1
|
Rostom MM, Rashwan AA, Sotiropoulou CD, Hozayen SZ, Abdelhamid AM, Abdelhalim MM, Eltahtawy O, Emara HM, Elemam NM, Kontos CK, Youness RA. MIAT: A pivotal oncogenic long noncoding RNA tunning the hallmarks of solid malignancies. Transl Oncol 2025; 54:102329. [PMID: 40014977 PMCID: PMC11910686 DOI: 10.1016/j.tranon.2025.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Long non-coding RNAs (LncRNAs) have emerged as intriguing players in cellular regulation, challenging the traditional view of non-coding RNAs as mere "dark genome". Non-coding DNA makes up most of the human genome and plays a pivotal role in cancer development. These RNA molecules, which do not code for proteins, have captivated researchers with their diverse and crucial roles in gene regulation, chromatin dynamics, and other cellular processes. In several physiological and pathological circumstances, lncRNAs serve critical functions. This review will tackle the complex function of the lncRNA myocardial infarction-associated transcript (MIAT) in various solid malignancies. A special emphasis would be directed on the correlation between cancer patients' clinicopathological features and the expression profile of MIAT. MIAT is a oncogenic regulator in many malignant tumors, where it can control the growth, invasion, metastasis, and resistance to death of cells. As a result, MIAT is thought to be a possible biomarker and therapeutic target for cancer patients. The biological functions, mechanisms and potential clinical implications of MIAT during carcinogenesis and finally the current possible therapeutic approaches targeting MIAT are also outlined in this review.
Collapse
Affiliation(s)
- Monica M Rostom
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Alaa A Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Christina D Sotiropoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Sama Z Hozayen
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt
| | | | - Miriam Mokhtar Abdelhalim
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt
| | - Omar Eltahtawy
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt
| | - Hadir M Emara
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt; Department of Nanotechnology, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Noha M Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, 27272, Sharjah, UAE; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, UAE
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Rana A Youness
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt.
| |
Collapse
|
2
|
Wu X, Wu H, Zhong M, Chen Y, Su W, Li P. Epigenetic regulation by naringenin and naringin: A literature review focused on the mechanisms underlying its pharmacological effects. Fitoterapia 2025; 181:106353. [PMID: 39706348 DOI: 10.1016/j.fitote.2024.106353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Epigenetics refers to heritable changes in gene expression or phenotypic changes that occur without changing the gene sequence. The main methods of epigenetics include non-coding RNA, histone modification, and DNA modification, which play an essential role in gene expression regulation and even the occurrence of diverse diseases. Naringenin, the aglycone form of naringin, is a natural flavonoid compound mainly found in fruits or plant derivatives such as citrus, tomatoes, and cherries. Naringenin and naringin exhibit a broad spectrum of biological activities and pharmacological effects, including anti-cancer, cardiovascular disease improving, anti-inflammatory, and anti-oxidant activities, all of which are advantageous for human health. Recent studies have uncovered that naringenin and naringin influence gene expression by modulating epigenetic pathways, including microRNA (miRNA) regulation. This mechanism plays a crucial role in the therapeutic potential for various diseases. This paper reviews the epigenetic researches on the physiological activities of naringenin and naringin. It highlights how these compounds can exert diverse effects through different signaling pathways, thereby ameliorating associated diseases. These findings provide valuable insights for the future applications of naringenin and naringin.
Collapse
Affiliation(s)
- Xiao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Mengli Zhong
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yixuan Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
3
|
Fan Z, Chen Y, Yan D, Li Q. Effects of Differentially Methylated CpG Sites in Enhancer and Promoter Regions on the Chromatin Structures of Target LncRNAs in Breast Cancer. Int J Mol Sci 2024; 25:11048. [PMID: 39456830 PMCID: PMC11507307 DOI: 10.3390/ijms252011048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Aberrant DNA methylation plays a crucial role in breast cancer progression by regulating gene expression. However, the regulatory pattern of DNA methylation in long noncoding RNAs (lncRNAs) for breast cancer remains unclear. In this study, we integrated gene expression, DNA methylation, and clinical data from breast cancer patients included in The Cancer Genome Atlas (TCGA) database. We examined DNA methylation distribution across various lncRNA categories, revealing distinct methylation characteristics. Through genome-wide correlation analysis, we identified the CpG sites located in lncRNAs and the distally associated CpG sites of lncRNAs. Functional genome enrichment analysis, conducted through the integration of ENCODE ChIP-seq data, revealed that differentially methylated CpG sites (DMCs) in lncRNAs were mostly located in promoter regions, while distally associated DMCs primarily acted on enhancer regions. By integrating Hi-C data, we found that DMCs in enhancer and promoter regions were closely associated with the changes in three-dimensional chromatin structures by affecting the formation of enhancer-promoter loops. Furthermore, through Cox regression analysis and three machine learning models, we identified 11 key methylation-driven lncRNAs (DIO3OS, ELOVL2-AS1, MIAT, LINC00536, C9orf163, AC105398.1, LINC02178, MILIP, HID1-AS1, KCNH1-IT1, and TMEM220-AS1) that were associated with the survival of breast cancer patients and constructed a prognostic risk scoring model, which demonstrated strong prognostic performance. These findings enhance our understanding of DNA methylation's role in lncRNA regulation in breast cancer and provide potential biomarkers for diagnosis.
Collapse
Affiliation(s)
- Zhiyu Fan
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.F.); (D.Y.); (Q.L.)
| | - Yingli Chen
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.F.); (D.Y.); (Q.L.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Dongsheng Yan
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.F.); (D.Y.); (Q.L.)
| | - Qianzhong Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.F.); (D.Y.); (Q.L.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
4
|
Qattan A, Al-Tweigeri T, Suleman K, Alkhayal W, Tulbah A. Advanced Insights into Competitive Endogenous RNAs (ceRNAs) Regulated Pathogenic Mechanisms in Metastatic Triple-Negative Breast Cancer (mTNBC). Cancers (Basel) 2024; 16:3057. [PMID: 39272915 PMCID: PMC11394539 DOI: 10.3390/cancers16173057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Triple-negative breast cancer is aggressive and challenging to treat because of a lack of targets and heterogeneity among tumors. A paramount factor in the mortality from breast cancer is metastasis, which is driven by genetic and phenotypic alterations that drive epithelial-mesenchymal transition, stemness, survival, migration and invasion. Many genetic and epigenetic mechanisms have been identified in triple-negative breast cancer that drive these metastatic phenotypes; however, this knowledge has not yet led to the development of effective drugs for metastatic triple-negative breast cancer (mTNBC). One that may not have received enough attention in the literature is post-translational regulation of broad sets of cancer-related genes through inhibitory microRNAs and the complex competitive endogenous RNA (ceRNA) regulatory networks they are influenced by. This field of study and the resulting knowledge regarding alterations in these networks is coming of age, enabling translation into clinical benefit for patients. Herein, we review metastatic triple-negative breast cancer (mTNBC), the role of ceRNA network regulation in metastasis (and therefore clinical outcomes), potential approaches for therapeutic exploitation of these alterations, knowledge gaps and future directions in the field.
Collapse
Affiliation(s)
- Amal Qattan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Taher Al-Tweigeri
- Department of Medical Oncology, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Kausar Suleman
- Department of Medical Oncology, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Wafa Alkhayal
- Department of Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
5
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
6
|
Sadida HQ, Abdulla A, Marzooqi SA, Hashem S, Macha MA, Akil ASAS, Bhat AA. Epigenetic modifications: Key players in cancer heterogeneity and drug resistance. Transl Oncol 2024; 39:101821. [PMID: 37931371 PMCID: PMC10654239 DOI: 10.1016/j.tranon.2023.101821] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Cancer heterogeneity and drug resistance remain pivotal obstacles in effective cancer treatment and management. One major contributor to these challenges is epigenetic modifications - gene regulation that does not involve changes to the DNA sequence itself but significantly impacts gene expression. As we elucidate these phenomena, we underscore the pivotal role of epigenetic modifications in regulating gene expression, contributing to cellular diversity, and driving adaptive changes that can instigate therapeutic resistance. This review dissects essential epigenetic modifications - DNA methylation, histone modifications, and chromatin remodeling - illustrating their significant yet complex contributions to cancer biology. While these changes offer potential avenues for therapeutic intervention due to their reversible nature, the interplay of epigenetic and genetic changes in cancer cells presents unique challenges that must be addressed to harness their full potential. By critically analyzing the current research landscape, we identify knowledge gaps and propose future research directions, exploring the potential of epigenetic therapies and discussing the obstacles in translating these concepts into effective treatments. This comprehensive review aims to stimulate further research and aid in developing innovative, patient-centered cancer therapies. Understanding the role of epigenetic modifications in cancer heterogeneity and drug resistance is critical for scientific advancement and paves the way towards improving patient outcomes in the fight against this formidable disease.
Collapse
Affiliation(s)
- Hana Q Sadida
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Alanoud Abdulla
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Sara Al Marzooqi
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Laboratory of Genomic Medicine, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Jammu & Kashmir, India
| | - Ammira S Al-Shabeeb Akil
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar.
| | - Ajaz A Bhat
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
7
|
Moutabian H, Radi UK, Saleman AY, Adil M, Zabibah RS, Chaitanya MNL, Saadh MJ, Jawad MJ, Hazrati E, Bagheri H, Pal RS, Akhavan-Sigari R. MicroRNA-155 and cancer metastasis: Regulation of invasion, migration, and epithelial-to-mesenchymal transition. Pathol Res Pract 2023; 250:154789. [PMID: 37741138 DOI: 10.1016/j.prp.2023.154789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Among the leading causes of death globally has been cancer. Nearly 90% of all cancer-related fatalities are attributed to metastasis, which is the growing of additional malignant growths out of the original cancer origin. Therefore, a significant clinical need for a deeper comprehension of metastasis exists. Beginning investigations are being made on the function of microRNAs (miRNAs) in the metastatic process. Tiny non-coding RNAs called miRNAs have a crucial part in controlling the spread of cancer. Some miRNAs regulate migration, invasion, colonization, cancer stem cells' properties, the epithelial-mesenchymal transition (EMT), and the microenvironment, among other processes, to either promote or prevent metastasis. One of the most well-conserved and versatile miRNAs, miR-155 is primarily distinguished by overexpression in a variety of illnesses, including malignant tumors. It has been discovered that altered miR-155 expression is connected to a number of physiological and pathological processes, including metastasis. As a result, miR-155-mediated signaling pathways were identified as possible cancer molecular therapy targets. The current research on miR-155, which is important in controlling cancer cells' invasion, and metastasis as well as migration, will be summarized in the current work. The crucial significance of the lncRNA/circRNA-miR-155-mRNA network as a crucial regulator of carcinogenesis and a player in the regulation of signaling pathways or related genes implicated in cancer metastasis will be covered in the final section. These might provide light on the creation of fresh treatment plans for controlling cancer metastasis.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mv N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | | | - Ebrahi Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
8
|
Razi S, Mozdarani H, Behzadi Andouhjerdi R. Evaluation of the Potential Diagnostic Role of the Lnc-MIAT, miR-29a-3p, and FOXO3a ceRNA Networks as Noninvasive Circulatory Bioindicator in Ductal Carcinoma Breast Cancer. Breast Cancer (Auckl) 2023; 17:11782234231184378. [PMID: 37434996 PMCID: PMC10331106 DOI: 10.1177/11782234231184378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Background Over the last few decades, tremendous progress has been achieved in the early detection and treatment of breast cancer (BC). However, the prognosis remains unsatisfactory, and the underlying processes of carcinogenesis are still unclear. The purpose of this research was to find out the relationship between myocardial infarction-associated transcript (MIAT), FOXO3a, and miRNA29a-3p and evaluated the expression levels in patients compare with control and their potential as a noninvasive bioindicator in whole blood in BC. Methods Whole blood and BC tissue are taken from patients before radiotherapy and chemotherapy. Total RNA was extracted from BC tissue and whole blood to synthesize complementary DNA (cDNA). The expression of MIAT, FOXO3a, and miRNA29a-3p was analyzed by the quantitative reverse transcription-polymerase chain reaction (RT-qPCR) method and the sensitivity and specificity of them were determined by the receiver operating characteristic (ROC) curve. Bioinformatics analysis was used to understand the connections between MIAT, FOXO3a, and miRNA29a-3p in human BC to develop a ceRNA (competitive endogenous RNA) network. Results We identified that in ductal carcinoma BC tissue and whole blood, MIAT and FOXO3a were more highly expressed, whereas miRNA29a-3p was lower compared with those in nontumor samples. There was a positive correlation between the expression levels of MIAT, FOXO3a, and miRNA29a-3p in BC tissues and whole blood. Our results also proposed miRNA29a-3p as a common target between MIAT and FOXO3a, and we showed them as a ceRNA network. Conclusions This is the first study that indicates MIAT, FOXO3a, and miRNA29a-3p as a ceRNA network, and their expression was analyzed in both BC tissue and whole blood. As a preliminary assessment, our findings indicate that combined levels of MIAT, FOXO3a, and miR29a-3p may be considered as potential diagnostic bioindicator for BC.
Collapse
Affiliation(s)
- Shokufeh Razi
- Department of Genetics, Faculty of
Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty
of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
9
|
Hajibabaei S, Nafissi N, Azimi Y, Mahdian R, Rahimi-Jamnani F, Valizadeh V, Rafiee MH, Azizi M. Targeting long non-coding RNA MALAT1 reverses cancerous phenotypes of breast cancer cells through microRNA-561-3p/TOP2A axis. Sci Rep 2023; 13:8652. [PMID: 37244966 DOI: 10.1038/s41598-023-35639-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/21/2023] [Indexed: 05/29/2023] Open
Abstract
Non-coding RNAs, including Inc-RNA and miRNA, have been reported to regulate gene expression and are associated with cancer progression. MicroRNA-561-3p (miR-561-3p), as a tumor suppressor, has been reported to play a role in preventing cancer cell progression, and MALAT1 (Lnc-RNA) have also been demonstrated to promote malignancy in various cancers, such as breast cancer (BC). In this study, we aimed to determine the correlation between miR-561-3p and MALAT1 and their roles in breast cancer progression. The expression of MALAT1, mir-561-3p, and topoisomerase alpha 2 (TOP2A) as a target of miR-561-3p was determined in BC clinical samples and cell lines via qRT-PCR. The binding site between MALAT1, miR-561-3p, and TOP2A was investigated by performing the dual luciferase reporter assay. MALAT1 was knocked down by siRNA, and cell proliferation, apoptotic assays, and cell cycle arrest were evaluated. MALAT1 and TOP2A were significantly upregulated, while mir-561-3p expression was downregulated in BC samples and cell lines. MALAT1 knockdown significantly increased miR-561-3p expression, which was meaningfully inverted by co-transfection with the miR 561-3p inhibitor. Furthermore, the knockdown of MALAT1 by siRNA inhibited proliferation, induced apoptosis, and arrested the cell cycle at the G1 phase in BC cells. Notably, the mechanistic investigation revealed that MALAT1 predominantly acted as a competing endogenous RNA in BC by regulating the miR-561-3p/TOP2A axis. Based on our results, MALAT1 upregulation in BC may function as a tumor promoter in BC via directly sponging miRNA 561-3p, and MALAT1 knockdown serves a vital antitumor role in BC cell progression through the miR-561-3p/TOP2A axis.
Collapse
Affiliation(s)
- Sara Hajibabaei
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Nahid Nafissi
- Breast Surgery Department, Iran University of Medical Sciences, Tehran, Iran
| | - Yasamin Azimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Reza Mahdian
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Fatemeh Rahimi-Jamnani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Vahideh Valizadeh
- Department of Nano-Biotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hessam Rafiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran.
| |
Collapse
|
10
|
Zhang J, Liu R, Xu A. Whole transcriptome sequencing analysis of blood plasma-derived exosomes from immune-related hearing loss. Int Immunopharmacol 2023; 120:110361. [PMID: 37244117 DOI: 10.1016/j.intimp.2023.110361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Early diagnosis of immune-related hearing loss and timely treatment can prevent structural damage to the inner ear and contribute to hearing retention. Exosomal miRNAs, lncRNAs and proteins have great prospects as novel biomarkers for clinical diagnosis. Our study aimed to investigate the molecular mechanisms of exosomes or exosomal ceRNA regulatory networks in immune-related hearing loss. METHODS An immune-related hearing loss mice model was constructed by injection with inner ear antigen, and then the blood plasma samples of the mice were collected for exosomes isolation by ultra-centrifugation. Subsequently, the different exosomes were sent for whole transcriptome sequencing using Illumina platform. Finally, a ceRNA pair was chosen for validation by RT-qPCR and dual luciferase reporter gene assay. RESULTS The exosomes were successfully extracted from the blood samples of the control and the immune-related hearing loss mice. After sequencing, 94 differentially expressed (DE) lncRNAs, 612 DEmRNAs, and 100 DEmiRNAs were found in the immune-related hearing loss-associated exosomes. Afterwards, ceRNA regulatory networks consisting of 74 lncRNAs, 28 miRNAs and 256 mRNAs were proposed, and the genes in the ceRNA regulatory networks were significantly enriched in 34 GO terms of biological processes and 9 KEGG pathways. Finally, Gm9866 and Dusp7 were significantly up-regulated, while miR-185-5p level was declined in the exosomes from immune-related hearing loss, and Gm9866, miR-185-5p and Dusp7 interacted with each other. CONCLUSIONS Gm9866-miR-185-5p-Dusp7 was confirmed to be closely correlated with the occurrence and progression of immune-related hearing loss.
Collapse
Affiliation(s)
- Juhong Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing 401147, China; Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250033, China
| | - Ruiyue Liu
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250033, China; Department of Otolaryngology, Heze Municipal Hospital, Shandong 27400, China
| | - Anting Xu
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250033, China; NHC Key Laboratory of Otolaryngology, Shandong University, Shandong 250033, China.
| |
Collapse
|
11
|
Yang S, Wang X, Zhou X, Hou L, Wu J, Zhang W, Li H, Gao C, Sun C. ncRNA-mediated ceRNA regulatory network: Transcriptomic insights into breast cancer progression and treatment strategies. Biomed Pharmacother 2023; 162:114698. [PMID: 37060661 DOI: 10.1016/j.biopha.2023.114698] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
With the rapid development of next-generation sequencing technology, several studies have shown that ncRNAs can act as competitive endogenous RNAs (ceRNAs) and are involved in various biological processes, such as proliferation, differentiation, apoptosis, and migration of breast cancer (BC) cells, and plays an important role in BC progression as a molecular target for its diagnosis, treatment, prognosis, and differentiation of subtypes and age groups of BC patients. Based on the description of ceRNA-related biological functions, this study screened and sorted the sequencing analysis and experimental verification conclusions of BC-related ceRNAs and found that the ncRNAs mediated ceRNA networks can promote the development of BC by promoting the expression of genes related to BC proliferation, drug resistance, and apoptosis, inducing the production of epithelial-mesenchymal transition (EMT) to promote metastasis and activating cancer-related signaling pathways.
Collapse
Affiliation(s)
- Shu Yang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Xiaomin Wang
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xintong Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Hou
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfeng Zhang
- School of Traditional Chinese Medicine, Macau University of Science and Technology, Macao Special Administrative Region, China
| | - Huayao Li
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Chundi Gao
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China; College of Chinese Medicine, Weifang Medical University, Weifang, China.
| |
Collapse
|
12
|
Yan C, Jin Y. Silencing of long noncoding RNA MIAT inhibits the viability and proliferation of breast cancer cells by promoting miR-378a-5p expression. Open Med (Wars) 2023; 18:20230676. [PMID: 37025425 PMCID: PMC10071813 DOI: 10.1515/med-2023-0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 04/05/2023] Open
Abstract
Myocardial infarction–associated transcript (MIAT) is a long noncoding RNA that plays a critical role in a variety of diseases. Accordingly, this study probed into the possible interaction mechanism between MIAT and miR-378a-5p in breast cancer. Concretely, MIAT and miR-378a-5p expressions in breast cancer tissues and cells were measured. After transfection with siMIAT and miR-378a-5p inhibitor, the viability and proliferation of breast cancer cells were examined by cell counting kit-8 and colony formation assays. The expressions of apoptosis-related proteins were detected. According to the results, MIAT was highly expressed in breast cancer tissues and cells. MIAT silencing could decrease Bcl-2 expression, viability, and proliferation of breast cancer cells and increase the expressions of cleaved caspase-3 and Bax. MIAT and miR-378a-5p could directly bind to each other, and MIAT silencing promoted the expression of miR-378a-5p. miR-378a-5p expression was low in breast cancer tissues. The miR-378a-5p inhibitor enhanced the viability and proliferation of breast cancer cells and partially reversed the effects of MIAT silencing on the breast cancer cells. In conclusion, MIAT silencing inhibits the viability and proliferation of breast cancer cells by promoting miR-378a-5p, indicating the potential of MIAT as a new target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Chao Yan
- Medical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an 223003, Jiangsu, China
| | - Yue Jin
- Medical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, No. 62, Huaihai South Road, Qingjiangpu District, Huai’an 223003, Jiangsu, China
| |
Collapse
|
13
|
Teng Z, Shi L, Yu H, Wu C, Tian Z. Measuring functional similarity of lncRNAs based on variable K-mer profiles of nucleotide sequences. Methods 2023; 212:21-30. [PMID: 36813016 DOI: 10.1016/j.ymeth.2023.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Long non-coding RNAs are a class of essential non-coding RNAs with a length of more than 200 nts. Recent studies have indicated that lncRNAs have various complex regulatory functions, which play great impacts on many fundamental biological processes. However, measuring the functional similarity between lncRNAs by traditional wet-experiments is time-consuming and labor intensive, computational-based approaches have been an effective choice to tackle this problem. Meanwhile, most sequences-based computation methods measure the functional similarity of lncRNAs with their fixed length vector representations, which could not capture the features on larger k-mers. Therefore, it is urgent to improve the predict performance of the potential regulatory functions of lncRNAs. In this study, we propose a novel approach called MFSLNC to comprehensively measure functional similarity of lncRNAs based on variable k-mer profiles of nucleotide sequences. MFSLNC employs the dictionary tree storage, which could comprehensively represent lncRNAs with long k-mers. The functional similarity between lncRNAs is evaluated by the Jaccard similarity. MFSLNC verified the similarity between two lncRNAs with the same mechanism, detecting homologous sequence pairs between human and mouse. Besides, MFSLNC is also applied to lncRNA-disease associations, combined with the association prediction model WKNKN. Moreover, we also proved that our method can more effectively calculate the similarity of lncRNAs by comparing with the classical methods based on the lncRNA-mRNA association data. The detected AUC value of prediction is 0.867, which achieves good performance in the comparison of similar models.
Collapse
Affiliation(s)
- Zhixia Teng
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
| | - Linyue Shi
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
| | - Haihao Yu
- College of Computer Science and Technology, Heilongjiang Institute of Technology, Harbin 150040, China
| | - Chengyan Wu
- Baotou Teacher's College, Inner Mongolia University of Science and Technology, Baotou 014030, China
| | - Zhen Tian
- College of Information Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Functional Relationships between Long Non-Coding RNAs and Estrogen Receptor Alpha: A New Frontier in Hormone-Responsive Breast Cancer Management. Int J Mol Sci 2023; 24:ijms24021145. [PMID: 36674656 PMCID: PMC9863308 DOI: 10.3390/ijms24021145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In the complex and articulated machinery of the human genome, less than 2% of the transcriptome encodes for proteins, while at least 75% is actively transcribed into non-coding RNAs (ncRNAs). Among the non-coding transcripts, those ≥200 nucleotides long (lncRNAs) are receiving growing attention for their involvement in human diseases, particularly cancer. Genomic studies have revealed the multiplicity of processes, including neoplastic transformation and tumor progression, in which lncRNAs are involved by regulating gene expression at epigenetic, transcriptional, and post-transcriptional levels by mechanism(s) that still need to be clarified. In breast cancer, several lncRNAs were identified and demonstrated to have either oncogenic or tumor-suppressive roles. The functional understanding of the mechanisms of lncRNA action in this disease could represent a potential for translational applications, as these molecules may serve as novel biomarkers of clinical use and potential therapeutic targets. This review highlights the relationship between lncRNAs and the principal hallmark of the luminal breast cancer phenotype, estrogen receptor α (ERα), providing an overview of new potential ways to inhibit estrogenic signaling via this nuclear receptor toward escaping resistance to endocrine therapy.
Collapse
|
15
|
Sladeček S, Radaszkiewicz KA, Bőhmová M, Gybeľ T, Radaszkiewicz TW, Pacherník J. Dual specificity phosphatase 7 drives the formation of cardiac mesoderm in mouse embryonic stem cells. PLoS One 2022; 17:e0275860. [PMID: 36227898 PMCID: PMC9560500 DOI: 10.1371/journal.pone.0275860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Dual specificity phosphatase 7 (DUSP7) is a protein belonging to a broad group of phosphatases that can dephosphorylate phosphoserine/phosphothreonine as well as phosphotyrosine residues within the same substrate. DUSP7 has been linked to the negative regulation of mitogen activated protein kinases (MAPK), and in particular to the regulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). MAPKs play an important role in embryonic development, where their duration, magnitude, and spatiotemporal activity must be strictly controlled by other proteins, among others by DUSPs. In this study, we focused on the effect of DUSP7 depletion on the in vitro differentiation of mouse embryonic stem (ES) cells. We showed that even though DUSP7 knock-out ES cells do retain some of their basic characteristics, when it comes to differentiation, they preferentially differentiate towards neural cells, while the formation of early cardiac mesoderm is repressed. Therefore, our data indicate that DUSP7 is necessary for the correct formation of neuroectoderm and cardiac mesoderm during the in vitro differentiation of ES cells.
Collapse
Affiliation(s)
- Stanislava Sladeček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Martina Bőhmová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Gybeľ
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
16
|
miR-155-5p can be involved in acquisition of osseointegration on titanium surface. In Vitro Cell Dev Biol Anim 2022; 58:693-701. [PMID: 36053380 DOI: 10.1007/s11626-022-00718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022]
Abstract
Dental implants made of titanium are commonly used. Although titanium implants succeed by osseointegration with bone, the detailed molecular mechanism of osseointegration is unclear. To clarify the involvement of microRNA (miRNA) in the acquisition of osseointegration on titanium, here we compared the miRNA expression profiles of mouse osteoblast-like cells (MC3T3-E1) cultured on titanium-, gold-, and stainless steel-coating glass dishes by microarray analysis. Three kinds of metals, namely titanium, gold, and stainless steel, were coated on the surface of the glass dishes by sputtering with similar roughness and shape of their surface. After MC3T3-E1 cells were cultured on the dishes without coating or coating with titanium, gold, or stainless steel for 6 h, total RNA was extracted, and miRNA expression was analyzed by microarray. To confirm the expression of the selected miRNA during osteogenic differentiation of MC3T3-E1 cells, real-time PCR analysis was performed. Furthermore, the effects of selected miRNA were examined by ectopic overexpression in MC3T3-E1 cells. The microarray analysis revealed that the expressions of miR-155-5p and miR-7023-3p were significantly increased in MC3T3-E1 cells cultured on titanium-coating glass dishes, compared to non-coating, gold-, and stainless steel-coating glass dishes. Interestingly, miR-155-5p was upregulated during osteogenic differentiation of MC3T3-E1 cells. Furthermore, overexpression of miR-155-5p enhanced the expression of Runx2 and Col1a1. In this study, miR-155-5p may be involved in the acquisition of osseointegration on titanium implant via upregulating osteogenic differentiation-related genes.
Collapse
|
17
|
Zhu N, Wang D, Xie F, Qin M, Wang Y. MiR-335-3p/miR-155-5p Involved in IGFBP7-AS1-Enhanced Odontogenic Differentiation. Int Dent J 2022; 73:362-369. [PMID: 35999071 DOI: 10.1016/j.identj.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The differentiation of stem cells from exfoliated deciduous teeth (SHEDs) into odontoblasts determines the regeneration of dentin-pulp complex. Non-coding RNAs (ncRNAs), including microRNA (miRNA) and long non-coding RNA (lncRNA), participate in many multiple biological processes, but the specific miRNAs involved in odontogenesis are incompletely defined. It was confirmed that lncRNA IGFBP7-AS1 could positively regulate odontogenetic differentiation in SHEDs. To investigate the downstream mechanisms of this process, miR-335-3p and miR-155-5p were found to be closely related with SHED odontogenic differentiation through whole-genome sequencing. The aim of the current study was to determine the role of miR-335-3p/miR-155-5p in IGFBP7-AS1-enhanced SHED differentiation and explore the potential mechanism of IGFBP7-AS1-mediated odontogenesis. METHODS Putative miR-335-3p/miR-155-5p binding sites within IGFBP7-AS1 were identified by bioinformatics analysis, and the binding of miR-335-3p/miR-155-5p to these sites was confirmed by dual-luciferase reporter gene assays. The effects of miR-335-3p/miR-155-5p in odontogenesis were detected by tissue nonspecific alkaline phosphatase staining, Alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR) analyses, and western blot testing. The molecular mechanisms of miR-335-3p/miR-155-5p involved in IGFBP7-AS1-mediated odontogenesis were analysed by qRT-PCR and western blot testing. RESULTS Dual-luciferase reporter gene assays showed that miR-335-3p/miR-155-5p could directly bind to IGFBP7-AS1. MiR-335-3p and miR-155-5p both could down-regulate dentin sialophosphoprotein expression, and both miRNAs could inhibit IGFBP7-AS1-mediated SHED odontogenetic differentiation via suppression of the extracellular signal-regulated kinase (ERK) pathway. CONCLUSIONS Both miR-335-3p and miR-155-5p were negative regulators to IGFBP7-AS1-enhanced odontogenic differentiation of SHED through suppression of the ERK pathway.
Collapse
Affiliation(s)
- Ningxin Zhu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases
| | - Dan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases
| | - Fei Xie
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases.
| |
Collapse
|
18
|
Ginckels P, Holvoet P. Oxidative Stress and Inflammation in Cardiovascular Diseases and Cancer: Role of Non-coding RNAs. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:129-152. [PMID: 35370493 PMCID: PMC8961704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
High oxidative stress, Th1/Th17 immune response, M1 macrophage inflammation, and cell death are associated with cardiovascular diseases. Controlled oxidative stress, Th2/Treg anti-tumor immune response, M2 macrophage inflammation, and survival are associated with cancer. MiR-21 protects against cardiovascular diseases but may induce tumor growth by retaining the anti-inflammatory M2 macrophage and Treg phenotypes and inhibiting apoptosis. Down-regulation of let-7, miR-1, miR-9, miR-16, miR-20a, miR-22a, miR-23a, miR-24a, miR-26a, miR-29, miR-30a, miR-34a, miR-124, miR-128, miR-130a, miR-133, miR-140, miR-143-145, miR-150, miR-153, miR-181a, miR-378, and miR-383 may aid cancer cells to escape from stresses. Upregulation of miR-146 and miR-223 may reduce anti-tumor immune response together with miR-21 that also protects against apoptosis. MiR-155 and silencing of let-7e, miR-125, and miR-126 increase anti-tumor immune response. MiR expression depends on oxidative stress, cytokines, MYC, and TGF-β, and expression of silencing lncRNAs and circ-RNAs. However, one lncRNA or circ-RNA may have opposite effects by targeting several miRs. For example, PVT1 induces apoptosis by targeting miR-16a and miR-30a but inhibits apoptosis by silencing miR-17. In addition, levels of a non-coding RNA in a cell type depend not only on expression in that cell type but also on an exchange of microvesicles between cell types and tumors. Although we got more insight into the function of a growing number of individual non-coding RNAs, overall, we do not know enough how several of them interact in functional networks and how their expression changes at different stages of disease progression.
Collapse
Affiliation(s)
- Pieterjan Ginckels
- Department of Architecture, Brussels and Gent, KU Leuven, Leuven, Belgium
| | - Paul Holvoet
- Experimental Cardiology, KU Leuven, Leuven, Belgium,To whom all correspondence should be addressed: Paul Holvoet, Experimental
Cardiology, KU Leuven, Belgium; ; ORCID iD:
https://orcid.org/0000-0001-9201-0772
| |
Collapse
|
19
|
Li X, Ren Y, Liu D, Yu X, Chen K. Role of miR-100-5p and CDC25A in breast carcinoma cells. PeerJ 2022; 9:e12263. [PMID: 35036112 PMCID: PMC8734459 DOI: 10.7717/peerj.12263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To inquiry about mechanism of miR-100-5p/CDC25A axis in breast carcinoma (BC), thus offering a new direction for BC targeted treatment. METHODS qRT-PCR was employed to explore miR-100-5p and CDC25A mRNA levels. Western blot was employed for detecting protein expression of CDC25A. Targeting relationship of miR-100-5p and CDC25A was verified by dual-luciferase assay. In vitro experiments were used for assessment of cell functions. RESULTS In BC tissue and cells, miR-100-5p was significantly lowly expressed (P < 0.05) while CDC25A was highly expressed. Besides, miR-100-5p downregulated CDC25A level. miR-100-5p had a marked influence on the prognosis of patients. The forced miR-100-5p expression hindered BC cell proliferation, migration and invasion, and facilitated cell apoptosis. Upregulated miR-100-5p weakened promotion of CDC25A on BC cell growth. CONCLUSION Together, these findings unveiled that CDC25A may be a key target of miR-100-5p that mediated progression of BC cells. Hence, miR-100-5p overexpression or CDC25A suppression may contribute to BC diagnosis.
Collapse
Affiliation(s)
- Xiaoping Li
- Faculty of Medicine, Macau University of Science and Technology, Macau, China.,Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang province, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China
| | - Donghong Liu
- Department of Laboratory Medicine, Hangyan hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang province, China
| |
Collapse
|
20
|
Ye T, Feng J, Cui M, Yang J, Wan X, Xie D, Liu J. LncRNA MIAT Services as a Noninvasive Biomarker for Diagnosis and Correlated with Immune Infiltrates in Breast Cancer. Int J Womens Health 2021; 13:991-1004. [PMID: 34712062 PMCID: PMC8548061 DOI: 10.2147/ijwh.s312714] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Myocardial infarction associated transcript (MIAT) is identified as a long chain non-coding RNA (lncRNA), which was associated with myocardial infarction susceptibility. While intense efforts have been made to elucidate the relationship between MIAT and carcinogenesis, the tumor immunoreaction of MIAT remains elusive. Thus, this study aimed to investigate the role of MIAT in the immunoregulation of breast cancer (BC) and further explore the better clinical significance. Methods The differential expression of MIAT between BC and normal/adjacent tissues was compared using Wilcoxon rank sum test. The diagnostic and prognostic values of elevated MIAT expression in BC tissues were unveiled via receiver operating characteristic (ROC) analysis and KM-plotter analysis. Limma and edgeR package were used to identify differentially expressed genes (DEGs) and microRNAs (DEMs) from TCGA database respectively. A co-expression dataset was constructed to comprehensively understand the relationship between MIAT and DEGs based on the Pearson correlation coefficient. Furthermore, GO and KEGG analyses were conducted to predict the potential functions of MIAT. We next intersected immune-related genes (IRGs) from ImmPort database with MIAT-co-expressed genes to obtain MIAT-co-expressed IRGs, in order to construct MIAT-microRNA (miRNA)-mRNA network. And the correlation between MIAT and tumor-infiltrating immune cells (TICs) and immunophenoscore (IPS) analysis was analyzed by TIMER and CIBERSORT. Finally, the reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expression profiles of MIAT in serum samples. Results The expression levels of MIAT were notably higher in BC than in normal or adjacent tissues. And MIAT expression could be used as a prognostic indicator of mortality risk in patients with BC in different aspects. Moreover, the enrichment analyses suggested that MIAT was strongly involved in BC immune response. In addition, TIMER database and CIBERSORT analyses indicated that MIAT was significantly correlated with 13 types of TICs (B cells, dendritic cells, neutrophils, CD8 T cells, CD4 memory resting T cells, CD4 memory activated T cells, gamma delta T cells, M1 macrophages, plasma cells, activated NK cells, monocytes, M2 macrophages, activated mast cells). Simultaneously, the IPS analysis implied that the higher the MIAT expression, the better the immunotherapy effect. The ROC curve analysis showed that the area under the curve (AUC) value of MIAT was 0.86 (sensitivity = 87.80%, specificity = 75.61%). And the high MIAT expression in serum was positive related to TNM stage (P = 0.032) and lymph node metastasis (P = 0.028). Conclusion MIAT may be a valuable noninvasive diagnostic biomarker for BC and is associated with tumor-infiltrating immune cells in tumor microenvironment, suggesting MIAT as a potential target for future treatment of BC.
Collapse
Affiliation(s)
- Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Meng Cui
- Department of Laboratory Medicine, The Leshan People's Hospital, Luzhou, Sichuan, 614000, People's Republic of China
| | - Jia Yang
- Department of Laboratory Medicine, The Leshan People's Hospital, Luzhou, Sichuan, 614000, People's Republic of China
| | - Xue Wan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Dan Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| |
Collapse
|
21
|
Zhang W, Wang Q, Du H, Jiang S. CRISPR/cas9-mediated overexpression of long non-coding RNA SRY-box transcription factor 21 antisense divergent transcript 1 regulates the proliferation of osteosarcoma by increasing the expression of mechanistic target of rapamycin kinase and Kruppel like factor 4. Bioengineered 2021; 13:6678-6687. [PMID: 34696664 PMCID: PMC8973734 DOI: 10.1080/21655979.2021.1995106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Osteosarcoma, derived from primitive mesenchymal cells, is the most common primary solid malignant tumor of bone. The cause of osteosarcoma remains unclear. In recent years, the role of non-coding sequences in regulating protein expression in tumors has been paid more and more attention, especially long non-coding RNA (lncRNA). We speculate that SRY-box transcription factor 21 antisense divergent transcript 1 (SOX21-AS1) can regulate the expression of the mechanistic target of rapamycin kinase (mTOR) and Kruppel-like factor 4 (KLF4) through sponging hsa-mir-7-5p and hsa-mir-145-5p. We knocked lncRNA SOX21-AS1 into the genome of 143B cells through CRISPR/Cas9, then screened out a monoclonal cell line. Detect the transcription level and protein expression level of the above-mentioned related genes, and cell proliferation. Then, ginsenoside Rg3 was added to culture the cell line knocked into lncRNA SOX21-AS1, and the expression levels of lncRNA SOX21-AS1, hsa-mir-7-5p, hsa-mir-145-5p, mTOR, and KLF4 were detected by RT-qPCR and Western blot. Cell proliferation method detects cell viability, explores the molecular mechanism of lncRNA SOX21-AS1 in osteosarcoma, and checks whether it can be used as a potential drug target for the treatment of osteosarcoma. Our results demonstrate that the overexpression of lncRNA SOX21-AS1 up-regulates mTOR and KLF4 by sponging hsa-mir-7-5p and hsa-mir-145-5p, and ultimately regulates the proliferation of osteosarcoma. It is proved that ginsenoside Rg3 can inhibit the cell proliferation of osteosarcoma by reducing the expression level of lncRNA SOX21-AS1. It provides an alternative for the treatment of osteosarcoma in the future.
Collapse
Affiliation(s)
- Weiying Zhang
- Health Management Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Qiang Wang
- Department of human resources, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Haibo Du
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shichao Jiang
- Department of orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.,Department of orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|
22
|
Khoubai FZ, Grosset CF. DUSP9, a Dual-Specificity Phosphatase with a Key Role in Cell Biology and Human Diseases. Int J Mol Sci 2021; 22:ijms222111538. [PMID: 34768967 PMCID: PMC8583968 DOI: 10.3390/ijms222111538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are essential for proper cell functioning as they regulate many molecular effectors. Careful regulation of MAPKs is therefore required to avoid MAPK pathway dysfunctions and pathologies. The mammalian genome encodes about 200 phosphatases, many of which dephosphorylate the MAPKs and bring them back to an inactive state. In this review, we focus on the normal and pathological functions of dual-specificity phosphatase 9 (DUSP9)/MAP kinase phosphatases-4 (MKP-4). This cytoplasmic phosphatase, which belongs to the threonine/tyrosine dual-specific phosphatase family and was first described in 1997, is known to dephosphorylate ERK1/2, p38, JNK and ASK1, and thereby to control various MAPK pathway cascades. As a consequence, DUSP9 plays a major role in human pathologies and more specifically in cardiac dysfunction, liver metabolic syndromes, diabetes, obesity and cancer including drug response and cell stemness. Here, we recapitulate the mechanism of action of DUSP9 in the cell, its levels of regulation and its roles in the most frequent human diseases, and discuss its potential as a therapeutic target.
Collapse
|
23
|
Xu J, Wu KJ, Jia QJ, Ding XF. Roles of miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ Sci B 2021; 21:673-689. [PMID: 32893525 PMCID: PMC7519626 DOI: 10.1631/jzus.b1900709] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) is currently the most malignant subtype of breast cancer without effective targeted therapies, which makes its pathogenesis an important target for research. A growing number of studies have shown that non-coding RNA (ncRNA), including microRNA (miRNA) and long non-coding RNA (lncRNA), plays a significant role in tumorigenesis. This review summarizes the roles of miRNA and lncRNA in the progression, diagnosis, and neoadjuvant chemotherapy of TNBC. Aberrantly expressed miRNA and lncRNA are listed according to their roles. Further, it describes the multiple mechanisms that lncRNA shows for regulating gene expression in the nucleus and cytoplasm, and more importantly, describes lncRNA-regulated TNBC progression through complete combining with miRNA at the post-transcriptional level. Focusing on miRNA and lncRNA associated with TNBC can provide new insights for early diagnosis and treatment-they can be targeted in the future as a novel anticancer target of TNBC.
Collapse
|
24
|
Pavanelli AC, Mangone FR, Barros LRC, Machado-Rugolo J, Capelozzi VL, Nagai MA. Abnormal Long Non-Coding RNAs Expression Patterns Have the Potential Ability for Predicting Survival and Treatment Response in Breast Cancer. Genes (Basel) 2021; 12:genes12070996. [PMID: 34209776 PMCID: PMC8305383 DOI: 10.3390/genes12070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 12/09/2022] Open
Abstract
Abnormal long non-coding RNAs (lncRNAs) expression has been documented to have oncogene or tumor suppressor functions in the development and progression of cancer, emerging as promising independent biomarkers for molecular cancer stratification and patients’ prognosis. Examining the relationship between lncRNAs and the survival rates in malignancies creates new scenarios for precision medicine and targeted therapy. Breast cancer (BRCA) is a heterogeneous malignancy. Despite advances in its molecular classification, there are still gaps to explain in its multifaceted presentations and a substantial lack of biomarkers that can better predict patients’ prognosis in response to different therapeutic strategies. Here, we performed a re-analysis of gene expression data generated using cDNA microarrays in a previous study of our group, aiming to identify differentially expressed lncRNAs (DELncRNAs) with a potential predictive value for response to treatment with taxanes in breast cancer patients. Results revealed 157 DELncRNAs (90 up- and 67 down-regulated). We validated these new biomarkers as having prognostic and predictive value for breast cancer using in silico analysis in public databases. Data from TCGA showed that compared to normal tissue, MIAT was up-regulated, while KCNQ1OT1, LOC100270804, and FLJ10038 were down-regulated in breast tumor tissues. KCNQ1OT1, LOC100270804, and FLJ10038 median levels were found to be significantly higher in the luminal subtype. The ROC plotter platform results showed that reduced expression of these three DElncRNAs was associated with breast cancer patients who did not respond to taxane treatment. Kaplan–Meier survival analysis revealed that a lower expression of the selected lncRNAs was significantly associated with worse relapse-free survival (RFS) in breast cancer patients. Further validation of the expression of these DELncRNAs might be helpful to better tailor breast cancer prognosis and treatment.
Collapse
Affiliation(s)
- Ana Carolina Pavanelli
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo 01246-903, Brazil; (A.C.P.); (F.R.M.); (L.R.C.B.)
- Center for Translational Research in Oncology, Cancer Institute of São Paulo, São Paulo 01246-903, Brazil
| | - Flavia Rotea Mangone
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo 01246-903, Brazil; (A.C.P.); (F.R.M.); (L.R.C.B.)
- Center for Translational Research in Oncology, Cancer Institute of São Paulo, São Paulo 01246-903, Brazil
| | - Luciana R. C. Barros
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo 01246-903, Brazil; (A.C.P.); (F.R.M.); (L.R.C.B.)
- Center for Translational Research in Oncology, Cancer Institute of São Paulo, São Paulo 01246-903, Brazil
| | - Juliana Machado-Rugolo
- Department of Pathology, University of São Paulo Medical School (USP), São Paulo 01246-903, Brazil; (J.M.-R.); (V.L.C.)
- Health Technology Assessment Center (NATS), Clinical Hospital (HCFMB), Medical School of São Paulo State University (UNESP), Botucatu, São Paulo 01246-903, Brazil
| | - Vera L. Capelozzi
- Department of Pathology, University of São Paulo Medical School (USP), São Paulo 01246-903, Brazil; (J.M.-R.); (V.L.C.)
| | - Maria A. Nagai
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo 01246-903, Brazil; (A.C.P.); (F.R.M.); (L.R.C.B.)
- Center for Translational Research in Oncology, Cancer Institute of São Paulo, São Paulo 01246-903, Brazil
- Correspondence:
| |
Collapse
|
25
|
Dan W, Shi L, Wang L, Wu D, Huang X, Zhong Y. PP7080 expedites the proliferation and migration of lung adenocarcinoma cells via sponging miR-670-3p and regulating UHRF1BP1. J Gene Med 2021; 23:e3341. [PMID: 33844396 DOI: 10.1002/jgm.3341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND An increasing body of evidence has revealed that long non-coding RNAs play a significant part in a variety of human cancers, including lung adenocarcinoma (LUAD). METHODS The expression of PP7080, miR-670-3p and UHRF1BP1 in LUAD cells and tissues was detected using a quantitative real-time polymerase chain reaction. The role of PP7080 in LUAD cells was validated by CCK-8, flow cytometry, colony formation, transwell and wound healing assays. The binding capacity between PP7080/UHRF1BP1 and miR-670-3p was confirmed by luciferase reporter assays. Moreover, the interactional mechanism among PP7080, miR-670-3p and UHRF1BP1 was determined by means of RNA immunoprecipitation and western blot assays. RESULTS The expression level of PP7080 is up-regulated in LUAD cells and tissues compared to their matched controls. Down-regulation of PP7080 restrained the proliferative and migratory abilities of LUAD cells, but induced cell apoptosis. PP7080 up-regulation led to the opposite results. Moreover, the binding ability between miR-670-3p and PP7080/UHRF1BP1 in LUAD cells was confirmed. A rescue assay revealed that PP7080 contributes to LUAD development by modulating the miR-670-3p/UHRF1BP1 signaling pathway. CONCLUSIONS PP7080 expedites the proliferation and migration of LUAD cell via sponging miR-670-3p and modulating UHRF1BP1.
Collapse
Affiliation(s)
- Weibin Dan
- Department of Oncology, The People's Hospital of Tongcheng, Xianning, Hubei, China
| | - Lei Shi
- Cancer Center, People's Hospital of Wuhan University, Wuhan, Hubei, China
| | - Li Wang
- Department of Oncology, The People's Hospital of Tongcheng, Xianning, Hubei, China
| | - Dahe Wu
- Department of Oncology, The People's Hospital of Tongcheng, Xianning, Hubei, China
| | - Xiaofang Huang
- Department of Oncology, The People's Hospital of Tongcheng, Xianning, Hubei, China
| | - Yong Zhong
- Department of Oncology, The People's Hospital of Tongcheng, Xianning, Hubei, China
| |
Collapse
|
26
|
Yan H, Liu G, Liang Y, Wu W, Xia R, Jiao L, Shen H, Jia Z, Wang Q, Wang Z, Kong Y, Ying B, Wang H, Wang C. Up-regulated long noncoding RNA AC007128.1 and its genetic polymorphisms associated with Tuberculosis susceptibility. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1018. [PMID: 34277818 PMCID: PMC8267308 DOI: 10.21037/atm-21-2724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/17/2021] [Indexed: 02/05/2023]
Abstract
Background Tuberculosis (TB) remains a major public health problem. Long non-coding RNAs (lncRNAs) are important regulators of gene expression. In this study, we explored the association between the expression of lncRNA AC007128.1 and TB susceptibility. Methods Three single-nucleotide polymorphisms (SNPs) (rs12333784, rs6463794, and rs720964) of lncRNA AC007128.1 were selected using the 1000 Genomes Project database and offline software Haploview V4.2, and were genotyped by a customized 2×48-Plex SNPscan™ Kit. Results We identified two differentially expressed lncRNA including AC007128.1 and AP001065.3 in comparisons of expression profiles between ATB vs. LTBI, LTBI vs. HCs, and AC700128.1 expression was specifically and significantly up-regulated in TB patients by verification of external data. Gene Ontology functional enrichment analysis and co-expression network showed up-regulated mRNA was mainly involved in negative regulation of the G protein-coupled receptor (GPCR) signaling pathway, and FPR1 and CYP27B1 were involved in the co-expression of AC007128.1. Using the 1000 Genomes Project, software Haploview V4.2, and SNP genotype, we screened out SNP rs12333784 which locus at 7p21.3 in AC007128.1 associated with TB susceptibility. The G carrier of rs12333784 was then finally verified to be significantly associated with pulmonary TB (PTB) and extrapulmonary tuberculosis (EPTB) susceptibility (pBonferroni =0.03878), and a similar but more significant effect was observed under the dominant model analysis (pBonferroni =0.013, OR =1.349, 95% CI, 1.065–1.709). In addition, the GG + GA genotype of SNP rs12333784 was significantly correlated with higher glucose (GLU) (P=0.03), higher gamma-glutamyl transferase (GGT) (P=0.05), and higher erythrocyte sedimentation rate (ESR) (P=0.05). Conclusions Our findings show lncRNA AC007128.1 can be regarded as biomarkers discriminating between ATB and LTBI and may also be a diagnostic biomarker for LBTI. These findings may aid clinical decision making in the management of TB.
Collapse
Affiliation(s)
- Hong Yan
- Department of Clinical Laboratory Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, China.,Laboratory Medicine Center, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Guoye Liu
- Department of Laboratory Medicine, Affiliated Brain Hospital of Nanjing Medical University (Chest Branch), Nanjing, China
| | - Yuan Liang
- The Affiliated Cancer Hospital & Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Research Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Xia
- Department of Laboratory Medicine, Affiliated Brain Hospital of Nanjing Medical University (Chest Branch), Nanjing, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Han Shen
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhijun Jia
- Department of Nuclear Medicine, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qian Wang
- Department of Laboratory Medicine, Affiliated Brain Hospital of Nanjing Medical University (Chest Branch), Nanjing, China
| | - Zhiqiang Wang
- Department of Laboratory Medicine, Affiliated Brain Hospital of Nanjing Medical University (Chest Branch), Nanjing, China
| | - Yi Kong
- Department of Clinical Laboratory Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hualiang Wang
- Department of Molecular Biology, Shanghai Centre for Clinical Laboratory, Shanghai, China
| | - Chengbin Wang
- Department of Clinical Laboratory Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Lu M, Wu Y, Gao W, Tian Y, Wang G, Liu A, Chen W. Novel Non-coding RNA Analysis in Multiple Myeloma Identified Through High-Throughput Sequencing. Front Genet 2021; 12:625019. [PMID: 34108986 PMCID: PMC8181418 DOI: 10.3389/fgene.2021.625019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
This study aimed to explore the potential effects of novel non-coding ribose nucleic acids (ncRNAs) in patients with multiple myeloma (MM). The gene expression profile of plasma cells was used for sequence analysis to explore the expression pattern of ncRNAs in MM. The expression patterns of non-coding RNAs in MM were analyzed by RNA sequencing (whole-transcriptome-specific RNA sequencing). Next, the expression of the selected ncRNAs was verified by quantitative real-time polymerase chain reaction. Further, the lncRNA-associated competitive endogenous RNA network in MM was elucidated using deep RNA-seq. Differentially expressed (DE) ncRNAs were significantly regulated in patients with MM. DE target lncRNAs were analyzed by cis and trans targeting prediction. Two new lncRNAs were shown to be related to MM oncogenes. MSTRG.155519 played a carcinogenic role in myeloma by targeting CEACAM1; MSTRG.13132 was related to FAM46C. Finally, the network of lncRNA–mRNA–miRNA in MM was constructed in this study. The expression of non-coding RNAs through sequence and functional analyses might be helpful for further studies on the pathogenesis of MM and the development of new MM-targeted therapy for non-coding RNAs.
Collapse
Affiliation(s)
- Minqiu Lu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Department of Hematology, Beijing Jishuitan Hospital, Fourth Medical College of Peking University, Beijing, China
| | - Yin Wu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wen Gao
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ying Tian
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guorong Wang
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Aijun Liu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenming Chen
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Non-coding RNA in cancer. Essays Biochem 2021; 65:625-639. [PMID: 33860799 PMCID: PMC8564738 DOI: 10.1042/ebc20200032] [Citation(s) in RCA: 354] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Majority of the human genome is transcribed to RNAs that do not encode proteins. These non-coding RNAs (ncRNAs) play crucial roles in regulating the initiation and progression of various cancers. Given the importance of the ncRNAs, the roles of ncRNAs in cancers have been reviewed elsewhere. Thus, in this review, we mainly focus on the recent studies of the function, regulatory mechanism and therapeutic potential of the ncRNAs including microRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA) and PIWI interacting RNA (piRNA), in different type of cancers.
Collapse
|
29
|
Lyu L, Zhang S, Deng Y, Wang M, Deng X, Yang S, Wu Y, Dai Z. Regulatory mechanisms, functions, and clinical significance of CircRNAs in triple-negative breast cancer. J Hematol Oncol 2021; 14:41. [PMID: 33676555 PMCID: PMC7937293 DOI: 10.1186/s13045-021-01052-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
Circular RNAs (circRNAs) are a new class of endogenous regulatory RNAs characterized by covalently closed cyclic structure lacking poly-adenylated tails, and are capable of regulating gene expression at transcription or post-transcription levels. Recently, plentiful circRNAs have been discovered in breast cancer and some circRNAs expression profiles are specifically involved in the triple-negative breast cancer (TNBC). TNBC is a type of malignant tumor defined by the lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Considering its clinical characteristics of high invasion, metastasis, poor prognosis, and lack of effective response to conventional chemotherapies or targeted therapies, it could be a promosing option to discover specific circRNAs as new targets for TNBC treatment. Meanwhile, accumulating evidence has demonstrated that circRNAs are dysregulated in TNBC tissues and are correlated with clinicopathological features and prognosis of TNBC patients. Furthermore, looking for circRNAs with high specificity and sensitivity will provide a new opportunity for the early diagnosis, clinical treatment, and prognosis monitoring of TNBC. Herein, we reviewed the biogenesis, regulatory mechanisms, and biological functions of circRNAs in TNBC and summarized the relationship between circRNAs expression and the clinicopathology, diagnosis, and prognosis of patients with TNBC.
Collapse
Affiliation(s)
- Lijuan Lyu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shizhen Zhang
- The Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Si Yang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
30
|
Li H, Liang W, Zhang H, Shui Y, Zhang Z. MicroRNA-4429 restrains colorectal cancer cell invasion and migration via regulating SMAD3-induced epithelial-mesenchymal transition. J Cell Physiol 2021; 236:5875-5884. [PMID: 33655506 DOI: 10.1002/jcp.30271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 01/03/2023]
Abstract
Colorectal cancer (CRC) is one of the commonest human cancers and the fourth primary cause of cancer-related death. Previous studies have reported that miR-4429 develops anticancer function in follicular thyroid carcinoma and non-small cell lung cancer. However, whether miR-4429 is implicated in the CRC progression remains to be clarified. The aim of our current study was to explore the potential role of miR-4429 in CRC. According to the result of quantitative real-time polymerase chain reaction analysis, miR-4429 was expressed at a low level in CRC cells. Gain-of-function assays showed that the upregulation of miR-4429 inhibited cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process in CRC, whereas miR-4429 inhibition led to the opposite results. It was uncovered from mechanism experiments that miR-4429 targeted forkhead box M1 (FOXM1) and therefore regulating SMAD family member 3 (SMAD3) expression. Rescue experiments elucidated that miR-4429 influenced cell proliferation, migration, invasion, and EMT process in CRC by targeting FOXM1 to inactivate SMAD3. In conclusion, our study revealed that miR-4429 targeted FOXM1 to decrease SMAD3 expression and thus impeding cell proliferation, migration, invasion, and EMT process of CRC cells.
Collapse
Affiliation(s)
- Hongwen Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Weijie Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yifang Shui
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhe Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Chen N, Wang Z, Yang X, Geng D, Fu J, Zhang Y. Integrated analysis of competing endogenous RNA in esophageal carcinoma. J Gastrointest Oncol 2021; 12:11-27. [PMID: 33708421 DOI: 10.21037/jgo-20-615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The Competing endogenous RNA (CeRNA) network plays important roles in the development and progression of multiple human cancers. Increasing attention has been paid to CeRNA in esophageal carcinoma (ESCA). Methods We explored The Cancer Genome Atlas (TCGA) database and then analyzed the RNAs of 142 samples to obtain long non-coding RNAs (lncRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNAs) with different expression trends alongside the progress of ESCA. A series test of cluster (STC) analysis was carried out to identify a set of unique model expression tendencies. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to validate the function of key genes that were obtained from the STC analysis. Results Through our analysis, 272 lncRNAs, 87 miRNAs, and 692 mRNAs showed upward expression or downward expression trends, and these molecules were tightly involved in cell cycle, pathways in cancer, metabolic processes, and protein phosphorylation, among others. Ultimately, we constructed a CeRNA network containing a total of 71 lncRNAs, 56 miRNAs, and 125 mRNAs. The overall survival (OS) was analyzed using univariate Cox regression analysis to clarify the relationship between these key molecules from the CeRNA network and the prognosis of ESCA patients. Through survival analysis, we finally screened out two lncRNAs (DLEU2, RP11-890B15.3), three miRNAs (miR-26b-3p, miR-92a-3p, miR-324-5p), and one mRNA (SIK2) as crucial prognostic factors for ESCA. Conclusions The novel CeRNA network that we constructed will provide new novel prognostic biomarkers and therapeutic targets for patients with ESCA.
Collapse
Affiliation(s)
- Nanzheng Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhi Wang
- Nursing Department, Xi'an Chest Hospital, Xi'an, China
| | - Xiaomei Yang
- Hospital 521 of China's Ordnance Industry Group, Xi'an, China
| | - Donghong Geng
- School of Continuing Education of Xi'an Jiaotong University, Xi'an, China
| | - Junke Fu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Song D, Wu S, Hu H, Dai X, Wang X. Long Noncoding RNA MIAT Regulates the Process of Laryngeal Squamous Cell Carcinoma Through Regulation of miR-147a/BCOR. Arch Med Res 2021; 52:371-379. [PMID: 33419582 DOI: 10.1016/j.arcmed.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Myocardial infarction associated transcript (MIAT) is a long non-coding RNA (lncRNA) that can play oncogenic role in different kinds of cancers. However, its role in laryngeal squamous cell carcinoma (LSCC) remains unknown. AIM The study aimed to explore the effect of MIAT/miR-147a/BCOR axis on LSCC progression. METHODS The expression pattern of MIAT, miR-147a and BCOR in LSCC samples and cells was identified through qRT-PCR. The proliferation of LSCC cells was assessed by colony formation assay and CCK-8 assays. Transwell assays were implemented to test the migratory and invasive abilities of LSCC cells. Proteins associated with migration and epithelial-mesenchymal transition were probed in transfected LSCC cells by western blot. The interaction of miR-147a with MIAT or BCOR was analyzed by luciferase reporter assays, RNA pulls down assays and Ago2-RIP assays. RESULTS High MIAT expression was closely correlated with unfavorable prognosis. MIAT knockdown inhibited cell proliferation, migration, invasion and EMT progress in LSCC. MIAT acted as a miR-147a sponge to increase the expression of BCOR. Silencing of MIAT suppressed LSCC progression through miR-147a/BCOR axis. CONCLUSION MIAT acts as an oncogene by controlling miR-147a/BCOR axis in LSCC.
Collapse
Affiliation(s)
- Daoliang Song
- Otolaryngology Head and Neck Surgery, Zibo Central Hospital, Zibo, Shandong, China
| | - Shuo Wu
- The Third Affiliated Hospital, Sun Yat-sen University School of Life Science, Sun Yat-sen University, Tianhe District, Guangzhou, Guangdong, China
| | - Huihua Hu
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, Zengdu District, Suizhou, Hubei, China
| | - Xinyi Dai
- The Third Affiliated Hospital, Sun Yat-sen University School of Life Science, Sun Yat-sen University, Tianhe District, Guangzhou, Guangdong, China
| | - Xiaocong Wang
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, Zengdu District, Suizhou, Hubei, China.
| |
Collapse
|
33
|
Liu W, Zhou X, Li Y, Jiang H, Chen A. Long Non-Coding RNA NORAD Inhibits Breast Cancer Cell Proliferation and Metastasis by Regulating miR-155-5p/SOCS1 Axis. J Breast Cancer 2021; 24:330-343. [PMID: 34190442 PMCID: PMC8250099 DOI: 10.4048/jbc.2021.24.e32] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/09/2021] [Accepted: 05/30/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose Non-coding RNA activated by DNA damage (NORAD) has been reported to be a cancer-related long non-coding RNA (lncRNA) implicated in the progression of several cancers; however, its role in breast cancer (BC) has not yet been clarified. Methods Quantitative real-time polymerase chain reaction was used to examine NORAD, microRNA (miR)-155-5p, and suppressor of cytokine signaling 1 (SOCS1) mRNA expression levels. Western blotting was used to analyze SOCS1 protein expression. The malignancy of BC cells was assessed using the cell counting kit-8 (CCK-8), BrdU, and Transwell assays. Bioinformatics analysis, RNA immunoprecipitation assay, and dual-luciferase reporter gene assays were used to verify the targeted relationship between NORAD and miR-155-5p. Additionally, the regulatory effects of NORAD and miR-155-5p on SOCS1 expression were determined by western blotting. Results NORAD expression was significantly reduced in BC cell lines and tissues, and its low expression was associated with poor tumor tissue differentiation. NORAD overexpression repressed BC cell proliferation, migration, and invasion, whereas its knockdown produced the opposite effects. Additionally, miR-155-5p was found to be a target of NORAD, and the biological functions of miR-155-5p and NORAD were counteractive. MiR-155-5p was confirmed to target SOCS1, and SOCS1 was found to be positively regulated by NORAD. Conclusion NORAD suppresses miR-155-5p to upregulate SOCS1, thereby repressing the proliferation, migration, and invasion of BC cells.
Collapse
Affiliation(s)
- Weipeng Liu
- Department of General Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, China
| | - Xin Zhou
- Department of General Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, China
| | - Yuanqiang Li
- Department of General Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, China
| | - Hong Jiang
- Department of General Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, China
| | - Aijun Chen
- Department of General Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, China.
| |
Collapse
|
34
|
Ghafouri-Fard S, Azimi T, Taheri M. Myocardial Infarction Associated Transcript (MIAT): Review of its impact in the tumorigenesis. Biomed Pharmacother 2020; 133:111040. [PMID: 33378948 DOI: 10.1016/j.biopha.2020.111040] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022] Open
Abstract
Myocardial Infarction Associated Transcript (MIAT) is a non-coding transcript which is located on chromosome 22q12.1. This lncRNA can regulate expression of genes at both transcriptional and post-transcriptional stages. It has been firstly recognized as a susceptibility locus for myocardial infarction. Subsequently, its role in the development of several human cancers has been acknowledged. Numerous researches have reported the impact of MIAT silencing on the reduction of cell viability, proliferation and invasion while enhancement of cellular senescence and apoptosis. Consistently, investigations in the xenograft models have verified MIAT role in the promotion of tumor growth. Numerous microRNAs such as miR-214, miR-22-3p, miR-520d-3p, miR-203a, miR-29a-3p, miR-141, miR-150, miR-302, miR-29, and miR-155-5p have functional interactions with this lncRNA. Moreover, dysregulation of MIAT has been associated with abnormal activity of numerous cancer-related signaling cascades such as Hippo, PI3K/Akt/c-Met and Wnt/β-catenin. In the current review, we explain the role of MIAT in the cancer evolution based on the outcomes of in vitro, in vivo and clinical studies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Azimi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
He J, Xue Y, Wang Q, Zhou X, Liu L, Zhang T, Shang C, Ma J, Ma T. Long non-coding RNA MIAT regulates blood tumor barrier permeability by functioning as a competing endogenous RNA. Cell Death Dis 2020; 11:936. [PMID: 33127881 PMCID: PMC7603350 DOI: 10.1038/s41419-020-03134-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Blood-tumor barrier (BTB) presents a major obstacle to brain drug delivery. Therefore, it is urgent to enhance BTB permeability for the treatment of glioma. In this study, we demonstrated that MIAT, ZAK, and phosphorylated NFκB-p65 (p-NFκB-p65) were upregulated, while miR-140-3p was downregulated in glioma-exposed endothelial cells (GECs) of BTB compared with those in endothelial cells cocultured with astrocytes (ECs) of blood-brain barrier (BBB). MIAT inhibited miR-140-3p expression, increased the expression of ZAK, enhanced the ratio of p-NFκB-p65:NFκB-p65, and promoted the endothelial leakage of BTB. Our current study revealed that miR-140-3p was complementary to the ZAK 3'untranslated regions (3'-UTR), and luciferase activity of ZAK was inhibited by miR-140-3p in 293T cells. MiR-140-3p silencing resulted in an increase in BTB permeability by targeting ZAK, while overexpression of miR-140-3p had the opposite results in GECs of BTB. Overexpression of ZAK induced an increase in BTB permeability, and this effect was related to ZAK's ability to mediate phosphorylation of NFκB-p65. Conversely, ZAK silencing get opposite results in GECs of BTB. As a molecular sponge of miR-140-3p, MIAT attenuated its negative regulation of the target gene ZAK by adsorbing miR-140-3p. P-NFκB-p65 as a transcription factor negatively regulated the expression of TJ-associated proteins by means of chip assay and luciferase assay. Single or combined application of MIAT and miR-140-3p effectively promoted antitumor drug doxorubicin (Dox) across BTB to induce apoptosis of glioma cells. In summary, MIAT functioned as a miR-140-3p sponge to regulate the expression of its target gene ZAK, which contribution to phosphorylation of NFκB-p65 was associated with an increase in BTB permeability by down-regulating the expression of TJ associated proteins, thereby promoting Dox delivery across BTB. These results might provide a novel strategy and target for chemotherapy of glioma.
Collapse
Affiliation(s)
- Jiayuan He
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Qingyuan Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Xinxin Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110034, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Tianyuan Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Chao Shang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
36
|
Akshaya RL, Akshaya N, Selvamurugan N. A computational study of non-coding RNAs on the regulation of activating transcription factor 3 in human breast cancer cells. Comput Biol Chem 2020; 89:107386. [PMID: 33068918 DOI: 10.1016/j.compbiolchem.2020.107386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/05/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022]
Abstract
We previously reported that activating transcription factor 3 (ATF3), an adaptive response gene, plays a dichotomous role in regulating several molecular processes during breast cancer progression. ATF3 promoted the expression of runt-related transcription factor 2 (Runx2, a metastatic gene) and activated matrix metalloproteinase 13 (MMP13, an invasive gene), thereby fostering proliferation and bone-metastasis of the breast cancer cells. Targeting ATF3 may mitigate the metastatic spread of breast cancer and improve the patient's lifespan. Non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are the new-era regimens that are currently utilized for diagnosis and treatment of a variety of malignancies including cancer. mir-3674 putatively targets ATF3, but its expression was significantly increased in human breast cancer cells (MDA-MB231), compared to normal human mammary epithelial cells (MCF-10A). Our in silico analysis identified a few lncRNAs and circRNAs showing their putative binding sites for miR-3674. Thus, mir-3674, despite its abundance in the MDA-MB231 cells, could not effectively target ATF3, which could be due to the sponging mechanism of lncRNAs and circRNAs towards mir-3674. More extensive in vitro and in vivo studies are required to validate this and expand the diagnostic and therapeutic perspectives of breast cancer.
Collapse
Affiliation(s)
- R L Akshaya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - N Akshaya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
37
|
Lv M, Mao Q, Li J, Qiao J, Chen X, Luo S. Knockdown of LINC00665 inhibits proliferation and invasion of breast cancer via competitive binding of miR-3619-5p and inhibition of catenin beta 1. Cell Mol Biol Lett 2020; 25:43. [PMID: 32983239 PMCID: PMC7513511 DOI: 10.1186/s11658-020-00235-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background Long intergenic non-protein coding RNA00665 (LINC00665) plays a crucial tumorigenic role in many cancers, such as gastric cancer and lung adenocarcinoma. However, its role and mechanism of action in the progression of breast cancer (BC) are unknown. Methods LINC00665 expression levels were determined using quantitative polymerase chain reaction analysis with BC tissues and cell lines. BC cell proliferation was tested by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, whereas BC cell migration and invasion capabilities were analyzed by performing transwell migration assays. Percentages of apoptotic cells were measured by flow cytometry. Interactions between LINC00665 and miR-3169-5p were examined by performing luciferase reporter assays, and the expression levels of proteins, such as β-catenin, were examined by western blot analysis. Results LINC00665 was expressed at high levels in BC tissues and cells. Upregulated LINC00665 expression correlated with tumor size and tumor, node, and metastasis stages, but not with the age of patients. LINC00665 knockdown inhibited BC cell proliferation, migration, and invasion, whereas it promoted apoptosis. Moreover, bioinformatics analysis and the luciferase reporter assay revealed that LINC00665 bound the microRNA (miR) miR-3619-5p. miR-3619-5p expression correlated negatively with LINC00665 expression in BC tissues. miR-3619-5p overexpression inhibited BC cell proliferation, migration, and invasion, but promoted apoptosis. Simultaneous knockdown of LINC00665 and miR-3619-5p led to increased cell proliferation, migration, and invasion, and inhibited apoptosis. Additionally, catenin beta 1, which encodes the β-catenin protein, was the target gene of miR-3619-5p. β-catenin expression clearly decreased after LINC00665 knockdown and miR-3619-5p overexpression, but increased after simultaneous knockdown of LINC00665 and miR-3619-5p. Conclusion LINC00665 knockdown inhibited BC cell proliferation and invasion by binding miR-3619-5p and inhibiting β-catenin expression.
Collapse
Affiliation(s)
- Minhao Lv
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan P.R. China
| | - Qixin Mao
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan P.R. China
| | - Juntao Li
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan P.R. China
| | - Jianghua Qiao
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan P.R. China
| | - Xiuchun Chen
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan P.R. China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008 Henan P.R. China
| |
Collapse
|
38
|
Jiang H, Li X, Wang W, Dong H. Long non-coding RNA SNHG3 promotes breast cancer cell proliferation and metastasis by binding to microRNA-154-3p and activating the notch signaling pathway. BMC Cancer 2020; 20:838. [PMID: 32883233 PMCID: PMC7469338 DOI: 10.1186/s12885-020-07275-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 08/09/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is a malignant tumor that occurs in the epithelial tissue of the breast gland. Long non-coding RNA (lncRNA) small nucleolar RNA host gene 3 (SNHG3) has been found to promote BC cell proliferation and invasion by regulating the microRNA (miR)-101/zinc-finger enhancer binding axis in BC. Herein, the objective of the present study is to evaluate the effect of lncRNA SNHG3 on BC cell proliferation and metastasis with the Notch signaling pathway. METHODS Differentially expressed lncRNA in BC tissues and normal breast tissues was analyzed. SNHG3 si-RNA-1 and SNHG3 si-RNA-2 were constructed to detect the mechanism of SNHG3 interference in BC cell proliferation, viability, migration and invasion. Then, dual-luciferase reporter gene assay was utilized to verify the binding relation between SNHG3 and miR-154-3p as well as miR-154-3p and Notch2. Moreover, xenograft transplantation was applied to confirm the in vitro experiments. RESULTS Highly expressed SNHG3 was observed in BC tissues. The growth of BC cells in vivo and in vitro was evidently repressed after silencing SNHG3. BC cell invasion and migration were inhibited by silencing SNHG3 in vitro. SNHG3 could act as a competing endogenous RNA of miR-154-3p and upregulate the Notch signaling pathway to promote BC cell development. Activation of the Notch signaling pathway can partly reverse the inhibition of cell activity induced by silencing SNHG3. CONCLUSION Our study demonstrated that interfered lncRNA SNHG3 promoted BC cell proliferation and metastasis by activating the Notch signaling pathway. This investigation may offer new insight for BC treatment.
Collapse
Affiliation(s)
- Hongnan Jiang
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Xiaojun Li
- Department of Rdaiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Wei Wang
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, PR China.
| |
Collapse
|
39
|
Toraih EA, El-Wazir A, Ageeli EA, Hussein MH, Eltoukhy MM, Killackey MT, Kandil E, Fawzy MS. Unleash multifunctional role of long noncoding RNAs biomarker panel in breast cancer: a predictor classification model. Epigenomics 2020; 12:1215-1237. [PMID: 32812439 DOI: 10.2217/epi-2019-0291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: We aimed to explore the circulating expression profile of nine lncRNAs (MALAT1, HOTAIR, PVT1, H19, ROR, GAS5, ANRIL, BANCR, MIAT) in breast cancer (BC) patients relative to normal and risky individuals. Methods: Serum relative expressions of the specified long non-coding RNAs were quantified in 155 consecutive women, using quantitative reverse-transcription PCR. Random Forest (RF) and decision tree were also applied. Results: Significant MALAT1 upregulation and GAS5 downregulation could discriminate risky women from healthy controls. Overexpression of the other genes showed good diagnostic performances. Lower GAS5 levels were associated with metastasis and recurrence. RF model revealed a better performance when combining gene expression patterns with risk factors. Conclusion: The studied panel could be utilized as diagnostic/prognostic biomarkers in BC, providing promising epigenetic-based therapeutic targets.
Collapse
Affiliation(s)
- Eman A Toraih
- Department of Histology & Cell Biology, Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Aya El-Wazir
- Department of Histology & Cell Biology, Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 82911, Saudi Arabia
| | - Mohammad H Hussein
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Mohamed M Eltoukhy
- College of Computing and Information Technology, Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia.,Department of Computer Science, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt
| | - Mary T Killackey
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Emad Kandil
- Department of Surgery, Division of Endocrine & Oncologic Surgery, Tulane University, School of Medicine, New Orleans, LA 70112, USA
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| |
Collapse
|
40
|
Li D, Hu X, Yu S, Deng S, Yan M, Sun F, Song J, Tang L. Silence of lncRNA MIAT-mediated inhibition of DLG3 promoter methylation suppresses breast cancer progression via the Hippo signaling pathway. Cell Signal 2020; 73:109697. [PMID: 32593652 DOI: 10.1016/j.cellsig.2020.109697] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
As the foremost common female malignancy, breast cancer (BC) poses a significant public health stumbling block. Although treatment protocols have improved over the years, the overall prognosis of BC remains unsatisfactory. Extensive investigations have taken place into long non coding RNAs (lncRNAs) pertaining to their involvement in carcinogenesis. The current study in connection with bioinformatics tools aimed to identify the myocardial infarction associated transcript (MIAT) as a BC-related differentially expressed lncRNA in an attempt to elucidate the effect of MIAT in BC cells. MIAT was initially overexpressed while DLG3 was down-regulated in BC. BC cells were subsequently treated with si-MIAT or/and si-DLG3, after which the expressions of DLG3 and the Hippo signaling pathway-related proteins were evaluated to analyze their regulatory mechanism in BC, which indicated that MIAT inhibition up-regulated DLG3 and activated the Hippo signaling pathway to suppress proliferation and promote apoptosis of BC cells. MS-PCR and RIP assays demonstrated that MIAT bound to the methylation proteins DNMT1, DNMT3A and DNMT3B, promoted the methylation of CpG islands in DLG3 promoter and inhibited the DLG3 expression. Moreover, our data suggested that DLG3 could bind to MST2 and regulate LAST1, which prevented the nuclear translocation of YAP. The in vitro results were further verified via the in vivo findings. Taken together, the central findings of our study demonstrate that MIAT silencing inhibits BC progression by means of up-regulating DLG3 via activation of the Hippo signaling pathway, highlighting a novel potential therapeutic target for the treatment of the BC.
Collapse
Affiliation(s)
- Dezhi Li
- Department of Oncology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China; Department of Oncology, North Sichuan Medical College Affiliated Nanchong Central Hospital, Nanchong 637000, China.
| | - Xingsheng Hu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sijia Yu
- Department of Oncology, North Sichuan Medical College Affiliated Nanchong Central Hospital, Nanchong 637000, China
| | - Shishan Deng
- Department of Anatomy, School of Basic Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Min Yan
- Department of Oncology, North Sichuan Medical College Affiliated Nanchong Central Hospital, Nanchong 637000, China
| | - Fengfei Sun
- Department of Oncology, North Sichuan Medical College Affiliated Nanchong Central Hospital, Nanchong 637000, China; Department of Respiration, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Junmei Song
- Department of Oncology, North Sichuan Medical College Affiliated Nanchong Central Hospital, Nanchong 637000, China
| | - Lina Tang
- Department of Oncology, North Sichuan Medical College Affiliated Nanchong Central Hospital, Nanchong 637000, China
| |
Collapse
|
41
|
Da CM, Gong CY, Nan W, Zhou KS, Wu ZL, Zhang HH. The role of long non-coding RNA MIAT in cancers. Biomed Pharmacother 2020; 129:110359. [PMID: 32535389 DOI: 10.1016/j.biopha.2020.110359] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), a kind of non-coding single-strand RNAs, play an important role as carcinogenic genes or tumor suppressors in the development of human cancer. Myocardial infarction-associated transcript (MIAT) was first identified as a lncRNA in 2006 and originally isolated as a candidate gene for myocardial infarction. Later, it was reported that MIAT exhibits regulatory effects on the human cell cycle. Since its discovery, MIAT has also been identified as a carcinogenic regulator in many malignant tumors. High expression of MIAT is related to the clinicopathological characteristics of cancer patients. It can also regulate cell proliferation, invasion, metastasis, and anti-apoptosis through a variety of mechanisms. Therefore, MIAT is considered a potential biomarker and therapeutic target in cancer. In this review, we summarize the biological function, mechanism, and potential clinical significance of MIAT during tumorigenesis.
Collapse
Affiliation(s)
- Chao-Ming Da
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Chao-Yang Gong
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Wei Nan
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China
| | - Kai-Sheng Zhou
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China
| | - Zuo-Long Wu
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
42
|
Yousif AA, Eisa HA, Nawar AM, Abd El-latif MS, Behiry EG. Study of serum microRNA-99a relative expression as a diagnostic and prognostic noninvasive biomarker of breast cancer in Egyptian females. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Xu S, Wang Q, Kang Y, Liu J, Yin Y, Liu L, Wu H, Li S, Sui S, Shen M, Zheng W, Pang D. Long Noncoding RNAs Control the Modulation of Immune Checkpoint Molecules in Cancer. Cancer Immunol Res 2020; 8:937-951. [PMID: 32321773 DOI: 10.1158/2326-6066.cir-19-0696] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/01/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNA) that are associated with immune checkpoints have not been identified, and the mechanism by which such lncRNAs might regulate the expression of immune checkpoints is unknown in human cancer. Immune checkpoint-associated lncRNAs (ICP-lncRNA) were identified and validated via a comprehensive bioinformatic analysis of The Cancer Genome Atlas data. These ICP-lncRNAs were involved in key immune response and immune cell receptor signaling pathways. The expression of ICP-lncRNAs was upregulated and correlated with a poor prognosis in patients with cancer. HLA complex P5 (HCP5) and myocardial infarction associated transcript (MIAT) promoted tumor growth and upregulated the expression of PD-L1/CD274 via a competing endogenous RNA mechanism of sponging miR-150-5p. The combination of MIAT knockdown and PD-L1 antibody administration showed a synergistic inhibitory effect on tumor growth. Finally, the expression of both HCP5 and MIAT was confirmed to be transcriptionally suppressed by CCCTC-binding factor (CTCF), and lipopolysaccharide induced CTCF eviction from the HCP5 and MIAT promoters, attenuating the transcriptionally suppressive activity of CTCF. This study enlarges the functional landscape of known lncRNAs in human cancer and indicates novel insights into their roles in the field of tumor immunity and immunotherapy. These findings may aid in the comprehensive management of human cancer with immunotherapy.
Collapse
Affiliation(s)
- Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yujuan Kang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hao Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Siwei Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Meiying Shen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Wei Zheng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China. .,Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
44
|
Li Y, Li T, Yang Y, Kang W, Dong S, Cheng S. YY1-induced upregulation of FOXP4-AS1 and FOXP4 promote the proliferation of esophageal squamous cell carcinoma cells. Cell Biol Int 2020; 44:1447-1457. [PMID: 32159250 DOI: 10.1002/cbin.11338] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/08/2020] [Indexed: 02/06/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) belongs to one of the most common malignant tumors worldwide and possesses high mortality. Long non-coding RNAs (lncRNAs) have been demonstrated to be essential biological participants in the progression of ESCC. On the basis of bio-informatics prediction, forkhead box P4 antisense RNA 1 (FOXP4-AS1) and forkhead box P4 (FOXP4) were upregulated in esophageal carcinoma samples and were positively correlated with each other. The present study aimed to explore the function of FOXP4-AS1 and FOXP4 in ESCC cells. Function assays disclosed that knockdown of FOXP4-AS1 or FOXP4 efficiently suppressed cell proliferation and induced cell apoptosis. Moreover, FOXP4-AS1 positively regulated FOXP4 by interacting with insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) to stabilize FOXP4 messenger RNA. In addition, FOXP4-AS1 could upregulate the expression of FOXP4 by sponging miR-3184-5p. Finally, we found that Yin Yang 1 (YY1) is a transcription factor that can transcriptionally activate both FOXP4-AS1 and FOXP4 in ESCC cells. In a word, YY1-induced upregulation of FOXP4-AS1 and FOXP4 promote the proliferation of ESCC cells.
Collapse
Affiliation(s)
- Yonghui Li
- Department of Thoracic Surgery, Affiliated Hospital of Hebei University, No. 212, Yuhuadonglu, Hebei, 071000, P.R. China
| | - Tingting Li
- Department of Thoracic Surgery, Affiliated Hospital of Hebei University, No. 212, Yuhuadonglu, Hebei, 071000, P.R. China
| | - Yongbin Yang
- Department of Pathology, School of Medicine, Hebei University, No. 342, Yuhuadonglu, Hebei, 071000, P.R. China
| | - Wenli Kang
- Department of Obstetrics, Affiliated Hospital of Hebei University, No. 212, Yuhuadonglu, Hebei, 071000, P.R. China
| | - Shaoyong Dong
- Department of Thoracic Surgery, Affiliated Hospital of Hebei University, No. 212, Yuhuadonglu, Hebei, 071000, P.R. China
| | - Shujie Cheng
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, No. 212, Yuhuadonglu, Baoding, Hebei, 071000, P.R. China
| |
Collapse
|
45
|
Zhu L, Wang Y, Yang C, Li Y, Zheng Z, Wu L, Zhou H. Long non-coding RNA MIAT promotes the growth of melanoma via targeting miR-150. Hum Cell 2020; 33:819-829. [PMID: 32300960 DOI: 10.1007/s13577-020-00340-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
Melanoma is a common skin cancer and it can lead to high mortality probably by early invasion and metastasis. LncRNA MIAT is involved in tumor proliferation, invasion and epithelial-to-mesenchymal transition (EMT). However, the roles of MIAT in melanoma still require further investigation. Thus, the aim of the study is to investigate the roles of MIAT in melanoma, especially the effects of MIAT on EMT of melanoma cancer cells. The results showed that the expression of MIAT was significantly upregulated in melanoma tissue and cells compared with the normal skin and normal melanocytes; moreover, miR-150 was confirmed as a target of MIAT. Furthermore, knockdown of MIAT inhibited cell proliferation and invasion in melanoma cancer cells and transfection of miR-150 inhibitors partial abrogated the anti-tumor effects of MIAT siRNA. In addition, MIAT siRNA also inhibited the EMT of melanoma cells, while miR-150 inhibitors can reverse the effects of MIAT siRNA. Finally, knockdown of MIAT also inhibited the carcinogenic effects of melanoma in vivo by targeting miR-150. In conclusion, we reported that MIAT promotes the proliferation, invasion and EMT of melanoma cells via targeting miR-150, which suggested that MIAT might be a therapeutic target for the treatment of melanoma.
Collapse
Affiliation(s)
- Lifei Zhu
- Department of Dermatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Yexiao Wang
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Chaoying Yang
- Department of Dermatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Yanchang Li
- Department of Dermatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Zhixin Zheng
- Department of Dermatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Liangcai Wu
- Department of Dermatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.
| | - Hui Zhou
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
46
|
Xu H, Zhou J, Tang J, Min X, Yi T, Zhao J, Ren Y. Identification of serum exosomal lncRNA MIAT as a novel diagnostic and prognostic biomarker for gastric cancer. J Clin Lab Anal 2020; 34:e23323. [PMID: 32274858 PMCID: PMC7439433 DOI: 10.1002/jcla.23323] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Accumulating evidence has demonstrated that long non‐coding RNAs (lncRNAs) MIAT is significantly upregulated in many cancer types including gastric cancer (GC). However, the potential clinical significance of serum exosomal MIAT in GC is unknown. Methods In this study, a total of 109 GC patients, 48 gastric adenoma patients, and 50 healthy individuals were recruited. Serum exosomal MIAT levels were detected in all participants using quantitative real‐time reverse transcription‐polymerase chain reaction (qRT‐PCR). Results The exosomes we extracted from the serum samples were positive for TSG101, CD63, and Flotillin‐1, which were known exosome markers. Serum exosomal MIAT levels were significantly higher in GC patients than in gastric adenoma patients and healthy controls. Interestingly, gastric adenoma patients with higher serum exosomal MIAT expression were more prone to develop GC. In addition, serum exosomal MIAT levels were significantly decreased in post‐treatment blood samples compared to pre‐treatment samples, while markedly increased in the cases suffering recurrence. Moreover, serum exosomal MIAT upregulation was significantly associated with worse clinical variables and shorter survival. Furthermore, serum exosomal MIAT was identified as an independent prognostic factor for GC. Conclusions Collectively, serum exosomal lncRNA MIAT might serve as a promising novel biomarker for monitoring the progression of GC.
Collapse
Affiliation(s)
- Hao Xu
- Department of Interventional Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jin Tang
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xuli Min
- Department of Interventional Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tingting Yi
- Department of Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Zhao
- Department of Interventional Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yongjun Ren
- Department of Interventional Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
47
|
Yang W, Gong P, Yang Y, Yang C, Yang B, Ren L. Circ-ABCB10 Contributes to Paclitaxel Resistance in Breast Cancer Through Let-7a-5p/DUSP7 Axis. Cancer Manag Res 2020; 12:2327-2337. [PMID: 32273769 PMCID: PMC7108723 DOI: 10.2147/cmar.s238513] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Paclitaxel (PTX) is one of the widely used chemotherapy drugs in breast cancer (BC) treatment. Unfortunately, the survival rate of metastatic BC patients remains poor due to PTX resistance. Therefore, uncovering the underlying mechanism behind the PTX resistance of BC cells is crucial for BC therapy. Methods The enrichment of circular RNA ATP binding cassette subfamily B member 10 (circ-ABCB10), let-7a-5p and dual specificity phosphatase 7 (DUSP7) was measured by quantitative real time polymerase chain reaction (qRT-PCR) in PTX-resistant and PTX-sensitive BC tissues and cells. Chemoresistance, apoptosis, invasion and autophagy of BC cells were measured by 3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, transwell invasion assay and Western blot assay, respectively. The binding sites between let-7a-5p and circ-ABCB10 or DUSP7 were predicted by Starbase bioinformatic software, and the combination was confirmed by dual-luciferase reporter assay. The protein expression of DUSP7 was examined by Western blot assay. Murine xenograft model was established to confirm the role of circ-ABCB10 in vivo. Results Circ-ABCB10 depletion promoted the PTX sensitivity and apoptosis while suppressed the invasion and autophagy of PTX-resistant BC cells. Circ-ABCB10 could bind to let-7a-5p in BC cells, and circ-ABCB10 contributed to PTX resistance of BC cells via let-7a-5p. DUSP7 is a direct target of let-7a-5p in BC cells, and the accumulation of DUSP7 reversed the promoting effects of let-7a-5p overexpression on the PTX sensitivity and apoptosis and the inhibitory impact on the invasion and autophagy of PTX-resistant BC cells. Circ-ABCB10 interference suppressed the growth of BC tumors in vivo. Conclusion Circ-ABCB10 mediated PTX resistance, apoptosis, invasion and autophagy of BC cells via let-7a-5p/DUSP7 axis.
Collapse
Affiliation(s)
- Weiping Yang
- Department of Thyroid Breast Surgery, Qingdao Chengyang People's Hospital, Qingdao 266109, Shandong, People's Republic of China
| | - Piguo Gong
- Department of Thyroid Breast Surgery, Qingdao Chengyang People's Hospital, Qingdao 266109, Shandong, People's Republic of China
| | - Yifeng Yang
- Department of Thyroid Breast Surgery, Qingdao Chengyang People's Hospital, Qingdao 266109, Shandong, People's Republic of China
| | - Chunyan Yang
- Obstetric Breast Health Clinic, Qingdao Haici Medical Center, Qingdao 266033, Shandong, People's Republic of China
| | - Baohui Yang
- Department of Internal Medicine, Qingdao Chengyang Second People's Hospital, Qingdao 266109, Shandong, People's Republic of China
| | - Lijun Ren
- Department of Thyroid Breast Surgery, Qingdao Chengyang People's Hospital, Qingdao 266109, Shandong, People's Republic of China
| |
Collapse
|
48
|
The long non-coding RNA MIAT/miR-139-5p/MMP2 axis regulates cell migration and invasion in non-small-cell lung cancer. J Biosci 2020. [DOI: 10.1007/s12038-020-0019-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Yang LW, Wu XJ, Liang Y, Ye GQ, Che YC, Wu XZ, Zhu XJ, Fan HL, Fan XP, Xu JF. miR-155 increases stemness and decitabine resistance in triple-negative breast cancer cells by inhibiting TSPAN5. Mol Carcinog 2020; 59:447-461. [PMID: 32096299 DOI: 10.1002/mc.23167] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/20/2020] [Accepted: 01/31/2020] [Indexed: 12/24/2022]
Abstract
Effective therapeutic targets for triple-negative breast cancer (TNBC), a special type of breast cancer (BC) with rapid metastasis and poor prognosis, are lacking, especially for patients with chemotherapy resistance. Decitabine (DCA) is a Food and Drug Administration-approved DNA methyltransferase inhibitor that has been proven effective for the treatment of tumors. However, its antitumor effect in cancer cells is limited by multidrug resistance. Cancer stem cells (CSCs), which are thought to act as seeds during tumor formation, regulate tumorigenesis, metastasis, and drug resistance through complex signaling. Our previous study found that miR-155 is upregulated in BC, but whether and how miR-155 regulates DCA resistance is unclear. In this study, we demonstrated that miR-155 was upregulated in CD24- CD44+ BC stem cells (BCSCs). In addition, the overexpression of miR-155 increased the number of CD24- CD44+ CSCs, DCA resistance and tumor clone formation in MDA-231 and BT-549 BC cells, and knockdown of miR-155 inhibited DCA resistance and stemness in BCSCs in vitro. Moreover, miR-155 induced stemness and DCA resistance by inhibiting the direct target gene tetraspanin-5 (TSPAN5). We further confirmed that overexpression of TSPAN5 abrogated the effect of miR-155 in promoting stemness and DCA resistance in BC cells. Our data show that miR-155 increases stemness and DCA resistance in BC cells by targeting TSPAN5. These data provide a therapeutic strategy and mechanistic basis for future possible clinical applications targeting the miR-155/TSPAN5 signaling axis in the treatment of TNBC.
Collapse
Affiliation(s)
- La-Wei Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xian-Jin Wu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Yi Liang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guang-Qing Ye
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu-Chuang Che
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Xue-Zhen Wu
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Xiao-Jie Zhu
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Huo-Liang Fan
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Xiang-Ping Fan
- Department of Clinical Laboratory, Huizhou Municipal Central Hospital, Huizhou, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
50
|
Wang Z, Zhang B, Chen Z, He Y, Ru F, Liu P, Chen X. The long noncoding RNA myocardial infarction-associated transcript modulates the epithelial-mesenchymal transition in renal interstitial fibrosis. Life Sci 2020; 241:117187. [PMID: 31863776 DOI: 10.1016/j.lfs.2019.117187] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 01/12/2023]
Abstract
AIMS Renal interstitial fibrosis (RIF) is marked by the epithelial-mesenchymal transition (EMT) and excessive extracellular matrix deposition. The long noncoding RNA myocardial infarction-associated transcript (MIAT) facilitates RIF; however, the molecular mechanism of MIAT in RIF remains unclear. Here, we explored the possible underlying mechanisms through which MIAT modulates RIF. MATERIALS AND METHODS MIAT expression in human renal fibrotic tissues and unilateral ureteral obstruction (UUO) model mice was detected by qPCR. Transforming growth factor β1 (TGF-β1) was introduced to stimulate the EMT in human renal proximal tubular epithelial (HK-2) cells. CCK8, EdU, transwell and wound healing assays were employed to measure cell viability, proliferation, and migration respectively. RNA immunoprecipitation (RIP) assays and dual luciferase reporter assays were applied to determine the relationships among MIAT, miR-145, and EIF5A2. KEY FINDINGS MIAT was upregulated in human renal fibrotic tissues and UUO model mice compared with normal tissue adjacent to renal tumors and sham operation mice, respectively. MIAT knockdown reduced cell viability, proliferation, migration, and the EMT in HK-2 cells. Additionally, MIAT served as an endogenous sponge for miR-145 in the TGF-β1-induced-EMT in HK-2 cells, as demonstrated by dual luciferase reporter assays and RIP assays. EIF5A2 was confirmed as a target of miR-145, and MIAT knockdown suppressed EIF5A2 expression by sponging miR-145. Downregulation of EIF5A2 partly reversed induction of the EMT by miR-145 inhibitor transfection. SIGNIFICANCE MIAT promoted cell viability, proliferation, migration, and the EMT via regulation of the miR-145/EIF5A2 axis. These data established a potential therapy for RIF.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Feng Ru
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Peihua Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|