1
|
Froyen EB, Barrantes GP. A Review of the Effects of Flavonoids on NAD(P)H Quinone Oxidoreductase 1 Expression and Activity. J Med Food 2025; 28:407-422. [PMID: 40097203 DOI: 10.1089/jmf.2023.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Cancer is a significant cause of death worldwide. It has been suggested that the consumption of flavonoids decreases the risk for cancer by increasing phase II enzymes, such as Nicotinamide Adenine Dinucleotide Phosphate Hydrogen (NAD(P)H) quinone oxidoreductase 1 (NQO1), glutathione S-transferases, and Uridine 5'-diphospho- (UDP)-glucuronosyltransferases that assist in removing carcinogens from the human body. Flavonoids are bioactive compounds found in a variety of dietary sources, including fruits, vegetables, legumes, nuts, and teas. As such, it is important to investigate which flavonoids are involved in the metabolism of carcinogens to help reduce the risk of cancer. Therefore, the objective of this narrative review was to investigate the effects of commonly consumed flavonoids on NQO1 mRNA expression, protein, and activity in human cell and murine models. PubMed was used to search for peer-reviewed journal articles, which demonstrated that selected flavonoids (e.g., quercetin, apigenin, luteolin, genistein, and daidzein) increase NQO1, and therefore, increase the excretion of carcinogens. However, more research is needed regarding the mechanisms by which flavonoids induce NQO1. Furthermore, it is suggested that future efforts focus on providing precise flavonoid recommendations to decrease the risk factors for chronic diseases.
Collapse
Affiliation(s)
- Erik B Froyen
- Department of Nutrition and Food Science, Huntley College of Agriculture, California State Polytechnic University, Pomona, California, USA
| | - Gianluis Pimentel Barrantes
- Department of Nutrition and Food Science, Huntley College of Agriculture, California State Polytechnic University, Pomona, California, USA
| |
Collapse
|
2
|
Ren P, Lei W, Zhao C, Duan Z. HO-1-induced autophagy establishes a HO-1-p62-Nrf2 positive feedback loop to reduce gut permeability in cholestatic liver disease. Scand J Gastroenterol 2024; 59:906-917. [PMID: 38745449 DOI: 10.1080/00365521.2024.2353108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVES The gut-liver axis disruption is a unified pathogenetic principle of cholestatic liver disease (CSLD). Increased gut permeability is the leading cause of gut-liver axis disruption. HO-1 is capable of protecting against gut-liver axis injury. However, it has rarely been reported whether autophagy is involved in HO-1 protecting gut-liver barrier integrity and the underlying mechanism. MATERIALS AND METHODS Mice underwent bile duct ligation (BDL) was established as CSLD model in vivo. Caco-2 cells with LPS treatment was established as in vitro cell model. Immunofluorescence, western blot and transepithelial electrical resistance (TER) assay were used to observe epithelial tight junction (TJ) and autophagy. Liver injury and fibrosis were evaluated as well through H&E staining, masson staining, sirius red staining and ELISA. RESULTS AND CONCLUSIONS Our study demonstrated that the epithelial TJ and TER were notably reduced both in BDL mice and in LPS treated intestinal epithelial cells. Increased HO-1 expression could significantly induce intestinal epithelial cell autophagy. Additionally, this increased autophagy level reversed the reduction effects of BDL or LPS on epithelial TJ and TER in vivo and in vitro, therefore decreased transaminase level in serum and relieved liver fibrosis in BDL mice. Besides, increased autophagy level in turn upregulated the expression of HO-1 by p62 degradation of Keap1 and subsequent activation of Nrf2 pathway. Collectively, these results indicate that HO-1 reduces gut permeability by enhancing autophagy level in CSLD, the increased autophagy establishes a HO-1-p62-Nrf2 positive feedback loop to further improve gut-liver axis disruption. Therefore, our study confirms the critical role of autophagy in HO-1 ameliorating gut-liver axis injury during CSLD, highlighting HO-1 as a promising therapeutic target.
Collapse
Affiliation(s)
- Pingping Ren
- Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Second Department of Gastroenterology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Lei
- Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Changcheng Zhao
- Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhijun Duan
- Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Xu F, Ziebarth JD, Goeminne LJ, Gao J, Williams EG, Quarles LD, Makowski L, Cui Y, Williams RW, Auwerx J, Lu L. Gene network based analysis identifies a coexpression module involved in regulating plasma lipids with high-fat diet response. J Nutr Biochem 2023; 119:109398. [PMID: 37302664 PMCID: PMC10896179 DOI: 10.1016/j.jnutbio.2023.109398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Plasma lipids are modulated by gene variants and many environmental factors, including diet-associated weight gain. However, understanding how these factors jointly interact to influence molecular networks that regulate plasma lipid levels is limited. Here, we took advantage of the BXD recombinant inbred family of mice to query weight gain as an environmental stressor on plasma lipids. Coexpression networks were examined in both nonobese and obese livers, and a network was identified that specifically responded to the obesogenic diet. This obesity-associated module was significantly associated with plasma lipid levels and enriched with genes known to have functions related to inflammation and lipid homeostasis. We identified key drivers of the module, including Cidec, Cidea, Pparg, Cd36, and Apoa4. The Pparg emerged as a potential master regulator of the module as it can directly target 19 of the top 30 hub genes. Importantly, activation of this module is causally linked to lipid metabolism in humans, as illustrated by correlation analysis and inverse-variance weighed Mendelian randomization. Our findings provide novel insights into gene-by-environment interactions for plasma lipid metabolism that may ultimately contribute to new biomarkers, better diagnostics, and improved approaches to prevent or treat dyslipidemia in patients.
Collapse
Affiliation(s)
- Fuyi Xu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China; Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jesse D Ziebarth
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ludger Je Goeminne
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, Lausanne, Switzerland
| | - Jun Gao
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Leigh D Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Liza Makowski
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA; Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yan Cui
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Robert W Williams
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA; Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, Lausanne, Switzerland.
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
4
|
Liatsos GD. SARS-CoV-2 induced liver injury: Incidence, risk factors, impact on COVID-19 severity and prognosis in different population groups. World J Gastroenterol 2023; 29:2397-2432. [PMID: 37179584 PMCID: PMC10167898 DOI: 10.3748/wjg.v29.i16.2397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/17/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Liver is unlikely the key organ driving mortality in coronavirus disease 2019 (COVID-19) however, liver function tests (LFTs) abnormalities are widely observed mostly in moderate and severe cases. According to this review, the overall prevalence of abnormal LFTs in COVID-19 patients ranges from 2.5% to 96.8% worldwide. The geographical variability in the prevalence of underlying diseases is the determinant for the observed discrepancies between East and West. Multifactorial mechanisms are implicated in COVID-19-induced liver injury. Among them, hypercytokinemia with "bystander hepatitis", cytokine storm syndrome with subsequent oxidative stress and endotheliopathy, hypercoagulable state and immuno-thromboinflammation are the most determinant mechanisms leading to tissue injury. Liver hypoxia may also contribute under specific conditions, while direct hepatocyte injury is an emerging mechanism. Except for initially observed severe acute respiratory distress syndrome corona virus-2 (SARS-CoV-2) tropism for cholangiocytes, more recent cumulative data show SARS-CoV-2 virions within hepatocytes and sinusoidal endothelial cells using electron microscopy (EM). The best evidence for hepatocellular invasion by the virus is the identification of replicating SARS-CoV-2 RNA, S protein RNA and viral nucleocapsid protein within hepatocytes using in-situ hybridization and immunostaining with observed intrahepatic presence of SARS-CoV-2 by EM and by in-situ hybridization. New data mostly derived from imaging findings indicate possible long-term sequelae for the liver months after recovery, suggesting a post-COVID-19 persistent live injury.
Collapse
Affiliation(s)
- George D Liatsos
- Department of Internal Medicine, Hippokration General Hospital, Athens 11527, Attiki, Greece
| |
Collapse
|
5
|
Shearn CT, Anderson AL, Miller CG, Noyd RC, Devereaux MW, Balasubramaniyan N, Orlicky DJ, Schmidt EE, Sokol RJ. Thioredoxin reductase 1 regulates hepatic inflammation and macrophage activation during acute cholestatic liver injury. Hepatol Commun 2023; 7:e0020. [PMID: 36633484 PMCID: PMC9833450 DOI: 10.1097/hc9.0000000000000020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/27/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND AIMS Cholestatic liver diseases, including primary sclerosing cholangitis, are characterized by periportal inflammation with progression to hepatic fibrosis and ultimately cirrhosis. We recently reported that the thioredoxin antioxidant response is dysregulated during primary sclerosing cholangitis. The objective of this study was to examine the impact of genetic and pharmacological targeting of thioredoxin reductase 1 (TrxR1) on hepatic inflammation and liver injury during acute cholestatic injury. APPROACH AND RESULTS Primary mouse hepatocytes and intrahepatic macrophages were isolated from 3-day bile duct ligated (BDL) mice and controls. Using wildtype and mice with a liver-specific deletion of TrxR1 (TrxR1LKO), we analyzed the effect of inhibition or ablation of TrxR1 signaling on liver injury and inflammation. Immunohistochemical analysis of livers from BDL mice and human cholestatic patients revealed increased TrxR1 staining in periportal macrophages and hepatocytes surrounding fibrosis. qPCR analysis of primary hepatocytes and intrahepatic macrophages revealed increased TrxR1 mRNA expression following BDL. Compared with sham controls, BDL mice exhibited increased inflammation, necrosis, and increased mRNA expression of pro-inflammatory cytokines, fibrogenesis, the NLRP3 inflammatory complex, and increased activation of NFkB, all of which were ameliorated in TrxR1LKO mice. Importantly, following BDL, TrxR1LKO induced periportal hepatocyte expression of Nrf2-dependent antioxidant proteins and increased mRNA expression of basolateral bile acid transporters with reduced expression of bile acid synthesis genes. In the acute BDL model, the TrxR1 inhibitor auranofin (10 mg/kg/1 d preincubation, 3 d BDL) ameliorated BDL-dependent increases in Nlrp3, GsdmD, Il1β, and TNFα mRNA expression despite increasing serum alanine aminotransferase, aspartate aminotransferase, bile acids, and bilirubin. CONCLUSIONS These data implicate TrxR1-signaling as an important regulator of inflammation and bile acid homeostasis in cholestatic liver injury.
Collapse
Affiliation(s)
- Colin T. Shearn
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
- Digestive Health Institute, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Aimee L. Anderson
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Colin G. Miller
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Reed C. Noyd
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Michael W. Devereaux
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nata Balasubramaniyan
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
- Digestive Health Institute, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Edward E. Schmidt
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
- Laboratory of Redox Biology, Departments of Pharmacology and Physiology, University of Veterinary Medicine Budapest, Hungary
| | - Ronald J. Sokol
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Aurora, Colorado, USA
- Digestive Health Institute, Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
6
|
Shearn CT, Anderson AL, Devereux MW, Orlicky DJ, Michel C, Petersen DR, Miller CG, Harpavat S, Schmidt EE, Sokol RJ. The autophagic protein p62 is a target of reactive aldehydes in human and murine cholestatic liver disease. PLoS One 2022; 17:e0276879. [PMID: 36378690 PMCID: PMC9665405 DOI: 10.1371/journal.pone.0276879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory cholestatic liver diseases, including Primary Sclerosing Cholangitis (PSC), are characterized by periportal inflammation with progression to cirrhosis. The objective of this study was to examine interactions between oxidative stress and autophagy in cholestasis. Using hepatic tissue from male acute cholestatic (bile duct ligated) as well as chronic cholestatic (Mdr2KO) mice, localization of oxidative stress, the antioxidant response and induction of autophagy were analyzed and compared to human PSC liver. Concurrently, the ability of reactive aldehydes to post-translationally modify the autophagosome marker p62 was assessed in PSC liver tissue and in cell culture. Expression of autophagy markers was upregulated in human and mouse cholestatic liver. Whereas mRNA expression of Atg12, Lamp1, Sqstm1 and Map1lc3 was increased in acute cholestasis in mice, it was either suppressed or not significantly changed in chronic cholestasis. In human and murine cholestasis, periportal hepatocytes showed increased IHC staining of ubiquitin, 4-HNE, p62, and selected antioxidant proteins. Increased p62 staining colocalized with accumulation of 4-HNE-modified proteins in periportal parenchymal cells as well as with periportal macrophages in both human and mouse liver. Mechanistically, p62 was identified as a direct target of lipid aldehyde adduction in PSC hepatic tissue and in vitro cell culture. In vitro LS-MS/MS analysis of 4-HNE treated recombinant p62 identified carbonylation of His123, Cys128, His174, His181, Lys238, Cys290, His340, Lys341 and His385. These data indicate that dysregulation of autophagy and oxidative stress/protein damage are present in the same periportal hepatocyte compartment of both human and murine cholestasis. Thus, our results suggest that both increased expression as well as ineffective autophagic degradation of oxidatively-modified proteins contributes to injury in periportal parenchymal cells and that direct modification of p62 by reactive aldehydes may contribute to autophagic dysfunction.
Collapse
Affiliation(s)
- Colin T. Shearn
- Department of Pediatrics, Pediatric Liver Center, Section of Pediatric Gastroenterology, Hepatology and Nutrition, and Children’s Hospital Colorado, Aurora, CO, United States of America
| | - Aimee L. Anderson
- Department of Pediatrics, Pediatric Liver Center, Section of Pediatric Gastroenterology, Hepatology and Nutrition, and Children’s Hospital Colorado, Aurora, CO, United States of America
| | - Michael W. Devereux
- Department of Pediatrics, Pediatric Liver Center, Section of Pediatric Gastroenterology, Hepatology and Nutrition, and Children’s Hospital Colorado, Aurora, CO, United States of America
| | - David J. Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Cole Michel
- Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Dennis R. Petersen
- Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Colin G. Miller
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - Sanjiv Harpavat
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, United States of America
| | - Edward E. Schmidt
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, United States of America
- Laboratory of Redox Biology, Departments of Pharmacology and Physiology, Hungarian Veterinary Medical University, Budapest, Hungary
| | - Ronald J. Sokol
- Department of Pediatrics, Pediatric Liver Center, Section of Pediatric Gastroenterology, Hepatology and Nutrition, and Children’s Hospital Colorado, Aurora, CO, United States of America
| |
Collapse
|
7
|
Wang GY, Garcia V, Lee J, Yanum J, Lin J, Jiang H, Dai G. Nrf2 deficiency causes hepatocyte dedifferentiation and reduced albumin production in an experimental extrahepatic cholestasis model. PLoS One 2022; 17:e0269383. [PMID: 35696363 PMCID: PMC9191739 DOI: 10.1371/journal.pone.0269383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Nrf2 modulates the initiation and progression of a number of diseases including liver disorders. We evaluated whether Nrf2 mediates hepatic adaptive responses to cholestasis. Wild-type and Nrf2-null mice were subjected to bile duct ligation (BDL) or a sham operation. As cholestasis progressed to day 15 post-BDL, hepatocytes in the wild-type mice exhibited a tendency to dedifferentiate, indicated by the very weak expression of hepatic progenitor markers: CD133 and tumor necrosis factor-like weak induced apoptosis receptor (Fn14). During the same period, Nrf2 deficiency augmented this tendency, manifested by higher CD133 expression, earlier, stronger, and continuous induction of Fn14 expression, and markedly reduced albumin production. Remarkably, as cholestasis advanced to the late stage (40 days after BDL), hepatocytes in the wild-type mice exhibited a Fn14+ phenotype and strikingly upregulated the expression of deleted in malignant brain tumor 1 (DMBT1), a protein essential for epithelial differentiation during development. In contrast, at this stage, hepatocytes in the Nrf2-null mice entirely inhibited the upregulation of DMBT1 expression, displayed a strong CD133+/Fn14+ phenotype indicative of severe dedifferentiation, and persistently reduced albumin production. We revealed that Nrf2 maintains hepatocytes in the differentiated state potentially via the increased activity of the Nrf2/DMBT1 pathway during cholestasis.
Collapse
Affiliation(s)
- Guo-Ying Wang
- Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States of America
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yet-Sen University, Guangdong, China
| | - Veronica Garcia
- Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States of America
| | - Joonyong Lee
- Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States of America
| | - Jennifer Yanum
- Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States of America
| | - Jingmei Lin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Huaizhou Jiang
- Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States of America
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Anhui, China
| | - Guoli Dai
- Department of Biology, Center for Developmental and Regenerative Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States of America
| |
Collapse
|
8
|
Bona S, Fernandes SA, Moreira ACJ, Rodrigues G, Schemitt EG, Di Naso FC, Marroni CA, Marroni NP. Melatonin restores zinc levels, activates the Keap1/Nrf2 pathway, and modulates endoplasmic reticular stress and HSP in rats with chronic hepatotoxicity. World J Gastrointest Pharmacol Ther 2022; 13:11-22. [PMID: 35433098 PMCID: PMC8968507 DOI: 10.4292/wjgpt.v13.i2.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/18/2021] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Melatonin (MLT) is a potent antioxidant molecule that is shown to have a beneficial effect in various pathological situations, due to its action against free radicals. AIM To evaluate the effect of MLT on carbon tetrachloride (CCl4) induced liver injury in rats in terms of oxidative stress, reticular stress, and cell damage. METHODS Twenty male Wistar rats (230-250 g) were divided into four groups: Control rats, rats treated with MLT alone, rats treated with CCl4 alone, and rats treated with CCl4 plus MLT. CCl4 was administered as follows: Ten doses every 5 d, ten every 4 d, and seven every 3 d. MLT was administered intraperitoneally at a dose of 20 mg/kg from the 10th wk to the end of the experiment (16th wk). RESULTS MLT was able to reduce the release of liver enzymes in the bloodstream and to decrease oxidative stress in CCl4 treated rats by decreasing the level of thiobarbituric acid reactive substances and increasing superoxide dismutase activity, with a lower reduction in serum zinc levels, guaranteeing a reduction in liver damage; additionally, it increased the expression of nuclear factor (erythroid-derived 2)-like 2 and decreased the expression of Kelch-like ECH-associated protein 1. MLT also decreased the expression of the proteins associated with endoplasmic reticulum stress, i.e., glucose-regulated protein 78 and activating transcription factor 6, as well as of heat shock factor 1 and heat shock protein 70. CONCLUSION MLT has a hepatoprotective effect in an experimental model of CCl4-induced liver injury, since it reduces oxidative stress, restores zinc levels, and modulates endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Silvia Bona
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Sabrina Alves Fernandes
- Posgraduate Program in Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90040-001, Rio Grande do Sul, Brazil
| | - Andrea C Janz Moreira
- Biological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Graziella Rodrigues
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Elizângela G Schemitt
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Fabio Cangeri Di Naso
- Postgraduate Program in Pneumological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90000-000, Rio Grande do Sul, Brazil
| | - Cláudio A Marroni
- Posgraduate Program in Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90040-001, Rio Grande do Sul, Brazil
| | - Norma P Marroni
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
He L, Guo C, Peng C, Li Y. Advances of natural activators for Nrf2 signaling pathway on cholestatic liver injury protection: a review. Eur J Pharmacol 2021; 910:174447. [PMID: 34461126 DOI: 10.1016/j.ejphar.2021.174447] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Cholestasis is a common manifestation of obstruction of bile flow in various liver diseases. If the bile acid accumulation is not treated in time, it will further lead to hepatocyte damage, liver fibrosis and ultimately to cirrhosis, which seriously affects human life. The pathogenesis of cholestatic liver injury is very complicated, mainly including oxidative stress and inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor responsible for upregulating expression of various genes with cytoprotective functions. Nrf2 activation has been proved to inhibit oxidative stress and inflammatory reaction, modulate bile acid homeostasis, and alleviate fibrosis during cholestasis. Therefore, Nrf2 emerges as a potential therapeutic target for cholestatic liver injury. In recent years, natural products with various biological activities including anti-inflammatory, anti-oxidant, anti-tumor and anti-fibrotic effects have received growing attention for being hepatoprotective agents. Natural products like asiatic acid, diosmin, rutin, and so forth have shown significant potential in activating Nrf2 pathway which can lead to attenuate cholestatic liver injury. Therefore, this paper emphasizes the effect of Nrf2 signaling pathway on alleviating cholestasis, and summarizes recent evidence about natural Nrf2 activators with hepatoprotective effect in various models of cholestatic liver injury, thus providing theoretical reference for the development of anti-cholestatic drug.
Collapse
Affiliation(s)
- Linfeng He
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China
| | - Chaocheng Guo
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China
| | - Cheng Peng
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China
| | - Yunxia Li
- National Key Laboratory of Southwest Characteristic Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.
| |
Collapse
|
10
|
Jiang H, Garcia V, Yanum JA, Lee J, Dai G. Circadian clock core component Bmal1 dictates cell cycle rhythm of proliferating hepatocytes during liver regeneration. Am J Physiol Gastrointest Liver Physiol 2021; 321:G389-G399. [PMID: 34431407 PMCID: PMC8560370 DOI: 10.1152/ajpgi.00204.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023]
Abstract
After partial hepatectomy (PH), the majority of remnant hepatocytes synchronously enter and rhythmically progress through the cell cycle for three major rounds to regain lost liver mass. Whether and how the circadian clock core component Bmal1 modulates this process remains elusive. We performed PH on Bmal1+/+ and hepatocyte-specific Bmal1 knockout (Bmal1hep-/-) mice and compared the initiation and progression of the hepatocyte cell cycle. After PH, Bmal1+/+ hepatocytes exhibited three major waves of nuclear DNA synthesis. In contrast, in Bmal1hep-/- hepatocytes, the first wave of nuclear DNA synthesis was delayed by 12 h, and the third such wave was lost. Following PH, Bmal1+/+ hepatocytes underwent three major waves of mitosis, whereas Bmal1hep-/- hepatocytes fully abolished mitotic oscillation. These Bmal1-dependent disruptions in the rhythmicity of hepatocyte cell cycle after PH were accompanied by suppressed expression peaks of a group of cell cycle components and regulators and dysregulated activation patterns of mitogenic signaling molecules c-Met and epidermal growth factor receptor. Moreover, Bmal1+/+ hepatocytes rhythmically accumulated fat as they expanded following PH, whereas this phenomenon was largely inhibited in Bmal1hep-/- hepatocytes. In addition, during late stages of liver regrowth, Bmal1 absence in hepatocytes caused the activation of redox sensor Nrf2, suggesting an oxidative stress state in regenerated liver tissue. Collectively, we demonstrated that during liver regeneration, Bmal1 partially modulates the oscillation of S-phase progression, fully controls the rhythmicity of M-phase advancement, and largely governs fluctuations in fat metabolism in replicating hepatocytes, as well as eventually determines the redox state of regenerated livers.NEW & NOTEWORTHY We demonstrated that Bmal1 centrally controls the synchronicity and rhythmicity of the cell cycle and lipid accumulation in replicating hepatocytes during liver regeneration. Bmal1 plays these roles, at least in part, by ensuring formation of the expression peaks of cell cycle components and regulators, as well as the timing and levels of activation of mitogenic signaling molecules.
Collapse
Affiliation(s)
- Huaizhou Jiang
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Veronica Garcia
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Jennifer Abla Yanum
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Joonyong Lee
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
11
|
Zhu DD, Tan XM, Lu LQ, Yu SJ, Jian RL, Liang XF, Liao YX, Fan W, Barbier-Torres L, Yang A, Yang HP, Liu T. Interplay between nuclear factor erythroid 2-related factor 2 and inflammatory mediators in COVID-19-related liver injury. World J Gastroenterol 2021; 27:2944-2962. [PMID: 34168400 PMCID: PMC8192291 DOI: 10.3748/wjg.v27.i22.2944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/06/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 is a global pandemic and poses a major threat to human health worldwide. In addition to respiratory symptoms, COVID-19 is usually accompanied by systemic inflammation and liver damage in moderate and severe cases. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the expression of antioxidant proteins, participating in COVID-19-mediated inflammation and liver injury. Here, we show the novel reciprocal regulation between NRF2 and inflammatory mediators associated with COVID-19-related liver injury. Additionally, we describe some mechanisms and treatment strategies.
Collapse
Affiliation(s)
- Dan-Dan Zhu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xue-Mei Tan
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Li-Qing Lu
- Key Laboratory of Cancer proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Si-Jia Yu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Ru-Li Jian
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xin-Fang Liang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yi-Xuan Liao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Wei Fan
- Department of Medicine, Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Lucíia Barbier-Torres
- Department of Medicine, Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Austin Yang
- Department of Biology, East Los Angeles College, Los Angeles, CA 91008, United States
| | - He-Ping Yang
- Department of Medicine, Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
12
|
Galicia-Moreno M, Lucano-Landeros S, Monroy-Ramirez HC, Silva-Gomez J, Gutierrez-Cuevas J, Santos A, Armendariz-Borunda J. Roles of Nrf2 in Liver Diseases: Molecular, Pharmacological, and Epigenetic Aspects. Antioxidants (Basel) 2020; 9:980. [PMID: 33066023 PMCID: PMC7601324 DOI: 10.3390/antiox9100980] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Liver diseases represent a critical health problem with 2 million deaths worldwide per year, mainly due to cirrhosis and its complications. Oxidative stress plays an important role in the development of liver diseases. In order to maintain an adequate homeostasis, there must be a balance between free radicals and antioxidant mediators. Nuclear factor erythroid 2-related factor (Nrf2) and its negative regulator Kelch-like ECH-associated protein 1 (Keap1) comprise a defense mechanism against oxidative stress damage, and growing evidence considers this signaling pathway as a key pharmacological target for the treatment of liver diseases. In this review, we provide detailed and updated evidence regarding Nrf2 and its involvement in the development of the main liver diseases such as alcoholic liver damage, viral hepatitis, steatosis, steatohepatitis, cholestatic damage, and liver cancer. The molecular and cellular mechanisms of Nrf2 cellular signaling are elaborated, along with key and relevant antioxidant drugs, and mechanisms on how Keap1/Nrf2 modulation can positively affect the therapeutic response are described. Finally, exciting recent findings about epigenetic modifications and their link with regulation of Keap1/Nrf2 signaling are outlined.
Collapse
Affiliation(s)
- Marina Galicia-Moreno
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
| | - Silvia Lucano-Landeros
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
| | - Hugo Christian Monroy-Ramirez
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
| | - Jorge Silva-Gomez
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
| | - Jorge Gutierrez-Cuevas
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45201, Jalisco, Mexico;
| | - Juan Armendariz-Borunda
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45201, Jalisco, Mexico;
| |
Collapse
|
13
|
Shearn CT, Fennimore B, Orlicky DJ, Gao YR, Saba LM, Battista KD, Aivazidis S, Assiri M, Harris PS, Michel C, Merrill GF, Schmidt EE, Colgan SP, Petersen DR. Cholestatic liver disease results increased production of reactive aldehydes and an atypical periportal hepatic antioxidant response. Free Radic Biol Med 2019; 143:101-114. [PMID: 31377417 PMCID: PMC6848778 DOI: 10.1016/j.freeradbiomed.2019.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/30/2019] [Accepted: 07/31/2019] [Indexed: 01/22/2023]
Abstract
Cholangiopathies such as primary sclerosing cholangitis (PSC) are chronic liver diseases characterized by increased cholestasis, biliary inflammation and oxidative stress. The objective of this study was to elucidate the impact of cholestatic injury on oxidative stress-related factors. Using hepatic tissue and whole cell liver extracts (LE) isolated from 11-week old C57BL/6J (WT) and Mdr2KO mice, inflammation and oxidative stress was assessed. Concurrently, specific targets of carbonylation were assessed in LE prepared from murine groups as well as from normal and human patients with end-stage PSC. Identified carbonylated proteins were further evaluated using bioinformatics analyses. Picrosirius red staining revealed extensive fibrosis in Mdr2KO liver, and fibrosis colocalized with increased periportal inflammatory cells and both acrolein and 4-HNE staining. Western blot analysis revealed elevated periportal expression of antioxidant proteins Cbr3, GSTμ, Prdx5, TrxR1 and HO-1 but not GCLC, GSTπ or catalase in the Mdr2KO group when compared to WT. From immunohistochemical analysis, increased periportal reactive aldehyde production colocalized with elevated staining of Cbr3, GSTμ and TrxR1 but surprisingly not with Nrf2. Mass spectrometric analysis revealed an increase in carbonylated proteins in the Mdr2KO and PSC groups compared to respective controls. Gene ontology and KEGG pathway analysis of carbonylated proteins revealed a propensity for increased carbonylation of proteins broadly involved in metabolic processes as well more specifically in Rab-mediated signal transduction, lysosomes and the large ribosomal subunit in human PSC. Western blot analysis of Rab-GTPase expression revealed no significant differences in Mdr2KO mice when compared to WT livers. In contrast, PSC tissue exhibited decreased levels of Rabs 4, 5 and increased abundance of Rabs 6 and 9a protein. Results herein reveal that cholestasis induces stage-dependent increases in periportal oxidative stress responses and protein carbonylation, potentially contributing to pathogenesis in Mdr2KO. Furthermore, during early stage cholestasis, there is cell-specific upregulation of some but not all, antioxidant proteins.
Collapse
Affiliation(s)
- Colin T Shearn
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States.
| | - Blair Fennimore
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Yue R Gao
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Kayla D Battista
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Stefanos Aivazidis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Mohammed Assiri
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Peter S Harris
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Cole Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Gary F Merrill
- Department of Biochemistry and Biophysics, Oregon State University, Corvalis, OR, 97331, United States
| | - Edward E Schmidt
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, United States
| | - Sean P Colgan
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Dennis R Petersen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| |
Collapse
|
14
|
Wang X, Han L, Bi Y, Li C, Gao X, Fan G, Zhang Y. Paradoxical Effects of Emodin on ANIT-Induced Intrahepatic Cholestasis and Herb-Induced Hepatotoxicity in Mice. Toxicol Sci 2018; 168:264-278. [DOI: 10.1093/toxsci/kfy295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xue Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Caiyu Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
15
|
18β-Glycyrrhetinic acid protects against alpha-naphthylisothiocyanate-induced cholestasis through activation of the Sirt1/FXR signaling pathway. Acta Pharmacol Sin 2018; 39:1865-1873. [PMID: 30061734 DOI: 10.1038/s41401-018-0110-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/08/2018] [Indexed: 02/06/2023]
Abstract
Cholestasis is a common feature of liver injury, which manifests as bile acid excretion and/or enterohepatic circulation disorders. However, very few effective therapies exist for cholestasis. Recently, 18β-Glycyrrhetinic acid (18b-GA), a major metabolic component of glycyrrhizin, which is the main ingredient of licorice, was reported to protect against alpha-naphthylisothiocyanate (ANIT)-induced cholestasis. However, its protective mechanism remains unclear. We hypothesized that 18b-GA may stimulate the signaling pathway of bile acid (BA) transportation in hepatocytes, resulting its hepatoprotective effect. According to the results, 18b-GA markedly attenuated ANIT-induced liver injury as indicated the hepatic plasma chemistry index and histopathology examination. In addition, the expression levels of nuclear factors, including Sirt1, FXR and Nrf2, and their target efflux transporters in the liver, which mainly mediate bile acid homeostasis in hepatocytes, significantly increased. Furthermore, we first revealed that 18b-GA treatment significantly activated FXR, and which can be significantly reduced by EX-527 (a potent and selective Sirt1 inhibitor), indicating that 18b-GA activates FXR through Sirt1. Taken together, 18b-GA confers hepatoprotection against ANIT-induced cholestasis by activating FXR through Sirt1, which promotes gene expression of the efflux transporter, and consequently attenuates dysregulation of bile acid homeostasis in hepatocyte compartments.
Collapse
|
16
|
Gehrke N, Nagel M, Straub BK, Wörns MA, Schuchmann M, Galle PR, Schattenberg JM. Loss of cellular FLICE-inhibitory protein promotes acute cholestatic liver injury and inflammation from bile duct ligation. Am J Physiol Gastrointest Liver Physiol 2018; 314:G319-G333. [PMID: 29191940 DOI: 10.1152/ajpgi.00097.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cholestatic liver injury results from impaired bile flow or metabolism and promotes hepatic inflammation and fibrogenesis. Toxic bile acids that accumulate in cholestasis induce apoptosis and contribute to early cholestatic liver injury, which is amplified by accompanying inflammation. The aim of the current study was to evaluate the role of the antiapoptotic caspase 8-homolog cellular FLICE-inhibitory (cFLIP) protein during acute cholestatic liver injury. Transgenic mice exhibiting hepatocyte-specific deletion of cFLIP (cFLIP-/-) were used for in vivo and in vitro analysis of cholestatic liver injury using bile duct ligation (BDL) and the addition of bile acids ex vivo. Loss of cFLIP in hepatocytes promoted acute cholestatic liver injury early after BDL, which was characterized by a rapid release of proinflammatory and chemotactic cytokines (TNF, IL-6, IL-1β, CCL2, CXCL1, and CXCL2), an increased presence of CD68+ macrophages and an influx of neutrophils in the liver, and resulting apoptotic and necrotic hepatocyte cell death. Mechanistically, liver injury in cFLIP-/- mice was aggravated by reactive oxygen species, and sustained activation of the JNK signaling pathway. In parallel, cytoprotective NF-κB p65, A20, and the MAPK p38 were inhibited. Increased injury in cFLIP-/- mice was accompanied by activation of hepatic stellate cells and profibrogenic regulators. The antagonistic caspase 8-homolog cFLIP is a critical regulator of acute, cholestatic liver injury. NEW & NOTEWORTHY The current paper explores the role of a classical modulator of hepatocellular apoptosis in early, cholestatic liver injury. These include activation of NF-κB and MAPK signaling, production of inflammatory cytokines, and recruitment of neutrophils in response to cholestasis. Because these signaling pathways are currently exploited in clinical trials for the treatment of nonalcoholic steatohepatitis and cirrhosis, the current data will help in the development of novel pharmacological options in these indications.
Collapse
Affiliation(s)
- Nadine Gehrke
- Department of Medicine, University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| | - Michael Nagel
- Department of Medicine, University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| | - Beate K Straub
- Institute of Pathology, University Medical Center Mainz , Mainz , Germany
| | - Marcus A Wörns
- Department of Medicine, University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| | | | - Peter R Galle
- Department of Medicine, University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| | - Jörn M Schattenberg
- Department of Medicine, University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| |
Collapse
|
17
|
Shen K, Feng X, Pan H, Zhang F, Xie H, Zheng S. Baicalin Ameliorates Experimental Liver Cholestasis in Mice by Modulation of Oxidative Stress, Inflammation, and NRF2 Transcription Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6169128. [PMID: 28757911 PMCID: PMC5516718 DOI: 10.1155/2017/6169128] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/18/2017] [Accepted: 05/28/2017] [Indexed: 12/21/2022]
Abstract
Experimental cholestatic liver fibrosis was performed by bile duct ligation (BDL) in mice, and significant liver injury was observed in 15 days. Administration of baicalin in mice significantly ameliorates liver fibrosis. Experimental cholestatic liver fibrosis was associated with induced gene expression of fibrotic markers such as collagen I, fibronectin, alpha smooth muscle actin (SMA), and connective tissue growth factor (CTGF); increased inflammatory cytokines (TNFα, MIP1α, IL1β, and MIP2); increased oxidative stress and reactive oxygen species- (ROS-) inducing enzymes (NOX2 and iNOS); dysfunctional mitochondrial electron chain complexes; and apoptotic/necrotic cell death markers (DNA fragmentation, caspase 3 activity, and PARP activity). Baicalin administration on alternate day reduced fibrosis along with profibrotic gene expression, proinflammatory cytokines, oxidative stress, and cell death whereas improving the function of mitochondrial electron transport chain. We observed baicalin enhanced NRF2 activation by nuclear translocation and induced its target genes HO-1 and GCLM, thus enhancing antioxidant defense. Interplay of oxidative stress/inflammation and NRF2 were key players for baicalin-mediated protection. Stellate cell activation is crucial for initiation of fibrosis. Baicalin alleviated stellate cell activation and modulated TIMP1, SMA, collagen 1, and fibronectin in vitro. This study indicates that baicalin might be beneficial for reducing inflammation and fibrosis in liver injury models.
Collapse
Affiliation(s)
- Kezhen Shen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiaowen Feng
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Hao Pan
- Department of Urology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Feng Zhang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Shusen Zheng
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
18
|
Yu L, Liu X, Yuan Z, Li X, Yang H, Yuan Z, Sun L, Zhang L, Jiang Z. SRT1720 Alleviates ANIT-Induced Cholestasis in a Mouse Model. Front Pharmacol 2017; 8:256. [PMID: 28553227 PMCID: PMC5425580 DOI: 10.3389/fphar.2017.00256] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/25/2017] [Indexed: 12/18/2022] Open
Abstract
Intrahepatic cholestasis is a kind of clinical syndrome along with hepatotoxicity which caused by intrahepatic and systemic accumulations of bile acid. There are several crucial generating factors of the pathogenesis of cholestasis, such as inflammation, dysregulation of bile acid transporters and oxidative stress. SIRT1 is regarded as a class III histone deacetylase (HDAC). According to a set of researches, SIRT1 is one of the most important factors which can regulate the hepatic bile acid metabolism. SRT1720 is a kind of activator of SIRT1 which is 1000 times more potent than resveratrol, and this paper is aimed to study its protective influence on hepatotoxicity and cholestasis induced by alpha-naphthylisothiocyanate (ANIT) in mice. The findings revealed that SRT1720 treatment increased FXR and Nrf2 gene expressions to shield against hepatotoxicity and cholestasis induced by ANIT. The mRNA levels of hepatic bile acid transporters were also altered by SRT1720. Furthermore, SRT1720 enhanced the antioxidative system by increasing Nrf2, SOD, GCLc, GCLm, Nqo1, and HO-1 gene expressions. In conclusion, a protective influence could be provided by SRT1720 to cure ANIT-induced hepatotoxicity and cholestasis, which was partly through FXR and Nrf2 activations. These results indicated that SIRT1 could be regarded as a therapeutic target to cure the cholestasis.
Collapse
Affiliation(s)
- Linxi Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Xiaoxin Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Xiaojiaoyang Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Hang Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Ziqiao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| | - Zhengzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University - Ministry of EducationNanjing, China
| |
Collapse
|
19
|
Yao H, Xu Y, Yin L, Tao X, Xu L, Qi Y, Han X, Sun P, Liu K, Peng J. Dioscin Protects ANIT-Induced Intrahepatic Cholestasis Through Regulating Transporters, Apoptosis and Oxidative Stress. Front Pharmacol 2017; 8:116. [PMID: 28337145 PMCID: PMC5340742 DOI: 10.3389/fphar.2017.00116] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/24/2017] [Indexed: 12/18/2022] Open
Abstract
Intrahepatic cholestasis, a clinical syndrome, is caused by excessive accumulation of bile acids in body and liver. Proper regulation of bile acids in liver cells is critical for liver injury. We previously reported the effects of dioscin against α-naphthylisothio- cyanate (ANIT)-induced cholestasis in rats. However, the pharmacological and mechanism data are limited. In our work, the animals of rats and mice, and Sandwich-cultured hepatocytes (SCHs) were caused by ANIT, and dioscin was used for the treatment. The results showed that dioscin markedly altered relative liver weights, restored ALT, AST, ALP, TBIL, GSH, GSH-Px, MDA, SOD levels, and rehabilitated ROS level and cell apoptosis. In mechanism study, dioscin not only significantly regulated the protein levels of Ntcp, OAT1, OCT1, Bsep and Mrp2 to accelerate bile acids excretion, but also regulated the expression levels of Bak, Bcl-xl, Bcl-2, Bax, Caspase 3 and Caspase 9 in vivo and in vitro to improve apoptosis. In addition, dioscin markedly inhibited PI3K/Akt pathway and up-regulated the levels of Nrf2, GCLc, GCLm, NQO1 and HO-1 against oxidative stress (OS) caused by bile acids. These results were further validated by inhibition of PI3K and Akt using the inhibitors of wortmannin and perifosine in SCHs. Our data showed that dioscin had good action against ANIT-caused intrahepatic cholestasis through regulating transporters, apoptosis and OS. This natural product can be considered as one active compound to treat intrahepatic cholestasis in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jinyong Peng
- College of Pharmacy, Dalian Medical UniversityDalian, China
| |
Collapse
|
20
|
Naturally Occurring Nrf2 Activators: Potential in Treatment of Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3453926. [PMID: 28101296 PMCID: PMC5215260 DOI: 10.1155/2016/3453926] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022]
Abstract
Oxidative stress plays a major role in acute and chronic liver injury. In hepatocytes, oxidative stress frequently triggers antioxidant response by activating nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, which upregulates various cytoprotective genes. Thus, Nrf2 is considered a potential therapeutic target to halt liver injury. Several studies indicate that activation of Nrf2 signaling pathway ameliorates liver injury. The hepatoprotective potential of naturally occurring compounds has been investigated in various models of liver injuries. In this review, we comprehensively appraise various phytochemicals that have been assessed for their potential to halt acute and chronic liver injury by enhancing the activation of Nrf2 and have the potential for use in humans.
Collapse
|
21
|
Smith GJ, Cichocki JA, Doughty BJ, Manautou JE, Jordt SE, Morris JB. Effects of Acetaminophen on Oxidant and Irritant Respiratory Tract Responses to Environmental Tobacco Smoke in Female Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:642-50. [PMID: 26452297 PMCID: PMC4858387 DOI: 10.1289/ehp.1509851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Although it is known that acetaminophen causes oxidative injury in the liver, it is not known whether it causes oxidative stress in the respiratory tract. If so, this widely used analgesic may potentiate the adverse effects of oxidant air pollutants. OBJECTIVES The goal of this study was to determine if acetaminophen induces respiratory tract oxidative stress and/or potentiates the oxidative stress and irritant responses to an inhaled oxidant: environmental tobacco smoke (ETS). METHODS Acetaminophen [100 mg/kg intraperitoneal (ip)] and/or sidestream tobacco smoke (as a surrogate for ETS, 5 mg/m3 for 10 min) were administered to female C57Bl/6J mice, and airway oxidative stress was assessed by loss of tissue antioxidants [estimated by nonprotein sulfhydryl (NPSH) levels] and/or induction of oxidant stress response genes. In addition, the effects of acetaminophen on airway irritation reflex responses to ETS were examined by plethysmography. RESULTS Acetaminophen diminished NPSH in nasal, thoracic extrapulmonary, and lung tissues; it also induced the oxidant stress response genes glutamate-cysteine ligase, catalytic subunit, and NAD(P)H dehydrogenase, quinone 1, in these sites. ETS produced a similar response. The response to acetaminophen plus ETS was equal to or greater than the sum of the responses to either agent alone. Although it had no effect by itself, acetaminophen greatly increased the reflex irritant response to ETS. CONCLUSIONS At supratherapeutic levels, acetaminophen induced oxidative stress throughout the respiratory tract and appeared to potentiate some responses to environmentally relevant ETS exposure in female C57Bl/6J mice. These results highlight the potential for this widely used drug to modulate responsiveness to oxidant air pollutants. CITATION Smith GJ, Cichocki JA, Doughty BJ, Manautou JE, Jordt SE, Morris JB. 2016. Effects of acetaminophen on oxidant and irritant respiratory tract responses to environmental tobacco smoke in female mice. Environ Health Perspect 124:642-650; http://dx.doi.org/10.1289/ehp.1509851.
Collapse
Affiliation(s)
- Gregory J. Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Joseph A. Cichocki
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Bennett J. Doughty
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Jose E. Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - John B. Morris
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
22
|
Donepudi AC, Cheng Q, Lu ZJ, Cherrington NJ, Slitt AL. Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression. Drug Metab Dispos 2016; 44:518-26. [PMID: 26847773 PMCID: PMC4810770 DOI: 10.1124/dmd.115.066779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/16/2016] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome is a multifactorial disease associated with obesity, insulin resistance, diabetes, and the alteration of multiple metabolic hormones. Obesity rates have been rising worldwide, which increases our need to understand how this population will respond to drugs and exposure to other chemicals. The purpose of this study was to determine in lean and obese mice the ontogeny of clinical biomarkers such as serum hormone and blood glucose levels as well as the physiologic markers that correlate with nuclear receptor- and transporter-related pathways. Livers from male and female wild-type (WT) (C57BL/6) and ob/ob mice littermates were collected before, during, and after the onset of obesity. Serum hormone and mRNA levels were analyzed. Physiologic changes and gene expression during maturation and progression to obesity were performed and correlation analysis was performed using canonical correlations. Significant ontogenic changes in both WT and ob/ob mice were observed and these ontogenic changes differ in ob/ob mice with the development of obesity. In males and females, the ontogenic pattern of the expression of genes such as Abcc3, 4, Abcg2, Cyp2b10, and 4a14 started to differ from week 3, and became significant at weeks 4 and 8 in ob/ob mice compared with WT mice. In obese males, serum resistin, glucagon, and glucose levels correlated with the expression of most hepatic ATP-binding cassette (Abc) transporters, whereas in obese females, serum glucagon-like peptide 1 levels were correlated with most hepatic uptake transporters and P450 enzymes. Overall, the correlation between physiologic changes and gene expression indicate that metabolism-related hormones may play a role in regulating the genes involved in drug metabolism and transport.
Collapse
Affiliation(s)
- Ajay C Donepudi
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.C.D., Q.C, A.L.S); Arizona Statistical Consulting Laboratory, The Bio5 Institute (Z.J.L.) and Department of Pharmacology and Toxicology, College of Pharmacy (N.J.C.), University of Arizona, Tucson, Arizona
| | - Qiuqiong Cheng
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.C.D., Q.C, A.L.S); Arizona Statistical Consulting Laboratory, The Bio5 Institute (Z.J.L.) and Department of Pharmacology and Toxicology, College of Pharmacy (N.J.C.), University of Arizona, Tucson, Arizona
| | - Zhenqiang James Lu
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.C.D., Q.C, A.L.S); Arizona Statistical Consulting Laboratory, The Bio5 Institute (Z.J.L.) and Department of Pharmacology and Toxicology, College of Pharmacy (N.J.C.), University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.C.D., Q.C, A.L.S); Arizona Statistical Consulting Laboratory, The Bio5 Institute (Z.J.L.) and Department of Pharmacology and Toxicology, College of Pharmacy (N.J.C.), University of Arizona, Tucson, Arizona
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.C.D., Q.C, A.L.S); Arizona Statistical Consulting Laboratory, The Bio5 Institute (Z.J.L.) and Department of Pharmacology and Toxicology, College of Pharmacy (N.J.C.), University of Arizona, Tucson, Arizona
| |
Collapse
|
23
|
Rudraiah S, Gu X, Hines RN, Manautou JE. Oxidative stress-responsive transcription factor NRF2 is not indispensable for the human hepatic Flavin-containing monooxygenase-3 (FMO3) gene expression in HepG2 cells. Toxicol In Vitro 2016; 31:54-59. [PMID: 26616280 PMCID: PMC4695222 DOI: 10.1016/j.tiv.2015.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/01/2015] [Accepted: 11/21/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED The flavin-containing monooxygenases (FMOs) are important for the oxidation of a variety of endogenous compounds and xenobiotics. The hepatic expression of FMO3 is highly variable and until recently, it was thought to be uninducible. In this study, human FMO3 gene regulation by the oxidative stress transcription factor, nuclear factor (erythroid-derived 2)-like 2 (NRF2) was examined. Constitutive FMO3 gene expression is repressed in HepG2 cells, thus this cell can be a good model for FMO3 gene regulation studies. Over-expression of NRF2 in HepG2 cells increased NRF2 target gene expression, heme oxygenase-1 (HMOX1) and NAD(P)H quinone oxidoreductase-1 (NQO1), but did not alter FMO3 gene expression. Co-transfection studies with NRF2 or its cytosolic regulatory protein, Kelch-like ECH-associated protein 1 (KEAP1), expression vectors, along with FMO3 promoter luciferase reporter constructs of various lengths (5kb or 6kb), did not change FMO3 reporter gene activity significantly. Furthermore, treatment with tert-butyl hydroperoxide (tBHP) and tert-butyl hydroquinone (tBHQ) did not alter FMO3 reporter construct activity. In summary, in vitro results suggest that the transcriptional regulation of FMO3 might not involve the NRF2-KEAP1 regulatory pathway.
Collapse
Affiliation(s)
- Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| | - Xinsheng Gu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| | - Ronald N Hines
- US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA.
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
24
|
Njayou FN, Amougou AM, Fouemene Tsayem R, Njikam Manjia J, Rudraiah S, Bradley B, Manautou JE, Fewou Moundipa P. Antioxidant fractions of Khaya grandifoliola C.DC. and Entada africana Guill. et Perr. induce nuclear translocation of Nrf2 in HC-04 cells. Cell Stress Chaperones 2015; 20:991-1000. [PMID: 26272694 PMCID: PMC4595436 DOI: 10.1007/s12192-015-0628-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022] Open
Abstract
The in vitro antioxidant properties, cytoprotective activity, and ability to induce nuclear translocation of nuclear factor E2-related factor-2 (Nrf-2) of five solvent fractions of the methylene chloride/methanol (1:1 v/v) extract of Khaya grandifoliola (Meliaceae) and Entada africana (Fabaceae) were evaluated. Five antioxidant endpoints were used in the antioxidant activity investigation. The total phenolic content of the fractions was assessed as to the Folin-Ciocalteu method and the profile of interesting fractions analyzed by high-performance liquid chromatography (HPLC). The cytoprotective activity of fractions was determined by H2O2-induced oxidative stress in HC-04 cells by measuring lactate dehydrogenase (LDH) leakage into culture medium. HC-04 cells were used to investigate the ability to induce nuclear translocation of Nrf2. For both plants, the methylene chloride/methanol (90/10; v/v) fraction (F10), methylene chloride/methanol (75/25; v/v) (F25), and the methanolic fraction (F100) were found to have the highest total polyphenol content and exhibited high antioxidant activity strongly correlated with total polyphenol content. The cytoprotective activity of fraction F25 from both plants was comparable to that of quercetin (3.40 ± 0.05 μg/mL), inhibiting LDH leakage with a low half inhibition concentration (IC50) of 4.05 ± 0.03 and 3.8 ± 0.02 μg/mL for K. grandifoliola and E. africana, respectively. Lastly, fraction F25 of K. grandifoliola significantly (P < 0.05) induced nuclear Nrf2 translocation by sixfold, whereas that from E. africana and quercetin was only twofold. The results indicate for the first time that fraction F25 of the studied plants is more antioxidant and cytoprotective and induces nuclear translocation of Nrf2 in a human hepatocyte cell line.
Collapse
Affiliation(s)
- Frédéric Nico Njayou
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Atsama Marie Amougou
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
| | - Romeo Fouemene Tsayem
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
| | - Jacqueline Njikam Manjia
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
| | - Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Bolling Bradley
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - José Enrique Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon.
| |
Collapse
|
25
|
Ma X, Zhao YL, Zhu Y, Chen Z, Wang JB, Li RY, Chen C, Wei SZ, Li JY, Liu B, Wang RL, Li YG, Wang LF, Xiao XH. Paeonia lactiflora Pall. protects against ANIT-induced cholestasis by activating Nrf2 via PI3K/Akt signaling pathway. Drug Des Devel Ther 2015; 9:5061-74. [PMID: 26366057 PMCID: PMC4562737 DOI: 10.2147/dddt.s90030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Paeonia lactiflora Pall. (PLP), a traditional Chinese herbal medicine, has been used for hepatic disease treatment over thousands of years. In our previous study, PLP was shown to demonstrate therapeutic effect on hepatitis with severe cholestasis. The aim of this study was to evaluate the antioxidative effect of PLP on alpha-naphthylisothiocyanate (ANIT)-induced cholestasis by activating NF-E2-related factor 2 (Nrf2) via phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Materials and methods Liquid chromatography-mass spectrometry (LC-MS) was performed to identify the main compounds present in PLP. The mechanism of action of PLP and its therapeutic effect on cholestasis, induced by ANIT, were further investigated. Serum indices such as total bilirubin (TBIL), direct bilirubin (DBIL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyl transpeptidase (γ-GT), and total bile acid (TBA) were measured, and histopathology of liver was also performed to determine the efficacy of treatment with PLP. Moreover, in order to illustrate the underlying signaling pathway, liver glutathione (GSH) content and mRNA or protein levels of glutamate-cysteine ligase catalytic subunit (GCLc), glutamate-cysteine ligase modulatory subunit (GCLm), Akt, heme oxygenase-1 (HO-1), NAD(P)H/quinone oxidoreductase 1 (Nqo1), and Nrf2 were further analyzed. In addition, validation of PLP putative target network was also performed in silico. Results Four major compounds including paeoniflorin, albiflorin, oxypaeoniflorin, and benzoylpaeoniflorin were identified by LC-MS analysis in water extract of PLP. Moreover, PLP could remarkably downregulate serum levels of TBIL, DBIL, AST, ALT, ALP, γ-GT, and TBA, and alleviate the histological damage of liver tissue caused by ANIT. It enhanced antioxidative system by activating PI3K/Akt/Nrf2 pathway through increasing Akt, Nrf2, HO-1, Nqo1, GCLc, and GCLm expression. The putative targets network validation also confirmed the important role of PLP in activating Akt expression. Conclusion The potential mechanism of PLP in alleviating ANIT-induced cholestasis could to be related to the induction of GSH synthesis by activating Nrf2 through PI3K/Akt-dependent pathway. This indicates that PLP might be a potential therapeutic agent for cholestasis.
Collapse
Affiliation(s)
- Xiao Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China ; Department of Pharmacy, 302 Military Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Yan-ling Zhao
- Department of Pharmacy, 302 Military Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Yun Zhu
- Department of Integrative Medical Center, 302 Military Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Zhe Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China ; Department of Pharmacy, 302 Military Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Jia-bo Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Rui-yu Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China ; China Military Institute of Chinese Medicine, 302 Military Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Chang Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China ; Department of Pharmacy, 302 Military Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Shi-zhang Wei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China ; Department of Pharmacy, 302 Military Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Jian-yu Li
- Department of Integrative Medical Center, 302 Military Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Bing Liu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Rui-lin Wang
- Department of Integrative Medical Center, 302 Military Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Yong-gang Li
- Department of Integrative Medical Center, 302 Military Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Li-fu Wang
- Department of Integrative Medical Center, 302 Military Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Xiao-he Xiao
- China Military Institute of Chinese Medicine, 302 Military Hospital of People's Liberation Army, Beijing, People's Republic of China
| |
Collapse
|
26
|
Hu M, Zou Y, Nambiar SM, Lee J, Yang Y, Dai G. Keap1 modulates the redox cycle and hepatocyte cell cycle in regenerating liver. Cell Cycle 2015; 13:2349-58. [PMID: 25483186 DOI: 10.4161/cc.29298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Keap1 negatively controls the activity of transcription factor Nrf2. This Keap1/Nrf2 pathway plays a critical role in combating oxidative stress. We aimed at determining whether and how Keap1 modulates the cell cycle of replicating hepatocytes during liver regeneration. Two-thirds partial hepatectomy (PH) was performed on wild-type mice and Keap1+/- (Keap1 knockdown) mice. We found that, following PH, Keap1 knockdown resulted in a delay in S-phase entry, disruption of S-phase progression, and loss of mitotic rhythm of replicating hepatocytes. These events are associated with dysregulation of c-Met, EGFR, Akt1, p70S6K, Cyclin A2, and Cyclin B1 in regenerating livers. Astonishingly, normal regenerating livers exhibited the redox fluctuation coupled with hepatocyte cell cycle progression, while keeping Nrf2 quiescent. Keap1 knockdown caused severe disruption in both the redox cycle and the cell cycle of replicating hepatocytes. Thus, we demonstrate that Keap1 is a potent regulator of hepatic redox cycle and hepatocyte cell cycle during liver regeneration.
Collapse
Affiliation(s)
- Min Hu
- a Department of Pharmacology; Anhui Medical University; Hefei, China
| | | | | | | | | | | |
Collapse
|
27
|
Gong H, Zhang BK, Yan M, Fang PF, Li HD, Hu CP, Yang Y, Cao P, Jiang P, Fan XR. A protective mechanism of licorice (Glycyrrhiza uralensis): isoliquiritigenin stimulates detoxification system via Nrf2 activation. JOURNAL OF ETHNOPHARMACOLOGY 2015; 162:134-139. [PMID: 25557030 DOI: 10.1016/j.jep.2014.12.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/11/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice (Glycyrrhizae radix), the root of Glycyrrhiza uralensis Fisch. (Leguminosae), is mainly used to moderate the characteristics of toxic herbs in Traditional Chinese Medicine, which could be partly interpreted as detoxification. However, the underlying mechanism is still not fully elucidated. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a key role in the protection against toxic xenobiotics. In our previous research, we have identified that extracts from Glycyrrhiza uralensis induced the expression of Nrf2 nuclear protein and its downstream genes. This research aims to screen the most potent Nrf2 inducer isolated from Glycyrrhiza uralensis and examine its effect on Nrf2 signaling pathway and detoxification system. MATERIALS AND METHODS Four compounds derived from Glycyrrhiza uralensis (glycyrrhetinic acid, liquiritigenin, isoliquiritigenin and liquiritin) were screened by ARE-luciferase reporter. The most potent ARE-luciferase inducer was chosen to further examine its effect on Nrf2 and detoxification genes in HepG2 cells. The role of Nrf2-dependent mechanism was tested by using Nrf2 knockout mice (Nrf2 KO) and Nrf2 wild-type mice (Nrf2 WT). RESULTS ARE-luciferase reporter assay showed these four compounds were all potent Nrf2 inducers, and isoliquiritigenin was the most potent inducer. Isoliquiritigenin significantly up-regulated the expression of Nrf2 and its downstream detoxification genes UDP-glucuronosyltransferase 1A1 (UGT1A1), glutamate cysteine ligase (GCL), multidrug resistance protein 2 (MRP2) and bile salt export pump (BSEP) in vitro and in vivo. Additionally, isoliquiritigenin showed Nrf2-dependent transactivation of UGT1A1, GCLC and MRP2. CONCLUSIONS Isoliquiritigenin, isolated from Glycyrrhiza uralensis, stimulates detoxification system via Nrf2 activation, which could be a potential protective mechanism of licorice.
Collapse
Affiliation(s)
- Hui Gong
- Clinical Pharmacy and Pharmacology Research Institute, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province 410011, China; School of Pharmaceutical Sciences, Central South University, 172# Tong Zipo Road, Changsha, Hunan Province 410013, China
| | - Bi-kui Zhang
- Clinical Pharmacy and Pharmacology Research Institute, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province 410011, China; School of Pharmaceutical Sciences, Central South University, 172# Tong Zipo Road, Changsha, Hunan Province 410013, China
| | - Miao Yan
- Clinical Pharmacy and Pharmacology Research Institute, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province 410011, China; School of Pharmaceutical Sciences, Central South University, 172# Tong Zipo Road, Changsha, Hunan Province 410013, China.
| | - Ping-fei Fang
- Clinical Pharmacy and Pharmacology Research Institute, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province 410011, China; School of Pharmaceutical Sciences, Central South University, 172# Tong Zipo Road, Changsha, Hunan Province 410013, China
| | - Huan-de Li
- Clinical Pharmacy and Pharmacology Research Institute, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province 410011, China; School of Pharmaceutical Sciences, Central South University, 172# Tong Zipo Road, Changsha, Hunan Province 410013, China
| | - Chun-ping Hu
- Laboratory of Cellular and Molecular Biology, Jiangsu Academy of Traditional Chinese Medicine, 100# Shizi Street, Hongshan Road, Nanjing, Jiangsu 210028, China
| | - Yang Yang
- Laboratory of Cellular and Molecular Biology, Jiangsu Academy of Traditional Chinese Medicine, 100# Shizi Street, Hongshan Road, Nanjing, Jiangsu 210028, China
| | - Peng Cao
- Clinical Pharmacy and Pharmacology Research Institute, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province 410011, China; Laboratory of Cellular and Molecular Biology, Jiangsu Academy of Traditional Chinese Medicine, 100# Shizi Street, Hongshan Road, Nanjing, Jiangsu 210028, China.
| | - Pei Jiang
- Clinical Pharmacy and Pharmacology Research Institute, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province 410011, China; School of Pharmaceutical Sciences, Central South University, 172# Tong Zipo Road, Changsha, Hunan Province 410013, China
| | - Xin-rong Fan
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
28
|
Zou Y, Hu M, Lee J, Nambiar SM, Garcia V, Bao Q, Chan JY, Dai G. Nrf2 is essential for timely M phase entry of replicating hepatocytes during liver regeneration. Am J Physiol Gastrointest Liver Physiol 2015; 308:G262-8. [PMID: 25524062 PMCID: PMC4329475 DOI: 10.1152/ajpgi.00332.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates various cellular activities, including redox balance, detoxification, metabolism, autophagy, proliferation, and apoptosis. Several studies have demonstrated that Nrf2 regulates hepatocyte proliferation during liver regeneration. The aim of this study was to investigate how Nrf2 modulates the cell cycle of replicating hepatocytes in regenerating livers. Wild-type and Nrf2 null mice were subjected to 2/3 partial hepatectomy (PH) and killed at multiple time points for various analyses. Nrf2 null mice exhibited delayed liver regrowth, although the lost liver mass was eventually restored 7 days after PH. Nrf2 deficiency did not affect the number of hepatocytes entering the cell cycle but did delay hepatocyte mitosis. Mechanistically, the lack of Nrf2 resulted in increased mRNA and protein levels of hepatic cyclin A2 when the remaining hepatocytes were replicating in response to PH. Moreover, Nrf2 deficiency in regenerating livers caused dysregulation of Wee1, Cdc2, and cyclin B1 mRNA and protein expression, leading to decreased Cdc2 activity. Thus, Nrf2 is required for timely M phase entry of replicating hepatocytes by ensuring proper regulation of cyclin A2 and the Wee1/Cdc2/cyclin B1 pathway during liver regeneration.
Collapse
Affiliation(s)
- Yuhong Zou
- 1Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana;
| | - Min Hu
- 1Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana; ,2Department of Pathology, Anhui University of Traditional Chinese Medicine, Hefei, China; and
| | - Joonyong Lee
- 1Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana;
| | - Shashank Manohar Nambiar
- 1Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana;
| | - Veronica Garcia
- 1Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana;
| | - Qi Bao
- 1Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana;
| | - Jefferson Y. Chan
- 3Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, California
| | - Guoli Dai
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana;
| |
Collapse
|
29
|
Huang H, Lu-Bo Y, Haddad GG. A Drosophila ABC transporter regulates lifespan. PLoS Genet 2014; 10:e1004844. [PMID: 25474322 PMCID: PMC4256198 DOI: 10.1371/journal.pgen.1004844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/23/2014] [Indexed: 01/08/2023] Open
Abstract
MRP4 (multidrug resistance-associated protein 4) is a member of the MRP/ABCC subfamily of ATP-binding cassette (ABC) transporters that are essential for many cellular processes requiring the transport of substrates across cell membranes. Although MRP4 has been implicated as a detoxification protein by transport of structurally diverse endogenous and xenobiotic compounds, including antivirus and anticancer drugs, that usually induce oxidative stress in cells, its in vivo biological function remains unknown. In this study, we investigate the biological functions of a Drosophila homolog of human MRP4, dMRP4. We show that dMRP4 expression is elevated in response to oxidative stress (paraquat, hydrogen peroxide and hyperoxia) in Drosophila. Flies lacking dMRP4 have a shortened lifespan under both oxidative and normal conditions. Overexpression of dMRP4, on the other hand, is sufficient to increase oxidative stress resistance and extend lifespan. By genetic manipulations, we demonstrate that dMRP4 is required for JNK (c-Jun NH2-terminal kinase) activation during paraquat challenge and for basal transcription of some JNK target genes under normal condition. We show that impaired JNK signaling is an important cause for major defects associated with dMRP4 mutations, suggesting that dMRP4 regulates lifespan by modulating the expression of a set of genes related to both oxidative resistance and aging, at least in part, through JNK signaling. The drug transporters are often known for their ability to transport different physiological-related compounds across cell membranes. Although the abnormal up-regulation of some these transporters is believed to be the common cause of the clinic problem called drug resistance, the biological functions of these transporters remain largely unknown. Here we show that a Drosophila homolog of the mammalian drug transporter plays a role in lifespan regulation. Mutations of this gene increase the sensitivity to oxidative stress and reduce lifespan, while overexpression of this gene increases resistance to oxidative stress and extends lifespan. By molecular and genetic analyses, we have linked functions of this gene to a key signaling transduction pathway that has been known to be important in lifespan regulation.
Collapse
Affiliation(s)
- He Huang
- Department of Pediatrics (Division of Respiratory Medicine), University of California San Diego, La Jolla, California, United States of America
| | - Ying Lu-Bo
- Department of Pediatrics (Division of Respiratory Medicine), University of California San Diego, La Jolla, California, United States of America
| | - Gabriel G. Haddad
- Department of Pediatrics (Division of Respiratory Medicine), University of California San Diego, La Jolla, California, United States of America
- Rady Children's Hospital San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Rudraiah S, Moscovitz JE, Donepudi AC, Campion SN, Slitt AL, Aleksunes LM, Manautou JE. Differential Fmo3 gene expression in various liver injury models involving hepatic oxidative stress in mice. Toxicology 2014; 325:85-95. [PMID: 25193093 PMCID: PMC4428328 DOI: 10.1016/j.tox.2014.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/29/2014] [Accepted: 08/31/2014] [Indexed: 12/12/2022]
Abstract
Flavin-containing monooxygenase-3 (FMO3) catalyzes metabolic reactions similar to cytochrome P450 monooxygenase, however, most metabolites of FMO3 are considered non-toxic. Recent findings in our laboratory demonstrated Fmo3 gene induction following toxic acetaminophen (APAP) treatment in mice. The goal of this study was to evaluate Fmo3 gene expression in other diverse mouse models of hepatic oxidative stress and injury. Fmo3 gene regulation by Nrf2 was also investigated using Nrf2 knockout (Nrf2 KO) mice. In our studies, male C57BL/6J mice were treated with toxic doses of hepatotoxicants or underwent bile duct ligation (BDL, 10 days). Hepatotoxicants included APAP (400 mg/kg, 24-72 h), alpha-naphthyl isothiocyanate (ANIT; 50 mg/kg, 2-48 h), carbon tetrachloride (CCl4; 10 or 30 μL/kg, 24 and 48 h) and allyl alcohol (AlOH; 30 or 60 mg/kg, 6 and 24 h). Because oxidative stress activates nuclear factor (erythroid-derived 2)-like 2 (Nrf2), additional studies investigated Fmo3 gene regulation by Nrf2 using Nrf2 knockout (Nrf2 KO) mice. At appropriate time-points, blood and liver samples were collected for assessment of plasma alanine aminotransferase (ALT) activity, plasma and hepatic bile acid levels, as well as liver Fmo3 mRNA and protein expression. Fmo3 mRNA expression increased significantly by 43-fold at 12 h after ANIT treatment, and this increase translates to a 4-fold change in protein levels. BDL also increased Fmo3 mRNA expression by 1899-fold, but with no change in protein levels. Treatment of mice with CCl4 decreased liver Fmo3 gene expression, while no change in expression was detected with AlOH treatment. Nrf2 KO mice are more susceptible to APAP (400mg/kg, 72 h) treatment compared to their wild-type (WT) counterparts, which is evidenced by greater plasma ALT activity. The Fmo3 mRNA and protein expression increased in Nrf2 KO mice after APAP treatment. Collectively, not all hepatotoxicants that produce oxidative stress alter Fmo3 gene expression. Along with APAP, toxic ANIT treatment in mice markedly increased Fmo3 gene expression. While BDL increased the Fmo3 mRNA expression, the protein level did not change. The discrepancy with Fmo3 induction in cholestatic models, ANIT and BDL, is not entirely clear. Results from Nrf2 KO mice with APAP suggest that the transcriptional regulation of Fmo3 during liver injury may not involve Nrf2.
Collapse
Affiliation(s)
- Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| | - Jamie E Moscovitz
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, USA.
| | - Ajay C Donepudi
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.
| | - Sarah N Campion
- Drug Safety Research and Development, Pfizer Inc., Groton, USA.
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, USA.
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
31
|
Hwang JH, Kim YH, Noh JR, Gang GT, Kim KS, Chung HK, Tadi S, Yim YH, Shong M, Lee CH. The protective role of NAD(P)H:quinone oxidoreductase 1 on acetaminophen-induced liver injury is associated with prevention of adenosine triphosphate depletion and improvement of mitochondrial dysfunction. Arch Toxicol 2014; 89:2159-66. [PMID: 25224400 DOI: 10.1007/s00204-014-1340-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/14/2014] [Indexed: 02/05/2023]
Abstract
UNLABELLED An overdose of acetaminophen (APAP) causes hepatotoxicity due to its metabolite, N-acetyl-p-benzoquinone imine. NAD(P)H quinone oxidoreductase 1 (NQO1) is an important enzyme for detoxification, because it catabolizes endogenous/exogenous quinone to hydroquinone. Although various studies have suggested the possible involvement of NQO1 in APAP-induced hepatotoxicity, its precise role in this remains unclear. We investigated the role of NQO1 against APAP-induced hepatotoxicity using a genetically modified rodent model. NQO1 wild-type (WT) and knockout (KO) mice were treated with different doses of APAP, and we evaluated the mortality and toxicity markers for cell death caused by APAP. NQO1 KO mice showed high sensitivity to APAP-mediated hepatotoxicity (as indicated by a large necrotic region) as well as increased levels of nitrotyrosine adducts and reactive oxygen species. APAP-induced cell death in the livers and primary hepatocytes of NQO1 KO mice, which was accompanied by an extensive reduction in adenosine triphosphate (ATP) levels. In accordance with this ATP depletion, cytosolic increases in mitochondrial proteins such as apoptosis-inducing factor, second mitochondria-derived activator of caspases/DIABLO, endonuclease G, and cytochrome c, which indicate severe mitochondrial dysfunction, were observed in NQO1 KO mice but not in WT mice after APAP exposure. Severe mitochondrial depolarization was also greater in hepatocytes isolated from NQO1 KO mice. Collectively, our data suggest that NQO1 plays a critical role in protection against energy depletion caused by APAP, and NQO1 may be useful in the development of therapeutic approaches to effectively diminish the hepatotoxicity caused by an APAP overdose.
Collapse
Affiliation(s)
- Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, South Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, South Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, South Korea
| | - Gil-Tae Gang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, South Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, South Korea
| | - Hyo Kyun Chung
- Department of Internal Medicine, Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Chungku, Daejeon, 301-721, South Korea
| | - Surendar Tadi
- Division of Metrology for Quality Life, Korea Research Institute of Standard and Science (KRISS), Daejeon, South Korea
| | - Yong-Hyeon Yim
- Division of Metrology for Quality Life, Korea Research Institute of Standard and Science (KRISS), Daejeon, South Korea
| | - Minho Shong
- Department of Internal Medicine, Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Chungku, Daejeon, 301-721, South Korea.
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, South Korea.
| |
Collapse
|
32
|
More VR, Cheng Q, Donepudi AC, Buckley DB, Lu ZJ, Cherrington NJ, Slitt AL. Alcohol cirrhosis alters nuclear receptor and drug transporter expression in human liver. Drug Metab Dispos 2013; 41:1148-55. [PMID: 23462698 PMCID: PMC3629807 DOI: 10.1124/dmd.112.049676] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/05/2013] [Indexed: 12/15/2022] Open
Abstract
Unsafe use of alcohol results in approximately 2.5 million deaths worldwide, with cirrhosis contributing to 16.6% of reported deaths. Serum insulin levels are often elevated in alcoholism and may result in diabetes, which is why alcoholic liver disease and diabetes often are present together. Because there is a sizable population with these diseases alone or in combination, the purpose of this study was to determine whether transporter expression in human liver is affected by alcoholic cirrhosis, diabetes, and alcoholic cirrhosis coexisting with diabetes. Transporters aid in hepatobiliary excretion of many drugs and toxic chemicals and can be determinants of drug-induced liver injury. Drug transporter expression and transcription factor-relative mRNA and protein expression in normal, diabetic, cirrhotic, and cirrhosis with diabetes human livers were quantified. Cirrhosis significantly increased ABCC4, 5, ABCG2, and solute carrier organic anion (SLCO) 2B1 mRNA expression and decreased SLCO1B3 mRNA expression in the liver. ABCC1, 3-5, and ABCG2 protein expression was also upregulated by alcoholic cirrhosis. ABCC3-5 and ABCG2 protein expression was also upregulated in diabetic cirrhosis. Cirrhosis increased nuclear factor E2-related factor 2 mRNA expression, whereas it decreased pregnane-X-receptor and farnesoid-X-receptor mRNA expression in comparison with normal livers. Hierarchical cluster analysis indicated that expressions of ABCC2, 3, and 6; SLCO1B1 and 1B3; and ABCC4 and 5 were more closely related in the livers from this cohort. Overall, alcoholic cirrhosis altered transporter expression in human liver.
Collapse
Affiliation(s)
- Vijay R More
- Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Repeated oral administration of oleanolic acid produces cholestatic liver injury in mice. Molecules 2013; 18:3060-71. [PMID: 23470335 PMCID: PMC6270117 DOI: 10.3390/molecules18033060] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 12/13/2022] Open
Abstract
Oleanolic acid (OA) is a triterpenoid and a fantastic molecule with many beneficial effects. However, high-doses and long-term use can produce adverse effects. This study aimed to characterize the hepatotoxic potential of OA. Mice were given OA at doses of 100–3,000 µmol/kg (45–1,350 mg/kg), po for 10 days, and the hepatotoxicity was determined by serum biochemistry, histopathology, and toxicity-related gene expression via real-time RT-PCR. Animal body weight loss was evident at OA doses of 1,000 µmol/kg and above. Serum alanine aminotransferase activities were increased in a dose-dependent manner, indicative of hepatotoxicity. Serum total bilirubin concentrations were increased, indicative of cholestasis. OA administration produced dose-dependent pathological lesions to the liver, including inflammation, hepatocellular apoptosis, necrosis, and feathery degeneration indicative of cholestasis. These lesions were evident at OA doses of 500 µmol/kg and above. Real-time RT-PCR revealed that OA produced dose-dependent increases in acute phase proteins (MT-1, Ho-1, Nrf2 and Nqo1), decreases in bile acid synthesis genes (Cyp7a1 and Cyp8b1), and decreases in liver bile acid transporters (Ntcp, Bsep, Oatp1a1, Oatp1b2, and Ostβ). Thus, the clinical use of OA and OA-type triterpenoids should balance the beneficial effects and toxicity potentials.
Collapse
|
34
|
Zou Y, Hu M, Bao Q, Chan JY, Dai G. Nrf2 participates in regulating maternal hepatic adaptations to pregnancy. J Cell Sci 2013; 126:1618-25. [PMID: 23418358 DOI: 10.1242/jcs.118109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pregnancy induces widespread adaptive responses in maternal organ systems including the liver. The maternal liver exhibits significant growth by increasing the number and size of hepatocytes, by largely unknown mechanisms. Nrf2 mediates cellular defense against oxidative stress and inflammation and also regulates liver regeneration. To determine whether Nrf2 is involved in the regulation of maternal hepatic adaptations to pregnancy, we assessed the proliferation and size of maternal hepatocytes and the associated molecular events in wild-type and Nrf2-null mice at various stages of gestation. We found that wild-type maternal hepatocytes underwent proliferation and size reduction during the first half, and size increase without overt replication during the second half, of pregnancy. Although pregnancy decreased Nrf2 activity in the maternal liver, Nrf2 deficiency caused a delay in maternal hepatocyte proliferation, concomitant with dysregulation of the activation of Cyclin D1, E1, and, more significantly, A2. Remarkably, as a result of Nrf2 absence, the maternal hepatocytes were largely prevented from reducing their sizes during the first half of pregnancy, which was associated with an increase in mTOR activation. During the second half of pregnancy, maternal hepatocytes of both genotypes showed continuous volume increase accompanied by persistent activation of mTOR. However, the lack of Nrf2 resulted in dysregulation of the activation of the mTOR upstream regulator AKT1 and the mTOR target p70SK6 and thus disruption of the AKT1/mTOR/p70S6K pathway, which is known to control cell size. This suggests an mTOR-dependent and AKT1- and p70S6K-independent compensatory mechanism when Nrf2 is deficient. In summary, our study demonstrates that Nrf2 is required for normal maternal hepatic adjustments to pregnancy by ensuring proper regulation of the number and size of maternal hepatocytes.
Collapse
Affiliation(s)
- Yuhong Zou
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
35
|
Weerachayaphorn J, Mennone A, Soroka CJ, Harry K, Hagey LR, Kensler TW, Boyer JL. Nuclear factor-E2-related factor 2 is a major determinant of bile acid homeostasis in the liver and intestine. Am J Physiol Gastrointest Liver Physiol 2012; 302:G925-36. [PMID: 22345550 PMCID: PMC3362073 DOI: 10.1152/ajpgi.00263.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The transcription factor nuclear factor-E2-related factor 2 (Nrf2) is a key regulator for induction of hepatic detoxification and antioxidant mechanisms, as well as for certain hepatobiliary transporters. To examine the role of Nrf2 in bile acid homeostasis and cholestasis, we assessed the determinants of bile secretion and bile acid synthesis and transport before and after bile duct ligation (BDL) in Nrf2(-/-) mice. Our findings indicate reduced rates of biliary bile acid and GSH excretion, higher levels of intrahepatic bile acids, and decreased expression of regulators of bile acid synthesis, Cyp7a1 and Cyp8b1, in Nrf2(-/-) compared with wild-type control mice. The mRNA expression of the bile acid transporters bile salt export pump (Bsep) and organic solute transporter (Ostα) were increased in the face of impaired expression of the multidrug resistance-associated proteins Mrp3 and Mrp4. Deletion of Nrf2 also decreased ileal apical sodium-dependent bile acid transporter (Asbt) expression, leading to reduced bile acid reabsorption and increased loss of bile acid in feces. Finally, when cholestasis is induced by BDL, liver injury was not different from that in wild-type BDL mice. These Nrf2(-/-) mice also had increased pregnane X receptor (Pxr) and Cyp3a11 mRNA expression in association with enhanced hepatic bile acid hydroxylation. In conclusion, this study finds that Nrf2 plays a major role in the regulation of bile acid homeostasis in the liver and intestine. Deletion of Nrf2 results in a cholestatic phenotype but does not augment liver injury following BDL.
Collapse
Affiliation(s)
- Jittima Weerachayaphorn
- 1Department of Internal Medicine, Liver Center, Yale University, School of Medicine, New Haven, Connecticut; ,2Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand;
| | - Albert Mennone
- 1Department of Internal Medicine, Liver Center, Yale University, School of Medicine, New Haven, Connecticut;
| | - Carol J. Soroka
- 1Department of Internal Medicine, Liver Center, Yale University, School of Medicine, New Haven, Connecticut;
| | - Kathy Harry
- 1Department of Internal Medicine, Liver Center, Yale University, School of Medicine, New Haven, Connecticut;
| | - Lee R. Hagey
- 3Division of Gastroenterology, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, California; and
| | - Thomas W. Kensler
- 4Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
| | - James L. Boyer
- 1Department of Internal Medicine, Liver Center, Yale University, School of Medicine, New Haven, Connecticut;
| |
Collapse
|
36
|
More VR, Wen X, Thomas PE, Aleksunes LM, Slitt AL. Severe diabetes and leptin resistance cause differential hepatic and renal transporter expression in mice. COMPARATIVE HEPATOLOGY 2012; 11:1. [PMID: 22524730 PMCID: PMC3416584 DOI: 10.1186/1476-5926-11-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 04/23/2012] [Indexed: 12/29/2022]
Abstract
Background Type-2 Diabetes is a major health concern in the United States and other Westernized countries, with prevalence increasing yearly. There is a need to better model and predict adverse drug reactions, drug-induced liver injury, and drug efficacy in this population. Because transporters significantly contribute to drug clearance and disposition, it is highly significant to determine whether a severe diabetes phenotype alters drug transporter expression, and whether diabetic mouse models have altered disposition of acetaminophen (APAP) metabolites. Results Transporter mRNA and protein expression were quantified in livers and kidneys of adult C57BKS and db/db mice, which have a severe diabetes phenotype due to a lack of a functional leptin receptor. The urinary excretion of acetaminophen-glucuronide, a substrate for multidrug resistance-associated proteins transporters was also determined. The mRNA expression of major uptake transporters, such as organic anion transporting polypeptide Slco1a1 in liver and kidney, 1a4 in liver, and Slc22a7 in kidney was decreased in db/db mice. In contrast, Abcc3 and 4 mRNA and protein expression was more than 2 fold higher in db/db male mouse livers as compared to C57BKS controls. Urine levels of APAP-glucuronide, -sulfate, and N-acetyl cysteine metabolites were higher in db/db mice. Conclusion A severe diabetes phenotype/presentation significantly altered drug transporter expression in liver and kidney, which corresponded with urinary APAP metabolite levels.
Collapse
Affiliation(s)
- Vijay R More
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA.
| | | | | | | | | |
Collapse
|
37
|
Tan KP, Wood GA, Yang M, Ito S. Participation of nuclear factor (erythroid 2-related), factor 2 in ameliorating lithocholic acid-induced cholestatic liver injury in mice. Br J Pharmacol 2011; 161:1111-21. [PMID: 20977460 DOI: 10.1111/j.1476-5381.2010.00953.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Lithocholic acid (LCA), the most toxic bile acid, induces cholestatic liver injury in rodents. We previously showed that LCA activates the oxidative stress-responsive nuclear factor (erythroid-2 like), factor 2 (Nrf2) in cultured liver cells, triggering adaptive responses that reduce cell injury. In this study, we determined whether Nrf2 protects the liver against LCA-induced toxicity in vivo. EXPERIMENTAL APPROACH Nrf2 disrupted (Nrf2(-/-) ) and wild-type mice were treated with LCA (125 mg·kg(-1) body weight) to induce liver injury. Levels of mRNA, protein and function of important Nrf2 target genes coupled with liver histology and injury biomarkers of mice were examined. KEY RESULTS In 4 day LCA treatments, we observed a significantly higher hepatic induction of Nrf2 target, cytoprotective genes including thioredoxin reductase 1, glutamate cysteine ligase subunits, glutathione S-transferases, haeme oxygenase-1 and multidrug resistance-associated proteins 3 and 4 in the wild type as compared with the Nrf2(-/-) mice. Moreover, basal and LCA-induced hepatic glutathione and activities of glutathione S-transferases and thioredoxin reductases were higher in wild-type than in Nrf2(-/-) mice. This reduced production of cytoprotective genes against LCA toxicity rendered Nrf2(-/-) mice more susceptible to severe liver damage with the presence of multifocal liver necrosis, inflamed bile ducts and elevation of lipid peroxidation and liver injury biomarkers, such as alanine aminotransferase and alkaline phosphatase. CONCLUSIONS AND IMPLICATIONS Nrf2 plays a crucial cytoprotective role against LCA-induced liver injury by orchestrating adaptive responses. The pharmacological potential of targeting liver Nrf2 in the management of cholestatic liver diseases is proposed.
Collapse
Affiliation(s)
- K P Tan
- Division of Clinical Pharmacology & Toxicology, Physiology and Experimental Medicine Program, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
38
|
Hardwick RN, Fisher CD, Canet MJ, Lake AD, Cherrington NJ. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab Dispos 2010; 38:2293-301. [PMID: 20805291 PMCID: PMC2993454 DOI: 10.1124/dmd.110.035006] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/30/2010] [Indexed: 01/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), which occurs in approximately 17 to 40% of Americans, encompasses progressive stages of liver damage ranging from steatosis to nonalcoholic steatohepatitis (NASH). Inflammation and oxidative stress are known characteristics of NAFLD; however, the precise mechanisms occurring during disease progression remain unclear. The purpose of the current study was to determine whether the expression or function of enzymes involved in the antioxidant response, NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione transferase (GST), and glutamate cysteine ligase, are altered in the progression of human NAFLD. Human livers staged as normal, steatotic, NASH (fatty), and NASH (not fatty) were obtained from the Liver Tissue Cell Distribution System. NQO1 mRNA, protein, and activity tended to increase with disease progression. mRNA levels of the GST isoforms A1, A2, A4, M3, and P1 increased with NAFLD progression. Likewise, GST A and P protein increased with progression; however, GST M protein levels tended to decrease. Of interest, total GST activity toward the substrate 1-chloro-2,4-dinitrobenzene decreased with NAFLD progression. GSH synthesis does not seem to be significantly dysregulated in NAFLD progression; however, the GSH/oxidized glutathione redox ratio seemed to be reduced with disease severity, indicating the presence of oxidative stress and depletion of GSH throughout progression of NAFLD. Malondialdehyde concentrations were significantly increased with disease progression, further indicating the presence of oxidative stress. Nuclear immunohistochemical staining of nuclear factor E2-related factor 2 (Nrf2), an indicator of activation of the transcription factor, was evident in all stages of NAFLD. The current data suggest that Nrf2 activation occurs in response to disease progression followed by induction of specific Nrf2 targets, whereas functionality of specific antioxidant defense enzymes seems to be impaired as NAFLD progresses.
Collapse
Affiliation(s)
- Rhiannon N Hardwick
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | | | | | | | | |
Collapse
|
39
|
Lu H, Gonzalez FJ, Klaassen C. Alterations in hepatic mRNA expression of phase II enzymes and xenobiotic transporters after targeted disruption of hepatocyte nuclear factor 4 alpha. Toxicol Sci 2010; 118:380-90. [PMID: 20935164 DOI: 10.1093/toxsci/kfq280] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4a) is a liver-enriched master regulator of liver function. HNF4a is important in regulating hepatic expression of certain cytochrome P450s. The purpose of this study was to use mice lacking HNF4a expression in liver (HNF4a-HNull) to elucidate the role of HNF4a in regulating hepatic expression of phase II enzymes and transporters in mice. Compared with male wild-type mice, HNF4a-HNull male mouse livers had (1) markedly lower messenger RNAs (mRNAs) encoding the uptake transporters sodium taurocholate cotransporting polypeptide, organic anion transporting polypeptide (Oatp) 1a1, Oatp2b1, organic anion transporter 2, sodium phosphate cotransporter type 1, sulfate anion transporter 1, sodium-dependent vitamin C transporter 1, the phase II enzymes Uridine 5'-diphospho (UDP)-glucuronosyltransferase (Ugt) 2a3, Ugt2b1, Ugt3a1, Ugt3a2, sulfotransferase (Sult) 1a1, Sult1b1, Sult5a1, the efflux transporters multidrug resistance-associated protein (Mrp) 6, and multidrug and toxin extrusion 1; (2) moderately lower mRNAs encoding Oatp1b2, organic cation transporter (Oct) 1, Ugt1a5, Ugt1a9, glutathione S-transferase (Gst) m4, Gstm6, and breast cancer resistance protein; but (3) higher mRNAs encoding Oatp1a4, Octn2, Ugt1a1, Sult1e1, Sult2a2, Gsta4, Gstm1-m3, multidrug resistance protein (Mdr) 1a, Mrp3, and Mrp4. Hepatic signaling of nuclear factor E2-related factor 2 and pregnane X receptor appear to be activated in HNF4a-HNull mice. In conclusion, HNF4a deficiency markedly alters hepatic mRNA expression of a large number of phase II enzymes and transporters, probably because of the loss of HNF4a, which is a transactivator and a determinant of gender-specific expression and/or adaptive activation of signaling pathways important in hepatic regulation of these phase II enzymes and transporters.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
40
|
Xu S, Weerachayaphorn J, Cai SY, Soroka CJ, Boyer JL. Aryl hydrocarbon receptor and NF-E2-related factor 2 are key regulators of human MRP4 expression. Am J Physiol Gastrointest Liver Physiol 2010; 299:G126-35. [PMID: 20395535 PMCID: PMC2904108 DOI: 10.1152/ajpgi.00522.2010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multidrug resistance protein 4 (MRP4; ABCC4) is an ATP binding cassette transporter that facilitates the excretion of bile salt conjugates and other conjugated steroids in hepatocytes and renal proximal tubule epithelium. MRP4/Mrp4 undergoes adaptive upregulation in response to oxidative and cholestatic liver injury in human and animal models of cholestasis. However, the molecular mechanism of this regulation remains to be determined. The aryl hydrocarbon receptor (AhR) and NF-E2-related factor 2 (Nrf2) play important roles in protecting cells from oxidative stress. Here we examine the role of these two nuclear factors in the regulation of the expression of human MRP4. HepG2 cells and human hepatocytes were treated with the AhR and Nrf2 activators, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3-methylcholanthrene (3-MC), or oltipraz and other nuclear receptor agonists. TCDD, 3-MC, and oltipraz significantly increased MRP4 expression at mRNA and protein levels. Computer program analysis revealed three Xenobiotic response element (XRE) and one Maf response element sites within the first 500 bp of the MRP4 proximal promoter. Luciferase reporter assay detected strong promoter activity (53-fold higher than vector control) in this region. TCDD and 3-MC also induced promoter activity in the reporter assays. Mutation of any of these XRE sites significantly decreased MRP4 promoter activity in reporter assays, although XRE2 demonstrated the strongest effects on both basal and TCDD-inducible activity. EMSA and chromatin immunoprecipitation assays further confirmed that both AhR and Nrf2 bind to the proximal promoter of MRP4. Our findings indicate that AhR and Nrf2 play important roles in regulating MRP4 expression and suggest that agents that activate their activity may be of therapeutic benefit for cholestasis.
Collapse
Affiliation(s)
- Shuhua Xu
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Jittima Weerachayaphorn
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Shi-Ying Cai
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Carol J. Soroka
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - James L. Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
41
|
Yang H, Ko K, Xia M, Li TWH, Oh P, Li J, Lu SC. Induction of avian musculoaponeurotic fibrosarcoma proteins by toxic bile acid inhibits expression of glutathione synthetic enzymes and contributes to cholestatic liver injury in mice. Hepatology 2010; 51:1291-301. [PMID: 20146260 PMCID: PMC2908963 DOI: 10.1002/hep.23471] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED We previously showed that hepatic expression of glutathione (GSH) synthetic enzymes and GSH levels fell 2 weeks after bile duct ligation (BDL) in mice. This correlated with a switch in nuclear anti-oxidant response element (ARE) binding activity from nuclear factor erythroid 2-related factor 2 (Nrf2) to c-avian musculoaponeurotic fibrosarcoma (c-Maf)/V-maf musculoaponeurotic fibrosarcoma oncogene homolog G (MafG). Our current aims were to examine whether the switch in ARE binding activity from Nrf2 to Mafs is responsible for decreased expression of GSH synthetic enzymes and the outcome of blocking this switch. Huh7 cells treated with lithocholic acid (LCA) exhibited a similar pattern of change in GSH synthetic enzyme expression as BDL mice. Nuclear protein levels of Nrf2 fell at 20 hours after LCA treatment, whereas c-Maf and MafG remained persistently induced. These changes translated to ARE nuclear binding activity. Knockdown of c-Maf or MafG individually blunted the LCA-induced decrease in Nrf2 ARE binding and increased ARE-dependent promoter activity, whereas combined knockdown was more effective. Knockdown of c-Maf or MafG individually increased the expression of GSH synthetic enzymes and raised GSH levels, and combined knockdown exerted an additive effect. Ursodeoxycholic acid (UDCA) or S-adenosylmethionine (SAMe) prevented the LCA-induced decrease in expression of GSH synthetic enzymes and promoter activity and prevented the increase in MafG and c-Maf levels. In vivo knockdown of the Maf genes protected against the decrease in GSH enzyme expression, GSH level, and liver injury after BDL. CONCLUSION Toxic bile acid induces a switch from Nrf2 to c-Maf/MafG ARE nuclear binding, which leads to decreased expression of GSH synthetic enzymes and GSH levels and contributes to liver injury during BDL. UDCA and SAMe treatment targets this switch.
Collapse
Affiliation(s)
- Heping Yang
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine USC, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhang YKJ, Yeager RL, Tanaka Y, Klaassen CD. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet. Toxicol Appl Pharmacol 2010; 245:326-34. [PMID: 20350562 DOI: 10.1016/j.taap.2010.03.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/15/2010] [Accepted: 03/21/2010] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been proposed as an important promoter of the progression of fatty liver diseases. The current study investigates the potential functions of the Nrf2-Keap1 signaling pathway, an important hepatic oxidative stress sensor, in a rodent fatty liver model. Mice with no (Nrf2-null), normal (wild type, WT), and enhanced (Keap1 knockdown, K1-kd) expression of Nrf2 were fed a methionine- and choline-deficient (MCD) diet or a control diet for 5 days. Compared to WT mice, the MCD diet-caused hepatosteatosis was more severe in the Nrf2-null mice and less in the K1-kd mice. The Nrf2-null mice had lower hepatic glutathione and exhibited more lipid peroxidation, whereas the K1-kd mice had the highest amount of glutathione in the liver and developed the least lipid peroxidation among the three genotypes fed the MCD diet. The Nrf2 signaling pathway was activated by the MCD diet, and the Nrf2-targeted cytoprotective genes Nqo1 and Gstalpha1/2 were induced in WT and even more in K1-kd mice. In addition, Nrf2-null mice on both control and MCD diets exhibited altered expression profiles of fatty acid metabolism genes, indicating Nrf2 may influence lipid metabolism in liver. For example, mRNA levels of long chain fatty acid translocase CD36 and the endocrine hormone Fgf21 were higher in livers of Nrf2-null mice and lower in the K1-kd mice than WT mice fed the MCD diet. Taken together, these observations indicate that Nrf2 could decelerate the onset of fatty livers caused by the MCD diet by increasing hepatic antioxidant and detoxification capabilities.
Collapse
Affiliation(s)
- Yu-Kun Jennifer Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
43
|
Noll C, Planque C, Ripoll C, Guedj F, Diez A, Ducros V, Belin N, Duchon A, Paul JL, Badel A, de Freminville B, Grattau Y, Bléhaut H, Herault Y, Janel N, Delabar JM. DYRK1A, a novel determinant of the methionine-homocysteine cycle in different mouse models overexpressing this Down-syndrome-associated kinase. PLoS One 2009; 4:e7540. [PMID: 19844572 PMCID: PMC2760102 DOI: 10.1371/journal.pone.0007540] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/25/2009] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hyperhomocysteinemia, characterized by increased plasma homocysteine level, is associated with an increased risk of atherosclerosis. On the contrary, patients with Down syndrome appear to be protected from the development of atherosclerosis. We previously found a deleterious effect of hyperhomocysteinemia on expression of DYRK1A, a Down-syndrome-associated kinase. As increased expression of DYRK1A and low plasma homocysteine level have been associated with Down syndrome, we aimed to analyze the effect of its over-expression on homocysteine metabolism in mice. METHODOLOGY/PRINCIPAL FINDINGS Effects of DYRK1A over-expression were examined by biochemical analysis of methionine metabolites, real-time quantitative reverse-transcription polymerase chain reaction, and enzyme activities. We found that over-expression of Dyrk1a increased the hepatic NAD(P)H:quinone oxidoreductase and S-adenosylhomocysteine hydrolase activities, concomitant with decreased level of plasma homocysteine in three mice models overexpressing Dyrk1a. Moreover, these effects were abolished by treatment with harmine, the most potent and specific inhibitor of Dyrk1a. The increased NAD(P)H:quinone oxidoreductase and S-adenosylhomocysteine hydrolase activities were also found in lymphoblastoid cell lines from patients with Down syndrome. CONCLUSIONS/SIGNIFICANCE Our results might give clues to understand the protective effect of Down syndrome against vascular defect through a decrease of homocysteine level by DYRK1A over-expression. They reveal a link between the Dyrk1a signaling pathway and the homocysteine cycle.
Collapse
Affiliation(s)
- Christophe Noll
- University Paris Diderot-CNRS EAC 4413, Unit of Functional and Adaptive Biology (BFA), Paris, France
| | - Chris Planque
- University Paris Diderot-CNRS EAC 4413, Unit of Functional and Adaptive Biology (BFA), Paris, France
| | - Clémentine Ripoll
- University Paris Diderot-CNRS EAC 4413, Unit of Functional and Adaptive Biology (BFA), Paris, France
| | - Fayçal Guedj
- University Paris Diderot-CNRS EAC 4413, Unit of Functional and Adaptive Biology (BFA), Paris, France
| | - Anna Diez
- University Paris Diderot-CNRS EAC 4413, Unit of Functional and Adaptive Biology (BFA), Paris, France
| | - Véronique Ducros
- Département de Biologie Intégrée, unité fonctionnelle de nutrition, CHU Grenoble, Grenoble, France
| | - Nicole Belin
- Département de Biologie Intégrée, unité fonctionnelle de nutrition, CHU Grenoble, Grenoble, France
| | - Arnaud Duchon
- UMR6218 CNRS, Immunology and Molecular Embryology, UPS44, Institut de Transgenose, Orléans, France
| | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, Paris, France
- Université Paris-Sud, UMR 1154-INRA, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Anne Badel
- UMR-S 973, molécule thérapeutique in silico, University Paris Diderot, Paris, France
| | | | | | | | - Yann Herault
- UMR6218 CNRS, Immunology and Molecular Embryology, UPS44, Institut de Transgenose, Orléans, France
| | - Nathalie Janel
- University Paris Diderot-CNRS EAC 4413, Unit of Functional and Adaptive Biology (BFA), Paris, France
| | - Jean-Maurice Delabar
- University Paris Diderot-CNRS EAC 4413, Unit of Functional and Adaptive Biology (BFA), Paris, France
| |
Collapse
|
44
|
Reisman SA, Aleksunes LM, Klaassen CD. Oleanolic acid activates Nrf2 and protects from acetaminophen hepatotoxicity via Nrf2-dependent and Nrf2-independent processes. Biochem Pharmacol 2009; 77:1273-82. [PMID: 19283895 DOI: 10.1016/j.bcp.2008.12.028] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oleanolic acid is a plant-derived triterpenoid, which protects against various hepatotoxicants in rodents. In order to determine whether oleanolic acid activates nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor known to induce various antioxidant and cytoprotective genes, wild-type and Nrf2-null mice were treated with oleanolic acid (90 mg/kg, i.p.) once daily for 3 days. Oleanolic acid increased nuclear accumulation of Nrf2 in wild-type but not Nrf2-null mice, as determined by Western blot and immunofluorescence. Oleanolic acid-treated wild-type mice had increased hepatic mRNA expression of the Nrf2 target genes NAD(P)H:quinone oxidoreductase 1 (Nqo1); glutamate-cysteine ligase, catalytic subunit (Gclc); heme oxygenase-1 (Ho-1); as well as Nrf2 itself. In addition, oleanolic acid increased protein expression and enzyme activity of the prototypical Nrf2 target gene, Nqo1, in wild-type, but not in Nrf2-null mice. Oleanolic acid protected against acetaminophen hepatotoxicity in wild-type mice but to a lesser extent in Nrf2-null mice. Oleanolic acid-mediated Nrf2-independent protection from acetaminophen is, in part, due to induction of Nrf2-independent cytoprotective genes, such as metallothionein. Collectively, the present study demonstrates that oleanolic acid facilitates Nrf2 nuclear accumulation, causing induction of Nrf2-dependent genes, which contributes to protection from acetaminophen hepatotoxicity.
Collapse
Affiliation(s)
- Scott A Reisman
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, 66160-7417, USA
| | | | | |
Collapse
|
45
|
Tanaka Y, Aleksunes LM, Cui YJ, Klaassen CD. ANIT-induced intrahepatic cholestasis alters hepatobiliary transporter expression via Nrf2-dependent and independent signaling. Toxicol Sci 2009; 108:247-57. [PMID: 19181614 DOI: 10.1093/toxsci/kfp020] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Alpha-naphthylisothiocyanate (ANIT) causes intrahepatic cholestasis by injuring biliary epithelial cells. Adaptive regulation of hepatobiliary transporter expression has been proposed to reduce liver injury during cholestasis. Recently, the oxidative stress transcription factor Nrf2 (nf-e2-related factor 2) was shown to regulate expression of hepatobiliary transporters. The purpose of this study was to determine whether ANIT-induced hepatotoxicity and regulation of hepatobiliary transporters are altered in the absence of Nrf2. For this purpose, wild-type and Nrf2-null mice were administered ANIT (75 mg/kg po). Surprisingly, ANIT-induced hepatotoxicity was similar in both genotypes at 48 h. Accumulation of bile acids in serum and liver was lower in Nrf2-null mice compared with wild-types treated with ANIT. Transporter mRNA profiles differed between wild-type and Nrf2-null mice after ANIT. Bsep (bile salt export pump), Mdr2 (multidrug resistance gene), and Mrp3 (multidrug resistance-associated protein) efflux transporters were increased by ANIT in wild-type, but not in Nrf2-null mice. In contrast, mRNA expression of two hepatic uptake transporters, Ntcp (sodium-taurocholate cotransporting polypeptide) and Oatp1b2 (organic anion transporting peptide), were decreased in both genotypes after ANIT, with larger declines in Nrf2-null mice. mRNA expression of the transcriptional repressor of Ntcp, small heterodimeric partner (SHP), was increased in Nrf2-null mice after ANIT. Furthermore, hepatocyte nuclear factor 1alpha (HNF1alpha), which regulates Oatp1b2, was downregulated in ANIT-treated Nrf2-null mice. Preferential upregulation of SHP and downregulation of HNF1alpha and uptake transporters likely explains why Nrf2-null mice exhibited similar injury to wild-types after ANIT. A subsequent study revealed that treatment of mice with the Nrf2 activator oltipraz protects against ANIT-induced histological injury. Despite compensatory changes in Nrf2-null mice to limit ANIT toxicity, pharmacological activation of Nrf2 may represent a therapeutic option for intrahepatic cholestasis.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Pharmacology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
46
|
The Nrf2 transcription factor protects from toxin-induced liver injury and fibrosis. J Transl Med 2008; 88:1068-78. [PMID: 18679376 DOI: 10.1038/labinvest.2008.75] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The liver is frequently exposed to insults, including toxic chemicals and alcohol, viral infection or metabolic overload. Although it can fully regenerate after acute injury, chronic liver damage causes liver fibrosis and cirrhosis, which can result in complete liver failure. In this study, we demonstrate that the NF-E2-related factor 2 (Nrf2) transcription factor protects the liver from acute and chronic toxin-mediated damage. Repair of the liver injury that occurs after a single treatment with the hepatotoxin carbon tetrachloride (CCl(4)) was severely delayed in Nrf2-deficient mice. The defect in repair was accompanied by an enhanced and prolonged inflammatory and profibrotic response. After long-term CCl(4) treatment, liver fibrosis was strongly aggravated in the Nrf2 knockout mice and inflammation was enhanced. We demonstrate that these abnormalities are at least in part due to the reduced expression of known and novel Nrf2 target genes in hepatocytes, which encode enzymes involved in the detoxification of CCl(4) and its metabolites. These results suggest that activation of Nrf2 may be a novel strategy to prevent or ameliorate toxin-induced liver injury and fibrosis.
Collapse
|
47
|
Merrell MD, Jackson JP, Augustine LM, Fisher CD, Slitt AL, Maher JM, Huang W, Moore DD, Zhang Y, Klaassen CD, Cherrington NJ. The Nrf2 activator oltipraz also activates the constitutive androstane receptor. Drug Metab Dispos 2008; 36:1716-21. [PMID: 18474683 PMCID: PMC3693743 DOI: 10.1124/dmd.108.020867] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oltipraz (OPZ) is a well known inducer of NAD(P)H:quinone oxidoreductase (NQO1) along with other enzymes that comprise the nuclear factor E2-related factor 2 (Nrf2) battery of detoxification genes. However, OPZ treatment also induces expression of CYP2B, a gene regulated by the constitutive androstane receptor (CAR). Therefore, this study was designed to determine whether OPZ induces gene expression in the mouse liver through activation of CAR in addition to Nrf2. OPZ increased the mRNA expression of both Cyp2b10 and Nqo1 in C57BL/6 mouse livers. As expected, in livers from Nrf2-/- mice, OPZ induction of Nqo1 was reduced, indicating Nqo1 induction is dependent on Nrf2 activation, whereas Cyp2b10 induction was unchanged. The robust induction of Cyp2b10 by OPZ in wild-type mice was completely absent in CAR-/- mice, revealing a CAR-dependent induction by OPZ. OPZ also induced transcription of the human CYP2B6 promoter-reporter containing the phenobarbital (PB) responsive element in mouse liver using an in vivo transcription assay. Additionally, OPZ induced in vivo nuclear accumulation of CAR at 3 h but, as with PB, was unable to reverse androstanol repression of mouse CAR constitutive activity in transiently transfected HepG2 cells. In summary, OPZ induces expression of Cyp2b10 and Nqo1 via the activation of CAR and Nrf2, respectively.
Collapse
Affiliation(s)
- Matthew D Merrell
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tanaka Y, Aleksunes LM, Yeager RL, Gyamfi MA, Esterly N, Guo GL, Klaassen CD. NF-E2-related factor 2 inhibits lipid accumulation and oxidative stress in mice fed a high-fat diet. J Pharmacol Exp Ther 2008; 325:655-64. [PMID: 18281592 DOI: 10.1124/jpet.107.135822] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) is a transcription factor that is activated by oxidative stress and electrophiles that regulates the expression of numerous detoxifying and antioxidant genes. Previous studies have shown that Nrf2 protects the liver from xenobiotic toxicity; however, whether Nrf2 plays a role in lipid homeostasis in liver is not known. Accordingly, wild-type and Nrf2-null mice were fed a high-fat diet (HFD) for up to 4 weeks. Hepatic gene expression and lipid profiles were analyzed for changes in fatty acid, triglyceride, and cholesterol status. It is interesting to note that HFD reduced the mRNA expression of Nrf2 and its target genes in wild-type mice. The mRNA expression of lipogenic and cholesterologenic transcriptional factors and their target genes, such as sterol regulatory element-binding proteins 1c and 2, fatty acid synthase, acetyl-CoA carboxylase 1, fatty acid elongase, 3-hydroxy-3-methylglutaryl coenzyme A synthase and reductase, and low-density lipoprotein receptor mRNA expression were higher in Nrf2-null mice compared with wild-type mice after feeding a HFD, suggesting that Nrf2 may suppress these pathways. Hepatic triglycerides and cholesterol levels were not different between genotypes, whereas concentrations of hepatic free fatty acid and malondialdehyde equivalents were higher in Nrf2-null mice compared with wild-type mice 4 weeks after HFD feeding. Overall, these results suggest that Nrf2 inhibits lipid accumulation and oxidative stress in mouse liver after feeding a HFD, probably by interfering with lipogenic and cholesterologenic pathways.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Lickteig AJ, Fisher CD, Augustine LM, Cherrington NJ. Genes of the antioxidant response undergo upregulation in a rodent model of nonalcoholic steatohepatitis. J Biochem Mol Toxicol 2007; 21:216-20. [PMID: 17721935 DOI: 10.1002/jbt.20177] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nonalcoholic fatty liver disease encompasses a spectrum of hepatic pathologies ranging from simple fatty liver to an inflammatory state known as nonalcoholic steatohepatitis (NASH). NASH is also characterized by severe hepatic oxidative stress. The goal of this study was to determine whether genes of the antioxidant response are induced in rodent models of nonalcoholic fatty liver disease. To simulate simple fatty liver and NASH, respectively, male Sprague-Dawley rats were fed a high-fat (HF) or a methionine and choline-deficient (MCD) diet for 8 weeks. Key marker genes of the antioxidant response that are known to undergo upregulation via activation of Nuclear Factor Erythroid 2-Related Factor 2 were measured using the branched DNA signal amplification assay. Messenger RNA levels of the antioxidant response, including NAD(P)H:quinone oxidoreductase-1 (Nqo1), Glutamate cysteine ligase catalytic (Gclc), and Heme oxygenase-1 (Ho-1), were significantly induced in MCD rat liver but not in HF rat liver. Furthermore, Nqo1 protein expression and activity underwent significant upregulation in MCD rat liver but not in HF rat liver. These data strongly indicate that the pathology induced by the MCD dietary model of NASH results in upregulation of the antioxidant response in rats.
Collapse
Affiliation(s)
- Andrew J Lickteig
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|