1
|
Lee SK, Kwon JH, Jang JW, Bae SH, Yoon SK, Jung ES, Choi JY. The Critical Role of Regulatory T Cells in Immune Tolerance and Rejection Following Liver Transplantation: Interactions With the Gut Microbiome. Transplantation 2025; 109:784-793. [PMID: 39375899 DOI: 10.1097/tp.0000000000005220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Liver transplantation (LT) is the ultimate treatment for patients with end-stage liver disease or early hepatocellular carcinoma. In the context of LT, because of the unique immunological characteristics of human liver allograft, 5%-20% of selected LT recipients can achieve operational tolerance. Nonetheless, there remains a risk of rejection in LT patients. Maintaining immune homeostasis is thus crucial for improving clinical outcomes in these patients. In mechanism, several immune cells, including dendritic cells, Kupffer cells, myeloid-derived suppressor cells, hepatic stellate cells, regulatory B cells, and CD4 + regulatory T cells (Treg), contribute to achieving tolerance following LT. In terms of Treg, it plays a role in successfully minimizing immunosuppression or achieving tolerance post-LT while also reducing the risk of rejection. Furthermore, the gut microbiome modulates systemic immune functions along the gut-liver axis. Recent studies have explored changes in the microbiome and its metabolites under various conditions, including post-LT, acute rejection, and tolerance. Certain functional microbiomes and metabolites exhibit immunomodulatory functions, such as the augmentation of Treg, influencing immune homeostasis. Therefore, understanding the mechanisms of tolerance in LT, the role of Treg in tolerance and rejection, as well as their interactions with gut microbiome, is vital for the management of LT patients.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hyun Kwon
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Pathology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Liao J, Yang Y, Li J, Liu Z, Song S, Zeng Y, Wang Y. Regulatory B cells, the key regulator to induce immune tolerance in organ transplantation. Front Immunol 2025; 16:1561171. [PMID: 40264774 PMCID: PMC12011811 DOI: 10.3389/fimmu.2025.1561171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
In solid organ transplantation, especially renal transplantation, for the induction of immune tolerance, accumulating evidence has revealed that Regulatory B cells (Breg) play a crucial role in stimulating immune tolerance, alleviating immune responses, and improving graft survival. We describe the heterogeneous nature of Bregs, focusing on their defining surface markers and regulatory functions. Meanwhile, the major cytokine secretion function and the correlation between Breg and Treg or other immune checkpoints to balance the immune responses are addressed. Furthermore, we summarized the intrinsic and extrinsic pathways or costimulatory stimuli for the differentiation from naïve B cells. More importantly, we summarized the progression of the immune tolerance induction role of Breg in solid organ (kidney, liver, heart, lung, and islet) transplantation. This is an up-to-date review from the origin of Breg to the function of Breg in solid organ transplantation and how it induces immune tolerance in both murine models and human solid organ transplantation.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yixin Yang
- Department of Clinical Medicine, The First Clinical Medical College of Norman Bethune University of Medical Sciences, Jilin, China
| | - Jisong Li
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yu Zeng
- Department of Hyperbaric Oxygen, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
3
|
Altulea D, van den Born J, Bijma T, Bonasia C, Inrueangsri N, Lammerts R, Berger S, Heeringa P, Sanders JS. Comprehensive Phenotyping and Cytokine Production of Circulating B Cells Associate Resting Memory B Cells With Early Antibody-mediated Rejection in Kidney Transplant Recipients. Transplant Direct 2025; 11:e1775. [PMID: 40124243 PMCID: PMC11927649 DOI: 10.1097/txd.0000000000001775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
Background B cells play a crucial role in kidney transplantation through antibody production and cytokine secretion. To better understand their impact on kidney transplantation, this retrospective study aimed to characterize circulating B-cell phenotypes and cytokine production in a cohort of kidney transplant patients to identify whether pretransplant donor-specific antibodies (DSAs) or biopsy-proven rejection is associated with different B-cell profiles. Methods Pretransplant cryopreserved peripheral blood mononuclear cells were obtained from 96 kidney transplant recipients, of whom 42 had pretransplant DSAs. The cells underwent surface marker staining using a 33-color spectral flow cytometry panel for B-cell phenotyping. Simultaneously, cells were stimulated for interleukin-10, tumor necrosis factor-α, and interleukin-6 production, and analyzed with a 6-color panel. Results Rejection was linked to decreased naive B cells and increased plasmablasts, CD27+ memory B cells, and memory B-cell subsets (all P < 0.04) compared with no rejection. Cytokine-producing B cells and immune regulatory molecule expression showed no significant differences. Multivariate analysis identified resting memory B cells (CD27+CD21+) and pretransplant DSAs as significantly associated with rejection (P = 0.01; odds ratio [OR], 1.07; P = 0.02; OR, 3.10, respectively). Cox regression analysis revealed resting memory B cells were associated with early antibody-mediated rejection (P = 0.04; OR, 1.05). Conclusions B-cell subset distributions differed between patients with and without rejection. Resting memory B-cell frequency was associated with increased early antibody-mediated rejection risk, whereas cytokine production and immune checkpoint expression did not influence rejection. The results suggest that B-cell subset composition could aid in rejection risk assessment and serve as a potential pretransplant diagnostic parameter.
Collapse
Affiliation(s)
- Dania Altulea
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joost van den Born
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Theo Bijma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Carlo Bonasia
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nanthicha Inrueangsri
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rosa Lammerts
- Transplantation Immunology, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan Berger
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan-Stephan Sanders
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Schnell A, Aicher C, Schnegelsberg PA, Schwarz B, Schmidt H, Allabauer I, Rueckel A, Regensburger AP, Woelfle J, Hoerning A. Exhausted Lag-3+ CD4+ T cells are increased in pediatric Inflammatory Bowel Disease. Clin Exp Immunol 2025; 219:uxae066. [PMID: 39044534 PMCID: PMC11771200 DOI: 10.1093/cei/uxae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/17/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024] Open
Abstract
T cells are one of the main drivers of inflammatory bowel diseases (IBD). Infliximab (IFX) is used in the treatment of IBD as an anti-inflammatory drug to induce remission by neutralizing TNFα. We determined the individual chemokine/homing receptor and cytokine profile in pediatric IBD patients before and during IFX therapy to identify predictive biomarkers for therapy success. Peripheral blood CD4+ cells from pediatric patients with IBD were immunomagnetically isolated and either directly analyzed by FACS for cell distribution and chemokine/homing receptor expression or evaluated for cytokine production after in-vitro-stimulation. Twenty-one responders (RS) and 21 non-responders (NRS) were recruited. Before IFX therapy, flow cytometry revealed decreased percentages of naïve conventional T cells in pediatric IBD patients. The proportions of CD62-L+ T cells were decreased in both CD and UC therapy responders. The cytokine profile of T cells was highly altered in IBD patients compared to healthy controls (HC). During IFX therapy, the frequencies of conventional memory and regulatory memory T cells expanded in both cohorts. IFX response was marked by a decrease of α4β7+ and IFNγ+ memory T cells in both CD and UC. In contrast, frequencies of Lag-3+ T cells proved to be significantly increased in NRS. These observations were irrespective of the underlying disease. T cells of pediatric IBD patients display an activated and rather Th1/Th17-shifted phenotype. The increased expression of the checkpoint molecule Lag-3 on T cells of NRS resembles a more exhausted phenotype than in RS and HC which appeared to be a relevant predictive marker for therapy failure.
Collapse
Affiliation(s)
- Alexander Schnell
- Pediatric Gastroenterology, Hepatology and Endoscopy, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Carmen Aicher
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Philipp A Schnegelsberg
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Benedikt Schwarz
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Hannah Schmidt
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Ida Allabauer
- Pediatric Gastroenterology, Hepatology and Endoscopy, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Aline Rueckel
- Pediatric Gastroenterology, Hepatology and Endoscopy, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Adrian P Regensburger
- Pediatric Gastroenterology, Hepatology and Endoscopy, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - André Hoerning
- Pediatric Gastroenterology, Hepatology and Endoscopy, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-UniversityErlangen-Nuremberg, Erlangen, Bavaria, Germany
| |
Collapse
|
5
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
6
|
Pogorelov D, Bode SFN, He X, Ramiro-Garcia J, Hedin F, Ammerlaan W, Konstantinou M, Capelle CM, Zeng N, Poli A, Domingues O, Montamat G, Hunewald O, Ciré S, Baron A, Longworth J, Demczuk A, Bazon ML, Casper I, Klimek L, Neuberger-Castillo L, Revets D, Guyonnet L, Delhalle S, Zimmer J, Benes V, Codreanu-Morel F, Lehners-Weber C, Weets I, Alper P, Brenner D, Gutermuth J, Guerin C, Morisset M, Hentges F, Schneider R, Shamji MH, Betsou F, Wilmes P, Glaab E, Cosma A, Goncalves J, Hefeng FQ, Ollert M. Multiomics approaches disclose very-early molecular and cellular switches during insect-venom allergen-specific immunotherapy: an observational study. Nat Commun 2024; 15:10266. [PMID: 39592626 PMCID: PMC11599746 DOI: 10.1038/s41467-024-54684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Allergen-specific immunotherapy (AIT) induces immune tolerance, showing the highest success rate (>95%) for insect venom while a much lower chance for pollen allergy. However, the molecular switches leading to successful durable tolerance restoration remain elusive. The primary outcome of this observational study is the comprehensive immunological cellular characterization during the AIT initiation phase, whereas the secondary outcomes are the serological and Th2-cell-type-specific transcriptomic analyses. Here we apply a multilayer-omics approach to reveal dynamic peripheral immune landscapes during the AIT-initiation phase in venom allergy patients (VAP) versus pollen-allergic and healthy controls. Already at baseline, VAP exhibit altered abundances of several cell types, including classical monocytes (cMono), CD4+ hybrid type 1-type 17 cells (Th1-Th17 or Th1/17) and CD8+ counterparts (Tc1-Tc17 or Tc1/17). At 8-24 h following AIT launch in VAP, we identify a uniform AIT-elicited pulse of late-transitional/IL-10-producing B cells, IL-6 signaling within Th2 cells and non-inflammatory serum-IL-6 levels. Sequential induction of activation and survival protein markers also immediately occur. A disequilibrium between serum IL-6 and cMono in VAP baseline is restored at day seven following AIT launch. Our longitudinal analysis discovers molecular switches during initiation-phase insect-venom AIT that secure long-term outcomes. Trial number: NCT02931955.
Collapse
Affiliation(s)
- Dimitrii Pogorelov
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Center of Allergy & Environment, Technical University of Munich, Munich, Germany
| | - Sebastian Felix Nepomuk Bode
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Xin He
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Javier Ramiro-Garcia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Fanny Hedin
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Wim Ammerlaan
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
| | - Maria Konstantinou
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Christophe M Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Ni Zeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Guillem Montamat
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Séverine Ciré
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Alexandre Baron
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Agnieszka Demczuk
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Murilo Luiz Bazon
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Ingrid Casper
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | | | - Dominique Revets
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Lea Guyonnet
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Cytometry Platform, Institut Curie; Innovative Therapies in Haemostasis, INSERM, Université de Paris, Paris, France
| | - Sylvie Delhalle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Françoise Codreanu-Morel
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Christiane Lehners-Weber
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Ilse Weets
- Department of Clinical Biology/ Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Pinar Alper
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Jan Gutermuth
- Department of Dermatology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Coralie Guerin
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Cytometry Platform, Institut Curie; Innovative Therapies in Haemostasis, INSERM, Université de Paris, Paris, France
| | - Martine Morisset
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
- Allergy Unit, Angers University Hospital, Angers, France
| | - François Hentges
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, Imperial College London, London, UK
| | - Fay Betsou
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
- CRBIP, Institut Pasteur, Université Paris Cité, Paris, France
| | - Paul Wilmes
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Antonio Cosma
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jorge Goncalves
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Feng Q Hefeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
7
|
Bradford HF, Mauri C. Diversity of regulatory B cells: Markers and functions. Eur J Immunol 2024; 54:e2350496. [PMID: 39086053 DOI: 10.1002/eji.202350496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Regulatory B cells (Bregs) are a functionally distinct B-cell subset involved in the maintenance of homeostasis and inhibition of inflammation. Studies, from the last two decades, have increased our understanding of cellular and molecular mechanisms involved in their generation, function, and to a certain extent phenotype. Current research endeavours to unravel the causes and consequences of Breg defects in disease, with increasing evidence highlighting the relevance of Bregs in promoting tumorigenic responses. Here we provide historical and emerging findings of the significance of Bregs in autoimmunity and transplantation, and how these insights have translated into the cancer field.
Collapse
Affiliation(s)
- Hannah F Bradford
- Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - Claudia Mauri
- Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
8
|
Baert L, Mahmudul HM, Stegall M, Joo H, Oh S. B Cell-mediated Immune Regulation and the Quest for Transplantation Tolerance. Transplantation 2024; 108:2021-2033. [PMID: 38389135 DOI: 10.1097/tp.0000000000004948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Pathophysiologic function of B cells in graft rejection has been well recognized in transplantation. B cells promote alloantigen-specific T-cell response and secrete antibodies that can cause antibody-mediated graft failures and rejections. Therefore, strategies targeting B cells, for example, B-cell depletion, have been used for the prevention of both acute and chronic rejections. Interestingly, however, recent mounting evidence indicates that subsets of B cells yet to be further identified can display potent immune regulatory functions, and they contribute to transplantation tolerance and operational tolerance in both experimental and clinical settings, respectively. In this review, we integrate currently available information on B-cell subsets, including T-cell Ig domain and mucin domain 1-positive transitional and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive memory B cells, displaying immune regulatory functions, with a focus on transplantation tolerance, by analyzing their mechanisms of action. In addition, we will discuss potential T-cell Ig domain and mucin domain 1-positive and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive B cell-based strategies for the enhancement of operational tolerance in transplantation patients.
Collapse
Affiliation(s)
- Laurie Baert
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | | | - Mark Stegall
- Department of Surgery, William J. von Liebig Transplant Center, Mayo Clinic, Rochester, MN
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| |
Collapse
|
9
|
Huang CH, Chen WY, Chen RF, Ramachandran S, Liu KF, Kuo YR. Cell therapies and its derivatives as immunomodulators in vascularized composite allotransplantation. Asian J Surg 2024; 47:4251-4259. [PMID: 38704267 DOI: 10.1016/j.asjsur.2024.04.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
The adverse effects of traditional pharmaceutical immunosuppressive regimens have been a major obstacle to successful allograft survival in vascularized composite tissue allotransplantation (VCA) cases. Consequently, there is a pressing need to explore alternative approaches to reduce reliance on conventional immunotherapy. Cell therapy, encompassing immune-cell-based and stem-cell-based regimens, has emerged as a promising avenue of research. Immune cells can be categorized into two main systems: innate immunity and adaptive immunity. Innate immunity comprises tolerogenic dendritic cells, regulatory macrophages, and invariant natural killer T cells, while adaptive immunity includes T regulatory cells and B regulatory cells. Investigations are currently underway to assess the potential of these immune cell populations in inducing immune tolerance. Furthermore, mixed chimerism therapy, involving the transplantation of hematopoietic stem and progenitor cells and mesenchymal stem cells (MSC), shows promise in promoting allograft tolerance. Additionally, extracellular vesicles (EVs) derived from MSCs offer a novel avenue for extending allograft survival. This review provides a comprehensive summary of cutting-edge research on immune cell therapies, mixed chimerism therapies, and MSCs-derived EVs in the context of VCAs. Findings from preclinical and clinical studies demonstrate the tremendous potential of these alternative therapies in optimizing allograft survival in VCAs.
Collapse
Affiliation(s)
- Chao-Hsin Huang
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Wei Yu Chen
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Rong-Fu Chen
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Savitha Ramachandran
- Department of Plastic and Reconstructive Surgery, Singapore General Hospital, Singapore.
| | - Keng-Fan Liu
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yur-Ren Kuo
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, Orthopaedic Research Center, Regenerative Medicine, Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Academic Clinical Programme for Musculoskeletal Sciences, Duke-NUS Graduate Medical School, Singapore; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Freitas GRR, Fernandes MDL, Agena F, Lemos FBC, de Paula FJ, Coelho V, David-Neto E, Galante NZ. Effects of two immunosuppression regimens on T-lymphocyte subsets in elderly kidney transplant recipients. Front Immunol 2024; 15:1405855. [PMID: 39372414 PMCID: PMC11449757 DOI: 10.3389/fimmu.2024.1405855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/06/2024] [Indexed: 10/08/2024] Open
Abstract
Background Despite the growing number of elderly kidney transplant (Ktx) recipients, few studies have examined the effects of immunosuppression on their lymphocyte profiles. Methods We evaluated the early conversion from mycophenolate sodium (MPS) to everolimus (EVL) after rabbit antithymocyte globulin (rATG) 2 mg/kg induction in elderly kidney recipients. Three groups of KTx patients were compared: (a) Young (n=20, 36 ± 7 y) receiving standard immunosuppression (Group A1) (prednisone, tacrolimus, and MPS), (b) Elderly (n=35, 65 ± 3 y) receiving standard immunosuppression (Group B1), and (c) Elderly (n=16, 65 ± 3 y) with early (mean 30 d) conversion from MPS to EVL (Group B2). Naive, memory, and regulatory peripheral blood TCD4+ lymphocytes were quantified at 0, 30, and 365 d. Results Results are reported as [mean(p25-p75)]. Young recipients had higher lymphocyte counts at baseline [2,100(1,630-2,400) vs. 1,310 (1,000-1,600)/mm3, p<0.0001] maintained higher counts within 365 d [1,850(1,590-2,120) vs. 1,130(460-1,325)/mm3, p=0.018 and vs. 1,410(805-1,895)/mm3, p=0.268]. Elderly recipients showed a decrease in lymphocytes within 30 d [1,310(1,000-1,600) vs. 910(700-1,198)/mm3, p=0.0012] with recovery within 365 d. The same pattern was observed in total lymphocytes and TCD4+ counts. Rabbit antithymocyte globulin induced a reduction in central memory T-cell percentages at 30 d in both young recipients [6.2(3.77-10.8) vs. 5.32(2.49-7.28)% of CD4+, p=0.036] and in elderly recipients [8.17(5.28-12.88) vs. 6.74(4.36-11)% of CD4+, p=0.05] on standard immunosuppression, returning to baseline at 365 d in elderly recipients but not in young recipients. Regulatory T CD39+ cells (Treg) percentages decreased at 30 d in elderly recipients [2.1(1.23-3.51) vs. 1.69(0.8-2.66)% of CD4+, p=0.0028] and in young recipients [1.29(0.45-1.85) vs. 0.84(0.18-1.82)% of CD4+, p=0.0038], returning to baseline at 365 d in elderly recipients [2.1(1.23-3.51) vs. 2.042(0.88-2.42)% of CD4+], but not in young recipients [1.29(0.45-1.85) vs. 0.86(0.7-1.34) % of CD4+]. The elderly everolimus conversion group did not show significant changes in cell profile over time or compared to elderly recipients with standard immunosuppression. Conclusion Aging favored the maintenance of Treg during the late transplantation period despite ongoing immunosuppression. Lymphocyte depletion due to rATG was more prominent in elderly recipients and affected memory subsets with a temporary reduction in central memory T cells. However, conversion to everolimus did not impact Treg profile. Reducing the dose of rATG in elderly recipients seems necessary for the expected lymphocyte changes with EVL to occur. Clinical trial registration nEverOld Trial, identifier NTC01631058.
Collapse
Affiliation(s)
- Geraldo Rubens R. Freitas
- Serviço de Transplante Renal, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Departamento de transplante renal, Hospital Universitário de Brasília (HUB), Empresa Brasileira de Serviços Hospitalares (EBSERH), Brasília, Brazil
| | - Maria da Luz Fernandes
- Serviço de Transplante Renal, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Fabiana Agena
- Serviço de Transplante Renal, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Francine B. C. Lemos
- Serviço de Transplante Renal, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Flavio J. de Paula
- Serviço de Transplante Renal, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Verônica Coelho
- Laboratório de Imunologia, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Investigação Médica 19 (LIM-19), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Elias David-Neto
- Serviço de Transplante Renal, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Nelson Z. Galante
- Serviço de Transplante Renal, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Ahsan NF, Lourenço S, Psyllou D, Long A, Shankar S, Bashford-Rogers R. The current understanding of the phenotypic and functional properties of human regulatory B cells (Bregs). OXFORD OPEN IMMUNOLOGY 2024; 5:iqae012. [PMID: 39346706 PMCID: PMC11427547 DOI: 10.1093/oxfimm/iqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
B cells can have a wide range of pro- and anti- inflammatory functions. A subset of B cells called regulatory B cells (Bregs) can potently suppress immune responses. Bregs have been shown to maintain immune homeostasis and modulate inflammatory responses. Bregs are an exciting cellular target across a range of diseases, including Breg induction in autoimmunity, allergy and transplantation, and Breg suppression in cancers and infection. Bregs exhibit a remarkable phenotypic heterogeneity, rendering their unequivocal identification a challenging task. The lack of a universally accepted and exclusive surface marker set for Bregs across various studies contributes to inconsistencies in their categorization. This review paper presents a comprehensive overview of the current understanding of the phenotypic and functional properties of human Bregs while addressing the persisting ambiguities and discrepancies in their characterization. Finally, the paper examines the promising therapeutic opportunities presented by Bregs as their immunomodulatory capacities have gained attention in the context of autoimmune diseases, allergic conditions, and cancer. We explore the exciting potential in harnessing Bregs as potential therapeutic agents and the avenues that remain open for the development of Breg-based treatment strategies.
Collapse
Affiliation(s)
- Nawara Faiza Ahsan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Stella Lourenço
- Keizo Asami Institute, Federal University of Pernambuco, Recife 50740-520, Brazil
| | - Dimitra Psyllou
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Alexander Long
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Sushma Shankar
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Rachael Bashford-Rogers
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Oxford Cancer Centre, University of Oxford, Oxford OX3 7LH, United Kingdom
| |
Collapse
|
12
|
Basu S, Dudreuilh C, Shah S, Sanchez-Fueyo A, Lombardi G, Dorling A. Activation and Regulation of Indirect Alloresponses in Transplanted Patients With Donor Specific Antibodies and Chronic Rejection. Transpl Int 2024; 37:13196. [PMID: 39228658 PMCID: PMC11368725 DOI: 10.3389/ti.2024.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Following transplantation, human CD4+T cells can respond to alloantigen using three distinct pathways. Direct and semi-direct responses are considered potent, but brief, so contribute mostly to acute rejection. Indirect responses are persistent and prolonged, involve B cells as critical antigen presenting cells, and are an absolute requirement for development of donor specific antibody, so more often mediate chronic rejection. Novel in vitro techniques have furthered our understanding by mimicking in vivo germinal centre processes, including B cell antigen presentation to CD4+ T cells and effector cytokine responses following challenge with donor specific peptides. In this review we outline recent data detailing the contribution of CD4+ T follicular helper cells and antigen presenting B cells to donor specific antibody formation and antibody mediated rejection. Furthermore, multi-parametric flow cytometry analyses have revealed specific endogenous regulatory T and B subsets each capable of suppressing distinct aspects of the indirect response, including CD4+ T cell cytokine production, B cell maturation into plasmablasts and antibody production, and germinal centre maturation. These data underpin novel opportunities to control these aberrant processes either by targeting molecules critical to indirect alloresponses or potentiating suppression via exogenous regulatory cell therapy.
Collapse
Affiliation(s)
- Sumoyee Basu
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| | - Caroline Dudreuilh
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Transplantation, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Sapna Shah
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Renal Unit, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Alberto Sanchez-Fueyo
- Department of Inflammation Biology, King’s College London, London, United Kingdom
- Liver Sciences, King’s College London, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| | - Anthony Dorling
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| |
Collapse
|
13
|
Perezpayá I, Garcia SG, Clos-Sansalvador M, Sanroque-Muñoz M, Font-Morón M, Rodríguez-Martínez P, Vila-Santandreu A, Bover J, Borràs FE, Cañas L, Franquesa M. Molecular screening of transitional B cells as a prognostic marker of improved graft outcome and reduced rejection risk in kidney transplant. Front Immunol 2024; 15:1433832. [PMID: 39192987 PMCID: PMC11348389 DOI: 10.3389/fimmu.2024.1433832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Understanding immune cell dynamics in kidney transplantation may provide insight into the mechanisms of rejection and improve patient management. B cells have gained interest with a special relevance of the "regulatory" subsets and their graft outcome prognostic value. In this study, we aimed to prove that the direct immunophenotyping and target gene expression analysis of kidney transplant patients' fresh whole blood will help to identify graft rejection risk and assist in the monitoring of kidney transplanted patients. Methods We employed flow cytometry and qPCR techniques to characterize B and T cell subsets within fresh whole blood samples, with particular emphasis on transitional B cells (TrB) identified as CD19+CD24hiCD38hi. TrB are a relevant population in the context of kidney transplantation and are closely associated with regulatory B cells (Bregs) in humans. Patients were monitored, tracking pertinent clinical parameters and kidney-related events, including alterations in graft function and episodes of biopsy proven rejection. Results Higher percentages of TrB cells at 3 months after transplantation were positively associated with better graft outcomes and lower biopsy-proven acute rejection risk. Furthermore, a novel panel of B cell regulatory associated genes was validated at 3 months post-transplantation by qPCR analysis of peripheral blood mononuclear cell (PBMC) mRNA, showing high predictive power of graft events and prognostic value. Discussion These findings suggest that monitoring TrB may provide interesting patient management information, improve transplant outcomes, and allow for personalized drug regimens to minimize clinical complications.
Collapse
Affiliation(s)
- Inés Perezpayá
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Sergio G. Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Marta Clos-Sansalvador
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Marta Sanroque-Muñoz
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Miriam Font-Morón
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Paula Rodríguez-Martínez
- Pathology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Anna Vila-Santandreu
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Jordi Bover
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Francesc E. Borràs
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology, and Immunology, Universitat de Barcelona (UB), Barcelona, Spain
| | - Laura Cañas
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Barcelona, Catalonia, Spain
| |
Collapse
|
14
|
Wang R, Li J. Noninvasive focused ultrasound-mediated delivery of rAAV9-EGFP vectors for neuronal targeting in rats. Neuroimage 2024; 294:120630. [PMID: 38740226 DOI: 10.1016/j.neuroimage.2024.120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/09/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVE To evaluate the synergistic potential of Focused Ultrasound (FUS) in conjunction with microbubbles (MB) and recombinant adeno-associated virus serotype 9 (rAAV9) vectors for targeted gene delivery to neuronal cells in rats, optimizing gene expression conditions and assessing any adverse effects. METHODS The parameters for permeability enhancement of the rat's blood-brain barrier (BBB) were established using FUS+MB, with MRI scans and Evans Blue (EB) dye assisting in the evaluation. Rats underwent FUS-mediated transfection using rAAV9-Syn-EGFP vectors produced via a triple-transfection in HEK293T cells. Following this, the uptake and expression of GFP in targeted brain regions were evaluated using confocal fluorescence microscopy at various time intervals. Inflammatory responses post-FUS treatment were tracked by observing levels of GFAP, a marker for astrocytic activation, and TNF-α, a pro-inflammatory cytokine. Motor behavior effects post-intervention were gauged using the Rotarod test across multiple groups over a span of four weeks. RESULTS FUS+MB affected BBB permeability, with optimal results at 4 W for 200 s showing 85 % permeability and evident Gd-DTPA leakage. Settings beyond these resulted in tissue damage. Control groups exhibited a basal GFP expression of 2 % ± 0.5 %, whereas FUS+MB with rAAV-EGFP injections substantially increased GFP expression to about 67 % ± 6 % in targeted neurons. This GFP expression peaked at three weeks post-treatment and remained evident six months later. Following FUS treatment, both GFAP and TNF-α levels underwent fluctuations before eventually nearing their baseline values. The Rotarod test revealed no significant behavioral differences post-treatments among the groups. CONCLUSIONS Combining FUS+MB with rAAV offers an innovative approach to enhance therapeutic delivery to the central nervous system (CNS) by transiently adjusting BBB permeability.
Collapse
Affiliation(s)
- Rui Wang
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| | - Jiayi Li
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Xu X, Chen Y, Kong L, Li X, Chen D, Yang Z, Wang J. Potential biomarkers for immune monitoring after renal transplantation. Transpl Immunol 2024; 84:102046. [PMID: 38679337 DOI: 10.1016/j.trim.2024.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Renal transplantation represents the foremost efficacious approach for ameliorating end-stage renal disease. Despite the current state of advanced renal transplantation techniques and the established postoperative immunosuppression strategy, a subset of patients continues to experience immune rejection during both the early and late postoperative phases, ultimately leading to graft loss. Consequently, the identification of immunobiomarkers capable of predicting the onset of immune rejection becomes imperative in order to facilitate early intervention strategies and enhance long-term prognoses. Upon reviewing the pertinent literature, we identified several indicators that could potentially serve as immune biomarkers to varying extents. These include the T1/T2 ratio, Treg/Th17 ratio, IL-10/TNF-α ratio, IL-33, IL-34, IL-6, IL-4, other cytokines, and NOX2/4.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yi Chen
- Shandong Medical College, Jinan, China
| | | | - Xianduo Li
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Dongdong Chen
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhe Yang
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| | - Jianning Wang
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China; Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| |
Collapse
|
16
|
Glass DR, Mayer-Blackwell K, Ramchurren N, Parks KR, Duran GE, Wright AK, Bastidas Torres AN, Islas L, Kim YH, Fling SP, Khodadoust MS, Newell EW. Multi-omic profiling reveals the endogenous and neoplastic responses to immunotherapies in cutaneous T cell lymphoma. Cell Rep Med 2024; 5:101527. [PMID: 38670099 PMCID: PMC11148639 DOI: 10.1016/j.xcrm.2024.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/17/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Cutaneous T cell lymphomas (CTCLs) are skin cancers with poor survival rates and limited treatments. While immunotherapies have shown some efficacy, the immunological consequences of administering immune-activating agents to CTCL patients have not been systematically characterized. We apply a suite of high-dimensional technologies to investigate the local, cellular, and systemic responses in CTCL patients receiving either mono- or combination anti-PD-1 plus interferon-gamma (IFN-γ) therapy. Neoplastic T cells display no evidence of activation after immunotherapy. IFN-γ induces muted endogenous immunological responses, while anti-PD-1 elicits broader changes, including increased abundance of CLA+CD39+ T cells. We develop an unbiased multi-omic profiling approach enabling discovery of immune modules stratifying patients. We identify an enrichment of activated regulatory CLA+CD39+ T cells in non-responders and activated cytotoxic CLA+CD39+ T cells in leukemic patients. Our results provide insights into the effects of immunotherapy in CTCL patients and a generalizable framework for multi-omic analysis of clinical trials.
Collapse
Affiliation(s)
- David R Glass
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Koshlan Mayer-Blackwell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nirasha Ramchurren
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - K Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - George E Duran
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anna K Wright
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Laura Islas
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Youn H Kim
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven P Fling
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Michael S Khodadoust
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
17
|
Süsal C, Alvarez CM, Benning L, Daniel V, Zeier M, Schaier M, Morath C, Speer C. The balance between memory and regulatory cell populations in kidney transplant recipients with operational tolerance. Clin Exp Immunol 2024; 216:318-330. [PMID: 38393856 PMCID: PMC11097908 DOI: 10.1093/cei/uxae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024] Open
Abstract
Donor-reactive memory cells represent a barrier to long-term kidney graft survival. A better understanding of regulatory mechanisms that counterbalance alloreactive memory responses may help to identify patients with operational tolerance. This prospective study investigated the equilibrium between memory T-cell subsets and regulatory T or B cells (Tregs, Bregs) in peripheral blood of kidney transplant recipients with operational tolerance (N = 8), chronic rejection (N = 8), and different immunosuppressive treatment regimens (N = 81). Patients on hemodialysis and healthy individuals served as controls (N = 50). In addition, the expression of Treg- and Breg-associated molecule genes was analyzed. Patients with chronic rejection showed a disrupted memory T-cell composition with a significantly higher frequency of circulating CD8+ terminally differentiated effector memory (TEMRA) T cells than patients with operational tolerance, patients on hemodialysis, or healthy controls (P < 0.001). Low frequency of CD8+ TEMRA and high frequency of Tregs and transitional Bregs were found in operationally tolerant patients. Consequently, operationally tolerant patients showed, as compared to all other transplant recipients with different immunosuppressive regiments, the lowest ratios between CD8+ TEMRA T cells and Tregs or Bregs (for both P < 0.001). Moreover, a specific peripheral blood transcription pattern was found in operationally tolerant patients with an increased expression of Breg- and Treg-associated genes CD22 and FoxP3 and a decreased FcγRIIA/FcγRIIB transcript ratio (for all P < 0.001). In conclusion, monitoring the balance between circulating CD8+ TEMRA T cells and regulatory cell subsets and their transcripts may help to distinguish transplant recipients with operational tolerance from recipients at risk of graft loss.
Collapse
Affiliation(s)
- Caner Süsal
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
- Transplant Immunology Research Center of Excellence, Koç University Hospital, Istanbul, Turkey
| | - Cristiam M Alvarez
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Louise Benning
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Volker Daniel
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Christian Morath
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Elias C, Chen C, Cherukuri A. Regulatory B Cells in Solid Organ Transplantation: From Immune Monitoring to Immunotherapy. Transplantation 2024; 108:1080-1089. [PMID: 37779239 PMCID: PMC10985051 DOI: 10.1097/tp.0000000000004798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Regulatory B cells (Breg) modulate the immune response in diverse disease settings including transplantation. Despite the lack of a specific phenotypic marker or transcription factor, their significance in transplantation is underscored by their ability to prolong experimental allograft survival, the possibility for their clinical use as immune monitoring tools, and the exciting prospect for them to form the basis for cell therapy. Interleukin (IL)-10 expression remains the most widely used marker for Breg. Several Breg subsets with distinct phenotypes that express this "signature Breg cytokine" have been described in mice and humans. Although T-cell immunoglobulin and mucin family-1 is the most inclusive and functional marker that accounts for murine Breg with disparate mechanisms of action, the significance of T-cell immunoglobulin and mucin family-1 as a marker for Breg in humans still needs to be explored. Although the primary focus of this review is the role of Breg in clinical transplantation, the net modulatory effect of B cells on the immune response and clinical outcomes is the result of the balancing functions of both Breg and effector B cells. Supporting this notion, B-cell IL-10/tumor necrosis factor α ratio is shown to predict immunologic reactivity and clinical outcomes in kidney and liver transplantation. Assessment of Breg:B effector balance using their IL-10/tumor necrosis factor α ratio may identify patients that require more immunosuppression and provide mechanistic insights into potential therapies. In summary, current advances in our understanding of murine and human Breg will pave way for future definitive clinical studies aiming to test them for immune monitoring and as therapeutic targets.
Collapse
Affiliation(s)
- Charbel Elias
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chuxiao Chen
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Zhou AW, Jin J, Liu Y. Cellular strategies to induce immune tolerance after liver transplantation: Clinical perspectives. World J Gastroenterol 2024; 30:1791-1800. [PMID: 38659486 PMCID: PMC11036497 DOI: 10.3748/wjg.v30.i13.1791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 03/14/2024] [Indexed: 04/03/2024] Open
Abstract
Liver transplantation (LT) has become the most efficient treatment for pediatric and adult end-stage liver disease and the survival time after transplantation is becoming longer due to the development of surgical techniques and perioperative management. However, long-term side-effects of immunosuppressants, like infection, metabolic disorders and malignant tumor are gaining more attention. Immune tolerance is the status in which LT recipients no longer need to take any immunosuppressants, but the liver function and intrahepatic histology maintain normal. The approaches to achieve immune tolerance after transplantation include spontaneous, operational and induced tolerance. The first two means require no specific intervention but withdrawing immunosuppressant gradually during follow-up. No clinical factors or biomarkers so far could accurately predict who are suitable for immunosuppressant withdraw after transplantation. With the understanding to the underlying mechanisms of immune tolerance, many strategies have been developed to induce tolerance in LT recipients. Cellular strategy is one of the most promising methods for immune tolerance induction, including chimerism induced by hematopoietic stem cells and adoptive transfer of regulatory immune cells. The safety and efficacy of various cell products have been evaluated by prospective preclinical and clinical trials, while obstacles still exist before translating into clinical practice. Here, we will summarize the latest perspectives and concerns on the clinical application of cellular strategies in LT recipients.
Collapse
Affiliation(s)
- Ai-Wei Zhou
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jing Jin
- Department of Nursing, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yuan Liu
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Department of Liver Transplantation, Shanghai Immune Therapy Institute, Shanghai 200127, China
| |
Collapse
|
20
|
Veh J, Ludwig C, Schrezenmeier H, Jahrsdörfer B. Regulatory B Cells-Immunopathological and Prognostic Potential in Humans. Cells 2024; 13:357. [PMID: 38391970 PMCID: PMC10886933 DOI: 10.3390/cells13040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
The aim of the following review is to shed light on the putative role of regulatory B cells (Bregs) in various human diseases and highlight their potential prognostic and therapeutic relevance in humans. Regulatory B cells are a heterogeneous group of B lymphocytes capable of suppressing inflammatory immune reactions. In this way, Bregs contribute to the maintenance of tolerance and immune homeostasis by limiting ongoing immune reactions temporally and spatially. Bregs play an important role in attenuating pathological inflammatory reactions that can be associated with transplant rejection, graft-versus-host disease, autoimmune diseases and allergies but also with infectious, neoplastic and metabolic diseases. Early studies of Bregs identified IL-10 as an important functional molecule, so the IL-10-secreting murine B10 cell is still considered a prototype Breg, and IL-10 has long been central to the search for human Breg equivalents. However, over the past two decades, other molecules that may contribute to the immunosuppressive function of Bregs have been discovered, some of which are only present in human Bregs. This expanded arsenal includes several anti-inflammatory cytokines, such as IL-35 and TGF-β, but also enzymes such as CD39/CD73, granzyme B and IDO as well as cell surface proteins including PD-L1, CD1d and CD25. In summary, the present review illustrates in a concise and comprehensive manner that although human Bregs share common functional immunosuppressive features leading to a prominent role in various human immunpathologies, they are composed of a pool of different B cell types with rather heterogeneous phenotypic and transcriptional properties.
Collapse
Affiliation(s)
- Johanna Veh
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Carolin Ludwig
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| |
Collapse
|
21
|
Durgam SS, Khiew SH, Sayin I, Jain D, Yin D, Cavazzoni CB, Sage PT, King RG, Chong AS. MHC Tetramers Specifically Identify High- and Low-avidity Donor-specific B Cells in Transplantation Tolerance and Rejection. Transplantation 2023; 107:2526-2532. [PMID: 37493609 PMCID: PMC10811295 DOI: 10.1097/tp.0000000000004702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
BACKGROUND Although donor-specific antibody pre- and posttransplantation is routinely assessed, accurate quantification of memory alloreactive B cells that mediate recall antibody response remains challenging. Major histocompatibility complex (MHC) tetramers have been used to identify alloreactive B cells in mice and humans, but the specificity of this approach has not been rigorously assessed. METHODS B-cell receptors from MHC tetramer-binding single B cells were expressed as mouse recombinant immunoglobulin G1 (rIgG1) monoclonal antibodies, and the specificity was assessed with a multiplex bead assay. Relative binding avidity of rIgG1 was measured by modified dilution series technique and surface plasmon resonance. Additionally, immunoglobulin heavy chain variable regions of 50 individual B-cell receptors were sequenced to analyze the rate of somatic hypermutation. RESULTS The multiplex bead assay confirmed that expressed rIgG1 monoclonal antibodies were preferentially bound to bait MHC class II I-E d over control I-A d and I-A b tetramers. Furthermore, the dissociation constant 50 binding avidities of the rIgG1 ranged from 10 mM to 7 nM. The majority of tetramer-binding B cells were low avidity, and ~12.8% to 15.2% from naive and tolerant mice and 30.9% from acute rejecting mice were higher avidity (dissociation constant 50 <1 mM). CONCLUSIONS Collectively, these studies demonstrate that donor MHC tetramers, under stringent binding conditions with decoy self-MHC tetramers, can specifically identify a broad repertoire of donor-specific B cells under conditions of rejection and tolerance.
Collapse
Affiliation(s)
| | | | - Ismail Sayin
- Department of Surgery, The University of Chicago, Chicago,
IL, USA
| | - Dharmendra Jain
- Department of Surgery, The University of Chicago, Chicago,
IL, USA
| | - Dengping Yin
- Department of Surgery, The University of Chicago, Chicago,
IL, USA
| | - Cecilia B. Cavazzoni
- Transplantation Research Center, Renal Division, Brigham
and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham
and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - R. Glenn King
- Department of Microbiology, University of Alabama at
Birmingham, Birmingham, AL, 35294, USA
| | - Anita S Chong
- Department of Surgery, The University of Chicago, Chicago,
IL, USA
| |
Collapse
|
22
|
González C, Ruiz-Saavedra S, Gómez-Martín M, Zapico A, López-Suarez P, Suárez A, Suárez González A, del Rey CG, Díaz E, Alonso A, de los Reyes-Gavilán CG, González S. Immunometabolic Profile Associated with Progressive Damage of the Intestinal Mucosa in Adults Screened for Colorectal Cancer: Association with Diet. Int J Mol Sci 2023; 24:16451. [PMID: 38003638 PMCID: PMC10671025 DOI: 10.3390/ijms242216451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Environmental factors such as diet and lifestyle have been shown to influence the development of some intestinal mucosal lesions that may be precursors of colorectal cancer (CRC). The presence of these alterations seems to be associated with misbalanced immunological parameter levels. However, it is still unclear as to which immunological parameters are altered in each phase of CRC development. In this work, we aimed to study the potential relationships of immunological and metabolic parameters with diet in a CRC-related lesion context. Dietary information was obtained using an annual semi-quantitative food-frequency questionnaire (FFQ) from 93 volunteers classified via colonoscopy examination according to the presence of intestinal polyps or adenocarcinoma. Cytokines, chemokines, and adipokines were determined from serum samples. We observed a reduction in adiponectin according to the damage to the mucosa, accompanied by an increase and decrease in C-X-C motif chemokine ligand 10 (CXCL10) and resistin, respectively, in CRC cases. The presence of aberrant crypt foci (ACF) in the polyp group was associated with higher tumor necrosis factor-alpha (TNF-α) concentrations. Vegetables were directly correlated with adiponectin and resistin levels, while the opposite occurred with red meat. A bioactive compound, soluble pectin, showed a negative association with TNF-α. Future dietary strategies could be developed to modulate specific immunological parameters in the context of CRC.
Collapse
Affiliation(s)
- Celestino González
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (C.G.); (A.Z.); (P.L.-S.); (A.S.); (E.D.); (A.A.)
| | - Sergio Ruiz-Saavedra
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain;
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - María Gómez-Martín
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (C.G.); (A.Z.); (P.L.-S.); (A.S.); (E.D.); (A.A.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Aida Zapico
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (C.G.); (A.Z.); (P.L.-S.); (A.S.); (E.D.); (A.A.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Patricia López-Suarez
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (C.G.); (A.Z.); (P.L.-S.); (A.S.); (E.D.); (A.A.)
| | - Ana Suárez
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (C.G.); (A.Z.); (P.L.-S.); (A.S.); (E.D.); (A.A.)
| | - Adolfo Suárez González
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Digestive Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| | - Carmen González del Rey
- Anatomical Pathology Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain;
| | - Elena Díaz
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (C.G.); (A.Z.); (P.L.-S.); (A.S.); (E.D.); (A.A.)
| | - Ana Alonso
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (C.G.); (A.Z.); (P.L.-S.); (A.S.); (E.D.); (A.A.)
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain;
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Sonia González
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (C.G.); (A.Z.); (P.L.-S.); (A.S.); (E.D.); (A.A.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
23
|
Short S, Issa F. Research Highlights. Transplantation 2023; 107:1219-1220. [PMID: 37779368 DOI: 10.1097/tp.0000000000004657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Affiliation(s)
- Sarah Short
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
24
|
Guzel HG, Yilmaz VT, Koksoy S, Kocak H, Kisaoglu A, Soylu M, Akkaya B, Demiryilmaz I, Aydinli B, Suleymanlar G. Regulatory B Cells Profile in Kidney Transplant Recipients With Chronic-Active Antibody-Mediated Rejection. Transplant Proc 2023:S0041-1345(23)00153-7. [PMID: 37061353 DOI: 10.1016/j.transproceed.2023.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 04/17/2023]
Abstract
This study aims to reveal the relationship between regulatory B cell (Breg) subsets and chronic-active antibody-mediated rejection (c-aABMR) in renal transplant recipients. Our study involved 3 groups of participants: renal transplant recipients with biopsy-proven c-aABMR as the chronic rejection group (c-aABMR, n = 23), recipients with stable graft functions as the patient control group (PC; n = 11), and healthy volunteers (HV; n = 11). Breg subsets, immature/transitional B cells, plasmablastic cells, B10 cells, and BR1 cells were isolated from venous blood samples by flow cytometry. The median values of Breg frequencies in the total lymphocyte population were analyzed. There were no significant differences between the study groups for immature and/or transitional B cell frequencies. Plasmablastic cell frequencies of the c-aABMR group (7.80 [2.10-27.40]) and the PC group (6.00 [1.80-55.50]) were similar, but both of these values were significantly higher than the HVs' (3.40 [1.20-8.50]), (respectively, P = .005 and P = .039). B10 cell frequencies were also similar, comparing the c-aABMR (4.20 [0.10-7.40]) and the PC groups (4.10 [0.10-5.90]), whereas the HVs (5.90 [2.90-8.50]) had the highest B10 cell frequency with an only statistical significance against the PC group (respectively, P = .09 and P = .028). The c-aABMR and the PC groups were similar regarding BR1 cell frequencies. However, the HV group significantly had the highest frequency of BR1 cells (5.50 [2.80-10.80]) than the other groups (P < .001 for both). We demonstrated that frequencies of B10 and BR1 cells were higher in HVs than in transplant recipients, regardless of rejection state. However, there was no significant relation between Breg frequencies and the c-aABMR state.
Collapse
Affiliation(s)
- Halil Goksel Guzel
- Department of Internal Medicine, Akdeniz University School of Medicine, Antalya, Turkey
| | - Vural Taner Yilmaz
- Department of Internal Medicine, Division of Nephrology, Akdeniz University School of Medicine, Antalya, Turkey.
| | - Sadi Koksoy
- Department of Microbiology, Division of Immunology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Huseyin Kocak
- Department of Internal Medicine, Division of Nephrology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Abdullah Kisaoglu
- Department of General Surgery, Akdeniz University School of Medicine, Antalya, Turkey
| | - Mehmet Soylu
- Department of Microbiology, Division of Immunology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Bahar Akkaya
- Department of Pathology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Ismail Demiryilmaz
- Department of General Surgery, Akdeniz University School of Medicine, Antalya, Turkey
| | - Bülent Aydinli
- Department of General Surgery, Akdeniz University School of Medicine, Antalya, Turkey
| | - Gultekin Suleymanlar
- Department of Internal Medicine, Division of Nephrology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
25
|
Alaqla A, Hu Y, Huang S, Ruiz S, Kawai T, Han X. TLR9 Signaling Is Required for the Porphyromonas gingivalis-Induced Activation of IL-10-Expressing B Cells. Int J Mol Sci 2023; 24:6693. [PMID: 37047666 PMCID: PMC10094902 DOI: 10.3390/ijms24076693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Immune cell pattern-recognition receptors such as Toll-like receptors (TLRs) play important roles in the regulation of host responses to periodontal pathogens. Our previous studies have demonstrated that immune regulatory B cells were activated by TLRs and alleviated periodontitis inflammation and bone loss. The purpose of this study is to determine the role of TLR9 signaling in the activation and IL-10 production of the primed-immune B cells in vitro. Wild-type (WT) and TLR9 knockout (TLR9KO) mice (C57BL/6 background, n = 5) were pre-immunized intraperitoneally with 1 × 108 formalin-fixed P. gingivalis and boosted once with 1 × 107 formalin-fixed P. gingivalis. Isolated splenocytes and purified B cells from each mouse were cultured with 1 × 108 formalin-fixed P. gingivalis for 48 h. Immunocytochemistry was performed to detect CD45+ IL-10+ cells. Levels of IL-10 expression and secretion in splenocytes and B cells were detected using qRT-PCR and ELISA, respectively. After stimulation with fixed P. gingivalis, the percentage of CD45+ IL-10+ B cells and the level of IL-10 expression were significantly increased (p < 0.01) in splenocytes and purified B cells isolated from WT mice. However, these changes were not observed in splenocytes and purified B cells from TLR9KO mice when the cells were treated with fixed P. gingivalis. The percentage of CD45+ IL-10+ B cells was significantly reduced in splenocytes and purified B cells from TLR9KO mice compared to those from WT mice when challenged with P. gingivalis. IL-10 expression in B cells from TLR9KO mice was significantly decreased compared to those from WT mice at both the mRNA and protein levels. Additionally, P. gingivalis-induced up-regulation of TNF-α mRNA expressions were consistently observed in B cells from both WT and TLR9KO mice. P. gingivalis-induced B10 activation and IL-10 production during adaptive responses by primed B cells requires TLR9 signaling and can be achieved independent of T-cell help.
Collapse
Affiliation(s)
- Ali Alaqla
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Yang Hu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Shengyuan Huang
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave., Fort Lauderdale, FL 33314, USA
| | - Sunniva Ruiz
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave., Fort Lauderdale, FL 33314, USA
| | - Toshihisa Kawai
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave., Fort Lauderdale, FL 33314, USA
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave., Fort Lauderdale, FL 33314, USA
| |
Collapse
|
26
|
Cherukuri A, Abou-Daya KI, Chowdhury R, Mehta RB, Hariharan S, Randhawa P, Rothstein DM. Transitional B cell cytokines risk stratify early borderline rejection after renal transplantation. Kidney Int 2023; 103:749-761. [PMID: 36436679 PMCID: PMC10038876 DOI: 10.1016/j.kint.2022.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
Borderline rejection (BL) in renal transplantation is associated with decreased allograft survival, yet many patients with BL maintain stable graft function. Identifying patients with early BL at risk for shortened allograft survival would allow for timely targeted therapeutic intervention aimed at improving outcomes. 851/1187 patients transplanted between 2013-18 underwent early biopsy (0-4 mos). 217/851 (25%) had BL and were compared to 387/851 without significant inflammation (NI). Serial surveillance and for-cause biopsies and seven-year follow-up were used to evaluate histological and clinical progression. To identify high-risk patients, we examined clinical/histological parameters using regression and non-linear dimensionality reduction (tSNE) and a biomarker based on peripheral blood transitional-1 B cell (T1B) IL-10/TNFα ratio. Compared to NI, early BL was associated with increased progression to late acute rejection (AR; 5-12 mos), premature interstitial fibrosis and tubular atrophy (IFTA) and decreased seven-year graft survival. However, decreased graft survival was limited to BL patients who progressed to late AR or IFTA, and was not influenced by treatment. Although tSNE clustered patients into groups based on clinical factors, the ability of these factors to risk stratify BL patients was modest. In contrast, a low T1B IL-10/TNFα ratio at 3 months identified BL patients at high risk for progression to AR (ROC AUC 0.87) and poor 7-yr graft survival (52% vs. 92%, p=0.003), while BL patients with a high ratio had similar graft survival to patients with NI (91%, p=NS). Thus, progressive early allograft inflammation manifested as BL that progresses to late AR in the first post-transplant year represents a high-risk clinical state for poor allograft outcomes. Such high-risk status can be predicted by the T1B IL-10/TNFα ratio before irreversible scarring sets in, thus allowing timely risk stratification.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Khodor I Abou-Daya
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Raad Chowdhury
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rajil B Mehta
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sundaram Hariharan
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Parmjeet Randhawa
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Division of Transplantation Pathology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Basu S, Dorling A, Chong AS. A transitional B-cell cytokine biomarker for risk stratifying renal transplant patients with borderline rejection. Kidney Int 2023; 103:658-660. [PMID: 36948765 PMCID: PMC10755754 DOI: 10.1016/j.kint.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/21/2022] [Indexed: 03/22/2023]
Abstract
Borderline allograft rejection can promote acute rejection and graft loss in some, but not all, patients. In this issue, Cherukuri et al. use a novel test based on peripheral blood transitional T1 B cells producing interleukin-10 and tumor necrosis factor-α, which identifies patients at high risk for poor outcomes. The potential mechanisms by which transitional T1 B cells might modulate alloreactivity need exploration, but following appropriate validation, this biomarker could risk stratify patients in need of early intervention.
Collapse
Affiliation(s)
- Sumoyee Basu
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Anthony Dorling
- Department of Inflammation Biology, Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, UK.
| | - Anita S Chong
- Department of Surgery, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
28
|
Mékinian A, Quinquenel A, Belkacem KA, Kanoun F, Dondi E, Franck E, Boubaya M, Mhibik M, Baran-Marszak F, Letestu R, Ajchenbaum-Cymbalista F, Lévy V, Varin-Blank N, Le Roy C. Immuno-regulatory malignant B cells contribute to Chronic Lymphocytic Leukemia progression. Cancer Gene Ther 2023:10.1038/s41417-023-00602-5. [PMID: 36973425 DOI: 10.1038/s41417-023-00602-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/29/2023] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
Abstract
Chronic Lymphocytic Leukemia (CLL) is a heterogeneous B cell neoplasm ranging from indolent to rapidly progressive disease. Leukemic cell subsets with regulatory properties evade immune clearance; however, the contribution of such subsets during CLL progression is not completely elucidated. Here, we report that CLL B cells crosstalk with their immune counterparts, notably by promoting the regulatory T (Treg) cell compartment and shaping several helper T (Th) subsets. Among various constitutively- and BCR/CD40-mediated factors secreted, tumour subsets co-express two important immunoregulatory cytokines, IL10 and TGFβ1, both associated with a memory B cell phenotype. Neutralizing secreted IL10 or inhibiting the TGFβ signalling pathway demonstrated that these cytokines are mainly involved in Th- and Treg differentiation/maintenance. In line with the regulatory subsets, we also demonstrated that a CLL B cell population expresses FOXP3, a marker of regulatory T cells. Analysis of IL10, TGFβ1 and FOXP3 positive subpopulations frequencies in CLL samples discriminated 2 clusters of untreated CLL patients that were significantly different in Tregs frequency and time-to-treatment. Since this distinction was pertinent to disease progression, the regulatory profiling provides a new rationale for patient stratification and sheds light on immune dysfunction in CLL.
Collapse
Affiliation(s)
- Arsène Mékinian
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Anne Quinquenel
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Koceïla Ait Belkacem
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Feriel Kanoun
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Elisabetta Dondi
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Emilie Franck
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | | | - Maïssa Mhibik
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
| | - Fanny Baran-Marszak
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
- Service d'Hématologie Biologique, APHP, Hôpital Avicenne, Bobigny, France
| | - Rémi Letestu
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
- Service d'Hématologie Biologique, APHP, Hôpital Avicenne, Bobigny, France
| | - Florence Ajchenbaum-Cymbalista
- INSERM, U978, Bobigny, France
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France
- Service d'Hématologie Biologique, APHP, Hôpital Avicenne, Bobigny, France
| | - Vincent Lévy
- URC, APHP, Hôpital Avicenne, Bobigny, France
- CRC, APHP, Hôpital Avicenne, Bobigny, France
| | - Nadine Varin-Blank
- INSERM, U978, Bobigny, France.
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France.
| | - Christine Le Roy
- INSERM, U978, Bobigny, France.
- Université Paris 13 dite « Sorbonne Paris Nord », UFR SMBH, Labex INFLAMEX, Bobigny, France.
| |
Collapse
|
29
|
Mai HL, Degauque N, Lorent M, Rimbert M, Renaudin K, Danger R, Kerleau C, Tilly G, Vivet A, Le Bot S, Delbos F, Walencik A, Giral M, Brouard S. Kidney allograft rejection is associated with an imbalance of B cells, regulatory T cells and differentiated CD28-CD8+ T cells: analysis of a cohort of 1095 graft biopsies. Front Immunol 2023; 14:1151127. [PMID: 37168864 PMCID: PMC10164960 DOI: 10.3389/fimmu.2023.1151127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction The human immune system contains cells with either effector/memory or regulatory functions. Besides the well-established CD4+CD25hiCD127lo regulatory T cells (Tregs), we and others have shown that B cells can also have regulatory functions since their frequency and number are increased in kidney graft tolerance and B cell depletion as induction therapy may lead to acute rejection. On the other hand, we have shown that CD28-CD8+ T cells represent a subpopulation with potent effector/memory functions. In the current study, we tested the hypothesis that kidney allograft rejection may be linked to an imbalance of effector/memory and regulatory immune cells. Methods Based on a large cohort of more than 1000 kidney graft biopsies with concomitant peripheral blood lymphocyte phenotyping, we investigated the association between kidney graft rejection and the percentage and absolute number of circulating B cells, Tregs, as well as the ratio of B cells to CD28-CD8+ T cells and the ratio of CD28-CD8+ T cells to Tregs. Kidney graft biopsies were interpreted according to the Banff classification and divided into 5 biopsies groups: 1) normal/subnormal, 2) interstitial fibrosis and tubular atrophy grade 2/3 (IFTA), 3) antibody-mediated rejection (ABMR), 4) T cell mediated-rejection (TCMR), and 5) borderline rejection. We compared group 1 with the other groups as well as with a combined group 3, 4, and 5 (rejection of all types) using multivariable linear mixed models. Results and discussion We found that compared to normal/subnormal biopsies, rejection of all types was marginally associated with a decrease in the percentage of circulating B cells (p=0.06) and significantly associated with an increase in the ratio of CD28-CD8+ T cells to Tregs (p=0.01). Moreover, ABMR, TCMR (p=0.007), and rejection of all types (p=0.0003) were significantly associated with a decrease in the ratio of B cells to CD28-CD8+ T cells compared to normal/subnormal biopsies. Taken together, our results show that kidney allograft rejection is associated with an imbalance between immune cells with effector/memory functions and those with regulatory properties.
Collapse
Affiliation(s)
- Hoa Le Mai
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Nicolas Degauque
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Marine Lorent
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Marie Rimbert
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Laboratoire d’Immunologie, Centre d’ImmunoMonitorage Nantes-Atlantique (CIMNA), CHU Nantes, Nantes, France
| | - Karine Renaudin
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Service d’Anatomie et Cytologie Pathologiques, CHU Nantes, Nantes, France
| | - Richard Danger
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Clarisse Kerleau
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Gaelle Tilly
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Anaïs Vivet
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
| | - Sabine Le Bot
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Service de Néphrologie et Immunologie Clinique, CHU Nantes, Nantes, France
| | | | | | - Magali Giral
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Service de Néphrologie et Immunologie Clinique, CHU Nantes, Nantes, France
- Fondation Centaure (RTRS), Nantes, France
- *Correspondence: Magali Giral, ; Sophie Brouard,
| | - Sophie Brouard
- Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Research in Transplantation and Translational Immunology, Unité mixte de recherche (UMR) 1064, Institut de Transplantation Urologie-Néphrologie (ITUN), Nantes, France
- Fondation Centaure (RTRS), Nantes, France
- *Correspondence: Magali Giral, ; Sophie Brouard,
| |
Collapse
|
30
|
Poznansky SA, Yu M, Deng K, Fu Q, Markmann JF, LeGuern C. Leveraging the tolerogenic potential of TNF-α and regulatory B cells in organ transplantation. Front Immunol 2023; 14:1173672. [PMID: 37180165 PMCID: PMC10172648 DOI: 10.3389/fimmu.2023.1173672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
A subset of B-cells with tolerogenic functions, termed B-regulatory cells or Bregs, is characterized by the expression of anti-inflammatory/tolerogenic cytokines, namely IL-10, TGF-β, and IL-35, that contribute to their regulatory functions. Breg regulation favors graft acceptance within a tolerogenic milieu. As organ transplantation invariably triggers inflammation, new insights into the crosstalk between cytokines with dual properties and the inflamed milieu are needed to tailor their function toward tolerance. Using TNF-α as a proxy of dual-function cytokines involved in immune-related diseases and transplantation settings, the current review highlights the multifaceted role of TNF-α. It focuses on therapeutic approaches that have revealed the complexity of TNF-α properties tested in clinical settings where total TNF-α inhibition has proven ineffective and often detrimental to clinical outcomes. To improve the efficacy of current TNF-α inhibiting therapeutics, we propose a three-prong strategy to upregulate the tolerogenic pathway engaging the TNFR2 receptor while simultaneously inhibiting the inflammatory mechanisms associated with TNFR1 engagement. When combined with additional administrations of Bregs-TLR that activate Tregs, this approach may become a potential therapeutic in overcoming transplant rejection and promoting graft tolerance.
Collapse
Affiliation(s)
- Sonya A. Poznansky
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Matthew Yu
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kevin Deng
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Qiang Fu
- Organ Transplantation Center, Sichuan Provincial People’s Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - James F. Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: James F. Markmann,
| | - Christian LeGuern
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
de Gruijter NM, Jebson B, Rosser EC. Cytokine production by human B cells: role in health and autoimmune disease. Clin Exp Immunol 2022; 210:253-262. [PMID: 36179248 PMCID: PMC9985175 DOI: 10.1093/cei/uxac090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/01/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
B cells are classically considered solely as antibody-producing cells driving humoral immune responses to foreign antigens in infections and vaccinations as well as self-antigens in pathological settings such as autoimmunity. However, it has now become clear that B cells can also secrete a vast array of cytokines, which influence both pro- and anti-inflammatory immune responses. Indeed, similarly to T cells, there is significant heterogeneity in cytokine-driven responses by B cells, ranging from the production of pro-inflammatory effector cytokines such as IL-6, through to the release of immunosuppressive cytokines such as IL-10. In this review, focusing on human B cells, we summarize the key findings that have revealed that cytokine-producing B cell subsets have critical functions in healthy immune responses and contribute to the pathophysiology of autoimmune diseases.
Collapse
Affiliation(s)
- Nina M de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, UK
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Bethany Jebson
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, UK
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, UK
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| |
Collapse
|
32
|
Moreira H, Dobosz A, Cwynar-Zając Ł, Nowak P, Czyżewski M, Barg M, Reichert P, Królikowska A, Barg E. Unraveling the role of Breg cells in digestive tract cancer and infectious immunity. Front Immunol 2022; 13:981847. [PMID: 36618354 PMCID: PMC9816437 DOI: 10.3389/fimmu.2022.981847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2022] Open
Abstract
Over the past two decades, regulatory B cells (Breg cells or Bregs) have emerged as an immunosuppressive subset of B lymphocytes playing a key role in inflammation, infection, allergy, transplantation, and cancer. However, the involvement of Bregs in various pathological conditions of the gastrointestinal tract is not fully understood and is the subject of much recent research. In this review, we aimed to summarize the current state of knowledge about the origin, phenotype, and suppressive mechanisms of Bregs. The relationship between the host gut microbiota and the function of Bregs in the context of the disturbance of mucosal immune homeostasis is also discussed. Moreover, we focused our attention on the role of Bregs in certain diseases and pathological conditions related to the digestive tract, especially Helicobacter pylori infection, parasitic diseases (leishmaniasis and schistosomiasis), and gastrointestinal neoplasms. Increasing evidence points to a relationship between the presence and number of Bregs and the severity and progression of these pathologies. As the number of cases is increasing year by year, also among young people, it is extremely important to understand the role of these cells in the digestive tract.
Collapse
Affiliation(s)
- Helena Moreira
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland,*Correspondence: Helena Moreira, ; Agnieszka Dobosz,
| | - Agnieszka Dobosz
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland,*Correspondence: Helena Moreira, ; Agnieszka Dobosz,
| | - Łucja Cwynar-Zając
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland
| | - Paulina Nowak
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Czyżewski
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Barg
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Reichert
- Department of Trauma Surgery, Clinical Department of Trauma and Hand Surgery, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Królikowska
- Ergonomics and Biomedical Monitoring Laboratory, Department of Physiotherapy, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Barg
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
33
|
Cherukuri A, Rothstein DM. Regulatory and transitional B cells: potential biomarkers and therapeutic targets in organ transplantation. Curr Opin Organ Transplant 2022; 27:385-391. [PMID: 35950881 PMCID: PMC9474638 DOI: 10.1097/mot.0000000000001010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF THE REVIEW Regulatory B cells (Bregs) play a prominent role in various disease settings. While progress has been hindered by the lack of a specific Breg marker, new findings highlight their role modulating the alloimmune response and promoting allograft survival. RECENT FINDINGS Herein, we focus on the recent advances in Breg biology and their role in transplantation. We review studies showing that T-cell immunoglobulin and mucin domain 1 (TIM-1) is an inclusive and functional Breg marker in mice that may have human relevance. We highlight the utility of the B cell interleukin-10/tumor necrosis factor-alpha (IL-10/TNFα) ratio in identifying underlying immunological reactivity and predicting clinical outcomes in kidney transplantation. This may identify patients requiring more immunosuppression and provide insight into potential therapeutic approaches that can modulate the Breg: B effector cell (Beff) balance. SUMMARY Emerging data support Bregs as potent modulators of immune responses in humans. Their ability to promote allograft survival must await development of approaches to expand Bregs in vitro/in vivo . The low IL-10/TNFα ratio reflecting decreased Breg/Beff balance, predicts acute rejection (AR) and poorer outcomes in renal transplantation. It remains to be determined whether this paradigm can be extended to other allografts and whether therapy aiming to correct the relative deficiency of Bregs will improve outcomes.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, PA, USA
| | - David M. Rothstein
- Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, PA, USA
| |
Collapse
|
34
|
Santana AC, Andraus W, Silva FMO, Sala ACG, Schust AS, Neri LHM, Feliciano R, Pepineli R, Dellê H, Ruiz LM, de Oliveira-Braga KA, Nepomuceno NA, Pêgo-Fernandes PM, Dos Santos MJ, de Moraes EL, Brasil S, Figueiredo EG. Thalidomide modulates renal inflammation induced by brain death experimental model. Transpl Immunol 2022; 75:101710. [PMID: 36096418 DOI: 10.1016/j.trim.2022.101710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Brain death (BD) is characterized by a complex inflammatory response, resulting in dysfunction of potentially transplantable organs. This process is modulated by cytokines, which amplify graft immunogenicity. We have investigated the inflammatory response in an animal model of BD and analyzed the effects of thalidomide, a drug with powerful immunomodulatory properties. METHODS BD was induced in male Lewis rats. We studied three groups: Control (sham-operated rats) (n = 6), BD (rats subjected to brain death) (n = 6) and BD + Thalid (BD rats treated with one dose of thalidomide (200 mg/Kg), administered by gavage) (n = 6). Six hours after BD, serum levels of urea and creatinine, as well as systemic and renal tissue protein levels of TNF-α and IL-6, were analyzed. We also determined the mRNA expression of ET-1, and macrophage infiltration by immunohistochemistry. RESULTS BD induced a striking inflammatory status, demonstrated by a significant increase of plasma cytokines: TNF-α (2.8 ± 4.3 pg/mL [BD] vs. 9.4 ± 2.8 pg/mL [Control]), and IL-6 (6219.5 ± 1380.6 pg/mL [BD] vs. 1854.7 ± 822.6 pg/mL [Control]), and in the renal tissue: TNF-α (2.5 ± 0.3 relative expression [BD] vs. 1.0 ± 0.4 relative expression [Control]; p < 0.05), and IL-6 (4.0 ± 0.4 relative expression [BD] vs. 1.0 ± 0.3 relative expression [Control]; p < 0.05). Moreover, BD increased macrophages infiltration (2.47 ± 0.07 cells/field [BD] vs. 1.20 ± 0.05 cells/field [Control]; p < 0.05), and ET-1 gene expression (2.5 ± 0.3 relative expression [BD] vs. 1.0 ± 0.2 relative expression [Control]; p < 0.05). In addition, we have observed deterioration in renal function, characterized by an increase of urea (194.7 ± 25.0 mg/dL [BD] vs. 108.0 ± 14.2 mg/dL [Control]; p < 0.05) and creatinine (1.4 ± 0.04 mg/dL [BD] vs. 1.0 ± 0.07 mg/dL [Control]; p < 0.05) levels. Thalidomide administration significantly reduced plasma cytokines: TNF-α (5.1 ± 1.4 pg/mL [BD + Thalid] vs. BD; p < 0.05), and IL-6 (1056.5 ± 488.3 pg/mL [BD + Thalid] vs. BD; p < 0.05), as well as in the renal tissue: TNF-α (1.5 ± 0.2 relative expression [BD + Thalid] vs. BD; p < 0.05), and IL-6 (2.1 ± 0.3 relative expression [BD + Thalid] vs. BD; p < 0.05). Thalidomide treatment also induced a significant decrease in the expression of ET-1 (1.4 ± 0.3 relative expression [BD + Thalid] vs. BD; p < 0.05), and macrophages infiltration (1.17 ± 0.06 cells/field [BD + Thalid] vs. BD; p < 0.05). Also thalidomide prevented kidney function failure by reduced urea (148.3 ± 4.4 mg/dL [BD + Thalid] vs. BD; p < 0.05), and creatinine (1.1 ± 0.14 mg/dL [BD + Thalid] vs. BD; p < 0.05). CONCLUSIONS The immunomodulatory properties of thalidomide were effective in decreasing systemic and local immunologic response, leading to diminished renal damage, as reflected in the decrease of urea and creatinine levels. These results suggest that use of thalidomide may represent a potential strategy for treating in BD kidney organ donors.
Collapse
Affiliation(s)
- Alexandre Chagas Santana
- Neurological Surgery Department, University of São Paulo, School of Medicine, São Paulo, Brazil; Organ Procurement Organization, Hospital das Clínicas, University of São Paulo, School of Medicine, São Paulo, Brazil.
| | - Wellington Andraus
- Gastroenterology Department, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | | | | | | | - Regiane Feliciano
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Rafael Pepineli
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Humberto Dellê
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Liliane Moreira Ruiz
- Cardiopneumology Department, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | | | | | | | - Edvaldo Leal de Moraes
- Organ Procurement Organization, Hospital das Clínicas, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Sergio Brasil
- Neurological Surgery Department, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
35
|
Burton H, McLaughlin L, Shiu KY, Shaw O, Mamode N, Spencer J, Dorling A. The phenotype of HLA-binding B cells from sensitized kidney transplant recipients correlates with clinically prognostic patterns of interferon-γ production against purified HLA proteins. Kidney Int 2022; 102:355-369. [PMID: 35483526 DOI: 10.1016/j.kint.2022.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
B cells play crucial roles in cell-mediated alloimmune responses. In vitro, B cells can support or regulate indirect T-cell alloreactivity in response to donor antigens on ELISpot and these patterns associate with clinical outcome. Previous reports of associations between B-cell phenotype and function have examined global phenotypes and responses to polyclonal stimuli. We hypothesized that studying antigen-specific B cells, using samples from sensitized patients, would inform further study to identify novel targets for intervention. Using biotinylated HLA proteins, which bind HLA-specific B cells via the B-cell receptor in a dose-dependent fashion, we report the specific phenotype of HLA-binding B cells and define how they associated with patterns of anti-HLA response in interferon-γ ELISpot. HLA-binding class-switched and IgM+CD27+ memory cells associated strongly with B-dependent interferon-γ production and appeared not suppressible by endogenous Tregs. When the predominant HLA-binding phenotype was naïve B cells, the associated functional ELISpot phenotype was determined by other cells present. High numbers of non-HLA-binding transitional cells associated with B-suppressed interferon-γ production, especially if Tregs were present. However, high frequencies of HLA-binding marginal-zone precursors associated with B-dependent interferon-γ production that appeared suppressible by Tregs. Finally, non-HLA-binding marginal zone precursors may also suppress interferon-γ production, though this association only emerged when Tregs were absent from the ELISpot. Thus, our novel data provide a foundation on which to further define the complexities of interactions between HLA-specific T and B cells and identify new targets for intervention in new therapies for chronic rejection.
Collapse
Affiliation(s)
- Hannah Burton
- Department of Inflammation Biology, King's College London, London, UK
| | - Laura McLaughlin
- Department of Inflammation Biology, King's College London, London, UK
| | - Kin Yee Shiu
- Department of Inflammation Biology, King's College London, London, UK; Department of Renal Medicine (UCL), Royal Free Hospital, London, UK
| | - Olivia Shaw
- Clinical Transplantation Laboratory, Guy's Hospital, London, UK
| | - Nizam Mamode
- Department of Inflammation Biology, King's College London, London, UK
| | - Jo Spencer
- Department of Immunobiology, King's College London, London, UK
| | - Anthony Dorling
- Department of Inflammation Biology, King's College London, London, UK.
| |
Collapse
|
36
|
Glass MC, Glass DR, Oliveria JP, Mbiribindi B, Esquivel CO, Krams SM, Bendall SC, Martinez OM. Human IL-10-producing B cells have diverse states that are induced from multiple B cell subsets. Cell Rep 2022; 39:110728. [PMID: 35443184 PMCID: PMC9107325 DOI: 10.1016/j.celrep.2022.110728] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/13/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Regulatory B cells (Bregs) suppress immune responses through the secretion of interleukin-10 (IL-10). This immunomodulatory capacity holds therapeutic potential, yet a definitional immunophenotype for enumeration and prospective isolation of B cells capable of IL-10 production remains elusive. Here, we simultaneously quantify cytokine production and immunophenotype in human peripheral B cells across a range of stimulatory conditions and time points using mass cytometry. Our analysis shows that multiple functional B cell subsets produce IL-10 and that no phenotype uniquely identifies IL-10+ B cells. Further, a significant portion of IL-10+ B cells co-express the pro-inflammatory cytokines IL-6 and tumor necrosis factor alpha (TNFα). Despite this heterogeneity, operationally tolerant liver transplant recipients have a unique enrichment of IL-10+, but not TNFα+ or IL-6+, B cells compared with transplant recipients receiving immunosuppression. Thus, human IL-10-producing B cells constitute an induced, transient state arising from a diversity of B cell subsets that may contribute to maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Marla C Glass
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - David R Glass
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Immunology Graduate Program, Stanford University, Stanford, CA, USA
| | - John-Paul Oliveria
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Berenice Mbiribindi
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos O Esquivel
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheri M Krams
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia M Martinez
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
37
|
Steines L, Scharf M, Hoffmann P, Schuster A, Banas B, Bergler T. Monitoring B cell alloresponses in rats. J Immunol Methods 2022; 501:113212. [PMID: 34971633 DOI: 10.1016/j.jim.2021.113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
Antibody-mediated rejection is a major cause of graft failure in organ transplantation. For this reason, B cell responses are of particular interest to transplantation research. Rats are important model organisms for transplant studies, but B cell alloimmune assays and B cell subset markers are poorly established in rats. We alloimmunized rats by donor blood injection using the high responder rat strain combination Brown Norway (donor) and Lewis (recipient) rats. Using splenocytes from alloimmunized and control rats, we established assays to assess allospecific B cell proliferation and the capacity to generate allospecific B memory cells and alloantibody-secreting cells after antigenic rechallenge in vitro using a mixed lymphocyte reaction. Furthermore, we defined a simple gating and sorting strategy for pre- and post-germinal center follicular B cells, as well as non-switched and switched plasmablasts. Our protocols for assessing B cell alloresponses and B cell subsets in rats may help to accelerate research into the role of B cells and manipulation of humoral alloresponses in transplant research.
Collapse
Affiliation(s)
- Louisa Steines
- Department of Nephrology, University Hospital Regensburg, Germany.
| | - Mona Scharf
- Department of Nephrology, University Hospital Regensburg, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III, University Hospital Regensburg, Germany; Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Antonia Schuster
- Department of Nephrology, University Hospital Regensburg, Germany
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Germany
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Germany
| |
Collapse
|
38
|
Louis K, Fadakar P, Macedo C, Yamada M, Lucas M, Gu X, Zeevi A, Randhawa P, Lefaucheur C, Metes D. Concomitant loss of regulatory T and B cells is a distinguishing immune feature of antibody-mediated rejection in kidney transplantation. Kidney Int 2022; 101:1003-1016. [PMID: 35090879 PMCID: PMC9038633 DOI: 10.1016/j.kint.2021.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 02/08/2023]
Abstract
Although considerable advances have been made in understanding the cellular effector mechanisms responsible for donor-specific antibody generation leading to antibody-mediated rejection (ABMR), the identification of cellular regulators of such immune responses is lacking. To clarify this, we used high dimensional flow cytometry to concomitantly profile and track the two major subsets of regulatory lymphocytes in blood: T regulatory (TREG) and transitional B cells in a cohort of 96 kidney transplant recipients. Additionally, we established co-culture assays to address their respective capacity to suppress antibody responses in vitro. TREG and transitional B cells were found to be potent suppressors of T follicular helper-mediated B-cell differentiation into plasmablast and antibody generation. TREG and transitional B cells were both durably expanded in patients who did not develop donor-specific antibody post-transplant. However, patients who manifested donor-specific antibody and progressed to ABMR displayed a marked and persistent numerical reduction in TREG and transitional B cells. Strikingly, specific cell clusters expressing the transcription factor T-bet were selectively depleted in both TREG and transitional B-cell compartments in patients with ABMR. Importantly, the coordinated loss of these T-bet+CXCR5+TREG and T-bet+CD21- transitional B-cell clusters was correlated with increased and inflammatory donor specific antibody responses, more extensive microvascular inflammation and a higher rate of kidney allograft loss. Thus, our study identified coordinated and persistent defects in regulatory T- and B-cell responses in patients undergoing ABMR, which may contribute to their loss of humoral immune regulation, and warrant timely therapeutic interventions to replenish and sustain TREG and transitional B cells in these patients.
Collapse
|
39
|
Sweet SC, Armstrong B, Blatter J, Chin H, Conrad C, Goldfarb S, Hayes D, Heeger PS, Lyou V, Melicoff-Portillo E, Mohanakumar T, Odim J, Ravichandran R, Schecter M, Storch GA, Visner G, Williams NM, Danziger-Isakov L. CTOTC-08: A multicenter randomized controlled trial of rituximab induction to reduce antibody development and improve outcomes in pediatric lung transplant recipients. Am J Transplant 2022; 22:230-244. [PMID: 34599540 DOI: 10.1111/ajt.16862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
We conducted a randomized, placebo-controlled, double-blind study of pediatric lung transplant recipients, hypothesizing that rituximab plus rabbit anti-thymocyte globulin induction would reduce de novo donor-specific human leukocyte antigen antibodies (DSA) development and improve outcomes. We serially obtained clinical data, blood, and respiratory samples for at least one year posttransplant. We analyzed peripheral blood lymphocytes by flow cytometry, serum for antibody development, and respiratory samples for viral infections using multiplex PCR. Of 45 subjects enrolled, 34 were transplanted and 27 randomized to rituximab (n = 15) or placebo (n = 12). No rituximab-treated subjects versus five placebo-treated subjects developed de novo DSA with mean fluorescence intensity >2000. There was no difference between treatment groups in time to the primary composite outcome endpoint (death, bronchiolitis obliterans syndrome [BOS] grade 0-p, obliterative bronchiolitis or listing for retransplant). A post-hoc analysis substituting more stringent chronic lung allograft dysfunction criteria for BOS 0-p showed no difference in outcome (p = .118). The incidence of adverse events including infection and rejection episodes was no different between treatment groups. Although the study was underpowered, we conclude that rituximab induction may have prevented early DSA development in pediatric lung transplant recipients without adverse effects and may improve outcomes (Clinical Trials: NCT02266888).
Collapse
Affiliation(s)
| | | | | | | | - Carol Conrad
- Lucile Packard Children's Hospital/Stanford Children's Health, Palo Alto, California
| | - Samuel Goldfarb
- Masonic Children's Hospital, University of Minnesota, Minneapolis, Minnesota
| | - Don Hayes
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Peter S Heeger
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Victoria Lyou
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Jonah Odim
- NIAID, National Institutes of Health, Bethesda, Maryland
| | | | - Marc Schecter
- University of Florida College of Medicine, Gainesville, Florida
| | | | - Gary Visner
- Boston Children's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
40
|
Li M, Wang H, Ni Y, Li C, Xu X, Chang H, Xu Z, Hou M, Ji M. Helminth-induced CD9 + B-cell subset alleviates obesity-associated inflammation via IL-10 production. Int J Parasitol 2021; 52:111-123. [PMID: 34863801 DOI: 10.1016/j.ijpara.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023]
Abstract
It has been shown that helminth infection can protect against obesity and improve insulin sensitivity to a certain extent, based on epidemiological investigations and animal experiments. Meanwhile, helminths induce a network of regulatory immune cells, including regulatory B cells (Bregs). However, the molecule characteristics and function of these Bregs in improving whole-body metabolic homeostasis remains largely unclear. We established a mouse model with chronic Schistosoma japonicum infection, and compared the differences in B10 cells (CD19+CD5+CD1dhi) and B10- cells (CD19+CD5-CD1d-) from splenic B cells of infected mice using RNA-seq. A unique Breg population was identified. Furthermore, these Bregs were evaluated for their ability to produce inhibitory cytokines in vitro and suppress obesity when adoptively transferred into mice on a high-fat diet. We found that schistosome infection could expand Breg cell populations in mice. CD9 was demonstrated to be a key surface marker for most murine IL-10+ B cells in spleen. CD19+CD9+ B cells produced more IL-10 than conventional B10 cells. Adoptive transfer of CD9+ B cells had the capacity to alleviate obesity-associated inflammation via promoting Tregs, Th2 cells and decreasing Th1, Th17 cells in high-fat diet mice. In conclusion, schistosome infection can induce regulatory CD9+ B cell production, which plays a critical role in the regulation of metabolic disorders through IL-10 production.
Collapse
Affiliation(s)
- Maining Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiquan Wang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejun Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Chang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Hou
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
41
|
Parlakpinar H, Gunata M. Transplantation and immunosuppression: a review of novel transplant-related immunosuppressant drugs. Immunopharmacol Immunotoxicol 2021; 43:651-665. [PMID: 34415233 DOI: 10.1080/08923973.2021.1966033] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunosuppressive drugs used in the transplantation period are generally defined as induction and maintenance therapy. The use of immunosuppressants, which are particularly useful and have fewer side effects, decreased both mortality and morbidity. Many drugs such as steroids, calcineurin inhibitors (cyclosporine-A, tacrolimus), antimetabolites (mycophenolate mofetil, azathioprine), and mTOR inhibitors (sirolimus, everolimus) are used as immunosuppressive agents. Although immunosuppressant drugs cause many side effects such as hypertension, infection, and hyperlipidemia, they are the agents that should be used to prevent organ rejection. This shows the importance of individualized drug use. The optimal immunosuppressive therapy post-transplant is not established. Therefore, discovering less toxic but more potent new agents is of great importance, and new experimental and clinical studies are needed in this regard.Our review discussed the mechanism of immunosuppressants, new agents' discovery, and current therapeutic protocols in the transplantation.
Collapse
Affiliation(s)
- Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
42
|
Cherukuri A, Salama AD, Mehta R, Mohib K, Zheng L, Magee C, Harber M, Stauss H, Baker RJ, Tevar A, Landsittel D, Lakkis FG, Hariharan S, Rothstein DM. Transitional B cell cytokines predict renal allograft outcomes. Sci Transl Med 2021; 13:13/582/eabe4929. [PMID: 33627487 DOI: 10.1126/scitranslmed.abe4929] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Early immunological biomarkers that predict rejection and chronic allograft loss are needed to inform preemptive therapy and improve long-term outcomes. Here, we prospectively examined the ratio of interleukin-10 (IL-10) to tumor necrosis factor-α (TNFα) produced by transitional-1 B cells (T1B) 3 months after transplantation as a predictive biomarker for clinical and subclinical renal allograft rejection and subsequent clinical course. In both Training (n = 162) and Internal Validation (n = 82) Sets, the T1B IL-10/TNFα ratio 3 months after transplantation predicted both clinical and subclinical rejection anytime in the first year. The biomarker also predicted subsequent late rejection with a lead time averaging 8 months. Among biomarker high-risk patients, 60% had early rejection, of which 48% recurred later in the first posttransplant year. Among high-risk patients without early rejection, 74% developed rejection later in the first year. In contrast, only 5% of low-risk patients had early and 5% late rejection. The biomarker also predicted rejection in an External Validation Set (n = 95) and in key patient subgroups, confirming generalizability. Biomarker high-risk patients exhibited progressively worse renal function and decreased 5-year graft survival compared to low-risk patients. Treatment of B cells with anti-TNFα in vitro augmented the IL-10/TNFα ratio, restored regulatory activity, and inhibited plasmablast differentiation. To conclude, the T1B IL-10/TNFα ratio was validated as a strong predictive biomarker of renal allograft outcomes and provides a rationale for preemptive therapeutic intervention with TNF blockade.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alan D Salama
- University College of London Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| | - Rajil Mehta
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Leting Zheng
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Rheumatology and Immunology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ciara Magee
- University College of London Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| | - Mark Harber
- University College of London Department of Renal Medicine, Royal Free Hospital, London NW3 2QG, UK
| | - Hans Stauss
- UCL Institute of Immunity and Transplantation, Royal Free Hospital, London NW3 2QG, UK
| | - Richard J Baker
- Renal Unit, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Amit Tevar
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Douglas Landsittel
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sundaram Hariharan
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA. .,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
43
|
Chong AS, Sage PT, Alegre ML. Regulation of Alloantibody Responses. Front Cell Dev Biol 2021; 9:706171. [PMID: 34307385 PMCID: PMC8297544 DOI: 10.3389/fcell.2021.706171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
The control of alloimmunity is essential to the success of organ transplantation. Upon alloantigen encounter, naïve alloreactive T cells not only differentiate into effector cells that can reject the graft, but also into T follicular helper (Tfh) cells that promote the differentiation of alloreactive B cells that produce donor-specific antibodies (DSA). B cells can exacerbate the rejection process through antibody effector functions and/or B cell antigen-presenting functions. These responses can be limited by immune suppressive mechanisms mediated by T regulatory (Treg) cells, T follicular regulatory (Tfr) cells, B regulatory (Breg) cells and a newly described tolerance-induced B (TIB) cell population that has the ability to suppress de novo B cells in an antigen-specific manner. Transplantation tolerance following costimulation blockade has revealed mechanisms of tolerance that control alloreactive T cells through intrinsic and extrinsic mechanisms, but also inhibit alloreactive B cells. Thus, the control of both arms of adaptive immunity might result in more robust tolerance, one that may withstand more severe inflammatory challenges. Here, we review new findings on the control of B cells and alloantibody production in the context of transplant rejection and tolerance.
Collapse
Affiliation(s)
- Anita S. Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Peter T. Sage
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
44
|
Muir L, Jaffer A, Rees-Spear C, Gopalan V, Chang FY, Fernando R, Vaitkute G, Roustan C, Rosa A, Earl C, Rajakaruna GK, Cherepanov P, Salama A, McCoy LE, Motallebzadeh R. Neutralizing Antibody Responses After SARS-CoV-2 Infection in End-Stage Kidney Disease and Protection Against Reinfection. Kidney Int Rep 2021; 6:1799-1809. [PMID: 33942026 PMCID: PMC8081267 DOI: 10.1016/j.ekir.2021.03.902] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Patients with end-stage kidney disease (ESKD) represent a vulnerable group with multiple risk factors that are associated with poor outcomes after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Despite established susceptibility to infectious complications and the importance of humoral immunity in protection against SARS-CoV-2, few studies have investigated the humoral immune response to SARS-CoV-2 within this population. Here, we evaluate the seroprevalence of SARS-CoV-2 in patients awaiting renal transplantation and determine whether seroconverted patients with ESKD have durable and functional neutralizing activity against SARS-CoV-2. METHODS Serum samples were obtained from 164 patients with ESKD by August 2020. Humoral immune responses were evaluated by SARS-CoV-2 spike S1 subunit and nucleoprotein semiquantitative enzyme-linked immunosorbent assay (ELISA) and SARS-CoV-2 spike pseudotype neutralization assay. RESULTS All patients with ESKD with reverse-transcriptase polymerase chain reaction (RT-PCR)-confirmed infection (n = 17) except for 1 individual seroconverted against SARS-CoV-2. Overall seroprevalence (anti-S1 and/or anti-N IgG) was 36% and was higher in patients on hemodialysis (44.2%). A total of 35.6% of individuals who seroconverted were asymptomatic. Seroconversion in the absence of a neutralizing antibody (nAb) titer was observed in 12 patients, all of whom were asymptomatic. Repeat measurements at a median of 93 days from baseline sampling revealed that most individuals retained detectable responses although a significant drop in S1, N and nAb titers was observed. CONCLUSION Patients with ESKD, including those who develop asymptomatic disease, routinely seroconvert and produce detectable nAb titers against SARS-CoV-2. Although IgG levels wane over time, the neutralizing antibodies remain detectable in most patients, suggesting some level of protection is likely maintained, particularly in those who originally develop stronger responses.
Collapse
Affiliation(s)
- Luke Muir
- UCL Institute of Immunity & Transplantation, University College London, London, UK
- UCL Division of Infection & Immunity, University College London, London, UK
| | - Aneesa Jaffer
- Department of Nephrology & Transplantation, Royal Free London NHS Trust, London, UK
| | - Chloe Rees-Spear
- UCL Institute of Immunity & Transplantation, University College London, London, UK
- UCL Division of Infection & Immunity, University College London, London, UK
| | - Vignesh Gopalan
- Department of Nephrology & Transplantation, Royal Free London NHS Trust, London, UK
| | - Fernando Y. Chang
- Research Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Raymond Fernando
- Department of Nephrology & Transplantation, Royal Free London NHS Trust, London, UK
| | - Gintare Vaitkute
- Research Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | | | | | | | - Gayathri K. Rajakaruna
- Centre for Transplantation, Department of Renal Medicine, University College London, London, UK
| | | | - Alan Salama
- Department of Nephrology & Transplantation, Royal Free London NHS Trust, London, UK
- Centre for Transplantation, Department of Renal Medicine, University College London, London, UK
| | - Laura E. McCoy
- UCL Institute of Immunity & Transplantation, University College London, London, UK
- UCL Division of Infection & Immunity, University College London, London, UK
| | - Reza Motallebzadeh
- UCL Institute of Immunity & Transplantation, University College London, London, UK
- Department of Nephrology & Transplantation, Royal Free London NHS Trust, London, UK
- Research Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
- Centre for Transplantation, Department of Renal Medicine, University College London, London, UK
| |
Collapse
|
45
|
Pacaud M, Colas L, Brouard S. Microbiota and immunoregulation: A focus on regulatory B lymphocytes and transplantation. Am J Transplant 2021; 21:2341-2347. [PMID: 33559282 DOI: 10.1111/ajt.16522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/29/2020] [Indexed: 01/25/2023]
Abstract
The microbiota plays a major role in the regulation of the host immune functions thus establishing a symbiotic relationship that maintains immune homeostasis. Among immune cells, regulatory B cells (Bregs), which can inhibit effector T cell responses, may be involved in the intestinal homeostasis. Recent works suggest that the interaction between the microbiota and Bregs appears to be important to limit autoimmune diseases and help to maintain tolerance in transplantation. Short-chain fatty acids (SCFAs), recognized as major metabolites of the microbiota, seem to be involved in the generation of a pro-tolerogenic environment in the gut, particularly through the regulation of B cell differentiation, limiting mature B cells and promoting the function of Bregs. In this review, we show that this B cells-microbiota interaction may open a path toward new potential therapeutic applications not only for patients with autoimmune diseases but also in transplantation.
Collapse
Affiliation(s)
- Margaux Pacaud
- Centre De Recherche En Transplantation Et Immunologie, UMR1064, INSERM, Université De Nantes, Nantes, France
| | - Luc Colas
- Centre De Recherche En Transplantation Et Immunologie, UMR1064, INSERM, Université De Nantes, Nantes, France.,Plateforme Transversale d'Allergologie et d'Immunologie Clinique, Institut du Thorax, CHU de Nantes, Nantes, France
| | - Sophie Brouard
- Centre De Recherche En Transplantation Et Immunologie, UMR1064, INSERM, Université De Nantes, Nantes, France.,Institut De Transplantation Urologie Néphrologie (ITUN, CHU Nantes, Nantes, France.,Laboratoire d'Immunologie, CHU Nantes, Nantes, France
| |
Collapse
|
46
|
Slepicka PF, Yazdanifar M, Bertaina A. Harnessing Mechanisms of Immune Tolerance to Improve Outcomes in Solid Organ Transplantation: A Review. Front Immunol 2021; 12:688460. [PMID: 34177941 PMCID: PMC8222735 DOI: 10.3389/fimmu.2021.688460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Survival after solid organ transplantation (SOT) is limited by chronic rejection as well as the need for lifelong immunosuppression and its associated toxicities. Several preclinical and clinical studies have tested methods designed to induce transplantation tolerance without lifelong immune suppression. The limited success of these strategies has led to the development of clinical protocols that combine SOT with other approaches, such as allogeneic hematopoietic stem cell transplantation (HSCT). HSCT prior to SOT facilitates engraftment of donor cells that can drive immune tolerance. Recent innovations in graft manipulation strategies and post-HSCT immune therapy provide further advances in promoting tolerance and improving clinical outcomes. In this review, we discuss conventional and unconventional immunological mechanisms underlying the development of immune tolerance in SOT recipients and how they can inform clinical advances. Specifically, we review the most recent mechanistic studies elucidating which immune regulatory cells dampen cytotoxic immune reactivity while fostering a tolerogenic environment. We further discuss how this understanding of regulatory cells can shape graft engineering and other therapeutic strategies to improve long-term outcomes for patients receiving HSCT and SOT.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Mahboubeh Yazdanifar
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alice Bertaina
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
47
|
TCL1A, B Cell Regulation and Tolerance in Renal Transplantation. Cells 2021; 10:cells10061367. [PMID: 34206047 PMCID: PMC8230170 DOI: 10.3390/cells10061367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/31/2022] Open
Abstract
Despite much progress in the management of kidney transplantation, the need for life-long immunosuppressive therapies remains a major issue representing many risks for patients. Operational tolerance, defined as allograft acceptance without immunosuppression, has logically been subject to many investigations with the aim of a better understanding of post-transplantation mechanisms and potentially how it would be induced in patients. Among proposed biomarkers, T-cell Leukemia/Lymphoma protein 1A (TCL1A) has been observed as overexpressed in the peripheral blood of operational tolerant patients in several studies. TCL1A expression is restricted to early B cells, also increased in the blood of tolerant patients, and showing regulatory properties, notably through IL-10 secretion for some subsets. TCL1A has first been identified as an oncogene, overexpression of which is associated to the development of T and B cell cancer. TCL1A acts as a coactivator of the serine threonine kinase Akt and through other interactions favoring cell survival, growth, and proliferation. It has also been identified as interacting with others major actors involved in B cells differentiation and regulation, including IL-10 production. Herein, we reviewed known interactions and functions of TCL1A in B cells which could involve its potential role in the set up and maintenance of renal allograft tolerance.
Collapse
|
48
|
Long W, Zhang H, Yuan W, Lan G, Lin Z, Peng L, Dai H. The Role of Regulatory B cells in Kidney Diseases. Front Immunol 2021; 12:683926. [PMID: 34108975 PMCID: PMC8183681 DOI: 10.3389/fimmu.2021.683926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023] Open
Abstract
B cells, commonly regarded as proinflammatory antibody-producing cells, are detrimental to individuals with autoimmune diseases. However, in recent years, several studies have shown that regulatory B (Breg) cells, an immunosuppressive subset of B cells, may exert protective effects against autoimmune diseases by secretion of inhibitory cytokines such as IL-10. In practice, Breg cells are identified by their production of immune-regulatory cytokines, such as IL-10, TGF-β, and IL-35, however, no specific marker or Breg cell-specific transcription factor has been identified. Multiple phenotypes of Breg cells have been found, whose functions vary according to their phenotype. This review summarizes the discovery, phenotypes, development, and function of Breg cells and highlights their potential therapeutic value in kidney diseases.
Collapse
Affiliation(s)
- Wang Long
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Graduate School of Medical and Dental Science, Department of Pathological Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hedong Zhang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Zhi Lin
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Longkai Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
49
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
50
|
Alfaro R, Legaz I, González-Martínez G, Jimenez-Coll V, Martínez-Banaclocha H, Galián JA, Botella C, de la Peña-Moral J, Moya-Quiles MR, Campillo JA, Minguela A, Llorente S, Muro M. Monitoring of B Cell in Kidney Transplantation: Development of a Novel Clusters Analysis and Role of Transitional B Cells in Transplant Outcome. Diagnostics (Basel) 2021; 11:diagnostics11040641. [PMID: 33916199 PMCID: PMC8065535 DOI: 10.3390/diagnostics11040641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/21/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
Background: B lymphocytes (BL) seem to play an important role in transplantation, although the and role of different subpopulations in monitoring and outcome is not clear. Our aim was to monitoring immunological profiles based on BL subpopulations in kidney recipients (KR) with the risk of acute rejection (AR). Methods: Monitoring of BL subpopulations was performed by flow cytometry in PBLs before transplantation and three and six months after transplantation (PTX). We used two methodological approaches, a traditional analysis, and a novel cluster analysis, to determine the association between BL subpopulations, AR incidence, and graft function. Results: After three months of PTX, KRs with a B phenotype enriched in transitional BL and plasmablasts had better kidney function and lower AR incidence. KRs with decreased transitional BL and plasmablasts were associated with lower kidney function and higher AR PTX. KRs that had an increase in transitional BL PTX had a better clinical outcome. The increase in transitory BL during PTX was also associated with an increase in Tregs. Indeed, KRs receiving thymoglobulin as induction therapy showed a slight decrease in the relative frequency of naive BLs after three months of PTX. Conclusion: The monitoring of BL subpopulations may serve as a non-invasive tool to improve immunological follow-up of patients after kidney transplantation. However, further studies are needed to confirm the obtained results, define cut-off values, and standardize more optimal and even custom/customized protocols.
Collapse
Affiliation(s)
- Rafael Alfaro
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (I.L.); (G.G.-M.)
| | - Gema González-Martínez
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (I.L.); (G.G.-M.)
| | - Víctor Jimenez-Coll
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - Helios Martínez-Banaclocha
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - José Antonio Galián
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - Carmen Botella
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - Jesús de la Peña-Moral
- Pathology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain;
| | - María Rosa Moya-Quiles
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - José Antonio Campillo
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - Alfredo Minguela
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
| | - Santiago Llorente
- Nephrology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain;
| | - Manuel Muro
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (R.A.); (V.J.-C.); (H.M.-B.); (J.A.G.); (C.B.); (M.R.M.-Q.); (J.A.C.); (A.M.)
- Correspondence: ; Tel.: +34-968-369599; Fax: +34-968-349678
| |
Collapse
|