1
|
Bonazzi E, De Barba C, Lorenzon G, Maniero D, Bertin L, Barberio B, Facciotti F, Caprioli F, Scaldaferri F, Zingone F, Savarino EV. Recent developments in managing luminal microbial ecology in patients with inflammatory bowel disease: from evidence to microbiome-based diagnostic and personalized therapy. Expert Rev Gastroenterol Hepatol 2025; 19:563-576. [PMID: 40247656 DOI: 10.1080/17474124.2025.2495087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/21/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic condition characterized by abnormal immune responses and intestinal inflammation. Emerging evidence highlights the vital role of gut microbiota in IBD's onset and progression. Recent advances have shaped diagnostic and therapeutic strategies, increasingly focusing on microbiome-based personalized care. Methodology: this review covers studies from 2004 to 2024, reflecting the surge in research on luminal microbial ecology in IBD. Human studies were prioritized, with select animal studies included for mechanistic insights. Only English-language, peer-reviewed articles - clinical trials, systematic reviews, and meta-analyses - were considered. Studies without clinical validation were excluded unless offering essential insights. Searches were conducted using PubMed, Scopus, and Web of Science. AREAS COVERED we explore mechanisms for managing IBD-related microbiota, including microbial markers for diagnosis and novel therapies such as fecal microbiota transplantation, metabolite-based treatments, and precision microbiome modulation. Additionally, we review technologies and diagnostic tools used to analyze gut microbiota composition and function in clinical settings. Emerging data supporting personalized therapeutic strategies based on individual microbial profiles are discussed. EXPERT OPINION Standardized microbiome research integration into clinical practice will enhance precision in IBD care, signaling a shift toward microbiota-based personalized medicine.
Collapse
Affiliation(s)
- Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Gastroenterology Unit, Azienda Ospedale-Università Padova, Padua, Italy
| | - Brigida Barberio
- Gastroenterology Unit, Azienda Ospedale-Università Padova, Padua, Italy
| | - Federica Facciotti
- INGM-National Institute of Molecular Genetics 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Franco Scaldaferri
- Department of Gastroenterological Area, "A. Gemelli" Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Gastroenterology Unit, Azienda Ospedale-Università Padova, Padua, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Gastroenterology Unit, Azienda Ospedale-Università Padova, Padua, Italy
| |
Collapse
|
2
|
Lu H, Chen S, Li F, Zhang G, Geng J, Zhang M, Huang X, Wang Y. Comparative Study of Bacterial Microbiota Differences in the Rumen and Feces of Xinjiang Brown and Holstein Cattle. Animals (Basel) 2024; 14:1748. [PMID: 38929367 PMCID: PMC11200985 DOI: 10.3390/ani14121748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Xinjiang Brown cattle are a unique and widely distributed breed of dual-purpose cattle in the Xinjiang area of China, whose milk production performance differs from Holstein cattle. It has been known that variations in bacterial species of the gastrointestinal tract influence milk protein, fat, and lactose synthesis. However, the microbiota differences between Xinjiang Brown and Holstein cattle are less known. This study aims to compare the bacterial community composition of the rumen and feces of these two cattle breeds under the same dietary and management conditions. The 16s rRNA sequencing data and milk production of 18 Xinjiang Brown cows and 20 Holstein cows on the same farm were obtained for analysis. The results confirmed differences in milk production between Xinjiang Brown and Holstein cattle. Microbiota with different relative abundance between these two cattle breeds were identified, and their biological functions might be related to milk synthesis. This study increases the understanding of the differences in microbiota between Xinjiang Brown and Holstein cattle and might provide helpful information for microbiota composition optimization of these dairy cattle.
Collapse
Affiliation(s)
- Haibo Lu
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (G.Z.)
| | - Shaokan Chen
- Beijing Sunlon Livestock Development Company Limited, Beijing 100029, China;
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (F.L.); (M.Z.)
| | - Fengjie Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (F.L.); (M.Z.)
| | - Guoxing Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (G.Z.)
| | - Juan Geng
- Xinjiang Uygur Autonomous Region Animal Husbandry Station, Urumqi 830000, China;
| | - Menghua Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (F.L.); (M.Z.)
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (F.L.); (M.Z.)
| | - Yachun Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (G.Z.)
| |
Collapse
|
3
|
Maritan E, Quagliariello A, Frago E, Patarnello T, Martino ME. The role of animal hosts in shaping gut microbiome variation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230071. [PMID: 38497257 PMCID: PMC10945410 DOI: 10.1098/rstb.2023.0071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 03/19/2024] Open
Abstract
Millions of years of co-evolution between animals and their associated microbial communities have shaped and diversified the nature of their relationship. Studies continue to reveal new layers of complexity in host-microbe interactions, the fate of which depends on a variety of different factors, ranging from neutral processes and environmental factors to local dynamics. Research is increasingly integrating ecosystem-based approaches, metagenomics and mathematical modelling to disentangle the individual contribution of ecological factors to microbiome evolution. Within this framework, host factors are known to be among the dominant drivers of microbiome composition in different animal species. However, the extent to which they shape microbiome assembly and evolution remains unclear. In this review, we summarize our understanding of how host factors drive microbial communities and how these dynamics are conserved and vary across taxa. We conclude by outlining key avenues for research and highlight the need for implementation of and key modifications to existing theory to fully capture the dynamics of host-associated microbiomes. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Enric Frago
- CIRAD, UMR CBGP, INRAE, Institut Agro, IRD, Université Montpellier, 34398 Montpellier, France
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| |
Collapse
|
4
|
Sisk-Hackworth L, Brown J, Sau L, Levine AA, Tam LYI, Ramesh A, Shah RS, Kelley-Thackray ET, Wang S, Nguyen A, Kelley ST, Thackray VG. Genetic hypogonadal mouse model reveals niche-specific influence of reproductive axis and sex on intestinal microbial communities. Biol Sex Differ 2023; 14:79. [PMID: 37932822 PMCID: PMC10626657 DOI: 10.1186/s13293-023-00564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The gut microbiome has been linked to many diseases with sex bias including autoimmune, metabolic, neurological, and reproductive disorders. While numerous studies report sex differences in fecal microbial communities, the role of the reproductive axis in this differentiation is unclear and it is unknown how sex differentiation affects microbial diversity in specific regions of the small and large intestine. METHODS We used a genetic hypogonadal mouse model that does not produce sex steroids or go through puberty to investigate how sex and the reproductive axis impact bacterial diversity within the intestine. Using 16S rRNA gene sequencing, we analyzed alpha and beta diversity and taxonomic composition of fecal and intestinal communities from the lumen and mucosa of the duodenum, ileum, and cecum from adult female (n = 20) and male (n = 20) wild-type mice and female (n = 17) and male (n = 20) hypogonadal mice. RESULTS Both sex and reproductive axis inactivation altered bacterial composition in an intestinal section and niche-specific manner. Hypogonadism was significantly associated with bacteria from the Bacteroidaceae, Eggerthellaceae, Muribaculaceae, and Rikenellaceae families, which have genes for bile acid metabolism and mucin degradation. Microbial balances between males and females and between hypogonadal and wild-type mice were also intestinal section-specific. In addition, we identified 3 bacterial genera (Escherichia Shigella, Lachnoclostridium, and Eggerthellaceae genus) with higher abundance in wild-type female mice throughout the intestinal tract compared to both wild-type male and hypogonadal female mice, indicating that activation of the reproductive axis leads to female-specific differentiation of the gut microbiome. Our results also implicated factors independent of the reproductive axis (i.e., sex chromosomes) in shaping sex differences in intestinal communities. Additionally, our detailed profile of intestinal communities showed that fecal samples do not reflect bacterial diversity in the small intestine. CONCLUSIONS Our results indicate that sex differences in the gut microbiome are intestinal niche-specific and that sampling feces or the large intestine may miss significant sex effects in the small intestine. These results strongly support the need to consider both sex and reproductive status when studying the gut microbiome and while developing microbial-based therapies.
Collapse
Affiliation(s)
- Laura Sisk-Hackworth
- University of California San Diego, La Jolla, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Jada Brown
- University of California San Diego, La Jolla, CA, USA
| | - Lillian Sau
- University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Reeya S Shah
- University of California San Diego, La Jolla, CA, USA
| | | | - Sophia Wang
- University of California San Diego, La Jolla, CA, USA
| | - Anita Nguyen
- University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
5
|
Han Y, Jia R, Zhang J, Zhu Q, Wang X, Ji Q, Zhang W. Hypoxia Attenuates Colonic Innate Immune Response and Inhibits TLR4/NF-κB Signaling Pathway in Lipopolysaccharide-Induced Colonic Epithelial Injury Mice. J Interferon Cytokine Res 2023; 43:43-52. [PMID: 36603105 DOI: 10.1089/jir.2022.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
High altitude hypoxia can lead to a spectrum of gastrointestinal problems. As the first line of host immune defense, innate immune response in the intestinal mucosa plays a pivotal role in maintaining intestinal homeostasis and protecting against intestinal injury at high altitude. This study aimed to investigate the effect of hypoxia on the colonic mucosal barrier and toll-like receptor 4 (TLR4)-mediated innate immune responses in the colon. The mice were exposed to a hypobaric chamber to simulate a 5,000 m plateau environment for 7 days, and the colonic mucosa changes were recorded. At the same time, the inflammation model was established by lipopolysaccharide (LPS) to explore the effects of hypoxia on the TLR4/nuclear factor kappa B (NF-κB) signaling pathway and its downstream inflammatory factors [tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and interferon (IFN)-γ] in the colon. We found that hypoxic exposure caused weight loss and structural disturbance of the colonic mucosa in mice. Compared with the control group, the protein levels of TLR4 [fold change (FC) = 0.75 versus FC = 0.23], MyD88 (FC = 0.80 versus FC = 0.30), TIR-domain-containing adaptor protein inducing interferon-β (TRIF: FC = 0.89 versus FC = 0.38), and NF-κB p65 (FC = 0.75 versus FC = 0.24) in the colon of mice in the hypobaric hypoxia group were significantly decreased. LPS-induced upregulation of the TLR4/NF-κB signaling and its downstream inflammatory factors was inhibited by hypoxia. Specifically, compared with the LPS group, the protein levels of TLR4 (FC = 1.18, FC = 0.86), MyD88 (FC = 1.20, FC = 0.80), TRIF (FC = 1.20, FC = 0.86), and NF-κB p65 (FC = 1.29, FC = 0.62) and the mRNA levels of IL-1β (FC = 7.38, FC = 5.06), IL-6 (FC = 16.06, FC = 9.22), and IFN-γ (FC = 2.01, FC = 1.16) were reduced in the hypobaric hypoxia plus LPS group. Our findings imply that hypoxia could lead to marked damage of the colonic mucosa and a reduction of TLR4-mediated colonic innate immune responses, potentially reducing host defense responses to colonic pathogens.
Collapse
Affiliation(s)
- Ying Han
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Ruhan Jia
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Jingxuan Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Qinfang Zhu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Xiaozhou Wang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Qiaorong Ji
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| |
Collapse
|
6
|
Morshed SM, Chen YY, Lin CH, Chen YP, Lee TH. Freshwater transfer affected intestinal microbiota with correlation to cytokine gene expression in Asian sea bass. Front Microbiol 2023; 14:1097954. [PMID: 37089546 PMCID: PMC10117908 DOI: 10.3389/fmicb.2023.1097954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
As a catadromous fish, Asian sea bass (Lates calcarifer) juveniles migrate from seawater (SW) to freshwater (FW) for growth and development. During migration, they undergo physiological changes to acclimate to environmental salinity. Thus, it is crucial to understand how SW-to-FW migration affects the gut microbiota of catadromous fish. To the best of our knowledge, no study has revealed the effects of transfer to hypotonic environments on a catadromous fish microbiota. In this study, we aimed to determine the effects of FW transfer on the microbiota and cytokine gene expression in the intestines of juvenile catadromous Asian sea bass. The relationship between the water and the gut microbiota of this euryhaline species was also examined. We found that FW transfer affected both mucosa- and digesta-associated microbiota of Asian sea bass. Plesiomonas and Cetobacterium were dominant in both the mucosa- and digesta-associated microbiota of FW-acclimated sea bass. The pathogenic genera Vibrio, Staphylococcus, and Acinetobacter were dominant in the SW group. Although dominant fish microbes were present in the water, fish had their own unique microbes. Vitamin B6 metabolism was highly expressed in the FW fish microbiota, whereas arginine, proline, and lipid metabolism were highly expressed in the SW fish microbiota. Additionally, the correlation between cytokine gene expression and microbiota was found to be affected by FW transfer. Taken together, our results demonstrated that FW transfer altered the composition and functions of mucosa- and digesta-associated microbiota of catadromous Asian sea bass intestines, which correlated with cytokine gene expression.
Collapse
Affiliation(s)
- Syed Monzur Morshed
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Yi Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Hao Lin
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Yen-Po Chen
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Yen-Po Chen,
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Tsung-Han Lee,
| |
Collapse
|
7
|
McGourty K, Vijayakumar R, Wu T, Gagnon A, Kelleher SL. ZnT2 Is Critical for TLR4-Mediated Cytokine Expression in Colonocytes and Modulates Mucosal Inflammation in Mice. Int J Mol Sci 2022; 23:ijms231911467. [PMID: 36232769 PMCID: PMC9570081 DOI: 10.3390/ijms231911467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
A wide range of microbial pathogens can enter the gastrointestinal tract, causing mucosal inflammation and infectious colitis and accounting for most cases of acute diarrhea. Severe cases of infectious colitis can persist for weeks, and if untreated, may lead to major complications and death. While the molecular pathogenesis of microbial infections is often well-characterized, host-associated epithelial factors that affect risk and severity of infectious colitis are less well-understood. The current study characterized functions of the zinc (Zn) transporter ZnT2 (SLC30A2) in cultured HT29 colonocytes and determined consequences of ZnT2 deletion in mice on the colonic response to enteric infection with Citrobacter rodentium. ZnT2 in colonocytes transported Zn into vesicles buffering cytoplasmic Zn pools, which was important for Toll-like receptor 4 (TLR4) expression, activation of pathogen-stimulated NF-κβ translocation and cytokine expression. Additionally, ZnT2 was critical for lysosome biogenesis and bacterial-induced autophagy, both promoting robust host defense and resolution mechanisms in response to enteric pathogens. These findings reveal that ZnT2 is a novel regulator of mucosal inflammation in colonocytes and is critical to the response to infectious colitis, suggesting that manipulating the function of ZnT2 may offer new therapeutic strategies to treat specific intestinal infections.
Collapse
|
8
|
Doms S, Fokt H, Rühlemann MC, Chung CJ, Kuenstner A, Ibrahim SM, Franke A, Turner LM, Baines JF. Key features of the genetic architecture and evolution of host-microbe interactions revealed by high-resolution genetic mapping of the mucosa-associated gut microbiome in hybrid mice. eLife 2022; 11:75419. [PMID: 35866635 PMCID: PMC9307277 DOI: 10.7554/elife.75419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/14/2022] [Indexed: 12/13/2022] Open
Abstract
Determining the forces that shape diversity in host-associated bacterial communities is critical to understanding the evolution and maintenance of metaorganisms. To gain deeper understanding of the role of host genetics in shaping gut microbial traits, we employed a powerful genetic mapping approach using inbred lines derived from the hybrid zone of two incipient house mouse species. Furthermore, we uniquely performed our analysis on microbial traits measured at the gut mucosal interface, which is in more direct contact with host cells and the immune system. Several mucosa-associated bacterial taxa have high heritability estimates, and interestingly, 16S rRNA transcript-based heritability estimates are positively correlated with cospeciation rate estimates. Genome-wide association mapping identifies 428 loci influencing 120 taxa, with narrow genomic intervals pinpointing promising candidate genes and pathways. Importantly, we identified an enrichment of candidate genes associated with several human diseases, including inflammatory bowel disease, and functional categories including innate immunity and G-protein-coupled receptors. These results highlight key features of the genetic architecture of mammalian host-microbe interactions and how they diverge as new species form. The digestive system, particularly the large intestine, hosts many types of bacteria which together form the gut microbiome. The exact makeup of different bacterial species is specific to an individual, but microbiomes are often more similar between related individuals, and more generally, across related species. Whether this is because individuals share similar environments or similar genetic backgrounds remains unclear. These two factors can be disentangled by breeding different animal lineages – which have different genetic backgrounds while belonging to the same species – and then raising the progeny in the same environment. To investigate this question, Doms et al. studied the genes and microbiomes of mice resulting from breeding strains from multiple locations in a natural hybrid zone between different subspecies. The experiments showed that 428 genetic regions affected the makeup of the microbiome, many of which were known to be associated with human diseases. Further analysis revealed 79 genes that were particularly interesting, as they were involved in recognition and communication with bacteria. These results show how the influence of the host genome on microbiome composition becomes more specialized as animals evolve. Overall, the work by Doms et al. helps to pinpoint the genes that impact the microbiome; this knowledge could be helpful to examine how these interactions contribute to the emergence of conditions such as diabetes or inflammatory bowel disease, which are linked to perturbations in gut bacteria.
Collapse
Affiliation(s)
- Shauni Doms
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Hanna Fokt
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Malte Christoph Rühlemann
- Institute for Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany.,Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Cecilia J Chung
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Axel Kuenstner
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Saleh M Ibrahim
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Sharjah Institute of Medical Research, Sharjah, United Arab Emirates
| | - Andre Franke
- Institute for Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - Leslie M Turner
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| |
Collapse
|
9
|
Danladi Y, Loh TC, Foo HL, Akit H, Md Tamrin NA, Mohammad Naeem A. Impact of Feeding Postbiotics and Paraprobiotics Produced From Lactiplantibacillus plantarum on Colon Mucosa Microbiota in Broiler Chickens. Front Vet Sci 2022; 9:859284. [PMID: 35425828 PMCID: PMC9001976 DOI: 10.3389/fvets.2022.859284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to evaluate the impact of feeding postbiotics and paraprobiotics produced from Lactiplantibacillus plantarum on colon mucosa microbiota in broiler chickens. In this study, 336 one-day-old COBB 500 chicks were randomly allotted to eight treatment groups and replicated six times with seven birds per replicate. The treatment included T1 (Negative control) = Basal diet, T2 (Positive control) = Basal diet + 0.01% oxytetracycline, T3 = Basal diet + 0.2% postbiotic TL1, T4 = Basal diet + 0.2% postbiotic RS5, T5 = Basal diet + 0.2% paraprobiotic RG11, T6 = Basal diet + 0.2% postbiotic RI11, T7 = Basal diet + 0.2% paraprobiotic RG14, and T8 = Basal diet + 0.2% paraprobiotic RI11. There were reported changes in the bacterial community using 16S rRNA sequencing of the colon mucosa. The results of the sequencing of 16S rRNA genes in the colon mucosa samples indicated that compared to birds fed the negative control diet, birds fed paraprobiotic RI11 diets were recorded to have a lower relative abundance of Proteobacteria, while those fed the positive control were recorded to have a higher proportion of Firmicutes. Also, lower Enterococcus was reported in paraprobiotic RI11, while the most abundant genus was Bacteroides in postbiotic TL1. This study revealed that supplementation of postbiotics and paraprobiotics in the diets of broilers demonstrated positive effects on the microbiota by supporting the increase of beneficial microbes like the Firmicutes while decreasing harmful microbes like the Proteobacteria. Therefore, this study has provided knowledge on the modification of chicken mucosa microbiota through the feeding of postbiotics and paraprobiotics.
Collapse
Affiliation(s)
- Yohanna Danladi
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Teck Chwen Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Teck Chwen Loh
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Hooi Ling Foo
| | - Henny Akit
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nur Aida Md Tamrin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Azizi Mohammad Naeem
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
10
|
Vilchez-Vargas R, Salm F, Znalesniak EB, Haupenthal K, Schanze D, Zenker M, Link A, Hoffmann W. Profiling of the Bacterial Microbiota along the Murine Alimentary Tract. Int J Mol Sci 2022; 23:1783. [PMID: 35163705 PMCID: PMC8836272 DOI: 10.3390/ijms23031783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Here, the spatial distribution of the bacterial flora along the murine alimentary tract was evaluated using high throughput sequencing in wild-type and Tff3-deficient (Tff3KO) animals. Loss of Tff3 was linked to increased dextran sodium sulfate-induced colitis. This systematic study shows the results of 13 different regions from the esophagus to the rectum. The number of bacterial species (richness) increased from the esophagus to the rectum, from 50 to 200, respectively. Additionally, the bacterial community structure changed continuously; the highest changes were between the upper/middle and lower gastrointestinal compartments when comparing adjacent regions. Lactobacillus was the major colonizer in the upper/middle gastrointestinal tract, especially in the esophagus and stomach. From the caecum, a drastic diminution of Lactobacillus occurred, while members of Lachnospiraceae significantly increased. A significant change occurred in the bacterial community between the ascending and the transverse colon with Bacteroidetes being the major colonizers with relative constant abundance until the rectum. Interestingly, wild-type and Tff3KO animals did not show significant differences in their bacterial communities, suggesting that Tff3 is not involved in alterations of intraluminal or adhesive microbiota but is obviously important for mucosal protection, e.g., of the sensitive stem cells in the colonic crypts probably by a mucus plume.
Collapse
Affiliation(s)
- Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology, and Infectiology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany;
| | - Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (F.S.); (E.B.Z.); (K.H.)
| | - Eva B. Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (F.S.); (E.B.Z.); (K.H.)
| | - Katharina Haupenthal
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (F.S.); (E.B.Z.); (K.H.)
| | - Denny Schanze
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.S.); (M.Z.)
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (D.S.); (M.Z.)
| | - Alexander Link
- Department of Gastroenterology, Hepatology, and Infectiology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany;
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (F.S.); (E.B.Z.); (K.H.)
| |
Collapse
|
11
|
Han HS, Kim SY, Shin JS, Lee HH, Chung KS, Rhee YK, Cho CW, Hong HD, Lee KT. Polysaccharide fraction isolated from the leaves of Hordeum vulgare L. protects against colonic inflammation of systemic immune responses. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
12
|
Hausmann A, Felmy B, Kunz L, Kroon S, Berthold DL, Ganz G, Sandu I, Nakamura T, Zangger NS, Zhang Y, Dolowschiak T, Fattinger SA, Furter M, Müller-Hauser AA, Barthel M, Vlantis K, Wachsmuth L, Kisielow J, Tortola L, Heide D, Heikenwälder M, Oxenius A, Kopf M, Schroeder T, Pasparakis M, Sellin ME, Hardt WD. Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. J Exp Med 2021; 218:e20210862. [PMID: 34529751 PMCID: PMC8480669 DOI: 10.1084/jem.20210862] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.
Collapse
Affiliation(s)
- Annika Hausmann
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Boas Felmy
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Sanne Kroon
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Dorothée Lisa Berthold
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Giverny Ganz
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Toshihiro Nakamura
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Nathan Sébastien Zangger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Tamas Dolowschiak
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Stefan Alexander Fattinger
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Markus Furter
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Anna Angelika Müller-Hauser
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Katerina Vlantis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Laurens Wachsmuth
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan Kisielow
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Mikael Erik Sellin
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Pinocembrin alleviates ulcerative colitis in mice via regulating gut microbiota, suppressing TLR4/MD2/NF-κB pathway and promoting intestinal barrier. Biosci Rep 2021; 40:225839. [PMID: 32687156 PMCID: PMC7391130 DOI: 10.1042/bsr20200986] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/24/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Pinocembrin, a plant-derived flavonoid, has a variety of pharmacological activities, including anti-infection, anti-cancer, anti-inflammation, cardiovascular protection, etc. However, the mechanism of pinocembrin on the anti-colitis efficacy remains elusive and needs further investigation. Here, we reported that pinocembrin eased the severity of dextran sulfate sodium (DSS)-induced colitis in mice by suppressing the abnormal activation of toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signal pathway in vivo. In addition, the gut microbiota was disordered in DSS colitis mice, which was associated with a significant decrease in microbiota diversity and a great shift in bacteria profiles; however, pinocembrin treatment improved the imbalance of gut microbiota and made it similar to that in normal mice. On the other hand, in vitro, pinocembrin down-regulated the TLR4/NF-κB signaling cascades in lipopolysaccharide (LPS)-stimulated macrophages. At the upstream level, pinocembrin competitively inhibited the binding of LPS to myeloid differentiation protein 2 (MD2), thereby blocking the formation of receptor multimer TLR4/MD2·LPS. Furthermore, pinocembrin dose-dependently promoted the expression of tight junction proteins (ZO-1, Claudin-1, Occludin and JAM-A) in Caco-2 cells. In conclusion, our work presented evidence that pinocembrin attenuated DSS-induced colitis in mouse, at least in part, via regulating intestinal microbiota, inhibiting the over-activation of TLR4/MD2/NF-κB signaling pathway, and improving the barriers of intestine.
Collapse
|
14
|
Hanson HE, Zimmer C, Koussayer B, Schrey AW, Maddox JD, Martin LB. Epigenetic potential affects immune gene expression in house sparrows. J Exp Biol 2021; 224:224/6/jeb238451. [PMID: 33775934 DOI: 10.1242/jeb.238451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/06/2021] [Indexed: 12/15/2022]
Abstract
Epigenetic mechanisms may play a central role in mediating phenotypic plasticity, especially during range expansions, when populations face a suite of novel environmental conditions. Individuals may differ in their epigenetic potential (EP; their capacity for epigenetic modifications of gene expression), which may affect their ability to colonize new areas. One form of EP, the number of CpG sites, is higher in introduced house sparrows (Passer domesticus) than in native birds in the promoter region of a microbial surveillance gene, Toll-like Receptor 4 (TLR4), which may allow invading birds to fine-tune their immune responses to unfamiliar parasites. Here, we compared TLR4 gene expression from whole blood, liver and spleen in house sparrows with different EP, first challenging some birds with lipopolysaccharide (LPS), to increase gene expression by simulating a natural infection. We expected that high EP would predict high inducibility and reversibility of TLR4 expression in the blood of birds treated with LPS, but we did not make directional predictions regarding organs, as we could not repeatedly sample these tissues. We found that EP was predictive of TLR4 expression in all tissues. Birds with high EP expressed more TLR4 in the blood than individuals with low EP, regardless of treatment with LPS. Only females with high EP exhibited reversibility in gene expression. Further, the effect of EP varied between sexes and among tissues. Together, these data support EP as one regulator of TLR4 expression.
Collapse
Affiliation(s)
- Haley E Hanson
- University of South Florida, Global Health and Infectious Disease Research, Tampa, FL 33612, USA
| | - Cedric Zimmer
- University of South Florida, Global Health and Infectious Disease Research, Tampa, FL 33612, USA
| | - Bilal Koussayer
- University of South Florida, Global Health and Infectious Disease Research, Tampa, FL 33612, USA
| | - Aaron W Schrey
- Georgia Southern University Armstrong Campus, Department of Biology, Savannah, GA 31419, USA
| | - J Dylan Maddox
- Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA.,American Public University System, Environmental Sciences, Charles Town, WV 25414, USA.,Universidad Científica del Perú, Laboratorio de Biotecnología y Bioenergética, Iquitos 16007, Perú
| | - Lynn B Martin
- University of South Florida, Global Health and Infectious Disease Research, Tampa, FL 33612, USA
| |
Collapse
|
15
|
Amin N, Seifert J. Dynamic progression of the calf's microbiome and its influence on host health. Comput Struct Biotechnol J 2021; 19:989-1001. [PMID: 33613865 PMCID: PMC7868804 DOI: 10.1016/j.csbj.2021.01.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
The first year of a calf's life is a critical phase as its digestive system and immunity are underdeveloped. A high level of stress caused by separation from mothers, transportation, antibiotic treatments, dietary shifts, and weaning can have long-lasting health effects, which can reduce future production parameters, such as milk yield and reproduction, or even increase the mortality of calves. The early succession of microbes throughout the gastrointestinal tract of neonatal calves follows a sequential pattern of colonisation and is greatly influenced by their physiological state, age, diet, and environmental factors; this leads to the establishment of region- and site-specific microbial communities. This review summarises the current information on the various potential factors that may affect the early life microbial colonisation pattern in the gastrointestinal tract of calves. The possible role of host-microbe interactions in the development and maturation of host gut, immune system, and health are described. Additionally, the possibility of improving the health of calves through gut microbiome modulation and using antimicrobial alternatives is discussed. Finally, the trends, challenges, and limitations of the current research are summarised and prospective directions for future studies are highlighted.
Collapse
Affiliation(s)
- Nida Amin
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
16
|
Guo CY, Ji SK, Yan H, Wang YJ, Liu JJ, Cao ZJ, Yang HJ, Zhang WJ, Li SL. Dynamic change of the gastrointestinal bacterial ecology in cows from birth to adulthood. Microbiologyopen 2020; 9:e1119. [PMID: 33034165 PMCID: PMC7658451 DOI: 10.1002/mbo3.1119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/08/2020] [Accepted: 08/21/2020] [Indexed: 01/18/2023] Open
Abstract
The gut microbiota plays multiple critical roles in maintaining the health of the host, especially in ruminants. However, our understanding of the establishment of gut microbiota from birth to adulthood is still limited. To address this, the bacterial ecology of the rumen, abomasum, duodenum, and rectum in Holstein cows ranging in age from 1 week to 5 years old was investigated using 16S rRNA gene sequencing in this study. A major change in the composition, diversity, and abundance of bacteria was observed with increased age (p < 0.05). Microbiota gradually matured in each gut segment and followed the Gompertz model when the Chao1, Shannon, and maturity indexes (p < 0.05, r > 0.94) were applied. Importantly, the Gompertz model parameter differed between the gut segments, with the highest microbiota growth rate found in the rectum, followed by the rumen, abomasum, and duodenum. Compared to older animals, greater microbiota similarities were found in the adjacent gut segments of younger animals (p < 0.05). Our findings indicate that gut microbiotas are established quickly when cows are young and then slow with age and that early in life, hindgut microbiota may be more easily affected by the foregut microbiota.
Collapse
Affiliation(s)
- Chun Y Guo
- College of Animal Science and Technology, Shihezi University, Shihezi, China.,State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Jinzhong Vocational and Technical College, Jinzhong, China
| | - Shou K Ji
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Hui Yan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Ya J Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing J Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhi J Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hong J Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wen J Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Sheng L Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Kennedy MS, Chang EB. The microbiome: Composition and locations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:1-42. [PMID: 33814111 DOI: 10.1016/bs.pmbts.2020.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human body is home to a diverse and functionally important assemblage of symbiotic microbes that varies predictably over different spatial scales, both within and across body sites. The composition of these spatially distinct microbial consortia can be impacted by a variety of stochastic and deterministic forces, including dispersal from different source communities, and selection by regionally-specific host processes for the enrichment of physiologically significant taxa. In this chapter, we review the composition, function, and assembly of the healthy human gastrointestinal, skin, vaginal, and respiratory microbiomes, with special emphasis on the regional distribution of microbes throughout the gastrointestinal tract.
Collapse
Affiliation(s)
- Megan S Kennedy
- Medical Scientist Training Program, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States; Department of Ecology & Evolution, The University of Chicago, Chicago, IL, United States
| | - Eugene B Chang
- Department of Medicine, Knapp Center for Biomedical Discovery, The University of Chicago, Chicago, IL, United States.
| |
Collapse
|
18
|
Lin YC, Chen YT, Li KY, Chen MJ. Investigating the Mechanistic Differences of Obesity-Inducing Lactobacillus kefiranofaciens M1 and Anti-obesity Lactobacillus mali APS1 by Microbolomics and Metabolomics. Front Microbiol 2020; 11:1454. [PMID: 32733406 PMCID: PMC7360855 DOI: 10.3389/fmicb.2020.01454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/04/2020] [Indexed: 12/27/2022] Open
Abstract
Many studies have investigated the anti-obesity effects of probiotics in animal models and humans. However, few studies have focused on the mechanisms of obesity-inducing probiotics. In a previous study, we demonstrated that specific bacterial strains isolated from kefir, Lactobacillus kefirnofaciens M1 and Lactobacillus mali APS1, possess obesity and anti-obesity effects, respectively, in high-fat diet (HFD)-induced obese mice. Thus, in the present study, we systematically investigated whether APS1 and M1 affect energy homeostasis and lipid metabolism in HFD-induced obese mice and how this might be achieved. We observed that the M1/APS1 intervention influenced fat accumulation by regulating adipogenesis and inflammation-related marker expression both in vitro and in a HFD induced C57BL/6J mice model. We also observed putative links between key taxa and possible metabolic processes of the gut microbiota. Notably, families Christensenellaceae and S24_7 were negatively correlated with body weight gain through increase in the essential esterized carnitine for energy expenditure. These results suggest the importance of specific probiotic interventions affecting leanness and obesity of subjects under a HFD, which are operated by modulating the tripartite relationship among the host, microbiota, and metabolites.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan.,Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yung-Tsung Chen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yi Li
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ming-Ju Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Wang P, Yao J, Deng L, Yang X, Luo W, Zhou W. Pretreatment with Antibiotics Impairs Th17-Mediated Antifungal Immunity in Newborn Rats. Inflammation 2020; 43:2202-2208. [PMID: 32623554 DOI: 10.1007/s10753-020-01287-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinical studies have confirmed that the use of antibiotics, especially carbapenems, is a high-risk factor for fungal infection in preterm infants. However, it is not entirely clear whether the increased risk for fungal infection is due to the immune differences in preterm infants or antibiotic usage. We found that after newborn rats received antibiotics, they exhibited significantly impaired anti-Candida albicans immunity in comparison with those without treatment, as shown by significantly increased levels of fungal glucan in the peripheral blood, multiple caseous fungal infections in the abdominal cavity, intestinal congestion, ischemia, and a decrease in the number of intestinal villi. Mechanistically, pretreatment with antibiotics diminished antifungal innate immunity by TLR2 and inhibited IL-17A release and neutrophil recruitment, leading to increased susceptibility to fungi. In summary, we demonstrate that antibiotic usage impairs antifungal immunity in neonates and suggest that antifungal prophylaxis may be required after antibiotic treatment in high-risk preterm babies.
Collapse
Affiliation(s)
- Ping Wang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Jie Yao
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Deng
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqi Yang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Luo
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhou
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Aminopeptidase N Expression, Not Interferon Responses, Determines the Intestinal Segmental Tropism of Porcine Deltacoronavirus. J Virol 2020; 94:JVI.00480-20. [PMID: 32376622 DOI: 10.1128/jvi.00480-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/26/2020] [Indexed: 12/31/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an economically important enteropathogen of swine with worldwide distribution. PDCoV primarily infects the small intestine instead of the large intestine in vivo However, the underlying mechanism of PDCoV tropism to different intestinal segments remains poorly understood as a result of the lack of a suitable in vitro intestinal model that recapitulates the cellular diversity and complex functions of the gastrointestinal tract. Here, we established the PDCoV infection model of crypt-derived enteroids from different intestinal segments. Enteroids were susceptible to PDCoV, and multiple types of different functional intestinal epithelia were infected by PDCoV in vitro and in vivo We further found that PDCoV favorably infected the jejunum and ileum and restrictedly replicated in the duodenum and colon. Mechanistically, enteroids from different intestinal regions displayed a distinct gene expression profile, and the differential expression of primary viral receptor host aminopeptidase N (APN) instead of the interferon (IFN) responses determined the susceptibility of different intestinal segments to PDCoV, although PDCoV substantially elicited antiviral genes production in enteroids after infection. Additional studies showed that PDCoV infection significantly induced the expression of type I and III IFNs at the late stage of infection, and exogenous IFN inhibited PDCoV replication in enteroids. Hence, our results provide critical inputs to further dissect the molecular mechanisms of PDCoV-host interactions and pathogenesis.IMPORTANCE The zoonotic potential of the PDCoV, a coronavirus efficiently infecting cells from a broad range species, including porcine, chicken, and human, emphasizes the urgent need to further study the cell and tissue tropism of PDCoV in its natural host. Herein, we generated crypt stem cell-derived enteroids from porcine different intestinal regions, which well recapitulated the events in vivo of PDCoV infection that PDCoV targeted multiple types of intestinal epithelia and preferably infected the jejunum and ileum over the duodenum and colon. Mechanistically, we demonstrated that the expression of APN receptor rather than the IFN responses determined the susceptibility of different regions of the intestines to PDCoV infection, though PDCoV infection markedly elicited the IFN responses. Our findings provide important insights into how the distinct gene expression profiles of the intestinal segments determine the cell and tissue tropism of PDCoV.
Collapse
|
21
|
Kurtz CC, Mitchell S, Nielsen K, Crawford KD, Mueller-Spitz SR. Acute high-dose titanium dioxide nanoparticle exposure alters gastrointestinal homeostasis in mice. J Appl Toxicol 2020; 40:1384-1395. [PMID: 32420653 DOI: 10.1002/jat.3991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/10/2020] [Accepted: 04/04/2020] [Indexed: 01/09/2023]
Abstract
Human exposure to a wide variety of engineered nanoparticles (NPs) is on the rise and use in common food additives increases gastrointestinal (GI) exposure. Host health is intricately linked to the GI microbiome and immune response. Perturbations in the microbiota can affect energy harvest, trigger inflammation and alter the mucosal barrier leading to various disease states such as obesity and inflammatory bowel diseases. We hypothesized that single high-dose titanium dioxide (TiO2 ) NP exposure in mice would lead to dysbiosis and stimulate mucus production and local immune populations. Juvenile mice (9-10 weeks) were gavaged with 1 g/kg TiO2 NPs and examined for changes in mucosa-associated bacteria abundance, inflammatory cytokines, mucin expression and body mass. Our data provide support that TiO2 NP ingestion alters the GI microbiota and host defenses promoting metabolic disruption and subsequently weight gain in mice.
Collapse
Affiliation(s)
- Courtney C Kurtz
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US
| | - Samantha Mitchell
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US
| | - Kaitlyn Nielsen
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US
| | - Kevin D Crawford
- Department of Chemistry, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US.,Sustainability Institute for Regional Transformations, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US
| | - Sabrina R Mueller-Spitz
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US.,Sustainability Institute for Regional Transformations, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US
| |
Collapse
|
22
|
Feng J, Cavallero S, Hsiai T, Li R. Impact of air pollution on intestinal redox lipidome and microbiome. Free Radic Biol Med 2020; 151:99-110. [PMID: 31904545 DOI: 10.1016/j.freeradbiomed.2019.12.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
Air pollution is a rising public health issue worldwide. Cumulative epidemiological and experimental studies have shown that exposure to air pollution such as particulate matter (PM) is linked with increased hospital admissions and all-cause mortality. While previous studies on air pollution mostly focused on the respiratory and cardiovascular effects, emerging evidence supports a significant impact of air pollution on the gastrointestinal (GI) system. The gut is exposed to PM as most of the inhaled particles are removed from the lungs to the GI tract via mucociliary clearance. Ingestion of contaminated food and water is another common source of GI tract exposure to pollutants. Recent studies have associated air pollution with intestinal diseases, including appendicitis, colorectal cancer, and inflammatory bowel disease. In addition to the liver and adipose tissue, intestine is an important organ system for lipid metabolism, and the intestinal redox lipids might be tightly associated with the intestinal and systematic inflammation. The gut microbiota modulates lipid metabolism and contributes to the initiation and development of intestinal disease including inflammatory bowel disease. Recent data support microbiome implication in air pollution-mediated intestinal and systematic effects. In this review, the associations between air pollution and intestinal diseases, and the alterations of intestinal lipidome and gut microbiome by air pollution are highlighted. The potential mechanistic aspects underlying air pollution-mediated intestinal pathology will also be discussed.
Collapse
Affiliation(s)
- Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - Susana Cavallero
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Tzung Hsiai
- Department of Medicine, University of California, Los Angeles, CA, USA; Department of Bioengineering, University of California, Los Angeles, CA, USA; West Los Angeles Healthcare System, USA; Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rongsong Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong, China.
| |
Collapse
|
23
|
Chen J, Mao Y, Xing C, Hu R, Xu Z, Cao H, Luo J. Traditional Chinese Medicine Prescriptions Decrease Diarrhea Rate by Relieving Colonic Inflammation and Ameliorating Caecum Microbiota in Piglets. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:3647525. [PMID: 32351595 PMCID: PMC7178461 DOI: 10.1155/2020/3647525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 11/23/2022]
Abstract
Diarrhea is a leading cause of death in piglets. XiaoJianZhong (XJZ) and Jingsananli-sepsis (JSS) were two traditional Chinese medicine (TCM) prescriptions to prevent and treat intestinal diseases, including diarrhea and inflammatory disease. Here, we investigated the effects of XJZ and JSS on diarrhea rate, growth performance, colonic inflammation, and caecum microbiota in piglets. A total of 18 piglets were selected and randomly divided into three groups. Control group was supplied with basal diets, while TCM1 and TCM2 groups were, respectively, supplied with XJZ and JSS in basal diets. Decreased diarrhea rate, colonic or caecal pH, and elevated apparent nutrient digestibility were observed in both TCM groups. Meanwhile, both prescriptions alleviated colonic inflammation by decreasing mRNA expression of proinflammatory cytokines and suppressing the TLR4/MyD88/NF-κB signaling pathway. Additionally, TCM1 and TCM2 prescriptions ameliorated caecum microbiota composition and increased the abundance of beneficial bacteria, together with regulations on several genes that are responsible for signaling pathways involved in cancers and metabolic diseases. Importantly, both TCM1 and TCM2 significantly promoted the average daily gain (ADG) and reduced the feed : gain (F : G) ratio. In conclusion, both TCM prescriptions effectively decreased diarrhea rate and increased growth performance by elevating apparent nutrient digestibility and gut health, via relieving colonic inflammation and ameliorating gut microbiota composition of piglets.
Collapse
Affiliation(s)
- Jian Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yaqing Mao
- China Institute of Veterinary Drug Control (MOA Center for Veterinary Drug Evaluation), Beijing, China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zheng Xu
- Department of Mathematics and Statistics, Wright State University Dayton, Dayton, OH 45435, USA
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
Nguyen LH, Ma W, Wang DD, Cao Y, Mallick H, Gerbaba TK, Lloyd-Price J, Abu-Ali G, Hall AB, Sikavi D, Drew DA, Mehta RS, Arze C, Joshi AD, Yan Y, Branck T, DuLong C, Ivey KL, Ogino S, Rimm EB, Song M, Garrett WS, Izard J, Huttenhower C, Chan AT. Association Between Sulfur-Metabolizing Bacterial Communities in Stool and Risk of Distal Colorectal Cancer in Men. Gastroenterology 2020; 158:1313-1325. [PMID: 31972239 PMCID: PMC7384232 DOI: 10.1053/j.gastro.2019.12.029] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/06/2019] [Accepted: 12/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Sulfur-metabolizing microbes, which convert dietary sources of sulfur into genotoxic hydrogen sulfide (H2S), have been associated with development of colorectal cancer (CRC). We identified a dietary pattern associated with sulfur-metabolizing bacteria in stool and then investigated its association with risk of incident CRC using data from a large prospective study of men. METHODS We collected data from 51,529 men enrolled in the Health Professionals Follow-up Study since 1986 to determine the association between sulfur-metabolizing bacteria in stool and risk of CRC over 26 years of follow-up. First, in a subcohort of 307 healthy men, we profiled serial stool metagenomes and metatranscriptomes and assessed diet using semiquantitative food frequency questionnaires to identify food groups associated with 43 bacterial species involved in sulfur metabolism. We used these data to develop a sulfur microbial dietary score. We then used Cox proportional hazards modeling to evaluate adherence to this pattern among eligible individuals (n = 48,246) from 1986 through 2012 with risk for incident CRC. RESULTS Foods associated with higher sulfur microbial diet scores included increased consumption of processed meats and low-calorie drinks and lower consumption of vegetables and legumes. Increased sulfur microbial diet scores were associated with risk of distal colon and rectal cancers, after adjusting for other risk factors (multivariable relative risk, highest vs lowest quartile, 1.43; 95% confidence interval 1.14-1.81; P-trend = .002). In contrast, sulfur microbial diet scores were not associated with risk of proximal colon cancer (multivariable relative risk 0.86; 95% CI 0.65-1.14; P-trend = .31). CONCLUSIONS In an analysis of participants in the Health Professionals Follow-up Study, we found that long-term adherence to a dietary pattern associated with sulfur-metabolizing bacteria in stool was associated with an increased risk of distal CRC. Further studies are needed to determine how sulfur-metabolizing bacteria might contribute to CRC pathogenesis.
Collapse
Affiliation(s)
- Long H Nguyen
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Wenjie Ma
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dong D Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Yin Cao
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri; Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Himel Mallick
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Teklu K Gerbaba
- Department of Food Science & Technology, University of Nebraska, Lincoln, Nebraska
| | - Jason Lloyd-Price
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Galeb Abu-Ali
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - A Brantley Hall
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Daniel Sikavi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - David A Drew
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Raaj S Mehta
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Cesar Arze
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Amit D Joshi
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Tobyn Branck
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Casey DuLong
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kerry L Ivey
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; South Australian Health and Medical Research Institute, Microbiome & Host Health Programme, Precision Medicine Theme, South Australia, Australia
| | - Shuji Ogino
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts; Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eric B Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Mingyang Song
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Wendy S Garrett
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Department of Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jacques Izard
- Department of Food Science & Technology, University of Nebraska, Lincoln, Nebraska; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
25
|
Spatially distinct physiology of Bacteroides fragilis within the proximal colon of gnotobiotic mice. Nat Microbiol 2020; 5:746-756. [PMID: 32152589 PMCID: PMC7426998 DOI: 10.1038/s41564-020-0683-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
A complex microbiota inhabits various microenvironments of the gut, with some symbiotic bacteria having evolved traits to invade the epithelial mucus layer and reside deep within intestinal tissue of animals. Whether these distinct bacterial communities across gut biogeographies exhibit divergent behaviors remains largely unknown. Global transcriptomic analysis to investigate microbial physiology in specific mucosal niches has been hampered technically by overabundance of host RNA. Herein, we employed hybrid selection RNA sequencing (hsRNA-Seq) to enable detailed spatial transcriptomic profiling of a prominent human commensal as it colonizes the colonic lumen, mucus or epithelial tissue of mice. Compared to conventional RNA-Seq, hsRNA-Seq increased reads mapping to the Bacteroides fragilis genome by 48- and 154-fold in mucus and tissue, respectively, allowing for high fidelity comparisons across biogeographic sites. Near the epithelium, B. fragilis up-regulated numerous genes involved in protein synthesis, indicating that bacteria inhabiting the mucosal niche are metabolically active. Further, a specific sulfatase (BF3086) and glycosyl hydrolase (BF3134) were highly induced in mucus and tissue compared to bacteria in the lumen. In-frame deletion of these genes impaired in vitro growth on mucus as a carbon source, as well as mucosal colonization of mice. Mutants in either B. fragilis gene displayed a fitness defect in competing for colonization against bacterial challenge, revealing the importance of site-specific gene expression for robust host-microbial symbiosis. As a versatile tool, hsRNA-Seq can be deployed to explore the in vivo spatial physiology of numerous bacterial pathogens or commensals.
Collapse
|
26
|
Giaretta PR, Suchodolski JS, Jergens AE, Steiner JM, Lidbury JA, Cook AK, Hanifeh M, Spillmann T, Kilpinen S, Syrjä P, Rech RR. Bacterial Biogeography of the Colon in Dogs With Chronic Inflammatory Enteropathy. Vet Pathol 2020; 57:258-265. [PMID: 31916499 DOI: 10.1177/0300985819891259] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intestinal microbiota is believed to play a role in the pathogenesis of inflammatory bowel disease in humans and chronic inflammatory enteropathy (CIE) in dogs. While most previous studies have described the gut microbiota using sequencing methods, it is fundamental to assess the spatial distribution of the bacteria for a better understanding of their relationship with the host. The microbiota in the colonic mucosa of 22 dogs with CIE and 11 control dogs was investigated using fluorescence in situ hybridization (FISH) with a universal eubacterial probe (EUB338) and specific probes for select bacterial groups. The number of total bacteria labeled with EUB338 probe was lower within the colonic crypts of dogs with CIE compared to controls. Helicobacter spp. and Akkermansia spp. were decreased on the colonic surface and in the crypts of dogs with CIE. Dogs with CIE had increased number of Escherichia coli/Shigella spp. on the colonic surface and within the crypts compared to control dogs. In conclusion, the bacterial microbiota in the colonic mucosa differed between dogs with and without CIE, with depletion of the crypt bacteria in dogs with CIE. The crypt bacterial species that was intimately associated with the host mucosa in control dogs was composed mainly of Helicobacter spp.
Collapse
Affiliation(s)
- Paula R Giaretta
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Albert E Jergens
- Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jörg M Steiner
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jonathan A Lidbury
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Audrey K Cook
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Mohsen Hanifeh
- Faculty of Veterinary Medicine, Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas Spillmann
- Faculty of Veterinary Medicine, Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Susanne Kilpinen
- Faculty of Veterinary Medicine, Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Pernilla Syrjä
- Faculty of Veterinary Medicine, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Raquel R Rech
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
27
|
Martinez-Guryn K, Leone V, Chang EB. Regional Diversity of the Gastrointestinal Microbiome. Cell Host Microbe 2020; 26:314-324. [PMID: 31513770 DOI: 10.1016/j.chom.2019.08.011] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of gut microbes in health and disease has often been surmised from stool, which is easily sampled and rich in microbial diversity, density, and abundance. Microbial analyses of stool have been accepted as measures to determine the relationship of gut microbiomes with host health and disease, based on the belief that it represents all microbial populations throughout the gut. However, functional heterogeneity of each gastrointestinal tract (GIT) segment gives rise to regional differences in gut microbial populations. Herein, we summarize the literature regarding the microbial landscape along the rostral to caudal, i.e., horizontal mouth to anus, axis of the GIT. We aim to identify gaps in the literature, particularly regarding small intestinal microbiota abundance and diversity, highlight the importance of regional microbiota on host health and disease, as well as discuss opportunities to advance this line of research.
Collapse
Affiliation(s)
- Kristina Martinez-Guryn
- Biomedical Sciences Department, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Vanessa Leone
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
28
|
Comparison of the fecal, cecal, and mucus microbiome in male and female mice after TNBS-induced colitis. PLoS One 2019; 14:e0225079. [PMID: 31703107 PMCID: PMC6839838 DOI: 10.1371/journal.pone.0225079] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Crohn’s Disease and Ulcerative Colitis are chronic, inflammatory conditions of the digestive tract, collectively known as Inflammatory Bowel Disease (IBD). The combined influence of lifestyle factors, genetics, and the gut microbiome contribute to IBD pathogenesis. Studies of the gut microbiome have shown significant differences in its composition between healthy individuals and those with IBD. Due to the high inter-individual microbiome variation seen in humans, mouse models of IBD are often used to investigate potential IBD mechanisms and their interplay between host, microbial, and environmental factors. While fecal samples are the predominant material used for microbial community analysis, they may not be the ideal sample to use for analysis of the microbiome of mice with experimental colitis, such as that induced by 2, 4, 6 trinitrobenzesulfonic acid (TNBS). As TNBS is administered intrarectally to induce colitis and inflammation is confined to the colon in this model, we hypothesized that the microbiome of the colonic mucus would most closely correlate with TNBS colitis severity. Based on our previous research, we also hypothesized that sex would be associated with both disease severity and microbial differences in mice with chronic TNBS colitis. We examined and compared the fecal, cecal content, and colonic mucus microbiota of 8-week old male and female C57BL/6J wild-type mice prior to and after the induction of TNBS colitis via 16S rRNA gene sequencing. We found that the colonic mucus microbiome was more closely correlated with disease severity than were alterations in the fecal and cecal microbiomes. We also found that the microbiomes of the feces, cecum, and mucus were distinct, but found no significant differences that were associated with sex in either compartment. Our findings highlight the importance of sampling colonic mucus in TNBS-induced colitis. Moreover, consideration of the differential impact of sex on the microbiome across mouse strains may be critical for the appropriate application of TNBS colitis models and robust comparisons across studies in the future.
Collapse
|
29
|
Song Y, Malmuthuge N, Li F, Guan LL. Colostrum feeding shapes the hindgut microbiota of dairy calves during the first 12 h of life. FEMS Microbiol Ecol 2019; 95:5127040. [PMID: 30307547 DOI: 10.1093/femsec/fiy203] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022] Open
Abstract
This study evaluated the effect of feeding non-heated and heated colostrum on the mucosa- and digesta-associated microbiota in the colon of dairy calves during the first 12 h of life. Thirty-two neonatal Holstein male calves were fed: no colostrum (NC, n = 8), non-heated colostrum (FC, n = 12) and heated colostrum (HC (60 °C, 60 min), n = 12) immediately after birth. The abundances of mucosa- and digesta-associated total bacteria were higher in the colon of FC fed calves compared to those fed no colostrum (NC) at 12 h of life. Compare to NC calves, a higher proportion of mucosa- and digesta-associated Clostridium cluster XIVa and Bifidobacterium, and a lower abundance of mucosa and digesta-associated E. coli were detected in the colon of FC and HC fed calves, as well as a tentatively lower relative abundance of Escherichia-Shigella genus in colon mucosa of HC fed calves. In addition, HC calves had lower abundances of E. coli and higher abundances of Bifidobacterium in mucosa-associated microbiota than FC fed calves. Our results suggest that feeding non-heated colostrum immediately after birth benefit neonatal calves with increased Bifidobacterium and decreased opportunistic pathogenic E. coli and Escherichia-Shigella genus in the colon, and feeding heated colostrum can fortify such effects.
Collapse
Affiliation(s)
- Yang Song
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada
| | - Nilusha Malmuthuge
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada
| | - Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada
| |
Collapse
|
30
|
Grasa L, Abecia L, Peña-Cearra A, Robles S, Layunta E, Latorre E, Mesonero JE, Forcén R. TLR2 and TLR4 interact with sulfide system in the modulation of mouse colonic motility. Neurogastroenterol Motil 2019; 31:e13648. [PMID: 31119834 DOI: 10.1111/nmo.13648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND H2 S is a neuromodulator that may inhibit intestinal motility. H2 S production in colon is yielded by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) enzymes and sulfate-reducing bacteria (SRB). Toll-like receptors (TLRs) recognize intestinal microbiota. The aim of this work was to evaluate the influence of TLR2 and TLR4 on the endogenous and SRB-mediated synthesis of H2 S and its consequences on the colonic motility of mouse. METHODS Muscle contractility studies were performed in colon from WT, Tlr2-/- , and Tlr4-/- mice. The mRNA levels of TLR2, TLR4, CBS, CSE, and SRB were measured by real-time PCR. Free sulfide levels in colon and feces were determined by colorimetric assays. RESULTS NaHS and GYY4137, donors of H2 S, reduced the contractility of colon. Aminooxyacetic acid (AOAA), inhibitor of CBS, and D-L propargylglycine (PAG), inhibitor of CSE, increased the contractility of colon. In vivo treatment with NaHS or GYY4137 inhibited the spontaneous contractions and upregulated TLR2 expression. The in vivo activation of TLR4 with lipopolysaccharide increased the contractile response to PAG, mRNA levels of CSE, and the free sulfide levels of H2 S in colon. In Tlr2-/- and Tlr4-/- mice, the contractions induced by AOAA and PAG and mRNA levels of CBS and CSE were lower with respect to WT mice. Deficiency of TLR2 or TLR4 provokes alterations in free sulfide levels and SRB of colon. CONCLUSIONS AND INFERENCES Our study demonstrates interaction between TLR2 and TLR4 and the sulfide system in the regulation of colonic motility and contributes to the pathophysiology knowledge of intestinal motility disorders.
Collapse
Affiliation(s)
- Laura Grasa
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón -IA2- (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | | | - Ainize Peña-Cearra
- CIC bioGUNE, Spain.,University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sofia Robles
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Elena Layunta
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Univesity of Gothenburg, Gothenburg, Sweden
| | - Eva Latorre
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - José Emilio Mesonero
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón -IA2- (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Raquel Forcén
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
31
|
Sharbafi MH, Assadiasl S, Pour‐reza‐gholi F, Barzegari S, Mohammadi Torbati P, Samavat S, Nicknam MH, Amirzargar A. TLR‐2, TLR‐4 and MyD88 genes expression in renal transplant acute and chronic rejections. Int J Immunogenet 2019; 46:427-436. [DOI: 10.1111/iji.12446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/17/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
| | - Sara Assadiasl
- Molecular Immunology Research Center Tehran University of Medical Sciences Tehran Iran
| | - Fatemeh Pour‐reza‐gholi
- Chronic Kidney Disease Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Saeed Barzegari
- Department of health information technology, Amol Faculty of Paramedical Sciences Mazandaran University of Medical Sciences Sari Iran
| | - Peyman Mohammadi Torbati
- Department of Pathology Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Shiva Samavat
- Chronic Kidney Disease Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine Tehran University of Medical Sciences Tehran Iran
- Molecular Immunology Research Center Tehran University of Medical Sciences Tehran Iran
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine Tehran University of Medical Sciences Tehran Iran
- Molecular Immunology Research Center Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
32
|
Dehhaghi M, Kazemi Shariat Panahi H, Guillemin GJ. Microorganisms, Tryptophan Metabolism, and Kynurenine Pathway: A Complex Interconnected Loop Influencing Human Health Status. Int J Tryptophan Res 2019; 12:1178646919852996. [PMID: 31258331 PMCID: PMC6585246 DOI: 10.1177/1178646919852996] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
The kynurenine pathway is important in cellular energy generation and limiting cellular ageing as it degrades about 90% of dietary tryptophan into the essential co-factor NAD+ (nicotinamide adenine dinucleotide). Prior to the production of NAD+, various intermediate compounds with neuroactivity (kynurenic acid, quinolinic acid) or antioxidant activity (3-hydroxykynurenine, picolinic acid) are synthesized. The kynurenine metabolites can participate in numerous neurodegenerative disorders (Alzheimer disease, amyotrophic lateral sclerosis, Huntington disease, and Parkinson disease) or other diseases such as AIDS, cancer, cardiovascular diseases, inflammation, and irritable bowel syndrome. Recently, the role of gut in affecting the emotional and cognitive centres of the brain has attracted a great deal of attention. In this review, we focus on the bidirectional communication between the gut and the brain, known as the gut-brain axis. The interaction of components of this axis, namely, the gut, its microbiota, and gut pathogens; tryptophan; the kynurenine pathway on tryptophan availability; the regulation of kynurenine metabolite concentration; and diversity and population of gut microbiota, has been considered.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.,Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Hamed Kazemi Shariat Panahi
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.,Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
33
|
Rao MC. Physiology of Electrolyte Transport in the Gut: Implications for Disease. Compr Physiol 2019; 9:947-1023. [PMID: 31187895 DOI: 10.1002/cphy.c180011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We now have an increased understanding of the genetics, cell biology, and physiology of electrolyte transport processes in the mammalian intestine, due to the availability of sophisticated methodologies ranging from genome wide association studies to CRISPR-CAS technology, stem cell-derived organoids, 3D microscopy, electron cryomicroscopy, single cell RNA sequencing, transgenic methodologies, and tools to manipulate cellular processes at a molecular level. This knowledge has simultaneously underscored the complexity of biological systems and the interdependence of multiple regulatory systems. In addition to the plethora of mammalian neurohumoral factors and their cross talk, advances in pyrosequencing and metagenomic analyses have highlighted the relevance of the microbiome to intestinal regulation. This article provides an overview of our current understanding of electrolyte transport processes in the small and large intestine, their regulation in health and how dysregulation at multiple levels can result in disease. Intestinal electrolyte transport is a balance of ion secretory and ion absorptive processes, all exquisitely dependent on the basolateral Na+ /K+ ATPase; when this balance goes awry, it can result in diarrhea or in constipation. The key transporters involved in secretion are the apical membrane Cl- channels and the basolateral Na+ -K+ -2Cl- cotransporter, NKCC1 and K+ channels. Absorption chiefly involves apical membrane Na+ /H+ exchangers and Cl- /HCO3 - exchangers in the small intestine and proximal colon and Na+ channels in the distal colon. Key examples of our current understanding of infectious, inflammatory, and genetic diarrheal diseases and of constipation are provided. © 2019 American Physiological Society. Compr Physiol 9:947-1023, 2019.
Collapse
Affiliation(s)
- Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
34
|
El Mouzan MI, Winter HS, Assiri AA, Korolev KS, Al Sarkhy AA, Dowd SE, Al Mofarreh MA, Menon R. Microbiota profile in new-onset pediatric Crohn's disease: data from a non-Western population. Gut Pathog 2018; 10:49. [PMID: 30519287 PMCID: PMC6263052 DOI: 10.1186/s13099-018-0276-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Background The role of microbiota in Crohn’s disease (CD) is increasingly recognized. However, most of the reports are from Western populations. Considering the possible variation from other populations, the aim of this study was to describe the microbiota profile in children with CD in Saudi Arabia, a non-Western developing country population. Results Significantly more abundant genera in children with CD included Fusobacterium, Peptostreptococcus, Psychrobacter, and Acinetobacter; whereas the most significantly-depleted genera included Roseburia, Clostridium, Ruminococcus, Ruminoclostridium, Intestinibacter, Mitsuokella, Megasphaera, Streptococcus, Lactobacillus, Turicibacter, and Paludibacter. Alpha diversity was significantly reduced in stool (p = 0.03) but not in mucosa (p = 0.31). Beta diversity showed significant difference in community composition between control and CD samples (p = 0.03). Conclusion In this developing country, we found a pattern of microbiota in children with CD similar to Western literature, suggesting a role of recent dietary lifestyle changes in this population on microbiota structure.
Collapse
Affiliation(s)
- Mohammad I El Mouzan
- 1Pediatric IBD Research Group, Gastroenterology Division, Department of Pediatrics, King Saud University, P. O. Box 2925, Riyadh, 11461 Kingdom of Saudi Arabia
| | - Harland S Winter
- Mass General Hospital for Children, Pediatric IBD Program Boston, Boston, USA
| | - Assad A Assiri
- 3Department of Pediatrics, Gastroenterology Division, Prince Abdullah Bin Khalid Celiac Disease Research Chair, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Kirill S Korolev
- 4Physics Department and Bioinformatics Program, Boston University, Boston, USA
| | - Ahmad A Al Sarkhy
- 3Department of Pediatrics, Gastroenterology Division, Prince Abdullah Bin Khalid Celiac Disease Research Chair, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | | | - Rajita Menon
- 7Physics Department, Boston University, Boston, USA
| |
Collapse
|
35
|
Garrido-Mesa J, Algieri F, Rodríguez-Nogales A, Vezza T, Utrilla M, Garcia F, Chueca N, Rodríguez-Cabezas M, Garrido-Mesa N, Gálvez J. Immunomodulatory tetracyclines ameliorate DNBS-colitis: Impact on microRNA expression and microbiota composition. Biochem Pharmacol 2018; 155:524-536. [DOI: 10.1016/j.bcp.2018.07.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
|
36
|
Lee SM, Kim N, Park JH, Nam RH, Yoon K, Lee DH. Comparative Analysis of Ileal and Cecal Microbiota in Aged Rats. J Cancer Prev 2018; 23:70-76. [PMID: 30003066 PMCID: PMC6037205 DOI: 10.15430/jcp.2018.23.2.70] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Background Gut microbiota contributes to intestinal and immune homeostasis through host-microbiota interactions. Distribution of the gut microbiota differs according to the location in the gastrointestinal tract. Although the microbiota properties change with age, evidence for the regional difference of gut microbiota has been restricted to the young. The aim of this study is to compare the gut microbiota between terminal ileum and cecum of old rats. Methods We analyzed gut microbiome of luminal contents from ileum and cecum of 74-week-old and 2-year-old rats (corresponding to 60-year and 80-year-old of human age) by metagenome sequencing of 16S rRNA. Results Inter-individual variation (beta diversity) of microbiota was higher in ileum than in cecum. Conversely, alpha diversity of microbiota composition was higher in cecum than in ileum. Lactobacillaceae were more abundant in ileum compared to cecum while Ruminococcaceae and Lachnospiraceae were more enriched in cecum. The proportions of Deltaproteobacteria were increased in cecal microbiota of 2-year-old rats compared to 74-week-old rats. Conclusions Major regional distinctions of microbiota between ileum and cecum of old rats appear consistent with those of young rats. Age-related alterations of gut microbiota in old rats seem to occur in minor compositions.
Collapse
Affiliation(s)
- Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kichul Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
37
|
Yoshifuji A, Wakino S, Irie J, Matsui A, Hasegawa K, Tokuyama H, Hayashi K, Itoh H. Oral adsorbent AST-120 ameliorates gut environment and protects against the progression of renal impairment in CKD rats. Clin Exp Nephrol 2018; 22:1069-1078. [PMID: 29675795 PMCID: PMC6154091 DOI: 10.1007/s10157-018-1577-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 04/08/2018] [Indexed: 12/27/2022]
Abstract
Background Oral charcoal adsorbent AST-120 (AST) is reported to ameliorate renal dysfunction by the absorption of toxic substance in the gut. Recent study revealed that, in CKD, gut environment is disturbed including the decrease in tight junctions and Lactobacillus (Lact). In this study, we examined whether AST improves the renal dysfunction through gut environment. Method Six-week-old spontaneously hypertensive rats (SHR) were rendered CKD by 5/6th nephrectomy (Nx). SHRs were divided into SHR (Sham), SHR with Nx (Nx), and Nx given AST (Nx + AST) (n = 10, each). After 12 weeks, rats were killed and biochemical parameters were explored. The gut flora was analyzed. Furthermore, gut molecular changes in tight junctions and toll-like receptors were examined. We also investigated the effects of the combination therapy with AST and Lact. Results The increase in serum urea nitrogen and urinary protein excretion in Nx was restored in Nx + AST. The increased renal glomerulosclerosis in Nx was ameliorated in Nx + AST. Increases in serum uremic toxins and IL-6 in Nx were ameliorated in Nx + AST. The gut flora analysis revealed that the decrease in Lact in Nx was restored in Nx + AST. The downregulation in the tight junction and TLR2 in Nx was mitigated by AST. However, combination therapy failed to exhibit additional effects. Conclusion AST ameliorated renal function with the restoration of Lact and tight junction through TLR pathway, which would mitigate systemic inflammation and contributed to their renoprotective effects. Our study provides a novel mechanism of the renoprotective effects by AST.
Collapse
Affiliation(s)
- Ayumi Yoshifuji
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Junichiro Irie
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ayumi Matsui
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuhiro Hasegawa
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Koichi Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
38
|
Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, Li T, Yin Y. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front Cell Infect Microbiol 2018; 8:13. [PMID: 29468141 PMCID: PMC5808205 DOI: 10.3389/fcimb.2018.00013] [Citation(s) in RCA: 829] [Impact Index Per Article: 118.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota influences the health of the host, especially with regard to gut immune homeostasis and the intestinal immune response. In addition to serving as a nutrient enhancer, L-tryptophan (Trp) plays crucial roles in the balance between intestinal immune tolerance and gut microbiota maintenance. Recent discoveries have underscored that changes in the microbiota modulate the host immune system by modulating Trp metabolism. Moreover, Trp, endogenous Trp metabolites (kynurenines, serotonin, and melatonin), and bacterial Trp metabolites (indole, indolic acid, skatole, and tryptamine) have profound effects on gut microbial composition, microbial metabolism, the host's immune system, the host-microbiome interface, and host immune system-intestinal microbiota interactions. The aryl hydrocarbon receptor (AhR) mediates the regulation of intestinal immunity by Trp metabolites (as ligands of AhR), which is beneficial for immune homeostasis. Among Trp metabolites, AhR ligands consist of endogenous metabolites, including kynurenine, kynurenic acid, xanthurenic acid, and cinnabarinic acid, and bacterial metabolites, including indole, indole propionic acid, indole acetic acid, skatole, and tryptamine. Additional factors, such as aging, stress, probiotics, and diseases (spondyloarthritis, irritable bowel syndrome, inflammatory bowel disease, colorectal cancer), which are associated with variability in Trp metabolism, can influence Trp-microbiome-immune system interactions in the gut and also play roles in regulating gut immunity. This review clarifies how the gut microbiota regulates Trp metabolism and identifies the underlying molecular mechanisms of these interactions. Increased mechanistic insight into how the microbiota modulates the intestinal immune system through Trp metabolism may allow for the identification of innovative microbiota-based diagnostics, as well as appropriate nutritional supplementation of Trp to prevent or alleviate intestinal inflammation. Moreover, this review provides new insight regarding the influence of the gut microbiota on Trp metabolism. Additional comprehensive analyses of targeted Trp metabolites (including endogenous and bacterial metabolites) are essential for experimental preciseness, as the influence of the gut microbiota cannot be neglected, and may explain contradictory results in the literature.
Collapse
Affiliation(s)
- Jing Gao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kang Xu
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Hongnan Liu
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Gang Liu
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Miaomiao Bai
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Can Peng
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Tiejun Li
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
39
|
Ma N, Guo P, Zhang J, He T, Kim SW, Zhang G, Ma X. Nutrients Mediate Intestinal Bacteria-Mucosal Immune Crosstalk. Front Immunol 2018; 9:5. [PMID: 29416535 PMCID: PMC5787545 DOI: 10.3389/fimmu.2018.00005] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
The intestine is the shared site of nutrient digestion, microbiota colonization and immune cell location and this geographic proximity contributes to a large extent to their interaction. The onset and development of a great many diseases, such as inflammatory bowel disease and metabolic syndrome, will be caused due to the imbalance of body immune. As competent assistants, the intestinal bacteria are also critical in disease prevention and control. Moreover, the gut commensal bacteria are essential for development and normal operation of immune system and the pathogens are also closely bound up with physiological disorders and diseases mediated by immune imbalance. Understanding how our diet and nutrient affect bacterial composition and dynamic function, and the innate and adaptive status of our immune system, represents not only a research need but also an opportunity or challenge to improve health. Herein, this review focuses on the recent discoveries about intestinal bacteria–immune crosstalk and nutritional regulation on their interplay, with an aim to provide novel insights that can aid in understanding their interactions.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Pingting Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
40
|
Coleman OI, Haller D. Bacterial Signaling at the Intestinal Epithelial Interface in Inflammation and Cancer. Front Immunol 2018; 8:1927. [PMID: 29354132 PMCID: PMC5760496 DOI: 10.3389/fimmu.2017.01927] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract provides a compartmentalized interface with an enormous repertoire of immune and metabolic activities, where the multicellular structure of the mucosa has acquired mechanisms to sense luminal factors, such as nutrients, microbes, and a variety of host-derived and microbial metabolites. The GI tract is colonized by a complex ecosystem of microorganisms, which have developed a highly coevolved relationship with the host’s cellular and immune system. Intestinal epithelial pattern recognition receptors (PRRs) substantially contribute to tissue homeostasis and immune surveillance. The role of bacteria-derived signals in intestinal epithelial homeostasis and repair has been addressed in mouse models deficient in PRRs and signaling adaptors. While critical for host physiology and the fortification of barrier function, the intestinal microbiota poses a considerable health challenge. Accumulating evidence indicates that dysbiosis is associated with the pathogenesis of numerous GI tract diseases, including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Aberrant signal integration at the epithelial cell level contributes to such diseases. An increased understanding of bacterial-specific structure recognition and signaling mechanisms at the intestinal epithelial interface is of great importance in the translation to future treatment strategies. In this review, we summarize the growing understanding of the regulation and function of the intestinal epithelial barrier, and discuss microbial signaling in the dynamic host–microbe mutualism in both health and disease.
Collapse
Affiliation(s)
| | - Dirk Haller
- Technical University of Munich, Munich, Germany.,ZIEL-Institute for Food & Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
41
|
Regulation of epithelial cell expressed C3 in the intestine - Relevance for the pathophysiology of inflammatory bowel disease? Mol Immunol 2017; 90:227-238. [PMID: 28843904 DOI: 10.1016/j.molimm.2017.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/22/2017] [Accepted: 08/13/2017] [Indexed: 12/13/2022]
Abstract
The complement system not only plays a critical role in efficient detection and clearance of bacteria, but also in intestinal immune homeostasis as mice deficient for key complement components display enhanced intestinal inflammation upon experimental colitis. Because underlying molecular mechanisms for this observation are unclear, we investigated the crosstalk between intestinal epithelial cells (IEC), bacteria and the complement system in the course of chronic colitis. Surprisingly, mouse intestinal epithelial cell lines constitutively express high mRNA levels of complement component 3 (C3), Toll-like receptor 2 (Tlr2) and Tlr4. Stimulation of these cells with lipopolysaccharide (LPS), but not with flagellin, LD-muramyldipeptide or peptidoglycan, triggered increased C3 expression, secretion and activation. Stimulation of the C3aR on these cell lines with C3a resulted in an increase of LPS-triggered pro-inflammatory response. Tissue biopsies from C57BL/6J mice revealed higher expression of C3, Tlr1, Tlr2 and Tlr4 in colonic primary IECs (pIECs) compared to ileal pIECs, while in germ-free mice no differences in C3 protein expression was observed. In DSS-induced chronic colitis mouse models, C3 mRNA expression was upregulated in colonic biopsies and ileal pIECs with elevated C3 protein in the lamina propria, IECs and the mucus. Notably, increased C3b opsonization of mucosa-attached bacteria and decreased fecal full-length C3 protein was observed in DSS-treated compared to untreated mice. Of significant interest, non-inflamed and inflamed colonic biopsy samples from CD but not UC patients displayed exacerbated C3 expression compared to controls. These findings suggest that a novel TLR4-C3 axis could control the intestinal immune response during chronic colitis.
Collapse
|
42
|
Latorre E, Layunta E, Grasa L, Pardo J, García S, Alcalde AI, Mesonero JE. Toll-like receptors 2 and 4 modulate intestinal IL-10 differently in ileum and colon. United European Gastroenterol J 2017; 6:446-453. [PMID: 29774159 DOI: 10.1177/2050640617727180] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022] Open
Abstract
Background Inflammatory bowel diseases are consequence of an intestinal homeostasis breakdown in which innate immune dysregulation is implicated. Toll-like receptor (TLR)2 and TLR4 are immune recognition receptors expressed in the intestinal epithelium, the first physical-physiological barrier for microorganisms, to inform the host of the presence of Gram-positive and Gram-negative organisms. Interleukin (IL)-10 is an essential anti-inflammatory cytokine that contributes to maintenance of intestinal homeostasis. Aim Our main aim was to investigate intestinal IL-10 synthesis and release, and whether TLR2 and TLR4 are determinants of IL-10 expression in the intestinal tract. Methods We used Caco-2 cell line as an enterocyte-like cell model, and also ileum and colon from mice deficient in TLR2, TLR4 or TLR2/4 to test the involvement of TLR signaling. Results Intestinal epithelial cells are able to synthesize and release IL-10 and their expression is increased after TLR2 or TLR4 activation. IL-10 regulation seems to be tissue specific, with IL-10 expression in the ileum regulated by a compensation between TLR2 and TLR4 expression, whereas in the colon, TLR2 and TLR4 affect IL-10 expression independently. Conclusions Intestinal epithelial cells could release IL-10 in response to TLR activation, playing an intestinal tissue-dependent and critical intestinal immune role.
Collapse
Affiliation(s)
- Eva Latorre
- 1Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom.,Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain
| | - Elena Layunta
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - Laura Grasa
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - Julián Pardo
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain
| | - Santiago García
- Servicio de Sistema Digestivo, Hospital Clínico Universitario "Miguel Servet", Instituto de Investigación Sanitaria de Aragón (IIS) Zaragoza, Spain
| | - Ana I Alcalde
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain
| | - José E Mesonero
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza - CITA), Zaragoza, Spain
| |
Collapse
|
43
|
Merlano MC, Granetto C, Fea E, Ricci V, Garrone O. Heterogeneity of colon cancer: from bench to bedside. ESMO Open 2017; 2:e000218. [PMID: 29209524 PMCID: PMC5703395 DOI: 10.1136/esmoopen-2017-000218] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022] Open
Abstract
The large bowel shows biomolecular, anatomical and bacterial changes that proceed from the proximal to the distal tract. These changes account for the different behaviour of colon cancers arising from the diverse sides of the colon-rectum as well as for the sensitivity to the therapy, including immunotherapy. The gut microbiota plays an important role in the modulation of the immune response and differs between the right colon cancer and the left colorectal cancer. The qualitative and quantitative difference of the commensal bacteria between the right side and the left side induces epigenetic changes in the intestinal epithelial cells as well as in the resident immune population. The second player in the pathological homeostasis of colorectal cancer is the differences of the genetic features of cancer cells and the different effects that microsatellite instability, chromosomal instability and the CpG island methylator phenotype induce on the immunological organisation of the tumour microenvironment. The third player is the immunological composition of the tumour microenvironment, which changes under the influence of both genetic structures and gut microbiota. All these three players influence each other. This review describes these three aspects, highlights their interactions and discusses data from reported clinical trials.
Collapse
Affiliation(s)
- Marco C Merlano
- Medical Oncology, A.O. S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | - Cristina Granetto
- Medical Oncology, A.O. S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | - Elena Fea
- Medical Oncology, A.O. S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | - Vincenzo Ricci
- Medical Oncology, A.O. S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | - Ornella Garrone
- Medical Oncology, A.O. S. Croce and Carle Teaching Hospital, Cuneo, Italy
| |
Collapse
|
44
|
Close association between intestinal microbiota and irritable bowel syndrome. Eur J Clin Microbiol Infect Dis 2017; 36:2303-2317. [DOI: 10.1007/s10096-017-3060-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/04/2017] [Indexed: 12/13/2022]
|
45
|
Inoue R, Yajima T, Tsukahara T. Expression of TLR2 and TLR4 in murine small intestine during postnatal development. Biosci Biotechnol Biochem 2017; 81:350-358. [DOI: 10.1080/09168451.2016.1254534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
The important role played by the gut microbiota in host immunity is mediated, in part, through toll-like receptors (TLRs). We evaluated the postnatal changes in expression of TLR2 and TLR4 in the murine small intestine and assessed how expression is influenced by gut microbiota. The expression of TLR2 and TLR4 in the murine small intestine was highly dynamic during development. The changes were especially profound during the suckling period, with the maximal mRNA levels detected in the mid-suckling period. Immunohistochemical and flow-cytometric analyses indicated that the changes in TLR2 and TLR4 expression involve primarily epithelial cells. The germ-free mice showed minor changes in TLR2/TLR4 mRNA and TLR2 protein during the suckling period. This study demonstrated that the postnatal expression of TLR2 and TLR4 in small intestinal epithelial cells is dynamic and depends on the presence of commensal intestinal microbiota.
Collapse
Affiliation(s)
- Ryo Inoue
- Laboratory of Animal Science, Department of Agricultural and Life Sciences, Kyoto Prefectural University, Kyoto, Japan
- Creative Research Initiative “Sousei” (CRIS), Hokkaido University, Sapporo, Japan
| | - Takaji Yajima
- Creative Research Initiative “Sousei” (CRIS), Hokkaido University, Sapporo, Japan
| | - Takamitsu Tsukahara
- Laboratory of Animal Science, Department of Agricultural and Life Sciences, Kyoto Prefectural University, Kyoto, Japan
- Kyoto Institute of Nutrition and Pathology, Kyoto, Japan
| |
Collapse
|
46
|
Core 1- and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal Immunol 2017; 10:91-103. [PMID: 27143302 PMCID: PMC5097036 DOI: 10.1038/mi.2016.45] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/30/2016] [Indexed: 02/04/2023]
Abstract
Core 1- and 3-derived mucin-type O-glycans are primary components of the mucus layer in the colon. Reduced mucus thickness and impaired O-glycosylation are observed in human ulcerative colitis. However, how both types of O-glycans maintain mucus barrier function in the colon is unclear. We found that C1galt1 expression, which synthesizes core 1 O-glycans, was detected throughout the colon, whereas C3GnT, which controls core 3 O-glycan formation, was most highly expressed in the proximal colon. Consistent with this, mice lacking intestinal core 1-derived O-glycans (IEC C1galt1-/-) developed spontaneous colitis primarily in the distal colon, whereas mice lacking both intestinal core 1- and 3-derived O-glycans (DKO) developed spontaneous colitis in both the distal and proximal colon. DKO mice showed an early onset and more severe colitis than IEC C1galt1-/- mice. Antibiotic treatment restored the mucus layer and attenuated colitis in DKO mice. Mucins from DKO mice were more susceptible to proteolysis than wild-type mucins. This study indicates that core 1- and 3-derived O-glycans collectively contribute to the mucus barrier by protecting it from bacterial protease degradation and suggests new therapeutic targets to promote mucus barrier function in colitis patients.
Collapse
|
47
|
Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 2017; 112:399-412. [DOI: 10.1016/j.neuropharm.2016.07.002] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
|
48
|
Prieto D, Carpena N, Maneu V, Gil ML, Pla J, Gozalbo D. TLR2 modulates gut colonization and dissemination of Candida albicans in a murine model. Microbes Infect 2016; 18:656-660. [PMID: 27256463 DOI: 10.1016/j.micinf.2016.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/16/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022]
|
49
|
Meisel M, Mayassi T, Fehlner-Peach H, Koval JC, O'Brien SL, Hinterleitner R, Lesko K, Kim S, Bouziat R, Chen L, Weber CR, Mazmanian SK, Jabri B, Antonopoulos DA. Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis. ISME JOURNAL 2016; 11:15-30. [PMID: 27648810 DOI: 10.1038/ismej.2016.114] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023]
Abstract
Dysbiosis resulting in gut-microbiome alterations with reduced butyrate production are thought to disrupt intestinal immune homeostasis and promote complex immune disorders. However, whether and how dysbiosis develops before the onset of overt pathology remains poorly defined. Interleukin-15 (IL-15) is upregulated in distressed tissue and its overexpression is thought to predispose susceptible individuals to and have a role in the pathogenesis of celiac disease and inflammatory bowel disease (IBD). Although the immunological roles of IL-15 have been largely studied, its potential impact on the microbiota remains unexplored. Analysis of 16S ribosomal RNA-based inventories of bacterial communities in mice overexpressing IL-15 in the intestinal epithelium (villin-IL-15 transgenic (v-IL-15tg) mice) shows distinct changes in the composition of the intestinal bacteria. Although some alterations are specific to individual intestinal compartments, others are found across the ileum, cecum and feces. In particular, IL-15 overexpression restructures the composition of the microbiota with a decrease in butyrate-producing bacteria that is associated with a reduction in luminal butyrate levels across all intestinal compartments. Fecal microbiota transplant experiments of wild-type and v-IL-15tg microbiota into germ-free mice further indicate that diminishing butyrate concentration observed in the intestinal lumen of v-IL-15tg mice is the result of intrinsic alterations in the microbiota induced by IL-15. This reconfiguration of the microbiota is associated with increased susceptibility to dextran sodium sulfate-induced colitis. Altogether, this study reveals that IL-15 impacts butyrate-producing bacteria and lowers butyrate levels in the absence of overt pathology, which represent events that precede and promote intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Marlies Meisel
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Toufic Mayassi
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Jason C Koval
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - Sarah L O'Brien
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | | | - Kathryn Lesko
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Sangman Kim
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Romain Bouziat
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Li Chen
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bana Jabri
- Department of Medicine, The University of Chicago, Chicago, IL, USA.,Department of Pathology, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Dionysios A Antonopoulos
- Department of Medicine, The University of Chicago, Chicago, IL, USA.,Biosciences Division, Argonne National Laboratory, Argonne, IL, USA.,Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
50
|
Abstract
The relevance of biogeography to the distal gut microbiota has been investigated in both health and inflammatory bowel disease (IBD), however multiple factors, including sample type and methodology, microbiota characterization and interpersonal variability make the construction of a core model of colonic biogeography challenging. In addition, how phylogenetic classification relates to immunogenicity and whether consistent alterations in the microbiota are associated with ulcerative colitis (UC) remain open questions. This addendum seeks to review the human colonic microbiota in health and UC as currently understood, in the broader context of the human microbiome.
Collapse
Affiliation(s)
- Aonghus Lavelle
- School of Medicine and Medical Science,
University College Dublin, Dublin, Ireland,Centre for Colorectal Disease, St.
Vincent's University Hospital, Dublin,
Ireland
| | - Grainne Lennon
- School of Medicine and Medical Science,
University College Dublin, Dublin, Ireland,Centre for Colorectal Disease, St.
Vincent's University Hospital, Dublin,
Ireland
| | - Desmond C. Winter
- School of Medicine and Medical Science,
University College Dublin, Dublin, Ireland,Centre for Colorectal Disease, St.
Vincent's University Hospital, Dublin,
Ireland
| | - P. Ronan O'Connell
- School of Medicine and Medical Science,
University College Dublin, Dublin, Ireland,Centre for Colorectal Disease, St.
Vincent's University Hospital, Dublin,
Ireland
| |
Collapse
|