1
|
Yang Z, Wu H, Wang Z, Bian E, Zhao B. The role and application of small extracellular vesicles in glioma. Cancer Cell Int 2024; 24:229. [PMID: 38951882 PMCID: PMC11218314 DOI: 10.1186/s12935-024-03389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Small extracellular vesicles (sEVs) are cell-derived, nanometer-sized particles enclosed by a lipid bilayer. All kinds of biological molecules, including proteins, DNA fragments, RNA, lipids, and metabolites, can be selectively loaded into sEVs and transmitted to recipient cells that are near and distant. Growing shreds of evidence show the significant biological function and the clinical significance of sEVs in cancers. Numerous recent studies have validated that sEVs play an important role in tumor progression and can be utilized to diagnose, stage, grading, and monitor early tumors. In addition, sEVs have also served as drug delivery nanocarriers and cancer vaccines. Although it is still infancy, the field of basic and translational research based on sEVs has grown rapidly. In this review, we summarize the latest research on sEVs in gliomas, including their role in the malignant biological function of gliomas, and the potential of sEVs in non-invasive diagnostic and therapeutic approaches, i.e., as nanocarriers for drug or gene delivery and cancer vaccines.
Collapse
Affiliation(s)
- Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - HaoYuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - ZhiWei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - ErBao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, Anhui Province, China.
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, Anhui Province, China.
| |
Collapse
|
2
|
Mirzaei R, Shafiee S, Vafaei R, Salehi M, Jalili N, Nazerian Z, Muhammadnajad A, Yadegari F, Reza Esmailinejad M, Farahmand L. Production of novel recombinant anti-EpCAM antibody as targeted therapy for breast cancer. Int Immunopharmacol 2023; 122:110656. [PMID: 37473710 DOI: 10.1016/j.intimp.2023.110656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND The utilization of monoclonal antibodies (moAbs), an issue correlated with the biopharmaceutical professions, is developing and maturing. Coordinated with this conception, we produced the appealingly modeled anti-EpCAM scFv for breast cancer tumors. METHODS Afterward cloning and expression of recombinant antibody in Escherichia coli bacteria, the correctness of the desired antibody was checked by western blotting. Flow cytometry was utilized to determine the capacity of the recombinant antibody to append to the desired receptors in the malignant breast cancer (BC)cell line. The recombinant antibody (anti-EpCAM scFv) was examined for preclinical efficacy in reducing tumor growth, angiogenesis, and invasiveness (in vitro- in vivo). FINDINGS A target antibody-mediated attenuation of migration and invasion in the examined cancer cell lines was substantiated (P-value < 0.05). Grafted tumors from breast cancer in mice indicated significant and compelling suppression of tumor growth and decrement in blood supply in reaction to the recombinant anti-EpCAM intervention. Evaluations of immunohistochemical and histopathological findings revealed an enhanced response rate to the treatment. CONCLUSION The desired anti-EpCAM scFv can be a therapeutic tool to reduce invasion and proliferation in malignant breast cancer.
Collapse
Affiliation(s)
- Roya Mirzaei
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Soodabeh Shafiee
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rana Vafaei
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Neda Jalili
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zahra Nazerian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Ahad Muhammadnajad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yadegari
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohamad Reza Esmailinejad
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
3
|
Omar FA, Brown TC, Gillanders WE, Fleming TP, Smith MA, Bremner RM, Sankpal NV. Cytosolic EpCAM cooperates with H-Ras to regulate epithelial to mesenchymal transition through ZEB1. PLoS One 2023; 18:e0285707. [PMID: 37192201 PMCID: PMC10187930 DOI: 10.1371/journal.pone.0285707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/30/2023] [Indexed: 05/18/2023] Open
Abstract
Next generation sequencing of human cancer mutations has identified novel therapeutic targets. Activating Ras oncogene mutations play a central role in oncogenesis, and Ras-driven tumorigenesis upregulates an array of genes and signaling cascades that can transform normal cells into tumor cells. In this study, we investigated the role of altered localization of epithelial cell adhesion molecule (EpCAM) in Ras-expressing cells. Analysis of microarray data demonstrated that Ras expression induced EpCAM expression in normal breast epithelial cells. Fluorescent and confocal microscopy showed that H-Ras mediated transformation also promoted epithelial-to-mesenchymal transition (EMT) together with EpCAM. To consistently localize EpCAM in the cytosol, we generated a cancer-associated EpCAM mutant (EpCAM-L240A) that is retained in the cytosol compartment. Normal MCF-10A cells were transduced with H-Ras together with EpCAM wild-type (WT) or EpCAM-L240A. WT-EpCAM marginally effected invasion, proliferation, and soft agar growth. EpCAM-L240A, however, markedly altered cells and transformed to mesenchymal phenotype. Ras-EpCAM-L240A expression also promoted expression of EMT factors FRA1, ZEB1 with inflammatory cytokines IL-6, IL-8, and IL1. This altered morphology was reversed using MEK-specific inhibitors and to some extent JNK inhibition. Furthermore, these transformed cells were sensitized to apoptosis using paclitaxel and quercetin, but not other therapies. For the first time, we have demonstrated that EpCAM mutations can cooperate with H-Ras and promote EMT. Collectively, our results highlight future therapeutic opportunities in EpCAM and Ras mutated cancers.
Collapse
Affiliation(s)
- Fatma A. Omar
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Taylor C. Brown
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - William E. Gillanders
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Timothy P. Fleming
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Michael A. Smith
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Ross M. Bremner
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Narendra V. Sankpal
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| |
Collapse
|
4
|
Liu Z, Zhang C, Cui B, Wang Y, Lim K, Li K, Thiery JP, Chen J, Ho CL. Targeted EpCAM-binding for the development of potent and effective anticancer proteins. Biomed Pharmacother 2023; 161:114443. [PMID: 36863098 DOI: 10.1016/j.biopha.2023.114443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Protein-based cancer therapies are considered an alternative to conventional anticancer regimens, providing multifunctional properties while showing low toxicity. However, its widespread use is limited by absorption and instability issues, resulting in higher dosage requirements and a prolonged onset of bioactivity to elicit the desired response. Here, we developed a non-invasive antitumor treatment using designed ankyrin repeat protein (DARPin)-anticancer protein-conjugate that specifically targets the cancer biomarker, epithelial cell adhesion molecule (EpCAM). The DARPin-anticancer proteins bind to EpCAM-positive cancer cells and improve the in vitro anticancer efficacy by over 100-folds within 24 h, where the DARPin-tagged human lactoferrin fragment (drtHLF4) IC50 value is within the nanomolar range. Orally administered drtHLF4 was readily absorbed into the systemic flow of the HT-29 cancer murine model, exerting its anticancer effect on other tumors in the host body. Orally administered drtHFL4 cleared HT29-colorectal tumors using a single dose, whereas intratumoral injection cleared HT29-subcutaneous tumors within three doses. This approach addresses the limitations of other protein-based anticancer treatments by providing a non-invasive anticancer therapy with improved potency and tumor-specificity.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Chen Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Beiming Cui
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yijie Wang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Kaisheng Lim
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Jean Paul Thiery
- Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China.
| | - Jun Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
5
|
A Defucosylated Anti-EpCAM Monoclonal Antibody (EpMab-37-mG 2a-f) Exerts Antitumor Activity in Xenograft Model. Antibodies (Basel) 2022; 11:antib11040074. [PMID: 36546899 PMCID: PMC9774109 DOI: 10.3390/antib11040074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) is a stem cell and carcinoma antigen, which mediates cellular adhesion and proliferative signaling by the proteolytic cleavage. In contrast to low expression in normal epithelium, EpCAM is frequently overexpressed in various carcinomas, which correlates with poor prognosis. Therefore, EpCAM has been considered as a promising target for tumor diagnosis and therapy. Using the Cell-Based Immunization and Screening (CBIS) method, we previously established an anti-EpCAM monoclonal antibody (EpMab-37; mouse IgG1, kappa). In this study, we investigated the antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and an antitumor activity by a defucosylated mouse IgG2a-type of EpMab-37 (EpMab-37-mG2a-f) against a breast cancer cell line (BT-474) and a pancreatic cancer cell line (Capan-2), both of which express EpCAM. EpMab-37-mG2a-f recognized BT-474 and Capan-2 cells with a moderate binding-affinity [apparent dissociation constant (KD): 2.9 × 10-8 M and 1.8 × 10-8 M, respectively] by flow cytometry. EpMab-37-mG2a-f exhibited ADCC and CDC for both cells by murine splenocytes and complements, respectively. Furthermore, administration of EpMab-37-mG2a-f significantly suppressed the xenograft tumor development compared with the control mouse IgG. These results indicated that EpMab-37-mG2a-f exerts antitumor activities and could provide valuable therapeutic regimen for breast and pancreatic cancers.
Collapse
|
6
|
Kapoor-Narula U, Lenka N. Cancer stem cells and tumor heterogeneity: Deciphering the role in tumor progression and metastasis. Cytokine 2022; 157:155968. [PMID: 35872504 DOI: 10.1016/j.cyto.2022.155968] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
Tumor heterogeneity, in principle, reflects the variation among different cancer cell populations. It can be termed inter- or intra-tumoral heterogeneity, respectively, based on its occurrence in various tissues from diverse patients or within a single tumor. The intra-tumoral heterogeneity is one of the leading causes of cancer progression and treatment failure, with the cancer stem cells (CSCs) contributing immensely to the same. These niche cells, similar to normal stem cells, possess the characteristics of self-renewal and differentiation into multiple cell types. Moreover, CSCs contribute to tumor growth and surveillance by promoting recurrence, metastasis, and therapeutic resistance. Diverse factors, including intracellular signalling pathways and tumor microenvironment (TME), play a vital role in regulating these CSCs. Although a panel of markers is considered to identify the CSC pool in various cancers, further research is needed to discriminate cancer-specific CSC markers in those. CSCs have also been found to be promising therapeutic targets for cancer therapy. Several small molecules, natural compounds, antibodies, chimeric antigen receptor T (CAR-T) cells, and CAR-natural killer (CAR-NK) cells have emerged as therapeutic tools for specific targeting of CSCs. Interestingly, many of these are in clinical trials too. Despite being a much-explored avenue of research for years, and we have come to understand its nitty-gritty, there is still a tremendous gap in our knowledge concerning its precise genesis and regulation. Hence, a concrete understanding is needed to assess the CSC-TME link and how to target different cancer-specific CSCs by designing newer tools. In this review, we have summarized CSC, its causative, different pathways and factors regulating its growth, association with tumor heterogeneity, and last but not least, discussed many of the promising CSC-targeted therapies for combating cancer metastasis.
Collapse
|
7
|
Rani V, Prabhu A. Combining Angiogenesis Inhibitors with Radiation: Advances and Challenges in Cancer Treatment. Curr Pharm Des 2021; 27:919-931. [PMID: 33006535 DOI: 10.2174/1381612826666201002145454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Radiation therapy is a widely employed modality that is used to destroy cancer cells, but it also tends to induce changes in the tumor microenvironment and promote angiogenesis. Radiation, when used as a sole means of therapeutic approach to treat cancer, tends to trigger the angiogenic pathways, leading to the upregulation of several angiogenic growth factors such as VEGF, bFGF, PDGF and angiogenin. This uncontrolled angiogenesis leads to certain angiogenic disorders like vascular outgrowth and an increase in tumor progression that can pose a serious threat to patients. OBJECTIVE This review emphasizes on various components of the tumor microenvironment, angiogenic growth factors and biological effects of radiation on tumors in provoking the relapse. It also describes the angiogenic mechanisms that trigger the tumor relapse after radiation therapy and how angiogenesis inhibitors can help in overcoming this phenomenon. It gives an overview of various angiogenesis inhibitors in pre-clinical as well as in clinical trials. CONCLUSION The review focuses on the beneficial effects of the combinatorial therapeutic approach of anti-angiogenesis therapy and radiation in tumor management.
Collapse
Affiliation(s)
- Vinitha Rani
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore - 575 018, Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore - 575 018, Karnataka, India
| |
Collapse
|
8
|
Mendoza-Almanza G, Burciaga-Hernández L, Maldonado V, Melendez-Zajgla J, Olmos J. Role of platelets and breast cancer stem cells in metastasis. World J Stem Cells 2020; 12:1237-1254. [PMID: 33312396 PMCID: PMC7705471 DOI: 10.4252/wjsc.v12.i11.1237] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/23/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The high mortality rate of breast cancer is mainly caused by the metastatic ability of cancer cells, resistance to chemotherapy and radiotherapy, and tumor regression capacity. In recent years, it has been shown that the presence of breast cancer stem cells is closely associated with the migration and metastatic ability of cancer cells, as well as with their resistance to chemotherapy and radiotherapy. The tumor microenvironment is one of the main molecular factors involved in cancer and metastatic processes development, in this sense it is interesting to study the role of platelets, one of the main communicator cells in the human body which are activated by the signals they receive from the microenvironment and can generate more than one response. Platelets can ingest and release RNA, proteins, cytokines and growth factors. After the platelets interact with the tumor microenvironment, they are called "tumor-educated platelets." Tumor-educated platelets transport material from the tumor microenvironment to sites adjacent to the tumor, thus helping to create microenvironments conducive for the development of primary and metastatic tumors. It has been observed that the clone capable of carrying out the metastatic process is a cancer cell with stem cell characteristics. Cancer stem cells go through a series of processes, including epithelial-mesenchymal transition, intravasation into blood vessels, movement through blood vessels, extravasation at the site of the establishment of a metastatic focus, and site colonization. Tumor-educated platelets support all these processes.
Collapse
Affiliation(s)
| | | | - Vilma Maldonado
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Jorge Melendez-Zajgla
- Génómica funcional del cáncer, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Jorge Olmos
- Biotecnología Marina, Centro de Investigación Científica y de Estudios Superiores de Ensenada, Ensenada 22860, Mexico
| |
Collapse
|
9
|
Yahyazadeh Mashhadi SM, Kazemimanesh M, Arashkia A, Azadmanesh K, Meshkat Z, Golichenari B, Sahebkar A. Shedding light on the EpCAM: An overview. J Cell Physiol 2019; 234:12569-12580. [DOI: 10.1002/jcp.28132] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Seyed Muhammad Yahyazadeh Mashhadi
- Department of Virology Pasteur Institute of Iran Tehran Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences Mashhad Iran
- Production Expert at Samandaroo 8 (Biotech Pharmaceutical) Co. Mashhad Iran
| | | | - Arash Arashkia
- Department of Virology Pasteur Institute of Iran Tehran Iran
| | | | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences Mashhad Iran
| | - Behrouz Golichenari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
10
|
Ni J, Cozzi P, Beretov J, Duan W, Bucci J, Graham P, Li Y. Epithelial cell adhesion molecule (EpCAM) is involved in prostate cancer chemotherapy/radiotherapy response in vivo. BMC Cancer 2018; 18:1092. [PMID: 30419852 PMCID: PMC6233586 DOI: 10.1186/s12885-018-5010-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022] Open
Abstract
Background Development of chemo−/radioresistance is a major challenge for the current prostate cancer (CaP) therapy. We have previously demonstrated that epithelial cell adhesion molecule (EpCAM) is associated with CaP growth and therapeutic resistance in vitro, however, the role of EpCAM in CaP in vivo is not fully elucidated. Here, we aimed to investigate how expression of EpCAM is involved in CaP growth and chemo−/radiotherapy response in NOD/SCID mouse models in vivo and to validate its role as a therapeutic target for CaP therapy. Methods EpCAM was knocked down in PC-3 CaP cell line using short hairpin RNA (shRNA). The effect of EpCAM-knockdown (KD) on tumour growth, chemo−/radiotherapy response and animal survival was evaluated on subcutaneous (s.c) and orthotopic mouse models. Results We found that KD of EpCAM significantly inhibited tumour growth, increased xenograft sensitivity to chemotherapy/radiotherapy, and prolonged the survival of tumour-bearing mice. In addition, we demonstrated that KD of EpCAM is associated with downregulation of the PI3K/Akt/mTOR pathway. Conclusions In conclusion, our data confirms that CaP growth and chemo−/radioresistance in vivo is associated with over-expression of EpCAM, which serves both a functional biomarker and promising therapeutic target. Electronic supplementary material The online version of this article (10.1186/s12885-018-5010-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Ni
- Cancer Care Centre, St George Hospital, Level 2, 4-10 South St, Kogarah, NSW, 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Paul Cozzi
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia.,Department of Surgery, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Julia Beretov
- Cancer Care Centre, St George Hospital, Level 2, 4-10 South St, Kogarah, NSW, 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia.,Anatomical Pathology, NSW Health Pathology, St George Hospital, Gray St, Kogarah, NSW, 2217, Australia
| | - Wei Duan
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Joseph Bucci
- Cancer Care Centre, St George Hospital, Level 2, 4-10 South St, Kogarah, NSW, 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Peter Graham
- Cancer Care Centre, St George Hospital, Level 2, 4-10 South St, Kogarah, NSW, 2217, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Yong Li
- Cancer Care Centre, St George Hospital, Level 2, 4-10 South St, Kogarah, NSW, 2217, Australia. .,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia. .,School of Basic Medical Sciences, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
11
|
Lee SJ, Chung KY, Kwon JE, Yoon SO, Kim SK. Expression of EpCAM in adenoid cystic carcinoma. Pathology 2018; 50:737-741. [PMID: 30389218 DOI: 10.1016/j.pathol.2018.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 01/14/2023]
Abstract
The mutational landscape of adenoid cystic carcinoma (ACC) is currently being revealed, but further studies are needed to identify biomarkers as therapeutic targets or prognostic factors of ACC. In this study, we investigated the expression of epithelial cell adhesion molecule (EpCAM) in ACCs. We retrospectively collected 83 cases of surgically resected ACCs. Using tissue microarray, we conducted immunohistochemical staining using the anti-EpCAM antibody. EpCAM expression was analysed by intensity score and the total immunostaining score. The positivity was 97.6% (81/83 cases), regardless of the intensity score. A higher histological grade (p = 0.006) and specific tumour location (non-salivary gland origin, p = 0.02) showed a correlation with higher EpCAM intensity. Higher EpCAM expression by total immunostaining score was associated with histological grade (p = 0.004), distant metastasis (p = 0.004) and poorer prognosis (overall survival p = 0.015 and progression-free survival p = 0.033). We suggest EpCAM as a candidate prognostic marker and a putative therapeutic target in ACC. Also, ACCs arising from salivary gland and non-salivary gland sites, respectively, might display different pathophysiologies in which EpCAM could play a role.
Collapse
Affiliation(s)
- Seok Joo Lee
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Yang Chung
- Department of Dermatology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Eun Kwon
- Department of Pathology, Ajou University School of Medicine, Suwon, South Korea
| | - Sun Och Yoon
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
12
|
Individual variations in cardiovascular-disease-related protein levels are driven by genetics and gut microbiome. Nat Genet 2018; 50:1524-1532. [PMID: 30250126 PMCID: PMC6241851 DOI: 10.1038/s41588-018-0224-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 08/02/2018] [Indexed: 02/05/2023]
Abstract
Despite a growing body of evidence, the role of the gut microbiome in cardiovascular diseases (CVDs) is still unclear. Here we present a systems-genome-wide and metagenome-wide association study on plasma concentrations of 92 CVD-related proteins in the population cohort Lifelines-DEEP. We identified genetic components for 73 proteins and microbial associations for 41 proteins, of which 31 were associated to both. The genetic and microbial factors identified mostly exert additive effects and collectively explain up to 76.6% of inter-individual variation (17.5% on average). Genetics contributes most to concentrations of immune-related proteins, while the gut microbiome contributes most to proteins involved in metabolism and intestinal health. We found several host-microbe interactions that impact proteins involved in epithelial function, lipid metabolism and central nervous system function. This study reveals important evidence for a joint genetic and microbial effect in cardiovascular disease and provides directions for future applications in personalized medicine.
Collapse
|
13
|
Tayama S, Motohara T, Narantuya D, Li C, Fujimoto K, Sakaguchi I, Tashiro H, Saya H, Nagano O, Katabuchi H. The impact of EpCAM expression on response to chemotherapy and clinical outcomes in patients with epithelial ovarian cancer. Oncotarget 2018; 8:44312-44325. [PMID: 28574829 PMCID: PMC5546482 DOI: 10.18632/oncotarget.17871] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 04/29/2017] [Indexed: 12/19/2022] Open
Abstract
Epithelial ovarian cancer is a highly lethal malignancy; moreover, overcoming chemoresistance is the major challenging in treating ovarian cancer patients. The cancer stem cell (CSC) hypothesis considers CSCs to be the main culprits in driving tumor initiation, metastasis, and resistance to conventional therapy. Although growing evidence suggest that CSCs are responsible for chemoresistance, the contribution of CSC marker EpCAM to resistance to chemotherapy remains unresolved. Here we have demonstrated that ovarian cancers containing high levels of EpCAM have a significantly much lower probability of achieving overall responsive rates after first-line chemotherapy. In addition, multivariate analysis revealed that EpCAM expression is an independent risk factor for chemoresistance, indicating that EpCAM expression is a predictive biomarker of chemotherapeutic response. Consistent with these clinical observations, in vitro assays, we found that the subpopulation of EpCAM-positive ovarian cancer cells shows a significantly higher viability compared with EpCAM-negative cells in response to cisplatin treatment by preventing chemotherapy-induced apoptosis, which is regulated by EpCAM-Bcl-2 axis. Furthermore, in an in vivo mouse model, platinum agents preferentially eliminated EpCAM-negative cells in comparison with EpCAM-positive cells, suggesting that the remaining subpopulation of EpCAM-positive cells contributes to tumor recurrence after chemotherapy. Finally, we also found that an increased expression of EpCAM is associated with poor prognosis in ovarian cancer patients. Our findings highlight the clinical significance of EpCAM in the resistance to chemotherapy and provide a rationale for EpCAM-targeted therapy to improve chemoresistance. Targeting EpCAM should be a promising approach to effectively extirpate the CSCs as the putative root of ovarian cancer.
Collapse
Affiliation(s)
- Shingo Tayama
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Takeshi Motohara
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Dashdemberel Narantuya
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Chenyan Li
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Koichi Fujimoto
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Isao Sakaguchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Hironori Tashiro
- Department of Maternal-Newborn Nursing, Kumamoto University, Chuo-Ku, Kumamoto 860-0976, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-Ku, Tokyo 160-8582, Japan
| | - Osamu Nagano
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-Ku, Tokyo 160-8582, Japan
| | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Chuo-Ku, Kumamoto 860-8556, Japan
| |
Collapse
|
14
|
Wang H, Stoecklein NH, Lin PP, Gires O. Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion. Oncotarget 2018; 8:1884-1912. [PMID: 27683128 PMCID: PMC5352105 DOI: 10.18632/oncotarget.12242] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
Enumeration of circulating tumor cells (CTCs) in peripheral blood with the gold standard CellSearchTM has proven prognostic value for tumor recurrence and progression of metastatic disease. Therefore, the further molecular characterization of isolated CTCs might have clinical relevance as liquid biopsy for therapeutic decision-making and to monitor disease progression. The direct analysis of systemic cancer appears particularly important in view of the known disparity in expression of therapeutic targets as well as epithelial-to-mesenchymal transition (EMT)-based heterogeneity between primary and systemic tumor cells, which all substantially complicate monitoring and therapeutic targeting at present. Since CTCs are the potential precursor cells of metastasis, their in-depth molecular profiling should also provide a useful resource for target discovery. The present review will discuss the use of systemically spread cancer cells as liquid biopsy and focus on potential target antigens.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Munich, Germany.,Clinical Cooperation Group Personalized Radiotherapy of Head and Neck Tumors, Helmholtz, Germany
| |
Collapse
|
15
|
A Single Tri-Epitopic Antibody Virtually Recapitulates the Potency of a Combination of Three Monoclonal Antibodies in Neutralization of Botulinum Neurotoxin Serotype A. Toxins (Basel) 2018; 10:toxins10020084. [PMID: 29462889 PMCID: PMC5848185 DOI: 10.3390/toxins10020084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 11/17/2022] Open
Abstract
The standard of treatment for botulism, equine antitoxin, is a foreign protein with associated safety issues and a short serum half-life which excludes its use as a prophylactic antitoxin and makes it a less-than-optimal therapeutic. Due to these limitations, a recombinant monoclonal antibody (mAb) product is preferable. It has been shown that combining three mAbs that bind non-overlapping epitopes leads to highly potent botulinum neurotoxin (BoNT) neutralization. Recently, a triple human antibody combination for BoNT/A has demonstrated potent toxin neutralization in mouse models with no serious adverse events when tested in a Phase I clinical trial. However, a triple antibody therapeutic poses unique development and manufacturing challenges. Thus, potentially to streamline development of BoNT antitoxins, we sought to achieve the potency of multiple mAb combinations in a single IgG-based molecule that has a long serum half-life. The design, production, and testing of a single tri-epitopic IgG1-based mAb (TeAb) containing the binding sites of each of the three parental BoNT/A mAbs yielded an antibody of nearly equal potency to the combination. The approach taken here could be applied to the design and creation of other multivalent antibodies that could be used for a variety of applications, including toxin elimination.
Collapse
|
16
|
Qiu L, Li H, Fu S, Chen X, Lu L. Surface markers of liver cancer stem cells and innovative targeted-therapy strategies for HCC. Oncol Lett 2017; 15:2039-2048. [PMID: 29434903 DOI: 10.3892/ol.2017.7568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
Liver cancer stem cells (LCSCs) have important roles in the occurrence, development, recurrence, therapy resistance and metastasis of hepatocellular carcinoma (HCC). Therefore, intensive studies are undergoing to identify the mechanisms by which LCSCs contribute to HCC invasion and metastasis, and to design more efficient treatments for this disease. With continuous efforts in LCSC research over the years, therapies targeting LCSCs are thought to have great potential for the clinical treatment and prognosis of liver cancer. Novel LCSC surface markers are continuously discovered and several have been used in targeted therapies to reduce HCC recurrence, metastasis, and drug resistance following tumor resection. The present review describes the surface markers characterizing LCSCs and the recent progress in therapies targeting these markers, including antibodies and polypeptides.
Collapse
Affiliation(s)
- Lige Qiu
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
| | - Hailiang Li
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China.,Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Sirui Fu
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
| | - Xiaofang Chen
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China.,Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China.,Stem Cell and Regenerative Medicine Laboratory, Beijing Institute of Transfusion Medicine, Beijing 100850, P.R. China
| | - Ligong Lu
- Department of Intervention, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
17
|
Abstract
BACKGROUND Hepatocellular carcinoma is one of the most common cancers and the second leading cause of cancer-related deaths worldwide. Only a small proportion of patients benefit from curative treatment and the prognosis is very poor for the majority of cases due to late presentation, resistance to chemotherapy and high recurrence rate. In recent years, progress in stem cell biology allowed us to explain that hierarchically organized cancer stem cells (CSCs) drive histological and functional heterogeneity of hematological malignancies and solid tumors. METHODS AND RESULTS Also referred to as tumor-initiating cells, CSCs have been isolated from both hepatocellular carcinoma (HCC) cell lines and primary tumors by using hepatic progenitor markers. Although there is still no consensus on cancer stem cell phenotype in HCC, single or combined use of CSC markers defines a minor population of tumor cells with the capacity of self-renewing and the ability to recapitulate the original tumor heterogeneity. CONCLUSIONS This review focuses on the biological features of CSCs and their potential as diagnostic/prognostic tools and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Tamer Yagci
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400, Cayirova, Kocaeli, Turkey.
| | - Metin Cetin
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400, Cayirova, Kocaeli, Turkey
| | - Pelin Balcik Ercin
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400, Cayirova, Kocaeli, Turkey
| |
Collapse
|
18
|
An anti-EpCAM antibody EpAb2-6 for the treatment of colon cancer. Oncotarget 2016; 6:24947-68. [PMID: 26317650 PMCID: PMC4694806 DOI: 10.18632/oncotarget.4453] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/24/2015] [Indexed: 02/07/2023] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is known to be overexpressed in epithelial cancers associated with enhanced malignant potential, particularly colorectal carcinoma (CRC) and head and neck squamous cell carcinoma (HNSCC). However, it is unknown whether progression of malignance can be directly inhibited by targeting EpCAM. Here, we have generated five novel monoclonal antibodies (mAbs) against EpCAM. One of these anti-EpCAM mAbs, EpAb2-6, was found to induce cancer cell apoptosis in vitro, inhibit tumor growth, and prolong the overall survival of both a pancreatic cancer metastatic mouse model and mice with human colon carcinoma xenografts. EpAb2-6 also increases the therapeutic efficacy of irinotecan, fluorouracil, and leucovorin (IFL) therapy in a colon cancer animal model and gemcitabine therapy in a pancreatic cancer animal model. Furthermore, EpAb2-6, which binds to positions Y95 and D96 of the EGF-II/TY domain of EpCAM, inhibits production of EpICD, thereby decreasing its translocation and subsequent signal activation. Collectively, our results indicate that the novel anti-EpCAM mAb can potentially be used for cancer-targeted therapy.
Collapse
|
19
|
Sun JH, Luo Q, Liu LL, Song GB. Liver cancer stem cell markers: Progression and therapeutic implications. World J Gastroenterol 2016; 22:3547-3557. [PMID: 27053846 PMCID: PMC4814640 DOI: 10.3748/wjg.v22.i13.3547] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets.
Collapse
|
20
|
Codony-Servat J, Rosell R. Cancer stem cells and immunoresistance: clinical implications and solutions. Transl Lung Cancer Res 2016; 4:689-703. [PMID: 26798578 DOI: 10.3978/j.issn.2218-6751.2015.12.11] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tumor cells can be contained, but not eliminated, by traditional cancer therapies. A cell minor subpopulation is able to evade attack from therapies and may have cancer stem cell (CSC) characteristics, including self-renewal, multiple differentiation and tumor initiation (tumor initiating cells, or TICs). Thus, CSCs/TICs, aided by the microenvironment, produce more differentiated, metastatic cancer cells which the immune system detects and interacts with. There are three phases to this process: elimination, equilibrium and escape. In the elimination phase the immune system recognizes and destroys most of the tumor cells. Then the latency phase begins, consisting of equilibrium between immunological elimination and tumor cell growth. Finally, a minor attack-resistant subpopulation escapes and forms a clinically detectable tumor mass. Herein we review current knowledge of immunological characterization of CSCs/TICs. Due to the correlation between CTCs/TICs and drug resistance and metastasis, we also comment on the crucial role of key molecules involved in controlling CSCs/TICs properties; such molecules are essential to detect and destroy CSCs/TICs. Monoclonal antibodies, antibody constructs and vaccines have been designed to act against CSCs/TICs, with demonstrated efficacy in human cancer xenografts and some antitumor activity in human clinical studies. Therefore, therapeutic strategies that selectively target CSCs/TICs warrant further investigation. Better understanding of the interaction between CSCs and tumor immunology may help to identify strategies to eradicate the minor subpopulation that escapes conventional therapy attack, thus providing a solution to the problem of drug resistance and metastasis.
Collapse
Affiliation(s)
- Jordi Codony-Servat
- 1 Pangaea Biotech S.L., Quirón-Dexeus University Hospital, Barcelona, Spain ; 2 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 3 Instituto Oncológico Dr Rosell, Quirón-Dexeus University Hospital, Barcelona, Spain ; 4 Fundación Molecular Oncology Research, Barcelona, Spain
| | - Rafael Rosell
- 1 Pangaea Biotech S.L., Quirón-Dexeus University Hospital, Barcelona, Spain ; 2 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 3 Instituto Oncológico Dr Rosell, Quirón-Dexeus University Hospital, Barcelona, Spain ; 4 Fundación Molecular Oncology Research, Barcelona, Spain
| |
Collapse
|
21
|
Shi W, Liao Y, Willis SN, Taubenheim N, Inouye M, Tarlinton DM, Smyth GK, Hodgkin PD, Nutt SL, Corcoran LM. Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nat Immunol 2015; 16:663-73. [PMID: 25894659 DOI: 10.1038/ni.3154] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 03/24/2015] [Indexed: 12/15/2022]
Abstract
When B cells encounter an antigen, they alter their physiological state and anatomical localization and initiate a differentiation process that ultimately produces antibody-secreting cells (ASCs). We have defined the transcriptomes of many mature B cell populations and stages of plasma cell differentiation in mice. We provide a molecular signature of ASCs that highlights the stark transcriptional divide between B cells and plasma cells and enables the demarcation of ASCs on the basis of location and maturity. Changes in gene expression correlated with cell-division history and the acquisition of permissive histone modifications, and they included many regulators that had not been previously implicated in B cell differentiation. These findings both highlight and expand the core program that guides B cell terminal differentiation and the production of antibodies.
Collapse
Affiliation(s)
- Wei Shi
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Computing and Information Systems, The University of Melbourne, Parkville, Victoria, Australia
| | - Yang Liao
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Simon N Willis
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nadine Taubenheim
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Inouye
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia. [3] Department of Microbiology &Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - David M Tarlinton
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gordon K Smyth
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Philip D Hodgkin
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen L Nutt
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lynn M Corcoran
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. [2] Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Ogasawara S, Akiba J, Nakayama M, Nakashima O, Torimura T, Yano H. Epithelial cell adhesion molecule-positive human hepatic neoplastic cells: development of combined hepatocellular-cholangiocarcinoma in mice. J Gastroenterol Hepatol 2015; 30:413-20. [PMID: 25087473 DOI: 10.1111/jgh.12692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Human combined hepatocellular-cholangiocarcinoma (CHC) expresses several hepatic stem/progenitor cell (HSPC) markers, suggesting this neoplasm originates from HSPCs. We examined the significance of HSPC marker in CHC using a human CHC cell line. METHODS We used a human CHC cell line (KMCH-1) previously established in our laboratory. The original tumor was classified as CHC, showing areas of typical hepatocellular carcinoma (HCC) and cholangiocarcinoma (ChC). We examined the expression of HSPC markers and hepatocyte markers in KMCH-1 by flow cytometry (FCM) and quantitative real-time polymerase chain reaction. EpCAM(+) and EpCAM(-) KMCH-1 cells were isolated. Subsequently, their morphological features, HSPC marker expression, and biological characteristics were examined in vitro and in vivo. RESULTS FCM showed expression of EpCAM, K7, K19, and ABCG2 in KMCH-1, with various degrees. EpCAM(+) cells expressed K19 mRNA, but did not express α-fetoprotein (AFP). In contrast, EpCAM(-) cells expressed AFP mRNA, but did not express K19. EpCAM(+) cells produced both EpCAM(+) and EpCAM(-) cells, but EpCAM(-) cells produced only EpCAM(-) cells in vitro. EpCAM(+) cells showed higher tumorigenicity and formed larger tumors than EpCAM(-) cells. Inoculation of EpCAM(+) and EpCAM(-) cells produced both ChC and HCC-like component and HCC-like component only, respectively. CONCLUSION It is speculated that some CHCs may originate from EpCAM(+) neoplastic cells, and that these cells may affect malignant behavior and progression in such CHCs.
Collapse
Affiliation(s)
- Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Chen X, Ma WY, Xu SC, Liang Y, Fu YB, Pang B, Xin T, Fan HT, Zhang R, Luo JG, Kang WQ, Wang M, Pang Q. The overexpression of epithelial cell adhesion molecule (EpCAM) in glioma. J Neurooncol 2014; 119:39-47. [PMID: 24906438 DOI: 10.1007/s11060-014-1459-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 04/23/2014] [Indexed: 12/31/2022]
Abstract
Epithelial cell adhesion molecule (EpCAM) is overexpressed in various neoplasms as a tumor-associated antigen and absent in natural brain. However, little is known about EpCAM's expression in gliomas. To investigate the expression of EpCAM in gliomas and understand the correlation of EpCAM expression with malignancy, proliferation, angiogenesis, and prognosis, we studied the expression of EpCAM in 98 glioma samples by immunohistochemistry and by western blotting (N = 12). Correlative analysis of EpCAM overexpression with microvessel density (MVD), Ki-67 expression, age, and gender were made. Survival data was analyzed with Kaplan-Meier method and Cox Proportional Hazard Model. Immunohistochemistry results showed EpCAM was widely expressed in glioma (90.8 %). The overexpression rate of WHO grade IV gliomas was significantly higher EpCAM overexpression correlated significantly with Ki-67 expression and MVD. Western blot analysis also revealed a stepwise increase in EpCAM expression from WHO II to IV glioma. The overall survival of WHO III and IV glioma patients with EpCAM overexpression was obviously lower than that without EpCAM overexpression. EpCAM overexpression was an independent prognostic factor for overall survival in glioma patients. This study firstly shows that EpCAM overexpression correlates significantly with malignancy (WHO grades), proliferation (Ki67), angiogenesis (MVD), and prognosis in gliomas. EpCAM may participate in tumorgenesis of gliomas.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ciurea ME, Georgescu AM, Purcaru SO, Artene SA, Emami GH, Boldeanu MV, Tache DE, Dricu A. Cancer stem cells: biological functions and therapeutically targeting. Int J Mol Sci 2014; 15:8169-85. [PMID: 24821540 PMCID: PMC4057726 DOI: 10.3390/ijms15058169] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/20/2014] [Accepted: 04/24/2014] [Indexed: 12/18/2022] Open
Abstract
Almost all tumors are composed of a heterogeneous cell population, making them difficult to treat. A small cancer stem cell population with a low proliferation rate and a high tumorigenic potential is thought to be responsible for cancer development, metastasis and resistance to therapy. Stem cells were reported to be involved in both normal development and carcinogenesis, some molecular mechanisms being common in both processes. No less controversial, stem cells are considered to be important in treatment of malignant diseases both as targets and drug carriers. The efforts to understand the role of different signalling in cancer stem cells requires in depth knowledge about the mechanisms that control their self-renewal, differentiation and malignant potential. The aim of this paper is to discuss insights into cancer stem cells historical background and to provide a brief review of the new therapeutic strategies for targeting cancer stem cells.
Collapse
Affiliation(s)
- Marius Eugen Ciurea
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Ada Maria Georgescu
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Stefana Oana Purcaru
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Stefan-Alexandru Artene
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Ghazaleh Hooshyar Emami
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Mihai Virgil Boldeanu
- Stem Cell Bank Unit, Medico Science SRL, Str. Brazda lui Novac nr. 1B, Craiova 200690, Romania.
| | - Daniela Elise Tache
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Anica Dricu
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| |
Collapse
|
25
|
Penrod NM, Greene CS, Moore JH. Predicting targeted drug combinations based on Pareto optimal patterns of coexpression network connectivity. Genome Med 2014; 6:33. [PMID: 24944582 PMCID: PMC4062052 DOI: 10.1186/gm550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/22/2014] [Indexed: 01/05/2023] Open
Abstract
Background Molecularly targeted drugs promise a safer and more effective treatment modality than conventional chemotherapy for cancer patients. However, tumors are dynamic systems that readily adapt to these agents activating alternative survival pathways as they evolve resistant phenotypes. Combination therapies can overcome resistance but finding the optimal combinations efficiently presents a formidable challenge. Here we introduce a new paradigm for the design of combination therapy treatment strategies that exploits the tumor adaptive process to identify context-dependent essential genes as druggable targets. Methods We have developed a framework to mine high-throughput transcriptomic data, based on differential coexpression and Pareto optimization, to investigate drug-induced tumor adaptation. We use this approach to identify tumor-essential genes as druggable candidates. We apply our method to a set of ER+ breast tumor samples, collected before (n = 58) and after (n = 60) neoadjuvant treatment with the aromatase inhibitor letrozole, to prioritize genes as targets for combination therapy with letrozole treatment. We validate letrozole-induced tumor adaptation through coexpression and pathway analyses in an independent data set (n = 18). Results We find pervasive differential coexpression between the untreated and letrozole-treated tumor samples as evidence of letrozole-induced tumor adaptation. Based on patterns of coexpression, we identify ten genes as potential candidates for combination therapy with letrozole including EPCAM, a letrozole-induced essential gene and a target to which drugs have already been developed as cancer therapeutics. Through replication, we validate six letrozole-induced coexpression relationships and confirm the epithelial-to-mesenchymal transition as a process that is upregulated in the residual tumor samples following letrozole treatment. Conclusions To derive the greatest benefit from molecularly targeted drugs it is critical to design combination treatment strategies rationally. Incorporating knowledge of the tumor adaptation process into the design provides an opportunity to match targeted drugs to the evolving tumor phenotype and surmount resistance.
Collapse
Affiliation(s)
- Nadia M Penrod
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth College, HB7937 One Medical Center Dr, Lebanon NH 03766, USA
| | - Casey S Greene
- Department of Genetics, Geisel School of Medicine at Dartmouth College, HB7937 One Medical Center Dr, Lebanon NH 03766, USA ; Institute for Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth College, HB7937 One Medical Center Dr, Lebanon NH 03766, USA
| | - Jason H Moore
- Department of Genetics, Geisel School of Medicine at Dartmouth College, HB7937 One Medical Center Dr, Lebanon NH 03766, USA ; Institute for Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth College, HB7937 One Medical Center Dr, Lebanon NH 03766, USA
| |
Collapse
|
26
|
Zhang H, Chang WJ, Li XY, Zhang N, Kong JJ, Wang YF. Liver cancer stem cells are selectively enriched by low-dose cisplatin. ACTA ACUST UNITED AC 2014; 47:478-82. [PMID: 24770568 PMCID: PMC4086174 DOI: 10.1590/1414-431x20143415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 02/20/2014] [Indexed: 12/14/2022]
Abstract
Accumulating evidence has indicated the importance of cancer stem cells in
carcinogenesis. The goal of the present study was to determine the effect of low-dose
cisplatin on enriched liver cancer stem cells (LCSCs). Human hepatoblastoma HepG2
cells were treated with concentrations of cisplatin ranging from 1 to 5 μg/mL. Cell
survival and proliferation were evaluated using a tetrazolium dye (MTT) assay. LCSCs
were identified using specific markers, namely aldehyde dehydrogenase-1 (ALDH1) and
CD133. The percentage of ALDH1+ or CD133+ cells was examined by flow cytometric
analysis. The expression of ALDH1 and/or CD133 in HepG2 cells was determined by
immunocytochemical analysis. Low-dose cisplatin treatment significantly decreased
cell survival in HepG2 cells after 24 or 72 h. However, the percentage of LCSCs in
the surviving cells was greatly increased. The percentage of ALDH1+ or CD133+ cells
was increased in a time- and dose-dependent manner after treatment with 1-4 μg/mL
cisplatin, whereas 5 μg/mL cisplatin exposure slightly reduced the number of positive
cells. These findings indicate that low-dose cisplatin treatment may efficiently
enrich the LCSC population in HepG2 cells.
Collapse
Affiliation(s)
- H Zhang
- Department of Internal Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - W J Chang
- Department of Internal Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - X Y Li
- Department of Internal Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - N Zhang
- Department of Internal Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - J J Kong
- Department of Internal Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Y F Wang
- Department of Internal Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
27
|
Maher J, Adami AA. Antitumor Immunity: Easy as 1, 2, 3 with Monoclonal Bispecific Trifunctional Antibodies? Cancer Res 2013; 73:5613-7. [DOI: 10.1158/0008-5472.can-13-1852] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Abstract
Despite significant advances in surgery, radiotherapy and chemotherapy to treat prostate cancer (CaP), many patients die of secondary disease (metastases). Current therapeutic approaches are limited, and there is no cure for metastatic castration-resistant prostate cancer (CRPC). Epithelial cell adhesion molecule (EpCAM, also known as CD326) is a transmembrane glycoprotein that is highly expressed in rapidly proliferating carcinomas and plays an important role in the prevention of cell-cell adhesion, cell signalling, migration, proliferation and differentiation. Stably and highly expressed EpCAM has been found in primary CaP tissues, effusions and CaP metastases, making it an ideal candidate of tumour-associated antigen to detect metastasis of CaP cells in the circulation as well as a promising therapeutic target to control metastatic CRPC disease. In this review, we discuss the implications of the newly identified roles of EpCAM in terms of its diagnostic and metastatic relevance to CaP. We also summarize EpCAM expression in human CaP and EpCAM-mediated signalling pathways in cancer metastasis. Finally, emerging and innovative approaches to the management of the disease and expanding potential therapeutic applications of EpCAM for targeted strategies in future CaP therapy will be explored.
Collapse
|
29
|
Low glucose promotes CD133mAb-elicited cell death via inhibition of autophagy in hepatocarcinoma cells. Cancer Lett 2013; 336:204-12. [PMID: 23652197 DOI: 10.1016/j.canlet.2013.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 04/14/2013] [Accepted: 04/29/2013] [Indexed: 02/07/2023]
Abstract
CD133 on cancer stem cells is a potential therapeutic target. In this study, CD133 antibody (CD133mAb) treatment resulted in cell death in hepatoma LM3, HepG2, Hep3B and Huh-7 cells, especially under low glucose condition. The treatment also inhibited formation of spheroids, colonies, and xenograft tumors. Ectopic CD133 enabled hepatocyte L02 to be suppressed by CD133mAb and increased spheroid formation. CD133mAb caused cell death in primary HCC cells and sensitized them to Doxorubicin and Cisplatin. The antibody effect was attributed to suppressing autophagy and promoting necrotic cell death. Therefore, targeting CD133 under low glucose condition is a potential therapeutic approach for hepatocarcinomas.
Collapse
|
30
|
Ahmed N, Abubaker K, Findlay J, Quinn M. Cancerous ovarian stem cells: obscure targets for therapy but relevant to chemoresistance. J Cell Biochem 2013; 114:21-34. [PMID: 22887554 DOI: 10.1002/jcb.24317] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/31/2012] [Indexed: 12/18/2022]
Abstract
Chemotherapy with platinum and taxanes is the first line of treatment for all epithelial ovarian cancer (EOC) patients after debulking surgery. Even though the treatment is initially effective in 80% of patients, recurrent cancer is inevitable in the vast majority of cases. Emerging evidence suggests that some tumor cells can survive chemotherapy by activating the self-renewal pathways resulting in tumor progression and clinical recurrence. These defined population of cells commonly termed as "cancer stem cells" (CSC) may generate the bulk of the tumor by using differentiating pathways. These cells have been shown to be resistant to chemotherapy and, to have enhanced tumor initiating abilities, suggesting CSCs as potential targets for treatment. Recent studies have introduced a new paradigm in ovarian carcinogenesis which proposes in situ carcinoma at the fimbrial end of the fallopian tube to generate high-grade serous ovarian carcinomas, in contrast to ovarian cortical inclusion cysts (CIC) which produce borderline and low grade serous, mucinous, endometrioid, and clear cell carcinomas. This review summarizes recent advances in our understanding of the cellular origin of EOC and the molecular mechanisms defining the basis of CSC in EOC progression and chemoresistance. Using a model ovarian cancer cell line, we highlight the role of CSC in response to chemotherapy, and relate how CSCs may impact on chemoresistance and ultimately recurrence. We also propose the molecular targeting of CSCs and suggest ways that may improve the efficacy of current chemotherapeutic regimens needed for the management of this disease.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/therapy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma in Situ/metabolism
- Carcinoma in Situ/pathology
- Carcinoma in Situ/therapy
- Carcinoma, Ovarian Epithelial
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/therapy
- Fallopian Tubes/drug effects
- Fallopian Tubes/metabolism
- Fallopian Tubes/pathology
- Female
- Humans
- Molecular Targeted Therapy
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Neoplasms, Glandular and Epithelial/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Ovary/drug effects
- Ovary/metabolism
- Ovary/pathology
Collapse
Affiliation(s)
- Nuzhat Ahmed
- Women's Cancer Research Centre, Royal Women's Hospital, Melbourne, Australia.
| | | | | | | |
Collapse
|
31
|
Simon M, Stefan N, Plückthun A, Zangemeister-Wittke U. Epithelial cell adhesion molecule-targeted drug delivery for cancer therapy. Expert Opin Drug Deliv 2013; 10:451-68. [PMID: 23316711 DOI: 10.1517/17425247.2013.759938] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The epithelial cell adhesion molecule (EpCAM) is abundantly expressed in epithelial tumors, on cancer stem cells and circulating tumor cells. Together with its role in oncogenic signaling, this has sparked interest in its potential for tumor targeting with antibodies and drug conjugates for safe and effective cancer therapy. Recent advances in protein engineering, linker design and drug formulations have provided a multitude of EpCAM-targeting anticancer agents, several of them with good perspectives for clinical development. AREAS COVERED This article reviews the biological, therapeutic and technical aspects of EpCAM-targeted drug delivery for cancer therapy. The authors discuss seminal findings, which distinguish EpCAM as a target with oncogenic function and abundant expression in epithelial tumors. Moreover, recent trends in engineering improved anti-EpCAM antibodies, binding proteins that are not derived from immunoglobulins and drug conjugates derived from them are highlighted and their therapeutic potential based on reported preclinical and clinical data, originality of design and perspectives are critically assessed. EXPERT OPINION EpCAM has shown promise for safe and efficient targeting of solid tumors using antibodies, alternative binding molecules and novel drug conjugates. Among the myriad of EpCAM-targeting drug delivery systems investigated so far, several could demonstrate therapeutic benefit, other formulations engineered to become tailor-made missiles are on the brink.
Collapse
Affiliation(s)
- Manuel Simon
- University of Bern, Institute of Pharmacology, Friedbühlstrasse 49, CH-3010 Bern, Switzerland
| | | | | | | |
Collapse
|
32
|
Tsai ST, Tsou CC, Mao WY, Chang WC, Han HY, Hsu WL, Li CL, Shen CN, Chen CH. Label-free quantitative proteomics of CD133-positive liver cancer stem cells. Proteome Sci 2012; 10:69. [PMID: 23170877 PMCID: PMC3576254 DOI: 10.1186/1477-5956-10-69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/02/2012] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED BACKGROUND CD133-positive liver cancer stem cells, which are characterized by their resistance to conventional chemotherapy and their tumor initiation ability at limited dilutions, have been recognized as a critical target in liver cancer therapeutics. In the current work, we developed a label-free quantitative method to investigate the proteome of CD133-positive liver cancer stem cells for the purpose of identifying unique biomarkers that can be utilized for targeting liver cancer stem cells. Label-free quantitation was performed in combination with ID-based Elution time Alignment by Linear regression Quantitation (IDEAL-Q) and MaxQuant. RESULTS Initially, IDEAL-Q analysis revealed that 151 proteins were differentially expressed in the CD133-positive hepatoma cells when compared with CD133-negative cells. We then analyzed these 151 differentially expressed proteins by MaxQuant software and identified 10 significantly up-regulated proteins. The results were further validated by RT-PCR, western blot, flow cytometry or immunofluorescent staining which revealed that prominin-1, annexin A1, annexin A3, transgelin, creatine kinase B, vimentin, and EpCAM were indeed highly expressed in the CD133-positive hepatoma cells. CONCLUSIONS These findings confirmed that mass spectrometry-based label-free quantitative proteomics can be used to gain insights into liver cancer stem cells.
Collapse
Affiliation(s)
- Sheng-Ta Tsai
- Institute of Biochemistry & Molecular Biology, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu T, Thierry B. A solution to the PEG dilemma: efficient bioconjugation of large gold nanoparticles for biodiagnostic applications using mixed layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:15634-15642. [PMID: 23061489 DOI: 10.1021/la301390u] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Gold nanoparticles are of high interest in the biodiagnostic and bioimaging field owing to their unique optical properties such as localized surface plasmon resonance (LSPR) and high Rayleigh scattering efficiency in the visible range. Although biofunctionalization is a prerequirement prior to their integration in diagnostic procedures, aggregation-free conjugation of biomacromolecules to large gold nanoparticle is not trivial. Here, a robust and simple method based on commercially available reactants is reported for the efficient biofunctionalization of gold nanoparticles with sizes ranging from 15 to 175 nm. It is demonstrated that mixed poly(ethylene glycol) (PEG) layers, prepared using specific ratios of low- and high-molecular-weight PEG chains, can be conjugated to proteins and monoclonal antibodies using standard carbodiimide chemistry without detectable aggregation. The properties of the mixed PEG interlayer modified gold nanoparticles were investigated using UV-vis spectrometer, dynamic light scattering, and X-ray photoelectron spectroscopy, which demonstrated the importance of controlling biointerfacial properties. Using the epithelial cell adhesion molecule (EpCAM) as a model target antigen, the benefit of the mixed PEG layers over coatings prepared using high-molecular-weight PEG chains only is demonstrated in vitro using bright field microscopy and reflectance confocal microscopy. Very high binding affinity to breast cancer cells was obtained for the mixed PEG layers. This robust procedure demonstrates that, under optimal conditions, a compromise can be achieved between the excellent steric protection provided by thick PEG adlayers and the high bioconjugation yields afforded by adlayers from low-molecular-weight tethers.
Collapse
Affiliation(s)
- Tianqing Liu
- Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Adelaide, Australia
| | | |
Collapse
|
34
|
Phage displayed peptides/antibodies recognizing growth factors and their tyrosine kinase receptors as tools for anti-cancer therapeutics. Int J Mol Sci 2012; 13:5254-5277. [PMID: 22606042 PMCID: PMC3344278 DOI: 10.3390/ijms13045254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/09/2012] [Accepted: 04/20/2012] [Indexed: 12/21/2022] Open
Abstract
The basic idea of displaying peptides on a phage, introduced by George P. Smith in 1985, was greatly developed and improved by McCafferty and colleagues at the MRC Laboratory of Molecular Biology and, later, by Barbas and colleagues at the Scripps Research Institute. Their approach was dedicated to building a system for the production of antibodies, similar to a naïve B cell repertoire, in order to by-pass the standard hybridoma technology that requires animal immunization. Both groups merged the phage display technology with an antibody library to obtain a huge number of phage variants, each of them carrying a specific antibody ready to bind its target molecule, allowing, later on, rare phage (one in a million) to be isolated by affinity chromatography. Here, we will briefly review the basis of the technology and the therapeutic application of phage-derived bioactive molecules when addressed against key players in tumor development and progression: growth factors and their tyrosine kinase receptors.
Collapse
|
35
|
Guo C, Liu H, Zhang BH, Cadaneanu RM, Mayle AM, Garraway IP. Epcam, CD44, and CD49f distinguish sphere-forming human prostate basal cells from a subpopulation with predominant tubule initiation capability. PLoS One 2012; 7:e34219. [PMID: 22514625 PMCID: PMC3326009 DOI: 10.1371/journal.pone.0034219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/27/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Human prostate basal cells expressing alpha-6 integrin (CD49f(Hi)) and/or CD44 form prostaspheres in vitro. This functional trait is often correlated with stem/progenitor (S/P) activity, including the ability to self-renew and induce differentiated tubules in vivo. Antigenic profiles that distinguish tubule-initiating prostate stem cells (SCs) from progenitor cells (PCs) and mature luminal cells (LCs) with less regenerative potential are unknown. METHODOLOGY/PRINCIPLE FINDINGS Prostasphere assays and RT-PCR analysis was performed following FACS separation of total benign prostate cells based upon combinations of Epcam, CD44, and/or CD49f expression. Epithelial cell fractions were isolated, including Epcam(+)CD44(+) and Epcam+CD44+CD49f(Hi) basal cells that formed abundant spheres. When non-sphere-forming Epcam(+)CD44(-) cells were fractionated based upon CD49f expression, a distinct subpopulation (Epcam(+)CD44(-)CD49f(Hi)) was identified that possessed a basal profile similar to Epcam(+)CD44(+)CD49f(Hi) sphere-forming cells (p63(+)AR(Lo)PSA(-)). Evaluation of tubule induction capability of fractionated cells was performed, in vivo, via a fully humanized prostate tissue regeneration assay. Non-sphere-forming Epcam(+)CD44(-) cells induced significantly more prostate tubular structures than Epcam(+)CD44(+) sphere-forming cells. Further fractionation based upon CD49f co-expression identified Epcam(+)CD44(-)CD49f(Hi) (non-sphere-forming) basal cells with significantly increased tubule induction activity compared to Epcam(+)CD44(-)CD49f(Lo) (true) luminal cells. CONCLUSIONS/SIGNIFICANCE Our data delineates antigenic profiles that functionally distinguish human prostate epithelial subpopulations, including putative SCs that display superior tubule initiation capability and induce differentiated ductal/acini structures, sphere-forming PCs with relatively decreased tubule initiation activity, and terminally differentiated LCs that lack both sphere-forming and tubule-initiation activity. The results clearly demonstrate that sphere-forming ability is not predictive of tubule-initiation activity. The subpopulations identified are of interest because they may play distinct roles as cells of origin in the development of prostatic diseases, including cancer.
Collapse
Affiliation(s)
- Changyong Guo
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Haibo Liu
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Bao-Hui Zhang
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Radu M. Cadaneanu
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Aqila M. Mayle
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, California, United States of America
| | - Isla P. Garraway
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
36
|
Ortenberg R, Sapir Y, Raz L, Hershkovitz L, Ben Arav A, Sapoznik S, Barshack I, Avivi C, Berkun Y, Besser MJ, Ben-Moshe T, Schachter J, Markel G. Novel immunotherapy for malignant melanoma with a monoclonal antibody that blocks CEACAM1 homophilic interactions. Mol Cancer Ther 2012; 11:1300-10. [PMID: 22466331 DOI: 10.1158/1535-7163.mct-11-0526] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CEACAM1 (biliary glycoprotein-1, CD66a) was reported as a strong clinical predictor of poor prognosis in melanoma. We have previously identified CEACAM1 as a tumor escape mechanism from cytotoxic lymphocytes. Here, we present substantial evidence in vitro and in vivo that blocking of CEACAM1 function with a novel monoclonal antibody (MRG1) is a promising strategy for cancer immunotherapy. MRG1, a murine IgG1 monoclonal antibody, was raised against human CEACAM1. It recognizes the CEACAM1-specific N-domain with high affinity (K(D) ~ 2 nmol/L). Furthermore, MRG1 is a potent inhibitor of CEACAM1 homophilic binding and does not induce any agonistic effect. We show using cytotoxicity assays that MRG1 renders multiple melanoma cell lines more vulnerable to T cells in a dose-dependent manner, only following antigen-restricted recognition. Accordingly, MRG1 significantly enhances the antitumor effect of adoptively transferred, melanoma-reactive human lymphocytes using human melanoma xenograft models in severe combined immunodeficient/nonobese diabetic (SCID/NOD) mice. A significant antibody-dependent cell cytotoxicity response was excluded. It is shown that MRG1 reaches the tumor and is cleared within a week. Importantly, approximately 90% of melanoma specimens are CEACAM1(+), implying that the majority of patients with melanoma could be amenable to MRG1-based therapy. Normal human tissue microarray displays limited binding to luminal epithelial cells on some secretory ducts, which was weaker than the broad normal cell binding of other anticancer antibodies in clinical use. Importantly, MRG1 does not directly affect CEACAM1(+) cells. CEACAM1 blockade is different from other immunomodulatory approaches, as MRG1 targets inhibitory interactions between tumor cells and late effector lymphocytes, which is thus a more specific and compartmentalized immune stimulation with potentially superior safety profile.
Collapse
Affiliation(s)
- Rona Ortenberg
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Oishi N, Wang XW. Novel therapeutic strategies for targeting liver cancer stem cells. Int J Biol Sci 2011; 7:517-35. [PMID: 21552419 PMCID: PMC3088875 DOI: 10.7150/ijbs.7.517] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/14/2011] [Indexed: 12/15/2022] Open
Abstract
The cancer stem cell (CSC) hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment. Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). It is believed that hepatic progenitor cells (HPCs) could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC. Here we provide a brief review of molecular signaling in liver CSCs and present insights into new therapeutic strategies for targeting liver CSCs.
Collapse
Affiliation(s)
- Naoki Oishi
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4258, USA
| | | |
Collapse
|
38
|
Ströhlein MA, Heiss MM. The trifunctional antibody catumaxomab in treatment of malignant ascites and peritoneal carcinomatosis. Future Oncol 2011; 6:1387-94. [PMID: 20919824 DOI: 10.2217/fon.10.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Peritoneal carcinomatosis remains an unsolved medical problem in modern oncologic treatment. Excruciating symptoms such as malignant ascites, ileus, nausea, vomiting, dyspnoea and pain deteriorate the quality of life for affected patients. There is still no effective standard treatment for peritoneal carcinomatosis. The trifunctional antibody catumaxomab (antiepithelial cell adhesion molecule x anti-CD3) is able to direct T lymphocytes and Fcg-receptor-positive accessory cells to epithelial cell adhesion molecule-positive tumor cells. Intraperitoneal catumaxomab therapy was shown to be the first effective therapy against accumulation of malignant ascites in patients with peritoneal carcinomatosis of epithelial cancer, reducing the need of paracentesis and prolonging puncture-free survival. This paper reviews the mode of action of catumaxomab and analyzes different fields of local immunotherapy in patients with peritoneal carcinomatosis. A summary of completed and ongoing studies is included. Catumaxomab is discussed to be an outstanding option for local control and therapy of peritoneal carcinomatosis, which could be an optimal modular therapy in addition to systemic chemotherapy and surgical tumor resection.
Collapse
Affiliation(s)
- Michael A Ströhlein
- Department of Abdominal, Vascular & Transplant Surgery, Cologne-Merheim Medical Center, University of Witten/Herdecke, Ostmerheimer Strasse 200, Cologne, Germany.
| | | |
Collapse
|
39
|
Khan MS, Tsigani T, Rashid M, Rabouhans JS, Yu D, Luong TV, Caplin M, Meyer T. Circulating tumor cells and EpCAM expression in neuroendocrine tumors. Clin Cancer Res 2011; 17:337-45. [PMID: 21224371 DOI: 10.1158/1078-0432.ccr-10-1776] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Neuroendocrine tumors (NET) are heterogeneous tumors with widely variable survival. It is unknown whether they express EpCAM (epithelial cell adhesion molecule) and thus whether NET circulating tumor cells (CTC) are detectable. We systematically investigated EpCAM expression and CTC detection in patients with metastatic NETs and evaluated the potential of CTCs to predict radiological progression. EXPERIMENTAL DESIGN EpCAM protein expression was evaluated in 74 samples of formalin-fixed, paraffin-embedded NET tissue by immunohistochemistry. Seventy-nine patients with metastatic NETs (42 midgut, 5 unknown primary, 19 pancreatic, 13 bronchopulmonary) had blood samples drawn for CTC isolation and enumeration utilizing the CellSearch platform. Patients were classified as having progressive or nonprogressive disease on the basis of serial imaging. RESULTS Strong homogeneous, membranous EpCAM expression was observed in all ileal (n = 26) and pancreatic NETs (n = 16), whereas variable EpCAM expression was observed in bronchopulmonary NETs (n = 13). Forty-three percent of midgut and 21% of pancreatic NETs had CTCs detected with a range of 0-62 and 0-11, respectively. The absence of CTCs was strongly associated with stable disease (P < 0.001). There was a moderate correlation between CTC levels and urinary 5-hydroxyindole acetic acid (r = 0.5, P = 0.007) and between CTC levels and burden of liver metastases (B = 8.91, P < 0.001). There was no or low correlation between CTC levels and Ki-67 (r = 0.08, P = 0.59) and serum chromogranin A (r = 0.246, P = 0.03). CONCLUSIONS This is the first systematic analysis showing EpCAM expression and CTC detection in NETs. CTCs seem to be associated with progressive disease and may provide useful prognostic information given the variable survival rates in these tumors.
Collapse
Affiliation(s)
- Mohid S Khan
- Neuroendocrine Tumour Unit, Centre for Gastroenterology, Royal Free Hospital, UCL Cancer Institute, University College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ralhan R, He HCH, So AKC, Tripathi SC, Kumar M, Hasan MR, Kaur J, Kashat L, MacMillan C, Chauhan SS, Freeman JL, Walfish PG. Nuclear and cytoplasmic accumulation of Ep-ICD is frequently detected in human epithelial cancers. PLoS One 2010; 5:e14130. [PMID: 21152431 PMCID: PMC2994724 DOI: 10.1371/journal.pone.0014130] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 10/24/2010] [Indexed: 12/30/2022] Open
Abstract
Background We previously demonstrated that nuclear and cytoplasmic accumulation of the intracellular domain (Ep-ICD) of epithelial cell adhesion molecule (EpCAM) accompanied by a reciprocal reduction of its extracellular domain (EpEx), occurs in aggressive thyroid cancers. This study was designed to determine whether similar accumulation of Ep-ICD is a common event in other epithelial cancers. Methodology and Results Ten epithelial cancers were immunohistochemically analyzed using Ep-ICD and EpEx domain-specific antibodies. The subcellular localization of EpEx and Ep-ICD in the human colon adenocarcinoma cell line CX-1 was observed using immunofluorescence. Nuclear and cytoplasmic Ep-ICD expression was increased in cancers of the breast (31 of 38 tissues, 82%), prostate (40 of 49 tissues, 82%), head and neck (37 of 57 tissues, 65%) and esophagus (17 of 46 tissues, 37%) compared to their corresponding normal tissues that showed membrane localization of the protein. Importantly, Ep-ICD was not detected in the nuclei of epithelial cells in most normal tissues. High nuclear and cytoplasmic Ep-ICD accumulation also occurred in the other six epithelial cancer types analyzed - lung, colon, liver, bladder, pancreatic, and ovarian. A concomitant reduction in membrane EpEx expression was observed in a subset of all cancer types. Receiver operating characteristic curve analysis revealed nuclear Ep-ICD distinguished breast cancers with 82% sensitivity and 100% specificity and prostate cancers with 82% sensitivity and 78% specificity. Similar findings were observed for cytoplasmic accumulation of Ep-ICD in these cancers. We provide clinical evidence of increased nuclear and cytoplasmic Ep-ICD accumulation and a reduction in membranous EpEx in these cancers. Conclusions Increased nuclear and cytoplasmic Ep-ICD was observed in all epithelial cancers analyzed and distinguished them from normal tissues with high-sensitivity, specificity, and AUC. Development of a robust high throughput assay for Ep-ICD will facilitate the determination of its diagnostic, prognostic and therapeutic relevance in epithelial cancers.
Collapse
Affiliation(s)
- Ranju Ralhan
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology-Head and Neck Surgery Program, Mount Sinai Hospital, Toronto, Ontario, Canada
- Alex and Simona Shnaider Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (PGW); (RR)
| | - Helen C.-H. He
- Alex and Simona Shnaider Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Anthony K.-C. So
- Alex and Simona Shnaider Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Satyendra C. Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Md. Raghibul Hasan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Jatinder Kaur
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Lawrence Kashat
- Alex and Simona Shnaider Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Christina MacMillan
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Shyam Singh Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Jeremy L. Freeman
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology-Head and Neck Surgery Program, Mount Sinai Hospital, Toronto, Ontario, Canada
- Endocrine Division, Department of Medicine, Mount Sinai Hospital and University of Toronto Medical School, Toronto, Ontario, Canada
| | - Paul G. Walfish
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology-Head and Neck Surgery Program, Mount Sinai Hospital, Toronto, Ontario, Canada
- Alex and Simona Shnaider Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
- Endocrine Division, Department of Medicine, Mount Sinai Hospital and University of Toronto Medical School, Toronto, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (PGW); (RR)
| |
Collapse
|