1
|
Yang N, Jiang N, Shen C, Gao M, Tong Q, Sun J. Protective effect of exercise on animals with sepsis: a systematic review of the existing literature. BMC Infect Dis 2025; 25:195. [PMID: 39923007 PMCID: PMC11807334 DOI: 10.1186/s12879-025-10557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Sepsis often led to multiple organ dysfunction (MODS) and even death. Although a variety of medicine were used to treat sepsis in clinic, there was still no specific and effective clinical medicine treatment. Exercise had been shown to work on MODS. However, in preclinical studies, there was no systematic evidence to summarize the effects of exercise training on sepsis. OBJECTIVES To investigate the effects of exercise training on sepsis in preclinical studies and explore possible mechanisms to provide reliable preclinical evidence for the use of exercise training in sepsis. METHOD Preclinical studies were retrieved from electronic databases (Pubmed, Embase, Cochrane Library, Scopus, Medline, Web of science) as of June 25, 2024. Our review included in vivo English studies evaluating the radioprotective effects of exercise training on sepsis. The quality of each study was assessed using the Center for Systematic Evaluation of Experimental Animal Studies (SYCLE) Animal Research Bias Risk Tool. All results were described comprehensively. RESULTS 17 in vivo studies were included. Our comprehensive descriptive analysis showed that exercise could improve the general condition, lung injury, liver injury, kidney injury, heart and aortic injury, spleen and thymus injury, and other injuries in animals with sepsis. And its possible mechanisms were involved improving the general condition of sepsis animals, pathological and cell number of organs, anti-inflammation, anti-oxidative stress, anti-DNA damage, and so on. CONCLUSION Exercise training could protect sepsis by anti-inflammatory, anti-oxidative stress, increased antibacterial ability, reduced cell death, improved metabolism, vital signs and MODS.
Collapse
Affiliation(s)
- Na Yang
- Department of Cardiovascular Center, Jilin University First Hospital, Changchun, Jilin Province, 130000, China
| | - Nan Jiang
- Department of Cardiovascular Center, Jilin University First Hospital, Changchun, Jilin Province, 130000, China
| | - Chunming Shen
- Department of Cardiovascular Center, Jilin University First Hospital, Changchun, Jilin Province, 130000, China
| | - Ming Gao
- Department of Cardiovascular Center, Jilin University First Hospital, Changchun, Jilin Province, 130000, China
| | - Qian Tong
- Department of Cardiovascular Center, Jilin University First Hospital, Changchun, Jilin Province, 130000, China
| | - Jian Sun
- Department of Cardiovascular Center, Jilin University First Hospital, Changchun, Jilin Province, 130000, China.
| |
Collapse
|
2
|
Li A, Zheng X, Liu D, Huang R, Ge H, Cheng L, Zhang M, Cheng H. Physical Activity and Depression in Breast Cancer Patients: Mechanisms and Therapeutic Potential. Curr Oncol 2025; 32:77. [PMID: 39996878 PMCID: PMC11854877 DOI: 10.3390/curroncol32020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is a significant traumatic experience that often leads to chronic stress and mental health challenges. Research has consistently shown that physical activity-especially exercise-can alleviate depressive symptoms; however, the specific biological mechanisms underlying these antidepressant effects remain unclear. In this review, we comprehensively summarize the biological mechanisms of depression and the antidepressant mechanisms of physical activity and explore the biological processes through which exercise exerts its antidepressant effects in breast cancer patients. We focus on the impact of physical activity on inflammation, the endocrine system, glutamate, and other aspects, all of which play crucial roles in the pathophysiology of depression. Moreover, we discuss the heterogeneity of depression in breast cancer patients and the complex interactions between its underlying mechanisms. Additionally, we propose that a deeper understanding of these mechanisms in the breast cancer population can guide the design and implementation of exercise-based interventions that maximize the antidepressant benefits of physical activity. Finally, we summarize the current research and propose future research directions.
Collapse
Affiliation(s)
- Anlong Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xinyi Zheng
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China;
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen 518000, China
| | - Dajie Liu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Runze Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Han Ge
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - Ling Cheng
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China;
| | - Mingjun Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China;
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen 518000, China
| |
Collapse
|
3
|
Goyani P, Christodoulou R, Vassiliou E. Immunosenescence: Aging and Immune System Decline. Vaccines (Basel) 2024; 12:1314. [PMID: 39771976 PMCID: PMC11680340 DOI: 10.3390/vaccines12121314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Immunosenescence, a systematic reduction in the immune system connected with age, profoundly affects the health and well-being of elderly individuals. This review outlines the hallmark features of immunosenescence, including thymic involution, inflammaging, cellular metabolic adaptations, and hematopoietic changes, and their impact on immune cells such as macrophages, neutrophils, T cells, dendritic cells, B cells, and natural killer (NK) cells. Thymic involution impairs the immune system's capacity to react to novel antigens by reducing thymopoiesis and shifting toward memory T cells. Inflammaging, characterized by chronic systemic inflammation, further impairs immune function. Cellular metabolic adaptations and hematopoietic changes alter immune cell function, contributing to a diminished immune response. Developing ways to reduce immunosenescence and enhance immunological function in the elderly population requires an understanding of these mechanisms.
Collapse
Affiliation(s)
- Priyanka Goyani
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA;
| | - Rafail Christodoulou
- Department of Radiology, School of Medicine, University of Patras, 265 04 Rio, Greece;
| | - Evros Vassiliou
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA;
| |
Collapse
|
4
|
Jin X, Chen Y, Xu B, Tian H. Exercise-Mediated Protection against Air Pollution-Induced Immune Damage: Mechanisms, Challenges, and Future Directions. BIOLOGY 2024; 13:247. [PMID: 38666859 PMCID: PMC11047937 DOI: 10.3390/biology13040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Air pollution, a serious risk factor for human health, can lead to immune damage and various diseases. Long-term exposure to air pollutants can trigger oxidative stress and inflammatory responses (the main sources of immune impairment) in the body. Exercise has been shown to modulate anti-inflammatory and antioxidant statuses, enhance immune cell activity, as well as protect against immune damage caused by air pollution. However, the underlying mechanisms involved in the protective effects of exercise on pollutant-induced damage and the safe threshold for exercise in polluted environments remain elusive. In contrast to the extensive research on the pathogenesis of air pollution and the preventive role of exercise in enhancing fitness, investigations into exercise resistance to injury caused by air pollution are still in their infancy. In this review, we analyze evidence from humans, animals, and cell experiments on the combined effects of exercise and air pollution on immune health outcomes, with an emphasis on oxidative stress, inflammatory responses, and immune cells. We also propose possible mechanisms and directions for future research on exercise resistance to pollutant-induced damage in the body. Furthermore, we suggest strengthening epidemiological studies at different population levels and investigations on immune cells to guide how to determine the safety thresholds for exercise in polluted environments.
Collapse
Affiliation(s)
| | | | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| |
Collapse
|
5
|
Wang L, Mao L, Xiao W, Chen P. Natural killer cells immunosenescence and the impact of lifestyle management. Biochem Biophys Res Commun 2023; 689:149216. [PMID: 37976836 DOI: 10.1016/j.bbrc.2023.149216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Natural killer cells (NKs) are lymphocytes of the innate immune system that quickly respond to viruses, infections, and tumors during their short cell life cycle. However, it was recently found that NKs undergo quantitative, distributional, structural, and functional phenotypic changes during aging that suppress immune responses, which is known as immunosenescence. The aging host environment, cytokine regulation, cytomegalovirus status, and hypothalamic‒pituitary‒adrenal axis have significant effects on NK function. Different lifestyle management interventions modulate the number and cytotoxic activity of NKs, which are essential for rebuilding the immune barrier against pathogens in elderly individuals. Based on recent studies, we review the phenotypic changes of and potential threats of NKs during aging and explore the underlying mechanisms. By summarizing the effects of lifestyle management on NKs and their application prospects, we aim to provide evidence for enhancing immune system function against immune diseases in elderly individuals.
Collapse
Affiliation(s)
- Lian Wang
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Liwei Mao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Weihua Xiao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Peijie Chen
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
6
|
Lin Y, Li Q, Liang G, Xiao N, Yang J, Yang X, Zhang H, Zhang C, Liu A. Overview of Innate Immune Cell Landscape in Liver Aging. Int J Mol Sci 2023; 25:181. [PMID: 38203352 PMCID: PMC10778796 DOI: 10.3390/ijms25010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Aging is a biological process with a gradual decline in functional capacity, and this process often enhances the risk of chronic disease morbidity and mortality. With advanced age, the immune system undergoes a process of remodeling that can lead to a chronic inflammatory state, termed immunosenescence and inflammaging, respectively. Immunosenescence is accompanied by changes in the number, proportion, and functional capacity of the innate immune cells. The accumulation of dysfunctional immune cells and the presence of low-grade inflammation can lead to organ damage and expedite the aging process. The liver, crucial in regulating the body's metabolism and immune function, is not exempt from these effects. Age-related modifications affect its immune function and regenerative abilities, potentially increasing the prevalence of age-related liver diseases. While aging's impact on the liver is relatively less severe compared to other organ systems, it still experiences an infiltration of innate immune cells and heightened inflammation levels. This review will elaborate on how aging affects the liver's innate immune cells, such as neutrophils, macrophages, dendritic cells, mast cells, and innate lymphoid cells. It will also explore potential strategies for delaying immunosenescence to alleviate these age-related changes.
Collapse
Affiliation(s)
- Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiao Li
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nanyin Xiao
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Heng Zhang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Karaselek MA, Kuccukturk S, Duran T. Effect of intensive training on immune system cells in elite female weightlifters. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 70:e20230778. [PMID: 38126450 PMCID: PMC10729671 DOI: 10.1590/1806-9282.20230778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE This study aimed to investigate the effects of intense weightlifting training on lymphocyte and natural killer cell subgroups, which are the major cells of the immune system, in elite female weightlifters. METHODS A total of 20 elite female weightlifters were evaluated using flow cytometry before training (pre-T), immediately after training (post-T), and after a 120-min rest period (rest-T). RESULTS Post-T and rest-T showed significant decreases in helper T (Th) and cytotoxic T compared with pre-T (p=0.045, p<0.001 and p=0.05, p<0.001, respectively). B and natural killer cells were higher in post-T and rest-T than in pre-T. The increase in B cells was significant in pre-T/rest-T (p<0.001) but not in pre-T/post-T (p=0.122). Intense training significantly increased natural killer cells in both post-T and rest-T (p<0.001). CD56bright and CD56dim natural killer cell subgroups were significantly lower in post-T and rest-T than in pre-T (p=0.005, p=0.006 and p<0.001, p=0.004, respectively). CONCLUSION This study shows that intense weightlifting alters peripheral lymphocyte and natural killer subgroup ratios, being the first investigation in this field.
Collapse
Affiliation(s)
- Mehmet Ali Karaselek
- Necmettin Erbakan University, Faculty of Medicine, Department of Internal Medicine – Konya, Turkey
| | - Serkan Kuccukturk
- Karamanoğlu Mehmetbey University, Faculty of Medicine, Department of Medical Biology – Karaman, Turkey
| | - Tugce Duran
- KTO Karatay University, Faculty of Medicine, Department of Medical Genetic – Konya, Turkey
| |
Collapse
|
8
|
You M. Role of Physical Activity in the Prevention and Treatment of Influenza: A Review. SPORTS MEDICINE - OPEN 2023; 9:115. [PMID: 38042758 PMCID: PMC10693535 DOI: 10.1186/s40798-023-00660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 11/17/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Many concerns regarding respiratory diseases, including influenza, emerged during the epidemic of COVID-19. There were relevant research findings and suggestions for influenza prevention and treatment through physical activity, but little report about the total efficiency. So, this review was to summarize the role of physical activity in influenza prevention and treatment. MAIN BODY The databases Web of Science, Google Scholar, EBSCO, PubMed, CNKI, and Science Direct were used to search the related literatures. The first search ran from July to October, 2021, and the second search was conducted in September, 2023. Those publications that reported the effects of physical activity, exercise, and sport on influenza, flu, and cold were included. It found that long-term adherence to moderate physical activity is beneficial in enhancing the body's ability to resist influenza viruses. However, high-intensity endurance physical activity can cause an open window in the human immune system, which increases the risk of infection by influenza viruses. The patients with influenza infections can participate in moderate physical activity during the pre-onset period, but some of the researchers do not recommend physical activity for patients with influenza, avoiding the transmission of influenza viruses to others through human contact of physical activity. Moreover, animal studies have shown that physical activity may worsen influenza disease. While studies found that moderate physical activity is beneficial for preventing influenza, as most experimental studies were conducted on animals, the mechanisms in human with physical activity are still unclear. No study has yet suggested exercise prescriptions to prevent and control influenza, and there is currently no way to prevent or control influenza just through physical activity. The follow-up research is needed to increase human clinical experiments, elucidate the effect of physical activity on influenza, develop exercise prescriptions and gradually promote physical activity as a practical means for preventing and treating influenza. SHORT CONCLUSIONS Overall, participating in moderate physical activity regularly should be beneficial in influenza prevention, alleviating the patients' symptoms and increasing the recovery efficiency, but this needs more testing in clinical human trials.
Collapse
Affiliation(s)
- Maolin You
- Physical Education College, Jiangxi Normal University, No. 99, Ziyang Street, Gaoxin District, Nanchang, 330022, Jiangxi, China.
| |
Collapse
|
9
|
Lee JH, Yun I, Nam CM, Jang SY, Park EC. Association between physical activity and health-related quality of life in middle-aged and elderly individuals with musculoskeletal disorders: Findings from a national cross-sectional study in Korea. PLoS One 2023; 18:e0294602. [PMID: 37972082 PMCID: PMC10653435 DOI: 10.1371/journal.pone.0294602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE This study aimed to identify the association between physical activity and health-related quality of life (HRQoL) in middle-aged and elderly individuals with musculoskeletal disorders. METHODS This study used data from the 2016-2020 Korea National Health and Nutrition Examination Survey (KNHANES). We included only those over 40 years of age diagnosed with one or more of the following: osteoarthritis, rheumatism, and osteoporosis. In total, 4,731 participants (783 men and 3,948 women) were included as the study population. Multiple logistic regression analysis was performed to examine the association between physical activity and HRQoL. RESULTS In the case of middle-aged and elderly individuals with musculoskeletal disorders, the likelihood of HRQoL worsening was significantly lower for those who regularly engaged in physical activity compared with that of those who did not engage in physical activity at all (men: OR 0.58, 95% CI 0.37-0.90; women: OR 0.64, 95% CI 0.53-0.79). Stratified analysis by the type and intensity of physical activity revealed that the possibility of poor HRQoL was lowest when leisure-related moderate-intensity physical activities were performed (men: OR 0.44, 95% CI 0.22-0.89; Women: OR 0.50, 95% CI 0.36-0.69). CONCLUSIONS Our findings suggest that engaging in regular physical activity contributes to preventing exacerbation of HRQoL, even if the individual suffers from musculoskeletal disorders. It is necessary to provide an appropriate type and intensity of physical activity in consideration of the patients' pain and severity.
Collapse
Affiliation(s)
| | - Il Yun
- Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
| | - Chung-Mo Nam
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suk-Yong Jang
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
- Department of Healthcare Management, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Eun-Cheol Park
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
de Almeida-Neto PF, Gonçalves CAM, Wilde P, Jaggers JR, Júnior GBC, de Farias Sales VS, Medeiros R, Dantas PMS, Cabral BGDAT. Influence of age and fitness level on immune responses of T and NK cells in healthy physically active subjects after strenuous aerobic exercise: a cross-sectional study. Front Immunol 2023; 14:1252506. [PMID: 37860003 PMCID: PMC10582930 DOI: 10.3389/fimmu.2023.1252506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Aim The aim of this study is to analyze whether immune responses after strenuous exercise are influenced by chronological age and fitness level in physically active healthy men. Methods Cross-sectional study with a sample of 32 physically active men. Participants were divided into two groups based on chronological age (younger: age 21.8 ± 1.8 vs. older: age 34.6 ± 8.3) and subsequently regrouped and divided based on fitness level (More conditioned: excellent and superior VO2max vs. Less conditioned: VO2max: weak, regular and good). Fitness was classified according to VO2max levels obtained by a treadmill test using a gas analyzer. Before and immediately after the ergospirometry test, blood samples were collected for evaluation of immunological markers: leukocytes, neutrophils, lymphocytes and subpopulations. Results Chronological age had a moderate effect on CD3+CD4+ lymphocyte count (effect size: 0.204) and CD4/CD8 ratio (effect size: 0.278), favoring older subjects. The level of physical fitness had no significant effect on the analyzed immunological markers. Conclusions Immune responses observed immediately after strenuous exercise may be more dependent on chronological age than on fitness level in healthy, physically active men.
Collapse
Affiliation(s)
- Paulo Francisco de Almeida-Neto
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Phelipe Wilde
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Jason R. Jaggers
- Department of Health and Sport Sciences, University of Louisville, Louisville, KY, United States
| | - Geraldo Barroso Cavalcanti Júnior
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Hemocentro Dalton Cunha - Hemonorte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Paulo Moreira Silva Dantas
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Breno Guilherme de Araújo Tinôco Cabral
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
11
|
Khair L, Hayes K, Tutto A, Samant A, Ferreira L, Nguyen TT, Brehm M, Messina LM. Physical activity regulates the immune response to breast cancer by a hematopoietic stem cell-autonomous mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560299. [PMID: 37873380 PMCID: PMC10592839 DOI: 10.1101/2023.09.30.560299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Physical activity is a modifiable lifestyle factor that is associated with a decreased risk for the development of breast cancer. While the exact mechanisms for the reduction in cancer risk due to physical activity are largely unknown, it is postulated that the biological reduction in cancer risk is driven by improvements in inflammation and immune function with exercise. Hematopoietic stem cells (HSCs) are the progenitor for all of the cells of the immune system and are involved in cancer immunosurveillance through differentiation into cytotoxic cell population. In this study, we investigate the role of physical activity (PA) in a spontaneously occurring model of breast cancer over time, with a focus on tumor incidence, circulating and tumor-infiltrating immune cells as well gene expression profiles of tumors and hematopoietic stem cells. Furthermore, we show that, in addition to a direct effect of PA on the immune cells of tumor-bearing mice, PA reduces the oxidative stress in HSCs of wildtype and tumor-bearing mice, and by doing so, alters the differentiation of the HSCs towards T cells in order to enhance cancer immunosurveillance.
Collapse
Affiliation(s)
- Lyne Khair
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center
- Diabetes Center of Excellence, UMass Chan Medical School
| | - Katherine Hayes
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center
| | - Amanda Tutto
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center
| | - Amruta Samant
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center
| | | | - Tammy T. Nguyen
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center
- Diabetes Center of Excellence, UMass Chan Medical School
| | - Michael Brehm
- Diabetes Center of Excellence, UMass Chan Medical School
- Program in Molecular Medicine, UMass Chan Medical School
| | - Louis M. Messina
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center
- Diabetes Center of Excellence, UMass Chan Medical School
| |
Collapse
|
12
|
Günbatar N, Bulduk B, Bezgin S, Oto G, Bayıroğlu F, Bulduk M. The Effect of Moderate-Intensity Physical Exercise on Some Serum Inflammation Markers and the Immune System in Rats Fed Intermittent Fasting with a High-Fat Diet. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1687. [PMID: 37763806 PMCID: PMC10537032 DOI: 10.3390/medicina59091687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: This study aimed to investigate the impact of moderate-intensity physical exercise on serum inflammation markers and the immune system in rats that were fed a high-fat diet (HFD) with intermittent fasting. Materials and Methods: A total of 48 Wistar albino male rats were included in the study and divided into eight groups, each consisting of six rats. Group 1 served as the control group (CG), receiving a standard diet. Group 2 followed the standard nutrition program with intermittent fasting (CG + IF). Group 3 underwent exercise with a standard diet (CG + E). Group 4 underwent both a standard diet with intermittent fasting and exercise (CG + IF + E). Group 5 was fed a high-fat diet (HFD). Group 6 received a high-fat diet with intermittent fasting (HFD + IF). Group 7 followed a high-fat diet with exercise (HFD + E). Group 8 underwent both a high-fat diet with intermittent fasting and exercise (HFD + IF + E). The study lasted for 8 weeks. Results: The results of the analysis show that lymphocyte cell levels in groups HFD + IF, HFD + IF, and HFD + IF + E were higher compared to groups CG-HFD (p < 0.05). Additionally, B lymphocyte and monocyte cell levels were higher in group HFD + IF + E compared to groups CG, CG + IF, and CG + IF + E, as well as CG, CG + IF, and CG + E, respectively. TNF-α levels were significantly higher in group HFD compared to the other groups. Furthermore, IL 10 levels were higher in group HFD + IF + E compared to the other groups. Conclusions: These findings indicate that moderate exercise and intermittent fasting, particularly in groups fed a high-fat diet, increased anti-inflammatory cytokine levels, and certain immune system cell counts, while decreasing pro-inflammatory cytokine levels.
Collapse
Affiliation(s)
- Nizamettin Günbatar
- Van School of Health, Van YuzuncuYıl University, 65090 Van, Turkey; (B.B.); (S.B.); (M.B.)
| | - Bahattin Bulduk
- Van School of Health, Van YuzuncuYıl University, 65090 Van, Turkey; (B.B.); (S.B.); (M.B.)
| | - Selver Bezgin
- Van School of Health, Van YuzuncuYıl University, 65090 Van, Turkey; (B.B.); (S.B.); (M.B.)
| | - Gökhan Oto
- Department of Pharmacology, Van YuzuncuYıl University, 65090 Van, Turkey;
| | - Fahri Bayıroğlu
- Faculty of Medicine, Department of Physiology, Yıldırım Beyazıt University, 06200 Ankara, Turkey;
| | - Mehmet Bulduk
- Van School of Health, Van YuzuncuYıl University, 65090 Van, Turkey; (B.B.); (S.B.); (M.B.)
| |
Collapse
|
13
|
Slaets H, Fonteyn L, Eijnde BO, Hellings N. Train your T cells: How skeletal muscles and T cells keep each other fit during aging. Brain Behav Immun 2023; 110:237-244. [PMID: 36893922 DOI: 10.1016/j.bbi.2023.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Frailty and a failing immune system lead to significant morbidities in the final years of life and bring along a significant burden on healthcare systems. The good news is that regular exercise provides an effective countermeasure for losing muscle tissue when we age while supporting proper immune system functioning. For a long time, it was assumed that exercise-induced immune responses are predominantly mediated by myeloid cells, but it has become evident that they receive important help from T lymphocytes. Skeletal muscles and T cells interact, not only in muscle pathology but also during exercise. In this review article, we provide an overview of the most important aspects of T cell senescence and discuss how these are modulated by exercise. In addition, we describe how T cells are involved in muscle regeneration and growth. A better understanding of the complex interactions between myocytes and T cells throughout all stages of life provides important insights needed to design strategies that effectively combat the wave of age-related diseases the world is currently faced with.
Collapse
Affiliation(s)
- Helena Slaets
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Lena Fonteyn
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; SMRC - Sports Medical Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bert O Eijnde
- SMRC - Sports Medical Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; UMSC - University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.
| |
Collapse
|
14
|
Li Z, Wang XQ. Clinical effect and biological mechanism of exercise for rheumatoid arthritis: A mini review. Front Immunol 2023; 13:1089621. [PMID: 36685485 PMCID: PMC9852831 DOI: 10.3389/fimmu.2022.1089621] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Rheumatoid arthritis (RA) is a common systematic, chronic inflammatory, autoimmune, and polyarticular disease, causing a range of clinical manifestations, including joint swelling, redness, pain, stiffness, fatigue, decreased quality of life, progressive disability, cardiovascular problems, and other comorbidities. Strong evidence has shown that exercise is effective for RA treatment in various clinical domains. Exercise training for relatively longer periods (e.g., ≥ 12 weeks) can decrease disease activity of RA. However, the mechanism underlying the effectiveness of exercise in reducing RA disease activity remains unclear. This review first summarizes and highlights the effectiveness of exercise in RA treatment. Then, we integrate current evidence and propose biological mechanisms responsible for the potential effects of exercise on immune cells and immunity, inflammatory response, matrix metalloproteinases, oxidative stress, and epigenetic regulation. However, a large body of evidence was obtained from the non-RA populations. Future studies are needed to further examine the proposed biological mechanisms responsible for the effectiveness of exercise in decreasing disease activity in RA populations. Such knowledge will contribute to the basic science and strengthen the scientific basis of the prescription of exercise therapy for RA in the clinical routine.
Collapse
Affiliation(s)
- Zongpan Li
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Sport Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Sport Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
15
|
Nieman DC, Sakaguchi CA. Physical activity lowers the risk for acute respiratory infections: Time for recognition. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:648-655. [PMID: 35995362 PMCID: PMC9391085 DOI: 10.1016/j.jshs.2022.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 08/04/2022] [Indexed: 05/30/2023]
Abstract
Physical inactivity is a well-established risk factor for chronic diseases, such as cardiovascular disease, cancer, and diabetes mellitus. There is a growing awareness that physical inactivity should also be regarded as a risk factor for acute respiratory infections (ARIs). ARIs, such as the common cold, influenza, pneumonia, and coronavirus disease 2019 (COVID-19), are among the most pervasive diseases on earth and cause widespread morbidity and mortality. Evidence in support of the linkage between ARIs and physical inactivity has been strengthened during the COVID-19 pandemic because of increased scientific scrutiny. Large-scale studies have consistently reported that the risk for severe COVID-19 outcomes is elevated in cohorts with low physical activity and/or physical fitness, even after adjusting for other risk factors. The lowered risk for severe COVID-19 and other ARIs in physically active groups is attributed to exercise-induced immunoprotective effects, including enhanced surveillance of key immune cells and reduced chronic inflammation. Scientific consensus groups, including those who submitted the Physical Activity Guidelines for Americans, have not yet given this area of research the respect that is due. It is time to add "reduced risk for ARIs" to the "Exercise is Medicine" list of physical activity-related health benefits.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| | - Camila A Sakaguchi
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| |
Collapse
|
16
|
Drummond LR, Campos HO, Drummond FR, de Oliveira GM, Fernandes JGRP, Amorim RP, da Costa Monteiro M, Lara HFG, Leite LHR, Coimbra CC. Acute and chronic effects of physical exercise on IgA and IgG levels and susceptibility to upper respiratory tract infections: a systematic review and meta-analysis. Pflugers Arch 2022; 474:1221-1248. [PMID: 36251066 PMCID: PMC9574171 DOI: 10.1007/s00424-022-02760-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 10/26/2022]
Abstract
This systematic review and meta-analysis aimed at evaluating acute and chronic effects of physical exercise on IgA and IgG levels, as well as its relationship with the susceptibility to develop upper respiratory tract infections (URTI). This systematic review and meta-analysis was conducted and reported in accordance with PRISMA statement. A systematic search of PubMed, Web of Science, and EMBASE was performed in July 2020. This systematic review and meta-analysis included studies in which participants performed acute exercise or chronic physical training and were subjected to analyses of URTI incidence and concentrations of IgA and IgG. The selected studies for systematic review were divided into the following three groups: (I) trials that evaluated the effects of acute exercise in sedentary subjects, (II) trials that evaluated the effects of acute exercise in athletes/trained individuals, and (III) trials that evaluated the effects of chronic physical training on the incidence of URTI, as well as on the levels of IgA and IgG. Acute exercise increases the IgA levels in trained subjects but does not affect its levels in untrained subjects. Such increase in IgA levels induced by acute exercise is greater in trained individual that performed ultramarathon. On the other hand, chronic physical training reduces IgA levels in both trained and untrained subjects, does not change IgA levels in non-military subjects, besides from not affecting IgG levels. The present systematic review and meta-analysis indicates that acute exercise positively influences IgA levels in trained individuals, being this effect pronounced when a strenuous exercise such as ultramarathon is executed. Chronic physical training, in turn, does not affect IgG levels.
Collapse
Affiliation(s)
- Lucas Rios Drummond
- Laboratório de Endocrinologia E Metabolismo, Departamento de Fisiologia E Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. .,Departamento de Educação Física, Universidade do Estado de Minas Gerais - Unidade Divinópolis, Av. Paraná, 3001 - Jardim Belvedere I, Divinópolis, MG, Brazil.
| | - Helton Oliveira Campos
- Laboratório de Endocrinologia E Metabolismo, Departamento de Fisiologia E Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais - Unidade Carangola, Carangola, MG, Brazil
| | - Filipe Rios Drummond
- Laboratório de Endocrinologia E Metabolismo, Departamento de Fisiologia E Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabriel Moraes de Oliveira
- Laboratório de Endocrinologia E Metabolismo, Departamento de Fisiologia E Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Guilhermo Rios Pimenta Fernandes
- Laboratório de Endocrinologia E Metabolismo, Departamento de Fisiologia E Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Prates Amorim
- Laboratório de Endocrinologia E Metabolismo, Departamento de Fisiologia E Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mateus da Costa Monteiro
- Laboratório de Endocrinologia E Metabolismo, Departamento de Fisiologia E Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Henrique Fernandes Gerspacher Lara
- Laboratório de Endocrinologia E Metabolismo, Departamento de Fisiologia E Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laura Hora Rios Leite
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Cândido Celso Coimbra
- Laboratório de Endocrinologia E Metabolismo, Departamento de Fisiologia E Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
Maia S, Girgis B, Nunes GF, Reis-Mendes A, Bovolini A, Duarte JA. Splenic morphologic changes induced by a strenuous and exhaustive training program in Wistar rats. J Sports Med Phys Fitness 2022; 62:873-882. [PMID: 34028237 DOI: 10.23736/s0022-4707.21.12251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Excessively intense physical training can compromise the functionality of the immune system and contribute to the appearance of symptoms associated with overtraining syndrome (OTS). The aim of this study was to analyze the splenic morphological changes in Wistar rats submitted to demanding training. METHODS The animals were randomly assigned to 2 groups; control group (CG) and exercise group (EG), animals in the EG group were sacrificed after 1 (EG1) and 3 weeks (EG3) of training. The animals were stimulated to run on the treadmill (-20 °; from 25 m/min, with a progressive increase of 1.25 m/minute at each session; 1 hour/day) 6 days/week. Body weight, food intake, appearance of hair, behavior and ability of animals to perform the imposed work were assessed during the protocol. The spleen was collected for histological analysis and immunohistochemical identification of CD4+ T lymphocytes and CD8+ T cells and NF-kB transcription factor. RESULTS The protocol did not induce OTS, however, decreases were observed in areas of white pulp in EG3 in relation to the other groups. The training induced a decrease in splenic CD4+ T cells with an increase in CD8+ T cells. The training increased the expression of NF-κB P65 compared to sedentary animals. CONCLUSIONS Even without manifestation of OTS, strenuous physical training, alter the histological and immunological structures of the spleen, suggesting in part a compromise in the functionality of the immune system.
Collapse
Affiliation(s)
- Sara Maia
- CIAFEL, Laboratory of Biochemistry and Experimental Morphology, Faculty of Sport, University of Porto, Porto, Portugal -
| | - Beshoy Girgis
- CIAFEL, Laboratory of Biochemistry and Experimental Morphology, Faculty of Sport, University of Porto, Porto, Portugal
| | - Grace F Nunes
- CIAFEL, Laboratory of Biochemistry and Experimental Morphology, Faculty of Sport, University of Porto, Porto, Portugal
| | - Ana Reis-Mendes
- UCIBIO, REQUIMTE Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Antonio Bovolini
- CIAFEL, Laboratory of Biochemistry and Experimental Morphology, Faculty of Sport, University of Porto, Porto, Portugal
| | - José A Duarte
- CIAFEL, Laboratory of Biochemistry and Experimental Morphology, Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Valenzuela PL, Saco-Ledo G, Santos-Lozano A, Morales JS, Castillo-García A, Simpson RJ, Lucia A, Fiuza-Luces C. Exercise Training and Natural Killer Cells in Cancer Survivors: Current Evidence and Research Gaps Based on a Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2022; 8:36. [PMID: 35244811 PMCID: PMC8897541 DOI: 10.1186/s40798-022-00419-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/13/2022] [Indexed: 12/25/2022]
Abstract
Background Exercise training can positively impact the immune system and particularly natural killer (NK) cells, at least in healthy people. This effect would be of relevance in the context of cancer given the prominent role of these cells in antitumor immunity. In this systematic review and meta-analysis, we aimed to summarize current evidence on the effects of exercise training on the levels and function of NK cells in cancer survivors (i.e., from the time of diagnosis until the end of life). Methods Relevant articles were searched in PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (until January 11, 2022). Randomized controlled trials (RCT) of exercise training (i.e., non-acute) interventions vs usual care conducted in cancer survivors and assessing NK number and/or cytotoxic activity (NKCA) before and upon completion of the intervention were included. Methodological quality of the studies was assessed with the PEDro scale, and results were meta-analyzed using a random effects (Dersimoian and Laird) model. Results Thirteen RCT including 459 participants (mean age ranging 11–63 years) met the inclusion criteria. Methodological quality of the studies was overall fair (median PEDro score = 5 out of 10). There was heterogeneity across studies regarding cancer types (breast cancer, non-small cell lung cancer and other solid tumors), treatment (e.g., receiving vs having received chemotherapy), exercise modes (aerobic or resistance exercise, Tai Chi, Yoga) and duration (2–24 weeks). No consistent effects were observed for NK number in blood (mean difference [MD]: 1.47, 95% confidence interval [CI] − 0.35 to 3.29, p = 0.113) or NKCA as assessed in vitro (MD: − 0.02, 95%CI − 0.17 to 0.14, p = 0.834). However, mixed results existed across studies, and some could not be meta-analyzed due to lack of information or methodological heterogeneity. Conclusions Current evidence does not support a significant effect of exercise training intervention on NK cells in blood or on their ‘static response’ (as assessed in vitro) in cancer survivors. Several methodological issues and research gaps are highlighted in this review, which should be considered in future studies to draw definite conclusions on this topic. Supplementary Information The online version contains supplementary material available at 10.1186/s40798-022-00419-w.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Gonzalo Saco-Ledo
- Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Alejandro Santos-Lozano
- Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain.,I+HeALTH, Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
| | - Javier S Morales
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cadiz, Spain
| | | | - Richard J Simpson
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, USA.,Department of Pediatrics, The University of Arizona, Tucson, AZ, USA.,Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Carmen Fiuza-Luces
- Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital, '12 de Octubre' ('imas12'), Centro de Actividades Ambulatorias (CAA), 7ª Planta, Bloque D, Av. de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
19
|
Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clin Rev Allergy Immunol 2021; 63:499-529. [PMID: 34910283 PMCID: PMC8671603 DOI: 10.1007/s12016-021-08905-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/06/2022]
Abstract
Non-specific innate and antigen-specific adaptive immunological memories are vital evolutionary adaptations that confer long-lasting protection against a wide range of pathogens. Adaptive memory is established by memory T and B lymphocytes following the recognition of an antigen. On the other hand, innate immune memory, also called trained immunity, is imprinted in innate cells such as macrophages and natural killer cells through epigenetic and metabolic reprogramming. However, these mechanisms of memory generation and maintenance are compromised as organisms age. Almost all immune cell types, both mature cells and their progenitors, go through age-related changes concerning numbers and functions. The aging immune system renders the elderly highly susceptible to infections and incapable of mounting a proper immune response upon vaccinations. Besides the increased infectious burden, older individuals also have heightened risks of metabolic and neurodegenerative diseases, which have an immunological component. This review discusses how immune function, particularly the establishment and maintenance of innate and adaptive immunological memory, regulates and is regulated by epigenetics, metabolic processes, gut microbiota, and the central nervous system throughout life, with a focus on old age. We explain in-depth how epigenetics and cellular metabolism impact immune cell function and contribute or resist the aging process. Microbiota is intimately linked with the immune system of the human host, and therefore, plays an important role in immunological memory during both homeostasis and aging. The brain, which is not an immune-isolated organ despite former opinion, interacts with the peripheral immune cells, and the aging of both systems influences the health of each other. With all these in mind, we aimed to present a comprehensive view of the aging immune system and its consequences, especially in terms of immunological memory. The review also details the mechanisms of promising anti-aging interventions and highlights a few, namely, caloric restriction, physical exercise, metformin, and resveratrol, that impact multiple facets of the aging process, including the regulation of innate and adaptive immune memory. We propose that understanding aging as a complex phenomenon, with the immune system at the center role interacting with all the other tissues and systems, would allow for more effective anti-aging strategies.
Collapse
|
20
|
Felismino ES, Santos JMB, Rossi M, Santos CAF, Durigon EL, Oliveira DBL, Thomazelli LM, Monteiro FR, Sperandio A, Apostólico JS, França CN, Amaral JB, Amirato GR, Vieira RP, Vaisberg M, Bachi ALL. Better Response to Influenza Virus Vaccination in Physically Trained Older Adults Is Associated With Reductions of Cytomegalovirus-Specific Immunoglobulins as Well as Improvements in the Inflammatory and CD8 + T-Cell Profiles. Front Immunol 2021; 12:713763. [PMID: 34712226 PMCID: PMC8546344 DOI: 10.3389/fimmu.2021.713763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic cytomegalovirus (CMV) infection is a trigger factor for the development of immunosenescence and negatively impacts the immune response to influenza virus vaccination (IVV) in older adults. However, the role of physical exercise training in this context is unknown. Thus, the aim of this study was to investigate whether the regular practice of combined exercise training can improve the specific antibody response to IVV in CMV-seropositive older adults. Eighty older adults were distributed into two groups-non-practitioners (NP, n = 31, age = 74.06 ± 6.4 years) and practitioners of combined exercise training (CET, n = 49, age = 71.7 ± 5.8 years)-for at least 12 months. Both volunteer groups were submitted to IVV and blood samples were collected before (pre) and 30 days after (post) the vaccination. Concerning the specific antibody response to IVV, higher serum levels of specific immunoglobulin A (IgA) were found in the CET group post- than pre-vaccination (p < 0.01), whereas higher levels of specific immunoglobulin M (IgM) were observed both in the NP (p < 0.05) and CET (p < 0.001) groups post-vaccination as compared to the pre-vaccination values. Serum levels of specific immunoglobulin G (IgG) for IVV and CMV, as well as interleukin 6 (IL-6) and IL-10, were similar between the time points evaluated. However, the IL-10/IL-6 ratio post-vaccination was higher (p < 0.05) in the CET group than that before vaccination. Negative correlations were observed between the specific IgG levels for IVV and CMV only in the CET group, both pre- and post-vaccination. In addition, negative correlations were found between IL-10 and specific IgG for CMV in all volunteer groups pre- and post-vaccination, whereas a positive correlation between IL-10 and specific-IgG for IVV pre- and post-vaccination was observed in the CET group. In addition, with the hemagglutination inhibition (HAI) assay, it was found that 32.2% of the NP group and 32.6% of the CET group were responders to IVV and displayed reductions in the CMV serostatus (p < 0.05 and p < 0.001, respectively) and increases in naive and effector CD8+ T cells post-vaccination (p < 0.01). However, only the responders from the CET group showed significant reductions in the ratio of effector to naive CD8+ T cells (p < 0.05) and increased IL-10 levels post-vaccination (p < 0.001). In summary, this study demonstrates that the improvement in the response to IVV in CMV-seropositive older adults was related to an anti-inflammatory status and enhancement of naive CD8+ T cells, particularly associated with regular practice of CET.
Collapse
Affiliation(s)
- Eduardo S. Felismino
- Post-Graduation Program in Health Science, University of Santo Amaro, São Paulo, Brazil
| | - Juliana M. B. Santos
- Post-Graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo, Santos, Brazil
| | - Marcelo Rossi
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos A. F. Santos
- Department of Medicine, Geriatry, Paulista School of Medicine (EPM), São Paulo, Brazil
| | - Edison L. Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil
- Scientific Platform Pasteur–University of São Paulo, São Paulo, Brazil
| | - Danielle B. L. Oliveira
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Luciano M. Thomazelli
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil
| | - Fernanda R. Monteiro
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
- Method Faculty of São Paulo, São Paulo, Brazil
| | | | - Juliana S. Apostólico
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carolina N. França
- Post-Graduation Program in Health Science, University of Santo Amaro, São Paulo, Brazil
| | - Jonatas B. Amaral
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
| | - Gislene R. Amirato
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
| | - Rodolfo P. Vieira
- Post-Graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo, Santos, Brazil
- Post-Graduation Program in Bioengineering, Universidade Brasil, São Paulo, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos, Brazil
| | - Mauro Vaisberg
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
| | - André L. L. Bachi
- Post-Graduation Program in Health Science, University of Santo Amaro, São Paulo, Brazil
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos, Brazil
| |
Collapse
|
21
|
Souza D, Vale AF, Silva A, Araújo MAS, de Paula Júnior CA, de Lira CAB, Ramirez-Campillo R, Martins W, Gentil P. Acute and Chronic Effects of Interval Training on the Immune System: A Systematic Review with Meta-Analysis. BIOLOGY 2021; 10:biology10090868. [PMID: 34571745 PMCID: PMC8465842 DOI: 10.3390/biology10090868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Interval training (IT) is a popular training strategy recognized by its positive effects on metabolic and cardiovascular system. However, there seems no consensus regarding the effects of IT on immune system parameters. Therefore, we aimed to summarize the evidence regarding the effects of IT on the immune system. As our many findings, an IT acutely promote a transitory change on immune cell count followed by reduced function. The magnitude of these changes seems to vary in accordance with IT type. On the other hand, the regular practice of IT might contribute to improve immune function without apparent change on immune cell count. Abstract Purpose: To summarize the evidence regarding the acute and chronic effects of interval training (IT) in the immune system through a systematic review with meta-analysis. Design: Systematic review with meta-analysis. Data source: English, Portuguese and Spanish languages search of the electronic databases Pubmed/Medline, Scopus, and SciELO. Eligibility criteria: Studies such as clinical trials, randomized cross-over trials and randomized clinical trials, investigating the acute and chronic effects of IT on the immune outcomes in humans. Results: Of the 175 studies retrieved, 35 were included in the qualitative analysis and 18 in a meta-analysis. Within-group analysis detected significant acute decrease after IT on immunoglobulin A (IgA) secretory rate (n = 115; MD = −15.46 µg·min−1; 95%CI, −28.3 to 2.66; p = 0.02), total leucocyte count increase (n = 137; MD = 2.58 × 103 µL−1; 95%CI, 1.79 to 3.38; p < 0.001), increase in lymphocyte count immediately after exercise (n = 125; MD = 1.3 × 103 µL−1; 95%CI, 0.86 to 1.75; p < 0.001), and decrease during recovery (30 to 180 min post-exercise) (n = 125; MD = −0.36 × 103 µL−1;−0.57 to −0.15; p < 0.001). No effect was detected on absolute IgA (n = 127; MD = 47.5 µg·mL−1; 95%CI, −10.6 to 105.6; p = 0.11). Overall, IT might acutely reduce leucocyte function. Regarding chronic effects IT improved immune function without change leucocyte count. Conclusion: IT might provide a transient disturbance on the immune system, followed by reduced immune function. However, regular IT performance induces favorable adaptations on immune function.
Collapse
Affiliation(s)
- Daniel Souza
- Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (D.S.); (A.F.V.); (A.S.); (M.A.S.A.); (C.A.B.d.L.)
| | - Arthur F. Vale
- Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (D.S.); (A.F.V.); (A.S.); (M.A.S.A.); (C.A.B.d.L.)
| | - Anderson Silva
- Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (D.S.); (A.F.V.); (A.S.); (M.A.S.A.); (C.A.B.d.L.)
| | - Murilo A. S. Araújo
- Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (D.S.); (A.F.V.); (A.S.); (M.A.S.A.); (C.A.B.d.L.)
| | | | - Claudio A. B. de Lira
- Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (D.S.); (A.F.V.); (A.S.); (M.A.S.A.); (C.A.B.d.L.)
| | | | - Wagner Martins
- Faculdade de Fisioterapia, Universidade de Brasília, Distrito Federal, Brasilia 70910-900, Brazil;
| | - Paulo Gentil
- Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (D.S.); (A.F.V.); (A.S.); (M.A.S.A.); (C.A.B.d.L.)
- Correspondence: ; Tel.: +55-62-3521-1021
| |
Collapse
|
22
|
Abstract
ABSTRACT This review supports that physical activity improves immunosurveillance and has the potential to counter COVID-19 infection and symptomatology at three prevention levels. At the primary prevention level, several lines of evidence support that physical activity is an immune system adjuvant in combating infectious diseases. Recent epidemiological studies indicate that regular physical activity is associated with a reduced risk for COVID-19, similar to what has been reported for other respiratory infections. Although specific COVID-19-related studies are needed, data from investigations with other types of infectious agents, such as influenza, support the potential role of physical activity in augmenting COVID-19 vaccine efficacy (secondary prevention level). There is a growing awareness that COVID-19 can cause sustained morbidity in some patients, and physical training and rehabilitation (tertiary prevention level) can be directed toward improvement in physical fitness, quality of life, and immune health.
Collapse
Affiliation(s)
- David C Nieman
- Appalachian State University Human Performance Laboratory, North Carolina Research Campus, Kannapolis, NC
| |
Collapse
|
23
|
Strasser B, Wolters M, Weyh C, Krüger K, Ticinesi A. The Effects of Lifestyle and Diet on Gut Microbiota Composition, Inflammation and Muscle Performance in Our Aging Society. Nutrients 2021; 13:nu13062045. [PMID: 34203776 PMCID: PMC8232643 DOI: 10.3390/nu13062045] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023] Open
Abstract
Living longer is associated with an increased risk of chronic diseases, including impairments of the musculoskeletal and immune system as well as metabolic disorders and certain cancers, each of which can negatively affect the relationship between host and microbiota up to the occurrence of dysbiosis. On the other hand, lifestyle factors, including regular physical exercise and a healthy diet, can affect skeletal muscle and immune aging positively at all ages. Accordingly, health benefits could partly depend on the effect of such interventions that influence the biodiversity and functionality of intestinal microbiota. In the present review, we first discuss the physiological effects of aging on the gut microbiota, immune system, and skeletal muscle. Secondly, we describe human epidemiological evidence about the associations between physical activity and fitness and the gut microbiota composition in older adults. The third part highlights the relevance and restorative mechanisms of immune protection through physical activity and specific exercise interventions during aging. Fourth, we present important research findings on the effects of exercise and protein as well as other nutrients on skeletal muscle performance in older adults. Finally, we provide nutritional recommendations to prevent malnutrition and support healthy active aging with a focus on gut microbiota. Key nutrition-related concerns include the need for adequate energy and protein intake for preventing low muscle mass and a higher demand for specific nutrients (e.g., dietary fiber, polyphenols and polyunsaturated fatty acids) that can modify the composition, diversity, and metabolic capacity of the gut microbiota, and may thus provide a practical means of enhancing gut and systemic immune function.
Collapse
Affiliation(s)
- Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, 1020 Vienna, Austria
- Correspondence:
| | - Maike Wolters
- Leibniz Institute for Prevention Research and Epidemiology–BIPS, 28359 Bremen, Germany;
| | - Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, University of Giessen, 35394 Giessen, Germany; (C.W.); (K.K.)
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, 35394 Giessen, Germany; (C.W.); (K.K.)
| | - Andrea Ticinesi
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
24
|
Zhang D, Abraham L, Demb J, Miglioretti DL, Advani S, Sprague BL, Henderson LM, Onega T, Wernli KJ, Walter LC, Kerlikowske K, Schousboe JT, O'Meara ES, Braithwaite D. Function-related Indicators and Outcomes of Screening Mammography in Older Women: Evidence from the Breast Cancer Surveillance Consortium Cohort. Cancer Epidemiol Biomarkers Prev 2021; 30:1582-1590. [PMID: 34078641 DOI: 10.1158/1055-9965.epi-21-0152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Previous reports suggested risk of death and breast cancer varied by comorbidity and age in older women undergoing mammography. However, impacts of functional limitations remain unclear. METHODS We used data from 238,849 women in the Breast Cancer Surveillance Consortium-Medicare linked database (1999-2015) who had screening mammogram at ages 66-94 years. We estimated risk of breast cancer, breast cancer death, and non-breast cancer death by function-related indicator (FRI) which incorporated 16 claims-based items and was categorized as an ordinal variable (0, 1, and 2+). Fine and Gray proportional sub-distribution hazards models were applied with breast cancer and death treated as competing events. Risk estimates by FRI scores were adjusted by age and NCI comorbidity index separately and stratified by these factors. RESULTS Overall, 9,252 women were diagnosed with breast cancer, 406 died of breast cancer, and 41,640 died from non-breast cancer causes. The 10-year age-adjusted invasive breast cancer risk slightly decreased with FRI score [FRI = 0: 4.0%, 95% confidence interval (CI) = 3.8-4.1; FRI = 1: 3.9%, 95% CI = 3.7-4.2; FRI ≥ 2: 3.5%, 95% CI = 3.1-3.9). Risk of non-breast cancer death increased with FRI score (FRI = 0: 18.8%, 95% CI = 18.5-19.1; FRI = 1: 24.4%, 95% CI = 23.9-25.0; FRI ≥ 2: 39.8%, 95% CI = 38.8-40.9]. Risk of breast cancer death was low with minimal differences across FRI scores. NCI comorbidity index-adjusted models and stratified analyses yielded similar patterns. CONCLUSIONS Risk of non-breast cancer death substantially increases with FRI score, whereas risk of breast cancer death is low regardless of functional status. IMPACT Older women with functional limitations should be informed that they may not benefit from screening mammography.
Collapse
Affiliation(s)
- Dongyu Zhang
- Department of Epidemiology, University of Florida College of Public Health and Health Professions, Gainesville, Florida.,University of Florida Health Cancer Center, Gainesville, Florida
| | - Linn Abraham
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Joshua Demb
- Division of Gastroenterology, Department of Internal Medicine, University of California, San Diego, La Jolla, California
| | - Diana L Miglioretti
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington.,Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, California
| | - Shailesh Advani
- Transplant Education Research Center, Terasaki Institute of Biomedical Innovation, Los Angeles, California
| | - Brian L Sprague
- Department of Surgery, University of Vermont College of Medicine, Burlington, Vermont
| | - Louise M Henderson
- Department of Radiology, University of North Carolina at Chapel Hill, North Carolina
| | - Tracy Onega
- Department of Population Health Sciences, University of Utah, and Huntsman Cancer Institute, Salt Lake City, Utah
| | - Karen J Wernli
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Louise C Walter
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Karla Kerlikowske
- Department of Medicine, University of California, San Francisco, San Francisco, California.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - John T Schousboe
- Park Nicollet Clinic and HealthPartners Institute, HealthPartners Inc, Bloomington, Minnesota.,Division of Health Policy and Management, University of Minnesota, Minneapolis, Minnesota
| | - Ellen S O'Meara
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | | | | |
Collapse
|
25
|
Immunosurveillance of Cancer and Viral Infections with Regard to Alterations of Human NK Cells Originating from Lifestyle and Aging. Biomedicines 2021; 9:biomedicines9050557. [PMID: 34067700 PMCID: PMC8156987 DOI: 10.3390/biomedicines9050557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 01/22/2023] Open
Abstract
Natural killer (NK) cells are cytotoxic immune cells with an innate capacity for eliminating cancer cells and virus- infected cells. NK cells are critical effector cells in the immunosurveillance of cancer and viral infections. Patients with low NK cell activity or NK cell deficiencies are predisposed to increased risks of cancer and severe viral infections. However, functional alterations of human NK cells are associated with lifestyles and aging. Personal lifestyles, such as cigarette smoking, alcohol consumption, stress, obesity, and aging are correlated with NK cell dysfunction, whereas adequate sleep, moderate exercise, forest bathing, and listening to music are associated with functional healthy NK cells. Therefore, adherence to a healthy lifestyle is essential and will be favorable for immunosurveillance of cancer and viral infections with healthy NK cells.
Collapse
|
26
|
Rackova L, Mach M, Brnoliakova Z. An update in toxicology of ageing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103611. [PMID: 33581363 DOI: 10.1016/j.etap.2021.103611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The field of ageing research has been rapidly advancing in recent decades and it had provided insight into the complexity of ageing phenomenon. However, as the organism-environment interaction appears to significantly affect the organismal pace of ageing, the systematic approach for gerontogenic risk assessment of environmental factors has yet to be established. This puts demand on development of effective biomarker of ageing, as a relevant tool to quantify effects of gerontogenic exposures, contingent on multidisciplinary research approach. Here we review the current knowledge regarding the main endogenous gerontogenic pathways involved in acceleration of ageing through environmental exposures. These include inflammatory and oxidative stress-triggered processes, dysregulation of maintenance of cellular anabolism and catabolism and loss of protein homeostasis. The most effective biomarkers showing specificity and relevancy to ageing phenotypes are summarized, as well. The crucial part of this review was dedicated to the comprehensive overview of environmental gerontogens including various types of radiation, certain types of pesticides, heavy metals, drugs and addictive substances, unhealthy dietary patterns, and sedentary life as well as psychosocial stress. The reported effects in vitro and in vivo of both recognized and potential gerontogens are described with respect to the up-to-date knowledge in geroscience. Finally, hormetic and ageing decelerating effects of environmental factors are briefly discussed, as well.
Collapse
Affiliation(s)
- Lucia Rackova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia.
| | - Mojmir Mach
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| | - Zuzana Brnoliakova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
27
|
Xavier A, Cesaro A. Impact of Exercise Intensity on Calprotectin Levels in Healthy Volunteers and Patients with Inflammatory Rheumatic Diseases. Life (Basel) 2021; 11:377. [PMID: 33922149 PMCID: PMC8143494 DOI: 10.3390/life11050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Exercise influences inflammatory response and immune system performance. The regular practice of a moderate activity positively regulates immunity and the inflammatory process, while intensive training depresses it and enhances inflammatory marker secretion. Calprotectin is involved in the inflammatory process, promoting neutrophil recruitment, cell degranulation, and inflammatory mediators. Furthermore, calprotectin has been associated with various inflammatory diseases, including inflammatory rheumatic diseases. The present review explores the effect of exercise on calprotectin levels in both healthy and inflammatory rheumatic conditions. Data show that the intensity duration and the type of exercise modulate calprotectin levels and participant inflammatory status. The exact role of calprotectin in the exercise response is yet unknown. Calprotectin could constitute an interesting biomarker for monitoring both the effect of exercise on the inflammatory process in healthy volunteers and the efficiency of exercise treatment programs in a patient with inflammatory rheumatic disease.
Collapse
Affiliation(s)
| | - Annabelle Cesaro
- I3MTO (Imagerie Multimodale Multiéchelle et Modélisation du Tissu Osseux et Articulaire)/EA 4708, Université d’Orléans, 45000 Orléans, France;
| |
Collapse
|
28
|
Tylutka A, Morawin B, Gramacki A, Zembron-Lacny A. Lifestyle exercise attenuates immunosenescence; flow cytometry analysis. BMC Geriatr 2021; 21:200. [PMID: 33752623 PMCID: PMC7986285 DOI: 10.1186/s12877-021-02128-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Background Interaction of physical activity and overall immune profile is very complex and depends on the intensity, duration and frequency of undertaken physical activity, the exposure to cytomegalovirus (CMV) infection and the age-related changes in the immune system. Daily physical activity, which particularly influences immunity, declines dramatically with age. Therefore, the aim of the study was to explain whether physical activity sustained throughout life can attenuate or reverse immunosenescence. Methods Ninety-nine older adults (60–90 years) were recruited for the study. According to the 6-min walk test (6WMT), the Åstrand-Ryhming bike test (VO2max) and Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire, the individuals were classified as physically active (n = 34) and inactive (n = 20) groups. The analysis of T lymphocytes between active vs. inactive participants was performed using eight-parameter flow cytometry. Results Analysis of the baseline peripheral naïve and memory T lymphocytes showed a significant relationship of lifestyle exercise with the CD4/CD8 ratio. Above 50% of physically active participants demonstrated the CD4/CD8 ratio ≥ 1 or ≤ 2.5 contrary to the inactive group who showed the ratio < 1. The older adults with the result of 6WMT > 1.3 m/s and VO2max > 35 mL/kg/min had a significantly higher CD4+CD45RA+ T lymphocyte percentage and also a higher ratio of CD4+CD45RA+/CD4+CD45RO+. Interestingly, in active older adults with IgG CMV+ (n = 30) the count of CD4+CD45RA+ T lymphocytes was higher than in the inactive group with IgG CMV+ (n = 20). Conclusion Based on the flow cytometry analysis, we concluded that lifestyle exercise could lead to rejuvenation of the immune system by increasing the percentage of naïve T lymphocytes or by reducing the tendency of the inverse CD4/CD8 ratio.
Collapse
Affiliation(s)
- Anna Tylutka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str., 65-046, Zielona Gora, Poland
| | - Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str., 65-046, Zielona Gora, Poland
| | - Artur Gramacki
- Faculty of Computer, Electrical and Control Engineering, Institute of Control and Computation Engineering University of Zielona Gora, Zielona Gora, Poland
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str., 65-046, Zielona Gora, Poland.
| |
Collapse
|
29
|
Ghram A, Briki W, Mansoor H, Al-Mohannadi AS, Lavie CJ, Chamari K. Home-based exercise can be beneficial for counteracting sedentary behavior and physical inactivity during the COVID-19 pandemic in older adults. Postgrad Med 2020; 133:469-480. [PMID: 33275479 DOI: 10.1080/00325481.2020.1860394] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The novel pandemic called coronavirus disease 2019 (COVID-19), as a global public health emergency, seems to be having a major impact on physical activity (PA) behaviors. Older adults are at high risk of death from the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2). Health authorities around the world have been implementing preventive health measures, including quarantine and self-isolation, to mitigate the COVID-19 outbreak. This period is characterized by the cessation of outdoor exercising. During this period of lockdown, PA has been one of the rare reasons for going out in some countries. To avoid the harmful effects of periods of exercise cessation, PA could be prescribed to older adults, which is of great importance for breaking their sedentary lifestyle and improving their immunity. The present review discusses the potential impacts of the COVID-19 pandemic on sedentary behavior and physical inactivity in older adults. The importance of performing PA to reduce the harmful effects of the COVID-19 pandemic is discussed, and useful recommendations on home-based exercise for the older adults to maintain their level of independence, physical and mental health as well as their well-being are provided.
Collapse
Affiliation(s)
- Amine Ghram
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran.,Department of Cardiac Rehabilitation, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Walid Briki
- Sport Science Program, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hend Mansoor
- College of Health and Life Sciences,Hamad Bin Khalifa University, Doha, Qatar
| | - Abdulla Saeed Al-Mohannadi
- Research and Scientific Support Department, Aspetar Orthopaedic and Sports Medicine Hospital, Qatar.,World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar
| | - Carl J Lavie
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School the University of Queensland School of Medicine, New Orleans, Louisiana, USA
| | - Karim Chamari
- Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
30
|
Scartoni FR, Sant'Ana LDO, Murillo-Rodriguez E, Yamamoto T, Imperatori C, Budde H, Vianna JM, Machado S. Physical Exercise and Immune System in the Elderly: Implications and Importance in COVID-19 Pandemic Period. Front Psychol 2020; 11:593903. [PMID: 33329256 PMCID: PMC7711129 DOI: 10.3389/fpsyg.2020.593903] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Physical exercise is seen as the main ally for health promotion, preventing and protecting the organism from several diseases. According to WHO, there is a tendency of constant growth in the elderly population in the coming years. The regular practice of exercises by the elderly becomes relevant to minimize the deleterious effects of the aging process and to increase the fitness index. Recently, the world population started a confrontation against Corona Virus Disease (COVID-19), which is the most significant public health challenge globally. Although social isolation is a reasonable measure in an attempt to stop contamination by COVID-19, this measure has limited the ability of individuals to exercise outdoors or in gyms and health clubs, which increased the risk of developing chronic illnesses related to a sedentary lifestyle. The critical point is that the recent recommendations on exercise prescription to combat the potentially harmful effects of COVID-19 failure to adequately address resistance exercise interventions as home-based exercise strategy. Thus, in this paper, we discussed the physical exercise as medicine if the training status is enough to protect the elderly against COVID-19 infection, about the role of physical activity on immunosuppression. Possible risks for COVID-19 infection, and the old training methods, such as no-load resistance training as possible resistance exercise strategies and high-intensity interval training, as new proposals of home-based exercise interventions, could perform during the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Fabiana Rodrigues Scartoni
- Department of Physical Education, Catholic University of Petrópolis, Petrópolis, Brazil.,Sport and Exercise Sciences Laboratory, Catholic University of Petrópolis, Petrópolis, Brazil
| | - Leandro de Oliveira Sant'Ana
- Sport and Exercise Sciences Laboratory, Catholic University of Petrópolis, Petrópolis, Brazil.,Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eric Murillo-Rodriguez
- Molecular and Integrative Neuroscience Laboratory, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Mexico.,Intercontinental Neuroscience Research Group, Mérida, México
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group, Mérida, México.,Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Claudio Imperatori
- Intercontinental Neuroscience Research Group, Mérida, México.,Department of Human Sciences, European University of Rome, Rome, Italy
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Mérida, México.,MSH Medical School Hamburg, Hamburg, Germany
| | - Jeferson Macedo Vianna
- Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Sergio Machado
- Intercontinental Neuroscience Research Group, Mérida, México.,Laboratory of Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira University, São Gonçalo, Brazil.,Laboratory of Physical Activity Neuroscience, Neurodiversity Institute, Queimados, Brazil
| |
Collapse
|
31
|
Toohey K, Pumpa K, McKune A, Cooke J, Welvaert M, Northey J, Quinlan C, Semple S. The impact of high-intensity interval training exercise on breast cancer survivors: a pilot study to explore fitness, cardiac regulation and biomarkers of the stress systems. BMC Cancer 2020; 20:787. [PMID: 32819304 PMCID: PMC7441660 DOI: 10.1186/s12885-020-07295-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) remains the largest cause of death in breast cancer survivors. The aim of this study was to explore the impact of exercise intensity on aerobic fitness and autonomic cardiac regulation (heart rate variability (HRV)) and salivary biomarkers of the stress systems (HPA-axis, cortisol; sympathetic nervous system, α-amylase) and mucosal immunity (secretory(s)-IgA), markers of increased risk of CVD in breast cancer survivors. METHODS Participants were randomly assigned to; 1) high intensity interval training (HIIT); 2) moderate-intensity, continuous aerobic training (CMIT); or 3) a wait-list control (CON) for a 12-week (36 session) stationary cycling intervention. Cardiorespiratory fitness (VO2peak), resting HRV and salivary biomarkers were measured at baseline 2-4 d pre-intervention and 2-4 d post the last exercise session. RESULTS Seventeen participants were included in this study (62 ± 8 years, HIIT; n = 6, CMIT; n = 5, CON; n = 6). A significant improvement (p ≤ 0.05) was observed for VO2peak in the HIIT group; 19.3% (B = 3.98, 95%CI = [1.89; 4.02]) and a non-significant increase in the CMIT group; 5.6% (B = 1.96, 95%CI = [- 0.11; 4.03]), compared with a 2.6% (B = - 0.64, 95%CI = [- 2.10; 0.82]) decrease in the CON group. Post intervention improvements in HRV markers of vagal activity (log (ln)LF/HF, LnRMSSD) and sympathetic nervous system (α-amylase waking response) occurred for individuals exhibiting outlying (> 95% CI) levels at baseline compared to general population. CONCLUSION High intensity interval training improved cardiovascular fitness in breast cancer survivors and improved cardiac regulation, and sympathetic nervous system (stress) responses in some individuals. High-intensity interval training was safe and effective for breast cancer survivors to participate in with promising results as a time efficient intensity to improve physical health and stress, reducing CVD risk. TRIAL REGISTRATION This pilot study was retrospectively registered through the Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12620000684921 .
Collapse
Affiliation(s)
- Kellie Toohey
- Research Institute for Sport and Exercise, University of Canberra, Canberra, 2601, Australia.
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, 2601, Australia.
- Health Research Institute, University of Canberra, Canberra, 2601, Australia.
- Prehabilitation, Activity, Cancer, Exercise and Survivorship (PACES) Research Group, University of Canberra, Canberra, 2601, Australia.
| | - Kate Pumpa
- Research Institute for Sport and Exercise, University of Canberra, Canberra, 2601, Australia
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, 2601, Australia
| | - Andrew McKune
- Research Institute for Sport and Exercise, University of Canberra, Canberra, 2601, Australia
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, 2601, Australia
- Prehabilitation, Activity, Cancer, Exercise and Survivorship (PACES) Research Group, University of Canberra, Canberra, 2601, Australia
- School of Health Sciences, University of KwaZulu-Natal, Durban, 400, South Africa
| | - Julie Cooke
- Research Institute for Sport and Exercise, University of Canberra, Canberra, 2601, Australia
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, 2601, Australia
| | - Marijke Welvaert
- Research Institute for Sport and Exercise, University of Canberra, Canberra, 2601, Australia
- Statistical Consulting Unit, Australian National University, Canberra, 2600, Australia
| | - Joseph Northey
- Research Institute for Sport and Exercise, University of Canberra, Canberra, 2601, Australia
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, 2601, Australia
| | - Clare Quinlan
- Research Institute for Sport and Exercise, University of Canberra, Canberra, 2601, Australia
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, 2601, Australia
| | - Stuart Semple
- Research Institute for Sport and Exercise, University of Canberra, Canberra, 2601, Australia
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, 2601, Australia
- Health Research Institute, University of Canberra, Canberra, 2601, Australia
- Prehabilitation, Activity, Cancer, Exercise and Survivorship (PACES) Research Group, University of Canberra, Canberra, 2601, Australia
| |
Collapse
|
32
|
Amatriain-Fernández S, Gronwald T, Murillo-Rodríguez E, Imperatori C, Solano AF, Latini A, Budde H. Physical Exercise Potentials Against Viral Diseases Like COVID-19 in the Elderly. Front Med (Lausanne) 2020; 7:379. [PMID: 32714938 PMCID: PMC7351507 DOI: 10.3389/fmed.2020.00379] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Sandra Amatriain-Fernández
- Faculty of Sport Sciences and Physical Education, University of A Coruña, A Coruña, Spain
- Department of Pedagogy, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany
| | - Thomas Gronwald
- Department of Performance, Neuroscience, Therapy and Health, Faculty of Health Sciences, Medical School Hamburg, Hamburg, Germany
| | | | - Claudio Imperatori
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| | - Alexandre Francisco Solano
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Henning Budde
- Department of Pedagogy, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
33
|
Nieman DC. Coronavirus disease-2019: A tocsin to our aging, unfit, corpulent, and immunodeficient society. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:293-301. [PMID: 32389882 PMCID: PMC7205734 DOI: 10.1016/j.jshs.2020.05.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 05/07/2023]
Abstract
Acute and chronic respiratory illnesses cause widespread morbidity and mortality, and this class of illness now includes the novel coronavirus severe acute respiratory syndrome that is causing coronavirus disease-2019 (COVID-19). The world is experiencing a major demographic shift toward an older, obese, and physically inactive populace. Risk factor assessments based on pandemic data indicate that those at higher risk for severe illness from COVID-19 include older males, and people of all ages with obesity and related comorbidities such as hypertension and type 2 diabetes. Aging in and of itself leads to negative changes in innate and adaptive immunity, a process termed immunosenescence. Obesity causes systemic inflammation and adversely impacts immune function and host defense in a way that patterns immunosenescence. Two primary prevention strategies to reduce the risk for COVID-19 at both the community and individual levels include mitigation activities and the adoption of lifestyle practices consistent with good immune health. Animal and human studies support the idea that, in contrast to high exercise workloads, regular moderate-intensity physical activity improves immunosurveillance against pathogens and reduces morbidity and mortality from viral infection and respiratory illnesses including the common cold, pneumonia, and influenza. The odds are high that infectious disease pandemics spawned by novel pathogens will continue to inflict morbidity and mortality as the world's population becomes older and more obese. COVID-19 is indeed a wake-up call, a tocsin, to the world that primary prevention countermeasures focused on health behaviors and hygiene demand our full attention and support.
Collapse
Affiliation(s)
- David C Nieman
- Department of Biology, College of Arts and Sciences, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| |
Collapse
|
34
|
Yamamoto Y, Morozumi T, Takahashi T, Saruta J, To M, Sakaguchi W, Shimizu T, Kubota N, Tsukinoki K. Faster Short-Chain Fatty Acid Absorption from the Cecum Following Polydextrose Ingestion Increases the Salivary Immunoglobulin A Flow Rate in Rats. Nutrients 2020; 12:nu12061745. [PMID: 32545166 PMCID: PMC7353249 DOI: 10.3390/nu12061745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Salivary immunoglobulin A (IgA) plays a vital role in preventing upper respiratory tract infections (URTI). In our previous study, we showed that the intake of carbohydrates increases the intestinal levels of short-chain fatty acids (SCFAs), which in turn increase salivary IgA levels. However, the mechanism underlying this phenomenon has not been fully elucidated. In this study, we investigated in rats the effect of polydextrose (PDX) ingestion on salivary IgA level and SCFA concentration in cecal digesta and the portal vein. Five-week-old rats were fed with a fiber-free diet (control) or with 40 g/kg of PDX for 28 days. Compared to the control, ingestion of PDX led to a higher salivary IgA flow rate (p = 0.0013) and a higher concentration of SCFAs in the portal vein (p = 0.004). These two data were positively correlated (rs = 0.88, p = 0.0002, n = 12). In contrast, the concentration of SCFAs in cecal digesta and cecal digesta viscosity were significantly lower following PDX ingestion, compared to the control (p = 0.008 and 0.05, respectively). These findings suggest that the ingestion of PDX increases the absorption rate of SCFAs in the intestine through PDX-induced fermentation, which is accompanied by an increase in SCFA levels in the blood, and ultimately leads to increased salivary IgA levels.
Collapse
Affiliation(s)
- Yuko Yamamoto
- Department of Junior College, School of Dental Hygiene, Kanagawa Dental University, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan;
| | - Toshiya Morozumi
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan;
| | - Toru Takahashi
- Department of Health and Nutrition, Faculty of Human Health, Kanazawa Gakuin University, 10 Sue-machi, Kanazawa 9201392, Ishikawa, Japan;
| | - Juri Saruta
- Division of Environmental Pathology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan; (J.S.); (W.S.); (N.K.)
| | - Masahiro To
- Division of Dental Anatomy, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan;
| | - Wakako Sakaguchi
- Division of Environmental Pathology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan; (J.S.); (W.S.); (N.K.)
| | - Tomoko Shimizu
- Department of Highly Advanced Stomatology, Graduate School of Dentistry, Kanagawa Dental University, 3-31-6 Tsuruya, Kanagawa-ku, Yokohama 2210835, Kanagawa, Japan;
| | - Nobuhisa Kubota
- Division of Environmental Pathology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan; (J.S.); (W.S.); (N.K.)
| | - Keiichi Tsukinoki
- Division of Environmental Pathology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 2388580, Kanagawa, Japan; (J.S.); (W.S.); (N.K.)
- Correspondence: ; Tel.: +81-46-822-8866
| |
Collapse
|
35
|
Ferreira-Júnior JB, Freitas EDS, Chaves SFN. Exercise: A Protective Measure or an "Open Window" for COVID-19? A Mini Review. Front Sports Act Living 2020; 2:61. [PMID: 33345052 PMCID: PMC7739719 DOI: 10.3389/fspor.2020.00061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) has spread to at least 115 countries and caused an alarming number of deaths. The current outbreak has lead authorities from many countries to adopt several protective measures, including lockdown and social distancing. Although being a reasonable measure to counteract the COVID-19 contamination, the restrictive measures have limited individual's ability to perform exercise outdoors or in gyms and similar facilities, thus raising the risks for chronic health conditions related to a sedentary lifestyle. The recent exercise recommendations to counteract the potential deleterious effects of COVID-19-related lockdown have not fully addressed resistance exercise interventions as potential home-based exercise strategies. Additionally, the following questions have been constantly raised: (1) Is training status capable of protecting an individual from COVID-19 infection?; and (2) Can a single endurance or resistance exercise session acutely increase the risks for COVID-19 infection? Therefore, the current mini review aimed to focus on these two concerns, as well as to discuss the potential use of practical blood flow restriction and no load resistance training as possible resistance exercise strategies that could be performed during the current COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Eduardo D. S. Freitas
- Neuromuscular Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Suene F. N. Chaves
- Department of Sports, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
36
|
Grande AJ, Keogh J, Silva V, Scott AM, Cochrane Acute Respiratory Infections Group. Exercise versus no exercise for the occurrence, severity, and duration of acute respiratory infections. Cochrane Database Syst Rev 2020; 4:CD010596. [PMID: 32246780 PMCID: PMC7127736 DOI: 10.1002/14651858.cd010596.pub3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acute respiratory infections (ARIs) last for less than 30 days and are the most common acute diseases affecting people. Exercise has been shown to improve health generally, but it is uncertain whether exercise may be effective in reducing the occurrence, severity, and duration of ARIs. This is an update of our review published in 2015. OBJECTIVES To evaluate the effectiveness of exercise for altering the occurrence, severity, or duration of acute respiratory infections. SEARCH METHODS We searched CENTRAL (2020, Issue 2), MEDLINE (1948 to March week 1, 2020), Embase (1974 to 05 March 2020), CINAHL (1981 to 05 March 2020), LILACS (1982 to 05 March 2020), SPORTDiscus (1985 to 05 March 2020), PEDro (searched 05 March 2020), OTseeker (searched 05 March 2020), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) and ClinicalTrials.gov (searched 05 March 2020). SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs (method of allocation that is not truly random, e.g. based on date of birth, medical record number) of exercise for ARIs in the general population. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data from the included trials using a standard form. One review author entered data, which a second review author checked. We contacted trial authors to request missing data. There were sufficient differences in the populations trialed and in the nature of the interventions to use the random-effects model (which makes fewer assumptions than the fixed-effect model) in the analysis. MAIN RESULTS We included three new trials for this update (473 participants) for a total of 14 trials involving 1377 adults, published between 1990 and 2018. Nine trials were conducted in the USA, and one each in Brazil, Canada, Portugal, Spain, and Turkey. Sample sizes ranged from 16 to 419 participants, aged from 18 to 85 years. The proportion of female participants ranged from 52% to 100%. Follow-up duration ranged from 1 to 36 weeks (median = 12 weeks). Moderate-intensity aerobic exercise (walking, bicycling, treadmill, or a combination) was evaluated in 11 trials, and was most commonly prescribed at least three times a week for 30 to 45 minutes. There was no difference between exercise and no exercise in the number of ARI episodes per person per year (risk ratio (RR) 1.00, 95% confidence interval (CI) 0.77 to 1.30; 4 trials; 514 participants; low-certainty evidence); proportion of participants who experienced at least one ARI over the study period (RR 0.88, 95% CI 0.72 to 1.08; 5 trials; 520 participants; low-certainty evidence); and the number of symptom days per episode of illness (mean difference (MD) -0.44 day, 95% CI -2.33 to 1.46; 6 trials; 557 participants; low-certainty evidence). Exercise reduced the severity of ARI symptoms measured on the Wisconsin Upper Respiratory Symptom Survey (WURSS-24) (MD -103.57, 95% CI -198.28 to -8.87; 2 trials; 373 participants; moderate-certainty evidence) and the number of symptom days during follow-up period (MD -2.24 days, 95% CI -3.50 to -0.98; 4 trials; 483 participants; low-certainty evidence). Excercise did not have a significant effect on laboratory parameters (blood lymphocytes, salivary secretory immunoglobulin, and neutrophils), quality of life outcomes, cost-effectiveness, and exercise-related injuries. There was no difference in participant dropout between the intervention and control groups. Overall, the certainty of the evidence was low, downgraded mainly due to limitations in study design and implementation, imprecision, and inconsistency. Seven trials were funded by public agencies; five trials did not report funding; and two trials were funded by private companies. AUTHORS' CONCLUSIONS Exercise did not reduce the number of ARI episodes, proportion of participants experiencing at least one ARI during the study, or the number of symptom days per episode of illness. However, exercise reduced the severity of ARI symptoms (two studies) and the number of symptom days during the study follow-up period (four studies). Small study size, risk of bias, and heterogeneity in the populations studied contributed to the uncertainty of the findings. Larger trials that are designed to avoid risk of bias associated with participant selection, blinding of outcomes assessors, and with adequate reporting of all outcomes proposed for measurement in trials, would help to provide more robust evidence.
Collapse
Affiliation(s)
- Antonio Jose Grande
- Universidade Estadual de Mato Grosso do SulLaboratory of Evidence‐Based PracticeAv. Dom Antônio Barbosa, 4155Vila Santo AmaroCampo GrandeMato Grosso do SulBrazil79115‐898
| | - Justin Keogh
- Bond UniversityFaculty of Health Sciences and Medicine14 University DriveGold CoastQueenslandAustralia4229
| | - Valter Silva
- Centro Universitário Tiradentes (UNIT/AL)Postgraduate Program on Society, Technology and Public Policies (SOTEPP); Department of MedicineAv. Comendador Gustavo Paiva, 5017Cruz das AlmasMaceióALBrazil57038‐000
| | - Anna M Scott
- Bond UniversityCentre for Research in Evidence‐Based Practice (CREBP)14 University DriveGold CoastQueenslandAustralia4229
| | | |
Collapse
|
37
|
Weyh C, Krüger K, Strasser B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients 2020; 12:nu12030622. [PMID: 32121049 PMCID: PMC7146449 DOI: 10.3390/nu12030622] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
With increasing age, the immune system undergoes a remodeling process, termed immunosenescence, which is accompanied by considerable shifts in leukocyte subpopulations and a decline in various immune cell functions. Clinically, immunosenescence is characterized by increased susceptibility to infections, a more frequent reactivation of latent viruses, decreased vaccine efficacy, and an increased prevalence of autoimmunity and cancer. Physiologically, the immune system has some adaptive strategies to cope with aging, while in some settings, maladaptive responses aggravate the speed of aging and morbidity. While a lack of physical activity, decreased muscle mass, and poor nutritional status facilitate immunosenescence and inflammaging, lifestyle factors such as exercise and dietary habits affect immune aging positively. This review will discuss the relevance and mechanisms of immunoprotection through physical activity and specific exercise interventions. In the second part, we will focus on the effect of dietary interventions through the supplementation of the essential amino acid tryptophan, n-3 polyunsaturated fatty acids, and probiotics (with a special focus on the kynurenine pathway).
Collapse
Affiliation(s)
- Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
- Correspondence:
| | - Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, A-1020 Vienna, Austria;
| |
Collapse
|
38
|
Wang J, Liu S, Li G, Xiao J. Exercise Regulates the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1228:395-408. [PMID: 32342473 DOI: 10.1007/978-981-15-1792-1_27] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The profound effect of exercise on the normal functioning of the immune system has been well-known. Exercise and immune regulation are interrelated and affect each other. Exercise changes immune regulation by affecting leucocytes, red blood cells, and cytokines, etc. Regular exercise could reduce the risk of chronic metabolic and cardiorespiratory diseases, partially by the anti-inflammatory effects of exercise. However, these effects are also likely to be responsible for the suppressed immunity that make our bodies more susceptible to infections. Here we summarize the known mechanisms by which exercise-both acute and chronic-exerts its immune regulation effects.
Collapse
Affiliation(s)
- Jing Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Shuqin Liu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
39
|
Buss LA, Dachs GU. Effects of Exercise on the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:31-51. [PMID: 32030646 DOI: 10.1007/978-3-030-35727-6_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epidemiological evidence suggests that exercise improves survival in cancer patients. However, much is still unknown regarding the mechanisms of this positive survival effect and there are indications that exercise may not be universally beneficial for cancer patients. The key to understanding in which situations exercise is beneficial may lie in understanding its influence on the tumour microenvironment (TME)-and conversely, the influence of the tumour on physical functioning. The TME consists of a vast multitude of different cell types, mechanical and chemical stressors and humoral factors. The interplay of these different components greatly influences tumour cell characteristics and, subsequently, tumour growth rate and aggression. Exercise exerts whole-body physiological effects and can directly and indirectly affect the TME. In this chapter, we first discuss the possible role of exercise capacity ('fitness') and exercise adaptability on tumour responsiveness to exercise. We summarise how exercise affects aspects of the TME such as tumour perfusion, vascularity, hypoxia (reduced oxygenation) and immunity. Additionally, we discuss the role of myokines and other circulating factors in eliciting these changes in the TME. Finally, we highlight unanswered questions and key areas for future research in exercise oncology and the TME.
Collapse
Affiliation(s)
- Linda A Buss
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.
| |
Collapse
|
40
|
Jensen KY, Jacobsen M, Schrøder HD, Aagaard P, Nielsen JL, Jørgensen AN, Boyle E, Bech RD, Rosmark S, Diederichsen LP, Frandsen U. The immune system in sporadic inclusion body myositis patients is not compromised by blood-flow restricted exercise training. Arthritis Res Ther 2019; 21:293. [PMID: 31852482 PMCID: PMC6921522 DOI: 10.1186/s13075-019-2036-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/21/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Sporadic inclusion body myositis (sIBM) is clinically characterised by progressive proximal and distal muscle weakness and impaired physical function while skeletal muscle tissue displays abnormal cellular infiltration of T cells, macrophages, and dendritic cells. Only limited knowledge exists about the effects of low-load blood flow restriction exercise in sIBM patients, and its effect on the immunological responses at the myocellular level remains unknown. The present study is the first to investigate the longitudinal effects of low-load blood flow restriction exercise on innate and adaptive immune markers in skeletal muscle from sIBM patients. METHODS Twenty-two biopsy-validated sIBM patients were randomised into either 12 weeks of low-load blood flow restriction exercise (BFRE) or no exercise (CON). Five patients from the control group completed 12 weeks of BFRE immediately following participation in the 12-week control period leading to an intervention group of 16 patients. Muscle biopsies were obtained from either the m. tibialis anterior or the m. vastus lateralis for evaluation of CD3-, CD8-, CD68-, CD206-, CD244- and FOXP3-positive cells by three-colour immunofluorescence microscopy and Visiopharm-based image analysis quantification. A linear mixed model was used for the statistical analysis. RESULTS Myocellular infiltration of CD3-/CD8+ expressing natural killer cells increased following BFRE (P < 0.05) with no changes in CON. No changes were observed for CD3+/CD8- or CD3+/CD8+ T cells in BFRE or CON. CD3+/CD244+ T cells decreased in CON, while no changes were observed in BFRE. Pronounced infiltration of M1 pro-inflammatory (CD68+/CD206-) and M2 anti-inflammatory (CD68+/CD206+) macrophages were observed at baseline; however, no longitudinal changes in macrophage content were observed for both groups. CONCLUSIONS Low-load blood flow restriction exercise elicited an upregulation in CD3-/CD8+ expressing natural killer cell content, which suggests that 12 weeks of BFRE training evokes an amplified immune response in sIBM muscle. However, the observation of no changes in macrophage or T cell infiltration in the BFRE-trained patients indicates that patients with sIBM may engage in this type of exercise with no risk of intensified inflammatory activity.
Collapse
Affiliation(s)
- Kasper Yde Jensen
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark.,Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mikkel Jacobsen
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark.,Department of Rheumatology, Odense University Hospital, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Henrik Daa Schrøder
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
| | - Jakob Lindberg Nielsen
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
| | - Anders Nørkær Jørgensen
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Eleanor Boyle
- Department of Sport Science and Clinical Biomechanics, Research Unit of Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Rune Dueholm Bech
- Department of Orthopaedics and Traumatology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sofie Rosmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Louise Pyndt Diederichsen
- Department of Rheumatology, Odense University Hospital, Odense, Denmark. .,Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Ulrik Frandsen
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
| |
Collapse
|
41
|
Quinn KM, Palchaudhuri R, Palmer CS, La Gruta NL. The clock is ticking: the impact of ageing on T cell metabolism. Clin Transl Immunology 2019; 8:e01091. [PMID: 31832191 PMCID: PMC6859487 DOI: 10.1002/cti2.1091] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022] Open
Abstract
It is now clear that access to specific metabolic programmes controls the survival and function of various immune cell populations, including T cells. Efficient naïve and memory T cell homoeostasis requires the use of specific metabolic pathways and differentiation requires rapid and dramatic metabolic remodelling. While we are beginning to appreciate the crucial role of metabolic programming during normal T cell physiology, many of the potential impacts of ageing on metabolic homoeostasis and remodelling in T cells remain unexplored. This review will outline our current understanding of T cell metabolism and explore age‐related metabolic changes that are postulated or have been demonstrated to impact T cell function.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences RMIT University Bundoora VIC Australia.,Department of Biochemistry Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Riya Palchaudhuri
- Life Sciences Macfarlane Burnet Institute for Medical Research and Public Health Melbourne VIC Australia.,Department of Infectious Diseases Monash University Melbourne VIC Australia.,Department of Immunology and Pathology Monash University Melbourne VIC Australia
| | - Clovis S Palmer
- Life Sciences Macfarlane Burnet Institute for Medical Research and Public Health Melbourne VIC Australia.,Department of Infectious Diseases Monash University Melbourne VIC Australia
| | - Nicole L La Gruta
- Department of Biochemistry Biomedicine Discovery Institute Monash University Clayton VIC Australia
| |
Collapse
|
42
|
Yamamoto Y, Saruta J, Takahashi T, To M, Shimizu T, Hayashi T, Morozumi T, Kubota N, Kamata Y, Makino S, Kano H, Hemmi J, Asami Y, Nagai T, Misawa K, Kato S, Tsukinoki K. Effect of ingesting yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 on influenza virus-bound salivary IgA in elderly residents of nursing homes: a randomized controlled trial. Acta Odontol Scand 2019; 77:517-524. [PMID: 31094267 DOI: 10.1080/00016357.2019.1609697] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective: The purpose of this study was to clarify the influence of consuming yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (1073R-1-yogurt) on influenza virus-bound salivary immunoglobulin A (IgA) levels, in the elderly residents of nursing homes. Methods: A double-blind, parallel-group, randomized controlled trial was conducted with 96 elderly volunteers residing in 2 nursing homes. During the trial, participants consumed 100 g of 1073R-1-yogurt every morning for 12 weeks, whereas the control participants consumed yogurt fermented with a different Lactobacillus strain (control yogurt). Saliva was collected before the trial and after 4, 8 and 12 weeks of yogurt ingestion. Results: Our data indicated that consumption of 1073R-1-yogurt affected influenza A virus subtype H3N2-bound IgA levels in saliva (p = .001). In addition, saliva flow rate and total IgA levels increased in response to the yogurt intake period in both the 1073R-1 and control yogurt groups (p = .04). Conclusions: Our study suggests that continuous daily ingestion of 1073R-1-yogurt may help prevent infection with influenza A virus subtype H3N2 in elderly subjects with weakened immunity, by increasing the production of influenza A virus subtype of H3N2-bound salivary IgA.
Collapse
Affiliation(s)
- Yuko Yamamoto
- Department of Dental Hygiene, Kanagawa Dental University Junior College, Yokosuka, Japan
| | - Juri Saruta
- Division of Environmental Pathology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Toru Takahashi
- Department of Food and Nutrition, Koriyama Women’s University, Koriyama, Japan
| | - Masahiro To
- Division of Dental Anatomy, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Tomoko Shimizu
- Department of Highly Advanced Stomatology, Graduate School of Dentistry, Kanagawa Dental University, Yokohama, Japan
| | - Takashi Hayashi
- Division of Environmental Pathology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Toshiya Morozumi
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Nobuhisa Kubota
- Division of Environmental Pathology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Yohei Kamata
- Department of Highly Advanced Stomatology, Graduate School of Dentistry, Kanagawa Dental University, Yokohama, Japan
| | - Seiya Makino
- R&D Division, Food Microbiology Research Laboratories, Meiji Co. Ltd., Hachioji, Japan
| | - Hiroshi Kano
- R&D Division, Food Microbiology Research Laboratories, Meiji Co. Ltd., Hachioji, Japan
| | - Jun Hemmi
- R&D Division, Food Microbiology Research Laboratories, Meiji Co. Ltd., Hachioji, Japan
| | - Yukio Asami
- R&D Division, Food Microbiology Research Laboratories, Meiji Co. Ltd., Hachioji, Japan
| | - Takayuki Nagai
- Department of Drug Discovery Sciences, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | | | | | - Keiichi Tsukinoki
- Division of Environmental Pathology, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| |
Collapse
|
43
|
Shi Y, Shi H, Nieman DC, Hu Q, Yang L, Liu T, Zhu X, Wei H, Wu D, Li F, Cui Y, Chen P. Lactic Acid Accumulation During Exhaustive Exercise Impairs Release of Neutrophil Extracellular Traps in Mice. Front Physiol 2019; 10:709. [PMID: 31263423 PMCID: PMC6585869 DOI: 10.3389/fphys.2019.00709] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/21/2019] [Indexed: 01/08/2023] Open
Abstract
Lactic acid (LA) is a sensitive indicator of exercise intensity and duration. A single bout of prolonged and intensive exercise can cause transient immunosuppression through the interaction of cellular, humoral, and hormone factors. Exercise-induced influences on neutrophil extracellular traps (NETs) release have been reported, but the underlying mechanism is unknown. This study investigated NETs release, cell-free DNA (cf-DNA), and LA concentration in mice after 60 and 145 min of intensive, graded treadmill running. The concentration of LA and cf-DNA increased, while the level of myeloperoxidase-DNA (MPO-DNA) (an indicator of NETs release) decreased during 145 min of exhaustive running. LA was positively and negatively correlated with cf-DNA and MPO-DNA (R 2 = 0.57 and 0.53, respectively, both p < 0.001). Subsequent in vitro experiments were conducted with neutrophils activated by phorbol myristate acetate (PMA) in the presence of LA at different concentrations. Increasing LA concentrations were associated with decreases in NETs release and reactive oxygen species (ROS) formation. Taken together, this work furthers our understanding of how NETs and oxidative reaction respond to one bout of prolonged and intensive running. The data support a negative relationship between LA accumulation and NETs release after heavy exertion.
Collapse
Affiliation(s)
- Yue Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David C. Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyu Yang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Zhu
- Normal College, Jiaxing University, Jiaxing, China
| | - Hongzhan Wei
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Die Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Fei Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yanqiu Cui
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
44
|
Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat Rev Immunol 2019; 19:563-572. [DOI: 10.1038/s41577-019-0177-9] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Terra R, Alves PJF, Lima AKC, Gomes SMR, Rodrigues LS, Salerno VP, Da-Silva SAG, Dutra PML. Immunomodulation From Moderate Exercise Promotes Control of Experimental Cutaneous Leishmaniasis. Front Cell Infect Microbiol 2019; 9:115. [PMID: 31131262 PMCID: PMC6510011 DOI: 10.3389/fcimb.2019.00115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Physical exercise has been described as an important tool in the prevention and treatment of numerous diseases as it promotes a range of responses and adaptations in several biological systems, including the immune system. Studies on the effect of exercise on the immune system could play a critical role in improving public health. Current literature suggests that moderate intensity exercise can modulate the Th1/Th2 dichotomy directing the immune system to a Th1 cellular immune response, which favors the resolution of infections caused by intracellular microorganisms. Leishmaniasis is a group of diseases presenting a wide spectrum of clinical manifestations that range from self-limiting lesions to visceral injuries whose severity can lead to death. The etiological agents responsible for this group of diseases are protozoa of the genus Leishmania. Infections by the parasite Leishmania major in mice (Balb/c) provide a prototype model for the polarization of CD4+ T cell responses of both Th1 (resistance) or Th2 (susceptibility), which determines the progression of infections. The aim of this study was to evaluate the effect of exercise on the development of L. major experimental infections by scanning the pattern of immune response caused by exercise. Groups of Balb/c mice infected with L. major were divided into groups that preformed a physical exercise of swimming three times a week or were sedentary along with treatment or not with the reference drug, meglumine antimoniate. Animals in groups submitted to physical exercise did not appear to develop lesions and presented a significantly lower parasite load independent of drug treatment. They also showed a positive delayed hypersensitivity response to a specific Leishmania antigen compared to control animals. The IFN-γ/IL-4 and IFN-γ/IL10 ratios in trained animals were clearly tilted to a Th1 response in lymph node cells. These data suggest that moderate intensity exercise is able to modulate the Th1 response that provides a protective effect against the development of leishmanial lesions.
Collapse
Affiliation(s)
- Rodrigo Terra
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro J. F. Alves
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana K. C. Lima
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shayane M. R. Gomes
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana S. Rodrigues
- Discipline of General Pathology, Department of Pathology and Laboratories, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Verônica P. Salerno
- Laboratory of Exercise Biochemistry and Molecular Motors, School of Physical Education and Sports, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia A. G. Da-Silva
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia M. L. Dutra
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
46
|
Nieman DC, Wentz LM. The compelling link between physical activity and the body's defense system. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:201-217. [PMID: 31193280 PMCID: PMC6523821 DOI: 10.1016/j.jshs.2018.09.009] [Citation(s) in RCA: 687] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/26/2018] [Accepted: 09/25/2018] [Indexed: 05/05/2023]
Abstract
This review summarizes research discoveries within 4 areas of exercise immunology that have received the most attention from investigators: (1) acute and chronic effects of exercise on the immune system, (2) clinical benefits of the exercise-immune relationship, (3) nutritional influences on the immune response to exercise, and (4) the effect of exercise on immunosenescence. These scientific discoveries can be organized into distinctive time periods: 1900-1979, which focused on exercise-induced changes in basic immune cell counts and function; 1980-1989, during which seminal papers were published with evidence that heavy exertion was associated with transient immune dysfunction, elevated inflammatory biomarkers, and increased risk of upper respiratory tract infections; 1990-2009, when additional focus areas were added to the field of exercise immunology including the interactive effect of nutrition, effects on the aging immune system, and inflammatory cytokines; and 2010 to the present, when technological advances in mass spectrometry allowed system biology approaches (i.e., metabolomics, proteomics, lipidomics, and microbiome characterization) to be applied to exercise immunology studies. The future of exercise immunology will take advantage of these technologies to provide new insights on the interactions between exercise, nutrition, and immune function, with application down to the personalized level. Additionally, these methodologies will improve mechanistic understanding of how exercise-induced immune perturbations reduce the risk of common chronic diseases.
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Corresponding author.
| | - Laurel M. Wentz
- Department of Nutrition and Health Care Management, Appalachian State University, Boone, NC 28608, USA
| |
Collapse
|
47
|
Pozuelo-Carrascosa DP, Alvarez-Bueno C, Cavero-Redondo I, Morais S, Lee IM, Martínez-Vizcaíno V. Cardiorespiratory fitness and site-specific risk of cancer in men: A systematic review and meta-analysis. Eur J Cancer 2019; 113:58-68. [PMID: 30981949 DOI: 10.1016/j.ejca.2019.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Cardiorespiratory fitness is a strong predictor of all-cause morbidity and mortality; nevertheless, the association between cardiorespiratory fitness and the risk of cancer remains unclear. Thus, the aim of this study was to synthetize the evidence on the relationship between cardiorespiratory fitness and the risk of several sites of cancer in men. METHODS A computerised search in MEDLINE, EMBASE and Web of Science databases from their inception to 13th February 2019 was performed. Both fixed and random-effects models were used to calculate the pooled hazard ratio (HR) estimates and their 95% confidence intervals (CIs) to examine the effect of high and moderate versus low cardiorespiratory fitness on site-specific cancer (lung, colon/rectum, prostate) and all-sites cancer. RESULTS Ten studies were included in the qualitative review, and seven of them were included in the meta-analysis. Using low cardiorespiratory fitness as the reference group, moderate and high levels of cardiorespiratory fitness were associated with a lower risk (HRs) of lung cancer, 0.53 (95% confidence interval [CI], 0.39 to 0.68) and 0.52 (95% CI, 0.42 to 0.61); colorectal cancer, 0.74 (95% CI, 0.55 to 0.93) and 0.77 (95% CI, 0.62 to 0.92) and all cancer sites, 0.86 (95% CI, 0.79 to 0.93) and 0.81 (95% CI, 0.75 to 0.87), respectively. CONCLUSIONS Among men, cardiorespiratory fitness plays an important role in protecting against the risk of lung and colorectal cancer. Additionally, this protective effect was observed for all-sites cancer risk. These results show the importance of good cardiorespiratory fitness as a potential factor in cancer prevention.
Collapse
Affiliation(s)
- D P Pozuelo-Carrascosa
- Universidad de Castilla- La Mancha, Health and Social Care Research Center, Cuenca, Spain
| | - C Alvarez-Bueno
- Universidad de Castilla- La Mancha, Health and Social Care Research Center, Cuenca, Spain.
| | - I Cavero-Redondo
- Universidad de Castilla- La Mancha, Health and Social Care Research Center, Cuenca, Spain
| | - S Morais
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal
| | - I M Lee
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - V Martínez-Vizcaíno
- Universidad de Castilla- La Mancha, Health and Social Care Research Center, Cuenca, Spain; Universidad Autónoma de Chile, Faculty of Health Sciences, Talca, Chile
| |
Collapse
|
48
|
Deng Q, Ou C, Shen YM, Xiang Y, Miao Y, Li Y. Health effects of physical activity as predicted by particle deposition in the human respiratory tract. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:819-826. [PMID: 30677947 DOI: 10.1016/j.scitotenv.2018.12.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 05/04/2023]
Abstract
Although health benefits of physical activity are well known, the risk of physical activity in polluted air is unclear. Our objective is to investigate health effects resulting from physical activity in polluted air by looking at particle deposition in human tracheobronchial (TB) airways. Airflow and particle deposition in TB airways were investigated using a computational fluid dynamics (CFD) method. We chose three regional airways: upper (G3-G5), central (G9-G11) and lower (G14-G16). Physical activity was described by breathing rate at the mouth, for three levels of activity: sedentary (15 l/min), moderate (30 l/min) and intense (60 l/min). We found that particle deposition was strongly affected by physical activity. Particles are deposited in greater number in the lower airways (G14-G16) during sedentary activity, more in the upper airways (G3-G5) during intense activity, and uniformly in the airways during moderate activity. The difference in the deposition pattern was due to the reason that physical activity increased the airflow which increased inertial impaction. Our modeling of particle deposition in the human respiratory airways shows that there are different health effects for different activity levels: sedentary activity leads to chronic health effects, intense activity results in acute effects, and moderate activity minimizes the adverse health effects of physical activity in polluted air.
Collapse
Affiliation(s)
- Qihong Deng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China; XiangYa School of Public Health, Central South University, Changsha 410078, China.
| | - Cuiyun Ou
- School of Energy Science and Engineering, Central South University, Changsha 410083, China; School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yong-Ming Shen
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuguang Xiang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Yufeng Miao
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
49
|
Sellami M, Gasmi M, Denham J, Hayes LD, Stratton D, Padulo J, Bragazzi N. Effects of Acute and Chronic Exercise on Immunological Parameters in the Elderly Aged: Can Physical Activity Counteract the Effects of Aging? Front Immunol 2018; 9:2187. [PMID: 30364079 PMCID: PMC6191490 DOI: 10.3389/fimmu.2018.02187] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022] Open
Abstract
Immunosenescence is characterized by deterioration of the immune system caused by aging which induces changes to innate and adaptive immunity. Immunosenescence affects function and phenotype of immune cells, such as expression and function of receptors for immune cells which contributes to loss of immune function (chemotaxis, intracellular killing). Moreover, these alterations decrease the response to pathogens, which leads to several age-related diseases including cardiovascular disease, Alzheimer's disease, and diabetes in older individuals. Furthermore, increased risk of autoimmune disease and chronic infection is increased with an aging immune system, which is characterized by a pro-inflammatory environment, ultimately leading to accelerated biological aging. During the last century, sedentarism rose dramatically, with a concomitant increase in certain type of cancers (such as breast cancer, colon, or prostate cancer), and autoimmune disease. Numerous studies on physical activity and immunity, with focus on special populations (i.e., people with diabetes, HIV patients) demonstrate that chronic exercise enhances immunity. However, the majority of previous work has focused on either a pathological population or healthy young adults whilst research in elderly populations is scarce. Research conducted to date has primarily focused on aerobic and resistance exercise training and its effect on immunity. This review focuses on the potential for exercise training to affect the aging immune system. The concept is that some lifestyle strategies such as high-intensity exercise training may prevent disease through the attenuation of immunosenescence. In this context, we take a top-down approach and review the effect of exercise and training on immunological parameters in elderly at rest and during exercise in humans, and how they respond to different modes of training. We highlight the impact of these different exercise modes on immunological parameters, such as cytokine and lymphocyte concentration in elderly individuals.
Collapse
Affiliation(s)
- Maha Sellami
- Sport Science Program (SSP), College of Arts and Sciences (QU-CAS), University of Qatar, Doha, Qatar
| | - Maha Gasmi
- Higher Institute of Sport and Physical Education of Ksar Said, Mannouba, Tunisia
| | - Joshua Denham
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Lawrence D. Hayes
- Active Ageing Research Group, Department of Medical and Sport Sciences, University of Cumbria, Lancaster, United Kingdom
| | - Dan Stratton
- Cellular and Molecular Immunology Research Center, London Metropolitan University, London, United Kingdom
| | | | - Nicola Bragazzi
- Department of Health Sciences (DISSAL), Postgraduate School of Public Health, University of Genoa, Genoa, Italy
| |
Collapse
|
50
|
Bartlett DB, Willis LH, Slentz CA, Hoselton A, Kelly L, Huebner JL, Kraus VB, Moss J, Muehlbauer MJ, Spielmann G, Kraus WE, Lord JM, Huffman KM. Ten weeks of high-intensity interval walk training is associated with reduced disease activity and improved innate immune function in older adults with rheumatoid arthritis: a pilot study. Arthritis Res Ther 2018; 20:127. [PMID: 29898765 PMCID: PMC6001166 DOI: 10.1186/s13075-018-1624-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic inflammatory disease in which adults have significant joint issues leading to poor health. Poor health is compounded by many factors, including exercise avoidance and increased risk of opportunistic infection. Exercise training can improve the health of patients with RA and potentially improve immune function; however, information on the effects of high-intensity interval training (HIIT) in RA is limited. We sought to determine whether 10 weeks of a walking-based HIIT program would be associated with health improvements as measured by disease activity and aerobic fitness. Further, we assessed whether HIIT was associated with improved immune function, specifically antimicrobial/bacterial functions of neutrophils and monocytes. Methods Twelve physically inactive adults aged 64 ± 7 years with either seropositive or radiographically proven (bone erosions) RA completed 10 weeks of high-intensity interval walking. Training consisted of 3 × 30-minute sessions/week of ten ≥ 60-second intervals of high intensity (80–90% VO2reserve) separated by similar bouts of lower-intensity intervals (50–60% VO2reserve). Pre- and postintervention assessments included aerobic and physical function; disease activity as measured by Disease Activity score in 28 joints (DAS28), self-perceived health, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR); plasma interleukin (IL)-1β, IL-6, chemokine (C-X-C motif) ligand (CXCL)-8, IL-10, and tumor necrosis factor (TNF)-α concentrations; and neutrophil and monocyte phenotypes and functions. Results Despite minimal body composition change, cardiorespiratory fitness increased by 9% (change in both relative and absolute aerobic capacity; p < 0.001), and resting blood pressure and heart rate were both reduced (both p < 0.05). Postintervention disease activity was reduced by 38% (DAS28; p = 0.001) with significant reductions in ESR and swollen joints as well as improved self-perceived health. Neutrophil migration toward CXCL-8 (p = 0.003), phagocytosis of Escherichia coli (p = 0.03), and ROS production (p < 0.001) all increased following training. The frequency of cluster of differentiation 14-positive (CD14+)/CD16+ monocytes was reduced (p = 0.002), with both nonclassical (CD14dim/CD16bright) and intermediate (CD14bright/CD16positive) monocytes being reduced (both p < 0.05). Following training, the cell surface expression of intermediate monocyte Toll-like receptor 2 (TLR2), TLR4, and HLA-DR was reduced (all p < 0.05), and monocyte phagocytosis of E. coli increased (p = 0.02). No changes were observed for inflammatory markers IL-1β, IL-6, CXCL-8, IL-10, CRP, or TNF-α. Conclusions We report for the first time, to our knowledge, that a high-intensity interval walking protocol in older adults with stable RA is associated with reduced disease activity, improved cardiovascular fitness, and improved innate immune functions, indicative of reduced infection risk and inflammatory potential. Importantly, the exercise program was well tolerated by these patients. Trial registration ClinicalTrials.gov, NCT02528344. Registered on 19 August 2015.
Collapse
Affiliation(s)
- David B Bartlett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA. .,Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27701, USA. .,MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| | - Leslie H Willis
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Cris A Slentz
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Andrew Hoselton
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Leslie Kelly
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Janet L Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Virginia B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer Moss
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - William E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Janet M Lord
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,NIHR Birmingham Biomedical Research Centre in Inflammation, University Hospital Birmingham, Birmingham, UK
| | - Kim M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|