1
|
Otálora-Otálora BA, Payán-Gómez C, López-Rivera JJ, Pedroza-Aconcha NB, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Global transcriptomic network analysis of the crosstalk between microbiota and cancer-related cells in the oral-gut-lung axis. Front Cell Infect Microbiol 2024; 14:1425388. [PMID: 39228892 PMCID: PMC11368877 DOI: 10.3389/fcimb.2024.1425388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
Background The diagnosis and treatment of lung, colon, and gastric cancer through the histologic characteristics and genomic biomarkers have not had a strong impact on the mortality rates of the top three global causes of death by cancer. Methods Twenty-five transcriptomic analyses (10 lung cancer, 10 gastric cancer, and 5 colon cancer datasets) followed our own bioinformatic pipeline based on the utilization of specialized libraries from the R language and DAVID´s gene enrichment analyses to identify a regulatory metafirm network of transcription factors and target genes common in every type of cancer, with experimental evidence that supports its relationship with the unlocking of cell phenotypic plasticity for the acquisition of the hallmarks of cancer during the tumoral process. The network's regulatory functional and signaling pathways might depend on the constant crosstalk with the microbiome network established in the oral-gut-lung axis. Results The global transcriptomic network analysis highlighted the impact of transcription factors (SOX4, TCF3, TEAD4, ETV4, and FOXM1) that might be related to stem cell programming and cancer progression through the regulation of the expression of genes, such as cancer-cell membrane receptors, that interact with several microorganisms, including human T-cell leukemia virus 1 (HTLV-1), the human papilloma virus (HPV), the Epstein-Barr virus (EBV), and SARS-CoV-2. These interactions can trigger the MAPK, non-canonical WNT, and IFN signaling pathways, which regulate key transcription factor overexpression during the establishment and progression of lung, colon, and gastric cancer, respectively, along with the formation of the microbiome network. Conclusion The global transcriptomic network analysis highlights the important interaction between key transcription factors in lung, colon, and gastric cancer, which regulates the expression of cancer-cell membrane receptors for the interaction with the microbiome network during the tumorigenic process.
Collapse
Affiliation(s)
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá, Colombia
| | | | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá, Colombia
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá, Colombia
| | | |
Collapse
|
2
|
Zanatta D, Betanzos A, Azuara-Liceaga E, Montaño S, Orozco E. Entamoeba histolytica: EhADH, an Alix Protein, Participates in Several Virulence Events through Its Different Domains. Int J Mol Sci 2024; 25:7609. [PMID: 39062867 PMCID: PMC11277477 DOI: 10.3390/ijms25147609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Entamoeba histolytica is the protozoan causative of human amoebiasis. The EhADH adhesin (687 aa) is a protein involved in tissue invasion, phagocytosis and host-cell lysis. EhADH adheres to the prey and follows its arrival to the multivesicular bodies. It is an accessory protein of the endosomal sorting complexes required for transport (ESCRT) machinery. Here, to study the role of different parts of EhADH during virulence events, we produced trophozoites overexpressing the three domains of EhADH, Bro1 (1-400 aa), Linker (246-446 aa) and Adh (444-687 aa) to evaluate their role in virulence. The TrophozBro11-400 slightly increased adherence and phagocytosis, but these trophozoites showed a higher ability to destroy cell monolayers, augment the permeability of cultured epithelial cells and mouse colon, and produce more damage to hamster livers. The TrophozLinker226-446 also increased the virulence properties, but with lower effect than the TrophozBro11-400. In addition, this fragment participates in cholesterol transport and GTPase binding. Interestingly, the TrophozAdh444-687 produced the highest effect on adherence and phagocytosis, but it poorly influenced the monolayers destruction; nevertheless, they augmented the colon and liver damage. To identify the protein partners of each domain, we used recombinant peptides. Pull-down assays and mass spectrometry showed that Bro1 domain interplays with EhADH, Gal/GalNAc lectin, EhCPs, ESCRT machinery components and cytoskeleton proteins. While EhADH, ubiquitin, EhRabB, EhNPC1 and EhHSP70 were associated to the Linker domain, and EhADH, EhHSP70, EhPrx and metabolic enzymes interacted to the Adh domain. The diverse protein association confirms that EhADH is a versatile molecule with multiple functions probably given by its capacity to form distinct molecular complexes.
Collapse
Affiliation(s)
- Dxinegueela Zanatta
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of National Polytechnic Institute, Mexico City 07360, Mexico;
| | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of National Polytechnic Institute, Mexico City 07360, Mexico;
| | - Elisa Azuara-Liceaga
- Postgraduate in Genomic Sciences, Autonomous University of Mexico City, Mexico City 03100, Mexico;
| | - Sarita Montaño
- Laboratory of Bioinformatics and Molecular Simulation, Faculty of Biological Chemistry Sciences, Autonomous University of Sinaloa, Sinaloa 80030, Mexico;
| | - Esther Orozco
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of National Polytechnic Institute, Mexico City 07360, Mexico;
| |
Collapse
|
3
|
Zao YJ, Cheng G, Feng MM, Wang YX, Zhang ZF, Zhang X, Jiang P. Trichinella spiralis cathepsin B bound and degraded host's intestinal type I collagen. Int J Biol Macromol 2024; 257:128728. [PMID: 38092101 DOI: 10.1016/j.ijbiomac.2023.128728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/12/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
Trichinellosis is a zoonotic parasitic disease that poses threats to human health, the meat industry, food safety, and huge financial losses. The critical stage of Trichinella spiralis (T. spiralis) infection is the invasion of intestinal larvae into the host's intestinal epithelial cells (IECs). T. spiralis Cathepsin B (TsCB) specifically interacts with IECs to facilitate the invasion of larvae. This study aims to look at how TsCB affects mouse IECs. TsCB was successfully cloned, expressed, and characterized, demonstrating its natural cysteine protease hydrolysis activity. A total of 140 proteins that interact with rTsCB were identified by GST pull-down combined with LC-MS/MS, including type I collagen, an essential component of the host's intestinal epithelial barrier system and intimately related to intestinal epithelial damage. TsCB transcription and expression levels rise, whereas type I collagen in the host's intestinal mucosa declines when the T. spiralis larvae invaded. Besides, it was discovered that TsCB bound to and degraded type I collagen of the host's intestine. This research can serve as a foundation for clarifying how T. spiralis invades the host's intestinal barrier and might provide information on potential targets for the creation of novel treatments to treat parasite illnesses.
Collapse
Affiliation(s)
- You Jiao Zao
- Department of Pathogen Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Yunan University School of Medicine, Kunming 650091, PR China
| | - Ge Cheng
- Department of Pathogen Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Miao Miao Feng
- Department of Pathogen Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yi Xuan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zi Fang Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xi Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Peng Jiang
- Department of Pathogen Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
4
|
Liu RD, Meng XY, Li CL, Lin XZ, Xu QY, Xu H, Long SR, Cui J, Wang ZQ. Trichinella spiralis cathepsin L damages the tight junctions of intestinal epithelial cells and mediates larval invasion. PLoS Negl Trop Dis 2023; 17:e0011816. [PMID: 38048314 PMCID: PMC10721182 DOI: 10.1371/journal.pntd.0011816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/14/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Cathepsin L, a lysosomal enzyme, participates in diverse physiological processes. Recombinant Trichinella spiralis cathepsin L domains (rTsCatL2) exhibited natural cysteine protease activity and hydrolyzed host immunoglobulin and extracellular matrix proteins in vitro, but its functions in larval invasion are unknown. The aim of this study was to explore its functions in T. spiralis invasion of the host's intestinal epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS RNAi significantly suppressed the expression of TsCatL mRNA and protein with TsCatL specific siRNA-302. T. spiralis larval invasion of Caco-2 cells was reduced by 39.87% and 38.36%, respectively, when anti-TsCatL2 serum and siRNA-302 were used. Mice challenged with siRNA-302-treated muscle larvae (ML) exhibited a substantial reduction in intestinal infective larvae, adult worm, and ML burden compared to the PBS group, with reductions of 44.37%, 47.57%, and 57.06%, respectively. The development and fecundity of the females from the mice infected with siRNA-302-treated ML was significantly inhibited. After incubation of rTsCatL2 with Caco-2 cells, immunofluorescence test showed that the rTsCatL2 gradually entered into the cells, altered the localization of cellular tight junction proteins (claudin 1, occludin and zo-1), adhesion junction protein (e-cadherin) and extracellular matrix protein (laminin), and intercellular junctions were lost. Western blot showed a 58.65% reduction in claudin 1 expression in Caco-2 cells treated with rTsCatL2. Co-IP showed that rTsCatL2 interacted with laminin and collagen I but not with claudin 1, e-cadherin, occludin and fibronectin in Caco-2 cells. Moreover, rTsCatL2 disrupted the intestinal epithelial barrier by inducing cellular autophagy. CONCLUSIONS rTsCatL2 disrupts the intestinal epithelial barrier and facilitates T. spiralis larval invasion.
Collapse
Affiliation(s)
- Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Xiang Yu Meng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Chen Le Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Xin Zhi Lin
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Qiu Yi Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Han Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
5
|
Morán P, Serrano-Vázquez A, Rojas-Velázquez L, González E, Pérez-Juárez H, Hernández EG, Padilla MDLA, Zaragoza ME, Portillo-Bobadilla T, Ramiro M, Ximénez C. Amoebiasis: Advances in Diagnosis, Treatment, Immunology Features and the Interaction with the Intestinal Ecosystem. Int J Mol Sci 2023; 24:11755. [PMID: 37511519 PMCID: PMC10380210 DOI: 10.3390/ijms241411755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
This review of human amoebiasis is based on the most current knowledge of pathogenesis, diagnosis, treatment, and Entamoeba/microbiota interactions. The most relevant findings during this last decade about the Entamoeba parasite and the disease are related to the possibility of culturing trophozoites of different isolates from infected individuals that allowed the characterization of the multiple pathogenic mechanisms of the parasite and the understanding of the host-parasite relationship in the human. Second, the considerable advances in molecular biology and genetics help us to analyze the genome of Entamoeba, their genetic diversity, and the association of specific genotypes with the different amoebic forms of human amoebiasis. Based on this knowledge, culture and/or molecular diagnostic strategies are now available to determine the Entamoeba species and genotype responsible for invasive intestinal or extraintestinal amoebiasis cases. Likewise, the extensive knowledge of the immune response in amoebiasis with the appearance of new technologies made it possible to design diagnostic tools now available worldwide. Finally, the understanding of the interaction between the Entamoeba species and the intestinal microbiota aids the understanding of the ecology of this parasite in the human environment. These relevant findings will be discussed in this review.
Collapse
Affiliation(s)
- Patricia Morán
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Angélica Serrano-Vázquez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Liliana Rojas-Velázquez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Enrique González
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Horacio Pérez-Juárez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Eric G Hernández
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Maria de Los Angeles Padilla
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Martha E Zaragoza
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| | - Tobías Portillo-Bobadilla
- Unidad de Bioinformática, Bioestadística y Biología Computacional, Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Manuel Ramiro
- División de Estudios de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Cecilia Ximénez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 06726, Mexico
| |
Collapse
|
6
|
Wu J, Yang Y, Liu L, Zhu W, Liu M, Yu X, Li W. ROS-AMPK/mTOR-dependent enterocyte autophagy is involved in the regulation of Giardia infection-related tight junction protein and nitric oxide levels. Front Immunol 2023; 14:1120996. [PMID: 36999034 PMCID: PMC10043474 DOI: 10.3389/fimmu.2023.1120996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Giardia duodenalis, a cosmopolitan noninvasive protozoan parasite of zoonotic concern and public health importance, infects the upper portions of the small intestine and causes one of the most common gastrointestinal diseases globally termed giardiasis, especially in situations lacking safe drinking water and adequate sanitation services. The pathogenesis of giardiasis is complex and involves multiple factors from the interaction of Giardia and intestinal epithelial cells (IECs). Autophagy is an evolutionarily conserved catabolic pathway that involves multiple pathological conditions including infection. Thus far, it remains uncertain if autophagy occurs in Giardia-infected IECs and if autophagic process is associated with the pathogenic factors of giardiasis, such as tight junction (TJ) barrier defects and nitric oxide (NO) release of IECs. Here Giardia-in vitro exposed IECs showed upregulation of a series of autophagy-related molecules, such as LC3, Beclin1, Atg7, Atg16L1, and ULK1, and downregulation of p62 protein. IEC autophagy induced by Giardia was further assessed by using autophagy flux inhibitor, chloroquine (CQ), with the ratio of LC3-II/LC3-I significantly increased and downregulated p62 significantly reversed. Inhibition of autophagy by 3-methyladenine (3-MA) rather than CQ could markedly reverse Giardia-induced downregulation of TJ proteins (claudin-1, claudin-4, occludin, and ZO-1; also known as epithelial cell markers) and NO release, implying the involvement of early-stage autophagy in TJ/NO regulation. We subsequently confirmed the role of ROS-mediated AMPK/mTOR signaling in modulating Giardia-induced autophagy, TJ protein expression, and NO release. In turn, impairment of early-stage autophagy by 3-MA and late-stage autophagy by CQ both exhibited an exacerbated effect on ROS accumulation in IECs. Collectively, we present the first attempt to link the occurrence of IEC autophagy with Giardia infection in vitro, and provides novel insights into the contribution of ROS-AMPK/mTOR-dependent autophagy to Giardia infection-related downregulation of TJ protein and NO levels.
Collapse
|
7
|
Zhou Y, Luo T, Gong Y, Guo Y, Wang D, Gao Z, Sun F, Fu L, Liu H, Pan W, Yang X. The non-oral infection of larval Echinococcus granulosus induces immune and metabolic reprogramming in the colon of mice. Front Immunol 2023; 13:1084203. [PMID: 36713407 PMCID: PMC9880436 DOI: 10.3389/fimmu.2022.1084203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023] Open
Abstract
Background The intestinal tract serves as a critical regulator for nutrient absorption and overall health. However, its involvement in anti-parasitic infection and immunity has been largely neglected, especially when a parasite is not transmitted orally. The present study investigated the colonic histopathology and functional reprogramming in mice with intraperitoneal infection of the larval Echinococcus granulosus (E. granulosus). Results Compared with the control group, the E. granulosus-infected mice exhibited deteriorated secreted mucus, shortened length, decreased expression of tight junction proteins zonula occludens-1 (ZO-1), and occludin in the colon. Moreover, RNA sequencing was employed to characterize colonic gene expression after infection. In total, 3,019 differentially expressed genes (1,346 upregulated and 1,673 downregulated genes) were identified in the colon of infected mice. KEGG pathway and GO enrichment analysis revealed that differentially expressed genes involved in intestinal immune responses, infectious disease-associated pathways, metabolism, or focal adhesion were significantly enriched. Among these, 18 tight junction-relative genes, 44 immune response-associated genes, and 23 metabolic genes were annotated. Furthermore, mebendazole treatment could reverse the colonic histopathology induced by E. granulosus infection. Conclusions Intraperitoneal infection with E. granulosus induced the pathological changes and functional reprogramming in the colon of mice, and mebendazole administration alleviated above alternations, highlighting the significance of the colon as a protective barrier against parasitic infection. The findings provide a novel perspective on host-parasite interplay and propose intestine as a possible target for treating parasitic diseases that are not transmitted orally.
Collapse
Affiliation(s)
- Yuying Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tiancheng Luo
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuying Gong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuxin Guo
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dingmin Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zixuan Gao
- Department of Histology and Embryology, Basic Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Linlin Fu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Health Commission (NHC) Key Laboratory of Parasite and Vector Biology, World Health Organization (WHO) Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
8
|
Kang R, Li S, Perveen A, Shen J, Li C. Effects of maternal T-2 toxin exposure on microorganisms and intestinal barrier function in young mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114252. [PMID: 36332402 DOI: 10.1016/j.ecoenv.2022.114252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
T-2 toxin belongs to the trichothecenes group A compound, mainly produced by Fusarium fungi. It has been shown that T-2 toxin could cross the placental barrier and breast milk, thus endangering the health of offspring. The present study aimed to explore the effects of maternal T-2 toxin exposure on the integrity of the intestinal barrier and the intestinal microflora of young mice. From late pregnancy (GD 14) to lactation (LD 21), pregnant mice were given T-2 toxin daily at 0, 0.005, or 0.05 mg T-2 toxin/kg BW. Postnatal day 21 (PND21), PND28, and PND56 young mice were chosen as objects to detect the influences of maternal T-2 toxin exposure to mice on the offspring. The results showed that maternal exposure to T-2 toxin disturbed the balance of the intestinal microbial flora of the young mice. Villous adhesions and fusion of ileum were observed in T-2-treated groups. In addition, supplementation of T-2 toxin significantly decreased the gene expressions of Claudin 1, Occludin, Tjp1, Il10, Il6, and Tnf in PND 21. However, in PND 28, the expressions of Tnf were significantly increased. The expressions of Claudin 1, Occludin, Tjp1, Il10, Il6 and Tnf were significantly increased after T-2 toxin treatment in PND 56. These results suggested that maternal exposure to T-2 toxin has negative influences on the intestine of young mice, which may be due to the alterations of microbial composition.
Collapse
Affiliation(s)
- Ruifen Kang
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Sheng Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Aneela Perveen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiakun Shen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunmei Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
9
|
Bañuelos C, Betanzos A, Javier-Reyna R, Galindo A, Orozco E. Molecular interplays of the Entamoeba histolytica endosomal sorting complexes required for transport during phagocytosis. Front Cell Infect Microbiol 2022; 12:855797. [PMID: 36389174 PMCID: PMC9647190 DOI: 10.3389/fcimb.2022.855797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/06/2022] [Indexed: 08/23/2024] Open
Abstract
Entamoeba histolytica, the causative agent of human amoebiasis, exhibits a continuous membrane remodelling to exert its virulence properties. During this dynamic process, the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is a key player, particularly in phagocytosis, a virulence hallmark of this parasite. In addition to ESCRT, other molecules contribute to membrane remodelling, including the EhADH adhesin, EhRabs, actin, and the lysobisphosphatidic acid (LBPA). The endocytosis of a prey or molecules induces membrane invaginations, resulting in endosome and multivesicular bodies (MVBs) formation for cargo delivery into lysosomes. Alternatively, some proteins are recycled or secreted. Most of these pathways have been broadly characterized in other biological systems, but poorly described in protozoan parasites. Here, we encompass 10 years of ESCRT research in E. histolytica, highlighting the role of the ESCRT-I and ESCRT-III components and the EhADH and EhVps4-ATPase accessory proteins during phagocytosis. In particular, EhADH exhibits a multifunctional role along the endocytic pathway, from cargo recognition to endosome maturation and lysosomal degradation. Interestingly, the interaction of EhADH with EhVps32 seems to shape a concurrent route to the conventional one for MVBs biogenesis, that could optimize their formation. Furthermore, this adhesin is secreted, but its role in this event remains under study. Other components from the endosomal pathway, such as EhVps23 and LBPA, are also secreted. A proteomic approach performed here, using an anti-LBPA antibody, revealed that some proteins related to membrane trafficking, cellular transport, cytoskeleton dynamics, and transcriptional and translational functions are secreted and associated to LBPA. Altogether, the accumulated knowledge around the ESCRT machinery in E. histolytica, points it out as a dynamic platform facilitating the interaction of molecules participating in different cellular events. Seen as an integrated system, ESCRTs lead to a better understanding of E. histolytica phagocytosis.
Collapse
Affiliation(s)
- Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Abigail Betanzos
- Investigadores por Mexico, Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Ausencio Galindo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
10
|
Wang J, Su L, Zhang L, Zeng J, Chen Q, Deng R, Wang Z, Kuang W, Jin X, Gui S, Xu Y, Lu X. Spirulina platensis aqueous extracts ameliorate colonic mucosal damage and modulate gut microbiota disorder in mice with ulcerative colitis by inhibiting inflammation and oxidative stress. J Zhejiang Univ Sci B 2022; 23:481-501. [PMID: 35686527 DOI: 10.1631/jzus.b2100988] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory bowel disease (IBD) that has become a major gastroenterologic problem during recent decades. Numerous complicating factors are involved in UC development such as oxidative stress, inflammation, and microbiota disorder. These factors exacerbate damage to the intestinal mucosal barrier. Spirulina platensis is a commercial alga with various biological activity that is widely used as a functional ingredient in food and beverage products. However, there have been few studies on the treatment of UC using S. platensis aqueous extracts (SP), and the underlying mechanism of action of SP against UC has not yet been elucidated. Herein, we aimed to investigate the modulatory effect of SP on microbiota disorders in UC mice and clarify the underlying mechanisms by which SP alleviates damage to the intestinal mucosal barrier. Dextran sulfate sodium (DSS) was used to establish a normal human colonic epithelial cell (NCM460) injury model and UC animal model. The mitochondrial membrane potential assay 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) and Hoechst 33258 were carried out to determine the effects of SP on the NCM460 cell injury model. Moreover, hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR), western blot, and 16S ribosomal DNA (rDNA) sequencing were used to explore the effects and underlying mechanisms of action of SP on UC in C57BL/6 mice. In vitro studies showed that SP alleviated DSS-induced NCM460 cell injury. SP also significantly reduced the excessive generation of intracellular reactive oxygen species (ROS) and prevented mitochondrial membrane potential reduction after DSS challenge. In vivo studies indicated that SP administration could alleviate the severity of DSS-induced colonic mucosal damage compared with the control group. Inhibition of inflammation and oxidative stress was associated with increases in the activity of antioxidant enzymes and the expression of tight junction proteins (TJs) post-SP treatment. SP improved gut microbiota disorder mainly by increasing antioxidant enzyme activity and the expression of TJs in the colon. Our findings demonstrate that the protective effect of SP against UC is based on its inhibition of pro-inflammatory cytokine overproduction, inhibition of DSS-induced ROS production, and enhanced expression of antioxidant enzymes and TJs in the colonic mucosal barrier.
Collapse
Affiliation(s)
- Jian Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liqian Su
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lun Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiali Zeng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qingru Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rui Deng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ziyan Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weidong Kuang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, China
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102629, China. ,
| | - Xuemei Lu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Song YY, Lu QQ, Han LL, Yan SW, Zhang XZ, Liu RD, Long SR, Cui J, Wang ZQ. Proteases secreted by Trichinella spiralis intestinal infective larvae damage the junctions of the intestinal epithelial cell monolayer and mediate larval invasion. Vet Res 2022; 53:19. [PMID: 35255974 PMCID: PMC8900307 DOI: 10.1186/s13567-022-01032-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is the first natural barrier against Trichinella spiralis larval invasion, but the mechanism of larval invasion of the gut epithelium is not fully elucidated. The aim of this study was to investigate whether the excretory/secretory proteins (ESPs) of T. spiralis intestinal infective larvae (IIL) degrade tight junction (TJ) proteins, to assess the main ESP proteases hydrolysing TJ proteins using various enzyme inhibitors and to define the key invasive factors in IIL invasion of the gut epithelium. The results of immunofluorescence, Western blot and Transwell assays showed that serine proteases and cysteine proteases in the ESPs played main roles in hydrolysing occludin, claudin-1 and E-cad and upregulating claudin-2 expression. Challenge infection results showed that IIL expulsion from the gut at 12 hpi was significantly higher in mice which were infected with muscle larvae (ML) treated with a single inhibitor (PMSF, E-64, 1,10-Phe or pepstatin) or various mixtures containing PMSF and E-64 than in mice in the PBS group or the groups treated with an inhibitor mixture not containing PMSF and E-64 (P < 0.0001). At 6 days post-infection, mice which were infected with ML treated with PMSF, E-64, 1,10-Phe or pepstatin exhibited 56.30, 64.91, 26.42 and 31.85% reductions in intestinal adult worms compared to mice in the PBS group (P < 0.0001). The results indicate that serine proteases and cysteine proteases play key roles in T. spiralis IIL invasion, growth and survival in the host and that they may be main candidate target molecules for vaccines against larval invasion and development.
Collapse
Affiliation(s)
- Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Qi Qi Lu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
12
|
Stürzl M, Kunz M, Krug SM, Naschberger E. Angiocrine Regulation of Epithelial Barrier Integrity in Inflammatory Bowel Disease. Front Med (Lausanne) 2021; 8:643607. [PMID: 34409045 PMCID: PMC8365087 DOI: 10.3389/fmed.2021.643607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease describes chronic inflammatory disorders. The incidence of the disease is rising. A major step in disease development is the breakdown of the epithelial cell barrier. Numerous blood vessels are directly located underneath this barrier. Diseased tissues are heavily vascularized and blood vessels significantly contribute to disease progression. The gut-vascular barrier (GVB) is an additional barrier controlling the entry of substances into the portal circulation and to the liver after passing the first epithelial barrier. The presence of the GVB rises the question, whether the vascular and endothelial barriers may communicate bi-directionally in the regulation of selective barrier permeability. Communication from epithelial to endothelial cells is well-accepted. In contrast, little is known on the respective backwards communication. Only recently, perfusion-independent angiocrine functions of endothelial cells were recognized in a way that endothelial cells release specific soluble factors that may directly act on the epithelial barrier. This review discusses the putative involvement of angiocrine inter-barrier communication in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander-University (FAU) of Erlangen-Nürnberg, Erlangen, and Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Susanne M. Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Li C, Bai X, Liu X, Zhang Y, Liu L, Zhang L, Xu F, Yang Y, Liu M. Disruption of Epithelial Barrier of Caco-2 Cell Monolayers by Excretory Secretory Products of Trichinella spiralis Might Be Related to Serine Protease. Front Microbiol 2021; 12:634185. [PMID: 33815318 PMCID: PMC8013981 DOI: 10.3389/fmicb.2021.634185] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
The physical barrier is composed of epithelial cells which are joined together through intercellular connections. It serves to prevent pathogenic microorganisms from departing the intestinal lumen to invade the host. The excretory secretory (ES) products of Trichinella spiralis are critical for invasion. However, whether ES products of T. spiralis can act on the intestinal barrier is still unknown. In this study, the role of ES products of T. spiralis muscle larvae (Ts-ML-ES) in host invasion was studied by establishing an in vitro cell monolayers model. Barrier integrity analysis by a transmembrane resistance test and a paracellular permeability assay revealed that the Ts-ML-ES was able to destroy barrier function. It occurred via a reduction in the expression of tight junction (TJ) proteins, which was induced by serine protease. Furthermore, Western bolt analysis indicated that Ts-ML-ES reduced the expression of TJ proteins via the MAPK signaling pathway. Based on these data, we conclude that serine protease are likely the main factors from Ts-ML-ES that affect host intestinal barrier integrity by reducing the expression of TJs via the P38-MAPK signaling pathway. Serine protease in Ts-ML-ES might be a key invasion factor in T. spiralis.
Collapse
Affiliation(s)
- Chengyao Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yuanyuan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Lei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Lixiao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Fengyan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
14
|
Liu T, Wang C, Wu X, Ren M, Hu Q, Jin E, Gu Y. Effect of Boron on Microstructure, Immune Function, Expression of Tight Junction Protein, Cell Proliferation and Apoptosis of Duodenum in Rats. Biol Trace Elem Res 2021; 199:205-215. [PMID: 32319072 DOI: 10.1007/s12011-020-02123-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Boron is an essential trace element for animals. Appropriate boron supplementation can produce beneficial effects on the animal body, while a high dose of boron has adverse and even toxic effects. Our aim was to investigate the impact of different doses of boron on the microstructure of duodenum in rats, expression of secretory immunoglobulin A (SIgA) and tight junction protein, cell proliferation and apoptosis. Eighty newly weaned clean Sprague-Dawley (SD) rats were given distilled water supplemented with 0, 10, 20, 40, 80, 160, 320, and 640 mg/L of boron for 60 days. We found that supplementation of 40 and 80 mg/L boron could increase the height of duodenal villi and the crypt depth, the number of intraepithelial lymphocytes (IELs) and goblet cells, the expression of SIgA, Zonula occludens-1 (ZO-1) and occludin, and proliferating cell nuclear antigen (PCNA) in duodenum of rats; decrease expression of Caspase-3 mRNA and the number of Caspase-3-positive cells, but supplementation of 320 and 640 mg/L boron could have the opposite effect in these indexes. The results showed that supplemented with 40 and 80 mg/L of boron could improve the structure and function of duodenum, while supplemented with 320-640 mg/L had a significant inhibitory effect.
Collapse
Affiliation(s)
- Ting Liu
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Chenfang Wang
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Xiaoshuang Wu
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
| |
Collapse
|
15
|
Luo C, Huang C, Zhu L, Kong L, Yuan Z, Wen L, Li R, Wu J, Yi J. Betulinic Acid Ameliorates the T-2 Toxin-Triggered Intestinal Impairment in Mice by Inhibiting Inflammation and Mucosal Barrier Dysfunction through the NF-κB Signaling Pathway. Toxins (Basel) 2020; 12:toxins12120794. [PMID: 33322178 PMCID: PMC7763746 DOI: 10.3390/toxins12120794] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
T-2 toxin, a trichothecene mycotoxin produced by Fusarium, is widely distributed in crops and animal feed and frequently induces intestinal damage. Betulinic acid (BA), a plant-derived pentacyclic lupane-type triterpene, possesses potential immunomodulatory, antioxidant and anti-inflammatory biological properties. The current study aimed to explore the protective effect and molecular mechanisms of BA on intestinal mucosal impairment provoked by acute exposure to T-2 toxin. Mice were intragastrically administered BA (0.25, 0.5, or 1 mg/kg) daily for 2 weeks and then injected intraperitoneally with T-2 toxin (4 mg/kg) once to induce an intestinal impairment. BA pretreatment inhibited the loss of antioxidant capacity in the intestine of T-2 toxin-treated mice by elevating the levels of CAT, GSH-PX and GSH and reducing the accumulation of MDA. In addition, BA pretreatment alleviated the T-2 toxin-triggered intestinal immune barrier dysregulation by increasing the SIgA level in the intestine at dosages of 0.5 and 1 mg/kg, increasing IgG and IgM levels in serum at dosages of 0.5 and 1 mg/kg and restoring the intestinal C3 and C4 levels at a dosage of 1 mg/kg. BA administration at a dosage of 1 mg/kg also improved the intestinal chemical barrier by decreasing the serum level of DAO. Moreover, BA pretreatment improved the intestinal physical barrier via boosting the expression of ZO-1 and Occludin mRNAs and restoring the morphology of intestinal villi that was altered by T-2 toxin. Furthermore, treatment with 1 mg/kg BA downregulated the expression of p-NF-κB and p-IκB-α proteins in the intestine, while all doses of BA suppressed the pro-inflammatory cytokines expression of IL-1β, IL-6 and TNF-α mRNAs and increased the anti-inflammatory cytokine expression of IL-10 mRNA in the intestine of T-2 toxin-exposed mice. BA was proposed to exert a protective effect on intestinal mucosal disruption in T-2 toxin-stimulated mice by enhancing the intestinal antioxidant capacity, inhibiting the secretion of inflammatory cytokines and repairing intestinal mucosal barrier functions, which may be associated with BA-mediated inhibition of the NF-κB signaling pathway activation.
Collapse
Affiliation(s)
- Chenxi Luo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
| | - Chenglong Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
- Hunan Co-innovation Center of Animal Production Safety, Changsha 410128, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
- Hunan Co-innovation Center of Animal Production Safety, Changsha 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
- Correspondence: (J.W.); (J.Y.)
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
- Hunan Co-innovation Center of Animal Production Safety, Changsha 410128, China
- Correspondence: (J.W.); (J.Y.)
| |
Collapse
|
16
|
Niu X, Shang H, Chen S, Chen R, Huang J, Miao Y, Cui W, Wang H, Sha Z, Peng D, Zhu R. Effects of Pinus massoniana pollen polysaccharides on intestinal microenvironment and colitis in mice. Food Funct 2020; 12:252-266. [PMID: 33295902 DOI: 10.1039/d0fo02190c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The stability of the intestinal microenvironment is the basis for maintaining the normal physiological activities of the intestine. On the contrary, disordered dynamic processes lead to chronic inflammation and disease pathology. Pinus massoniana pollen polysaccharide (PPPS), isolated from Taishan Pinus massoniana pollen, has been reported with extensive biological activities, including immune regulation. However, the role of PPPS in the intestinal microenvironment and intestinal diseases is still unknown. In this work, we initiated our investigation by using 16S rRNA high-throughput sequencing technology to assess the effect of PPPS on gut microbiota in mice. The result showed that PPPS regulated the composition of gut microbiota in mice and increased the proportion of probiotics. Subsequently, we established immunosuppressive mice using cyclophosphamide (CTX) and found that PPPS regulated the immunosuppressive state of lymphocytes in Peyer's patches (PPs). Moreover, PPPS also regulated systemic immunity by acting on intestinal PPs. PPPS alleviated lipopolysaccharide (LPS) -induced Caco2 cell damage, indicating that PPPS has the ability to reduce the damage and effectively improve the barrier dysfunction in Caco2 cells. In addition, PPPS alleviated colonic injury and relieved colitis symptoms in dextran sodium sulfate (DSS)-induced colitis mice. Overall, our findings indicate that PPPS shows a practical regulatory effect in the intestinal microenvironment, which provides an essential theoretical basis for us to develop the potential application value of PPPS further.
Collapse
Affiliation(s)
- Xiangyun Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Hongqi Shang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Siyan Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Ruichang Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jin Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yongqiang Miao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Wenping Cui
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Huan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Zhou Sha
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Duo Peng
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Ruiliang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China. and Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
17
|
Autophagy Activated by Peroxiredoxin of Entamoeba histolytica. Cells 2020; 9:cells9112462. [PMID: 33198056 PMCID: PMC7696310 DOI: 10.3390/cells9112462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy, an evolutionarily conserved mechanism to remove redundant or dangerous cellular components, plays an important role in innate immunity and defense against pathogens, which, in turn, can regulate autophagy to establish infection within a host. However, for Entamoeba histolytica, an intestinal protozoan parasite causing human amoebic colitis, the interaction with the host cell autophagy mechanism has not been investigated. In this study, we found that E. histolytica peroxiredoxin (Prx), an antioxidant enzyme critical for parasite survival during the invasion of host tissues, could activate autophagy in macrophages. The formation of autophagosomes in macrophages treated with recombinant Prx of E. histolytica for 24 h was revealed by immunofluorescence and immunoblotting in RAW264.7 cells and in mice. Prx was cytotoxic for RAW264.7 macrophages after 48-h treatment, which was partly attributed to autophagy-dependent cell death. RNA interference experiments revealed that Prx induced autophagy mostly through the toll-like receptor 4 (TLR4)-TIR domain-containing adaptor-inducing interferon (TRIF) pathway. The C-terminal part of Prx comprising 100 amino acids was the key functional domain to activate autophagy. These results indicated that Prx of E. histolytica could induce autophagy and cytotoxic effects in macrophages, revealing a new pathogenic mechanism activated by E. histolytica in host cells.
Collapse
|
18
|
Ramírez-Flores CJ, Cruz-Mirón R, Lagunas-Cortés N, Mondragón-Castelán M, Mondragon-Gonzalez R, González-Pozos S, Mondragón-Flores R. Toxoplasma gondii excreted/secreted proteases disrupt intercellular junction proteins in epithelial cell monolayers to facilitate tachyzoites paracellular migration. Cell Microbiol 2020; 23:e13283. [PMID: 33108050 DOI: 10.1111/cmi.13283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Toxoplasma gondii shows high dissemination and migration properties across biological barriers infecting immunologically privileged organs. Toxoplasma uses different routes for dissemination; however, the mechanisms are not fully understood. Herein, we studied the effects of proteases present in excretion/secretion products (ESPs) of Toxoplasma on MDCK cell monolayers. Ultrastructural analysis showed that ESPs of Toxoplasma disrupt the intercellular junctions (IJ) of adjacent cells. The tight junction (TJ) proteins ZO-1, occludin, and claudin-1 suffered a progressive decrease in protein levels upon ESPs treatment. In addition, ESPs induced mislocalization of such TJ proteins, along with the adherent junction protein E-cadherin, and this was prevented by pre-treating the ESPs with protease inhibitors. Reorganisation of cytoskeleton proteins was also observed. Endocytosis inhibitors, Dyngo®-4a and Dynasore, impeded the modifications, suggesting that TJ proteins internalisation is triggered by the ESPs proteases hence contributing to the loss of IJ. The observed disruption in TJ proteins went in line with a decrease in the transepithelial electrical resistance of the monolayers, which was significantly blocked by pre-treating ESPs with metalloprotease and serine protease inhibitors. Moreover, exposure of cell monolayers to ESPs facilitated paracellular migration of tachyzoites. Our results demonstrate that Toxoplasma ESPs contain proteases that can disrupt the IJ of epithelial monolayers and this could facilitate the paracellular route for Toxoplasma tissue dissemination and migration.
Collapse
Affiliation(s)
- Carlos J Ramírez-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Rosalba Cruz-Mirón
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Noé Lagunas-Cortés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Mónica Mondragón-Castelán
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Ricardo Mondragon-Gonzalez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | | | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| |
Collapse
|
19
|
Acanthamoeba mauritaniensis genotype T4D: An environmental isolate displays pathogenic behavior. Parasitol Int 2019; 74:102002. [PMID: 31669294 DOI: 10.1016/j.parint.2019.102002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Acanthamoeba spp. are free-living amoebae with a worldwide distribution. These amoebae can cause granulomatous amoebic encephalitis and amoebic keratitis in humans. Proteases are considered virulence factors in pathogenic Acanthamoeba. The objective of this study was to evaluate the behavior of Acanthamoeba mauritaniensis, a nonpathogenic amoeba. We analyzed the cytopathic effect of A. mauritaniensis on RCE1(5 T5) and MDCK cells and compared it to that of Acanthamoeba castellanii. A partial biochemical characterization of proteases was performed in total crude extracts (TCE) and conditioned medium (CM). Finally, we evaluated the effect of proteases on tight junction (TJ) proteins and the transepithelial electrical resistance of MDCK cells. The results showed that this amoeba can induce substantial damage to RCE1(5T5) and MDCK cells. Moreover, the zymograms and Azocoll assays of amoebic TCE and CM revealed different protease activities, with serine proteases being the most active. Furthermore, A. mauritaniensis induced the alteration and degradation of MDCK cell TJ proteins with serine proteases. After genotyping this amoeba, we determined that it is an isolate of Acanthamoeba genotype T4D. From these data, we suggest that A. mauritaniensis genotype T4D behaves similarly to the A. castellanii strain.
Collapse
|
20
|
Betanzos A, Bañuelos C, Orozco E. Host Invasion by Pathogenic Amoebae: Epithelial Disruption by Parasite Proteins. Genes (Basel) 2019; 10:E618. [PMID: 31416298 PMCID: PMC6723116 DOI: 10.3390/genes10080618] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
The epithelium represents the first and most extensive line of defence against pathogens, toxins and pollutant agents in humans. In general, pathogens have developed strategies to overcome this barrier and use it as an entrance to the organism. Entamoeba histolytica, Naegleriafowleri and Acanthamoeba spp. are amoebae mainly responsible for intestinal dysentery, meningoencephalitis and keratitis, respectively. These amoebae cause significant morbidity and mortality rates. Thus, the identification, characterization and validation of molecules participating in host-parasite interactions can provide attractive targets to timely intervene disease progress. In this work, we present a compendium of the parasite adhesins, lectins, proteases, hydrolases, kinases, and others, that participate in key pathogenic events. Special focus is made for the analysis of assorted molecules and mechanisms involved in the interaction of the parasites with epithelial surface receptors, changes in epithelial junctional markers, implications on the barrier function, among others. This review allows the assessment of initial host-pathogen interaction, to correlate it to the potential of parasite invasion.
Collapse
Affiliation(s)
- Abigail Betanzos
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City 03940, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City 07360, Mexico.
| |
Collapse
|
21
|
Zhang L, Gui S, Liang Z, Liu A, Chen Z, Tang Y, Xiao M, Chu F, Liu W, Jin X, Zhu J, Lu X. Musca domestica Cecropin (Mdc) Alleviates Salmonella typhimurium-Induced Colonic Mucosal Barrier Impairment: Associating With Inflammatory and Oxidative Stress Response, Tight Junction as Well as Intestinal Flora. Front Microbiol 2019; 10:522. [PMID: 30930887 PMCID: PMC6428779 DOI: 10.3389/fmicb.2019.00522] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
Salmonella typhimurium, a Gram-negative food-borne pathogen, induces impairment in intestinal mucosal barrier function frequently. The injury is related to many factors such as inflammation, oxidative stress, tight junctions and flora changes in the host intestine. Musca domestica cecropin (Mdc), a novel antimicrobial peptide containing 40 amino acids, has potential antibacterial, anti-inflammatory, and immunological functions. It remains unclear exactly whether and how Mdc reduces colonic mucosal barrier damage caused by S. typhimurium. Twenty four 6-week-old male mice were divided into four groups: normal group, control group (S. typhimurium-challenged), Mdc group, and ceftriaxone sodium group (Cs group). HE staining and transmission electron microscopy (TEM) were performed to observe the morphology of the colon tissues. Bacterial load of S. typhimurium in colon, liver and spleen were determined by bacterial plate counting. Inflammatory factors were detected by enzyme linked immunosorbent assay (ELISA). Oxidative stress levels in the colon tissues were also analyzed. Immunofluorescence analysis, RT-PCR, and Western blot were carried out to examine the levels of tight junction and inflammatory proteins. The intestinal microbiota composition was assessed via 16s rDNA sequencing. We successfully built and evaluated an S. typhimurium-infection model in mice. Morphology and microcosmic change of the colon tissues confirmed the protective qualities of Mdc. Mdc could inhibit colonic inflammation and oxidative stress. Tight junctions were improved significantly after Mdc administration. Interestingly, Mdc ameliorated intestinal flora imbalance, which may be related to the improvement of tight junction. Our results shed a new light on protective effects and mechanism of the antimicrobial peptide Mdc on colonic mucosal barrier damage caused by S. typhimurium infection. Mdc is expected to be an important candidate for S. typhimurium infection treatment.
Collapse
Affiliation(s)
- Lun Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhaobo Liang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Along Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhaoxia Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanan Tang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingzhu Xiao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fujiang Chu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenbin Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiayong Zhu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuemei Lu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
22
|
Betanzos A, Zanatta D, Bañuelos C, Hernández-Nava E, Cuellar P, Orozco E. Epithelial Cells Expressing EhADH, An Entamoeba histolytica Adhesin, Exhibit Increased Tight Junction Proteins. Front Cell Infect Microbiol 2018; 8:340. [PMID: 30324093 PMCID: PMC6172307 DOI: 10.3389/fcimb.2018.00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022] Open
Abstract
In Entamoeba histolytica, the EhADH adhesin together with the EhCP112 cysteine protease, form a 124 kDa complex named EhCPADH. This complex participates in trophozoite adherence, phagocytosis and cytolysis of target cells. EhCPADH and EhCP112 are both involved on epithelium damage, by opening tight junctions (TJ) and reaching other intercellular junctions. EhADH is a scaffold protein belonging to the ALIX family that contains a Bro1 domain, expresses at plasma membrane, endosomes and cytoplasm of trophozoites, and is also secreted to the medium. Contribution of EhADH to TJ opening still remains unknown. In this paper, to elucidate the role of EhADH on epithelium injury, we followed two strategies: producing a recombinant protein (rEhADH) and transfecting the ehadh gene in MDCK cells. Results from the first strategy revealed that rEhADH reached the intercellular space of epithelial cells and co-localized with claudin-1 and occludin at TJ region; later, rEhADH was mainly internalized by clathrin-coated vesicles. In the second strategy, MDCK cells expressing EhADH (MDCK-EhADH) showed the adhesin at plasma membrane. In addition, MDCK-EHADH cells exhibited adhesive features, producing epithelial aggregation and adherence to erythrocytes, as described in trophozoites. Surprisingly, the adhesin expression produced an increase of claudin-1, occludin, ZO-1 and ZO-2 at TJ, and also the transepithelial electric resistance (TEER), which is a measure of TJ gate function. Moreover, MDCK-EhADH cells resulted more susceptible to trophozoites attack, as showed by TEER and cytopathic experiments. Overall, our results indicated that EhADH disturbed TJ from the extracellular space and also intracellularly, suggesting that EhADH affects by itself TJ proteins, and possibly synergizes the action of other parasite molecules during epithelial invasion.
Collapse
Affiliation(s)
- Abigail Betanzos
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.,Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dxinegueela Zanatta
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Patricia Cuellar
- Centro Regional de Educación Superior, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
23
|
Giardipain-1, a protease secreted by Giardia duodenalis trophozoites, causes junctional, barrier and apoptotic damage in epithelial cell monolayers. Int J Parasitol 2018; 48:621-639. [DOI: 10.1016/j.ijpara.2018.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/23/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
|
24
|
Cornick S, Chadee K. Entamoeba histolytica: Host parasite interactions at the colonic epithelium. Tissue Barriers 2018; 5:e1283386. [PMID: 28452682 DOI: 10.1080/21688370.2017.1283386] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Entamoeba histolytica (Eh) is the protozoan parasite responsible for intestinal amebiasis and interacts dynamically with the host intestinal epithelium during disease pathogenesis. A multifaceted pathogenesis profile accounts for why 90% of individuals infected with Eh are largely asymptomatic. For 100 millions individuals that are infected each year, key interactions within the intestinal mucosa dictate disease susceptibility. The ability for Eh to induce amebic colitis and disseminate into extraintestinal organs depends on the parasite competing with indigenous bacteria and overcoming the mucus barrier, binding to host cells inducing their cell death, invasion through the mucosa and outsmarting the immune system. In this review we summarize how Eh interacts with the intestinal epithelium and subverts host defense mechanisms in disease pathogenesis.
Collapse
Affiliation(s)
- Steve Cornick
- a Department of Microbiology, Immunology and Infectious Diseases , Snyder Institute for Chronic Diseases, University of Calgary , Calgary , Alberta , Canada
| | - Kris Chadee
- a Department of Microbiology, Immunology and Infectious Diseases , Snyder Institute for Chronic Diseases, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
25
|
Coronado-Velázquez D, Betanzos A, Serrano-Luna J, Shibayama M. An In Vitro Model of the Blood-Brain Barrier: Naegleria fowleri Affects the Tight Junction Proteins and Activates the Microvascular Endothelial Cells. J Eukaryot Microbiol 2018; 65:804-819. [PMID: 29655298 DOI: 10.1111/jeu.12522] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Naegleria fowleri causes a fatal disease known as primary amoebic meningoencephalitis. This condition is characterized by an acute inflammation that originates from the free passage of peripheral blood cells to the central nervous system through the alteration of the blood-brain barrier. In this work, we established models of the infection in rats and in a primary culture of endothelial cells from rat brains with the aim of evaluating the activation and the alterations of these cells by N. fowleri. We proved that the rat develops the infection similar to the mouse model. We also found that amoebic cysteine proteases produced by the trophozoites and the conditioned medium induced cytopathic effect in the endothelial cells. In addition, N. fowleri can decrease the transendothelial electrical resistance by triggering the destabilization of the tight junction proteins claudin-5, occludin, and ZO-1 in a time-dependent manner. Furthermore, N. fowleri induced the expression of VCAM-1 and ICAM-1 and the production of IL-8, IL-1β, TNF-α, and IL-6 as well as nitric oxide. We conclude that N. fowleri damaged the blood-brain barrier model by disrupting the intercellular junctions and induced the presence of inflammatory mediators by allowing the access of inflammatory cells to the olfactory bulbs.
Collapse
Affiliation(s)
- Daniel Coronado-Velázquez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City, 07360, Mexico
| | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City, 07360, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City, 07360, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City, 07360, Mexico
| |
Collapse
|
26
|
Abstract
Entamoeba histolytica is the protozoan parasite that causes human amoebiasis. It is one of the leading parasitic disease burdens in tropical regions and developing countries, with spread to developed countries through migrants from and travellers to endemic regions.Understanding E. histolytica's invasion mechanisms requires an understanding of how it interacts with external cell components and how it engulfs and kills cells (phagocytosis). Recent research suggests that optimal phagocytosis requires signalling events from the cell surface to the nucleus via the cytoplasm, and the induction of several factors that are transported to the plasma membrane. Current research in other protozoans suggests the presence of proteins with nuclear localization signals, nuclear export signals and Ran proteins; however, there is limited literature on their functionality and their functional similarity to higher eukaryotes.Based on learnings from the development of antivirals, nuclear transport elements in E. histolytica may present viable, specific, therapeutic targets.In this review, we aim to summarize our limited knowledge of the eukaryotic nuclear transport mechanisms that are conserved and may function in E. histolytica.
Collapse
|
27
|
Narayanasamy RK, Castañón-Sanchez CA, Luna-Arias JP, García-Rivera G, Avendaño-Borromeo B, Labra-Barrios ML, Valdés J, Herrera-Aguirre ME, Orozco E. The Entamoeba histolytica TBP and TRF1 transcription factors are GAAC-box binding proteins, which display differential gene expression under different stress stimuli and during the interaction with mammalian cells. Parasit Vectors 2018. [PMID: 29514716 PMCID: PMC5842622 DOI: 10.1186/s13071-018-2698-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Entamoeba histolytica is the protozoan parasite responsible for human amebiasis. It causes up to 100,000 deaths worldwide each year. This parasite has two closely related basal transcription factors, the TATA-box binding protein (EhTBP) and the TBP-related factor 1 (EhTRF1). TBP binds to the canonical TATTTAAA-box, as well as to different TATA variants. TRF1 also binds to the TATTTAAA-box. However, their binding capacity to diverse core promoter elements, including the GAAC-element, and their role in gene regulation in this parasite remains unknown. METHODS EMSA experiments were performed to determine the binding capacity of recombinant TBP and TRF1 to TATA variants, GAAC and GAAC-like boxes. For the functional analysis under different stress stimuli (e.g. growth curve, serum depletion, heat-shock, and UV-irradiation) and during the interaction with mammalian cells (erythrocytes, MDCK cell monolayers, and hepatocytes of hamsters), RT-qPCR, and gene knockdown were performed. RESULTS Both transcription factors bound to the different TATA variants tested, as well as to the GAAC-boxes, suggesting that they are GAAC-box-binding proteins. The K D values determined for TBP and TRF1 for the different TATA variants and GAAC-box were in the range of 10-12 M to 10-11 M. During the death phase of growth or in serum depletion, Ehtbp mRNA levels significantly increased, whereas the mRNA level of Ehtrf1 did not change under these conditions. Ehtrf1 gene expression was negatively regulated by UV-irradiation and heat-shock stress, with no changes in Ehtbp gene expression. Moreover, Ehtrf1 gene also showed a negative regulation during erythrophagocytosis, liver abscess formation, and a transient expression level increase at the initial phase of MDCK cell destruction. Finally, the Ehtbp gene knockdown displayed a drastic decrease in the efficiency of erythrophagocytosis in G3 trophozoites. CONCLUSIONS To our knowledge, this study reveals that these basal transcription factors are able to bind multiple core promoter elements. However, their immediate change in gene expression level in response to different stimuli, as well as during the interaction with mammalian cells, and the diminishing of erythrophagocytosis by silencing the Ehtbp gene indicate the different physiological roles of these transcription factors in E. histolytica.
Collapse
Affiliation(s)
- Ravi Kumar Narayanasamy
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Carlos Alberto Castañón-Sanchez
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional (ENMH-IPN), Guillermo Massieu Helguera 239, Col. La Escalera, C.P, 07320, Ciudad de México, Mexico.,Laboratorio de Investigación Biomédica, Subdirección de Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Oaxaca, Aldama S/N, San Bartolo Coyotepec, C.P, 71256, Oaxaca, Mexico
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico.
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Bartolo Avendaño-Borromeo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - María Luisa Labra-Barrios
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - María Esther Herrera-Aguirre
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| |
Collapse
|
28
|
Abstract
The protozoan parasite Entamoeba histolytica is the microbial agent of amoebiasis - an infection that is endemic worldwide and is associated with high morbidity and mortality rates. As the disease develops, virulent E. histolytica deplete the mucus layer, interact with the intestinal epithelium, and then degrade the colonic mucosa and disrupt the extracellular matrix (ECM). Our research demonstrated that virulent parasites with an invasive phenotype display rapid, highly specific changes in their transcriptome (notably for essential factors involved in carbohydrate metabolism and the processing of glycosylated residues). Moreover, combined activation of parasite and host lytic enzymes leads to the destruction of the intestinal parenchyma. Together, these enzymes degrade the mucus layer and the ECM, and trigger the inflammatory response essential to the development of amoebiasis.
Collapse
|
29
|
López-Posadas R, Stürzl M, Atreya I, Neurath MF, Britzen-Laurent N. Interplay of GTPases and Cytoskeleton in Cellular Barrier Defects during Gut Inflammation. Front Immunol 2017; 8:1240. [PMID: 29051760 PMCID: PMC5633683 DOI: 10.3389/fimmu.2017.01240] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022] Open
Abstract
An essential role of the intestine is to build and maintain a barrier preventing the luminal gut microbiota from invading the host. This involves two coordinated physical and immunological barriers formed by single layers of intestinal epithelial and endothelial cells, which avoid the activation of local immune responses or the systemic dissemination of microbial agents, and preserve tissue homeostasis. Accordingly, alterations of epithelial and endothelial barrier functions have been associated with gut inflammation, for example during inflammatory bowel disease (IBD). The discriminative control of nutriment uptake and sealing toward potentially pathological microorganisms requires a profound regulation of para- and transcellular permeability. On the subcellular level, the cytoskeleton exerts key regulatory functions in the maintenance of cellular barriers. Increased epithelial/endothelial permeability occurs primarily as a result of a reorganization of cytoskeletal–junctional complexes. Pro-inflammatory mediators such as cytokines can induce cytoskeletal rearrangements, causing inflammation-dependent defects in gut barrier function. In this context, small GTPases of the Rho family and large GTPases from the Dynamin superfamily appear as major cellular switches regulating the interaction between intercellular junctions and actomyosin complexes, and in turn cytoskeleton plasticity. Strikingly, some of these proteins, such as RhoA or guanylate-binding protein-1 (GBP-1) have been associated with gut inflammation and IBD. In this review, we will summarize the role of small and large GTPases for cytoskeleton plasticity and epithelial/endothelial barrier in the context of gut inflammation.
Collapse
Affiliation(s)
| | | | - Imke Atreya
- Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
30
|
Cuellar P, Hernández-Nava E, García-Rivera G, Chávez-Munguía B, Schnoor M, Betanzos A, Orozco E. Entamoeba histolytica EhCP112 Dislocates and Degrades Claudin-1 and Claudin-2 at Tight Junctions of the Intestinal Epithelium. Front Cell Infect Microbiol 2017; 7:372. [PMID: 28861400 PMCID: PMC5561765 DOI: 10.3389/fcimb.2017.00372] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
During intestinal invasion, Entamoeba histolytica opens tight junctions (TJs) reflected by transepithelial electrical resistance (TEER) dropping. To explore the molecular mechanisms underlying this, we studied in vitro and in vivo the damage produced by the recombinant E. histolytica cysteine protease (rEhCP112) on TJ functions and proteins. rEhCP112 reduced TEER in Caco-2 cells in a dose- and time-dependent manner; and EhCP112-overexpressing trophozoites provoked major epithelial injury compared to control trophozoites. rEhCP112 penetrated through the intercellular space, and consequently the ion flux increased and the TJs fence function was disturbed. However, macromolecular flux was not altered. Functional in vitro assays revealed specific association of rEhCP112 with claudin-1 and claudin-2, that are both involved in regulating ion flux and fence function. Of note, rEhCP112 did not interact with occludin that is responsible for regulating macromolecular flux. Moreover, rEhCP112 degraded and delocalized claudin-1, thus affecting interepithelial adhesion. Concomitantly, expression of the leaky claudin-2 at TJ, first increased and then it was degraded. In vivo, rEhCP112 increased intestinal epithelial permeability in the mouse colon, likely due to apical erosion and claudin-1 and claudin-2 degradation. In conclusion, we provide evidence that EhCP112 causes epithelial dysfunction by specifically altering claudins at TJ. Thus, EhCP112 could be a potential target for therapeutic approaches against amoebiasis.
Collapse
Affiliation(s)
- Patricia Cuellar
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Elizabeth Hernández-Nava
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Michael Schnoor
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico.,Consejo Nacional de Ciencia y TecnologíaMexico, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico, Mexico
| |
Collapse
|
31
|
Hernández-Nava E, Cuellar P, Nava P, Chávez-Munguía B, Schnoor M, Orozco E, Betanzos A. Adherens junctions and desmosomes are damaged by Entamoeba histolytica: Participation of EhCPADH complex and EhCP112 protease. Cell Microbiol 2017; 19. [PMID: 28656597 DOI: 10.1111/cmi.12761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/08/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022]
Abstract
Entamoeba histolytica trophozoites adhere to epithelium at the cell-cell contact and perturb tight junctions disturbing the transepithelial electrical resistance. Behind tight junctions are the adherens junctions (AJs) that reinforce them and the desmosomes (DSMs) that maintain the epithelium integrity. The damage produced to AJs and DMSs by this parasite is unknown. Here, we studied the effect of the trophozoites, the EhCPADH complex, and the EhCP112 recombinant enzyme (rEhCP112) on AJ and DSM proteins. We found that trophozoites degraded β-cat, E-cad, Dsp l/ll, and Dsg-2 with the participation of EhCPADH and EhCP112. After contact of epithelial cells with trophozoites, immunofluorescence and transmission electron microscopy assays revealed EhCPADH and rEhCP112 at the intercellular space where they colocalised with β-cat, E-cad, Dsp l/ll, and Dsg-2. Moreover, our results suggested that rEhCP112 could be internalised by caveolae and clathrin-coated vesicles. Immunoprecipitation assays showed the interaction of EhCPADH with β-cat and Dsp l/ll. Besides, in vivo assays demonstrated that rEhCP112 concentrates at the cellular borders of the mouse intestine degrading E-cad and Dsp I/II. Our research gives the first clues on the trophozoite attack to AJs and DSMs and point out the role of the EhCPADH and EhCP112 in the multifactorial event of trophozoites virulence.
Collapse
Affiliation(s)
- Elizabeth Hernández-Nava
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Patricia Cuellar
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Porfirio Nava
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Michael Schnoor
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| |
Collapse
|
32
|
López-López P, Martínez-López MC, Boldo-León XM, Hernández-Díaz Y, González-Castro TB, Tovilla-Zárate CA, Luna-Arias JP. Detection and differentiation of Entamoeba histolytica and Entamoeba dispar in clinical samples through PCR-denaturing gradient gel electrophoresis. ACTA ACUST UNITED AC 2017; 50:e5997. [PMID: 28380216 PMCID: PMC5423754 DOI: 10.1590/1414-431x20175997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
Abstract
Amebiasis is one of the twenty major causes of disease in Mexico; however, the diagnosis is difficult due to limitations of conventional microscopy-based techniques. In this study, we analyzed stool samples using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) to differentiate between Entamoeba histolytica (pathogenic) and E. dispar (non-pathogenic). The target for the PCR amplification was a small region (228 bp) of the adh112 gene selected to increase the sensitivity of the test. The study involved 62 stool samples that were collected from individuals with complaints of gastrointestinal discomfort. Of the 62 samples, 10 (16.1%) were positive for E. histolytica while 52 (83.9%) were negative. No sample was positive for E. dispar. These results were validated by nested PCR-RFLP (restriction fragment length polymorphism) and suggest that PCR-DGGE is a promising tool to differentiate among Entamoeba infections, contributing to determine the specific treatment for patients infected with E. histolytica, and therefore, avoiding unnecessary treatment of patients infected with the non-pathogenic E. dispar.
Collapse
Affiliation(s)
- P López-López
- Family Medicine Unit 43, Social Security Mexican Institute, Cardenas, Tabasco, Mexico
| | - M C Martínez-López
- Health Sciences Academic Division, Juarez Autonomous University of Tabasco, Villahermosa, Tabasco, Mexico
| | - X M Boldo-León
- Health Sciences Academic Division, Juarez Autonomous University of Tabasco, Villahermosa, Tabasco, Mexico
| | - Y Hernández-Díaz
- Multidisciplinary Academic Division at Jalpa de Mendez, Juarez Autonomous University of Tabasco, Jalpa de Mendez, Tabasco, Mexico
| | - T B González-Castro
- Multidisciplinary Academic Division at Jalpa de Mendez, Juarez Autonomous University of Tabasco, Jalpa de Mendez, Tabasco, Mexico
| | - C A Tovilla-Zárate
- Multidisciplinary Academic Division at Comalcalco, Juarez Autonomous University of Tabasco, Comalcalco, Tabasco, Mexico
| | - J P Luna-Arias
- Center for Research and Advanced Studies, National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
33
|
Van Spaendonk H, Ceuleers H, Witters L, Patteet E, Joossens J, Augustyns K, Lambeir AM, De Meester I, De Man JG, De Winter BY. Regulation of intestinal permeability: The role of proteases. World J Gastroenterol 2017; 23:2106-2123. [PMID: 28405139 PMCID: PMC5374123 DOI: 10.3748/wjg.v23.i12.2106] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/20/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal barrier is - with approximately 400 m2 - the human body's largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases.
Collapse
|
34
|
López-Posadas R, Neurath MF, Atreya I. Molecular pathways driving disease-specific alterations of intestinal epithelial cells. Cell Mol Life Sci 2017; 74:803-826. [PMID: 27624395 PMCID: PMC11107577 DOI: 10.1007/s00018-016-2363-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/22/2022]
Abstract
Due to the fact that chronic inflammation as well as tumorigenesis in the gut is crucially impacted by the fate of intestinal epithelial cells, our article provides a comprehensive overview of the composition, function, regulation and homeostasis of the gut epithelium. In particular, we focus on those aspects which were found to be altered in the context of inflammatory bowel diseases or colorectal cancer and also discuss potential molecular targets for a disease-specific therapeutic intervention.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
35
|
Karakuła-Juchnowicz H, Szachta P, Opolska A, Morylowska-Topolska J, Gałęcka M, Juchnowicz D, Krukow P, Lasik Z. The role of IgG hypersensitivity in the pathogenesis and therapy of depressive disorders. Nutr Neurosci 2016; 20:110-118. [PMID: 25268936 DOI: 10.1179/1476830514y.0000000158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Depressive episodes are associated not only with changes in neurotransmission in the central nervous system, but also may lead to structural changes in the brain through neuroendocrine, inflammatory, and immunological mechanisms. The aim of this article is to present a new hypothesis connecting the inflammatory theory of depression with IgG food hypersensitivity and leaky gut syndrome. This new potential pathway that may mediate the pathogenesis of depression implies the existence of subsequent developmental stages. Overproduction of zonulin triggered, for example, by gliadin through activation of the epidermal growth factor receptor and protease-activated receptor causes loosening of the tight junction barrier and an increase in permeability of the gut wall ('leaky gut'). This results in a process allowing larger molecules that would normally stay in the gut to cross into the bloodstream and in the induction of IgG-dependent food sensitivity. This condition causes an increased immune response and consequently induces the release of proinflammatory cytokines, which in turn may lead to the development of depressive symptoms. It seems advisable to assess the intestinal permeability using as a marker, for example, zonulin and specific IgG concentrations against selected nutritional components in patients with depression. In the case of increased IgG concentrations, the implementation of an elimination-rotation diet may prove to be an effective method of reducing inflammation. This new paradigm in the pathogenesis of depressive disorders linking leaky gut, IgG-dependent food sensitivity, inflammation, and depression is promising, but still needs further studies to confirm this theory.
Collapse
Affiliation(s)
| | | | - Aneta Opolska
- c Department of Dietetics Higher School of Social Sciences , Lublin , Poland
| | | | | | | | - Paweł Krukow
- a Department of Clinical Neuropsychiatry Medical University , Lublin , Poland
| | - Zofia Lasik
- b Institute for Microecology , Poznań , Poland
| |
Collapse
|
36
|
Di Genova BM, Tonelli RR. Infection Strategies of Intestinal Parasite Pathogens and Host Cell Responses. Front Microbiol 2016; 7:256. [PMID: 26973630 PMCID: PMC4776161 DOI: 10.3389/fmicb.2016.00256] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Abstract
Giardia lamblia, Cryptosporidium sp., and Entamoeba histolytica are important pathogenic intestinal parasites and are amongst the leading causes worldwide of diarrheal illness in humans. Diseases caused by these organisms, giardiasis, cryptosporidiosis, and amoebiasis, respectively, are characterized by self-limited diarrhea but can evolve to long-term complications. The cellular and molecular mechanisms underlying the pathogenesis of diarrhea associated with these three pathogens are being unraveled, with knowledge of both the strategies explored by the parasites to establish infection and the methods evolved by hosts to avoid it. Special attention is being given to molecules participating in parasite–host interaction and in the mechanisms implicated in the diseases’ pathophysiologic processes. This review focuses on cell mechanisms that are modulated during infection, including gene transcription, cytoskeleton rearrangements, signal transduction pathways, and cell death.
Collapse
Affiliation(s)
- Bruno M Di Genova
- Departamento de Microbiologia e Imunologia, Universidade Federal de São Paulo São Paulo, Brazil
| | - Renata R Tonelli
- Departamento de Microbiologia e Imunologia, Universidade Federal de São PauloSão Paulo, Brazil; Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Biológicas, Universidade Federal de São PauloDiadema, Brazil
| |
Collapse
|
37
|
Liu F, Koval M, Ranganathan S, Fanayan S, Hancock WS, Lundberg EK, Beavis RC, Lane L, Duek P, McQuade L, Kelleher NL, Baker MS. Systems Proteomics View of the Endogenous Human Claudin Protein Family. J Proteome Res 2016; 15:339-59. [PMID: 26680015 DOI: 10.1021/acs.jproteome.5b00769] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Claudins are the major transmembrane protein components of tight junctions in human endothelia and epithelia. Tissue-specific expression of claudin members suggests that this protein family is not only essential for sustaining the role of tight junctions in cell permeability control but also vital in organizing cell contact signaling by protein-protein interactions. How this protein family is collectively processed and regulated is key to understanding the role of junctional proteins in preserving cell identity and tissue integrity. The focus of this review is to first provide a brief overview of the functional context, on the basis of the extensive body of claudin biology research that has been thoroughly reviewed, for endogenous human claudin members and then ascertain existing and future proteomics techniques that may be applicable to systematically characterizing the chemical forms and interacting protein partners of this protein family in human. The ability to elucidate claudin-based signaling networks may provide new insight into cell development and differentiation programs that are crucial to tissue stability and manipulation.
Collapse
Affiliation(s)
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, and Department of Cell Biology, Emory University School of Medicine , 205 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, Georgia 30322, United States
| | | | | | - William S Hancock
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Emma K Lundberg
- SciLifeLab, School of Biotechnology, Royal Institute of Technology (KTH) , SE-171 21 Solna, Stockholm, Sweden
| | - Ronald C Beavis
- Department of Biochemistry and Medical Genetics, University of Manitoba , 744 Bannatyne Avenue, Winnipeg, Manitoba R3E 0W3, Canada
| | - Lydie Lane
- SIB-Swiss Institute of Bioinformatics , CMU - Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Paula Duek
- SIB-Swiss Institute of Bioinformatics , CMU - Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | | | - Neil L Kelleher
- Department of Chemistry, Department of Molecular Biosciences, and Proteomics Center of Excellence, Northwestern University , 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | | |
Collapse
|
38
|
The knockdown of each component of the cysteine proteinase-adhesin complex of Entamoeba histolytica (EhCPADH) affects the expression of the other complex element as well as the in vitro and in vivo virulence. Parasitology 2015; 143:50-9. [PMID: 26521708 DOI: 10.1017/s003118201500147x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Entamoeba histolytica is the protozoan parasite causative of human amoebiasis, disease responsible for 40 000-100 000 deaths annually. The cysteine proteinase-adhesin complex of this parasite (EhCPADH) is a heterodimeric protein formed by a cysteine protease (EhCP112) and an adhesin (EhADH) that plays an important role in the cytopathic mechanism of this parasite. The coding genes for EhCP112 and EhADH are adjacent in the E. histolytica genome, suggesting that their expression may be co-regulated, but this hypothesis has not yet been confirmed. Here, we performed the knockdown of EhCP112 and EhADH using gene-specific short-hairpin RNAs (shRNA), and the effect of these knockdowns on the expression of both complex components as well as on the in vitro and in vivo virulence was analysed. Results showed that the knockdown of one of the EhCPADH components produced a simultaneous downregulation of the other protein. Accordingly, a concomitant reduction in the overall expression of the complex was observed. The downregulation of each component also produced a significant decrease in the in vitro and in vivo virulence of trophozoites. These results demonstrated that the expression of EhCP112 and EhADH is co-regulated and confirmed that the EhCPADH complex plays an important role in E. histolytica virulence.
Collapse
|
39
|
Betanzos A, Schnoor M, Javier-Reyna R, García-Rivera G, Bañuelos C, Pais-Morales J, Orozco E. Analysis of the epithelial damage produced by Entamoeba histolytica infection. J Vis Exp 2014. [PMID: 24962382 DOI: 10.3791/51668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Entamoeba histolytica is the causative agent of human amoebiasis, a major cause of diarrhea and hepatic abscess in tropical countries. Infection is initiated by interaction of the pathogen with intestinal epithelial cells. This interaction leads to disruption of intercellular structures such as tight junctions (TJ). TJ ensure sealing of the epithelial layer to separate host tissue from gut lumen. Recent studies provide evidence that disruption of TJ by the parasitic protein EhCPADH112 is a prerequisite for E. histolytica invasion that is accompanied by epithelial barrier dysfunction. Thus, the analysis of molecular mechanisms involved in TJ disassembly during E. histolytica invasion is of paramount importance to improve our understanding of amoebiasis pathogenesis. This article presents an easy model that allows the assessment of initial host-pathogen interactions and the parasite invasion potential. Parameters to be analyzed include transepithelial electrical resistance, interaction of EhCPADH112 with epithelial surface receptors, changes in expression and localization of epithelial junctional markers and localization of parasite molecules within epithelial cells.
Collapse
Affiliation(s)
- Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute;
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute
| | - Rosario Javier-Reyna
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute
| | - Guillermina García-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute
| | - Cecilia Bañuelos
- Agency for Knowledge Commercialization, Center for Research and Advanced Studies of the National Polytechnic Institute
| | - Jonnatan Pais-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute
| | - Esther Orozco
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute;
| |
Collapse
|
40
|
Citalán-Madrid AF, García-Ponce A, Vargas-Robles H, Betanzos A, Schnoor M. Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms. Tissue Barriers 2013; 1:e26938. [PMID: 24868497 PMCID: PMC3942330 DOI: 10.4161/tisb.26938] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022] Open
Abstract
The intestinal epithelium forms a stable barrier protecting underlying tissues from pathogens in the gut lumen. This is achieved by specialized integral membrane structures such as tight and adherens junctions that connect neighboring cells and provide stabilizing links to the cytoskeleton. Junctions are constantly remodeled to respond to extracellular stimuli. Assembly and disassembly of junctions is regulated by interplay of actin remodeling, endocytotic recycling of junctional proteins, and various signaling pathways. Accumulating evidence implicate small G proteins of the Ras superfamily as important signaling molecules for the regulation of epithelial junctions. They function as molecular switches circling between an inactive GDP-bound and an active GTP-bound state. Once activated, they bind different effector molecules to control cellular processes required for correct junction assembly, maintenance and remodelling. Here, we review recent advances in understanding how GTPases of the Rho, Ras, Rab and Arf families contribute to intestinal epithelial homeostasis.
Collapse
Affiliation(s)
- Alí Francisco Citalán-Madrid
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Alexander García-Ponce
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| |
Collapse
|