1
|
Weiskirchen R, Weiskirchen S, Grassi C, Scaggiante B, Grassi M, Tierno D, Biasin A, Truong NH, Minh TD, Cemazar M, Pastorin G, Tonon F, Grassi G. Recent advances in optimizing siRNA delivery to hepatocellular carcinoma cells. Expert Opin Drug Deliv 2025:1-17. [PMID: 40126051 DOI: 10.1080/17425247.2025.2484287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Hepatocellularcarcinoma (HCC), the primary form of liver cancer, is the second leading cause of cancer-related deaths worldwide. Current therapies have limited effectiveness, particularly in advanced stages of the disease, highlighting the need for innovative treatment options. Small-interfering RNA(siRNA) molecules show great promise as a therapeutic solution since they can inhibit the expression of genes promoting HCC growth. Their cost-effective synthesis has further encouraged their potential use as novel drugs. However, siRNAs are vulnerable to degradation in biological environments, necessitating protective delivery systems. Additionally, targeted delivery to HCC is critical for optimal efficacy and minimal undesired side effects. AREACOVERED This review addresses the challenges associated with the delivery of siRNA toHCC, discussing and focusing on delivery systems based on lipid and polymeric nanoparticles in publications from the past five years. EXPERT OPINION Future nano particles will need to effectively cross the vessel wall, migrate through the extracellular matrix and finally cross the HCC cell membrane. This may be achieved by optimizing nanoparticle size, the equipment of nanoparticles withHCC targeting moieties and loading nanoparticles with siRNAs againstHCC-specific oncogenes.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | | | | | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, Trieste, Italy
| | - Domenico Tierno
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| | - Alice Biasin
- Department of Engineering and Architecture, Trieste University, Trieste, Italy
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| | - Nhung Hai Truong
- Laboratory of Regenerative Biomedicine, University of Science-VNUHCM, Ho Chi MInh City, Vietnam
- Faculty of Biology and Biotechnology, Viet Nam National University, Ho Chi Minh City, Vietnam
| | - Thanh Dang Minh
- Laboratory of Regenerative Biomedicine, University of Science-VNUHCM, Ho Chi MInh City, Vietnam
- Faculty of Biology and Biotechnology, Viet Nam National University, Ho Chi Minh City, Vietnam
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Giorgia Pastorin
- Pharmacy Department, National University of Singapore, Singapore
| | - Federica Tonon
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| | - Gabriele Grassi
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, Trieste Univer-sity, Trieste, Italy
| |
Collapse
|
2
|
Rastgar A, Kheyrandish S, Vahidi M, Heidari R, Ghorbani M. Advancements in small interfering RNAs therapy for acute lymphoblastic leukemia: promising results and future perspectives. Mol Biol Rep 2024; 51:737. [PMID: 38874790 DOI: 10.1007/s11033-024-09650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of cancer among children, presenting significant healthcare challenges for some patients, including drug resistance and the need for targeted therapies. SiRNA-based therapy is one potential solution, but problems can arise in administration and the need for a delivery system to protect siRNA during intravenous injection. Additionally, siRNA encounters instability and degradation in the reticuloendothelial system, off-target effects, and potential immune system stimulation. Despite these limitations, some promising results about siRNA therapy in ALL patients have been published in recent years, showing the potential for more effective and precise treatment, reduced side effects, and personalized approaches. While siRNA-based therapies demonstrate safety and efficacy, addressing the mentioned limitations is crucial for further optimization. Advancements in siRNA-delivery technologies and combination therapies hold promise to improve treatment effectiveness and overcome drug resistance. Ultimately, despite its challenges, siRNA therapy has the potential to revolutionize ALL treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Amirhossein Rastgar
- Student Research Committee, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setare Kheyrandish
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Vahidi
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran, Iran
| | - Reza Heidari
- Cancer Epidemiology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Mahdi Ghorbani
- Department of Hematology, Laboratory Sciences, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran, Iran.
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Hwang H, Park KH, Kwon JL, Park HO, Kim J. Analysis of Self-Assembled Micelle Inhibitory RNA (SAMiRNA) Drug Using Ion-Pairing Reversed-Phase Liquid Chromatography Combined with Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1301-1309. [PMID: 38657000 DOI: 10.1021/jasms.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Small interfering RNA (siRNA) is known for its ability to silence the expression of specific genes, demonstrating its promising potential as a therapeutic approach. Self-assembled micelle inhibitory RNA (SAMiRNA) is an oligonucleotide duplex developed to overcome the in vivo delivery limitations of siRNA. SAMiRNA has hydrophilic and hydrophobic groups at both ends of a sense strand, forming a spherical nanostructure that enhances the in vivo delivery efficiency. Ion-pairing reversed-phase liquid chromatography (IP-RPLC) is the most commonly used method for the analysis of oligonucleotides. Since SAMiRNA is heavily chemically modified, the behavior of SAMiRNA in IP-RPLC combined with mass spectrometry (MS) is anticipated to differ from that of the conventional siRNA drug. The current investigation using IP-RPLC-MS revealed that a distinct duplex peak along with two minor separate strands of antisense and sense was observed at column temperatures below 35 °C in the IP-RPLC system with a 100 mM ammonium bicarbonate buffer system. At column temperatures higher than 35 °C, however, two fully denatured single strands were observed. The mass spectrum from the chromatographic peak of the SAMiRNA duplex contained signals from the duplex, the antisense, and the sense, probably due to duplex denaturation during the MS ionization process. The current comprehensive analysis results will make a substantial contribution to the future application of IP-RPLC-MS in the analysis of SAMiRNA.
Collapse
Affiliation(s)
- Hyojin Hwang
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyu H Park
- Bioneer Corporation, Daejeon 34013, Republic of Korea
| | - Ju-Lee Kwon
- siRNAgen Therapeutics Inc., Daejeon 34302, Republic of Korea
| | - Han-Oh Park
- Bioneer Corporation, Daejeon 34013, Republic of Korea
- siRNAgen Therapeutics Inc., Daejeon 34302, Republic of Korea
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
4
|
Merckx P, Conickx G, Blomme E, Maes T, Bracke KR, Brusselle G, De Smedt SC, Raemdonck K. Evaluating β 2-agonists as siRNA delivery adjuvants for pulmonary surfactant-coated nanogel inhalation therapy. Eur J Pharm Biopharm 2024; 197:114223. [PMID: 38367760 DOI: 10.1016/j.ejpb.2024.114223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
The lung is an attractive target organ for inhalation of RNA therapeutics, such as small interfering RNA (siRNA). However, clinical translation of siRNA drugs for application in the lung is hampered by many extra- and intracellular barriers. We previously developed hybrid nanoparticles consisting of an siRNA-loaded nanosized hydrogel (nanogel) core coated with Curosurf®, a clinically used pulmonary surfactant. The surfactant shell was shown to markedly improve particle stability and promote intracellular siRNA delivery, both in vitro and in vivo. However, the full potential of siRNA nanocarriers is typically not reached as they are rapidly trafficked towards lysosomes for degradation and only a fraction of the internalized siRNA cargo is able to escape into the cytosol. We recently reported on the repurposing of widely applied cationic amphiphilic drugs (CADs) as siRNA delivery enhancers. Due to their physicochemical properties, CADs passively accumulate in the (endo)lysosomal compartment causing a transient permeabilization of the lysosomal membrane, which facilitates cytosolic drug delivery. In this work, we assessed a selection of cationic amphiphilic β2-agonists (i.e., salbutamol, formoterol, salmeterol and indacaterol) for their ability to enhance siRNA delivery in a lung epithelial and macrophage cell line. These drugs are widely used in the clinic for their bronchodilating effect in obstructive lung disease. As opposed to the least hydrophobic drugs salbutamol and formoterol, the more hydrophobic long-acting β2-agonist (LABA) salmeterol promoted siRNA delivery in both cell types for both uncoated and surfactant-coated nanogels, whereas indacaterol showed this effect solely in lung epithelial cells. Our results demonstrate the potential of both salmeterol and indacaterol to be repurposed as adjuvants for nanocarrier-mediated siRNA delivery to the lung, which could provide opportunities for drug combination therapy.
Collapse
Affiliation(s)
- Pieterjan Merckx
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Griet Conickx
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Faculty of Medicine and Health Sciences, Department of Respiratory Medicine, Ghent University Hospital, Medical Research Building 2, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Evy Blomme
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Faculty of Medicine and Health Sciences, Department of Respiratory Medicine, Ghent University Hospital, Medical Research Building 2, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Faculty of Medicine and Health Sciences, Department of Respiratory Medicine, Ghent University Hospital, Medical Research Building 2, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Faculty of Medicine and Health Sciences, Department of Respiratory Medicine, Ghent University Hospital, Medical Research Building 2, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Guy Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Faculty of Medicine and Health Sciences, Department of Respiratory Medicine, Ghent University Hospital, Medical Research Building 2, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Betlej G, Błoniarz D, Lewińska A, Wnuk M. Non-targeting siRNA-mediated responses are associated with apoptosis in chemotherapy-induced senescent skin cancer cells. Chem Biol Interact 2023; 369:110254. [PMID: 36343682 DOI: 10.1016/j.cbi.2022.110254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
It is widely accepted that siRNA transfection can promote some off-target effects in the genome; however, little is known about how the cells can respond to the presence of non-viral dsRNA. In the present study, non-targeting control siRNA (NTC-siRNA) was used to evaluate its effects on the activity of pathogen and host-derived nucleic acid-associated signaling pathways such as cGAS-STING, RIG-I, MDA5 and NF-κB in A431 skin cancer cells and BJ fibroblasts. NTC-siRNA treatment promoted cytotoxicity in cancer cells. Furthermore, NTC-siRNA-treated doxorubicin-induced senescent cancer cells were more prone to apoptotic cell death compared to untreated doxorubicin-induced senescent cancer cells. NTC-siRNA stimulated the levels of NF-κB, APOBECs, ALY, LRP8 and phosphorylated STING that suggested the involvement of selected components of nucleic acid sensing pathways in NTC-siRNA-mediated cell death response in skin cancer cells. NTC-siRNA-mediated apoptosis in cancer cells was not associated with IFN-β-based pro-inflammatory response and TRDMT1-based adaptive response. In contrast, in NTC-siRNA-treated fibroblasts, an increase in the levels of RIG-I and IFN-β was not accompanied by affected cell viability. We propose that the use of NTC-siRNA in genetic engineering may provoke a number of unexpected effects that should be carefully monitored. In our experimental settings, NTC-siRNA promoted the elimination of doxorubicin-induced senescent cancer cells that may have implications in skin cancer therapies.
Collapse
Affiliation(s)
- Gabriela Betlej
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Dominika Błoniarz
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Anna Lewińska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| |
Collapse
|
6
|
Keyvani V, Mahmoudian RA, Mollazadeh S, Kheradmand N, Ghorbani E, Khazaei M, Saeed Al-Hayawi I, Hassanian SM, Ferns GA, Avan A, Anvari K. Insight into RNA-based Therapies for Ovarian Cancer. Curr Pharm Des 2023; 29:2692-2701. [PMID: 37916491 DOI: 10.2174/0113816128270476231023052228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023]
Abstract
Ovarian cancer (OC) is one of the most common malignancies in women and is associated with poor outcomes. The treatment for OC is often associated with resistance to therapies and hence this has stimulated the search for alternative therapeutic approaches, including RNA-based therapeutics. However, this approach has some challenges that include RNA degradation. To solve this critical issue, some novel delivery systems have been proposed. In current years, there has been growing interest in the improvement of RNAbased therapeutics as a promising approach to target ovarian cancer and improve patient outcomes. This paper provides a practical insight into the use of RNA-based therapeutics in ovarian cancers, highlighting their potential benefits, challenges, and current research progress. RNA-based therapeutics offer a novel and targeted approach to treat ovarian cancer by exploiting the unique characteristics of RNA molecules. By targeting key oncogenes or genes responsible for drug resistance, siRNAs can effectively inhibit tumor growth and sensitize cancer cells to conventional therapies. Furthermore, messenger RNA (mRNA) vaccines have emerged as a revolutionary tool in cancer immunotherapy. MRNA vaccines can be designed to encode tumor-specific antigens, stimulating the immune system to distinguish and eliminate ovarian cancer cells. A nano-based delivery platform improves the release of loaded RNAs to the target location and reduces the off-target effects. Additionally, off-target effects and immune responses triggered by RNA molecules necessitate careful design and optimization of these therapeutics. Several preclinical and clinical researches have shown promising results in the field of RNA-based therapeutics for ovarian cancer. In a preclinical study, siRNA-mediated silencing of the poly (ADP-ribose) polymerase 1 (PARP1) gene, involved in DNA repair, sensitized ovarian cancer cells to PARP inhibitors, leading to enhanced therapeutic efficacy. In clinical trials, mRNA-based vaccines targeting tumor-associated antigens have demonstrated safety and efficacy in stimulating immune responses in ovarian cancer patients. In aggregate, RNA-based therapeutics represent a promising avenue for the therapy of ovarian cancers. The ability to specifically target oncogenes or stimulate immune responses against tumor cells holds great potential for improving patient outcomes. However, further research is needed to address challenges related to delivery, permanence, and off-target effects. Clinical trials assessing the care and effectiveness of RNAbased therapeutics in larger patient cohorts are warranted. With continued advancements in the field, RNAbased therapeutics have the potential to develop the management of ovarian cancer and provide new hope for patients.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nahid Kheradmand
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
| | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Losurdo P, de Manzini N, Palmisano S, Grassi M, Parisi S, Rizzolio F, Tierno D, Biasin A, Grassi C, Truong NH, Grassi G. Potential Application of Small Interfering RNA in Gastro-Intestinal Tumors. Pharmaceuticals (Basel) 2022; 15:1295. [PMID: 36297407 PMCID: PMC9612316 DOI: 10.3390/ph15101295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 08/29/2023] Open
Abstract
Despite the progress made in the diagnoses and therapy of gastrointestinal cancers, these diseases are still plagued by a high mortality. Thus, novel therapeutic approaches are urgently required. In this regard, small interfering RNA (siRNA), double-stranded RNA molecules able to specifically target the mRNA of pathological genes, have the potential to be of therapeutic value. To be effective in the human body, siRNAs need to be protected against degradation. Additionally, they need to target the tumor, leaving the normal tissue untouched in an effort to preserve organ function. To accomplish these tasks, siRNAs have been formulated with smart delivery systems such has polymers and lipids. While siRNA protection is not particularly difficult to achieve, their targeting of tumor cells remains problematic. Here, after introducing the general features of gastrointestinal cancers, we describe siRNA characteristics together with representative delivery systems developed for gastrointestinal cancers. Afterward, we present a selection of research papers employing siRNAs against upper- and lower- gastrointestinal cancers. For the liver, we also consider papers using siRNAs to combat liver cirrhosis, a relevant risk factor for liver cancer development. Finally, we present a brief description of clinical trials employing siRNAs for gastrointestinal cancers.
Collapse
Affiliation(s)
- Pasquale Losurdo
- Surgical Clinic Unit, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
- Department of Life Sciences, Cattinara University Hospital, Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Nicolò de Manzini
- Surgical Clinic Unit, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Silvia Palmisano
- Surgical Clinic Unit, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, Via Valerio 6, 34127 Trieste, Italy
| | - Salvatore Parisi
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Pordenone, 33081 Aviano, Italy
- Doctoral School in Molecular Biomedicine, University of Trieste, 34100 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Pordenone, 33081 Aviano, Italy
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30123 Venezia, Italy
| | - Domenico Tierno
- Department of Life Sciences, Cattinara University Hospital, Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Alice Biasin
- Department of Engineering and Architecture, Trieste University, Via Valerio 6, 34127 Trieste, Italy
| | - Chiara Grassi
- Degree Course in Medicine, University of Trieste, 34100 Trieste, Italy
| | - Nhung Hai Truong
- Faculty of Biology and Biotechnology, VNUHCM—University of Science, Ho Chi Minh City 700000, Vietnam
- Laboratory of Stem Cell Research and Application, VNUHCM—University of Science, Ho Chi Minh City 700000, Vietnam
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| |
Collapse
|
8
|
Chen H, Sun T, Jiang C. Extracellular vesicle-based macromolecule delivery systems in cancer immunotherapy. J Control Release 2022; 348:572-589. [PMID: 35714733 DOI: 10.1016/j.jconrel.2022.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Great attention has been paid to the impressive role the macromolecules played in cancer immunotherapy, however, the applications were largely limited by their poor circulation stability, low cellular uptake efficiency, and off-target effects. As an important messenger of intercellular communication, extracellular vesicles (EVs) exhibit unique advantages in macromolecule delivery compared to traditional synthetic carriers, offering new possibilities for modern drug delivery. These naturally derived carriers can achieve stable, efficient, and selective delivery of macromolecules and improve the efficacy and potentiality of macromolecular drugs in cancer immunotherapy. This review provides a brief overview of the unique features of EVs related to macromolecule delivery, the strategies and recent advances of using EVs as macromolecule delivery carriers in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongyi Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Halib N, Pavan N, Trombetta C, Dapas B, Farra R, Scaggiante B, Grassi M, Grassi G. An Overview of siRNA Delivery Strategies for Urological Cancers. Pharmaceutics 2022; 14:pharmaceutics14040718. [PMID: 35456552 PMCID: PMC9030829 DOI: 10.3390/pharmaceutics14040718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
The treatment of urological cancers has been significantly improved in recent years. However, for the advanced stages of these cancers and/or for those developing resistance, novel therapeutic options need to be developed. Among the innovative strategies, the use of small interfering RNA (siRNA) seems to be of great therapeutic interest. siRNAs are double-stranded RNA molecules which can specifically target virtually any mRNA of pathological genes. For this reason, siRNAs have a great therapeutic potential for human diseases including urological cancers. However, the fragile nature of siRNAs in the biological environment imposes the development of appropriate delivery systems to protect them. Thus, ensuring siRNA reaches its deep tissue target while maintaining structural and functional integrity represents one of the major challenges. To reach this goal, siRNA-based therapies require the development of fine, tailor-made delivery systems. Polymeric nanoparticles, lipid nanoparticles, nanobubbles and magnetic nanoparticles are among nano-delivery systems studied recently to meet this demand. In this review, after an introduction about the main features of urological tumors, we describe siRNA characteristics together with representative delivery systems developed for urology applications; the examples reported are subdivided on the basis of the different delivery materials and on the different urological cancers.
Collapse
Affiliation(s)
- Nadia Halib
- Department of Basic Sciences & Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia;
| | - Nicola Pavan
- Urology Clinic, Department of Medical, Surgical and Health Science, University of Trieste, I-34149 Trieste, Italy; (N.P.); (C.T.)
| | - Carlo Trombetta
- Urology Clinic, Department of Medical, Surgical and Health Science, University of Trieste, I-34149 Trieste, Italy; (N.P.); (C.T.)
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Rossella Farra
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, Via Valerio 6, I-34127 Trieste, Italy;
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
- Correspondence: ; Tel.: +39-040-399-3227
| |
Collapse
|
10
|
5-Azacytidine Downregulates the Proliferation and Migration of Hepatocellular Carcinoma Cells In Vitro and In Vivo by Targeting miR-139-5p/ROCK2 Pathway. Cancers (Basel) 2022; 14:cancers14071630. [PMID: 35406401 PMCID: PMC8996928 DOI: 10.3390/cancers14071630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary For hepatocellular carcinoma (HCC), the second most common cause of cancer-related death, effective therapeutic approaches are lacking. As aberrant gene methylation is a major contributor to the development of HCC, demethylating drugs such as 5-azacytidine (5-Aza) have been proposed. However, despite the potential efficacy of 5-Aza in HCC, most of its mechanisms of action are still unknown. Here, we investigate the phenotypic/molecular effects of 5-Aza with a focus on miR-139-5p. Using multiple in vitro and in vivo models of HCC, we show for the first time that 5-Aza can impair HCC development via upregulation of miR-139-5p, which in turn downregulates the ROCK2/cyclin D1/E2F1/cyclin B1 pro-proliferative pathway and the ROCK2/MMP-2 pro-migratory pathway. These observations elucidate the mechanisms of action of 5-Aza in HCC, strengthen its therapeutic potential, and provide novel information about the crosstalk among ROCK2/cyclin D1/E2F1/cyclin B1/MMP-2 in HCC. Abstract Background: For hepatocellular carcinoma (HCC), effective therapeutic approaches are lacking. As aberrant gene methylation is a major contributor to HCC development, demethylating drugs such as 5-azacytidine (5-Aza) have been proposed. As most 5-Aza mechanisms of action are unknown, we investigated its phenotypic/molecular effects. Methods: 5-Aza effects were examined in the human HCC cell lines JHH-6/HuH-7 and in the rat cell-line N1-S1. We also employed a xenograft mouse model (HuH-7), a zebrafish model (JHH-6), and an orthotopic syngeneic rat model (N1-S1) of HCC. Results: 5-Aza downregulated cell viability/growth/migration/adhesion by upregulating miR-139-5p, which in turn downregulated ROCK2/cyclin D1/E2F1 and increased p27kip1, resulting in G1/G0 cell accumulation. Moreover, a decrease in cyclin B1 and an increase in p27kip1 led to G2/M accumulation. Finally, we observed a decrease in MMP-2 levels, a stimulator of HCC cell migration. Aza effects were confirmed in the mouse model; in the zebrafish model, we also demonstrated the downregulation of tumor neo-angiogenesis, and in the orthotopic rat model, we observed impaired N1-S1 grafting in a healthy liver. Conclusion: We demonstrate for the first time that 5-Aza can impair HCC development via upregulation of miR-139-5p, which in turn impairs the ROCK2/cyclin D1/E2F1/cyclin B1 pro-proliferative pathway and the ROCK2/MMP-2 pro-migratory pathway. Thus, we provide novel information about 5-Aza mechanisms of action and deepen the knowledge about the crosstalk among ROCK2/cyclin D1/E2F1/cyclin B1/p27kip1/MMP-2 in HCC.
Collapse
|
11
|
Zhu J, Zhu N, Xu J. miR‑101a‑3p overexpression prevents acetylcholine‑CaCl 2‑induced atrial fibrillation in rats via reduction of atrial tissue fibrosis, involving inhibition of EZH2. Mol Med Rep 2021; 24:740. [PMID: 34435649 PMCID: PMC8404104 DOI: 10.3892/mmr.2021.12380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022] Open
Abstract
Atrial fibrillation (AF), a clinically common heart arrhythmia, can result in left ventricular hypofunction, embolism and infarction. MicroRNA (miR)‑101a‑3p is lowly expressed in atrial tissues of patients with AF, but its role in AF remains unknown. In the present study, an AF model in rats was established via intravenous injection of acetylcholine (Ach)‑CaCl2. The downregulation of miR‑101a‑3p and upregulation of enhancer of zeste 2 homolog 2 (EZH2) were observed in AF model rats, indicating the involvement of miR‑101a‑3p and EZH2 in AF development. To study the effect of miR‑101a‑3p on AF in vivo, AF model rats were intramyocardially injected with lentivirus expressing miR‑101a‑3p. Electrocardiogram analysis identified that miR‑101a‑3p overexpression restored disappeared P wave and R‑R interphase changes in Ach‑CaCl2‑induced rats. Overexpression of miR‑101a‑3p also increased the atrial effective refractory period, reduced AF incidence and shortened duration of AF. Histological changes in atrial tissues were observed after H&E and Masson staining, which demonstrated that miR‑101a‑3p reduced atrial remodeling and fibrosis in AF model rats. Moreover, EZH2 expression was downregulated in atrial tissues by miR‑101a‑3p induction. Immunohistochemistry for collagen Ⅰ and collagen III revealed a reduction in atrial collagen synthesis following miR‑101a‑3p overexpression in AF model rats. Additionally, miR‑101a‑3p lowered the expression of pro‑fibrotic biomarkers, including TGF‑β1, connective tissue growth factor, fibronectin and α‑smooth muscle actin. The luciferase reporter assay results also indicated that EZH2 was a target gene of miR‑101a‑3p. Taken together, it was found that miR‑101a‑3p prevented AF in rats possibly via inhibition of collagen synthesis and atrial fibrosis by targeting EZH2, which provided a potential target for preventing AF.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Cardiology, The First Affiliated Hospital of USTC, Hefei, Anhui 230001, P.R. China
| | - Ning Zhu
- Department of Respiratory Medicine, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Jian Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
12
|
Raja RK, Nguyen-Tri P, Balasubramani G, Alagarsamy A, Hazir S, Ladhari S, Saidi A, Pugazhendhi A, Samy AA. SARS-CoV-2 and its new variants: a comprehensive review on nanotechnological application insights into potential approaches. APPLIED NANOSCIENCE 2021; 13:65-93. [PMID: 34131555 PMCID: PMC8190993 DOI: 10.1007/s13204-021-01900-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 02/02/2023]
Abstract
SARS-CoV-2 (COVID-19) spreads and develops quickly worldwide as a new global crisis which has left deep socio-economic damage and massive human mortality. This virus accounts for the ongoing outbreak and forces an urgent need to improve antiviral therapeutics and targeted diagnosing tools. Researchers have been working to find a new drug to combat the virus since the outbreak started in late 2019, but there are currently no successful drugs to control the SARS-CoV-2, which makes the situation riskier. Very recently, new variant of SARS-CoV-2 is identified in many countries which make the situation very critical. No successful treatment has yet been shown although enormous international commitment to combat this pandemic and the start of different clinical trials. Nanomedicine has outstanding potential to solve several specific health issues, like viruses, which are regarded a significant medical issue. In this review, we presented an up-to-date drug design strategy against SARS-CoV-2, including the development of novel drugs and repurposed product potentials were useful, and successful drugs discovery is a constant requirement. The use of nanomaterials in treatment against SARS-CoV-2 and their use as carriers for the transport of the most frequently used antiviral therapeutics are discussed systematically here. We also addressed the possibilities of practical applications of nanoparticles to give the status of COVID-19 antiviral systems.
Collapse
Affiliation(s)
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Govindasamy Balasubramani
- Aquatic Animal Health and Environmental Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, 600028 India
| | - Arun Alagarsamy
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| | - Selcuk Hazir
- Department of Biology, Faculty of Science and Arts, Adnan Menderes University, Aydin, Turkey
| | - Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Alireza Saidi
- Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve O, Montréal, QC H3A 3C2 Canada
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
13
|
Kichloo A, Albosta M, Kumar A, Aljadah M, Mohamed M, El-Amir Z, Wani F, Jamal S, Singh J, Kichloo A. Emerging therapeutics in the management of COVID-19. World J Virol 2021; 10:1-29. [PMID: 33585175 PMCID: PMC7852573 DOI: 10.5501/wjv.v10.i1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (coronavirus disease 2019, COVID-19) pandemic has placed a tremendous burden on healthcare systems globally. Therapeutics for treatment of the virus are extremely inconsistent due to the lack of time evaluating drug efficacy in clinical trials. Currently, there is a deficiency of published literature that comprehensively discusses all therapeutics being considered for the treatment of COVID-19. A review of the literature was performed for articles related to therapeutics and clinical trials in the context of the current COVID-19 pandemic. We used PubMed, Google Scholar, and Clinicaltrials.gov to search for articles relative to the topic of interest. We used the following keywords: "COVID-19", "therapeutics", "clinical trials", "treatment", "FDA", "ICU", "mortality", and "management". In addition, searches through the references of retrieved articles was also performed. In this paper, we have elaborated on the therapeutic strategies that have been hypothesized or trialed to-date, the mechanism of action of each therapeutic, the clinical trials finished or in-process that support the use of each therapeutic, and the adverse effects associated with each therapeutic. Currently, there is no treatment that has been proven to provide significant benefit in reducing morbidity and mortality. There are many clinical trials for numerous different therapeutic agents currently underway. By looking back and measuring successful strategies from previous pandemics in addition to carrying out ongoing research, we provide ourselves with the greatest opportunity to find treatments that are beneficial.
Collapse
Affiliation(s)
- Asim Kichloo
- Department of Internal Medicine, Samaritan Medical Center, Watertown, NY 13601, United States
| | - Michael Albosta
- Department of Internal Medicine, Central Michigan University, Saginaw, MI 48602, United States
| | - Akshay Kumar
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Michael Aljadah
- Deparment of Internal Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Mohamed Mohamed
- Department of Internal Medicine, Central Michigan University, Saginaw, MI 48602, United States
| | - Zain El-Amir
- Department of Internal Medicine, Central Michigan University, Saginaw, MI 48602, United States
| | - Farah Wani
- Department of Family Medicine, Samaritan Medical Center, Watertown, NY 13601, United States
| | - Shakeel Jamal
- Department of Internal Medicine, Central Michigan University, Saginaw, MI 48602, United States
| | - Jagmeet Singh
- Department of Transplant Nephrology, Geisinger Commonwealth School of Medicine, Sayre, PA 18510, United States
| | - Akif Kichloo
- Department of Anesthesiology and Critical Care, Saraswathi Institue of Medical Sciences, Uttar Pradesh 245304, India
| |
Collapse
|
14
|
Maysinger D, Zhang Q, Kakkar A. Dendrimers as Modulators of Brain Cells. Molecules 2020; 25:E4489. [PMID: 33007959 PMCID: PMC7582352 DOI: 10.3390/molecules25194489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
Nanostructured hyperbranched macromolecules have been extensively studied at the chemical, physical and morphological levels. The cellular structural and functional complexity of neural cells and their cross-talk have made it rather difficult to evaluate dendrimer effects in a mixed population of glial cells and neurons. Thus, we are at a relatively early stage of bench-to-bedside translation, and this is due mainly to the lack of data valuable for clinical investigations. It is only recently that techniques have become available that allow for analyses of biological processes inside the living cells, at the nanoscale, in real time. This review summarizes the essential properties of neural cells and dendrimers, and provides a cross-section of biological, pre-clinical and early clinical studies, where dendrimers were used as nanocarriers. It also highlights some examples of biological studies employing dendritic polyglycerol sulfates and their effects on glia and neurons. It is the aim of this review to encourage young scientists to advance mechanistic and technological approaches in dendrimer research so that these extremely versatile and attractive nanostructures gain even greater recognition in translational medicine.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
| | - Qiaochu Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada;
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
15
|
Mroweh M, Decaens T, Marche PN, Macek Jilkova Z, Clément F. Modulating the Crosstalk between the Tumor and Its Microenvironment Using RNA Interference: A Treatment Strategy for Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:E5250. [PMID: 32722054 PMCID: PMC7432232 DOI: 10.3390/ijms21155250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy with one of the highest mortality rates among solid cancers. It develops almost exclusively in the background of chronic liver inflammation, which can be caused by viral hepatitis, chronic alcohol consumption or an unhealthy diet. Chronic inflammation deregulates the innate and adaptive immune responses that contribute to the proliferation, survival and migration of tumor cells. The continuous communication between the tumor and its microenvironment components serves as the overriding force of the tumor against the body's defenses. The importance of this crosstalk between the tumor microenvironment and immune cells in the process of hepatocarcinogenesis has been shown, and therapeutic strategies modulating this communication have improved the outcomes of patients with liver cancer. To target this communication, an RNA interference (RNAi)-based approach can be used, an innovative and promising strategy that can disrupt the crosstalk at the transcriptomic level. Moreover, RNAi offers the advantage of specificity in comparison to the treatments currently used for HCC in clinics. In this review, we will provide the recent data pertaining to the modulation of a tumor and its microenvironment by using RNAi and its potential for therapeutic intervention in HCC.
Collapse
Affiliation(s)
- Mariam Mroweh
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (T.D.); (P.N.M.)
- Université Grenoble Alpes, 38000 Grenoble, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath Beirut 6573-14, Lebanon
| | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (T.D.); (P.N.M.)
- Université Grenoble Alpes, 38000 Grenoble, France
- Service d’hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Patrice N Marche
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (T.D.); (P.N.M.)
- Université Grenoble Alpes, 38000 Grenoble, France
| | - Zuzana Macek Jilkova
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (T.D.); (P.N.M.)
- Université Grenoble Alpes, 38000 Grenoble, France
- Service d’hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Flora Clément
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (T.D.); (P.N.M.)
- Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
16
|
Nanocarriers in effective pulmonary delivery of siRNA: current approaches and challenges. Ther Deliv 2020; 10:311-332. [PMID: 31116099 DOI: 10.4155/tde-2019-0012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Research on siRNA is increasing due to its wide applicability as a therapeutic agent in irreversible medical conditions. siRNA inhibits expression of the specific gene after its delivery from formulation to cytosol region of a cell. RNAi (RNA interference) is a mechanism by which siRNA is silencing gene expression for a particular disease. Numerous studies revealed that naked siRNA delivery is not preferred due to instability and poor pharmacokinetic performance. Nanocarriers based delivery of siRNA has the advantage to overcome physiological barriers and protect the integrity of siRNA from degradation by RNAase. Various diseases like lung cancer, cystic fibrosis, asthma, etc can be treated effectively by local lung delivery. The selective targeted therapeutic action in diseased organ and least off targeted cytotoxicity are the key benefits of pulmonary delivery. The current review highlights recent developments in pulmonary delivery of siRNA with novel nanosized formulation approach with the proven in vitro/in vivo applications.
Collapse
|
17
|
Dapas B, Pozzato G, Zorzet S, Capolla S, Macor P, Scaggiante B, Coan M, Guerra C, Gnan C, Gattei V, Zanconati F, Grassi G. Effects of eEF1A1 targeting by aptamer/siRNA in chronic lymphocytic leukaemia cells. Int J Pharm 2020; 574:118895. [PMID: 31862491 DOI: 10.1016/j.ijpharm.2019.118895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The effectiveness of therapies for chronic lymphocytic leukemia (CLL), the most common leukemia in Western countries adults, can be improved via a deeper understanding of its molecular abnormalities. Whereas the isoforms of the eukaryotic elongation factor 1A (eEF1A1 and eEF1A2) are implicated in different tumors, no information are available in CLL. METHODS eEF1A1/eEF1A2 amounts were quantitated in the lymphocytes of 46 CLL patients vs normal control (real time PCR, western blotting). eEF1A1 role in CLL was investigated in a cellular (MEC-1) and animal model of CLL via its targeting by an aptamer (GT75) or a siRNA (siA1) delivered by electroporation (in vitro) or lipofection (in vivo). RESULTS eEF1A1/eEF1A2 were elevated in CLL lymphocytes vs control. eEF1A1 but not eEF1A2 levels were higher in patients which died during the study compared to those surviving. eEF1A1 targeting (GT75/siA1) resulted in MEC-1 viability reduction/autophagy stimulation and in vivo tumor growth down-regulation. CONCLUSIONS The increase of eEF1A1 in dead vs surviving patients may confer to eEF1A1 the role of a prognostic marker for CLL and possibly of a therapeutic target, given its involvement in MEC-1 survival. Specific aptamer/siRNA released by optimized delivery systems may allow the development of novel therapeutic options.
Collapse
Affiliation(s)
- Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Sonia Zorzet
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Sara Capolla
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Michela Coan
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Chiara Guerra
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Chiara Gnan
- Institute for Maternal and Child Health - "IRCCS Burlo Garofolo", Via dell'Istria, 65, 34137 Trieste, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Via Franco Gallini, 2, 33081 Aviano, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy.
| |
Collapse
|
18
|
Weidle UH, Schmid D, Birzele F, Brinkmann U. MicroRNAs Involved in Metastasis of Hepatocellular Carcinoma: Target Candidates, Functionality and Efficacy in Animal Models and Prognostic Relevance. Cancer Genomics Proteomics 2020; 17:1-21. [PMID: 31882547 PMCID: PMC6937123 DOI: 10.21873/cgp.20163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is responsible for the second-leading cancer-related death toll worldwide. Although sorafenib and levantinib as frontline therapy and regorafenib, cabazantinib and ramicurimab have now been approved for second-line therapy, the therapeutic benefit is in the range of only a few months with respect to prolongation of survival. Aggressiveness of HCC is mediated by metastasis. Intrahepatic metastases and distant metastasis to the lungs, lymph nodes, bones, omentum, adrenal gland and brain have been observed. Therefore, the identification of metastasis-related new targets and treatment modalities is of paramount importance. In this review, we focus on metastasis-related microRNAs (miRs) as therapeutic targets for HCC. We describe miRs which mediate or repress HCC metastasis in mouse xenograft models. We discuss 18 metastasis-promoting miRs and 35 metastasis-inhibiting miRs according to the criteria as outlined. Six of the metastasis-promoting miRs (miR-29a, -219-5p, -331-3p, 425-5p, -487a and -1247-3p) are associated with unfavourable clinical prognosis. Another set of six down-regulated miRs (miR-101, -129-3p, -137, -149, -503, and -630) correlate with a worse clinical prognosis. We discuss the corresponding metastasis-related targets as well as their potential as therapeutic modalities for treatment of HCC-related metastasis. A subset of up-regulated miRs -29a, -219-5p and -425-5p and down-regulated miRs -129-3p and -630 were evaluated in orthotopic metastasis-related models which are suitable to mimic HCC-related metastasis. Those miRNAs may represent prioritized targets emerging from our survey.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Daniela Schmid
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
19
|
Strategies for Delivery of siRNAs to Ovarian Cancer Cells. Pharmaceutics 2019; 11:pharmaceutics11100547. [PMID: 31652539 PMCID: PMC6835428 DOI: 10.3390/pharmaceutics11100547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
The unmet need for novel therapeutic options for ovarian cancer (OC) deserves further investigation. Among the different novel drugs, small interfering RNAs (siRNAs) are particularly attractive because of their specificity of action and efficacy, as documented in many experimental setups. However, the fragility of these molecules in the biological environment necessitates the use of delivery materials able to protect them and possibly target them to the cancer cells. Among the different delivery materials, those based on polymers and lipids are considered very interesting because of their biocompatibility and ability to carry/deliver siRNAs. Despite these features, polymers and lipids need to be engineered to optimize their delivery properties for OC. In this review, we concentrated on the description of the therapeutic potential of siRNAs and polymer-/lipid-based delivery systems for OC. After a brief description of OC and siRNA features, we summarized the strategies employed to minimize siRNA delivery problems, the targeting strategies to OC, and the preclinical models available. Finally, we discussed the most interesting works published in the last three years about polymer-/lipid-based materials for siRNA delivery.
Collapse
|
20
|
Wang QM, Lian GY, Song Y, Peng ZD, Xu SH, Gong Y. Downregulation of miR-152 contributes to DNMT1-mediated silencing of SOCS3/SHP-1 in non-Hodgkin lymphoma. Cancer Gene Ther 2018; 26:195-207. [PMID: 30470842 DOI: 10.1038/s41417-018-0057-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/30/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
Understanding the molecular mechanisms for the development of non-Hodgkin lymphoma (NHL) will improve our ability to cure the patients. qRT-PCR was applied for the examination of the efficiency of shRNA for DNMT1, the expression of suppressor genes, miRNA-152. The MTT analysis, cell cycle analysis, clonal formation, and apoptotic analysis were used to examine the functions of DNMT1 and miR-152 in lymphoma cells. Methylation-specific polymerase chain reaction (MSP) was used to examine the methylation of tumor suppressor genes. The dual luciferase assay and western blot were used to validate if DNMT1 is the target of miR-152. For the in vivo experiments, the lymphoma cells were injected into the nude mice for quantification of the tumor growth after transfection of miR-152 mimics. Knockdown of DNMT1 by shRNA (sh-DNMT1) in OCI-Ly10 and Granta-159 cells significantly upregulated the expression of tumor suppressor genes (SOCS3, BCL2L10, p16, p14, and SHP-1) via decreasing their methylation level. At the cellular level, we found sh-DNMT1 inhibited the proliferation, clonal formation and cell cycle progression and induced the cell apoptosis of lymphoma cells. Furthermore, we found miR-152 can downregulates the expression of DNMT1 via directly targeting the gene. Overexpression of miR-152 also increased the expression of tumor suppressor genes SOCS3 and SHP-1. And miR-152 also can inhibit the cell proliferation and induce the cell apoptosis. Moreover, we found overexpression of miR-152 significantly repressed the tumor growth with decreased DNMT1 expression and increased expression of tumor suppressor genes in vivo. Our study demonstrates that miR-152 can inhibit lymphoma growth via suppressing DNMT1-mediated silencing of SOCS3 and SHP-1. These data demonstrate a new mechanism for the development of NHL and this may provide a new therapeutic target for NHL.
Collapse
Affiliation(s)
- Qing-Ming Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Guang-Yu Lian
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Song
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhi-Da Peng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Sheng-Hua Xu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yi Gong
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
21
|
Hajiasgharzadeh K, Somi MH, Shanehbandi D, Mokhtarzadeh A, Baradaran B. Small interfering RNA-mediated gene suppression as a therapeutic intervention in hepatocellular carcinoma. J Cell Physiol 2018; 234:3263-3276. [PMID: 30362510 DOI: 10.1002/jcp.27015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the lethal and difficult-to-cure cancers worldwide. Owing to the late diagnosis and drug resistance of malignant hepatocytes, treatment of this cancer by conventional chemotherapy agents is challenging, and researchers are seeking new alternative treatment options to overcome therapy resistance in this neoplasm. RNA interference (RNAi) is a potent and specific approach in targeting gene expression and has emerged as a novel therapeutic tool for many diseases, including cancers. Small interfering RNA (siRNA) is a type of RNAi that is produced intracellularly from exogenous synthetic oligonucleotides and can selectively knock down target gene expression in a sequence-specific manner. Various factors play roles in the initiation and progression of HCC and provide multiple candidate targets for siRNA intervention. In addition, due to the liver's unique architecture and availability of some hepatic siRNA delivery methods, this organ has received much more attention as a target tissue for such oligonucleotide action. Recent advances in designing nanoparticle systems for the in vivo delivery of siRNAs have markedly enhanced the potency of siRNA-mediated gene silencing under clinical development for HCC therapy. The utility of siRNAs as anti-HCC agents is the subject of the current review. siRNA-based gene therapies could be one of the main feasible approaches for HCC therapy in the future.
Collapse
Affiliation(s)
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Farra R, Musiani F, Perrone F, Čemažar M, Kamenšek U, Tonon F, Abrami M, Ručigaj A, Grassi M, Pozzato G, Bonazza D, Zanconati F, Forte G, El Boustani M, Scarabel L, Garziera M, Russo Spena C, De Stefano L, Salis B, Toffoli G, Rizzolio F, Grassi G, Dapas B. Polymer-Mediated Delivery of siRNAs to Hepatocellular Carcinoma: Variables Affecting Specificity and Effectiveness. Molecules 2018; 23:E777. [PMID: 29597300 PMCID: PMC6017305 DOI: 10.3390/molecules23040777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023] Open
Abstract
Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules with tumor specific effects and delivery carriers with tumor targeting ability. In this regard, nucleic acid-based drug (NABD) and particularly small interfering RNAs (siRNAs), are attractive molecules due to the possibility to be engineered to target specific tumor genes. On the other hand, polymeric-based delivery systems are emerging as versatile carriers to generate tumor-targeted delivery systems. Here we will focus on the most recent findings in the selection of siRNA/polymeric targeted delivery systems for hepatocellular carcinoma (HCC), a human tumor for which currently available therapeutic approaches are poorly effective. In addition, we will discuss the most attracting and, in our opinion, promising siRNA-polymer combinations for HCC in relation to the biological features of HCC tissue. Attention will be also put on the mathematical description of the mechanisms ruling siRNA-carrier delivery, this being an important aspect to improve effectiveness reducing the experimental work.
Collapse
Affiliation(s)
- Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy.
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, I-40127 Bologna, Italy.
| | - Francesca Perrone
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology, Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology, Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Federica Tonon
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy.
| | - Aleš Ručigaj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy.
| | - Gabriele Pozzato
- Department of "Scienze Mediche, Chirurgiche e della Salute", University of Trieste, Cattinara Hospital, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Deborah Bonazza
- Department of "Scienze Mediche, Chirurgiche e della Salute", University of Trieste, Cattinara Hospital, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Fabrizio Zanconati
- Department of "Scienze Mediche, Chirurgiche e della Salute", University of Trieste, Cattinara Hospital, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Giancarlo Forte
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Studenstka 6, 656 91 Brno, Czech Republic.
| | - Maguie El Boustani
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
- Doctoral School in Molecular Biomedicine, University of Trieste, 34100 Trieste, Italy.
| | - Lucia Scarabel
- C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
| | - Marica Garziera
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
| | - Concetta Russo Spena
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
- Doctoral School in Chemistry, University of Trieste, 34100 Trieste, Italy.
| | - Lucia De Stefano
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
- Doctoral School in Chemistry, University of Trieste, 34100 Trieste, Italy.
| | - Barbara Salis
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
- Doctoral School in Molecular Biomedicine, University of Trieste, 34100 Trieste, Italy.
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
| | - Flavio Rizzolio
- Experimental and Clinical Pharmacology Unit, C.R.O.-National Cancer Institute, via Franco Gallini 2, I-33081 Aviano (PN), Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University, via Torino 155, I-30172 Mestre (Venezia), Italy.
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| |
Collapse
|
23
|
Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot. Adv Colloid Interface Sci 2017; 249:163-180. [PMID: 28527520 DOI: 10.1016/j.cis.2017.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
Over the past ten years, the global biopharmaceutical market has remarkably grown, with ten over the top twenty worldwide high performance medical treatment sales being biologics. Thus, biotech R&D (research and development) sector is becoming a key leading branch, with expanding revenues. Biotechnology offers considerable advantages compared to traditional therapeutic approaches, such as reducing side effects, specific treatments, higher patient compliance and therefore more effective treatments leading to lower healthcare costs. Within this sector, smart nanotechnology and colloidal self-assembling systems represent pivotal tools able to modulate the delivery of therapeutics. A comprehensive understanding of the processes involved in the self-assembly of the colloidal structures discussed therein is essential for the development of relevant biomedical applications. In this review we report the most promising and best performing platforms for specific classes of bioactive molecules and related target, spanning from siRNAs, gene/plasmids, proteins/growth factors, small synthetic therapeutics and bioimaging probes.
Collapse
|
24
|
Halib N, Perrone F, Cemazar M, Dapas B, Farra R, Abrami M, Chiarappa G, Forte G, Zanconati F, Pozzato G, Murena L, Fiotti N, Lapasin R, Cansolino L, Grassi G, Grassi M. Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E977. [PMID: 28825682 PMCID: PMC5578343 DOI: 10.3390/ma10080977] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023]
Abstract
Because of its high biocompatibility, bio-degradability, low-cost and easy availability, cellulose finds application in disparate areas of research. Here we focus our attention on the most recent and attractive potential applications of cellulose in the biomedical field. We first describe the chemical/structural composition of cellulose fibers, the cellulose sources/features and cellulose chemical modifications employed to improve its properties. We then move to the description of cellulose potential applications in biomedicine. In this field, cellulose is most considered in recent research in the form of nano-sized particle, i.e., nanofiber cellulose (NFC) or cellulose nanocrystal (CNC). NFC is obtained from cellulose via chemical and mechanical methods. CNC can be obtained from macroscopic or microscopic forms of cellulose following strong acid hydrolysis. NFC and CNC are used for several reasons including the mechanical properties, the extended surface area and the low toxicity. Here we present some potential applications of nano-sized cellulose in the fields of wound healing, bone-cartilage regeneration, dental application and different human diseases including cancer. To witness the close proximity of nano-sized cellulose to the practical biomedical use, examples of recent clinical trials are also reported. Altogether, the described examples strongly support the enormous application potential of nano-sized cellulose in the biomedical field.
Collapse
Affiliation(s)
- Nadia Halib
- Department of Basic Sciences & Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Level 15, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Kuala Lumpur 55100, Malaysia;.
| | - Francesca Perrone
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| | - Gianluca Chiarappa
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| | - Giancarlo Forte
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| | - Fabrizio Zanconati
- Surgery and Health Sciences, Department of Medical, Cattinara Hospital, University of Trieste, I-34127 Trieste, Italy.
| | - Gabriele Pozzato
- Surgery and Health Sciences, Department of Medical, Cattinara Hospital, University of Trieste, I-34127 Trieste, Italy.
| | - Luigi Murena
- Surgery and Health Sciences, Department of Medical, Cattinara Hospital, University of Trieste, I-34127 Trieste, Italy.
| | - Nicola Fiotti
- Surgery and Health Sciences, Department of Medical, Cattinara Hospital, University of Trieste, I-34127 Trieste, Italy.
| | - Romano Lapasin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| | - Laura Cansolino
- Department of Clinico-Surgical Sciences, Experimental Surgery Laboratory, University of Pavia and IRCCS S, Matteo Hospital Pavia, 27100 Pavia, Italy.
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy.
| |
Collapse
|
25
|
Cavallaro G, Farra R, Craparo EF, Sardo C, Porsio B, Giammona G, Perrone F, Grassi M, Pozzato G, Grassi G, Dapas B. Galactosylated polyaspartamide copolymers for siRNA targeted delivery to hepatocellular carcinoma cells. Int J Pharm 2017; 525:397-406. [PMID: 28119125 DOI: 10.1016/j.ijpharm.2017.01.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023]
|
26
|
Cavallaro G, Sardo C, Craparo EF, Porsio B, Giammona G. Polymeric nanoparticles for siRNA delivery: Production and applications. Int J Pharm 2017; 525:313-333. [DOI: 10.1016/j.ijpharm.2017.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
|
27
|
Scarabel L, Perrone F, Garziera M, Farra R, Grassi M, Musiani F, Russo Spena C, Salis B, De Stefano L, Toffoli G, Rizzolio F, Tonon F, Abrami M, Chiarappa G, Pozzato G, Forte G, Grassi G, Dapas B. Strategies to optimize siRNA delivery to hepatocellular carcinoma cells. Expert Opin Drug Deliv 2017; 14:797-810. [PMID: 28266887 DOI: 10.1080/17425247.2017.1292247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lucia Scarabel
- Experimental and Clinical Pharmacology Unit, C.R.O. National Cancer Institute, Aviano, Italy
| | - Francesca Perrone
- Department of Life Sciences, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Marica Garziera
- Experimental and Clinical Pharmacology Unit, C.R.O. National Cancer Institute, Aviano, Italy
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Concetta Russo Spena
- Experimental and Clinical Pharmacology Unit, C.R.O. National Cancer Institute, Aviano, Italy
| | - Barbara Salis
- Experimental and Clinical Pharmacology Unit, C.R.O. National Cancer Institute, Aviano, Italy
| | - Lucia De Stefano
- Experimental and Clinical Pharmacology Unit, C.R.O. National Cancer Institute, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, C.R.O. National Cancer Institute, Aviano, Italy
| | - Flavio Rizzolio
- Experimental and Clinical Pharmacology Unit, C.R.O. National Cancer Institute, Aviano, Italy
| | - Federica Tonon
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Michela Abrami
- Department of Life Sciences, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Gianluca Chiarappa
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Gabriele Pozzato
- Department of ‘Scienze Mediche, Chirurgiche e della Salute’, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Giancarlo Forte
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, University of Trieste, Trieste, Italy
- Department of ‘Scienze Mediche, Chirurgiche e della Salute’, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, University of Trieste, Trieste, Italy
| |
Collapse
|
28
|
Engineering approaches in siRNA delivery. Int J Pharm 2017; 525:343-358. [PMID: 28213276 DOI: 10.1016/j.ijpharm.2017.02.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 12/18/2022]
Abstract
siRNAs are very potent drug molecules, able to silence genes involved in pathologies development. siRNAs have virtually an unlimited therapeutic potential, particularly for the treatment of inflammatory diseases. However, their use in clinical practice is limited because of their unfavorable properties to interact and not to degrade in physiological environments. In particular they are large macromolecules, negatively charged, which undergo rapid degradation by plasmatic enzymes, are subject to fast renal clearance/hepatic sequestration, and can hardly cross cellular membranes. These aspects seriously impair siRNAs as therapeutics. As in all the other fields of science, siRNAs management can be advantaged by physical-mathematical descriptions (modeling) in order to clarify the involved phenomena from the preparative step of dosage systems to the description of drug-body interactions, which allows improving the design of delivery systems/processes/therapies. This review analyzes a few mathematical modeling approaches currently adopted to describe the siRNAs delivery, the main procedures in siRNAs vectors' production processes and siRNAs vectors' release from hydrogels, and the modeling of pharmacokinetics of siRNAs vectors. Furthermore, the use of physical models to study the siRNAs vectors' fate in blood stream and in the tissues is presented. The general view depicts a framework maybe not yet usable in therapeutics, but with promising possibilities for forthcoming applications.
Collapse
|
29
|
Advances of blood cell-based drug delivery systems. Eur J Pharm Sci 2016; 96:115-128. [PMID: 27496050 DOI: 10.1016/j.ejps.2016.07.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 11/22/2022]
Abstract
Blood cells, including erythrocytes, leukocytes and platelets are used as drug carriers in a wide range of applications. They have many unique advantages such as long life-span in circulation (especially erythrocytes), target release capacities (especially platelets), and natural adhesive properties (leukocytes and platelets). These properties make blood cell based delivery systems, as well as their membrane-derived carriers, far superior to other drug delivery systems. Despite the advantages, the further development of blood cell-based delivery systems was hindered by limitations in the source, storage, and mass production. To overcome these problems, synthetic biomaterials that mimic blood cell and nanocrystallization of blood cells have been developed and may represent the future direction for blood cell membrane-based delivery systems. In this paper, we review recent progress of the rising blood cell-based drug delivery systems, and also discuss their challenges and future tendency of development.
Collapse
|
30
|
Scaggiante B, Farra R, Dapas B, Baj G, Pozzato G, Grassi M, Zanconati F, Grassi G. Aptamer targeting of the elongation factor 1A impairs hepatocarcinoma cells viability and potentiates bortezomib and idarubicin effects. Int J Pharm 2016; 506:268-79. [PMID: 27094354 DOI: 10.1016/j.ijpharm.2016.04.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/23/2016] [Accepted: 04/13/2016] [Indexed: 02/05/2023]
Abstract
The high morbidity and mortality of hepatocellular carcinoma (HCC) is mostly due to the limited efficacy of the available therapeutic approaches. Here we explore the anti-HCC potential of an aptamer targeting the elongation factor 1A (eEF1A), a protein implicated in the promotion of HCC. As delivery methods, we have compared the effectiveness of cationic liposome and cholesterol-mediated approaches. A75 nucleotide long aptamer containing GT repetition (GT75) was tested in three HCC cell lines, HepG2, HuH7 and JHH6. When delivered by liposomes, GT75 was able to effectively reducing HCC cells viability in a dose and time dependent fashion. Particular sensitive were JHH6 where increased apoptosis with no effects on cell cycle were observed. GT75 effect was likely due to the interference with eEF1A activity as neither the mRNA nor the protein levels were significantly affected. Notably, cholesterol-mediated delivery of GT75 abrogated its efficacy due to cellular mis-localization as proven by fluorescence and confocal microscopic analysis. Finally, liposome-mediated delivery of GT75 improved the therapeutic index of the anticancer drugs bortezomib and idarubicin. In conclusion, liposome but not cholesterol-mediated delivery of GT75 resulted in an effective delivery of GT75, causing the impairment of the vitality of a panel of HCC derived cells.
Collapse
Affiliation(s)
| | - Rosella Farra
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Italy
| | - Gabriele Baj
- Department of Life Sciences, University of Trieste, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | - Mario Grassi
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | | |
Collapse
|
31
|
Bosutti A, Zanconati F, Grassi G, Dapas B, Passamonti S, Scaggiante B. Epigenetic and miRNAs Dysregulation in Prostate Cancer: The role of Nutraceuticals. Anticancer Agents Med Chem 2016; 16:1385-1402. [PMID: 27109021 PMCID: PMC5068501 DOI: 10.2174/1871520616666160425105257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 03/29/2016] [Accepted: 04/22/2016] [Indexed: 02/08/2023]
Abstract
The control of cancer onset and progression is recognized to benefit from specific molecular targeting. MiRNAs are increasingly being implicated in prostate cancer, and the evidence suggests they are possible targets for molecular therapy and diagnosis. In cancer cells, growing attention has been dedicated to novel molecular mechanisms linking the epigenetic scenario to miRNA dysregulation. Currently, the rising evidence shows that nutritional and natural agents, the so-called nutraceuticals, could modulate miRNAs expression, and, as a consequence, might influence cellular responses in health or diseases conditions, including cancer. Among dietary components, plant-derived polyphenols are receiving wide interest, either for their anti-aging and anti-oxidant properties, or for their more general "cell-protective" effects. Above all, their role in preventing the occurrence/recurrence of cancer and, in particular, their potentiality in nutritional intervention for modulating the functions of miRNAs and the epigenetic mechanisms, is still under active debate. This review is focused on the more recent highlights of the impact of miRNAs dysregulation on the onset and progression of prostate cancer, their interplay with epigenetic control and their modulation by natural agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruna Scaggiante
- Address correspondence to this author at the Dept. of Life Sciences, Via Giorgeri, 1, University of Trieste, 34127 Trieste, Italy; Tel: ++39 040 558 3686; Fax: ++39 040 558 3691; E-mail:
| |
Collapse
|
32
|
Farra R, Grassi M, Grassi G, Dapas B. Therapeutic potential of small interfering RNAs/micro interfering RNA in hepatocellular carcinoma. World J Gastroenterol 2015; 21:8994-9001. [PMID: 26290628 PMCID: PMC4533033 DOI: 10.3748/wjg.v21.i30.8994] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/28/2015] [Accepted: 07/03/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and represents the third leading cause of cancer-related death worldwide. Current available therapeutic approaches are poorly effective, especially for the advanced forms of the disease. In the last year, short double stranded RNA molecules termed small interfering RNAs (siRNAs) and micro interfering RNAs (miRNA), emerged as interesting molecules with potential therapeutic value for HCC. The practical use of these molecules is however limited by the identification of optimal molecular targets and especially by the lack of effective and targeted HCC delivery systems. Here we focus our discussion on the most recent advances in the identification of siRNAs/miRNAs molecular targets and on the development of suitable siRNA/miRNAs delivery systems.
Collapse
|
33
|
Martínez-Romero C, García-Sastre A. Against the clock towards new Ebola virus therapies. Virus Res 2015; 209:4-10. [PMID: 26057711 DOI: 10.1016/j.virusres.2015.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/23/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
Abstract
Since the end of 2013, West Africa has been suffering the largest Ebola virus (EBOV) outbreak in recorded history. The lack of health care infrastructure in the affected countries, as well as a concentration of infected cases in the most populated areas allowed the virus to spread with no control during the first months of the outbreak. With no specific treatment available to combat EBOV infection and its associated disease, an extraordinary worldwide effort was made to confront the severity of the situation and to establish new therapeutic strategies that would lead to better and faster control and eradicate the outbreak. In the last two years, several candidate therapies and potential vaccines against EBOV have arisen and human clinical trials are ongoing, in hopes of starting their deployment in the affected countries. This article reviews the current candidate therapies against EBOV, their stage of development and future prospects in battling EBOV outbreaks.
Collapse
Affiliation(s)
- Carles Martínez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
34
|
Abstract
Among the several delivery materials available so far, polysaccharides represent very attractive molecules as they can undergo a wide range of chemical modifications, are biocompatible, biodegradable, and have low immunogenic properties. Thus, polysaccharides can contribute to significantly overcome the limitation in the use of many types of drugs, including anti-cancer drugs. The use of conventional anti-cancer drugs is hampered by their high toxicity, mostly depending on the indiscriminate targeting of both cancer and normal cells. Additionally, for nucleic acid based drugs (NABDs), an emerging class of drugs with potential anti-cancer value, the practical use is problematic. This mostly depends on their fast degradation in biological fluids and the difficulties to cross cell membranes. Thus, for both classes of drugs, the development of optimal delivery materials is crucial. Here we discuss the possibility of using different kinds of polysaccharides, such as chitosan, hyaluronic acid, dextran, and pullulan, as smart drug delivery materials. We first describe the main features of polysaccharides, then a general overview about the aspects ruling drug release mechanisms and the pharmacokinetic are reported. Finally, notable examples of polysaccharide-based delivery of conventional anti-cancer drugs and NABDs are reported. Whereas additional research is required, the promising results obtained so far, fully justify further efforts, both in terms of economic support and investigations in the field of polysaccharides as drug delivery materials.
Collapse
|
35
|
Sardo C, Farra R, Licciardi M, Dapas B, Scialabba C, Giammona G, Grassi M, Grassi G, Cavallaro G. Development of a simple, biocompatible and cost-effective Inulin-Diethylenetriamine based siRNA delivery system. Eur J Pharm Sci 2015; 75:60-71. [PMID: 25845631 DOI: 10.1016/j.ejps.2015.03.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/28/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023]
Abstract
Small interfering RNAs (siRNAs) have the potential to be of therapeutic value for many human diseases. So far, however, a serious obstacle to their therapeutic use is represented by the absence of appropriate delivery systems able to protect them from degradation and to allow an efficient cellular uptake. In this work we developed a siRNA delivery system based on inulin (Inu), an abundant and natural polysaccharide. Inu was functionalized via the conjugation with diethylenetriamine (DETA) residues to form the complex Inu-DETA. We studied the size, surface charge and the shape of the Inu-DETA/siRNA complexes; additionally, the cytotoxicity, the silencing efficacy and the cell uptake-mechanisms were studied in the human bronchial epithelial cells (16HBE) and in the hepatocellular carcinoma derived cells (JHH6). The results presented here indicate that Inu-DETA copolymers can effectively bind siRNAs, are highly cytocompatible and, in JHH6, can effectively deliver functional siRNAs. Optimal delivery is observed using a weight ratio Inu-DETA/siRNA of 4 that corresponds to polyplexes with an average size of 600nm and a slightly negative surface charge. Moreover, the uptake and trafficking mechanisms, mainly based on micropinocytosis and clatrin mediated endocytosis, allow the homogeneous diffusion of siRNA within the cytoplasm of JHH6. Notably, in 16 HBE where the trafficking mechanism (caveolae mediated endocytosis) does not allow an even distribution of siRNA within the cell cytoplasm, no significant siRNA activity is observed. In conclusion, we developed a novel inulin-based siRNA delivery system able to efficiently release siRNA in JHH6 with negligible cytotoxicity thus opening the way for further testing in more complex in vivo models.
Collapse
Affiliation(s)
- C Sardo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - R Farra
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy
| | - M Licciardi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - B Dapas
- Department of Life Sciences, University Hospital of Cattinara, Strada di Fiume 447, 34100 Trieste, Italy
| | - C Scialabba
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - G Giammona
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - M Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/A, I-34127 Trieste, Italy
| | - G Grassi
- Department of Life Sciences, University Hospital of Cattinara, Strada di Fiume 447, 34100 Trieste, Italy.
| | - G Cavallaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
36
|
Dapas B, Grassi M, Grassi G. Can TIE-2 expressing monocytes represent a novel marker for hepatocellular carcinoma? Hepatobiliary Surg Nutr 2014; 3:175-8. [PMID: 25202693 DOI: 10.3978/j.issn.2304-3881.2014.07.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 12/29/2022]
Abstract
Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, is a global health problem representing the sixth most common cancer and the third cause of cancer related death worldwide. The number of deaths per year in HCC is comparable to the incidence number, underlying the aggressive behavior of HCC and the modest efficacy of available curative treatments. Effective HCC treatment is problematic also due to the lack of early and specific diagnostic markers. In this regard, particular interest has been put on the tyrosine kinase with Ig and endothelial growth factor (EGF) homology domains 2 (TIE2), a receptor of angiopoietins, predominantly present on endothelial cells but also observed on monocytes [TIE-2-expressing monocytes (TEMs)]. Recently, a work by Matsubara et al. showed that the amount of circulating TEMs is higher in hepatitis virus C (HCV)/HCC patients compared to HCV patients or healthy subjects. Additionally the authors showed that TEMs have a diagnostic potential for HCC. Whereas the molecular mechanisms responsible for this observation remain elusive and further studies are necessary to confirm this finding, the work of Matsubara et al. may contribute to the identification of a novel HCC prognostic and diagnostic marker.
Collapse
Affiliation(s)
- Barbara Dapas
- 1 Department of Life Sciences, 2 Department of Engineering and Architecture, University of Trieste, Trieste, Italy ; 3 Department of ''Scienze Mediche, Chirurgiche e della Salute'', University of Trieste, Cattinara Hospital, Italy
| | - Mario Grassi
- 1 Department of Life Sciences, 2 Department of Engineering and Architecture, University of Trieste, Trieste, Italy ; 3 Department of ''Scienze Mediche, Chirurgiche e della Salute'', University of Trieste, Cattinara Hospital, Italy
| | - Gabriele Grassi
- 1 Department of Life Sciences, 2 Department of Engineering and Architecture, University of Trieste, Trieste, Italy ; 3 Department of ''Scienze Mediche, Chirurgiche e della Salute'', University of Trieste, Cattinara Hospital, Italy
| |
Collapse
|
37
|
Cavallaro G, Licciardi M, Amato G, Sardo C, Giammona G, Farra R, Dapas B, Grassi M, Grassi G. Synthesis and characterization of polyaspartamide copolymers obtained by ATRP for nucleic acid delivery. Int J Pharm 2014; 466:246-57. [PMID: 24631053 DOI: 10.1016/j.ijpharm.2014.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 01/23/2023]
|
38
|
Development of pre-clinical models for evaluating the therapeutic potential of candidate siRNA targeting STAT6. PLoS One 2014; 9:e90338. [PMID: 24587331 PMCID: PMC3937390 DOI: 10.1371/journal.pone.0090338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/31/2014] [Indexed: 01/01/2023] Open
Abstract
Developing siRNA therapeutics poses technical challenges including appropriate molecular design and testing in suitable pre-clinical models. We previously detailed sequence-selection and modification strategies for siRNA candidates targeting STAT6. Here, we describe methodology that evaluates the suitability of candidate siRNA for respiratory administration. Chemically-modified siRNA exhibited similar inhibitory activity (IC50) against STAT6 in vitro compared to unmodified siRNA and apical exposure testing with Caco-2 cell monolayers showed modification was not associated with cellular toxicity. Use of a modified RNA extraction protocol improved the sensitivity of a PCR-based bio-analytical assay (lower limit of siRNA strand quantification = 0.01 pg/µl) which was used to demonstrate that lung distribution profiles for both siRNAs were similar following intra-tracheal administration. However, after 6 hours, modified siRNA was detected in lung tissue at concentrations >1000-fold higher than unmodified siRNA. Evaluation in a rat model of allergic inflammation confirmed the persistence of modified siRNA in vivo, which was detectable in broncho-alveolar lavage (BAL) fluid, BAL cells and lung tissue samples, 72 hours after dosing. Based upon the concept of respiratory allergy as a single airway disease, we considered nasal delivery as a route for respiratory targeting, evaluating an intra-nasal exposure model that involved simple dosing followed by fine dissection of the nasal cavity. Notably, endogenous STAT6 expression was invariant throughout the nasal cavities and modified siRNA persisted for at least 3 days after administration. Coupled with our previous findings showing upregulated expression of inflammatory markers in nasal samples from asthmatics, these findings support the potential of intranasal siRNA delivery. In summary, we demonstrate the successful chemical modification of STAT6 targeting siRNA, which enhanced bio-availability without cellular toxicity or reduced efficacy. We have established a robust, sensitive method for determining siRNA bio-distribution in vivo, and developed a nasal model to aid evaluation. Further work is warranted.
Collapse
|
39
|
Scaggiante B, Kazemi M, Pozzato G, Dapas B, Farra R, Grassi M, Zanconati F, Grassi G. Novel hepatocellular carcinoma molecules with prognostic and therapeutic potentials. World J Gastroenterol 2014; 20:1268-1288. [PMID: 24574801 PMCID: PMC3921509 DOI: 10.3748/wjg.v20.i5.1268] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/10/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, is the sixth most common cancer worldwide and the third leading cause of cancer-related death. The difficulty to diagnose early cancer stages, the aggressive behaviors of HCC, and the poor effectiveness of therapeutic treatments, represent the reasons for the quite similar deaths per year and incidence number. Considering the fact that the diagnosis of HCC typically occurs in the advanced stages of the disease when the therapeutic options have only modest efficacy, the possibility to identify early diagnostic markers could be of significant benefit. So far, a large number of biomarkers have been associated to HCC progression and aggressiveness, but many of them turned out not to be of practical utility. This is the reason why active investigations are ongoing in this field. Given the huge amount of published works aimed at the identification of HCC biomarkers, in this review we mainly focused on the data published in the last year, with particular attention to the role of (1) molecular and biochemical cellular markers; (2) micro-interfering RNAs; (3) epigenetic variations; and (4) tumor stroma. It is worth mentioning that a significant number of the HCC markers described in the present review may be utilized also as targets for novel therapeutic approaches, indicating the tight relation between diagnosis and therapy. In conclusion, we believe that integrated researches among the different lines of investigation indicated above should represent the winning strategies to identify effective HCC markers and therapeutic targets.
Collapse
|
40
|
Grassi M, Scaggiante B, Dapas B, Farra R, Tonon F, Fiorentino SM, Abrami M, Grassi G. Therapeutic potential and delivery strategies for nucleic acid-based drugs. NUCLEIC ACID-BASED DRUGS 2013:72-88. [DOI: 10.4155/ebo.13.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Mario Grassi
- Mario Grassi is Associate Professor in Chemical Engineering (Trieste University, Italy). He is the author of more than 190 papers, abstracts book chapters and books including Understanding Drug Release and Absorption Mechanisms: a Physical and Mathematical Approach
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kuang Y, An S, Guo Y, Huang S, Shao K, Liu Y, Li J, Ma H, Jiang C. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. Int J Pharm 2013; 454:11-20. [PMID: 23867728 DOI: 10.1016/j.ijpharm.2013.07.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/24/2013] [Accepted: 07/09/2013] [Indexed: 01/10/2023]
Abstract
Among all the malignant brain tumors, glioma is the deadliest and most common form with poor prognosis. Gene therapy is regarded as a promising way to halt the progress of the disease or even cure the tumor and RNA interference (RNAi) stands out. However, the existence of the blood-brain barrier (BBB) and blood tumor barrier (BTB) limits the delivery of these therapeutic genes. In this work, the delivery system targeting to the transferrin (Tf) receptor highly expressed on both BBB and glioma was successfully synthesized and would not compete with endogenous Tf. U87 cells stably express luciferase were employed here to simulate tumor and the RNAi experiments in vitro and in vivo validated that the gene silencing activity was 2.17-fold higher with the targeting ligand modification. The dual-targeting gene delivery system exhibits a series of advantages, such as high efficiency, low toxicity, stability and high transaction efficiency, which may provide new opportunities in RNAi therapeutics and nanomedicine of brain tumors.
Collapse
Affiliation(s)
- Yuyang Kuang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim WH, Jung DW, Kim J, Im SH, Hwang SY, Williams DR. Small molecules that recapitulate the early steps of urodele amphibian limb regeneration and confer multipotency. ACS Chem Biol 2012; 7:732-43. [PMID: 22270490 DOI: 10.1021/cb200532v] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In urodele amphibians, an early step in limb regeneration is skeletal muscle fiber dedifferentiation into a cellulate that proliferates to contribute new limb tissue. However, mammalian muscle cannot dedifferentiate after injury. We have developed a novel, small-molecule-based method to induce dedifferentiation in mammalian skeletal muscle. Muscle cellularization was induced by the small molecule myoseverin. Candidate small molecules were tested for the induction of proliferation in the cellulate. We observed that treatment with the small molecules BIO (glycogen synthase-3 kinase inhibitor), lysophosphatidic acid (pleiotropic activator of G-protein-coupled receptors), SB203580 (p38 MAP kinase inhibitor), or SQ22536 (adenylyl cyclase inhibitor) induced proliferation. Moreover, these proliferating cells were multipotent, as confirmed by the chemical induction of mesodermal-derived cell lineages. Microarray analysis showed that the multipotent, BIO-treated cellulate possessed a markedly different gene expression pattern than lineage-restricted C2C12 myoblasts, especially for genes related to signal transduction and differentiation. Sequential small molecule treatment of the muscle cellulate with BIO, SB203580, or SQ22536 and the aurora B kinase inhibitor, reversine, induced the formation of cells with neurogenic potential (ectodermal lineage), indicating the acquirement of pluripotency. This is the first demonstration of a small molecule method that induces mammalian muscle to undergo dedifferentiation and rededifferentiation into alternate cell lineages. This method induces dedifferentiation in a simple, stepwise approach and has therapeutic potential to enhance tissue regeneration in mammals.
Collapse
Affiliation(s)
| | | | | | | | - Seung Yong Hwang
- Department of Biochemistry, Hanyang University and GenoCheck Co., Ltd., Sa-Dong, Sangrok-Gu, Ansan, Gyeonggi-Do, 426-791,
Republic of Korea
| | | |
Collapse
|
43
|
Zheng X, Ji P, Hu J. Sonoporation using microbubbles promotes lipofectamine-mediated siRNA transduction to rat retina. Bosn J Basic Med Sci 2012; 11:147-52. [PMID: 21875415 DOI: 10.17305/bjbms.2011.2565] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ultrasound-targeted microbubble destruction(UTMD) has been utilized to deliver naked siRNA into cells in in vitro settings. But whether UTMD can safely deliver naked siRNA into in vivo cells have remained unknown. This work was performed to investigate the feasibility of UTMD-enhanced naked siRNA transduction (or combined with Lipofectamine 2000) in vivo retinal cells and compare the performance between UTMD and ultrasonic irradiation alone in this enhancing effect. A dose of Cy3-labeled siRNA was injected into the vitreous cavity of rat eyes under the different conditions of Lipofectamine 2000 or/and UTMD. Transduction efficiency was assessed by fluorescence microscopy and flow cytometry. Cell and tissue damage was assessed by trypan blue exclusion test and hematoxylineosin staining, respectively. The quantity and the density of transducted cells in the group received Lipofectamine 2000 and UTMD was far more than that in other groups. The number of transducted cells in the group received Lipofectamine 2000 and ultrasonic irradiation alone was slightly more than that in the group received Lipofectamine 2000. Cy3-siRNA-positive cells can also seen in the group received UTMD alone, although the transduction efficiency is extremely low. Cell viability in each group was more than 90%, and retinal architecture in each group was well preserved. These results indicated that UTMD, with a significantly higher performance than ultrasonic irradiation alone, can effectively enhance the Lipofectamine 2000-mediated naked siRNA transduction in vivo reinal cells without any cell or tissue damage. This method can serve as a novel approach to treat the diseases of eye ground.
Collapse
Affiliation(s)
- Xiaozhi Zheng
- Department of Ultrasound, The Fourth Affiliated Hospital of Nantong University (The First People's Hospital of Yancheng), Jiangsu Province, China
| | | | | |
Collapse
|
44
|
Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm Res 2011; 28:2996-3015. [PMID: 22033880 DOI: 10.1007/s11095-011-0608-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/12/2011] [Indexed: 12/13/2022]
Abstract
RNA interference (RNAi) strategies include double-stranded RNA (dsRNA), small interfering RNA (siRNA), short hairpin RNA (shRNA), and microRNA (miRNA). As this is a highly specific technique, efforts have been made to utilize RNAi towards potential knock down of disease-causing genes in a targeted fashion. RNAi has the potential to selectively inhibit gene expression by degrading or blocking the translation of the target mRNA. However, delivering these RNAs to specific cells presents a significant challenge. Some of these challenges result from the necessity of traversing the circulatory system while avoiding kidney filtration, degradation by endonucleases, aggregation with serum proteins, and uptake by phagocytes. Further, non-specific delivery may result in side-effects, including the activation of immune response. We discuss the challenges in the systemic delivery to target cells, cellular uptake, endosomal release and intracellular transport of RNAi drugs and recent progress in overcoming these barriers. We also discuss approaches that increase the specificity and metabolic stability and reduce the off-target effects of RNAi strategy.
Collapse
|
45
|
Comparison of Polymeric siRNA Nanocarriers in a Murine LPS-Activated Macrophage Cell Line: Gene Silencing, Toxicity and Off-Target Gene Expression. Pharm Res 2011; 29:669-82. [DOI: 10.1007/s11095-011-0589-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/13/2011] [Indexed: 01/13/2023]
|