kyu Young Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital and Hallym University College of Medicine, Yeongdeungpo-gu, Seoul 07441, Republic of Korea
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
32
|
Yu Y, Tao Y, Ma J, Li J, Song Z. Targeting the tumor microenvironment with mesenchymal stem cells based delivery approach for efficient delivery of anticancer agents: An updated review. Biochem Pharmacol 2025; 232:116725. [PMID: 39746456 DOI: 10.1016/j.bcp.2024.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/14/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Drug delivery to cancer cells continues to present a major therapeutic challenge. Mesenchymal stem cells (MSCs) possess an intrinsic ability to migrate specifically to tumor tissues, making them promising candidates for targeted drug delivery. Evidence from preclinical studies indicates that MSCs loaded with therapeutic anti-cancer agents exhibit considerable anti-tumor activity. Moreover, several clinical trials are currently evaluating their effectiveness in cancer patients. The integration of MSCs with synthetic nanoparticles (NPs) enhances their therapeutic potential, particularly through the use of cell membrane-coated NPs, which represent a significant advancement in the field. This review systematically investigates the tumor microenvironment, the sources of MSCs, the tumor homing mechanisms, and the methods of loading and releasing anticancer drugs from MSCs. Furthermore, cutting-edge strategies to improve the efficacy of MSCs based drug delivery systems (DDS) including the innovative use of MSC membrane coated nanoparticles have been discussed. The study concludes with an overview of the therapeutic use of MSCs as drug carriers, including a detailed analysis of the mechanisms by which MSCs deliver therapeutics to cancer cells, enabling targeted drug delivery. It aims to elucidate the current state of this approach, identify key areas for development, and outline potential future directions for advancing MSCs based cancer therapies.
Collapse
Affiliation(s)
- Yang Yu
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun 130000, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| | - Jian Li
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun 130000, China
| | - Zhidu Song
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
33
|
Hashem AH, Saied E, Badr BM, Dora MS, Diab MA, Abdelaziz AM, Elkady FM, Ali MA, Issa NI, Hamdy ZA, Nafea ME, Khalifa AN, Adel A, Hasib A, Hawela AM, El-Gazzar MM, Nouh MA, Nahool AA, Attia MS. Biosynthesis of trimetallic nanoparticles and their biological applications: a recent review. Arch Microbiol 2025; 207:50. [PMID: 39891715 DOI: 10.1007/s00203-025-04237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Trimetallic nanoparticles (TMNPs) have emerged as a pivotal area of research due to their unique properties and diverse applications across medicine, agriculture, and environmental sciences. This review provides several novel contributions that distinguish it from existing literature on trimetallic nanoparticles (TMNPs). Firstly, it offers a focused exploration of TMNPs, specifically addressing their unique properties and applications, which have been less examined compared to other multimetallic nanoparticles. This targeted analysis fills a significant gap in current research. Secondly, the review emphasizes innovative biosynthesis methods utilizing microorganisms and plant extracts, positioning these green synthesis approaches as environmentally friendly alternatives to traditional chemical methods. This focus aligns with the increasing demand for sustainable practices in nanotechnology. Furthermore, the review integrates discussions on both medical and agricultural applications of TMNPs, highlighting their multifunctional potential across diverse fields. This comprehensive perspective enhances our understanding of how TMNPs can address various challenges. Additionally, the review explores the synergistic effects among the different metals in TMNPs, providing insights into how these interactions can be harnessed to optimize their properties for specific applications. Such discussions are often overlooked in existing studies. Moreover, this review identifies critical research gaps and challenges within the field, outlining future directions that encourage further investigation and innovation in TMNP development. By doing so, it proactively contributes to advancing the field. Finally, the review advocates for interdisciplinary collaboration among material scientists, biologists, and environmental scientists, emphasizing the importance of diverse expertise in enhancing the research and application of TMNPs.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Bahaa M Badr
- Department of Basic and Clinical Medical Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | | | - Mahmoud A Diab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Amer Morsy Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Fathy M Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Mohamed Abdelrahman Ali
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Nasser Ibrahim Issa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ziad A Hamdy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Mohamed E Nafea
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ahmed Nageh Khalifa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Albraa Adel
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Abdulrahman Hasib
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ahmed Mostafa Hawela
- Biochemistry Department, Faculty of Agriculture, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | | | - Mustafa A Nouh
- Research and Development Department, ALSALAM International for Development & Agricultural Investment, Giza, Egypt
| | - Ahmed Abdelhay Nahool
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| |
Collapse
|
34
|
Turovsky EA, Plotnikov EY, Simakin AV, Gudkov SV, Varlamova EG. New magnetic iron nanoparticle doped with selenium nanoparticles and the mechanisms of their cytoprotective effect on cortical cells under ischemia-like conditions. Arch Biochem Biophys 2025; 764:110241. [PMID: 39613283 DOI: 10.1016/j.abb.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Ischemic stroke is the cause of high mortality and disability Worldwide. The material costs of stroke treatment and recovery are constantly increasing, making the search for effective and more cost-effective treatment approaches an urgent task for modern biomedicine. In this study, iron nanoparticles doped with selenium nanoparticles, FeNP@SeNPs, which are three-layered structures, were created and characterized using physical methods. Fluorescence microscopy, inhibitor and PCR analyzes were used to determine the signaling pathways involved in the activation of the Ca2+ signaling system of cortical astrocytes and the protection of cells from ischemia-like conditions (oxygen-glucose deprivation and reoxygenation). In particular, when using magnetic selenium nanoparticles together with electromagnetic stimulation, an additional pathway for nanoparticle penetration into the cell is activated through the activation of TRPV4 channels and the mechanism of their endocytosis is facilitated. It has been shown that the use of magnetic selenium nanoparticles together with magnetic stimulation represents an advantage over the use of classical selenium nanoparticles, as the effective concentration of nanoparticles can be reduced many times over.
Collapse
Affiliation(s)
- Egor A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia; V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997, Moscow, Russia
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991, Moscow, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991, Moscow, Russia; Institute of Biology and Biomedicine, Lobachevsky State, University of Nizhni Novgorod, 23 Gagarin Ave., 603950, Nizhny Novgorod, Russia
| | - Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia
| |
Collapse
|
35
|
Vogelaar TD, Torjusen H, Lund R. Size-controlled antimicrobial peptide drug delivery vehicles through complex coacervation. SOFT MATTER 2025; 21:903-913. [PMID: 39801473 DOI: 10.1039/d4sm01157k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms). We present long-term stable kinetically controlled colistin-C3Ms that can be prepared from several block lengths of PEO-b-PMAA polymers, where the polymerisation degree governs the overall micellar size. To achieve precise control over size and polydispersity, which are crucial for drug delivery applications, we investigate the hybridisation of PEO-b-PMAA polymers with varying chain lengths or PMAA homopolymers in ternary complex coacervation systems with colistin. This results in size-tunable colistin-C3Ms, ranging, depending on the mixing ratios, from micellar sizes of 26 nm to 100 nm. With size tunability at rather narrow size distributions and high stability, ternary colistin-C3Ms offer potential advancements in C3M drug delivery, paving the way for more effective and targeted treatments for bacterial infections in precision medicine.
Collapse
Affiliation(s)
- Thomas Daniel Vogelaar
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
| | - Henrik Torjusen
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
| | - Reidar Lund
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, NO-0315 Oslo, Norway
| |
Collapse
|
36
|
Lim HS, Choi WI, Lim JM. Continuous Production of Docetaxel-Loaded Nanostructured Lipid Carriers Using a Coaxial Turbulent Jet Mixer with Heating System. Molecules 2025; 30:279. [PMID: 39860147 PMCID: PMC11767693 DOI: 10.3390/molecules30020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The continuous synthesis of nanoparticles (NPs) has been actively studied due to its great potential to produce NPs with reproducible and controllable physicochemical properties. Here, we achieved the high throughput production of nanostructured lipid carriers (NLCs) using a coaxial turbulent jet mixer with an added heating system. This device, designed for the crossflow of precursor solution and non-solvent, combined with the heating system, efficiently dissolves solid lipids and surfactants. We reported the flow regime according to the Reynolds number (Re). Also, we confirmed the size controllability of NLCs as dependent on both Re and lipid concentration. The optimized synthesis yields NLCs around 80 nm, ideal for targeted drug delivery by enhanced permeability and retention (EPR) effect. The coaxial turbulent jet mixer enables effective mixing, producing uniform size distribution of NLCs. The NLCs prepared using the coaxial turbulent jet mixer were smaller, more uniform, and had higher drug loading compared to the NLCs synthesized by a bulk nanoprecipitation method, showcasing its potential for advancing nanomedicine.
Collapse
Affiliation(s)
- Hyeon Su Lim
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungcheongbuk-do, Republic of Korea
| | - Jong-Min Lim
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
- Department of Chemical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
37
|
Gunaseelan N, Saha P, Maher N, Pan D. Nanoparticles with " K-edge" Metals Bring "Color" in Multiscale Spectral Photon Counting X-ray Imaging. ACS NANO 2024; 18:34464-34491. [PMID: 39652749 DOI: 10.1021/acsnano.4c11724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Preclinical and clinical diagnostics depend greatly on medical imaging, which enables the identification of physiological and pathological processes in living subjects. It is often necessary to use contrast agents to complement anatomical data with functional information or to describe the disease phenotypically. Nanomaterials are used as contrast agents in many advanced bioimaging techniques and applications because of their high payload, physicochemical properties, improved sensitivity, and multimodality. Metals with k-edge energy within the X-ray bandwidth respond to photon counting and spectral X-ray imaging. This Perspective examines the progress made in the emerging area of nanoparticle-based k-edge contrast agents. These nano "k-edge" particles have been explored with spectral photon counting CT (SPCCT) for multiplexed molecular imaging, pushing the boundaries of resolution and capabilities of CT imaging. Design considerations, contrast properties, and biological behavior are discussed in detail. The key applications are highlighted by categorizing these nanomaterials based on their X-ray, k-edge energy, and biological properties, as well as their synthesis, functionalization, and characterization processes. The article delves into the transformative impact of nano "k-edge" particles on early disease detection and other biomedical applications. The review provides further insights into how the "k-edge signatures" of these nanoparticles combined with photon counting technique can be leveraged for quantitative, multicontrast imaging of diseases. We also discuss the status quo of clinically approved nanoparticles for imaging and highlight the challenges such as toxicity and clearance as well as promising clinical perspectives, providing a balanced view of the potential and limitations of these nanomaterials. Furthermore, we discuss the necessary future research efforts required to clinically translate nano "k-edge" particles as SPCCT contrast agents for early disease diagnosis and tracking.
Collapse
Affiliation(s)
- Nivetha Gunaseelan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Pranay Saha
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nada Maher
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipanjan Pan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
38
|
Flores-Prieto DE, Stabenfeldt SE. Nanoparticle targeting strategies for traumatic brain injury. J Neural Eng 2024; 21:061007. [PMID: 39622184 DOI: 10.1088/1741-2552/ad995b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems hold immense potential for targeted therapy and diagnosis of neurological disorders, overcoming the limitations of conventional treatment modalities. This review explores the design considerations and functionalization strategies of NPs for precise targeting of the brain and central nervous system. This review discusses the challenges associated with drug delivery to the brain, including the blood-brain barrier and the complex heterogeneity of traumatic brain injury. We also examine the physicochemical properties of NPs, emphasizing the role of size, shape, and surface characteristics in their interactions with biological barriers and cellular uptake mechanisms. The review concludes by exploring the options of targeting ligands designed to augment NP affinity and retention to specific brain regions or cell types. Various targeting ligands are discussed for their ability to mimic receptor-ligand interaction, and brain-specific extracellular matrix components. Strategies to mimic viral mechanisms to increase uptake are discussed. Finally, the emergence of antibody, antibody fragments, and antibody mimicking peptides are discussed as promising targeting strategies. By integrating insights from these scientific fields, this review provides an understanding of NP-based targeting strategies for personalized medicine approaches to neurological disorders. The design considerations discussed here pave the way for the development of NP platforms with enhanced therapeutic efficacy and minimized off-target effects, ultimately advancing the field of neural engineering.
Collapse
Affiliation(s)
- David E Flores-Prieto
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
39
|
Arshad N, Biswas N, Gill J, Kesari S, Ashili S. Drug delivery in leptomeningeal disease: Navigating barriers and beyond. Drug Deliv 2024; 31:2375521. [PMID: 38995190 PMCID: PMC11249152 DOI: 10.1080/10717544.2024.2375521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Leptomeningeal disease (LMD) refers to the infiltration of cancer cells into the leptomeningeal compartment. Leptomeninges are the two membranous layers, called the arachnoid membrane and pia mater. The diffuse nature of LMD poses a challenge to its effective diagnosis and successful management. Furthermore, the predominant phenotype; solid masses or freely floating cells, has altering implications on the effectiveness of drug delivery systems. The standard of care is the intrathecal delivery of chemotherapy drugs but it is associated with increased instances of treatment-related complications, low patient compliance, and suboptimal drug distribution. An alternative involves administering the drugs systemically, after which they must traverse fluid barriers to arrive at their destination within the leptomeningeal space. However, this route is known to cause off-target effects as well as produce subtherapeutic drug concentrations at the target site within the central nervous system. The development of new drug delivery systems such as liposomal cytarabine has improved drug delivery in leptomeningeal metastatic disease, but much still needs to be done to effectively target this challenging condition. In this review, we discuss about the anatomy of leptomeninges relevant for drug penetration, the conventional and advanced drug delivery methods for LMD. We also discuss the future directions being set by different clinical trials.
Collapse
Affiliation(s)
| | - Nupur Biswas
- Rhenix Lifesciences, Hyderabad, Telangana, India
- CureScience, San Diego, California, USA
| | - Jaya Gill
- CureScience, San Diego, California, USA
| | - Santosh Kesari
- Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA
| | | |
Collapse
|
40
|
Vincely VD, Zhong X, Huda K, Katakam SP, Kays JC, Dennis AM, Bayer CL. Bornite (Cu 5FeS 4) nanocrystals as an ultrasmall biocompatible NIR-II contrast agent for photoacoustic imaging. PHOTOACOUSTICS 2024; 40:100649. [PMID: 39347465 PMCID: PMC11439559 DOI: 10.1016/j.pacs.2024.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
In this study, we demonstrate the potential of the bornite crystal structure (Cu5FeS4) of copper iron sulfide as a second near infrared (NIR-II) photoacoustic (PA) contrast agent. Bornite exhibits comparable dose-dependent biocompatibility to copper sulfide nanoparticles in a cell viability study with HepG2 cells, while exhibiting a 10-fold increase in PA amplitude. In comparison to other benchmark contrast agents at similar mass concentrations, bornite demonstrated a 10× increase in PA amplitude compared to indocyanine green (ICG) and a 5× increase compared to gold nanorods (AuNRs). PA signal was detectable with a light pathlength greater than 5 cm in porcine tissue phantoms at bornite concentrations where in vitro cell viability was maintained. In vivo imaging of mice vasculature resulted in a 2× increase in PA amplitude compared to AuNRs. In summary, bornite is a promising NIR-II contrast agent for deep tissue PA imaging.
Collapse
Affiliation(s)
- Vinoin Devpaul Vincely
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, United States
| | - Xingjian Zhong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
| | - Kristie Huda
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, United States
| | - Swathi P. Katakam
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, United States
| | - Joshua C. Kays
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Allison M. Dennis
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
| | - Carolyn L. Bayer
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, United States
| |
Collapse
|
41
|
Zhang Y, Hao F, Liu Y, Yang M, Zhang B, Bai Z, Zhao B, Li X. Recent advances of copper-based metal phenolic networks in biomedical applications. Colloids Surf B Biointerfaces 2024; 244:114163. [PMID: 39154599 DOI: 10.1016/j.colsurfb.2024.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Metal-phenolic Networks (MPNs) are a novel class of nanomaterial developed gradually in recent years which are self-assembled by metal ions and polyphenolic ligands. Due to their environmental protection, good adhesion, and biocompatibility with green phenolic ligands, MPNs can be used as a new type of nanomaterial. They show excellent properties such as anti-inflammatory, antioxidant, antibacterial, and anticancer, and have been widely studied in the biomedical field. As one of the most common subclasses of the MPNs family, copper-based MPNs have been widely studied for drug delivery, Photodynamic Therapy (PDT), Chemo dynamic Therapy (CDT), antibacterial and anti-inflammatory, bone tissue regeneration, skin regeneration wound repair, and metal ion imaging. In this paper, the preparation strategies of different types of copper-based MPNs are reviewed. Then, the application status of copper-based MPNs in the biomedical field under different polyphenol ligands is introduced in detail. Finally, the existing problems and challenges of copper-based MPNs are discussed, as well as their future application prospects in the biomedical field.
Collapse
Affiliation(s)
- Ying Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengxiang Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Mengqi Yang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bo Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China.
| | - Xia Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
42
|
Bharathidasan D, Maity C. Organelle-Specific Smart Supramolecular Materials for Bioimaging and Theranostics Application. Top Curr Chem (Cham) 2024; 383:1. [PMID: 39607460 DOI: 10.1007/s41061-024-00483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
In cellular environments, certain synthetic molecules can form nanostructures via self-assembly, impacting molecular imaging, and biomedical applications. Control over the formation of these self-assembled nanostructures in subcellular organelle is challenging. By the action of stimuli, either present in the cellular environment or applied externally, in situ generation of molecular precursors can lead to accumulation and supramolecular nanostructure formation, resulting in efficient bioimaging. Here, we summarize smart fluorophore-based ordered nanostructure preparation at specific organelles for efficient bioimaging and therapeutic application towards cancer theranostics. We also present challenges and an outlook regarding intercellular self-assembly for theranostics application. Altogether, smart nanostructured materials with fluorescence read-outs at specific subcellular compartments would be beneficial in synthetic biology and precision therapeutics.
Collapse
Affiliation(s)
- Dineshkumar Bharathidasan
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India
| | - Chandan Maity
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
43
|
Vashist A, Perez Alvarez G, Andion Camargo V, Raymond AD, Arias AY, Kolishetti N, Vashist A, Manickam P, Aggarwal S, Nair M. Recent advances in nanogels for drug delivery and biomedical applications. Biomater Sci 2024; 12:6006-6018. [PMID: 39484856 PMCID: PMC11528912 DOI: 10.1039/d4bm00224e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/26/2024] [Indexed: 11/03/2024]
Abstract
Nanotechnology has shown great promise for researchers to develop efficient nanocarriers for better therapy, imaging, and sustained release of drugs. The existing treatments are accompanied by serious toxicity limitations, leading to severe side effects, multiple drug resistance, and off-target activity. In this regard, nanogels have garnered significant attention for their multi-functional role combining advanced therapeutics with imaging in a single platform. Nanogels can be functionalized to target specific tissues which can improve the efficiency of drug delivery and other challenges associated with the existing nanocarriers. Translation of nanogel technology requires more exploration towards stability and enhanced efficiency. In this review, we present the advances and challenges related to nanogels for cancer therapy, ophthalmology, neurological disorders, tuberculosis, wound healing, and anti-viral applications. A perspective on recent research trends of nanogels for translation to clinics is also discussed.
Collapse
Affiliation(s)
- Arti Vashist
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Gabriela Perez Alvarez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Vianessa Andion Camargo
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Andrea D Raymond
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Adriana Yndart Arias
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Nagesh Kolishetti
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Atul Vashist
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, India
- Centre of Excellence in Nanosensors and Nanomedicine, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Madhavan Nair
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
44
|
Milanesi L, Tomas S. The interaction of a self-assembled nanoparticle and a lipid membrane: Binding, disassembly and re-distribution. Heliyon 2024; 10:e39681. [PMID: 39524779 PMCID: PMC11550047 DOI: 10.1016/j.heliyon.2024.e39681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Here we report a detailed study of the interactions of nanoparticles, formed by the self-assembly of cholesterol-containing porphyrins, with lipid membranes. We show that the interaction is a two-step process: first, the docking and fusion, then, the redistribution of the building blocks of the self-assembled nanoparticles (SANs henceforth). Analysis of the binding and structural data is consistent with the docking step being driven by a multivalence cooperative effect and with the formation of SAN aggregates on the membrane, whilst the solubility of the cholesterol anchor in the membrane is key to both the fusion and redistribution of the SANs building blocks. The tendency of the SAN to aggregate in the membrane helps explain the photosensitizer properties of the SANs, essential to their anti-microbial activity. The solubility of the cholesteryl anchors drives fusion to the membrane and de-assembly of the SAN, explaining the capability of the SANs to deliver therapeutic cargos at the lipid interface. The subsequent redistribution of the SANs building blocks offer a plausible pathway to body clearance that is not immediately available to hard nanoparticles. These properties, and the modularity of the synthesis, point to the SANs being an excellent platform for the development of nanomedicines. An unexpected consequence of unraveling the mechanism of membrane interaction of these SANs is that it allows us to derive a value of the free energy of binding of cholesterol (the membrane anchor of the SAN building blocks) to a lipid membrane, that is consistent with the literature values. This is an additional property that can be exploited to determine the affinity of a variety of membrane anchors to membranes of various compositions.
Collapse
Affiliation(s)
- Lilia Milanesi
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, Km 7.5. 07122, Palma de Mallorca, Spain
| | - Salvador Tomas
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, Km 7.5. 07122, Palma de Mallorca, Spain
| |
Collapse
|
45
|
Gómez-González E, Caro C, Núñez NO, González-Mancebo D, Urbano-Gámez JD, García-Martín ML, Ocaña M. Sodium lanthanide tungstate-based nanoparticles as bimodal contrast agents for in vivo high-field MRI and CT imaging. J Mater Chem B 2024; 12:11123-11133. [PMID: 39268755 DOI: 10.1039/d4tb01157k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Research on high-field magnetic resonance imaging (HF-MRI) has been increased in recent years, aiming to improve diagnosis accuracy by increasing the signal-to-noise ratio and hence image quality. Conventional contrast agents (CAs) have important limitations for HF-MRI, with the consequent need for the development of new CAs. Among them, the most promising alternatives are those based on Dy3+ or Ho3+ compounds. Notably, the high atomic number of lanthanide cations would bestow a high capability for X-ray attenuation to such Dy or Ho-based compounds, which would also allow them to be employed as CAs for X-ray computed tomography (CT). In this work, we have prepared uniform NaDy(WO4)2 and NaHo(WO4)2 nanoparticles (NPs), which were dispersible under conditions that mimic the physiological media and were nontoxic for cells, meeting the main requirements for their use in vivo. Both NPs exhibited satisfactory magnetic relaxivities at 9.4 T, thus making them a promising alternative to clinical CAs for HF-MRI. Furthermore, after their intravenous administration in tumor-bearing mice, both NPs exhibited significant accumulation inside the tumor at 24 h, attributable to passive targeting by the enhanced permeability and retention (EPR) effect. Therefore, our NPs are suitable for the detection of tumors through HF-MRI. Finally, NaDy(WO4)2 NPs showed a superior X-ray attenuation capability than iohexol (commercial CT CA), which, along with their high r2 value, makes them suitable as the dual-probe for both HF-MRI and CT imaging, as demonstrated by in vivo experiments conducted using healthy mice.
Collapse
Affiliation(s)
- Elisabet Gómez-González
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Carlos Caro
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, C/Severo Ochoa, 35, 29590 Malaga, Spain
| | - Nuria O Núñez
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Daniel González-Mancebo
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Jesús D Urbano-Gámez
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, C/Severo Ochoa, 35, 29590 Malaga, Spain
| | - Maria L García-Martín
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, C/Severo Ochoa, 35, 29590 Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Manuel Ocaña
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
46
|
Angelocci LV, Sgrignoli SS, de Souza CD, Antunes PCG, Rostelato MECM, Zeituni CA. In silicodosimetry for a prostate cancer treatment using 198Au nanoparticles. Biomed Phys Eng Express 2024; 11:015002. [PMID: 39447593 DOI: 10.1088/2057-1976/ad8acc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Objective. To estimate dose rates delivered by using radioactive198Au nanoparticles for prostate cancer nanobrachytherapy, identifying contribution by photons and electrons emmited from the source.Approach. Utilizingin silicomodels, two different anatomical representations were compared: a mathematical model and a unstructured mesh model based on the International Commission on Radiological Protection (ICRP) Publication 145 phantom. Dose rates by activity were calculated to the tumor and nearby healthy tissues, including healthy prostate tissue, urinary bladder wall and rectum, using Monte Carlo code MCNP6.2.Main results. Results indicate that both models provide dose rate estimates within the same order of magnitude, with the mathematical model overestimating doses to the prostate and bladder by approximately 20% compared to the unstructured mesh model. The discrepancies for the tumor and rectum were below 4%. Photons emmited from the source were defined as the primary contributors to dose to other organs, while 97.9% of the dose to the tumor was due to electrons emmited from the source.Significance. Our findings emphasize the importance of model selection in dosimetry, particularly the advantages of using realistic anatomical phantoms for accurate dose calculations. The study demonstrates the feasibility and effectiveness of198Au nanoparticles in achieving high dose concentrations in tumor regions while minimizing exposure to surrounding healthy tissues. Beta emissions were found to be predominantly responsible for tumor dose delivery, reinforcing the potential of198Au nanoparticles in localized radiation therapy. We advocate for using realistic body phantoms in further research to enhance reliability in dosimetry for nanobrachytherapy, as the field still lacks dedicated protocols.
Collapse
Affiliation(s)
- Lucas Verdi Angelocci
- Centro de Tecnologia das Radiações, Instituto de Pesquisas Energéticas e Nucleareas, São Paulo, SP, Brazil
| | | | - Carla Daruich de Souza
- Centro de Tecnologia das Radiações, Instituto de Pesquisas Energéticas e Nucleareas, São Paulo, SP, Brazil
- Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Carlos Alberto Zeituni
- Centro de Tecnologia das Radiações, Instituto de Pesquisas Energéticas e Nucleareas, São Paulo, SP, Brazil
| |
Collapse
|
47
|
Salgueiro MJ, Portillo M, Tesán F, Nicoud M, Medina V, Moretton M, Chiappetta D, Zubillaga M. Design and development of nanoprobes radiolabelled with 99mTc for the diagnosis and monitoring of therapeutic interventions in oncology preclinical research. EJNMMI Radiopharm Chem 2024; 9:74. [PMID: 39470937 PMCID: PMC11522242 DOI: 10.1186/s41181-024-00300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/19/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND Previous studies employing polymeric micelles and molecular imaging for in vivo nanosystem characterization have led to the development of radionanoprobes (RNPs) designed for diagnosing and monitoring therapeutic interventions in preclinical oncology research, specifically within breast and colon cancer models. These models exhibit high GLUT1 expression on tumor cells and VEGFR expression on the tumor vasculature. We aimed to enhance the tumor-targeting specificity of these RNPs by functionalizing micelles with glucose and bevacizumab. The choice of 99mTc to label the nanoprobes is based on its availability and that direct labeling method is a widespread strategy to prepare radiopharmaceuticals using cold reagents and a 99Mo/99mTc generator. Soluplus® is an attractive polymer for synthesizing micelles that also allows their functionalization. With all the above, the objective of this work was to design, develop and characterize nanoprobes based on polymeric micelles and radiolabeled with 99mTc for the characterization of biological processes associated to the diagnosis, prognosis and monitoring of animal models of breast and colon cancer in preclinical research using molecular images. RESULTS Four RNPs ([99mTc]Tc-Soluplus®, [99mTc]Tc-Soluplus®+TPGS, [99mTc]Tc-Soluplus®+glucose and [99mTc]Tc-Soluplus®+bevacizumab) were produced with high radiochemical purity (> 95% in all cases) and stability in murine serum for up to 3 h. The RNPs maintained the 100 nm size of the Soluplus® polymeric micelles even when they were functionalized and labeled with 99mTc. The image acquisition protocol enabled the visualization of tumor uptake in two cancer experimental models using the assigned RNPs. In vivo biological characterization showed signal-to-background ratios of 1.7 ± 0.03 for [99mTc]Tc-Soluplus®+TPGS, 1.8 ± 0.02 for [99mTc]Tc-Soluplus®, and 2.3 ± 0.02 for [99mTc]Tc-Soluplus®+glucose in the breast cancer model, and 1.8 ± 0.04 for [99mTc]Tc-Soluplus® and 3.7 ± 0.07 for [99mTc]Tc-Soluplus®+bevacizumab in the colon cancer model. Ex vivo biodistribution, showed that the uptake of the tumors, regardless of the model, is < 2% IA/g while the blood activity concentration is higher, suggesting that the enhanced permeability and retention effect (EPR) would be one of the mechanisms involved in imaging tumors in addition to the active targeting of RNPs. CONCLUSIONS Soluplus®-based polymeric micelles provide a promising nanotechnological platform for the development of RNPs. The functionalization with glucose and bevacizumab enhances tumor specificity enabling effective imaging and monitoring of cancer in animal models.
Collapse
Affiliation(s)
- María Jimena Salgueiro
- Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 PB , Buenos Aires (1113), Argentina.
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Mariano Portillo
- Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 PB , Buenos Aires (1113), Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fiorella Tesán
- Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 PB , Buenos Aires (1113), Argentina
| | - Melisa Nicoud
- Laboratory of Tumor Biology and Inflammation, Biomedical Research Institute (BIOMED), Faculty of Medical Sciences, Pontifical Catholic University of Argentina, (UCA-CONICET), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Vanina Medina
- Laboratory of Tumor Biology and Inflammation, Biomedical Research Institute (BIOMED), Faculty of Medical Sciences, Pontifical Catholic University of Argentina, (UCA-CONICET), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcela Moretton
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Chiappetta
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcela Zubillaga
- Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 PB , Buenos Aires (1113), Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
48
|
Vajpayee S, Picascia T, Casciano F, Viale E, Ronda L, Bettati S, Milani D, Gretz N, Perciaccante R. Fluorescent Water-Soluble Polycationic Chitosan Polymers as Markers for Biological 3D Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:721-730. [PMID: 39483637 PMCID: PMC11522997 DOI: 10.1021/cbmi.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/30/2024] [Accepted: 08/30/2024] [Indexed: 11/03/2024]
Abstract
Over the last decades, various tissue-clearing techniques have broken the ground for the optical imaging of whole organs and whole-organisms, providing complete representative data sets of three-dimensional biological structures. Along with advancements in this field, the development of fluorescent markers for staining vessels and capillaries has offered insights into the complexity of vascular networks and their impact on disease progression. Here we describe the use of a modified water-soluble chitosan linked to cyanine dyes in combination with ethyl cinnamate-based optical tissue clearing for the 3D visualization of tissue vasculature in depth. The water-soluble fluorescent Chitosans have proven to be an optimal candidate for labeling both vessels and capillaries ex vivo thanks to their increased water solubility, high photostability, and optical properties in the near-infrared window. In addition, the nontoxicity of these markers broadens their applicability to in vitro and in vivo biological applications. Despite the availability of other fluorescent molecules for vascular staining, the present study, for the first time, demonstrates the potential of fluorescent chitosans to depict vessels at the capillary level and opens avenues for advancing the diagnostic field by reducing the complexity and costs of the currently available procedures.
Collapse
Affiliation(s)
- Srishti Vajpayee
- Cyanagen
Srl, Via degli Stradelli
Guelfi 40/C, 40138 Bologna, Italy
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Tiziana Picascia
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Fabio Casciano
- Department
of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- Department
of Translational Medicine, University of
Ferrara, 44121 Ferrara, Italy
| | - Elisabetta Viale
- Department
of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
- Biopharmanet-TEC
Interdepartmental Center, University of
Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Luca Ronda
- Department
of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
- Biopharmanet-TEC
Interdepartmental Center, University of
Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Stefano Bettati
- Department
of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
- Biopharmanet-TEC
Interdepartmental Center, University of
Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Daniela Milani
- Department
of Translational Medicine, University of
Ferrara, 44121 Ferrara, Italy
| | - Norbert Gretz
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | |
Collapse
|
49
|
Wilson BK, Prud'homme RK. Co-encapsulation of organic polymers and inorganic superparamagnetic iron oxide colloidal crystals requires matched diffusion time scales. SOFT MATTER 2024; 20:8312-8325. [PMID: 39387564 DOI: 10.1039/d4sm00935e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Nanoparticles (NPs) that contain both organic molecules and inorganic metal or metal oxide colloids in the same NP core are "composite nanoparticles" which are of interest in many applications, particularly in biomedicine as "theranostics" for the combined delivery of colloidal diagnostic imaging agents with therapeutic drugs. The rapid precipitation technique Flash NanoPrecipitation (FNP) enables continuous and scalable production of composite nanoparticles with hydrodynamic diameters between 40-200 nanometers (nm) that contain hydrophobic superparamagnetic iron oxide primary colloids. Composite NPs co-encapsulate these primary colloids (diameters of 6 nm, 15 nm, or 29 nm), a fluorescent dye (600 Daltons), and poly(styrene) homopolymer (1800, 50 000, or 200 000 Daltons) with NPs stabilized by a poly(styrene)-block-poly(ethylene glycol) (1600 Da-b-5000 Da) block copolymer. Nanoparticle assembly in FNP occurs by diffusion limited aggregation of the hydrophobic core components followed by adsorption of the hydrophobic block of the stabilizing polymer. The hydrodynamic diameter mismatch between the collapsed organic species and the primary colloids (0.5-5 nm versus 6-29 nm) creates a diffusion-aggregation time scale mismatch between components that can lead to nonstoichiometric co-encapsulation in the final nanoparticles; some nanoparticles are composites with primary colloids co-encapsulated alongside organics while others are devoid of the primary colloids and contain only organic species. We use a magnetic capture process to separate magnetic composite nanoparticles from organic-only nanoparticles and quantify the amount of iron oxide colloids and hydrophobic fluorescent dye (as a proxy for total hydrophobic polymer content) in the magnetic and nonmagnetic fractions of each formulation. Analysis of the microstructure in over 1100 individual nanoparticles by TEM imaging and composition measurements identifies the conditions that produce nonstoichiometric composite NP populations without co-encapsulated magnetic iron oxide colloids. Stoichiometric magnetically responsive composite NPs are produced when the ratio of characteristic diffusion-aggregation time scales between the inorganic primary colloid and the organic core component is less than 30 and all NPs in a dispersion contain organic and inorganic species in approximately the same ratio. These rules for assembly of colloids and organic components into homogeneous composite nanoparticles are broadly applicable.
Collapse
Affiliation(s)
- Brian K Wilson
- Department of Chemical and Biological Engineering, ACE34 Engineering Quadrangle, Princeton University, 41 Olden Street, Princeton, NJ, 08544, USA.
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, ACE34 Engineering Quadrangle, Princeton University, 41 Olden Street, Princeton, NJ, 08544, USA.
| |
Collapse
|
50
|
Rizoli C, Dos Santos NM, Maróstica Júnior MR, da Cruz-Höfling MA, Mendonça MCP, de Jesus MB. The therapeutic potential of reduced graphene oxide in attenuating cuprizone-induced demyelination in mice. NANOTECHNOLOGY 2024; 36:025102. [PMID: 39389086 DOI: 10.1088/1361-6528/ad857e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
Reduced graphene oxide (rGO) has unique physicochemical properties that make it suitable for therapeutic applications in neurodegenerative scenarios. This study investigates the therapeutic potential of rGO in a cuprizone-induced demyelination model in mice through histomorphological techniques and analysis of biochemical parameters. We demonstrate that daily intraperitoneal administration of rGO (1 mg ml-1) for 21 days tends to reduce demyelination in theCorpus callosumby decreasing glial cell recruitment during the repair mechanism. Additionally, rGO interferes with oxidative stress markers in the brain and liver indicating potential neuroprotective effects in the central nervous system. No significant damage to vital organs was observed, suggesting that multiple doses could be used safely. However, further long-term investigations are needed to understand rGO distribution, metabolism, routes of action and associated challenges in central neurodegenerative therapies. Overall, these findings contribute to the comprehension of rGO effectsin vivo, paving the way for possible future clinical research.
Collapse
Affiliation(s)
- Cintia Rizoli
- Departmento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Maria Alice da Cruz-Höfling
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Marcelo Bispo de Jesus
- Departmento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|