1
|
Friedman CR, Morfino RC, Ernst ET. Leveraging a Strategic Public-Private Partnership to Launch an Airport-Based Pathogen Monitoring Program to Detect Emerging Health Threats. Emerg Infect Dis 2025; 31:35-38. [PMID: 40359068 PMCID: PMC12078540 DOI: 10.3201/eid3113.241407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Airport-based pathogen monitoring is a critical tool that can contribute to early detection and characterization of existing and new pathogen threats. A novel public-private partnership between an airport spa group, a biotech company, and the Centers for Disease Control and Prevention was instrumental in establishing a multimodal pathogen genomic surveillance program at US international airports. That public-private partnership addressed critical challenges that neither party could overcome independently, resulting in the development and deployment of a scalable, flexible early warning system for pathogen detection and public health monitoring.
Collapse
|
2
|
Elkin ME, Zhu X. Paying attention to the SARS-CoV-2 dialect : a deep neural network approach to predicting novel protein mutations. Commun Biol 2025; 8:98. [PMID: 39838059 PMCID: PMC11751191 DOI: 10.1038/s42003-024-07262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/13/2024] [Indexed: 01/23/2025] Open
Abstract
Predicting novel mutations has long-lasting impacts on life science research. Traditionally, this problem is addressed through wet-lab experiments, which are often expensive and time consuming. The recent advancement in neural language models has provided stunning results in modeling and deciphering sequences. In this paper, we propose a Deep Novel Mutation Search (DNMS) method, using deep neural networks, to model protein sequence for mutation prediction. We use SARS-CoV-2 spike protein as the target and use a protein language model to predict novel mutations. Different from existing research which is often limited to mutating the reference sequence for prediction, we propose a parent-child mutation prediction paradigm where a parent sequence is modeled for mutation prediction. Because mutations introduce changing context to the underlying sequence, DNMS models three aspects of the protein sequences: semantic changes, grammatical changes, and attention changes, each modeling protein sequence aspects from shifting of semantics, grammar coherence, and amino-acid interactions in latent space. A ranking approach is proposed to combine all three aspects to capture mutations demonstrating evolving traits, in accordance with real-world SARS-CoV-2 spike protein sequence evolution. DNMS can be adopted for an early warning variant detection system, creating public health awareness of future SARS-CoV-2 mutations.
Collapse
Affiliation(s)
- Magdalyn E Elkin
- Dept. Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA.
| | - Xingquan Zhu
- Dept. Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA.
| |
Collapse
|
3
|
Mbaye A, Diallo H, Gnimadi TAC, Kadio KJJO, Soumah AK, Koivogui JB, Monemou JL, Povogui MK, Kaba D, Hounmenou C, Serrano L, Butel C, Nuñez NF, Vidal N, Guichet E, Delaporte E, Ayouba A, Peeters M, Toure A, Keita AK. Genomic and epidemiological analysis of SARS-CoV-2 variants isolated in Guinea: a routine sequencing implementation. BMC Infect Dis 2025; 25:3. [PMID: 39748303 PMCID: PMC11696909 DOI: 10.1186/s12879-024-10411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Several variants of SARS-CoV-2 have a demonstrated impact on public health, including high and increased transmissibility, severity of infection, and immune escape. Therefore, this study aimed to determine the SARS-CoV-2 lineages and better characterize the dynamics of the pandemic during the different waves in Guinea. METHODS Whole genome sequencing of 363 samples with PCR cycle threshold (Ct) values under thirty was undertaken between May 2020 and May 2023. The Illumina iSeq 100 technology was used. The sequences were then analyzed using the GeVarli pipeline to generate consensus sequences and variant calling. All sequences isolated in Guinea and available on GISAID were included in the analysis for phylogenetic tree and phylodynamic determination. Nextstain tools were used for these analyses. Statistical analysis was done using GraphPad Prism version 10. RESULTS The circulation of SARS-CoV-2 in Guinea can be distributed in three different periods. The first, lasting from May to June 2020, was characterized by lineages B1 and B.1.1. The second period, from January 2021 to July 2021, was characterized by the lineages B.1.1.7 (Alpha), AY.122, B.1.1.318, R1, B.1.525 and B.1.629. The third period, between December 2021 and May 2023, was characterized by the Omicron variant, with nine subvariant majorities found. In addition, detecting variants in the period out of their circulation was documented. The importation and exportation investigation showed the strong movement viral association between Guinea and Senegal on the one hand and Guinea and Nigeria on the other. CONCLUSION In summary, this study contributes to understanding the epidemic dynamics of the disease by describing the significant variants that circulated in Guinee and the distribution of this variant in the population. It also shows the importation and exportation of the virus during the pandemic. Sub-sampling and degradation of samples for sequences were observed. Organization and collaboration between laboratories are needed for a good sample-collecting and storage system for future direction.
Collapse
Affiliation(s)
- Aminata Mbaye
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea.
| | - Haby Diallo
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Thibaut Armel Cherif Gnimadi
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Kadio Jean Jacques Olivier Kadio
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Abdoul Karim Soumah
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Joel Balle Koivogui
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Jean Louis Monemou
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Moriba Kowa Povogui
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Djiba Kaba
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Castro Hounmenou
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Laetitia Serrano
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Christelle Butel
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Nicolas Fernandez Nuñez
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Nicole Vidal
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Emilande Guichet
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Eric Delaporte
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Ahidjo Ayouba
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Martine Peeters
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Abdoulaye Toure
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Alpha Kabinet Keita
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea.
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France.
| |
Collapse
|
4
|
Behzadi P, Chandran D, Chakraborty C, Bhattacharya M, Saikumar G, Dhama K, Chakraborty A, Mukherjee S, Sarshar M. The dual role of toll-like receptors in COVID-19: Balancing protective immunity and immunopathogenesis. Int J Biol Macromol 2025; 284:137836. [PMID: 39613064 DOI: 10.1016/j.ijbiomac.2024.137836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Toll-like receptors (TLRs) of human are considered as the most critical immunological mediators of inflammatory pathogenesis of COVID-19. These immunoregulatory glycoproteins are located on the surface and/or intracellular compartment act as innate immune sensors. Upon binding with distinct SARS-CoV-2 ligand(s), TLRs signal activation of different transcription factors that induce expression of the proinflammatory mediators that collectively induce 'cytokine storm'. Similarly, TLR activation is also pivotal in conferring protection to infection and invasion as well as upregulating the tissue repair pathways. This dual role of the human TLRs in deciding the fate of SARS-CoV-2 has made these receptor proteins as the critical mediators of immunoprotective and immunopathogenic consequences associated with COVID-19. Herein, pathbreaking discoveries exploring the immunobiological importance of the TLRs in COVID-19 and developing TLR-directed therapeutic intervention have been reviewed by accessing the up-to-date literatures available in the public domain/databases. In accordance with our knowledge in association with the importance of TLRs' role against viruses and identification of viral particles, they have been recognized as suitable candidates with high potential as vaccine adjuvants. In this regard, the agonists of TLR4 and TLR9 have effective potential in vaccine technology while the others need further investigations. This comprehensive review suggests that basal level expression of TLRs can act as friends to keep our body safe from strangers but act as a foe via overexpression. Therefore, selective inhibition of the overexpressed TLRs appears to be a solution to counteract the cytokine storm while TLR-agonists as vaccine adjuvants could lessen the risk of infection in the naïve population.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran.
| | | | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, 756020, Odisha, India
| | - Guttula Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India.
| | - Ankita Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India.
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, 00146, Rome, Italy
| |
Collapse
|
5
|
Shen S, Fu AY, Jamba M, Li J, Cui Z, Pastor L, Cataldi D, Sun Q, Pathakamuri JA, Kuebler D, Rohall M, Krohn M, Kissinger D, Neves J, Archibeque I, Zhang A, Lu CM, Sha MY. Rapid detection of SARS-CoV-2 variants by molecular-clamping technology-based RT-qPCR. Microbiol Spectr 2024; 12:e0424823. [PMID: 39412285 PMCID: PMC11537085 DOI: 10.1128/spectrum.04248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/30/2024] [Indexed: 11/07/2024] Open
Abstract
Given the challenges that SARS-CoV-2 variants have caused in terms of rapid spread and reduced vaccine efficacy, a rapid and cost-effective assay that can detect new and emerging variants is greatly needed worldwide. We have successfully applied the xenonucleic acid-based molecular-clamping technology to develop a multiplex reverse-transcription quantitative real-time PCR assay for SARS-CoV-2 multivariant detection. The assay was used to test 649 nasopharyngeal swab samples that were collected for clinical diagnosis or surveillance. The assay was able to correctly identify all 36 Delta variant samples as it accurately detected the D614G, T478K, and L452R mutations. In addition, the assay was able to correctly identify all 34 Omicron samples by detecting the K417N, T478K, N501Y, and D614G mutations. This technique reliably detects a variety of variants and has an analytical sensitivity of 100 copies/mL. In conclusion, this novel assay can serve as a rapid and cost-effective tool to facilitate large-scale detection of SARS-CoV-2 variants. IMPORTANCE We have developed a multiplex reverse-transcription quantitative real-time PCR (RT-qPCR) testing platform for the rapid detection of SARS-CoV-2 variants using the xenonucleic acid (XNA)-based molecular-clamping technology. The XNA-based RT-qPCR assay can achieve high sensitivity with a limit of detection of about 100 copies/mL for variant detection which is much better than the next-generation sequencing (NGS) assay. Its turnaround time is about 4 hours with lower cost and a lot of Clinical Laboratory Improvement Amendments (CLIA) labs own the instrument and meet skillset requirements. This assay provides a rapid, reliable, and cost-effective testing platform for rapid detection and monitoring of known and emerging SARS-CoV-2 variants. This testing platform can be adopted by laboratories that perform routine SARS-CoV-2 PCR testing, providing a rapid and cost-effective method in lieu of NGS-based assays, for detecting, differentiating, and monitoring SARS-CoV-2 variants. This assay is easily scalable to any new variant(s) should it emerge.
Collapse
Affiliation(s)
- Shuo Shen
- DiaCarta Inc., Pleasanton, California, USA
| | | | | | | | - Zhen Cui
- DiaCarta Inc., Pleasanton, California, USA
| | | | | | - Qing Sun
- DiaCarta Inc., Pleasanton, California, USA
| | | | - Daniel Kuebler
- Franciscan University of Steubenville, Steubenville, Ohio, USA
| | - Michael Rohall
- Franciscan University of Steubenville, Steubenville, Ohio, USA
| | - Madison Krohn
- Franciscan University of Steubenville, Steubenville, Ohio, USA
| | | | - Jocelyn Neves
- Franciscan University of Steubenville, Steubenville, Ohio, USA
| | | | | | - Chuanyi M. Lu
- Department of Laboratory Medicine, University of California San Francisco and San Francisco VA Health Care System, San Francisco, California, USA
| | | |
Collapse
|
6
|
Huang J, Ma Q, Su Z, Cheng X. Advancements in the Development of Anti-SARS-CoV-2 Therapeutics. Int J Mol Sci 2024; 25:10820. [PMID: 39409149 PMCID: PMC11477007 DOI: 10.3390/ijms251910820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes COVID-19, and so far, it has occurred five noteworthy variants of concern (VOC). SARS-CoV-2 invades cells by contacting its Spike (S) protein to its receptor on the host cell, angiotensin-converting enzyme 2 (ACE2). However, the high frequency of mutations in the S protein has limited the effectiveness of existing drugs against SARS-CoV-2 variants, particularly the Omicron variant. Therefore, it is critical to develop drugs that have highly effective antiviral activity against both SARS-CoV-2 and its variants in the future. This review provides an overview of the mechanism of SARS-CoV-2 infection and the current progress on anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Junjie Huang
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China;
| | - Qianqian Ma
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Zhengding Su
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Xiyao Cheng
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China;
| |
Collapse
|
7
|
Cui W, Duan Y, Gao Y, Wang W, Yang H. Structural review of SARS-CoV-2 antiviral targets. Structure 2024; 32:1301-1321. [PMID: 39241763 DOI: 10.1016/j.str.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
The coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents the most disastrous infectious disease pandemic of the past century. As a member of the Betacoronavirus genus, the SARS-CoV-2 genome encodes a total of 29 proteins. The spike protein, RNA-dependent RNA polymerase, and proteases play crucial roles in the virus replication process and are promising targets for drug development. In recent years, structural studies of these viral proteins and of their complexes with antibodies and inhibitors have provided valuable insights into their functions and laid a solid foundation for drug development. In this review, we summarize the structural features of these proteins and discuss recent progress in research regarding therapeutic development, highlighting mechanistically representative molecules and those that have already been approved or are under clinical investigation.
Collapse
Affiliation(s)
- Wen Cui
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China
| | - Wei Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China.
| |
Collapse
|
8
|
Tramuto F, Marotta C, Stefanelli P, Cernigliaro A, Maida CM, Silenzi A, Angeloni U, Di Naro D, Randazzo G, Guzzetta V, Barone T, Brusaferro S, Severoni S, Rezza G, Vitale F, Mazzucco W. SARS-CoV-2 genomic surveillance of migrants arriving to Europe through the Mediterranean routes. J Glob Health 2024; 14:05017. [PMID: 38963881 PMCID: PMC11223754 DOI: 10.7189/jogh.14.05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Background The implementation genomic-based surveillance on emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in low-income countries, which have inadequate molecular and sequencing capabilities and limited vaccine storage, represents a challenge for public health. To date, there is little evidence on molecular investigations of SARS-CoV-2 variants in areas where they might emerge. We report the findings of an experimental SARS-CoV-2 molecular surveillance programme for migrants, refugees, and asylum seekers arriving to Europe via Italy through the Mediterranean Sea. Methods We descriptively analysed data on migrants collected at entry points in Sicily from February 2021 to May 2022. These entry points are integrated with a network of laboratories fully equipped for molecular analyses, which performed next-generation sequencing and used Nextclade and the Pangolin coronavirus disease 2019 (COVID-19) tools for clade/lineage assignment. Results We obtained 472 full-length SARS-CoV-2 sequences and identified 12 unique clades belonging to 31 different lineages. The delta variant accounted for 43.6% of all genomes, followed by clades 21D (Eta) and 20A (25.4% and 11.4%, respectively). Notably, some of the identified lineages (A.23.1, A.27, and A.29) predicted their introduction into the migration area. The mutation analysis allowed us to identify 617 different amino acid substitutions, 156 amino acid deletions, 7 stop codons, and 6 amino acid insertions. Lastly, we highlighted the geographical distribution patterns of some mutational profiles occurring in the migrants' countries of origin. Conclusions Genome-based molecular surveillance dedicated to migrant populations from low-resource areas may be useful for forecasting new epidemiological scenarios related to SARS-CoV-2 variants or other emerging pathogens, as well as for informing the updating of vaccination strategies.
Collapse
Affiliation(s)
- Fabio Tramuto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties ‘G. D’Alessandro’, University of Palermo, Italy
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
| | - Claudia Marotta
- General Directorate of Health Prevention, Ministry of Health, Rome, Italy
| | - Paola Stefanelli
- National Institute of Health (Istituto Superiore di Sanità), Rome, Italy
| | | | - Carmelo Massimo Maida
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties ‘G. D’Alessandro’, University of Palermo, Italy
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
| | - Andrea Silenzi
- General Directorate of Health Prevention, Ministry of Health, Rome, Italy
| | - Ulrico Angeloni
- General Directorate of Health Prevention, Ministry of Health, Rome, Italy
| | - Daniela Di Naro
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
| | - Giulia Randazzo
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
| | - Valeria Guzzetta
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
| | - Teresa Barone
- Department of Laboratory Diagnostics, Local Health Unit of Palermo, Palermo, Italy
| | - Silvio Brusaferro
- National Institute of Health (Istituto Superiore di Sanità), Rome, Italy
- University of Udine, Udine, Italy
| | - Santino Severoni
- Health and Migration Programme (PHM), World Health Organization, Geneva, Switzerland
| | - Gianni Rezza
- General Directorate of Health Prevention, Ministry of Health, Rome, Italy
- Vita – Salute San Raffaele University, Milan, Italy
| | - Francesco Vitale
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties ‘G. D’Alessandro’, University of Palermo, Italy
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
| | - Walter Mazzucco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties ‘G. D’Alessandro’, University of Palermo, Italy
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
- Division of Biostatistics & Epidemiology Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
| | - SAMI-Surv CollaborationAlbaDavideAmodioEmanueleCasuccioAlessandraCostantinoClaudioFruscioneSantoImmordinoPalmiraRestivoVincenzoSavatteriAlessandraD’AgostinoNadiaLa MiliaDanielePecoraroLauraPulvirentiClaudioStabileDomenicoCesariCarloZichichiSalvatoreLo PrestiAlessandraGrazianoGiorgioScondottoSalvatoreRealeStefanoScibettaSilviaVitaleFabrizioBarracoChiaraMistrettaGiuseppaPalmeriGiuliaRizzoAntonina PatriziaSparacoAntoninoAgnoneAnnalisaCascioFrancescoDi QuartoDaniela LauraMigliorisiCarmeloD’AmatoStefaniaCucchiaraValentinaGenoveseDarioFrisciaGiuseppeIacolinoGiorgiaSpotoVittorioZappiaMario
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties ‘G. D’Alessandro’, University of Palermo, Italy
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
- General Directorate of Health Prevention, Ministry of Health, Rome, Italy
- National Institute of Health (Istituto Superiore di Sanità), Rome, Italy
- Regional Health Authority of Sicily, Palermo, Italy
- Department of Laboratory Diagnostics, Local Health Unit of Palermo, Palermo, Italy
- University of Udine, Udine, Italy
- Health and Migration Programme (PHM), World Health Organization, Geneva, Switzerland
- Vita – Salute San Raffaele University, Milan, Italy
- Division of Biostatistics & Epidemiology Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
| |
Collapse
|
9
|
Glace BW, Kremenic IJ, Hogan DE, Kwiecien SY, McHUGH MP. Habitual physical activity and COVID-19. J Sports Med Phys Fitness 2024; 64:685-693. [PMID: 38916092 DOI: 10.23736/s0022-4707.24.15516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND Physical activity (PA) is known to decrease COVID-19 risk factors and can attenuate symptoms of viral infections. However, difficulty exercising and fatigue are common complaints after COVID-19. It is unknown whether prior habitual PA will improve outcomes and what the time course is until full recovery of PA after COVID-19. METHODS Invitations were emailed to 21,933 adults who were SARS-CoV-2 positive between March 2020 and February 2021. Participants completed intake surveys and the Physical Activity History (PAH) questionnaire regarding PA during the 3-month prior to infection. Monthly thereafter, for up to 23 months, participants were emailed surveys. Scores were computed for moderate and heavy PA. Long COVID (LC) was defined as having recurring/persistent symptoms 9 months after diagnosis. RESULTS Overall, 993 patients completed the intake survey (age 50.7±15.8 years, BMI 27.3±9.2, 58% women); 28% had been hospitalized. One-third had recovered to their pre-infection level of PA at 9 months post-infection; this increased to 65% at one year, and 90% at two years. Higher pre-diagnosis PA reduced odds of hospitalization (P<0.05) but not of LC. Factors predictive of poor PA recovery were higher pre-diagnosis PA, shortness of breath and fatigue during acute illness, and fatigue chronically. Participants who reported ongoing symptoms had consistently poorer recovery of habitual PA compared to those not reporting chronic symptoms. CONCLUSIONS Habitual PA reduced odds of hospitalization but not of LC. Thirty-five percent had not returned to pre-COVID-19 levels of PA one year after infection, representing a major public health threat.
Collapse
Affiliation(s)
- Beth W Glace
- Nicholas Institute of Sports Medicine and Athletic Trauma, Department of Orthopedic Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA -
| | - Ian J Kremenic
- Nicholas Institute of Sports Medicine and Athletic Trauma, Department of Orthopedic Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Daniel E Hogan
- Nicholas Institute of Sports Medicine and Athletic Trauma, Department of Orthopedic Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Susan Y Kwiecien
- Nicholas Institute of Sports Medicine and Athletic Trauma, Department of Orthopedic Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Malachy P McHUGH
- Nicholas Institute of Sports Medicine and Athletic Trauma, Department of Orthopedic Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, USA
| |
Collapse
|
10
|
Ayoub HH, Tomy M, Chemaitelly H, Altarawneh HN, Coyle P, Tang P, Hasan MR, Al Kanaani Z, Al Kuwari E, Butt AA, Jeremijenko A, Kaleeckal AH, Latif AN, Shaik RM, Nasrallah GK, Benslimane FM, Al Khatib HA, Yassine HM, Al Kuwari MG, Al Romaihi HE, Abdul-Rahim HF, Al-Thani MH, Al Khal A, Bertollini R, Abu-Raddad LJ. Estimating protection afforded by prior infection in preventing reinfection: applying the test-negative study design. Am J Epidemiol 2024; 193:883-897. [PMID: 38061757 PMCID: PMC11145912 DOI: 10.1093/aje/kwad239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 06/04/2024] Open
Abstract
The COVID-19 pandemic has highlighted the need to use infection testing databases to rapidly estimate effectiveness of prior infection in preventing reinfection ($P{E}_S$) by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Mathematical modeling was used to demonstrate a theoretical foundation for applicability of the test-negative, case-control study design to derive $P{E}_S$. Apart from the very early phase of an epidemic, the difference between the test-negative estimate for $P{E}_S$ and true value of $P{E}_S$ was minimal and became negligible as the epidemic progressed. The test-negative design provided robust estimation of $P{E}_S$ and its waning. Assuming that only 25% of prior infections are documented, misclassification of prior infection status underestimated $P{E}_S$, but the underestimate was considerable only when > 50% of the population was ever infected. Misclassification of latent infection, misclassification of current active infection, and scale-up of vaccination all resulted in negligible bias in estimated $P{E}_S$. The test-negative design was applied to national-level testing data in Qatar to estimate $P{E}_S$ for SARS-CoV-2. $P{E}_S$ against SARS-CoV-2 Alpha and Beta variants was estimated at 97.0% (95% CI, 93.6-98.6) and 85.5% (95% CI, 82.4-88.1), respectively. These estimates were validated using a cohort study design. The test-negative design offers a feasible, robust method to estimate protection from prior infection in preventing reinfection.
Collapse
Affiliation(s)
- Houssein H Ayoub
- Mathematics Program, Department of Mathematics and Statistics, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Milan Tomy
- Mathematics Program, Department of Mathematics and Statistics, College of Arts and Sciences, Qatar University, Doha, Qatar
- Infectious Disease Epidemiology Group, Weill Cornell Medicine–Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha, Qatar
| | - Hiam Chemaitelly
- Infectious Disease Epidemiology Group, Weill Cornell Medicine–Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha, Qatar
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
| | - Heba N Altarawneh
- Infectious Disease Epidemiology Group, Weill Cornell Medicine–Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha, Qatar
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
| | - Peter Coyle
- Hamad Medical Corporation, Doha, Qatar
- Biomedical Research Center, Member of QU Health, Qatar University, Doha, Qatar
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University, Belfast BT9 7BL, United Kingdom
| | - Patrick Tang
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | | | | | | | - Adeel A Butt
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
- Hamad Medical Corporation, Doha, Qatar
| | | | | | | | | | - Gheyath K Nasrallah
- Biomedical Research Center, Member of QU Health, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Fatiha M Benslimane
- Biomedical Research Center, Member of QU Health, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Hebah A Al Khatib
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Member of QU Health, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | | | | | - Hanan F Abdul-Rahim
- Department of Public Health, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | | | | | | | - Laith J Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine–Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha, Qatar
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
- Department of Public Health, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Chinazzi M, Davis JT, Y Piontti AP, Mu K, Gozzi N, Ajelli M, Perra N, Vespignani A. A multiscale modeling framework for Scenario Modeling: Characterizing the heterogeneity of the COVID-19 epidemic in the US. Epidemics 2024; 47:100757. [PMID: 38493708 DOI: 10.1016/j.epidem.2024.100757] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
The Scenario Modeling Hub (SMH) initiative provides projections of potential epidemic scenarios in the United States (US) by using a multi-model approach. Our contribution to the SMH is generated by a multiscale model that combines the global epidemic metapopulation modeling approach (GLEAM) with a local epidemic and mobility model of the US (LEAM-US), first introduced here. The LEAM-US model consists of 3142 subpopulations each representing a single county across the 50 US states and the District of Columbia, enabling us to project state and national trajectories of COVID-19 cases, hospitalizations, and deaths under different epidemic scenarios. The model is age-structured, and multi-strain. It integrates data on vaccine administration, human mobility, and non-pharmaceutical interventions. The model contributed to all 17 rounds of the SMH, and allows for the mechanistic characterization of the spatio-temporal heterogeneities observed during the COVID-19 pandemic. Here we describe the mathematical and computational structure of our model, and present the results concerning the emergence of the SARS-CoV-2 Alpha variant (lineage designation B.1.1.7) as a case study. Our findings show considerable spatial and temporal heterogeneity in the introduction and diffusion of the Alpha variant, both at the level of individual states and combined statistical areas, as it competes against the ancestral lineage. We discuss the key factors driving the time required for the Alpha variant to rise to dominance within a population, and quantify the impact that the emergence of the Alpha variant had on the effective reproduction number at the state level. Overall, we show that our multiscale modeling approach is able to capture the complexity and heterogeneity of the COVID-19 pandemic response in the US.
Collapse
Affiliation(s)
- Matteo Chinazzi
- The Roux Institute, Northeastern University, Portland, ME, USA; Laboratory for the Modeling of Biological and Socio-technical Systems, Network Science Institute, Northeastern University, Boston, MA, USA
| | - Jessica T Davis
- Laboratory for the Modeling of Biological and Socio-technical Systems, Network Science Institute, Northeastern University, Boston, MA, USA
| | - Ana Pastore Y Piontti
- Laboratory for the Modeling of Biological and Socio-technical Systems, Network Science Institute, Northeastern University, Boston, MA, USA
| | - Kunpeng Mu
- Laboratory for the Modeling of Biological and Socio-technical Systems, Network Science Institute, Northeastern University, Boston, MA, USA
| | - Nicolò Gozzi
- Institute for Scientific Interchange Foundation, Turin, Italy
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Nicola Perra
- Laboratory for the Modeling of Biological and Socio-technical Systems, Network Science Institute, Northeastern University, Boston, MA, USA; School of Mathematical Sciences, Queen Mary University, London, UK
| | - Alessandro Vespignani
- Laboratory for the Modeling of Biological and Socio-technical Systems, Network Science Institute, Northeastern University, Boston, MA, USA; Institute for Scientific Interchange Foundation, Turin, Italy.
| |
Collapse
|
12
|
Ngqwala B, Msolo L, Ebomah KE, Nontongana N, Okoh AI. Distribution of SARS-CoV-2 Genomes in Wastewaters and the Associated Potential Infection Risk for Plant Workers in Typical Urban and Peri-Urban Communities of the Buffalo City Region, South Africa. Viruses 2024; 16:871. [PMID: 38932163 PMCID: PMC11209190 DOI: 10.3390/v16060871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater has been reported in several studies and similar research can be used as a proxy for an early warning of potential Coronavirus disease 2019 (COVID-19) outbreaks. This study focused on profiling the incidence of SARS-CoV-2 genomes in wastewater samples obtained from facilities located in the Buffalo City Municipality. Raw samples were collected weekly using the grab technique for a period of 48 weeks. Ribonucleic acids were extracted from the samples, using the QIAGEN Powersoil Total RNA Extraction kit, and extracted RNA samples were further profiled for the presence of SARS-CoV-2 genomes using Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) technique. Furthermore, various environmental matrices were utilized to estimate the potential health risk to plant operators associated with exposure to SARS-CoV-2 viral particles using the quantitative microbiological risk assessment (QMRA) model. Our findings revealed the prevalence of SARS-CoV-2 genomes with concentrations that ranged from 0.22 × 103 to 17.60 × 103 genome copies per milliliter (GC/mL). Different exposure scenarios were employed for the QMRA model, and the findings indicate a probability of infection (P(i)) ranging from 0.93% to 37.81% across the study sites. Similarly, the P(i) was highly significant (p < 0.001) for the 20 mL volumetric intake as compared to other volumetric intake scenarios, and high P(i) was also observed in spring, autumn, and winter for all WWTPs. The P(i) was significantly different (p < 0.05) with respect to the different seasons and with respect to different volume scenarios.
Collapse
Affiliation(s)
- Balisa Ngqwala
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (L.M.); (K.E.E.); (N.N.); (A.I.O.)
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Luyanda Msolo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (L.M.); (K.E.E.); (N.N.); (A.I.O.)
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Kingsley Ehi Ebomah
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (L.M.); (K.E.E.); (N.N.); (A.I.O.)
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (L.M.); (K.E.E.); (N.N.); (A.I.O.)
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (L.M.); (K.E.E.); (N.N.); (A.I.O.)
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
13
|
Harrington A, Vo V, Moshi MA, Chang CL, Baker H, Ghani N, Itorralba JY, Papp K, Gerrity D, Moser D, Oh EC. Environmental Surveillance of Flood Control Infrastructure Impacted by Unsheltered Individuals Leads to the Detection of SARS-CoV-2 and Novel Mutations in the Spike Gene. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:410-417. [PMID: 38752195 PMCID: PMC11095249 DOI: 10.1021/acs.estlett.3c00938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 05/18/2024]
Abstract
In the United States, the growing number of people experiencing homelessness has become a socioeconomic crisis with public health ramifications, recently exacerbated by the COVID-19 pandemic. We hypothesized that the environmental surveillance of flood control infrastructure may be an effective approach to understand the prevalence of infectious disease. From December 2021 through July 2022, we tested for SARS-CoV-2 RNA from two flood control channels known to be impacted by unsheltered individuals residing in upstream tunnels. Using qPCR, we detected SARS-CoV-2 RNA in these environmental water samples when significant COVID-19 outbreaks were occurring in the surrounding community. We also performed whole genome sequencing to identify SARS-CoV-2 lineages. Variant compositions were consistent with those of geographically and temporally matched municipal wastewater samples and clinical specimens. However, we also detected 10 of 22 mutations specific to the Alpha variant in the environmental water samples collected during January 2022-one year after the Alpha infection peak. We also identified mutations in the spike gene that have never been identified in published reports. Our findings demonstrate that environmental surveillance of flood control infrastructure may be an effective tool to understand public health conditions among unsheltered individuals-a vulnerable population that is underrepresented in clinical surveillance data.
Collapse
Affiliation(s)
- Anthony Harrington
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Van Vo
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Michael A. Moshi
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Ching-Lan Chang
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Hayley Baker
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Nabih Ghani
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Jose Yani Itorralba
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Katerina Papp
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas Nevada 89193, United States
| | - Daniel Gerrity
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas Nevada 89193, United States
| | - Duane Moser
- Division
of Hydrologic Sciences, Desert Research
Institute, Las Vegas, Nevada 89119, United States
| | - Edwin C. Oh
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| |
Collapse
|
14
|
Di H, Pusch EA, Jones J, Kovacs NA, Hassell N, Sheth M, Lynn KS, Keller MW, Wilson MM, Keong LM, Cui D, Park SH, Chau R, Lacek KA, Liddell JD, Kirby MK, Yang G, Johnson M, Thor S, Zanders N, Feng C, Surie D, DeCuir J, Lester SN, Atherton L, Hicks H, Tamin A, Harcourt JL, Coughlin MM, Self WH, Rhoads JP, Gibbs KW, Hager DN, Shapiro NI, Exline MC, Lauring AS, Rambo-Martin B, Paden CR, Kondor RJ, Lee JS, Barnes JR, Thornburg NJ, Zhou B, Wentworth DE, Davis CT. Antigenic Characterization of Circulating and Emerging SARS-CoV-2 Variants in the U.S. throughout the Delta to Omicron Waves. Vaccines (Basel) 2024; 12:505. [PMID: 38793756 PMCID: PMC11125585 DOI: 10.3390/vaccines12050505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into numerous lineages with unique spike mutations and caused multiple epidemics domestically and globally. Although COVID-19 vaccines are available, new variants with the capacity for immune evasion continue to emerge. To understand and characterize the evolution of circulating SARS-CoV-2 variants in the U.S., the Centers for Disease Control and Prevention (CDC) initiated the National SARS-CoV-2 Strain Surveillance (NS3) program and has received thousands of SARS-CoV-2 clinical specimens from across the nation as part of a genotype to phenotype characterization process. Focus reduction neutralization with various antisera was used to antigenically characterize 143 SARS-CoV-2 Delta, Mu and Omicron subvariants from selected clinical specimens received between May 2021 and February 2023, representing a total of 59 unique spike protein sequences. BA.4/5 subvariants BU.1, BQ.1.1, CR.1.1, CQ.2 and BA.4/5 + D420N + K444T; BA.2.75 subvariants BM.4.1.1, BA.2.75.2, CV.1; and recombinant Omicron variants XBF, XBB.1, XBB.1.5 showed the greatest escape from neutralizing antibodies when analyzed against post third-dose original monovalent vaccinee sera. Post fourth-dose bivalent vaccinee sera provided better protection against those subvariants, but substantial reductions in neutralization titers were still observed, especially among BA.4/5 subvariants with both an N-terminal domain (NTD) deletion and receptor binding domain (RBD) substitutions K444M + N460K and recombinant Omicron variants. This analysis demonstrated a framework for long-term systematic genotype to antigenic characterization of circulating and emerging SARS-CoV-2 variants in the U.S., which is critical to assessing their potential impact on the effectiveness of current vaccines and antigen recommendations for future updates.
Collapse
Affiliation(s)
- Han Di
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Elizabeth A. Pusch
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joyce Jones
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Nicholas A. Kovacs
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Norman Hassell
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mili Sheth
- Division of Core Laboratory Services and Response, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Kelly Sabrina Lynn
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Matthew W. Keller
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Malania M. Wilson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Lisa M. Keong
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Dan Cui
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - So Hee Park
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Eagle Global Scientific, Inc., Atlanta, GA 30341, USA
| | - Reina Chau
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Kristine A. Lacek
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jimma D. Liddell
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Marie K. Kirby
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Genyan Yang
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Monique Johnson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sharmi Thor
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Natosha Zanders
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Chenchen Feng
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Diya Surie
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jennifer DeCuir
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sandra N. Lester
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Lydia Atherton
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Heather Hicks
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Synergy America, Inc., Duluth, GA 30329, USA
| | - Azaibi Tamin
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jennifer L. Harcourt
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Melissa M. Coughlin
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Wesley H. Self
- Vanderbilt Institute for Clinical & Translational Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jillian P. Rhoads
- Vanderbilt Institute for Clinical & Translational Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin W. Gibbs
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - David N. Hager
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathan I. Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Matthew C. Exline
- Department of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Adam S. Lauring
- Departments of Internal Medicine and Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin Rambo-Martin
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Clinton R. Paden
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Rebecca J. Kondor
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Justin S. Lee
- Division of Core Laboratory Services and Response, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - John R. Barnes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Natalie J. Thornburg
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Bin Zhou
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - David E. Wentworth
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Charles Todd Davis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
15
|
Dery Y, Yechezkel M, Ben-Gal I, Yamin D. Utilizing direct and indirect information to improve the COVID-19 vaccination booster scheduling. Sci Rep 2024; 14:8089. [PMID: 38582940 PMCID: PMC10998875 DOI: 10.1038/s41598-024-58690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
Current global COVID-19 booster scheduling strategies mainly focus on vaccinating high-risk populations at predetermined intervals. However, these strategies overlook key data: the direct insights into individual immunity levels from active serological testing and the indirect information available either through sample-based sero-surveillance, or vital demographic, location, and epidemiological factors. Our research, employing an age-, risk-, and region-structured mathematical model of disease transmission-based on COVID-19 incidence and vaccination data from Israel between 15 May 2020 and 25 October 2021-reveals that a more comprehensive strategy integrating these elements can significantly reduce COVID-19 hospitalizations without increasing existing booster coverage. Notably, the effective use of indirect information alone can considerably decrease COVID-19 cases and hospitalizations, without the need for additional vaccine doses. This approach may also be applicable in optimizing vaccination strategies for other infectious diseases, including influenza.
Collapse
Affiliation(s)
- Yotam Dery
- Laboratory for Epidemic Modeling and Analysis, Department of Industrial Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
- Laboratory for AI, Machine Learning and Business Data Analytics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Matan Yechezkel
- Laboratory for Epidemic Modeling and Analysis, Department of Industrial Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Irad Ben-Gal
- Laboratory for Epidemic Modeling and Analysis, Department of Industrial Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
- Laboratory for AI, Machine Learning and Business Data Analytics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Dan Yamin
- Laboratory for Epidemic Modeling and Analysis, Department of Industrial Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel.
- Centre for Combatting Pandemics, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
16
|
Hussein HAM, Thabet AA, Wardany AA, El-Adly AM, Ali M, Hassan MEA, Abdeldayem MAB, Mohamed ARMA, Sobhy A, El-Mokhtar MA, Afifi MM, Fathy SM, Sultan S. SARS-CoV-2 outbreak: role of viral proteins and genomic diversity in virus infection and COVID-19 progression. Virol J 2024; 21:75. [PMID: 38539202 PMCID: PMC10967059 DOI: 10.1186/s12985-024-02342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/12/2024] [Indexed: 05/15/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is the cause of coronavirus disease 2019 (COVID-19); a severe respiratory distress that has emerged from the city of Wuhan, Hubei province, China during December 2019. COVID-19 is currently the major global health problem and the disease has now spread to most countries in the world. COVID-19 has profoundly impacted human health and activities worldwide. Genetic mutation is one of the essential characteristics of viruses. They do so to adapt to their host or to move to another one. Viral genetic mutations have a high potentiality to impact human health as these mutations grant viruses unique unpredicted characteristics. The difficulty in predicting viral genetic mutations is a significant obstacle in the field. Evidence indicates that SARS-CoV-2 has a variety of genetic mutations and genomic diversity with obvious clinical consequences and implications. In this review, we comprehensively summarized and discussed the currently available knowledge regarding SARS-CoV-2 outbreaks with a fundamental focus on the role of the viral proteins and their mutations in viral infection and COVID-19 progression. We also summarized the clinical implications of SARS-CoV-2 variants and how they affect the disease severity and hinder vaccine development. Finally, we provided a massive phylogenetic analysis of the spike gene of 214 SARS-CoV-2 isolates from different geographical regions all over the world and their associated clinical implications.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt.
| | - Ali A Thabet
- Department of Zoology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Ahmed A Wardany
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Ahmed M El-Adly
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed Ali
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed E A Hassan
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed A B Abdeldayem
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | | | - Ali Sobhy
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos Campus, Lebanon
| | - Magdy M Afifi
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Samah M Fathy
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt.
| | - Serageldeen Sultan
- Department of Microbiology, Virology Division, Faculty of Veterinary medicine, South Valley University, 83523, Qena, Egypt.
| |
Collapse
|
17
|
Scarpa F, Branda F, Petrosillo N, Ciccozzi M. On the SARS-CoV-2 Variants. Infect Dis Rep 2024; 16:289-297. [PMID: 38667750 PMCID: PMC11050187 DOI: 10.3390/idr16020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The evolutionary dynamics of viruses, particularly exemplified by SARS-CoV-2 during the ongoing COVID-19 pandemic, underscore the intricate interplay between genetics, host adaptation, and viral spread. This paper delves into the genetic evolution of SARS-CoV-2, emphasizing the implications of viral variants on global health. Initially emerging from the Wuhan-Hu-1 lineage, SARS-CoV-2 rapidly diversified into numerous variants, each characterized by distinct mutations in the spike protein and other genomic regions. Notable variants such as B.1.1.7 (α), B.1.351 (β), P.1 (γ), B.1.617.2 (δ), and the Omicron variant have garnered significant attention due to their heightened transmissibility and immune evasion capabilities. In particular, the Omicron variant has presented a myriad of subvariants, raising concerns about its potential impact on public health. Despite the emergence of numerous variants, the vast majority have exhibited limited expansion capabilities and have not posed significant threats akin to early pandemic strains. Continued genomic surveillance is imperative to identify emerging variants of concern promptly. While genetic adaptation is intrinsic to viral evolution, effective public health responses must be grounded in empirical evidence to navigate the evolving landscape of the pandemic with resilience and precision.
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (M.C.)
| | - Nicola Petrosillo
- Infection Prevention Control/Infectious Disease Service, Fondazione Policlinico Universitario Campus Bio-Medico, 00127 Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (M.C.)
| |
Collapse
|
18
|
Zhou R, Johnson KE, Rousseau JF, Rathouz PJ. Comparative effectiveness of dexamethasone in treatment of hospitalized COVID-19 patients in the United States during the first year of the pandemic: Findings from the National COVID Cohort Collaborative (N3C) data repository. PLoS One 2024; 19:e0294892. [PMID: 38512832 PMCID: PMC10956822 DOI: 10.1371/journal.pone.0294892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/11/2023] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Dexamethasone was approved for use in hospitalized COVID-19 patients early in the pandemic based on the RECOVERY trial, but evidence is still needed to support its real-world effectiveness in heterogeneous populations of patients with a wide range of comorbidities. METHODS COVID-19 inpatients represented within the National COVID Cohort Collaborative (N3C) Data Enclave, prior to vaccine availability, were studied. Primary outcome was in-hospital death; secondary outcome was combined in-hospital death and severe outcome defined by use of ECMO or mechanical ventilation. Missing data were imputed with single imputation. Dexamethasone-treated patients were propensity score (PS) matched to non-dexamethasone-treated controls, stratified by remdesivir treatment and based on demographics, baseline laboratory values, comorbidities, and amount of missing data before imputation. Treatment benefit was quantified using logistic regression. Further sensitivity analyses were performed using clinical adjusters in matched groups and in strata defined by quartiles of PS. RESULTS Dexamethasone treatment was associated with reduced risk of in-hospital mortality for n = 1,263 treated, matched 1:3 to untreated, patients not receiving remdesivir (OR = 0.77, 95% CI: 0.62 to 0.95, p = 0.017), and for n = 804 treated, matched 1:1 to untreated, patients receiving remdesivir (OR = 0.74, 95% CI: 0.53 to 1.02, p = 0.054). Treatment showed secondary outcome benefit. In sensitivity analyses, treatment effect generally remained similar with some heterogeneity of benefit across quartiles of PS, possibly reflecting concentration of benefit among the more severely affected. CONCLUSIONS We add evidence that dexamethasone provides benefit with respect to mortality and severe outcomes in a diverse, national hospitalized sample, prior to vaccine availability.
Collapse
Affiliation(s)
- Richard Zhou
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Kaitlyn E. Johnson
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, United States of America
- The Pandemic Prevention Institute, The Rockefeller Foundation, New York, New York, United States of America
| | - Justin F. Rousseau
- Dell Medical School at the University of Texas at Austin, Austin, Texas, United States of America
| | - Paul J. Rathouz
- Dell Medical School at the University of Texas at Austin, Austin, Texas, United States of America
| | | |
Collapse
|
19
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Ketkar A, Willey V, Glasser L, Dobie C, Wenziger C, Teng CC, Dube C, Hirpara S, Cunningham D, Verduzco-Gutierrez M. Assessing the Burden and Cost of COVID-19 Across Variants in Commercially Insured Immunocompromised Populations in the United States: Updated Results and Trends from the Ongoing EPOCH-US Study. Adv Ther 2024; 41:1075-1102. [PMID: 38216825 PMCID: PMC10879378 DOI: 10.1007/s12325-023-02754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/28/2023] [Indexed: 01/14/2024]
Abstract
INTRODUCTION/METHODS EPOCH-US is an ongoing, retrospective, observational cohort study among individuals identified in the Healthcare Integrated Research Database (HIRD®) with ≥ 12 months of continuous health plan enrollment. Data were collected for the HIRD population (containing immunocompetent and immunocompromised [IC] individuals), individual IC cohorts (non-mutually exclusive cohorts based on immunocompromising condition and/or immunosuppressive [IS] treatment), and the composite IC population (all unique IC individuals). This study updates previous results with addition of the general population cohort and data specifically for the year of 2022 (i.e., Omicron wave period). To provide healthcare decision-makers the most recent trends, this study reports incidence rates (IR) and severity of first SARS-CoV-2 infection; and relative risk, healthcare utilization, and costs related to first COVID-19 hospitalizations in the full year of 2022 and overall between April 2020 and December 2022. RESULTS These updated results showed a 2.9% prevalence of immune compromise in the population. From April 2020 through December 2022, the overall IR of COVID-19 was 115.7 per 1000 patient-years in the composite IC cohort and 77.8 per 1000 patient-years in the HIRD cohort. The composite IC cohort had a 15.4% hospitalization rate with an average cost of $42,719 for first COVID-19 hospitalization. Comparatively, the HIRD cohort had a 3.7% hospitalization rate with an average cost of $28,848 for first COVID-19 hospitalization. Compared to the general population, IC individuals had 4.3 to 23 times greater risk of hospitalization with first diagnosis of COVID-19. Between January and December 2022, hospitalizations associated with first COVID-19 diagnosis cost over $1 billion, with IC individuals (~ 3% of the population) generating $310 million (31%) of these costs. CONCLUSION While only 2.9% of the population, IC individuals had a higher risk of COVID-19 hospitalization and incurred higher healthcare costs across variants. They also disproportionately accounted for over 30% of total costs for first COVID-19 hospitalization in 2022, amounting to ~ $310 million. These data highlight the need for additional preventive measures to decrease the risk of developing severe COVID-19 outcomes in vulnerable IC populations.
Collapse
Affiliation(s)
| | | | - Lisa Glasser
- AstraZeneca, Biopharmaceuticals Medical, Wilmington, DE, USA
| | - Casey Dobie
- Xcenda, a Cencora company, Conshohocken, PA, USA
| | | | | | - Christine Dube
- AstraZeneca, Biopharmaceuticals Medical, Wilmington, DE, USA
| | - Sunny Hirpara
- AstraZeneca, Biopharmaceuticals Medical, Wilmington, DE, USA
| | | | | |
Collapse
|
21
|
Mallela A, Chen Y, Lin YT, Miller EF, Neumann J, He Z, Nelson KE, Posner RG, Hlavacek WS. Impacts of Vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 Variants Alpha and Delta on Coronavirus Disease 2019 Transmission Dynamics in Four Metropolitan Areas of the United States. Bull Math Biol 2024; 86:31. [PMID: 38353870 DOI: 10.1007/s11538-024-01258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
To characterize Coronavirus Disease 2019 (COVID-19) transmission dynamics in each of the metropolitan statistical areas (MSAs) surrounding Dallas, Houston, New York City, and Phoenix in 2020 and 2021, we extended a previously reported compartmental model accounting for effects of multiple distinct periods of non-pharmaceutical interventions by adding consideration of vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants Alpha (lineage B.1.1.7) and Delta (lineage B.1.617.2). For each MSA, we found region-specific parameterizations of the model using daily reports of new COVID-19 cases available from January 21, 2020 to October 31, 2021. In the process, we obtained estimates of the relative infectiousness of Alpha and Delta as well as their takeoff times in each MSA (the times at which sustained transmission began). The estimated infectiousness of Alpha ranged from 1.1x to 1.4x that of viral strains circulating in 2020 and early 2021. The estimated relative infectiousness of Delta was higher in all cases, ranging from 1.6x to 2.1x. The estimated Alpha takeoff times ranged from February 1 to February 28, 2021. The estimated Delta takeoff times ranged from June 2 to June 26, 2021. Estimated takeoff times are consistent with genomic surveillance data.
Collapse
Affiliation(s)
- Abhishek Mallela
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Ye Chen
- Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Yen Ting Lin
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Information Sciences Group, Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Ely F Miller
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Jacob Neumann
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Zhili He
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Kathryn E Nelson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Richard G Posner
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - William S Hlavacek
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
22
|
Kandel S, Hartzell SL, Ingold AK, Turner GA, Kennedy JL, Ussery DW. Genomic surveillance of SARS-CoV-2 using long-range PCR primers. Front Microbiol 2024; 15:1272972. [PMID: 38440140 PMCID: PMC10910555 DOI: 10.3389/fmicb.2024.1272972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Whole Genome Sequencing (WGS) of the SARS-CoV-2 virus is crucial in the surveillance of the COVID-19 pandemic. Several primer schemes have been developed to sequence nearly all of the ~30,000 nucleotide SARS-CoV-2 genome, using a multiplex PCR approach to amplify cDNA copies of the viral genomic RNA. Midnight primers and ARTIC V4.1 primers are the most popular primer schemes that can amplify segments of SARS-CoV-2 (400 bp and 1200 bp, respectively) tiled across the viral RNA genome. Mutations within primer binding sites and primer-primer interactions can result in amplicon dropouts and coverage bias, yielding low-quality genomes with 'Ns' inserted in the missing amplicon regions, causing inaccurate lineage assignments, and making it challenging to monitor lineage-specific mutations in Variants of Concern (VoCs). Methods In this study we used a set of seven long-range PCR primer pairs to sequence clinical isolates of SARS-CoV-2 on Oxford Nanopore sequencer. These long-range primers generate seven amplicons approximately 4500 bp that covered whole genome of SARS-CoV-2. One of these regions includes the full-length S-gene by using a set of flanking primers. We also evaluated the performance of these long-range primers with Midnight primers by sequencing 94 clinical isolates in a Nanopore flow cell. Results and discussion Using a small set of long-range primers to sequence SARS-CoV-2 genomes reduces the possibility of amplicon dropout and coverage bias. The key finding of this study is that long range primers can be used in single-molecule sequencing of RNA viruses in surveillance of emerging variants. We also show that by designing primers flanking the S-gene, we can obtain reliable identification of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Sangam Kandel
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Ashton K. Ingold
- Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Grace A. Turner
- Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Joshua L. Kennedy
- Arkansas Children's Research Institute, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - David W. Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
23
|
Kharazmi E, Bayati M, Majidpour Azad Shirazi A. Vaccination and its impact on healthcare utilization in two groups of vaccinated and unvaccinated patients with COVID-19: A cross-sectional study in Iran between 2021 and 2022. Health Sci Rep 2024; 7:e1914. [PMID: 38405172 PMCID: PMC10885182 DOI: 10.1002/hsr2.1914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
Background and Aims One of the main responsibilities of health systems impacted by the global Coronavirus disease 2019 (COVID-19) pandemic, where the first case was discovered in Wuhan, China, in December 2019, is the provision of medical services. The current study looked into the impact of vaccination on the utilization of services provided to COVID-19 patients. Methods This study was conducted in Iran between 2021 and 2022, utilizing a cross-sectional research design. The research team collected data on the utilization of provided services and the number of COVID-19 vaccines administered to 1000 patients in Iran through a random sampling approach. The data were analyzed with statistical methods, including the mean difference test, and multiple linear regression. Results Regression estimates show that after controlling for confounding variables like age, type of admission, and comorbidities, vaccination reduces the utilization of healthcare services in the general majority of services. The study's results reveal a fall in COVID-19 patients' utilization of services, specifically in patients administered two or three doses of the vaccine. However, the reduction is not statistically significant. Regression models are in contrast to univariate analysis findings that vaccination increases the mean utilization of healthcare services for COVID-19 patients in general. Comorbidities are a crucial factor in determining the utilization of diagnostic and treatment services for COVID-19 patients. Conclusion Full COVID-19 vaccination and other implementations, including investing in public health, cooperating globally, and vaccinating high-risk groups for future pandemics, are essential as a critical response to this pandemic as they reduce healthcare service utilization to alleviate the burden on healthcare systems and allocate resources more efficiently.
Collapse
Affiliation(s)
- Erfan Kharazmi
- Health Human Resources Research Center, School of Health Management and Information SciencesShiraz University of Medical SciencesShirazIran
| | - Mohsen Bayati
- Health Human Resources Research Center, School of Health Management and Information SciencesShiraz University of Medical SciencesShirazIran
| | - Ali Majidpour Azad Shirazi
- Health Human Resources Research Center, School of Health Management and Information SciencesShiraz University of Medical SciencesShirazIran
| |
Collapse
|
24
|
Espinosa O, Mora L, Sanabria C, Ramos A, Rincón D, Bejarano V, Rodríguez J, Barrera N, Álvarez-Moreno C, Cortés J, Saavedra C, Robayo A, Franco OH. Predictive models for health outcomes due to SARS-CoV-2, including the effect of vaccination: a systematic review. Syst Rev 2024; 13:30. [PMID: 38229123 PMCID: PMC10790449 DOI: 10.1186/s13643-023-02411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/04/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND The interaction between modelers and policymakers is becoming more common due to the increase in computing speed seen in recent decades. The recent pandemic caused by the SARS-CoV-2 virus was no exception. Thus, this study aims to identify and assess epidemiological mathematical models of SARS-CoV-2 applied to real-world data, including immunization for coronavirus 2019 (COVID-19). METHODOLOGY PubMed, JSTOR, medRxiv, LILACS, EconLit, and other databases were searched for studies employing epidemiological mathematical models of SARS-CoV-2 applied to real-world data. We summarized the information qualitatively, and each article included was assessed for bias risk using the Joanna Briggs Institute (JBI) and PROBAST checklist tool. The PROSPERO registration number is CRD42022344542. FINDINGS In total, 5646 articles were retrieved, of which 411 were included. Most of the information was published in 2021. The countries with the highest number of studies were the United States, Canada, China, and the United Kingdom; no studies were found in low-income countries. The SEIR model (susceptible, exposed, infectious, and recovered) was the most frequently used approach, followed by agent-based modeling. Moreover, the most commonly used software were R, Matlab, and Python, with the most recurring health outcomes being death and recovery. According to the JBI assessment, 61.4% of articles were considered to have a low risk of bias. INTERPRETATION The utilization of mathematical models increased following the onset of the SARS-CoV-2 pandemic. Stakeholders have begun to incorporate these analytical tools more extensively into public policy, enabling the construction of various scenarios for public health. This contribution adds value to informed decision-making. Therefore, understanding their advancements, strengths, and limitations is essential.
Collapse
Affiliation(s)
- Oscar Espinosa
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
| | - Laura Mora
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Cristian Sanabria
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Antonio Ramos
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Duván Rincón
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Valeria Bejarano
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Jhonathan Rodríguez
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS) & Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Nicolás Barrera
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | | | - Jorge Cortés
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Carlos Saavedra
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Adriana Robayo
- Directorate of Analytical, Economic and Actuarial Studies in Health, Instituto de Evaluación Tecnológica en Salud (IETS), Bogotá, Colombia
| | - Oscar H Franco
- University Medical Center Utrecht, Utrecht University & Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, USA
| |
Collapse
|
25
|
Seth A, Liu Y, Gupta R, Wang Z, Mittal E, Kolla S, Rathi P, Gupta P, Parikh BA, Genin GM, Gandra S, Storch GA, Philips JA, George IA, Singamaneni S. Plasmon-Enhanced Digital Fluoroimmunoassay for Subfemtomolar Detection of Protein Biomarkers. NANO LETTERS 2024; 24:229-237. [PMID: 38146928 DOI: 10.1021/acs.nanolett.3c03789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Rapid and accurate quantification of low-abundance protein biomarkers in biofluids can transform the diagnosis of a range of pathologies, including infectious diseases. Here, we harness ultrabright plasmonic fluors as "digital nanolabels" and demonstrate the detection and quantification of subfemtomolar concentrations of human IL-6 and SARS-CoV-2 alpha and variant proteins in clinical nasopharyngeal swab and saliva samples from COVID-19 patients. The resulting digital plasmonic fluor-linked immunosorbent assay (digital p-FLISA) enables detection of SARS-CoV-2 nucleocapsid protein, both in solution and in live virions. Digital p-FLISA outperforms the "gold standard" enzyme-linked immunosorbent assay (ELISA), having a nearly 7000-fold lower limit-of-detection, and outperforms a commercial antigen test, having over 5000-fold improvement in analytical sensitivity. Detection and quantification of very low concentrations of target proteins holds potential for early detection of pathological conditions, treatment monitoring, and personalized medicine.
Collapse
Affiliation(s)
- Anushree Seth
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Rohit Gupta
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ekansh Mittal
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63130, United States
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| | - Samhitha Kolla
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Priya Rathi
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Prashant Gupta
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sumanth Gandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| | - Gregory A Storch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Jennifer A Philips
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63130, United States
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| | - Ige A George
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
26
|
Mallela A, Chen Y, Lin YT, Miller EF, Neumann J, He Z, Nelson KE, Posner RG, Hlavacek WS. Impacts of vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 variants Alpha and Delta on Coronavirus Disease 2019 transmission dynamics in four metropolitan areas of the United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2021.10.19.21265223. [PMID: 34704095 PMCID: PMC8547527 DOI: 10.1101/2021.10.19.21265223] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To characterize Coronavirus Disease 2019 (COVID-19) transmission dynamics in each of the metropolitan statistical areas (MSAs) surrounding Dallas, Houston, New York City, and Phoenix in 2020 and 2021, we extended a previously reported compartmental model accounting for effects of multiple distinct periods of non-pharmaceutical interventions by adding consideration of vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants Alpha (lineage B.1.1.7) and Delta (lineage B.1.617.2). For each MSA, we found region-specific parameterizations of the model using daily reports of new COVID-19 cases available from January 21, 2020 to October 31, 2021. In the process, we obtained estimates of the relative infectiousness of Alpha and Delta as well as their takeoff times in each MSA (the times at which sustained transmission began). The estimated infectiousness of Alpha ranged from 1.1x to 1.4x that of viral strains circulating in 2020 and early 2021. The estimated relative infectiousness of Delta was higher in all cases, ranging from 1.6x to 2.1x. The estimated Alpha takeoff times ranged from February 1 to February 28, 2021. The estimated Delta takeoff times ranged from June 2 to June 26, 2021. Estimated takeoff times are consistent with genomic surveillance data. One-Sentence Summary Using a compartmental model parameterized to reproduce available reports of new Coronavirus Disease 2019 (COVID-19) cases, we quantified the impacts of vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants Alpha (lineage B.1.1.7) and Delta (lineage B.1.617.2) on regional epidemics in the metropolitan statistical areas (MSAs) surrounding Dallas, Houston, New York City, and Phoenix.
Collapse
|
27
|
Barbian HJ, Kittner A, Teran R, Bobrovska S, Qiu X, English K, Green SJ, Ghinai I, Pacilli M, Hayden MK. A response playbook for early detection and population surveillance of new SARS-CoV-2 variants in a regional public health laboratory. BMC Public Health 2024; 24:59. [PMID: 38166805 PMCID: PMC10763119 DOI: 10.1186/s12889-023-17536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Timely genomic surveillance is required to inform public health responses to new SARS-CoV-2 variants. However, the processes involved in local genomic surveillance introduce inherent time constraints. The Regional Innovative Public Health Laboratory in Chicago developed and employed a genomic surveillance response playbook for the early detection and surveillance of emerging SARS-CoV-2 variants. METHODS The playbook outlines modifications to sampling strategies, laboratory workflows, and communication processes based on the emerging variant's predicted viral characteristics, observed public health impact in other jurisdictions and local community risk level. The playbook outlines procedures for implementing and reporting enhanced and accelerated genomic surveillance, including supplementing whole genome sequencing (WGS) with variant screening by quantitative PCR (qPCR). RESULTS The ability of the playbook to improve the response to an emerging variant was tested for SARS-CoV-2 Omicron BA.1. Increased submission of clinical remnant samples from local hospital laboratories enabled detection of a new variant at an average of 1.4% prevalence with 95% confidence rather than 3.5% at baseline. Genotyping qPCR concurred with WGS lineage assignments in 99.9% of 1541 samples with results by both methods, and was more sensitive, providing lineage results in 90.4% of 1833 samples rather than 85.1% for WGS, while significantly reducing the time to lineage result. CONCLUSIONS The genomic surveillance response playbook provides a structured, stepwise, and data-driven approach to responding to emerging SARS-CoV-2 variants. These pre-defined processes can serve as a template for other genomic surveillance programs to streamline workflows and expedite the detection and public health response to emerging variants. Based on the processes piloted during the Omicron BA.1 response, this method has been applied to subsequent Omicron subvariants and can be readily applied to future SARS-CoV-2 emerging variants and other public health surveillance activities.
Collapse
Affiliation(s)
- Hannah J Barbian
- Department of Internal Medicine, Regional Innovative Public Health Laboratory, Rush University Medical Center, Jelke 1259, 1750 W Harrison St, Chicago, IL, 60612, USA.
| | - Alyse Kittner
- Department of Internal Medicine, Regional Innovative Public Health Laboratory, Rush University Medical Center, Jelke 1259, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Richard Teran
- Chicago Department of Public Health, Chicago, IL, USA
| | - Sofiya Bobrovska
- Department of Internal Medicine, Regional Innovative Public Health Laboratory, Rush University Medical Center, Jelke 1259, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Xueting Qiu
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Kayla English
- Chicago Department of Public Health, Chicago, IL, USA
| | - Stefan J Green
- Department of Internal Medicine, Regional Innovative Public Health Laboratory, Rush University Medical Center, Jelke 1259, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Isaac Ghinai
- Chicago Department of Public Health, Chicago, IL, USA
| | | | - Mary K Hayden
- Department of Internal Medicine, Regional Innovative Public Health Laboratory, Rush University Medical Center, Jelke 1259, 1750 W Harrison St, Chicago, IL, 60612, USA
| |
Collapse
|
28
|
Nawaz S, Janiad S, Fatima A, Saleem M, Fatima U, Ali A. Rapidly Evolving SARS-CoV-2: A Brief Review Regarding the Variants and their Effects on Vaccine Efficacies. Infect Disord Drug Targets 2024; 24:58-66. [PMID: 38178666 DOI: 10.2174/0118715265271109231129112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 01/06/2024]
Abstract
Since the commencement of Corona Virus Disease 2019 (COVID-19) pandemic, which has resulted in millions of mortalities globally, the efforts to minimize the damages have equally been up to the task. One of those efforts includes the mass vaccine development initiative targeting the deadly Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). So far, vaccines have tremendously decreased the rate of transmission and infection in most parts of the world. However, the repeated resurgence of different types of mutated versions of the virus, also known as variants, has somehow created uncertainties about the efficacies of different types of vaccines. This review discusses some of the interesting SARS-CoV-2 features, including general structure, genomics, and mechanisms of variants development and their consequent immune escape. This review also focuses very briefly on antigenic drift, shift, and vaccine-developing platforms.
Collapse
Affiliation(s)
- Shahid Nawaz
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Sara Janiad
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Aiman Fatima
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Maira Saleem
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Urooj Fatima
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Asad Ali
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
29
|
Ajmera H, Lakhawat SS, Malik N, Kumar A, Bhatti JS, Kumar V, Gogoi H, Jaswal SK, Chandel S, Sharma PK. Global Emergence of SARS-CoV2 Infection and Scientific Interventions to Contain its Spread. Curr Protein Pept Sci 2024; 25:307-325. [PMID: 38265408 DOI: 10.2174/0113892037274719231212044235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 01/25/2024]
Abstract
The global pandemic caused by COVID-19 posed a significant challenge to public health, necessitating rapid scientific interventions to tackle the spread of infection. The review discusses the key areas of research on COVID-19 including viral genomics, epidemiology, pathogenesis, diagnostics, and therapeutics. The genome sequencing of the virus facilitated the tracking of its evolution, transmission dynamics, and identification of variants. Epidemiological studies have provided insights into disease spread, risk factors, and the impact of public health infrastructure and social distancing measures. Investigations of the viral pathogenesis have elucidated the mechanisms underlying immune responses and severe manifestations including the long-term effects of COVID-19. Overall, the article provides an updated overview of the diagnostic methods developed for SARS-CoV-2 and discusses their strengths, limitations, and appropriate utilization in different clinical and public health settings. Furthermore, therapeutic approaches including antiviral drugs, immunomodulatory therapies, and repurposed medications have been investigated to alleviate disease severity and improve patient outcomes. Through a comprehensive analysis of these scientific efforts, the review provides an overview of the advancements made in understanding and tackling SARS-CoV-2, while underscoring the need for continued research to address the evolving challenges posed by this global health crisis.
Collapse
Affiliation(s)
- Himanshu Ajmera
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | | | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd milestone Faridabad, Haryana, India
| | - Sunil Kumar Jaswal
- Department of Biotechnology, Himachal Pradesh University Summer Hill, Shimla, India
| | - Sanjeev Chandel
- Department of Nursing, GHG College of Nursing Rajkot Road, Ludhiana, Punjab, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, Jaipur, 303002, India
| |
Collapse
|
30
|
Chatelaine HAS, Chen Y, Braisted J, Chu SH, Chen Q, Stav M, Begum S, Diray-Arce J, Sanjak J, Huang M, Lasky-Su J, Mathé EA. Nucleotide, Phospholipid, and Kynurenine Metabolites Are Robustly Associated with COVID-19 Severity and Time of Plasma Sample Collection in a Prospective Cohort Study. Int J Mol Sci 2023; 25:346. [PMID: 38203516 PMCID: PMC10779247 DOI: 10.3390/ijms25010346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Understanding the molecular underpinnings of disease severity and progression in human studies is necessary to develop metabolism-related preventative strategies for severe COVID-19. Metabolites and metabolic pathways that predispose individuals to severe disease are not well understood. In this study, we generated comprehensive plasma metabolomic profiles in >550 patients from the Longitudinal EMR and Omics COVID-19 Cohort. Samples were collected before (n = 441), during (n = 86), and after (n = 82) COVID-19 diagnosis, representing 555 distinct patients, most of which had single timepoints. Regression models adjusted for demographics, risk factors, and comorbidities, were used to determine metabolites associated with predisposition to and/or persistent effects of COVID-19 severity, and metabolite changes that were transient/lingering over the disease course. Sphingolipids/phospholipids were negatively associated with severity and exhibited lingering elevations after disease, while modified nucleotides were positively associated with severity and had lingering decreases after disease. Cytidine and uridine metabolites, which were positively and negatively associated with COVID-19 severity, respectively, were acutely elevated, reflecting the particular importance of pyrimidine metabolism in active COVID-19. This is the first large metabolomics study using COVID-19 plasma samples before, during, and/or after disease. Our results lay the groundwork for identifying putative biomarkers and preventive strategies for severe COVID-19.
Collapse
Affiliation(s)
- Haley A. S. Chatelaine
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA; (H.A.S.C.)
| | - Yulu Chen
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Braisted
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA; (H.A.S.C.)
| | - Su H. Chu
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qingwen Chen
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Meryl Stav
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sofina Begum
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jaleal Sanjak
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA; (H.A.S.C.)
| | - Mengna Huang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ewy A. Mathé
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA; (H.A.S.C.)
| |
Collapse
|
31
|
Barrett C, Bura AC, He Q, Huang FW, Li TJX, Reidys CM. Motifs in SARS-CoV-2 evolution. RNA (NEW YORK, N.Y.) 2023; 30:1-15. [PMID: 37903545 PMCID: PMC10726165 DOI: 10.1261/rna.079557.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/20/2023] [Indexed: 11/01/2023]
Abstract
We present a novel framework enhancing the prediction of whether novel lineage poses the threat of eventually dominating the viral population. The framework is based purely on genomic sequence data, without requiring prior established biological analysis. Its building blocks are sets of coevolving sites in the alignment (motifs), identified via coevolutionary signals. The collection of such motifs forms a relational structure over the polymorphic sites. Motifs are constructed using distances quantifying the coevolutionary coupling of pairs and manifest as coevolving clusters of sites. We present an approach to genomic surveillance based on this notion of relational structure. Our system will issue an alert regarding a lineage, based on its contribution to drastic changes in the relational structure. We then conduct a comprehensive retrospective analysis of the COVID-19 pandemic based on SARS-CoV-2 genomic sequence data in GISAID from October 2020 to September 2022, across 21 lineages and 27 countries with weekly resolution. We investigate the performance of this surveillance system in terms of its accuracy, timeliness, and robustness. Lastly, we study how well each lineage is classified by such a system.
Collapse
Affiliation(s)
- Christopher Barrett
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Computer Science, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Andrei C Bura
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Qijun He
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Fenix W Huang
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Thomas J X Li
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Christian M Reidys
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
32
|
Lorenzo-Redondo R, de Sant’Anna Carvalho AM, Hultquist JF, Ozer EA. SARS-CoV-2 genomics and impact on clinical care for COVID-19. J Antimicrob Chemother 2023; 78:ii25-ii36. [PMID: 37995357 PMCID: PMC10667012 DOI: 10.1093/jac/dkad309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/02/2023] [Indexed: 11/25/2023] Open
Abstract
The emergence and worldwide spread of SARS-CoV-2 during the COVID-19 pandemic necessitated the adaptation and rapid deployment of viral WGS and analysis techniques that had been previously applied on a more limited basis to other viral pathogens, such as HIV and influenza viruses. The need for WGS was driven in part by the low mutation rate of SARS-CoV-2, which necessitated measuring variation along the entire genome sequence to effectively differentiate lineages and characterize viral evolution. Several WGS approaches designed to maximize throughput and accuracy were quickly adopted by surveillance labs around the world. These broad-based SARS-CoV-2 genomic sequencing efforts revealed ongoing evolution of the virus, highlighted by the successive emergence of new viral variants throughout the course of the pandemic. These genomic insights were instrumental in characterizing the effects of viral mutations on transmissibility, immune escape and viral tropism, which in turn helped guide public health policy, the use of monoclonal antibody therapeutics and vaccine development strategies. As the use of direct-acting antivirals for the treatment of COVID-19 became more widespread, the potential for emergence of antiviral resistance has driven ongoing efforts to delineate resistance mutations and to monitor global sequence databases for their emergence. Given the critical role of viral genomics in the international effort to combat the COVID-19 pandemic, coordinated efforts should be made to expand global genomic surveillance capacity and infrastructure towards the anticipation and prevention of future pandemics.
Collapse
Affiliation(s)
- Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Alexandre Machado de Sant’Anna Carvalho
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Judd F Hultquist
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| |
Collapse
|
33
|
Treeza M M, Augustine S, Mathew AA, Kanthlal S, Panonummal R. Targeting Viral ORF3a Protein: A New Approach to Mitigate COVID-19 Induced Immune Cell Apoptosis and Associated Respiratory Complications. Adv Pharm Bull 2023; 13:678-687. [PMID: 38022818 PMCID: PMC10676557 DOI: 10.34172/apb.2023.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 12/01/2023] Open
Abstract
Infection with SARS-CoV-2 is a growing concern to the global well-being of the public at present. Different amino acid mutations alter the biological and epidemiological characteristics, as well as immune resistance of SARS-CoV-2. The virus-induced pulmonary impairment and inflammatory cytokine storm are directly related to its clinical manifestations. But, the fundamental mechanisms of inflammatory responses are found to be the reason for the death of immune cells which render the host immune system failure. Apoptosis of immune cells is one of the most common forms of programmed cell death induced by the virus for its survival and virulence property. ORF3a, a SARS-CoV-2 accessory viral protein, induces apoptosis in host cells and suppress the defense mechanism. This suggests, inhibiting SARS-CoV-2 ORF3a protein is a good therapeutic strategy for the treatment in COVID-19 infection by promoting the host immune defense mechanism.
Collapse
Affiliation(s)
- Minu Treeza M
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| | - Sanu Augustine
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| | | | - S.K. Kanthlal
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| | - Rajitha Panonummal
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| |
Collapse
|
34
|
Subramanian S, Schnell G, Iulio JD, Gupta AK, Shapiro AE, Sarkis EH, Lopuski A, Peppercorn A, Aldinger M, Hebner CM, Cathcart AL. Resistance analysis following sotrovimab treatment in participants with COVID-19 during the phase III COMET-ICE study. Future Virol 2023; 18:10.2217/fvl-2023-0146. [PMID: 38074312 PMCID: PMC10705769 DOI: 10.2217/fvl-2023-0146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/22/2023] [Indexed: 04/12/2024]
Abstract
Aim: Sotrovimab is an engineered human monoclonal antibody that binds a conserved region of the SARS-CoV-2 spike protein. The COMET-ICE phase III study evaluated sotrovimab for treatment of mild to moderate COVID-19 in nonhospitalized participants with ≥1 risk factor for severe disease progression. Materials & methods: We evaluated the presence of circulating SARS-CoV-2 variants of concern or interest (VOCs/VOIs) and characterized the presence of baseline, post-baseline and emergent amino acid substitutions detected in the epitope of sotrovimab in SARS-CoV-2. Results: None of the sotrovimab-treated participants with baseline epitope substitutions, and 1 of 48 sotrovimab-treated participants with post-baseline epitope substitutions, met the primary clinical endpoint for progression. Conclusion: Overall, progression was not associated with identified VOC/VOI or the presence of epitope substitutions in sotrovimab-treated participants.
Collapse
Affiliation(s)
| | | | | | - Anil K Gupta
- William Osler Health Centre, Etobicoke, Ontario, Canada
| | - Adrienne E Shapiro
- University of Washington & Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Sinha A, Roy S. Intrinsically Disordered Regions Function as a Cervical Collar to Remotely Regulate the Nodding Dynamics of SARS-CoV-2 Prefusion Spike Heads. J Phys Chem B 2023; 127:8393-8405. [PMID: 37738458 DOI: 10.1021/acs.jpcb.3c05338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The SARS-CoV-2 prefusion spike heads (receptor binding domains, RBDs) frequently nod down and up to interact with host cell receptors. As the spike protein is a trimeric unit of significant size, to understand its large-scale structural dynamics associated with the nodding mechanism and the mutational impact on the same, we develop a topological symmetry-information-loaded coarse-grained structure-based model of a spike trimer using recent cryo-EM structural data. Our study reveals the control of two distant intrinsically disordered regions (IDRs), namely, 630 and FPPR loops, over the nodding dynamics of spike heads. We find that the order-disorder transition of IDRs becomes more evident in the variants of concern (VOCs) that are associated with the characteristic mutation, D614G, in the proximity of these IDRs. In some VOCs, the two other mutations A570D and S982A also show an integral effect. The driver mutation D614G instigates a salt-bridge disruption, altering the order-disorder dynamics of both 630 and FPPR loops and their interaction with the C-terminal domains (CTD1/CTD2). This altered connectivity in these mutants allows the two IDRs to act collectively as a "cervical collar" for the RBD, supporting various spike head postures, consistent with cryo-EM results available for specific cases. The IDRs' control over the spike structure and dynamics presents an exciting opportunity where they can be targeted as remote operational switches to artificially maneuver the nod for effective therapeutic interventions.
Collapse
Affiliation(s)
- Anushree Sinha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
36
|
Incognito GG, Distefano REC, Campo G, Gulino FA, Gulisano C, Gullotta C, Gullo G, Cucinella G, Tuscano A, Bruno MT, Palumbo M. Comparison of Maternal and Neonatal Outcomes between SARS-CoV-2 Variants: A Retrospective, Monocentric Study. J Clin Med 2023; 12:6329. [PMID: 37834972 PMCID: PMC10573122 DOI: 10.3390/jcm12196329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The impact of SARS-CoV-2 variants on maternal and neonatal outcomes during pregnancy is still poorly understood, and the emergence of different variants has further complicated our understanding of the virus's effects. This retrospective, monocentric study aimed to fill this knowledge gap by analyzing the outcomes of pregnant women with acute SARS-CoV-2 infection caused by the Alpha, Delta, and Omicron variants. The study, conducted between December 2020 and March 2022 at San Marco Hospital, included 313 pregnant women with confirmed SARS-CoV-2 infection. The results showed that the Delta variant was associated with a significantly higher incidence of adverse outcomes, such as premature births, maternal intensive care unit admission, intrauterine growth restriction, and small for gestational age infants. Additionally, the Delta variant was linked to lower Apgar scores, higher maternal and fetal mortality rates, and increased levels of various biomarkers indicating more severe illness. Finally, the Delta variant also presented a greater possibility of vertical transmission. These findings underscore the complexity of understanding the impact of SARS-CoV-2 on pregnancy outcomes, especially considering the distinctive characteristics of different variants. By better understanding the specific impacts of each variant, appropriate preventive measures and management strategies can be implemented to optimize maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Giosuè Giordano Incognito
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95100 Catania, Italy; (G.G.I.); (R.E.C.D.); (G.C.); (C.G.); (A.T.); (M.T.B.); (M.P.)
| | - Rosario Emanuele Carlo Distefano
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95100 Catania, Italy; (G.G.I.); (R.E.C.D.); (G.C.); (C.G.); (A.T.); (M.T.B.); (M.P.)
| | - Giorgia Campo
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95100 Catania, Italy; (G.G.I.); (R.E.C.D.); (G.C.); (C.G.); (A.T.); (M.T.B.); (M.P.)
| | - Ferdinando Antonio Gulino
- Unit of Gynecology and Obstetrics, Department of Human Pathology of Adults and Developmental Age, University Hospital “G. Martino”, 98100 Messina, Italy
| | - Chiara Gulisano
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95100 Catania, Italy; (G.G.I.); (R.E.C.D.); (G.C.); (C.G.); (A.T.); (M.T.B.); (M.P.)
| | - Chiara Gullotta
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy;
| | - Giuseppe Gullo
- Azienda Ospedaliera Ospedali Riuniti (AOOR) Villa Sofia Cervello, University of Palermo, 90133 Palermo, Italy; (G.G.); (G.C.)
| | - Gaspare Cucinella
- Azienda Ospedaliera Ospedali Riuniti (AOOR) Villa Sofia Cervello, University of Palermo, 90133 Palermo, Italy; (G.G.); (G.C.)
| | - Attilio Tuscano
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95100 Catania, Italy; (G.G.I.); (R.E.C.D.); (G.C.); (C.G.); (A.T.); (M.T.B.); (M.P.)
| | - Maria Teresa Bruno
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95100 Catania, Italy; (G.G.I.); (R.E.C.D.); (G.C.); (C.G.); (A.T.); (M.T.B.); (M.P.)
| | - Marco Palumbo
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95100 Catania, Italy; (G.G.I.); (R.E.C.D.); (G.C.); (C.G.); (A.T.); (M.T.B.); (M.P.)
| |
Collapse
|
37
|
Onigbinde S, Reyes CDG, Fowowe M, Daramola O, Atashi M, Bennett AI, Mechref Y. Variations in O-Glycosylation Patterns Influence Viral Pathogenicity, Infectivity, and Transmissibility in SARS-CoV-2 Variants. Biomolecules 2023; 13:1467. [PMID: 37892149 PMCID: PMC10604390 DOI: 10.3390/biom13101467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The highly glycosylated S protein plays a vital role in host cell invasion, making it the principal target for vaccine development. Differences in mutations observed on the spike (S) protein of SARS-CoV-2 variants may result in distinct glycosylation patterns, thus influencing immunological evasion, infectivity, and transmissibility. The glycans can mask key epitopes on the S1 protein and alter its structural conformation, allowing the virus to escape the immune system. Therefore, we comprehensively characterize O-glycosylation in eleven variants of SARS-CoV-2 S1 subunits to understand the differences observed in the biology of the variants. In-depth characterization was performed with a double digestion strategy and an efficient LC-MS/MS approach. We observed that O-glycosylation is highly conserved across all variants in the region between the NTD and RBD, whereas other domains and regions exhibit variation in O-glycosylation. Notably, omicron has the highest number of O-glycosylation sites on the S1 subunit. Also, omicron has the highest level of sialylation in the RBD and RBM functional motifs. Our findings may shed light on how differences in O-glycosylation impact viral pathogenicity in variants of SARS-CoV-2 and facilitate the development of a robust vaccine with high protective efficacy against the variants of concern.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (S.O.); (C.D.G.R.); (M.F.); (O.D.); (M.A.); (A.I.B.)
| |
Collapse
|
38
|
Chauhan N, Xiong Y, Ren S, Dwivedy A, Magazine N, Zhou L, Jin X, Zhang T, Cunningham BT, Yao S, Huang W, Wang X. Net-Shaped DNA Nanostructures Designed for Rapid/Sensitive Detection and Potential Inhibition of the SARS-CoV-2 Virus. J Am Chem Soc 2023; 145:20214-20228. [PMID: 35881910 PMCID: PMC9344894 DOI: 10.1021/jacs.2c04835] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 02/07/2023]
Abstract
We present a net-shaped DNA nanostructure (called "DNA Net" herein) design strategy for selective recognition and high-affinity capture of intact SARS-CoV-2 virions through spatial pattern-matching and multivalent interactions between the aptamers (targeting wild-type spike-RBD) positioned on the DNA Net and the trimeric spike glycoproteins displayed on the viral outer surface. Carrying a designer nanoswitch, the DNA Net-aptamers release fluorescence signals upon virus binding that are easily read with a handheld fluorimeter for a rapid (in 10 min), simple (mix-and-read), sensitive (PCR equivalent), room temperature compatible, and inexpensive (∼$1.26/test) COVID-19 test assay. The DNA Net-aptamers also impede authentic wild-type SARS-CoV-2 infection in cell culture with a near 1 × 103-fold enhancement of the monomeric aptamer. Furthermore, our DNA Net design principle and strategy can be customized to tackle other life-threatening and economically influential viruses like influenza and HIV, whose surfaces carry class-I viral envelope glycoproteins like the SARS-CoV-2 spikes in trimeric forms.
Collapse
Affiliation(s)
- Neha Chauhan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yanyu Xiong
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shaokang Ren
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Abhisek Dwivedy
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Lifeng Zhou
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Brian T. Cunningham
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Xing Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
39
|
Ramaiah A, Khubbar M, Akinyemi K, Bauer A, Carranza F, Weiner J, Bhattacharyya S, Payne D, Balakrishnan N. Genomic Surveillance Reveals the Rapid Expansion of the XBB Lineage among Circulating SARS-CoV-2 Omicron Lineages in Southeastern Wisconsin, USA. Viruses 2023; 15:1940. [PMID: 37766346 PMCID: PMC10535685 DOI: 10.3390/v15091940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2 caused a life-threatening COVID-19 pandemic outbreak worldwide. The Southeastern Region of Wisconsin, USA (SERW) includes large urban Milwaukee and six suburban counties, namely Kenosha, Ozaukee, Racine, Walworth, Washington and Waukesha. Due to the lack of detailed SARS-CoV-2 genomic surveillance in the suburban populations of the SERW, whole-genome sequencing was employed to investigate circulating SARS-CoV-2 lineages and characterize dominant XBB lineages among this SERW population from November 2021 to April 2023. For an unbiased data analysis, we combined our 6709 SARS-CoV-2 sequences with 1520 sequences from the same geographical region submitted by other laboratories. Our study shows that SARS-CoV-2 genomes were distributed into 357 lineages/sublineages belonging to 13 clades, of which 88.8% were from Omicron. We document dominant sublineages XBB.1.5 and surging XBB.1.16 and XBB.1.9.1 with a few additional functional mutations in Spike, which are known to contribute to higher viral reproduction, enhanced transmission and immune evasion. Mutational profile assessment of XBB.1.5 Spike identifies 38 defining mutations with high prevalence occurring in 49.8-99.6% of the sequences studied, of which 32 mutations were in three functional domains. Phylogenetic and genetic relatedness between XBB.1.5 sequences reveal potential virus transmission occurring within households and within and between Southeastern Wisconsin counties. A comprehensive phylogeny of XBB.1.5 with global sub-dataset sequences confirms the wide spread of genetically similar SARS-CoV-2 strains within the same geographical area. Altogether, this study identified proportions of circulating Omicron variants and genetic characterization of XBB.1.5 in the SERW population, which helped state and national public health agencies to make compelling mitigation efforts to reduce COVID-19 transmission in the communities and monitor emerging lineages for their impact on diagnostics, treatments and vaccines.
Collapse
Affiliation(s)
| | - Manjeet Khubbar
- City of Milwaukee Health Department, Milwaukee, WI 53202, USA
| | | | - Amy Bauer
- City of Milwaukee Health Department, Milwaukee, WI 53202, USA
| | | | - Joshua Weiner
- City of Milwaukee Health Department, Milwaukee, WI 53202, USA
| | | | - David Payne
- City of Milwaukee Health Department, Milwaukee, WI 53202, USA
| | - Nandhakumar Balakrishnan
- City of Milwaukee Health Department, Milwaukee, WI 53202, USA
- Georgia Public Health Laboratory, Decatur, GA 30033, USA
| |
Collapse
|
40
|
Bostanghadiri N, Ziaeefar P, Mofrad MG, Yousefzadeh P, Hashemi A, Darban-Sarokhalil D. COVID-19: An Overview of SARS-CoV-2 Variants-The Current Vaccines and Drug Development. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1879554. [PMID: 37674935 PMCID: PMC10480030 DOI: 10.1155/2023/1879554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
The world is presently in crisis facing an outbreak of a health-threatening microorganism known as COVID-19, responsible for causing uncommon viral pneumonia in humans. The virus was first reported in Wuhan, China, in early December 2019, and it quickly became a global concern due to the pandemic. Challenges in this regard have been compounded by the emergence of several variants such as B.1.1.7, B.1.351, P1, and B.1.617, which show an increase in transmission power and resistance to therapies and vaccines. Ongoing researches are focused on developing and manufacturing standard treatment strategies and effective vaccines to control the pandemic. Despite developing several vaccines such as Pfizer/BioNTech and Moderna approved by the U.S. Food and Drug Administration (FDA) and other vaccines in phase 4 clinical trials, preventive measures are mandatory to control the COVID-19 pandemic. In this review, based on the latest findings, we will discuss different types of drugs as therapeutic options and confirmed or developing vaccine candidates against SARS-CoV-2. We also discuss in detail the challenges posed by the variants and their effect on therapeutic and preventive interventions.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pardis Ziaeefar
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morvarid Golrokh Mofrad
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parsa Yousefzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Loguercio S, Calverley BC, Wang C, Shak D, Zhao P, Sun S, Budinger GS, Balch WE. Understanding the host-pathogen evolutionary balance through Gaussian process modeling of SARS-CoV-2. PATTERNS (NEW YORK, N.Y.) 2023; 4:100800. [PMID: 37602209 PMCID: PMC10436005 DOI: 10.1016/j.patter.2023.100800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/22/2023] [Accepted: 06/22/2023] [Indexed: 08/22/2023]
Abstract
We have developed a machine learning (ML) approach using Gaussian process (GP)-based spatial covariance (SCV) to track the impact of spatial-temporal mutational events driving host-pathogen balance in biology. We show how SCV can be applied to understanding the response of evolving covariant relationships linking the variant pattern of virus spread to pathology for the entire SARS-CoV-2 genome on a daily basis. We show that GP-based SCV relationships in conjunction with genome-wide co-occurrence analysis provides an early warning anomaly detection (EWAD) system for the emergence of variants of concern (VOCs). EWAD can anticipate changes in the pattern of performance of spread and pathology weeks in advance, identifying signatures destined to become VOCs. GP-based analyses of variation across entire viral genomes can be used to monitor micro and macro features responsible for host-pathogen balance. The versatility of GP-based SCV defines starting point for understanding nature's evolutionary path to complexity through natural selection.
Collapse
Affiliation(s)
| | - Ben C. Calverley
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Daniel Shak
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Pei Zhao
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Shuhong Sun
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - William E. Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
42
|
Lotfi H, Mazar MG, Ei NMH, Fahim M, Yazdi NS. Vaccination is the most effective and best way to avoid the disease of COVID-19. Immun Inflamm Dis 2023; 11:e946. [PMID: 37647441 PMCID: PMC10408370 DOI: 10.1002/iid3.946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 09/01/2023] Open
Abstract
Most of the vaccines that are effective against SARS-CoV-2 have used the following functional strategies: inactivated viruses, live attenuated viruses, viral vector-based vaccines, subunit vaccines, recombinant proteins, and DNA/RNA vaccines. Among the vaccines that stimulate the host's immune system with the help of DNA are: undergoing Phase 2/3 trials including INO-4800 (International Vaccine Institute; Inovio Pharmaceuticals), Symvivo, Canada-COVID19 (AnGes, Inc.); GX-19 (Genexine, Inc.). BNT162b2 and mRNA-1273 vaccines were made by BioNTech/Pfizer/Fosun Pharma group and Moderna/NIAID group, respectively, which are considered as types of RNA vaccines. Vaccines that are based on the viral vector are AstraZeneca, Sputonium, and Johnson-Jensen. Among the inactive viral vaccines, the following can be mentioned: CoronaVac (Sinovac) WIBP vaccine (Wuhan Institute of Biological Products, Sinopharm), BBIBPCorV (Beijing Institute of Biological Products, Sinopharm), BBV152/Covaxin (Bharat Biotech, ICMR, National Institute of Virology) And among the protein-based/subunit vaccines, the following can be counted: NVX-CoV2373: (Novavax); SCB-2019 vaccine (Clover Biopharmaceuticals AUS Pty Ltd.); Covax-19 (GeneCure Biotechnologies; Vaxine Pty Ltd.) mRNA vaccines, viral vector vaccines, and protein subunit vaccines cannot cause disease because these vaccines stimulate the immune system to produce antibodies against virus proteins instead of the virus itself (or its antigen). MRNA vaccines increase SARS-CoV-2 proteins and ultimately stimulate the production of T and B lymphocytes. The epidemic of HCoVs and their destructive and harmful effects on life has caused the scientific community to seek the production of an effective and efficient vaccine before its catastrophic release. We all need to know that none of us will be healed until the other is healed. The purpose of this review article is to present a selection of existing knowledge in the field of fighting and preventing the coronavirus.
Collapse
Affiliation(s)
- Hadi Lotfi
- Leishmaniasis Research CenterSabzevar University of Medical SciencesSabzevarIran
- Department of Medical MicrobiologySabzevar University of Medical SciencesSabzevarIran
| | - Mina G. Mazar
- Department of Medical Laboratory ScienceVarastegan Institute for Medical ScienceMashhadIran
| | - Negar M. H. Ei
- Department of Medical Laboratory ScienceVarastegan Institute for Medical ScienceMashhadIran
| | | | - Nafiseh S. Yazdi
- Department of Pediatrics, Faculty of MedicineSabzevar University of Medical SciencesSabzevarIran
| |
Collapse
|
43
|
Martin SD, Nziza N, Miozzo P, Bartsch Y, Farkas EJ, Kane AS, Boal LH, Friedmann A, Alter G, Yonker LM. Humoral profiling of pediatric patients with cancer reveals robust immunity following anti-SARS-CoV-2 vaccination superior to natural infection. Pediatr Blood Cancer 2023; 70:e30473. [PMID: 37249415 PMCID: PMC10321888 DOI: 10.1002/pbc.30473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/05/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Pediatric patients with cancer infected with COVID-19 may be at higher risk of severe disease and may be unable to mount an adequate response to the virus due to compromised immunity secondary to their cancer therapy. PROCEDURE This study presents immunologic analyses of 20 pediatric patients with cancer, on active chemotherapy or having previously received chemotherapy, and measures their immunoglobulin titers and activation of cellular immunity response to acute SARS-CoV-2 infection and COVID-19 vaccination compared with healthy pediatric controls. RESULTS Forty-three patients were enrolled, of which 10 were actively receiving chemotherapy, 10 had previously received chemotherapy, and 23 were healthy controls. Pediatric patients with cancer had similar immunoglobulin titers, antibody binding capacity, and effector function assay activity after vaccination against COVID-19 compared with healthy controls, though more variability in response was noted in the cohort actively receiving chemotherapy. Compared with acute infection, vaccination against COVID-19 produced superior immunoglobulin responses, particularly IgA1, IgG1, and IgG3, and elicited superior binding capacity and effector function in children with cancer and healthy controls. CONCLUSIONS Pediatric patients receiving chemotherapy and those who had previously received chemotherapy had adequate immune activation after both vaccination and acute infection compared to healthy pediatric controls, although there was a demonstrated variability in response for the patients on active chemotherapy. Vaccination against COVID-19 produced superior immune responses compared to acute SARS-CoV-2 infection in pediatric patients with cancer and healthy children, underscoring the importance of vaccination even in previously infected individuals.
Collapse
Affiliation(s)
- Samantha D Martin
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nadège Nziza
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Boston, Massachusetts, USA
| | - Pietro Miozzo
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yannic Bartsch
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Boston, Massachusetts, USA
| | - Eva J Farkas
- Department of Pediatrics, Pulmonary Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Abigail S Kane
- Department of Pediatrics, Pulmonary Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lauren H Boal
- Department of Pediatrics, Hematology/Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alison Friedmann
- Department of Pediatrics, Hematology/Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lael M Yonker
- Department of Pediatrics, Pulmonary Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Merling MR, Williams A, Mahfooz NS, Ruane-Foster M, Smith J, Jahnes J, Ayers LW, Bazan JA, Norris A, Norris Turner A, Oglesbee M, Faith SA, Quam MB, Robinson RT. The emergence of SARS-CoV-2 lineages and associated saliva antibody responses among asymptomatic individuals in a large university community. PLoS Pathog 2023; 19:e1011596. [PMID: 37603565 PMCID: PMC10470930 DOI: 10.1371/journal.ppat.1011596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/31/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
SARS-CoV-2 (CoV2) infected, asymptomatic individuals are an important contributor to COVID transmission. CoV2-specific immunoglobulin (Ig)-as generated by the immune system following infection or vaccination-has helped limit CoV2 transmission from asymptomatic individuals to susceptible populations (e.g. elderly). Here, we describe the relationships between COVID incidence and CoV2 lineage, viral load, saliva Ig levels (CoV2-specific IgM, IgA and IgG), and ACE2 binding inhibition capacity in asymptomatic individuals between January 2021 and May 2022. These data were generated as part of a large university COVID monitoring program in Ohio, United States of America, and demonstrate that COVID incidence among asymptomatic individuals occurred in waves which mirrored those in surrounding regions, with saliva CoV2 viral loads becoming progressively higher in our community until vaccine mandates were established. Among the unvaccinated, infection with each CoV2 lineage (pre-Omicron) resulted in saliva Spike-specific IgM, IgA, and IgG responses, the latter increasing significantly post-infection and being more pronounced than N-specific IgG responses. Vaccination resulted in significantly higher Spike-specific IgG levels compared to unvaccinated infected individuals, and uninfected vaccinees' saliva was more capable of inhibiting Spike function. Vaccinees with breakthrough Delta infections had Spike-specific IgG levels comparable to those of uninfected vaccinees; however, their ability to inhibit Spike binding was diminished. These data are consistent with COVID vaccines having achieved hoped-for effects in our community, including the generation of mucosal antibodies that inhibit Spike and lower community viral loads, and suggest breakthrough Delta infections were not due to an absence of vaccine-elicited Ig, but instead limited Spike binding activity in the face of high community viral loads.
Collapse
Affiliation(s)
- Marlena R. Merling
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Amanda Williams
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Najmus S. Mahfooz
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Marisa Ruane-Foster
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Jacob Smith
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Jeff Jahnes
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Leona W. Ayers
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jose A. Bazan
- Division of Infectious Disease, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Alison Norris
- Division of Infectious Disease, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Epidemiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Abigail Norris Turner
- Division of Infectious Disease, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael Oglesbee
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Seth A. Faith
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Mikkel B. Quam
- Department of Epidemiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Richard T. Robinson
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
45
|
Giovanetti M, Branda F, Cella E, Scarpa F, Bazzani L, Ciccozzi A, Slavov SN, Benvenuto D, Sanna D, Casu M, Santos LA, Lai A, Zehender G, Caccuri F, Ianni A, Caruso A, Maroutti A, Pascarella S, Borsetti A, Ciccozzi M. Epidemic history and evolution of an emerging threat of international concern, the severe acute respiratory syndrome coronavirus 2. J Med Virol 2023; 95:e29012. [PMID: 37548148 DOI: 10.1002/jmv.29012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
This comprehensive review focuses on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its impact as the cause of the COVID-19 pandemic. Its objective is to provide a cohesive overview of the epidemic history and evolutionary aspects of the virus, with a particular emphasis on its emergence, global spread, and implications for public health. The review delves into the timelines and key milestones of SARS-CoV-2's epidemiological progression, shedding light on the challenges encountered during early containment efforts and subsequent waves of transmission. Understanding the evolutionary dynamics of the virus is crucial in monitoring its potential for adaptation and future outbreaks. Genetic characterization of SARS-CoV-2 is discussed, with a focus on the emergence of new variants and their implications for transmissibility, severity, and immune evasion. The review highlights the important role of genomic surveillance in tracking viral mutations linked to establishing public health interventions. By analyzing the origins, global spread, and genetic evolution of SARS-CoV-2, valuable insights can be gained for the development of effective control measures, improvement of pandemic preparedness, and addressing future emerging infectious diseases of international concern.
Collapse
Affiliation(s)
- Marta Giovanetti
- Instituto Rene Rachou Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Italy, Rome, Italy
| | - Francesco Branda
- Department of Computer Science, Modeling, Electronics and Systems Engineering (DIMES), University of Calabria, Rende, Italy
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Liliana Bazzani
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Italy, Rome, Italy
| | - Alessandra Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Svetoslav Nanev Slavov
- Butantan Institute, São Paulo, Brazil
- Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Domenico Benvenuto
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Luciane Amorim Santos
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Praça Ramos de Queirós, s/n, Largo do Terreiro de Jesus, Salvador, Bahia, Brazil
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences, L. Sacco Hospital, University of Milan, Milan, Italy
| | - Giangluglielmo Zehender
- Department of Biomedical and Clinical Sciences, L. Sacco Hospital, University of Milan, Milan, Italy
| | - Francesca Caccuri
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Ianni
- M.G. Vannini Hospital IFSC Rome, Research Unit in Hygiene UCBM Rome, Rome, Italy
| | - Arnaldo Caruso
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Stefano Pascarella
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | | | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
46
|
Fang L, Xu J, Zhao Y, Fan J, Shen J, Liu W, Cao G. The effects of amino acid substitution of spike protein and genomic recombination on the evolution of SARS-CoV-2. Front Microbiol 2023; 14:1228128. [PMID: 37560529 PMCID: PMC10409611 DOI: 10.3389/fmicb.2023.1228128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Over three years' pandemic of 2019 novel coronavirus disease (COVID-19), multiple variants and novel subvariants have emerged successively, outcompeted earlier variants and become predominant. The sequential emergence of variants reflects the evolutionary process of mutation-selection-adaption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Amino acid substitution/insertion/deletion in the spike protein causes altered viral antigenicity, transmissibility, and pathogenicity of SARS-CoV-2. Early in the pandemic, D614G mutation conferred virus with advantages over previous variants and increased transmissibility, and it also laid a conservative background for subsequent substantial mutations. The role of genomic recombination in the evolution of SARS-CoV-2 raised increasing concern with the occurrence of novel recombinants such as Deltacron, XBB.1.5, XBB.1.9.1, and XBB.1.16 in the late phase of pandemic. Co-circulation of different variants and co-infection in immunocompromised patients accelerate the emergence of recombinants. Surveillance for SARS-CoV-2 genomic variations, particularly spike protein mutation and recombination, is essential to identify ongoing changes in the viral genome and antigenic epitopes and thus leads to the development of new vaccine strategies and interventions.
Collapse
Affiliation(s)
- Letian Fang
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jie Xu
- Department of Foreign Languages, International Exchange Center for Military Medicine, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Junyan Fan
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jiaying Shen
- School of Medicine, Tongji University, Shanghai, China
| | - Wenbin Liu
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
47
|
Moradi S, Wu Y, Walden P, Cui Z, Johnston WA, Petrov D, Alexandrov K. In Vitro Reconstitution and Analysis of SARS-CoV-2/Host Protein-Protein Interactions. ACS OMEGA 2023; 8:25009-25019. [PMID: 37483225 PMCID: PMC10357528 DOI: 10.1021/acsomega.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
Abstract
The emergence of viral threats such as Ebola, ZIKA, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requires a rapid and efficient approach for elucidating mechanisms of pathogenesis and development of therapeutics. In this context, cell-free protein synthesis (CFPS) holds a promise to resolve the bottlenecks of multiplexed protein production and interaction analysis among host and pathogen proteins. Here, we applied a eukaryotic CFPS system based on Leishmania tarentolae extract (LTE) protein expression in combination with AlphaLISA proximity-based protein interaction technology to identify intraviral and viral-human protein interactions of SARS-CoV-2 virus that can potentially be targeted by the existing or novel antiviral therapeutics. We produced and tested 54 putative human-viral protein pairs in vitro and identified 45 direct binary protein interactions. As a casing example of the assay's suitability for drug development applications, we analyzed the effect of a putative biologic on the human angiotensin-converting enzyme 2/receptor-binding domain (hACE2/RBD) interaction. This suggests that the presented pathogen characterization platform can facilitate the development of new therapeutic agents.
Collapse
Affiliation(s)
- Shayli
Varasteh Moradi
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yue Wu
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Patricia Walden
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Zhenling Cui
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Wayne A. Johnston
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Dmitri Petrov
- Department
of Biology, Stanford University, Stanford, California 94305-5020, United
States
| | - Kirill Alexandrov
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
48
|
Khetran SR, Mustafa R. Mutations of SARS-CoV-2 Structural Proteins in the Alpha, Beta, Gamma, and Delta Variants: Bioinformatics Analysis. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2023; 4:e43906. [PMID: 37485046 PMCID: PMC10353769 DOI: 10.2196/43906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/02/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023]
Abstract
Background COVID-19 and Middle East Respiratory Syndrome are two pandemic respiratory diseases caused by coronavirus species. The novel disease COVID-19 caused by SARS-CoV-2 was first reported in Wuhan, Hubei Province, China, in December 2019, and became a pandemic within 2-3 months, affecting social and economic platforms worldwide. Despite the rapid development of vaccines, there have been obstacles to their distribution, including a lack of fundamental resources, poor immunization, and manual vaccine replication. Several variants of the original Wuhan strain have emerged in the last 3 years, which can pose a further challenge for control and vaccine development. Objective The aim of this study was to comprehensively analyze mutations in SARS-CoV-2 variants of concern (VoCs) using a bioinformatics approach toward identifying novel mutations that may be helpful in developing new vaccines by targeting these sites. Methods Reference sequences of the SARS-CoV-2 spike (YP_009724390) and nucleocapsid (YP_009724397) proteins were compared to retrieved sequences of isolates of four VoCs from 14 countries for mutational and evolutionary analyses. Multiple sequence alignment was performed and phylogenetic trees were constructed by the neighbor-joining method with 1000 bootstrap replicates using MEGA (version 6). Mutations in amino acid sequences were analyzed using the MultAlin online tool (version 5.4.1). Results Among the four VoCs, a total of 143 nonsynonymous mutations and 8 deletions were identified in the spike and nucleocapsid proteins. Multiple sequence alignment and amino acid substitution analysis revealed new mutations, including G72W, M2101I, L139F, 209-211 deletion, G212S, P199L, P67S, I292T, and substitutions with unknown amino acid replacement, reported in Egypt (MW533289), the United Kingdom (MT906649), and other regions. The variants B.1.1.7 (Alpha variant) and B.1.617.2 (Delta variant), characterized by higher transmissibility and lethality, harbored the amino acid substitutions D614G, R203K, and G204R with higher prevalence rates in most sequences. Phylogenetic analysis among the novel SARS-CoV-2 variant proteins and some previously reported β-coronavirus proteins indicated that either the evolutionary clade was weakly supported or not supported at all by the β-coronavirus species. Conclusions This study could contribute toward gaining a better understanding of the basic nature of SARS-CoV-2 and its four major variants. The numerous novel mutations detected could also provide a better understanding of VoCs and help in identifying suitable mutations for vaccine targets. Moreover, these data offer evidence for new types of mutations in VoCs, which will provide insight into the epidemiology of SARS-CoV-2.
Collapse
Affiliation(s)
- Saima Rehman Khetran
- Department of Life Sciences Sardar Bahadur Khan Women's University Quetta Pakistan
| | - Roma Mustafa
- Department of Life Sciences Sardar Bahadur Khan Women's University Quetta Pakistan
| |
Collapse
|
49
|
Devaux CA, Fantini J. ACE2 receptor polymorphism in humans and animals increases the risk of the emergence of SARS-CoV-2 variants during repeated intra- and inter-species host-switching of the virus. Front Microbiol 2023; 14:1199561. [PMID: 37520374 PMCID: PMC10373931 DOI: 10.3389/fmicb.2023.1199561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Like other coronaviruses, SARS-CoV-2 has ability to spread through human-to-human transmission and to circulate from humans to animals and from animals to humans. A high frequency of SARS-CoV-2 mutations has been observed in the viruses isolated from both humans and animals, suggesting a genetic fitness under positive selection in both ecological niches. The most documented positive selection force driving SARS-CoV-2 mutations is the host-specific immune response. However, after electrostatic interactions with lipid rafts, the first contact between the virus and host proteins is the viral spike-cellular receptor binding. Therefore, it is likely that the first level of selection pressure impacting viral fitness relates to the virus's affinity for its receptor, the angiotensin I converting enzyme 2 (ACE2). Although sufficiently conserved in a huge number of species to support binding of the viral spike with enough affinity to initiate fusion, ACE2 is highly polymorphic both among species and within a species. Here, we provide evidence suggesting that when the viral spike-ACE2 receptor interaction is not optimal, due to host-switching, mutations can be selected to improve the affinity of the spike for the ACE2 expressed by the new host. Notably, SARS-CoV-2 is mutation-prone in the spike receptor binding domain (RBD), allowing a better fit for ACE2 orthologs in animals. It is possibly that this may also be true for rare human alleles of ACE2 when the virus is spreading to billions of people. In this study, we present evidence that human subjects expressing the rare E329G allele of ACE2 with higher allele frequencies in European populations exhibit a improved affinity for the SARS-CoV-2 spike N501Y variant of the virus. This may suggest that this viral N501Y variant emerged in the human population after SARS-CoV-2 had infected a human carrying the rare E329G allele of ACE2. In addition, this viral evolution could impact viral replication as well as the ability of the adaptive humoral response to control infection with RBD-specific neutralizing antibodies. In a shifting landscape, this ACE2-driven genetic drift of SARS-CoV-2 which we have named the 'boomerang effect', could complicate the challenge of preventing COVID with a SARS-CoV-2 spike-derived vaccine.
Collapse
Affiliation(s)
- Christian A. Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Jacques Fantini
- INSERM UMR_S1072, Marseille, France, Aix-Marseille Université, Marseille, France
| |
Collapse
|
50
|
Tong X, McNamara RP, Avendaño MJ, Serrano EF, García-Salum T, Pardo-Roa C, Bertera HL, Chicz TM, Levican J, Poblete E, Salinas E, Muñoz A, Riquelme A, Alter G, Medina RA. Waning and boosting of antibody Fc-effector functions upon SARS-CoV-2 vaccination. Nat Commun 2023; 14:4174. [PMID: 37443074 PMCID: PMC10345146 DOI: 10.1038/s41467-023-39189-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Since the emergence of SARS-CoV-2, vaccines targeting COVID-19 have been developed with unprecedented speed and efficiency. CoronaVac, utilising an inactivated form of the COVID-19 virus and the mRNA26 based Pfizer/BNT162b2 vaccines are widely distributed. Beyond the ability of vaccines to induce production of neutralizing antibodies, they might lead to the generation of antibodies attenuating the disease by recruiting cytotoxic and opsonophagocytic functions. However, the Fc-effector functions of vaccine induced antibodies are much less studied than virus neutralization. Here, using systems serology, we follow the longitudinal Fc-effector profiles induced by CoronaVac and BNT162b2 up until five months following the two-dose vaccine regimen. Compared to BNT162b2, CoronaVac responses wane more slowly, albeit the levels remain lower than that of BNT162b2 recipients throughout the entire observation period. However, mRNA vaccine boosting of CoronaVac responses, including response to the Omicron variant, induce significantly higher peak of antibody functional responses with increased humoral breadth. In summary, we show that vaccine platform-induced humoral responses are not limited to virus neutralization but rather utilise antibody dependent effector functions. We demonstrate that this functionality wanes with different kinetics and can be rescued and expanded via boosting with subsequent homologous and heterologous vaccination.
Collapse
Affiliation(s)
- X Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - R P McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - M J Avendaño
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - E F Serrano
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - T García-Salum
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - C Pardo-Roa
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - H L Bertera
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - T M Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - J Levican
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - E Poblete
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - E Salinas
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - A Muñoz
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - A Riquelme
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, 8331150, Chile
| | - G Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.
| | - R A Medina
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile.
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile.
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|