1
|
Silva M, Tran V, Marty A. A maximum of two readily releasable vesicles per docking site at a cerebellar single active zone synapse. eLife 2024; 12:RP91087. [PMID: 38180320 PMCID: PMC10963025 DOI: 10.7554/elife.91087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Recent research suggests that in central mammalian synapses, active zones contain several docking sites acting in parallel. Before release, one or several synaptic vesicles (SVs) are thought to bind to each docking site, forming the readily releasable pool (RRP). Determining the RRP size per docking site has important implications for short-term synaptic plasticity. Here, using mouse cerebellar slices, we take advantage of recently developed methods to count the number of released SVs at single glutamatergic synapses in response to trains of action potentials (APs). In each recording, the number of docking sites was determined by fitting with a binomial model the number of released SVs in response to individual APs. After normalization with respect to the number of docking sites, the summed number of released SVs following a train of APs was used to estimate of the RRP size per docking site. To improve this estimate, various steps were taken to maximize the release probability of docked SVs, the occupancy of docking sites, as well as the extent of synaptic depression. Under these conditions, the RRP size reached a maximum value close to two SVs per docking site. The results indicate that each docking site contains two distinct SV-binding sites that can simultaneously accommodate up to one SV each. They further suggest that under special experimental conditions, as both sites are close to full occupancy, a maximal RRP size of two SVs per docking site can be reached. More generally, the results validate a sequential two-step docking model previously proposed at this preparation.
Collapse
Affiliation(s)
- Melissa Silva
- Université Paris Cité, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRSParisFrance
| | - Van Tran
- Université Paris Cité, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRSParisFrance
| | - Alain Marty
- Université Paris Cité, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRSParisFrance
| |
Collapse
|
2
|
Fukaya R, Miyano R, Hirai H, Sakaba T. Mechanistic insights into cAMP-mediated presynaptic potentiation at hippocampal mossy fiber synapses. Front Cell Neurosci 2023; 17:1237589. [PMID: 37519634 PMCID: PMC10372368 DOI: 10.3389/fncel.2023.1237589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Presynaptic plasticity is an activity-dependent change in the neurotransmitter release and plays a key role in dynamic modulation of synaptic strength. Particularly, presynaptic potentiation mediated by cyclic adenosine monophosphate (cAMP) is widely seen across the animals and thought to contribute to learning and memory. Hippocampal mossy fiber-CA3 pyramidal cell synapses have been used as a model because of robust presynaptic potentiation in short- and long-term forms. Moreover, direct presynaptic recordings from large mossy fiber terminals allow one to dissect the potentiation mechanisms. Recently, super-resolution microscopy and flash-and-freeze electron microscopy have revealed the localizations of release site molecules and synaptic vesicles during the potentiation at a nanoscale, identifying the molecular mechanisms of the potentiation. Incorporating these growing knowledges, we try to present plausible mechanisms underlying the cAMP-mediated presynaptic potentiation.
Collapse
Affiliation(s)
- Ryota Fukaya
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Rinako Miyano
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Himawari Hirai
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
3
|
A sequential two-step priming scheme reproduces diversity in synaptic strength and short-term plasticity. Proc Natl Acad Sci U S A 2022; 119:e2207987119. [PMID: 35969787 PMCID: PMC9407230 DOI: 10.1073/pnas.2207987119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Central nervous system synapses are diverse in strength and plasticity. Short-term plasticity has traditionally been evaluated with models postulating a single pool of functionally homogeneous fusion-competent synaptic vesicles. Many observations are not easily explainable by such simple models. We established and experimentally validated a scheme of synaptic vesicle priming consisting of two sequential and reversible steps of release–machinery assembly. This sequential two-step priming scheme faithfully reproduced plasticity at a glutamatergic model synapse. The proposed priming and fusion scheme was consistent with the measured mean responses and with the experimentally observed heterogeneity between synapses. Vesicle fusion probability was found to be relatively uniform among synapses, while the priming equilibrium at rest of mature versus immature vesicle priming states differed greatly. Glutamatergic synapses display variable strength and diverse short-term plasticity (STP), even for a given type of connection. Using nonnegative tensor factorization and conventional state modeling, we demonstrate that a kinetic scheme consisting of two sequential and reversible steps of release–machinery assembly and a final step of synaptic vesicle (SV) fusion reproduces STP and its diversity among synapses. Analyzing transmission at the calyx of Held synapses reveals that differences in synaptic strength and STP are not primarily caused by variable fusion probability (pfusion) but are determined by the fraction of docked synaptic vesicles equipped with a mature release machinery. Our simulations show that traditional quantal analysis methods do not necessarily report pfusion of SVs with a mature release machinery but reflect both pfusion and the distribution between mature and immature priming states at rest. Thus, the approach holds promise for a better mechanistic dissection of the roles of presynaptic proteins in the sequence of SV docking, two-step priming, and fusion. It suggests a mechanism for activity-induced redistribution of synaptic efficacy.
Collapse
|
4
|
Midorikawa M. Pathway-specific maturation of presynaptic functions of the somatosensory thalamus. Neurosci Res 2022; 181:1-8. [DOI: 10.1016/j.neures.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023]
|
5
|
Three small vesicular pools in sequence govern synaptic response dynamics during action potential trains. Proc Natl Acad Sci U S A 2022; 119:2114469119. [PMID: 35101920 PMCID: PMC8812539 DOI: 10.1073/pnas.2114469119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Short-term changes in the strength of synaptic connections underlie many brain functions. The strength of a synapse in response to subsequent stimulation is largely determined by the remaining number of synaptic vesicles available for release. We developed a methodological approach to measure the dynamics of various vesicle pools following synaptic activity. We find that the readily releasable pool, which comprises vesicles that are docked or tethered to release sites, is fed by a small-sized pool containing approximately one to four vesicles per release site at rest. This upstream pool is significantly depleted even after a short stimulation train. Therefore, regulation of the size of the upstream pool emerges as a key factor in determining synaptic strength during and after sustained stimulation. During prolonged trains of presynaptic action potentials (APs), synaptic release reaches a stable level that reflects the speed of replenishment of the readily releasable pool (RRP). Determining the size and filling dynamics of vesicular pools upstream of the RRP has been hampered by a lack of precision of synaptic output measurements during trains. Using the recent technique of tracking vesicular release in single active zone synapses, we now developed a method that allows the sizes of the RRP and upstream pools to be followed in time. We find that the RRP is fed by a small-sized pool containing approximately one to four vesicles per docking site at rest. This upstream pool is significantly depleted by short AP trains, and reaches a steady, depleted state for trains of >10 APs. We conclude that a small, highly dynamic vesicular pool upstream of the RRP potently controls synaptic strength during sustained stimulation.
Collapse
|
6
|
Lipstein N, Chang S, Lin KH, López-Murcia FJ, Neher E, Taschenberger H, Brose N. Munc13-1 is a Ca 2+-phospholipid-dependent vesicle priming hub that shapes synaptic short-term plasticity and enables sustained neurotransmission. Neuron 2021; 109:3980-4000.e7. [PMID: 34706220 PMCID: PMC8691950 DOI: 10.1016/j.neuron.2021.09.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
During ongoing presynaptic action potential (AP) firing, transmitter release is limited by the availability of release-ready synaptic vesicles (SVs). The rate of SV recruitment (SVR) to release sites is strongly upregulated at high AP frequencies to balance SV consumption. We show that Munc13-1-an essential SV priming protein-regulates SVR via a Ca2+-phospholipid-dependent mechanism. Using knockin mouse lines with point mutations in the Ca2+-phospholipid-binding C2B domain of Munc13-1, we demonstrate that abolishing Ca2+-phospholipid binding increases synaptic depression, slows recovery of synaptic strength after SV pool depletion, and reduces temporal fidelity of synaptic transmission, while increased Ca2+-phospholipid binding has the opposite effects. Thus, Ca2+-phospholipid binding to the Munc13-1-C2B domain accelerates SVR, reduces short-term synaptic depression, and increases the endurance and temporal fidelity of neurotransmission, demonstrating that Munc13-1 is a core vesicle priming hub that adjusts SV re-supply to demand.
Collapse
Affiliation(s)
- Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Shuwen Chang
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kun-Han Lin
- Emeritus Laboratory of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Erwin Neher
- Emeritus Laboratory of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging," Georg August University, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging," Georg August University, Göttingen, Germany.
| |
Collapse
|
7
|
Lujan BJ, Singh M, Singh A, Renden RB. Developmental shift to mitochondrial respiration for energetic support of sustained transmission during maturation at the calyx of Held. J Neurophysiol 2021; 126:976-996. [PMID: 34432991 PMCID: PMC8560424 DOI: 10.1152/jn.00333.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
A considerable amount of energy is expended following presynaptic activity to regenerate electrical polarization and maintain efficient release and recycling of neurotransmitter. Mitochondria are the major suppliers of neuronal energy, generating ATP via oxidative phosphorylation. However, the specific utilization of energy from cytosolic glycolysis rather than mitochondrial respiration at the presynaptic terminal during synaptic activity remains unclear and controversial. We use a synapse specialized for high-frequency transmission in mice, the calyx of Held, to test the sources of energy used to maintain energy during short activity bursts (<1 s) and sustained neurotransmission (30-150 s). We dissect the role of presynaptic glycolysis versus mitochondrial respiration by acutely and selectively blocking these ATP-generating pathways in a synaptic preparation where mitochondria and synaptic vesicles are prolific, under near-physiological conditions. Surprisingly, if either glycolysis or mitochondrial ATP production is intact, transmission during repetitive short bursts of activity is not affected. In slices from young animals before the onset of hearing, where the synapse is not yet fully specialized, both glycolytic and mitochondrial ATP production are required to support sustained, high-frequency neurotransmission. In mature synapses, sustained transmission relies exclusively on mitochondrial ATP production supported by bath lactate, but not glycolysis. At both ages, we observe that action potential propagation begins to fail before defects in synaptic vesicle recycling. Our data describe a specific metabolic profile to support high-frequency information transmission at the mature calyx of Held, shifting during postnatal synaptic maturation from glycolysis to rely on monocarboxylates as a fuel source.NEW & NOTEWORTHY We dissect the role of presynaptic glycolysis versus mitochondrial respiration in supporting high-frequency neurotransmission, by acutely blocking these ATP-generating pathways at a synapse tuned for high-frequency transmission. We find that massive energy expenditure is required to generate failure when only one pathway is inhibited. Action potential propagation is lost before impaired synaptic vesicle recycling. Synaptic transmission is exclusively dependent on oxidative phosphorylation in mature synapses, indicating presynaptic glycolysis may be dispensable for ATP maintenance.
Collapse
Affiliation(s)
- Brendan J Lujan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, Delaware
| | - Robert B Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| |
Collapse
|
8
|
Distinct functional developments of surviving and eliminated presynaptic terminals. Proc Natl Acad Sci U S A 2021; 118:2022423118. [PMID: 33688051 DOI: 10.1073/pnas.2022423118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For neuronal circuits in the brain to mature, necessary synapses must be maintained and redundant synapses eliminated through experience-dependent mechanisms. However, the functional differentiation of these synapse types during the refinement process remains elusive. Here, we addressed this issue by distinct labeling and direct recordings of presynaptic terminals fated for survival and for elimination in the somatosensory thalamus. At surviving terminals, the number of total releasable vesicles was first enlarged, and then calcium channels and fast-releasing synaptic vesicles were tightly coupled in an experience-dependent manner. By contrast, transmitter release mechanisms did not mature at terminals fated for elimination, irrespective of sensory experience. Nonetheless, terminals fated for survival and for elimination both exhibited developmental shortening of action potential waveforms that was experience independent. Thus, we dissected experience-dependent and -independent developmental maturation processes of surviving and eliminated presynaptic terminals during neuronal circuit refinement.
Collapse
|
9
|
Chamberland S, Timofeeva Y, Evstratova A, Norman CA, Volynski K, Tóth K. Slow-decaying presynaptic calcium dynamics gate long-lasting asynchronous release at the hippocampal mossy fiber to CA3 pyramidal cell synapse. Synapse 2020; 74:e22178. [PMID: 32598500 PMCID: PMC7685170 DOI: 10.1002/syn.22178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023]
Abstract
Action potentials trigger two modes of neurotransmitter release, with a fast synchronous component and a temporally delayed asynchronous release. Asynchronous release contributes to information transfer at synapses, including at the hippocampal mossy fiber (MF) to CA3 pyramidal cell synapse where it controls the timing of postsynaptic CA3 pyramidal neuron firing. Here, we identified and characterized the main determinants of asynchronous release at the MF–CA3 synapse. We found that asynchronous release at MF–CA3 synapses can last on the order of seconds following repetitive MF stimulation. Elevating the stimulation frequency or the external Ca2+ concentration increased the rate of asynchronous release, thus, arguing that presynaptic Ca2+ dynamics is the major determinant of asynchronous release rate. Direct MF bouton Ca2+ imaging revealed slow Ca2+ decay kinetics of action potential (AP) burst‐evoked Ca2+ transients. Finally, we observed that asynchronous release was preferentially mediated by Ca2+ influx through P/Q‐type voltage‐gated Ca2+ channels, while the contribution of N‐type VGCCs was limited. Overall, our results uncover the determinants of long‐lasting asynchronous release from MF terminals and suggest that asynchronous release could influence CA3 pyramidal cell firing up to seconds following termination of granule cell bursting.
Collapse
Affiliation(s)
- Simon Chamberland
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Université Laval, Quebec, QC, Canada
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, UK.,Centre for Complexity Science, University of Warwick, Coventry, UK.,University College London Institute of Neurology, University College London, London, UK
| | - Alesya Evstratova
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Université Laval, Quebec, QC, Canada
| | - Christopher A Norman
- Mathematics for Real-World Systems Centre for Doctoral Training, University of Warwick, Coventry, UK
| | - Kirill Volynski
- University College London Institute of Neurology, University College London, London, UK
| | - Katalin Tóth
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
10
|
Blanchard K, Zorrilla de San Martín J, Marty A, Llano I, Trigo FF. Differentially poised vesicles underlie fast and slow components of release at single synapses. J Gen Physiol 2020; 152:e201912523. [PMID: 32243497 PMCID: PMC7201884 DOI: 10.1085/jgp.201912523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
In several types of central mammalian synapses, sustained presynaptic stimulation leads to a sequence of two components of synaptic vesicle release, reflecting the consecutive contributions of a fast-releasing pool (FRP) and of a slow-releasing pool (SRP). Previous work has shown that following common depletion by a strong stimulation, FRP and SRP recover with different kinetics. However, it has remained unclear whether any manipulation could lead to a selective enhancement of either FRP or SRP. To address this question, we have performed local presynaptic calcium uncaging in single presynaptic varicosities of cerebellar interneurons. These varicosities typically form "simple synapses" onto postsynaptic interneurons, involving several (one to six) docking/release sites within a single active zone. We find that strong uncaging laser pulses elicit two phases of release with time constants of ∼1 ms (FRP release) and ∼20 ms (SRP release). When uncaging was preceded by action potential-evoked vesicular release, the extent of SRP release was specifically enhanced. We interpret this effect as reflecting an increased likelihood of two-step release (docking then release) following the elimination of docked synaptic vesicles by action potential-evoked release. In contrast, a subthreshold laser-evoked calcium elevation in the presynaptic varicosity resulted in an enhancement of the FRP release. We interpret this latter effect as reflecting an increased probability of occupancy of docking sites following subthreshold calcium increase. In conclusion, both fast and slow components of release can be specifically enhanced by certain presynaptic manipulations. Our results have implications for the mechanism of docking site replenishment and the regulation of synaptic responses, in particular following activation of ionotropic presynaptic receptors.
Collapse
Affiliation(s)
- Kris Blanchard
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique, UMR 8003, Paris, France
| | - Javier Zorrilla de San Martín
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique, UMR 8003, Paris, France
| | - Alain Marty
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique, UMR 8003, Paris, France
| | - Isabel Llano
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique, UMR 8003, Paris, France
| | - Federico F Trigo
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique, UMR 8003, Paris, France
| |
Collapse
|
11
|
Bornschein G, Brachtendorf S, Schmidt H. Developmental Increase of Neocortical Presynaptic Efficacy via Maturation of Vesicle Replenishment. Front Synaptic Neurosci 2020; 11:36. [PMID: 32009937 PMCID: PMC6974464 DOI: 10.3389/fnsyn.2019.00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023] Open
Abstract
The efficacy of neocortical synapses to transmit during bursts of action potentials (APs) increases during development but the underlying mechanisms are largely unclear. We investigated synaptic efficacy at synapses between layer 5 pyramidal neurons (L5PNs) during development, using paired recordings, presynaptic two-photon Ca2+ imaging, and numerical simulations. Our data confirm a developmental increase in paired-pulse ratios (PPRs). Independent of age, Ca2+ imaging revealed no AP invasion failures and linear summation of presynaptic Ca2+ transients, making differences in Ca2+ signaling an unlikely reason for developmental changes in PPR. Cumulative excitatory postsynaptic current (EPSC) amplitudes indicate that neither the size of the readily-releasable pool (RRP) nor replenishment rates were different between age groups, while the time-courses of depression differed significantly. At young synapses, EPSCs depressed rapidly to near steady-state during the first four APs, and synaptic failures (Fsyn) increased from 0 to 30%. At mature synapses this drop was significantly slower and strongly biphasic, such that near steady-state depression was reached not before 18 APs with Fsyn remaining between 0 and 5%. While young synapses reliably transmitted during pairs of APs, albeit with strong depression, mature synapses maintained near 100% transfer efficacy with significantly less depression during high-frequency bursts of APs. Our analysis indicates that at mature synapses a replenishment pool (RepP) is responsible for their high efficacy during bursting activity, while this RepP is functionally immature at young synapses. Hence, our data provide evidence that the functional maturation of a RepP underlies increasing synaptic efficacy during the development of an excitatory cortical synapse.
Collapse
Affiliation(s)
- Grit Bornschein
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Simone Brachtendorf
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Hartmut Schmidt
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Miyano R, Miki T, Sakaba T. Ca-dependence of synaptic vesicle exocytosis and endocytosis at the hippocampal mossy fibre terminal. J Physiol 2019; 597:4373-4386. [PMID: 31294821 DOI: 10.1113/jp278040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS We used presynaptic capacitance measurements at the hippocampal mossy fibre terminal at room temperature to measure Ca-dependence of exo- and endocytotic kinetics. The readily releasable pool (RRP) of synaptic vesicles was released with a time constant of 30-40 ms and was sensitive to Ca buffers, BAPTA and EGTA. Our data suggest that recruitment of the vesicles to the RRP was Ca-insensitive and had a time constant of 1 s. In addition to the RRP, the reserve pool of vesicles, which had a similar size to RRP, was depleted during repetitive stimulation. Our data suggest that synaptic vesicle endocytosis was also Ca-insensitive. ABSTRACT Hippocampal mossy fibre terminals comprise one of the cortical terminals, which are sufficiently large to be accessible by patch clamp recordings. To measure Ca-dependence of exo- and endocytotic kinetics quantitatively, we applied presynaptic capacitance measurements to the mossy fibre terminal at room temperature. The time course of synaptic vesicle fusion was slow, with a time constant of tens of milliseconds, and was sensitive to Ca buffers EGTA and BAPTA, suggesting a loose coupling between Ca channels and synaptic vesicles. The size of the readily-releasable pool (RRP) of synaptic vesicles was relatively insensitive to Ca buffers. Once the RRP was depleted, it was recovered by a single exponential with a time constant of ∼1 s independent of the presence of Ca buffers, suggesting Ca independent vesicle replenishment. In addition to the RRP, the reserve pool of vesicles was released slowly during repetitive stimulation. Endocytosis was also insensitive to Ca buffers and had a slow time course, excluding the involvement of rapid vesicle cycling in vesicle replenishment. Although mossy fibre terminals are known to have various forms of Ca-dependent plasticity, some features of vesicle dynamics are robust and Ca-insensitive.
Collapse
Affiliation(s)
- Rinako Miyano
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Takafumi Miki
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
13
|
Farokhniaee A, McIntyre CC. Theoretical principles of deep brain stimulation induced synaptic suppression. Brain Stimul 2019; 12:1402-1409. [PMID: 31351911 DOI: 10.1016/j.brs.2019.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is a successful clinical therapy for a wide range of neurological disorders; however, the physiological mechanisms of DBS remain unresolved. While many different hypotheses currently exist, our analyses suggest that high frequency (∼100 Hz) stimulation-induced synaptic suppression represents the most basic concept that can be directly reconciled with experimental recordings of spiking activity in neurons that are being driven by DBS inputs. OBJECTIVE The goal of this project was to develop a simple model system to characterize the excitatory post-synaptic currents (EPSCs) and action potential signaling generated in a neuron that is strongly connected to pre-synaptic glutamatergic inputs that are being directly activated by DBS. METHODS We used the Tsodyks-Markram (TM) phenomenological synapse model to represent depressing, facilitating, and pseudo-linear synapses driven by DBS over a wide range of stimulation frequencies. The EPSCs were then used as inputs to a leaky integrate-and-fire neuron model and we measured the DBS-triggered post-synaptic spiking activity. RESULTS Synaptic suppression was a robust feature of high frequency stimulation, independent of the synapse type. As such, the TM equations were used to define alternative DBS pulsing strategies that maximized synaptic suppression with the minimum number of stimuli. CONCLUSIONS Synaptic suppression provides a biophysical explanation to the intermittent, but still time-locked, post-synaptic firing characteristics commonly seen in DBS experimental recordings. Therefore, network models attempting to analyze or predict the effects of DBS on neural activity patterns should integrate synaptic suppression into their simulations.
Collapse
Affiliation(s)
- AmirAli Farokhniaee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
14
|
Miki T. What We Can Learn From Cumulative Numbers of Vesicular Release Events. Front Cell Neurosci 2019; 13:257. [PMID: 31293386 PMCID: PMC6598442 DOI: 10.3389/fncel.2019.00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022] Open
Abstract
Following action potential invasion in presynaptic terminals, synaptic vesicles are released in a stochastic manner at release sites (docking sites). Since neurotransmission occurs at frequencies up to 1 kHz, the mechanisms underlying consecutive vesicle releases at a docking site during high frequency bursts is a key factor for understanding the role and strength of the synapse. Particularly new vesicle recruitment at the docking site during neuronal activity is thought to be crucial for short-term plasticity. However current studies have not reached a unified docking site model for central synapses. Here I review newly developed analyses that can provide insight into docking site models. Quantal analysis using counts of vesicular release events provide a wealth of information not only to monitor the number of docking sites, but also to distinguish among docking site models. The stochastic properties of cumulative release number during bursts allow us to estimate the total number of releasable vesicles and to deduce the features of vesicle recruitment at docking sites and the change of release probability during bursts. This analytical method may contribute to a comprehensive understanding of release/replenishment mechanisms at a docking site.
Collapse
Affiliation(s)
- Takafumi Miki
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
15
|
Burke KJ, Bender KJ. Modulation of Ion Channels in the Axon: Mechanisms and Function. Front Cell Neurosci 2019; 13:221. [PMID: 31156397 PMCID: PMC6533529 DOI: 10.3389/fncel.2019.00221] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022] Open
Abstract
The axon is responsible for integrating synaptic signals, generating action potentials (APs), propagating those APs to downstream synapses and converting them into patterns of neurotransmitter vesicle release. This process is mediated by a rich assortment of voltage-gated ion channels whose function can be affected on short and long time scales by activity. Moreover, neuromodulators control the activity of these proteins through G-protein coupled receptor signaling cascades. Here, we review cellular mechanisms and signaling pathways involved in axonal ion channel modulation and examine how changes to ion channel function affect AP initiation, AP propagation, and the release of neurotransmitter. We then examine how these mechanisms could modulate synaptic function by focusing on three key features of synaptic information transmission: synaptic strength, synaptic variability, and short-term plasticity. Viewing these cellular mechanisms of neuromodulation from a functional perspective may assist in extending these findings to theories of neural circuit function and its neuromodulation.
Collapse
Affiliation(s)
| | - Kevin J. Bender
- Neuroscience Graduate Program and Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
16
|
Raja MK, Preobraschenski J, Del Olmo-Cabrera S, Martinez-Turrillas R, Jahn R, Perez-Otano I, Wesseling JF. Elevated synaptic vesicle release probability in synaptophysin/gyrin family quadruple knockouts. eLife 2019; 8:40744. [PMID: 31090538 PMCID: PMC6519982 DOI: 10.7554/elife.40744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/18/2019] [Indexed: 01/05/2023] Open
Abstract
Synaptophysins 1 and 2 and synaptogyrins 1 and 3 constitute a major family of synaptic vesicle membrane proteins. Unlike other widely expressed synaptic vesicle proteins such as vSNAREs and synaptotagmins, the primary function has not been resolved. Here, we report robust elevation in the probability of release of readily releasable vesicles with both high and low release probabilities at a variety of synapse types from knockout mice missing all four family members. Neither the number of readily releasable vesicles, nor the timing of recruitment to the readily releasable pool was affected. The results suggest that family members serve as negative regulators of neurotransmission, acting directly at the level of exocytosis to dampen connection strength selectively when presynaptic action potentials fire at low frequency. The widespread expression suggests that chemical synapses may play a frequency filtering role in biological computation that is more elemental than presently envisioned. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Mathan K Raja
- Department of Neuroscience, Universidad de Navarra, Pamplona, Spain
| | - Julia Preobraschenski
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Isabel Perez-Otano
- Department of Neuroscience, Universidad de Navarra, Pamplona, Spain.,Institute for Neurosciences CSIC-UMH, San Juan de Alicante, Spain
| | - John F Wesseling
- Department of Neuroscience, Universidad de Navarra, Pamplona, Spain.,Institute for Neurosciences CSIC-UMH, San Juan de Alicante, Spain
| |
Collapse
|
17
|
Salmasi M, Loebel A, Glasauer S, Stemmler M. Short-term synaptic depression can increase the rate of information transfer at a release site. PLoS Comput Biol 2019; 15:e1006666. [PMID: 30601804 PMCID: PMC6355030 DOI: 10.1371/journal.pcbi.1006666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 01/31/2019] [Accepted: 11/23/2018] [Indexed: 11/18/2022] Open
Abstract
The release of neurotransmitters from synapses obeys complex and stochastic dynamics. Depending on the recent history of synaptic activation, many synapses depress the probability of releasing more neurotransmitter, which is known as synaptic depression. Our understanding of how synaptic depression affects the information efficacy, however, is limited. Here we propose a mathematically tractable model of both synchronous spike-evoked release and asynchronous release that permits us to quantify the information conveyed by a synapse. The model transits between discrete states of a communication channel, with the present state depending on many past time steps, emulating the gradual depression and exponential recovery of the synapse. Asynchronous and spontaneous releases play a critical role in shaping the information efficacy of the synapse. We prove that depression can enhance both the information rate and the information rate per unit energy expended, provided that synchronous spike-evoked release depresses less (or recovers faster) than asynchronous release. Furthermore, we explore the theoretical implications of short-term synaptic depression adapting on longer time scales, as part of the phenomenon of metaplasticity. In particular, we show that a synapse can adjust its energy expenditure by changing the dynamics of short-term synaptic depression without affecting the net information conveyed by each successful release. Moreover, the optimal input spike rate is independent of the amplitude or time constant of synaptic depression. We analyze the information efficacy of three types of synapses for which the short-term dynamics of both synchronous and asynchronous release have been experimentally measured. In hippocampal autaptic synapses, the persistence of asynchronous release during depression cannot compensate for the reduction of synchronous release, so that the rate of information transmission declines with synaptic depression. In the calyx of Held, the information rate per release remains constant despite large variations in the measured asynchronous release rate. Lastly, we show that dopamine, by controlling asynchronous release in corticostriatal synapses, increases the synaptic information efficacy in nucleus accumbens. Fatigue is an intrinsic property of living systems and synapses are no exception. Synaptic depression reduces the ability of synapses to release vesicles in response to an incoming action potential. Whether synaptic depression simply reflects the exhaustion of neuronal resources or whether it serves some additional function is still an open question. We ask how synaptic depression modulates the information transfer between neurons by keeping the synapse in an appropriate operating range. Using a tractable mathematical model for synaptic depression of both synchronous spike-evoked and asynchronous release of neurotransmitter, we derive a closed-form expression for the mutual information rate. Depression, it turns out, can both enhance or impair information transfer, depending on the relative level of depression for synchronous spike-evoked and asynchronous releases. We also study the compromise a synapse makes between its energy consumption and the rate of information transmission. Interestingly, we show that synaptic depression can regulate energy use without affecting the information (measured in bits) per synaptic release. By applying our mathematical framework to experimentally measured synapses, we show that some synapses can compensate for intrinsic variability in asynchronous release rates; moreover, we show how neuromodulators such as dopamine act to improve the information transmission rate.
Collapse
Affiliation(s)
- Mehrdad Salmasi
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany.,Bernstein Center for Computational Neuroscience, Munich, Germany.,German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität, Munich, Germany
| | - Alex Loebel
- Bernstein Center for Computational Neuroscience, Munich, Germany.,Department of Biology II, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefan Glasauer
- Bernstein Center for Computational Neuroscience, Munich, Germany.,German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität, Munich, Germany.,Chair of Computational Neuroscience, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Martin Stemmler
- Bernstein Center for Computational Neuroscience, Munich, Germany.,Department of Biology II, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
18
|
Two-component latency distributions indicate two-step vesicular release at simple glutamatergic synapses. Nat Commun 2018; 9:3943. [PMID: 30258069 PMCID: PMC6158186 DOI: 10.1038/s41467-018-06336-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023] Open
Abstract
It is often assumed that only stably docked synaptic vesicles can fuse following presynaptic action potential stimulation. However, during action potential trains docking sites are increasingly depleted, raising the question of the source of synaptic vesicles during sustained release. We have recently developed methods to reliably measure release latencies during high frequency trains at single synapses between parallel fibers and molecular layer interneurons. The latency distribution exhibits a single fast component at train onset but contains both a fast and a slow component later in the train. The contribution of the slow component increases with stimulation frequency and with release probability and decreases when blocking the docking step with latrunculin. These results suggest that the slow component reflects sequential docking and release in immediate succession. The transition from fast to slow component, as well as a later transition to asynchronous release, appear as successive adaptations of the synapse to maintain fidelity at the expense of time accuracy.
Collapse
|
19
|
Ritzau-Jost A, Jablonski L, Viotti J, Lipstein N, Eilers J, Hallermann S. Apparent calcium dependence of vesicle recruitment. J Physiol 2018; 596:4693-4707. [PMID: 29928766 DOI: 10.1113/jp275911] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/11/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Synaptic transmission relies on the recruitment of neurotransmitter-filled vesicles to presynaptic release sites. Increased intracellular calcium buffering slows the recovery from synaptic depression, suggesting that vesicle recruitment is a calcium-dependent process. However, the molecular mechanisms of vesicle recruitment have only been investigated at some synapses. We investigate the role of calcium in vesicle recruitment at the cerebellar mossy fibre to granule cell synapse. We find that increased intracellular calcium buffering slows the recovery from depression following physiological stimulation. However, the recovery is largely resistant to perturbation of the molecular pathways previously shown to mediate calcium-dependent vesicle recruitment. Furthermore, we find two pools of vesicles with different recruitment speeds and show that models incorporating two pools of vesicles with different calcium-independent recruitment rates can explain our data. In this framework, increased calcium buffering prevents the release of intrinsically fast-recruited vesicles but does not change the vesicle recruitment rates themselves. ABSTRACT During sustained synaptic transmission, recruitment of new transmitter-filled vesicles to the release site counteracts vesicle depletion and thus synaptic depression. An elevated intracellular Ca2+ concentration has been proposed to accelerate the rate of vesicle recruitment at many synapses. This conclusion is often based on the finding that increased intracellular Ca2+ buffering slows the recovery from synaptic depression. However, the molecular mechanisms of the activity-dependent acceleration of vesicle recruitment have only been analysed at some synapses. Using physiological stimulation patterns in postsynaptic recordings and step depolarizations in presynaptic bouton recordings, we investigate vesicle recruitment at cerebellar mossy fibre boutons. We show that increased intracellular Ca2+ buffering slows recovery from depression dramatically. However, pharmacological and genetic interference with calmodulin or the calmodulin-Munc13 pathway, which has been proposed to mediate Ca2+ -dependence of vesicle recruitment, barely affects vesicle recovery from depression. Furthermore, we show that cerebellar mossy fibre boutons have two pools of vesicles: rapidly fusing vesicles that recover slowly and slowly fusing vesicles that recover rapidly. Finally, models adopting such two pools of vesicles with Ca2+ -independent recruitment rates can explain the slowed recovery from depression upon increased Ca2+ buffering. Our data do not rule out the involvement of the calmodulin-Munc13 pathway during stronger stimuli or other molecular pathways mediating Ca2+ -dependent vesicle recruitment at cerebellar mossy fibre boutons. However, we show that well-established two-pool models predict an apparent Ca2+ -dependence of vesicle recruitment. Thus, previous conclusions of Ca2+ -dependent vesicle recruitment based solely on increased intracellular Ca2+ buffering should be considered with caution.
Collapse
Affiliation(s)
- Andreas Ritzau-Jost
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Lukasz Jablonski
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Julio Viotti
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany.,Department of Anatomy and Embryology, Center of Anatomy, University Medical Center Göttingen, Göttingen, Germany
| | - Noa Lipstein
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Stefan Hallermann
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
20
|
Pulido C, Marty A. A two-step docking site model predicting different short-term synaptic plasticity patterns. J Gen Physiol 2018; 150:1107-1124. [PMID: 29950400 PMCID: PMC6080900 DOI: 10.1085/jgp.201812072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Established models of vesicular docking/release sites can account for synaptic depression. By incorporating a separate predocked state and by assuming that docking site occupancy is <1 at rest, Pulido and Marty extend previous models and explain facilitating and nonmonotonic synaptic responses. The strength of synaptic transmission varies during trains of presynaptic action potentials, notably because of the depletion of synaptic vesicles available for release. It has remained unclear why some synapses display depression over time, whereas others facilitate or show a facilitation and depression sequence. Here we compare the predictions of various synaptic models assuming that several docking/release sites are acting in parallel. These models show variation of docking site occupancy during trains of action potentials due to vesicular release and site replenishment, which give rise to changes in synaptic strength. To conform with recent studies, we assume an initial docking site occupancy of <1, thus permitting site occupancy to increase during action potential trains and facilitation to occur. We consider both a standard one-step model and a more elaborate model that assumes a predocked state (two-step model). Whereas the one-step model predicts monotonic changes of synaptic strength during a train, the two-step model allows nonmonotonic changes, including the often-observed facilitation/depression sequence. Both models predict a partitioning of parameter space between initially depressing and facilitating synapses. Using data obtained from interneuron synapses in the cerebellum, we demonstrate an unusual form of depression/facilitation sequence for very high release probability after prolonged depolarization-induced transmitter release. These results indicate a depletion of predocked vesicles in the two-step model. By permitting docking site occupancy to be <1 at rest, and by incorporating a separate predocked state, we reveal that docking site models can be expanded to mimic the large variety of time-dependent changes of synaptic strength that have been observed during action potential trains. Furthermore, the two-step model provides an effective framework to identify the specific mechanisms responsible for short-term changes in synaptic strength.
Collapse
Affiliation(s)
- Camila Pulido
- Laboratory of Brain Physiology, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8118, Paris Descartes University, Paris, France
| | - Alain Marty
- Laboratory of Brain Physiology, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8118, Paris Descartes University, Paris, France
| |
Collapse
|
21
|
Anderson RW, Farokhniaee A, Gunalan K, Howell B, McIntyre CC. Action potential initiation, propagation, and cortical invasion in the hyperdirect pathway during subthalamic deep brain stimulation. Brain Stimul 2018; 11:1140-1150. [PMID: 29779963 DOI: 10.1016/j.brs.2018.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/05/2018] [Accepted: 05/10/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND High frequency (∼130 Hz) deep brain stimulation (DBS) of the subthalamic region is an established clinical therapy for the treatment of late stage Parkinson's disease (PD). Direct modulation of the hyperdirect pathway, defined as cortical layer V pyramidal neurons that send an axon collateral to the subthalamic nucleus (STN), has emerged as a possible component of the therapeutic mechanisms. However, numerous questions remain to be addressed on the basic biophysics of hyperdirect pathway stimulation. OBJECTIVE Quantify action potential (AP) initiation, propagation, and cortical invasion in hyperdirect neurons during subthalamic stimulation. METHODS We developed an anatomically and electrically detailed computational model of hyperdirect neuron stimulation with explicit representation of the stimulating electric field, axonal response, AP propagation, and synaptic transmission. RESULTS We found robust AP propagation throughout the complex axonal arbor of the hyperdirect neuron. Even at therapeutic DBS frequencies, stimulation induced APs could reach all of the intracortical axon terminals with ∼100% fidelity. The functional result of this high frequency axonal driving of the thousands of synaptic connections made by each directly stimulated hyperdirect neuron is a profound synaptic suppression that would effectively disconnect the neuron from the cortical circuitry. CONCLUSIONS The synaptic suppression hypothesis integrates the fundamental biophysics of electrical stimulation, axonal transmission, and synaptic physiology to explain a generic mechanism of DBS.
Collapse
Affiliation(s)
- Ross W Anderson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - AmirAli Farokhniaee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kabilar Gunalan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Bryan Howell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
22
|
Parthier D, Kuner T, Körber C. The presynaptic scaffolding protein Piccolo organizes the readily releasable pool at the calyx of Held. J Physiol 2018; 596:1485-1499. [PMID: 29194628 DOI: 10.1113/jp274885] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Bassoon and Piccolo do not mediate basal synaptic vesicle release at a high-frequency synapse. Knockdown of Bassoon increases short-term depression at the calyx of Held. Both Bassoon and Piccolo have shared functions in synaptic vesicle replenishment during high-frequency synaptic transmission. Piccolo organizes the readily releasable pool of synaptic vesicles. It safeguards a fraction of them to be not immediately available for action potential-induced release. This enables the synapse to sustain high-frequency synaptic transmission over long periods. ABSTRACT Synaptic vesicles (SVs) are released at the active zone (AZ), a specialized region of the presynaptic plasma membrane organized by a highly interconnected network of multidomain proteins called the cytomatrix of the active zone (CAZ). Two core components of the CAZ are the large, highly homologous scaffolding proteins Bassoon and Piccolo, whose function is not well understood. To investigate their role in synaptic transmission, we established the small hairpin RNA (shRNA)-mediated in vivo knockdown (KD) of Bassoon and Piccolo at the rat calyx of Held synapse. KD of Bassoon and Piccolo, separately or simultaneously, did not affect basic SV release. However, short-term depression (STD) was prominently increased by the KD of Bassoon, whereas KD of Piccolo only had a minor effect. The observed alterations in STD were readily explained by reduced SV replenishment in synapses deficient in either of the proteins. Thus, the regulation of SV refilling during ongoing synaptic activity is a shared function of Bassoon and Piccolo, although Bassoon appears to be more efficient. Moreover, we observed the recruitment of slowly-releasing SVs of the readily-releasable pool (RRP), which are normally not available for action potential-induced release, during high-frequency stimulation in Piccolo-deficient calyces. Therefore, the results obtained in the present study suggest a novel and specific role for Piccolo in the organization of the subpools of the RRP.
Collapse
Affiliation(s)
- Daniel Parthier
- Institute of Anatomy and Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg, Germany.,Present address: Neuroscience Research Center, Charité Universitätsmedizin, Berlin, Germany
| | - Thomas Kuner
- Institute of Anatomy and Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg, Germany
| | - Christoph Körber
- Institute of Anatomy and Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
23
|
SAKABA T. Kinetics of transmitter release at the calyx of Held synapse. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:139-152. [PMID: 29526973 PMCID: PMC5909059 DOI: 10.2183/pjab.94.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 08/01/2023]
Abstract
Synaptic contacts mediate information transfer between neurons. The calyx of Held, a large synapse in the mammalian auditory brainstem, has been used as a model system for the mechanism of transmitter release from the presynaptic terminal for the last 20 years. By applying simultaneous recordings from pre- and postsynaptic compartments, the calcium-dependence of the kinetics of transmitter release has been quantified. A single pool of readily releasable vesicles cannot explain the time course of release during repetitive activity. Rather, multiple pools of vesicles have to be postulated that are replenished with distinct kinetics after depletion. The physical identity of vesicle replenishment has been unknown. Recently, it has become possible to apply total internal reflection fluorescent microscopy to the calyx terminal. This technique allowed the visualization of the dynamics of individual synaptic vesicles. Rather than recruitment of vesicles to the transmitter release sites, priming of tethered vesicles in the total internal reflection fluorescent field limited the number of readily releasable vesicles during sustained activity.
Collapse
Affiliation(s)
- Takeshi SAKABA
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
24
|
How to maintain active zone integrity during high-frequency transmission. Neurosci Res 2017; 127:61-69. [PMID: 29221908 DOI: 10.1016/j.neures.2017.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/10/2017] [Accepted: 10/26/2017] [Indexed: 11/20/2022]
Abstract
In the central nervous system, the frequency at which reliable synaptic transmission can be maintained varies strongly between different types of synapses. Several pre- and postsynaptic processes must interact to enable high-frequency synaptic transmission. One of the mechanistically most challenging issues arises during repetitive neurotransmitter release, when synaptic vesicles fuse in rapid sequence with the presynaptic plasma membrane within the active zone (AZ), potentially interfering with the structural integrity of the AZ itself. Here we summarize potential mechanisms that help to maintain AZ integrity, including arrangement and mobility of release sites, calcium channel mobility, as well as release site clearance via lateral diffusion of vesicular proteins and via endocytotic membrane retrieval. We discuss how different types of synapses use these strategies to maintain high-frequency synaptic transmission.
Collapse
|
25
|
Doussau F, Schmidt H, Dorgans K, Valera AM, Poulain B, Isope P. Frequency-dependent mobilization of heterogeneous pools of synaptic vesicles shapes presynaptic plasticity. eLife 2017; 6:28935. [PMID: 28990927 PMCID: PMC5648531 DOI: 10.7554/elife.28935] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/06/2017] [Indexed: 12/03/2022] Open
Abstract
The segregation of the readily releasable pool of synaptic vesicles (RRP) in sub-pools that are differentially poised for exocytosis shapes short-term plasticity. However, the frequency-dependent mobilization of these sub-pools is poorly understood. Using slice recordings and modeling of synaptic activity at cerebellar granule cell to Purkinje cell synapses of mice, we describe two sub-pools in the RRP that can be differentially recruited upon ultrafast changes in the stimulation frequency. We show that at low-frequency stimulations, a first sub-pool is gradually silenced, leading to full blockage of synaptic transmission. Conversely, a second pool of synaptic vesicles that cannot be released by a single stimulus is recruited within milliseconds by high-frequency stimulation and support an ultrafast recovery of neurotransmitter release after low-frequency depression. This frequency-dependent mobilization or silencing of sub-pools in the RRP in terminals of granule cells may play a role in the filtering of sensorimotor information in the cerebellum.
Collapse
Affiliation(s)
- Frédéric Doussau
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Hartmut Schmidt
- Carl-Ludwig Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Kevin Dorgans
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Antoine M Valera
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
26
|
Pulido C, Marty A. Quantal Fluctuations in Central Mammalian Synapses: Functional Role of Vesicular Docking Sites. Physiol Rev 2017; 97:1403-1430. [DOI: 10.1152/physrev.00032.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/23/2022] Open
Abstract
Quantal fluctuations are an integral part of synaptic signaling. At the frog neuromuscular junction, Bernard Katz proposed that quantal fluctuations originate at “reactive sites” where specific structures of the presynaptic membrane interact with synaptic vesicles. However, the physical nature of reactive sites has remained unclear, both at the frog neuromuscular junction and at central synapses. Many central synapses, called simple synapses, are small structures containing a single presynaptic active zone and a single postsynaptic density of receptors. Several lines of evidence indicate that simple synapses may release several synaptic vesicles in response to a single action potential. However, in some synapses at least, each release event activates a significant fraction of the postsynaptic receptors, giving rise to a sublinear relation between vesicular release and postsynaptic current. Partial receptor saturation as well as synaptic jitter gives to simple synapse signaling the appearance of a binary process. Recent investigations of simple synapses indicate that the number of released vesicles follows binomial statistics, with a maximum reflecting the number of docking sites present in the active zone. These results suggest that at central synapses, vesicular docking sites represent the reactive sites proposed by Katz. The macromolecular architecture and molecular composition of docking sites are presently investigated with novel combinations of techniques. It is proposed that variations in docking site numbers are central in defining intersynaptic variability and that docking site occupancy is a key parameter regulating short-term synaptic plasticity.
Collapse
Affiliation(s)
- Camila Pulido
- Laboratory of Brain Physiology, CNRS UMR 8118, Paris Descartes University, Paris, France
| | - Alain Marty
- Laboratory of Brain Physiology, CNRS UMR 8118, Paris Descartes University, Paris, France
| |
Collapse
|
27
|
Lübbert M, Goral RO, Satterfield R, Putzke T, van den Maagdenberg AM, Kamasawa N, Young SM. A novel region in the Ca V2.1 α 1 subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone. eLife 2017; 6. [PMID: 28786379 PMCID: PMC5548488 DOI: 10.7554/elife.28412] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/06/2017] [Indexed: 01/23/2023] Open
Abstract
In central nervous system (CNS) synapses, action potential-evoked neurotransmitter release is principally mediated by CaV2.1 calcium channels (CaV2.1) and is highly dependent on the physical distance between CaV2.1 and synaptic vesicles (coupling). Although various active zone proteins are proposed to control coupling and abundance of CaV2.1 through direct interactions with the CaV2.1 α1 subunit C-terminus at the active zone, the role of these interaction partners is controversial. To define the intrinsic motifs that regulate coupling, we expressed mutant CaV2.1 α1 subunits on a CaV2.1 null background at the calyx of Held presynaptic terminal. Our results identified a region that directly controlled fast synaptic vesicle release and vesicle docking at the active zone independent of CaV2.1 abundance. In addition, proposed individual direct interactions with active zone proteins are insufficient for CaV2.1 abundance and coupling. Therefore, our work advances our molecular understanding of CaV2.1 regulation of neurotransmitter release in mammalian CNS synapses.
Collapse
Affiliation(s)
- Matthias Lübbert
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - R Oliver Goral
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, United States
| | - Rachel Satterfield
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Travis Putzke
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | | | - Naomi Kamasawa
- Max Planck Florida Electron Microscopy Core, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Samuel M Young
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, United States.,Department of Otolaryngology, University of Iowa, Iowa City, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, United States.,Aging Mind Brain Initiative, University of Iowa, Iowa City, United States
| |
Collapse
|
28
|
Neher E. Some Subtle Lessons from the Calyx of Held Synapse. Biophys J 2017; 112:215-223. [PMID: 28122210 PMCID: PMC5266140 DOI: 10.1016/j.bpj.2016.12.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/29/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022] Open
Abstract
The calyx of Held is a giant nerve terminal that forms a glutamatergic synapse in the auditory pathway. Due to its large size, it offers a number of advantages for biophysical studies, including voltage-clamp of both pre- and postsynaptic compartments and the loading with indicator dyes and caged compounds. Three aspects of recent findings on the calyx are reviewed here, each of which seems to have only subtle consequences for nerve-evoked excitatory postsynaptic currents: vesicle heterogeneity, refractoriness of release sites, and superpriming. Together, they determine short-term plasticity features that are superficially similar to those expected for a simple vesicle pool model. However, detailed consideration of these aspects may be required for the correct mechanistic interpretation of data from synapses with normal and perturbed function, as well as for modeling the dynamics of short-term plasticity.
Collapse
Affiliation(s)
- Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
29
|
Delvendahl I, Hallermann S. The Cerebellar Mossy Fiber Synapse as a Model for High-Frequency Transmission in the Mammalian CNS. Trends Neurosci 2016; 39:722-737. [DOI: 10.1016/j.tins.2016.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
|
30
|
Miki T, Malagon G, Pulido C, Llano I, Neher E, Marty A. Actin- and Myosin-Dependent Vesicle Loading of Presynaptic Docking Sites Prior to Exocytosis. Neuron 2016; 91:808-823. [DOI: 10.1016/j.neuron.2016.07.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/17/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
|
31
|
Superpriming of synaptic vesicles as a common basis for intersynapse variability and modulation of synaptic strength. Proc Natl Acad Sci U S A 2016; 113:E4548-57. [PMID: 27432975 DOI: 10.1073/pnas.1606383113] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glutamatergic synapses show large variations in strength and short-term plasticity (STP). We show here that synapses displaying an increased strength either after posttetanic potentiation (PTP) or through activation of the phospholipase-C-diacylglycerol pathway share characteristic properties with intrinsically strong synapses, such as (i) pronounced short-term depression (STD) during high-frequency stimulation; (ii) a conversion of that STD into a sequence of facilitation followed by STD after a few conditioning stimuli at low frequency; (iii) an equalizing effect of such conditioning stimulation, which reduces differences among synapses and abolishes potentiation; and (iv) a requirement of long periods of rest for reconstitution of the original STP pattern. These phenomena are quantitatively described by assuming that a small fraction of "superprimed" synaptic vesicles are in a state of elevated release probability (p ∼ 0.5). This fraction is variable in size among synapses (typically about 30%), but increases after application of phorbol ester or during PTP. The majority of vesicles, released during repetitive stimulation, have low release probability (p ∼ 0.1), are relatively uniform in number across synapses, and are rapidly recruited. In contrast, superprimed vesicles need several seconds to be regenerated. They mediate enhanced synaptic strength at the onset of burst-like activity, the impact of which is subject to modulation by slow modulatory transmitter systems.
Collapse
|
32
|
|
33
|
Mahfooz K, Singh M, Renden R, Wesseling JF. A Well-Defined Readily Releasable Pool with Fixed Capacity for Storing Vesicles at Calyx of Held. PLoS Comput Biol 2016; 12:e1004855. [PMID: 27035349 PMCID: PMC4818018 DOI: 10.1371/journal.pcbi.1004855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/07/2016] [Indexed: 11/19/2022] Open
Abstract
The readily releasable pool (RRP) of vesicles is a core concept in studies of presynaptic function. However, operating principles lack consensus definition and the utility for quantitative analysis has been questioned. Here we confirm that RRPs at calyces of Held from 14 to 21 day old mice have a fixed capacity for storing vesicles that is not modulated by Ca2+. Discrepancies with previous studies are explained by a dynamic flow-through pool, established during heavy use, containing vesicles that are released with low probability despite being immediately releasable. Quantitative analysis ruled out a posteriori explanations for the vesicles with low release probability, such as Ca2+-channel inactivation, and established unexpected boundary conditions for remaining alternatives. Vesicles in the flow-through pool could be incompletely primed, in which case the full sequence of priming steps downstream of recruitment to the RRP would have an average unitary rate of at least 9/s during heavy use. Alternatively, vesicles with low and high release probability could be recruited to distinct types of release sites; in this case the timing of recruitment would be similar at the two types, and the downstream transition from recruited to fully primed would be much faster. In either case, further analysis showed that activity accelerates the upstream step where vesicles are initially recruited to the RRP. Overall, our results show that the RRP can be well defined in the mathematical sense, and support the concept that the defining mechanism is a stable group of autonomous release sites. Short-term plasticity has a dramatic impact on the connection strength of almost every type of synapse during normal use. Some synapses enhance, some depress, and many enhance or depress depending on the recent history of use. A better understanding is needed for modeling information processing in biological circuits and for studying the molecular biology of neurotransmission. Here we show that first principles at the calyx of Held, such as whether or not a readily-releasable pool of vesicles in the presynaptic terminal has a fixed capacity for storing vesicles, are unexpectedly similar to synapse types that are used at much lower frequencies. Our study establishes new methods for studying the function of presynaptic molecules, and the results suggest that a tractable general model of short-term plasticity can capture the full computational power of dynamic synaptic modulation across a large range of synapse types and situations.
Collapse
Affiliation(s)
- Kashif Mahfooz
- Department Neurociencias (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Mahendra Singh
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Robert Renden
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - John F. Wesseling
- Department Neurociencias (CIMA), Universidad de Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
34
|
Baydyuk M, Xu J, Wu LG. The calyx of Held in the auditory system: Structure, function, and development. Hear Res 2016; 338:22-31. [PMID: 27018297 DOI: 10.1016/j.heares.2016.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 12/19/2022]
Abstract
The calyx of Held synapse plays an important role in the auditory system, relaying information about sound localization via fast and precise synaptic transmission, which is achieved by its specialized structure and giant size. During development, the calyx of Held undergoes anatomical, morphological, and physiological changes necessary for performing its functions. The large dimensions of the calyx of Held nerve terminal are well suited for direct electrophysiological recording of many presynaptic events that are difficult, if not impossible to record at small conventional synapses. This unique accessibility has been used to investigate presynaptic ion channels, transmitter release, and short-term plasticity, providing invaluable information about basic presynaptic mechanisms of transmission at a central synapse. Here, we review anatomical and physiological specializations of the calyx of Held, summarize recent studies that provide new mechanisms important for calyx development and reliable synaptic transmission, and examine fundamental presynaptic mechanisms learned from studies using calyx as a model nerve terminal. This article is part of a Special Issue entitled <Annual Reviews 2016>.
Collapse
Affiliation(s)
- Maryna Baydyuk
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg 35, Bethesda, MD 20892, USA.
| | - Jianhua Xu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg 35, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Thanawala MS, Regehr WG. Determining synaptic parameters using high-frequency activation. J Neurosci Methods 2016; 264:136-152. [PMID: 26972952 DOI: 10.1016/j.jneumeth.2016.02.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND The specific properties of a synapse determine how neuronal activity evokes neurotransmitter release. Evaluating changes in synaptic properties during sustained activity is essential to understanding how genetic manipulations and neuromodulators regulate neurotransmitter release. Analyses of postsynaptic responses to high-frequency stimulation have provided estimates of the size of the readily-releasable pool (RRP) of vesicles (N0) and the probability of vesicular release (p) at multiple synapses. NEW METHOD Here, we introduce a model-based approach at the calyx of Held synapse in which depletion and the rate of replenishment (R) determine the number of available vesicles, and facilitation leads to a use-dependent increase in p when initial p is low. RESULTS When p is high and R is low, we find excellent agreement between estimates based on all three methods and the model. However, when p is low or when significant replenishment occurs between stimuli, estimates of different methods diverge, and model estimates are between the extreme estimates provided by the other approaches. COMPARISON WITH OTHER METHODS We compare our model-based approach to three other approaches that rely on different simplifying assumptions. Our findings suggest that our model provides a better estimate of N0 and p than previously-established methods, likely due to inaccurate assumptions about replenishment. More generally, our findings suggest that approaches commonly used to estimate N0 and p at other synapses are often applied under experimental conditions that yield inaccurate estimates. CONCLUSIONS Careful application of appropriate methods can greatly improve estimates of synaptic parameters.
Collapse
Affiliation(s)
- Monica S Thanawala
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
36
|
Chamberland S, Tóth K. Functionally heterogeneous synaptic vesicle pools support diverse synaptic signalling. J Physiol 2015; 594:825-35. [PMID: 26614712 DOI: 10.1113/jp270194] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022] Open
Abstract
Synaptic communication between neurons is a highly dynamic process involving specialized structures. At the level of the presynaptic terminal, neurotransmission is ensured by fusion of vesicles to the membrane, which releases neurotransmitter in the synaptic cleft. Depending on the level of activity experienced by the terminal, the spatiotemporal properties of calcium invasion will dictate the timing and the number of vesicles that need to be released. Diverse presynaptic firing patterns are translated to neurotransmitter release with a distinct temporal feature. Complex patterns of neurotransmitter release can be achieved when different vesicles respond to distinct calcium dynamics in the presynaptic terminal. Specific vesicles from different pools are recruited during various modes of release as the particular molecular composition of their membrane proteins define their functional properties. Such diversity endows the presynaptic terminal with the ability to respond to distinct physiological signals via the mobilization of specific subpopulation of vesicles. There are several mechanisms by which a diverse vesicle population could be generated in single presynaptic terminals, including distinct recycling pathways that utilize various adaptor proteins. Several additional factors could potentially contribute to the development of a heterogeneous vesicle pool such as specialized release sites, spatial segregation within the terminal and specialized delivery pathways. Among these factors molecular heterogeneity plays a central role in defining the functional properties of different subpopulations of vesicles.
Collapse
Affiliation(s)
- Simon Chamberland
- Quebec Mental Health Institute, Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada, G1J 2G3
| | - Katalin Tóth
- Quebec Mental Health Institute, Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada, G1J 2G3
| |
Collapse
|
37
|
Jarukanont D, Bonifas Arredondo I, Femat R, Garcia ME. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements. PLoS One 2015; 10:e0144045. [PMID: 26675312 PMCID: PMC4699451 DOI: 10.1371/journal.pone.0144045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/12/2015] [Indexed: 01/26/2023] Open
Abstract
Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles’ arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that including the fusion-time statistics in our model does not produce any significant changes on the results. These findings indicate that the motion of the whole ensemble of vesicles towards the membrane is directed and reflected in the amperometric signals. Our results confirm the conclusions of previous imaging studies performed on single vesicles that vesicles’ motion underneath plasma membranes is not purely random, but biased towards the membrane.
Collapse
Affiliation(s)
- Daungruthai Jarukanont
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Universität Kassel, Kassel, Germany
| | - Imelda Bonifas Arredondo
- División de Matemáticas Aplicadas, IPICYT, Camino a la Presa San José 2055, Lomas 4 Sección., San Luis Potosí, México
| | - Ricardo Femat
- División de Matemáticas Aplicadas, IPICYT, Camino a la Presa San José 2055, Lomas 4 Sección., San Luis Potosí, México
- * E-mail: (RF); (MEG)
| | - Martin E. Garcia
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Universität Kassel, Kassel, Germany
- * E-mail: (RF); (MEG)
| |
Collapse
|
38
|
Crawford DC, Kavalali ET. Molecular underpinnings of synaptic vesicle pool heterogeneity. Traffic 2015; 16:338-64. [PMID: 25620674 DOI: 10.1111/tra.12262] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Indexed: 12/31/2022]
Abstract
Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.
Collapse
Affiliation(s)
- Devon C Crawford
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | | |
Collapse
|
39
|
Neher E. Merits and Limitations of Vesicle Pool Models in View of Heterogeneous Populations of Synaptic Vesicles. Neuron 2015; 87:1131-1142. [DOI: 10.1016/j.neuron.2015.08.038] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Complexin stabilizes newly primed synaptic vesicles and prevents their premature fusion at the mouse calyx of held synapse. J Neurosci 2015; 35:8272-90. [PMID: 26019341 DOI: 10.1523/jneurosci.4841-14.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Complexins (Cplxs) are small synaptic proteins that cooperate with SNARE-complexes in the control of synaptic vesicle (SV) fusion. Studies involving genetic mutation, knock-down, or knock-out indicated two key functions of Cplx that are not mutually exclusive but cannot easily be reconciled, one in facilitating SV fusion, and one in "clamping" SVs to prevent premature fusion. Most studies on the role of Cplxs in mammalian synapse function have relied on cultured neurons, heterologous expression systems, or membrane fusion assays in vitro, whereas little is known about the function of Cplxs in native synapses. We therefore studied consequences of genetic ablation of Cplx1 in the mouse calyx of Held synapse, and discovered a developmentally exacerbating phenotype of reduced spontaneous and evoked transmission but excessive asynchronous release after stimulation, compatible with combined facilitating and clamping functions of Cplx1. Because action potential waveforms, Ca(2+) influx, readily releasable SV pool size, and quantal size were unaltered, the reduced synaptic strength in the absence of Cplx1 is most likely a consequence of a decreased release probability, which is caused, in part, by less tight coupling between Ca(2+) channels and docked SV. We found further that the excessive asynchronous release in Cplx1-deficient calyces triggered aberrant action potentials in their target neurons, and slowed-down the recovery of EPSCs after depleting stimuli. The augmented asynchronous release had a delayed onset and lasted hundreds of milliseconds, indicating that it predominantly represents fusion of newly recruited SVs, which remain unstable and prone to premature fusion in the absence of Cplx1.
Collapse
|
41
|
Ca2+ channel to synaptic vesicle distance accounts for the readily releasable pool kinetics at a functionally mature auditory synapse. J Neurosci 2015; 35:2083-100. [PMID: 25653365 DOI: 10.1523/jneurosci.2753-14.2015] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Precise regulation of synaptic vesicle (SV) release at the calyx of Held is critical for auditory processing. At the prehearing calyx of Held, synchronous and asynchronous release is mediated by fast and slow releasing SVs within the readily releasable pool (RRP). However, the posthearing calyx has dramatically different release properties. Whether developmental alterations in RRP properties contribute to the accelerated release time course found in posthearing calyces is not known. To study these questions, we performed paired patch-clamp recordings, deconvolution analysis, and numerical simulations of buffered Ca(2+) diffusion and SV release in postnatal day (P) 16-19 mouse calyces, as their release properties resemble mature calyces of Held. We found the P16-P19 calyx RRP consists of two pools: a fast pool (τ ≤ 0.9 ms) and slow pool (τ ∼4 ms), in which release kinetics and relative composition of the two pools were unaffected by 5 mm EGTA. Simulations of SV release from the RRP revealed that two populations of SVs were necessary to reproduce the experimental release rates: (1) SVs located close (∼5-25 nm) and (2) more distal (25-100 nm) to VGCC clusters. This positional coupling was confirmed by experiments showing 20 mm EGTA preferentially blocked distally coupled SVs. Lowering external [Ca(2+)] to in vivo levels reduced only the fraction SVs released from the fast pool. Therefore, we conclude that a dominant parameter regulating the mature calyx RRP release kinetics is the distance between SVs and VGCC clusters.
Collapse
|
42
|
Moore-Dotson JM, Klein JS, Mazade RE, Eggers ED. Different types of retinal inhibition have distinct neurotransmitter release properties. J Neurophysiol 2015; 113:2078-90. [PMID: 25568157 DOI: 10.1152/jn.00447.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/06/2015] [Indexed: 01/27/2023] Open
Abstract
Neurotransmitter release varies between neurons due to differences in presynaptic mechanisms such as Ca(2+) sensitivity and timing. Retinal rod bipolar cells respond to brief dim illumination with prolonged glutamate release that is tuned by the differential release of GABA and glycine from amacrine cells in the inner retina. To test if differences among types of GABA and glycine release are due to inherent amacrine cell release properties, we directly activated amacrine cell neurotransmitter release by electrical stimulation. We found that the timing of electrically evoked inhibitory currents was inherently slow and that the timecourse of inhibition from slowest to fastest was GABAC receptors > glycine receptors > GABAA receptors. Deconvolution analysis showed that the distinct timing was due to differences in prolonged GABA and glycine release from amacrine cells. The timecourses of slow glycine release and GABA release onto GABAC receptors were reduced by Ca(2+) buffering with EGTA-AM and BAPTA-AM, but faster GABA release on GABAA receptors was not, suggesting that release onto GABAA receptors is tightly coupled to Ca(2+). The differential timing of GABA release was detected from spiking amacrine cells and not nonspiking A17 amacrine cells that form a reciprocal synapse with rod bipolar cells. Our results indicate that release from amacrine cells is inherently asynchronous and that the source of nonreciprocal rod bipolar cell inhibition differs between GABA receptors. The slow, differential timecourse of inhibition may be a mechanism to match the prolonged rod bipolar cell glutamate release and provide a way to temporally tune information across retinal pathways.
Collapse
Affiliation(s)
- Johnnie M Moore-Dotson
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; and
| | - Justin S Klein
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; and
| | - Reece E Mazade
- Graduate Interdisciplinary Program in Physiological Sciences, University of Arizona, Tucson, Arizona
| | - Erika D Eggers
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
43
|
Weber JP, Toft-Bertelsen TL, Mohrmann R, Delgado-Martinez I, Sørensen JB. Synaptotagmin-7 is an asynchronous calcium sensor for synaptic transmission in neurons expressing SNAP-23. PLoS One 2014; 9:e114033. [PMID: 25422940 PMCID: PMC4244210 DOI: 10.1371/journal.pone.0114033] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/03/2014] [Indexed: 12/25/2022] Open
Abstract
Synchronization of neurotransmitter release with the presynaptic action potential is essential for maintaining fidelity of information transfer in the central nervous system. However, synchronous release is frequently accompanied by an asynchronous release component that builds up during repetitive stimulation, and can even play a dominant role in some synapses. Here, we show that substitution of SNAP-23 for SNAP-25 in mouse autaptic glutamatergic hippocampal neurons results in asynchronous release and a higher frequency of spontaneous release events (mEPSCs). Use of neurons from double-knock-out (SNAP-25, synaptotagmin-7) mice in combination with viral transduction showed that SNAP-23-driven release is triggered by endogenous synaptotagmin-7. In the absence of synaptotagmin-7 release became even more asynchronous, and the spontaneous release rate increased even more, indicating that synaptotagmin-7 acts to synchronize release and suppress spontaneous release. However, compared to synaptotagmin-1, synaptotagmin-7 is a both leaky and asynchronous calcium sensor. In the presence of SNAP-25, consequences of the elimination of synaptotagmin-7 were small or absent, indicating that the protein pairs SNAP-25/synaptotagmin-1 and SNAP-23/synaptotagmin-7 might act as mutually exclusive calcium sensors. Expression of fusion proteins between pHluorin (pH-sensitive GFP) and synaptotagmin-1 or -7 showed that vesicles that fuse using the SNAP-23/synaptotagmin-7 combination contained synaptotagmin-1, while synaptotagmin-7 barely displayed activity-dependent trafficking between vesicle and plasma membrane, implying that it acts as a plasma membrane calcium sensor. Overall, these findings support the idea of alternative syt∶SNARE combinations driving release with different kinetics and fidelity.
Collapse
Affiliation(s)
- Jens P. Weber
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, The Netherlands
| | - Trine L. Toft-Bertelsen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ralf Mohrmann
- Department of Physiology, University of Saarland, Homburg, Germany
| | | | - Jakob B. Sørensen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Evstratova A, Chamberland S, Faundez V, Tóth K. Vesicles derived via AP-3-dependent recycling contribute to asynchronous release and influence information transfer. Nat Commun 2014; 5:5530. [PMID: 25410111 PMCID: PMC4239664 DOI: 10.1038/ncomms6530] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 10/10/2014] [Indexed: 12/21/2022] Open
Abstract
Action potentials trigger synchronous and asynchronous neurotransmitter release. Temporal properties of both types of release could be altered in an activity-dependent manner. While the effects of activity-dependent changes in synchronous release on postsynaptic signal integration have been studied, the contribution of asynchronous release to information transfer during natural stimulus patterns is unknown. Here we find that during trains of stimulations, asynchronous release contributes to the precision of action potential firing. Our data show that this form of release is selectively diminished in AP-3b2 KO animals, which lack functional neuronal AP-3, an adaptor protein regulating vesicle formation from endosomes generated during bulk endocytosis. We find that in the absence of neuronal AP-3, asynchronous release is attenuated and the activity-dependent increase in the precision of action potential timing is compromised. Lack of asynchronous release decreases the capacity of synaptic information transfer and renders synaptic communication less reliable in response to natural stimulus patterns.
Collapse
Affiliation(s)
- Alesya Evstratova
- Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Quebec City, Quebec, Canada G1J 2G3
| | - Simon Chamberland
- Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Quebec City, Quebec, Canada G1J 2G3
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Katalin Tóth
- Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Quebec City, Quebec, Canada G1J 2G3
| |
Collapse
|
45
|
Ultrafast Action Potentials Mediate Kilohertz Signaling at a Central Synapse. Neuron 2014; 84:152-163. [DOI: 10.1016/j.neuron.2014.08.036] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2014] [Indexed: 01/27/2023]
|
46
|
The Munc13 proteins differentially regulate readily releasable pool dynamics and calcium-dependent recovery at a central synapse. J Neurosci 2013; 33:8336-51. [PMID: 23658173 DOI: 10.1523/jneurosci.5128-12.2013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Munc13 gene family encodes molecules located at the synaptic active zone that regulate the reliability of synapses to encode information over a wide range of frequencies in response to action potentials. In the CNS, proteins of the Munc13 family are critical in regulating neurotransmitter release and synaptic plasticity. Although Munc13-1 is essential for synaptic transmission, it is paradoxical that Munc13-2 and Munc13-3 are functionally dispensable at some synapses, although their loss in other synapses leads to increases in frequency-dependent facilitation. We addressed this issue at the calyx of Held synapse, a giant glutamatergic synapse that we found to express all these Munc13 isoforms. We studied their roles in the regulation of synaptic transmission and their impact on the reliability of information transfer. Through detailed electrophysiological analyses of Munc13-2, Munc13-3, and Munc13-2-3 knock-out and wild-type mice, we report that the combined loss of Munc13-2 and Munc13-3 led to an increase in the rate of calcium-dependent recovery and a change in kinetics of release of the readily releasable pool. Furthermore, viral-mediated overexpression of a dominant-negative form of Munc13-1 at the calyx demonstrated that these effects are Munc13-1 dependent. Quantitative immunohistochemistry using Munc13-fluorescent protein knock-in mice revealed that Munc13-1 is the most highly expressed Munc13 isoform at the calyx and the only one highly colocalized with Bassoon at the active zone. Based on these data, we conclude that Munc13-2 and Munc13-3 isoforms limit the ability of Munc13-1 to regulate calcium-dependent replenishment of readily releasable pool and slow pool to fast pool conversion in central synapses.
Collapse
|
47
|
Michalski N, Babai N, Renier N, Perkel D, Chédotal A, Schneggenburger R. Robo3-Driven Axon Midline Crossing Conditions Functional Maturation of a Large Commissural Synapse. Neuron 2013; 78:855-68. [DOI: 10.1016/j.neuron.2013.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
|
48
|
Fast neurotransmitter release regulated by the endocytic scaffold intersectin. Proc Natl Acad Sci U S A 2013; 110:8266-71. [PMID: 23633571 DOI: 10.1073/pnas.1219234110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sustained fast neurotransmission requires the rapid replenishment of release-ready synaptic vesicles (SVs) at presynaptic active zones. Although the machineries for exocytic fusion and for subsequent endocytic membrane retrieval have been well characterized, little is known about the mechanisms underlying the rapid recruitment of SVs to release sites. Here we show that the Down syndrome-associated endocytic scaffold protein intersectin 1 is a crucial factor for the recruitment of release-ready SVs. Genetic deletion of intersectin 1 expression or acute interference with intersectin function inhibited the replenishment of release-ready vesicles, resulting in short-term depression, without significantly affecting the rate of endocytic membrane retrieval. Acute perturbation experiments suggest that intersectin-mediated vesicle replenishment involves the association of intersectin with the fissioning enzyme dynamin and with the actin regulatory GTPase CDC42. Our data indicate a role for the endocytic scaffold intersectin in fast neurotransmitter release, which may be of prime importance for information processing in the brain.
Collapse
|
49
|
Chung C, Raingo J. Vesicle dynamics: how synaptic proteins regulate different modes of neurotransmission. J Neurochem 2013; 126:146-54. [PMID: 23517499 DOI: 10.1111/jnc.12245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 01/09/2023]
Abstract
Central synapses operate neurotransmission in several modes: synchronous/fast neurotransmission (neurotransmitters release is tightly coupled to action potentials and fast), asynchronous neurotransmission (neurotransmitter release is slower and longer lasting), and spontaneous neurotransmission (where small amounts of neurotransmitter are released without being evoked by an action potential). A substantial body of evidence from the past two decades suggests that seemingly identical synaptic vesicles possess distinct propensities to fuse, thus selectively serving different modes of neurotransmission. In efforts to better understand the mechanism(s) underlying the different modes of synaptic transmission, many research groups found that synaptic vesicles used in different modes of neurotransmission differ by a number of synaptic proteins. Synchronous transmission with higher temporal fidelity to stimulation seems to require synaptotagmin 1 and complexin for its Ca²⁺ sensitivity, RIM proteins for closer location of synaptic vesicles (SV) to the voltage operated calcium channels (VGCC), and dynamin for SV retrieval. Asynchronous release does not seem to require functional synaptotagmin 1 as a calcium sensor or complexins, but the activity of dynamin is indispensible for its maintenance. On the other hand, the control of spontaneous neurotransmission remains less clear as deleting a number of essential synaptic proteins does not abolish this type of synaptic vesicle fusion. VGCC distance from the SV seems to have little control on spontaneous transmission, while there is an involvement of functional synaptic proteins including synaptotagmins and complexin. Recently, presynaptic deficits have been proposed to contribute to a number of pathological conditions including cognitive and mental disorders. In this review, we evaluate recent advances in understanding the regulatory mechanisms of synaptic vesicle dynamics and in understanding how different molecular substrates maintain selective modes of neurotransmission. We also highlight the implications of these studies in understanding pathological conditions.
Collapse
Affiliation(s)
- ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | | |
Collapse
|
50
|
Delvendahl I, Weyhersmüller A, Ritzau-Jost A, Hallermann S. Hippocampal and cerebellar mossy fibre boutons - same name, different function. J Physiol 2013; 591:3179-88. [PMID: 23297303 DOI: 10.1113/jphysiol.2012.248294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Over a century ago, the Spanish anatomist Ramón y Cajal described 'mossy fibres' in the hippocampus and the cerebellum, which contain several presynaptic boutons. Technical improvements in recent decades have allowed direct patch-clamp recordings from both hippocampal and cerebellar mossy fibre boutons (hMFBs and cMFBs, respectively), making them ideal models to study fundamental properties of synaptic transmission. hMFBs and cMFBs have similar size and shape, but each hMFB contacts one postsynaptic hippocampal CA3 pyramidal neuron, while each cMFB contacts ∼50 cerebellar granule cells. Furthermore, hMFBs and cMFBs differ in terms of their functional specialization. At hMFBs, a large number of release-ready vesicles and low release probability (<0.1) contribute to marked synaptic facilitation. At cMFBs, a small number of release-ready vesicles, high release probability (∼0.5) and rapid vesicle reloading result in moderate frequency-dependent synaptic depression. These presynaptic mechanisms, in combination with faster postsynaptic currents of cerebellar granule cells compared with hippocampal CA3 pyramidal neurons, enable much higher transmission frequencies at cMFB compared with hMFB synapses. Analysing the underling mechanisms of synaptic transmission and information processing represents a fascinating challenge and may reveal insights into the structure-function relationship of the human brain.
Collapse
Affiliation(s)
- Igor Delvendahl
- Carl-Ludwig Institute for Physiology, University of Leipzig, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|