1
|
Morris DR, Qu Y, de Mello AH, Jones-Hall YL, Liu T, Weglarz M, Ivanciuc T, Garofalo RP, Casola A. Hypoxia-inducible-factors differentially contribute to clinical disease and viral replication during RSV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553422. [PMID: 37645750 PMCID: PMC10461990 DOI: 10.1101/2023.08.15.553422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Hypoxia-inducible-factors (HIF) are transcription factors that regulate cellular adaptation to hypoxic conditions, enabling cells to survive in low-oxygen environments. Viruses have evolved to activate this pathway to promote successful viral infection, therefore modulation of HIFs could represent a novel antiviral strategy. In previous in vitro studies, we found that respiratory syncytial virus (RSV), a leading cause of respiratory illness, stabilizes HIFs under normoxic conditions, with inhibition of HIF-1α resulting in reduced viral replication. Despite several HIF modulating compounds being tested/approved for use in other non-infectious models, little is known about their efficacy against respiratory viruses using relevant animal models. This study aimed to characterize the disease modulating properties and antiviral potential of HIF-1α (PX478) and HIF-2α (PT2385) inhibitors in RSV-infected BALB/c mice. We found that inhibition of HIF-1α worsen clinical disease parameters, while simultaneously improving lung inflammation and airway function. Additionally, blocking HIF-1α resulted in significantly reduced viral titer at early and peak time points of RSV replication. In contrast, inhibition of HIF-2α was associated with improved clinical parameters, with no changes in airway function, enhanced immune responses and reduced early and peak lung viral replication. Analysis of lung cells found significant modification in the T-cell compartment that correlated with changes in lung pathology and viral titers in response to each HIF inhibitor administration. This study underscores the differential roles of HIF proteins in RSV infection and highlights the need for further characterization of the compounds that are currently in use or under therapeutic consideration.
Collapse
Affiliation(s)
- Dorothea R. Morris
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- School of Population & Public Health, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yue Qu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yava L. Jones-Hall
- School of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX, USA
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Meredith Weglarz
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Teodora Ivanciuc
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Roberto P. Garofalo
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Antonella Casola
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
2
|
Li Q, Yu H, Wang C, Gu J, Yang H, Wan R, Zhang Y, Hu C, Cui X. Correlation between obstructive sleep apnea and serum markers HIF-1, IL-6 and iNOS after lung transplantation. Sleep Breath 2024; 29:58. [PMID: 39666244 DOI: 10.1007/s11325-024-03229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE To analyze the correlation between obstructive sleep apnea (OSA) and hypoxia-inducible factor (HIF)-1, interleukin (IL)-6 and inducible nitric oxide synthase (iNOS) in patients complicated with OSA after lung transplantation. To identify serum markers of OSA after lung transplantation. METHODS We retrospectively selected patients who planned to undergo lung transplantation between 2018 and 2020, including 25 without OSA before lung transplantation (group A), 20 with OSA after lung transplantation (group B), and 15 patients without OSA after lung transplantation (group C). Sleep monitoring was performed, general information collection and hematological samples were collected. HIF-1, IL-6 and iNOS were detected by ELISA. RESULTS Group B were older [59.2 ± 10.1 (B) vs. 49.8 ± 15.1 (A), 58.2 ± 3.3 (C), yrs.], had a bigger neck circumference [38.1 ± 4.7 (B) vs. 34.6 ± 4.2 (A),35.7 ± 4.2 (C), cm], and a greater abdominal circumference [88.2 ± 12.5 (B) vs. 76.2 ± 7.9 (A), 82.5 ± 6.5 (C), cm] compared with Groups A and C (P < 0.05). iNOS in group B (4784.8 ± 1365.2 (B) vs. 1925.2 ± 1868.5 (A), 2838.7 ± 3015.5 (C), pg/mL) was significantly increased compared to groups A and C (P < 0.05). iNOS was positively correlated with AHI. CONCLUSIONS iNOS is significantly increased in OSA after lung transplantation, and maybe an important indicator of OSA.
Collapse
Affiliation(s)
- Qi Li
- General Practice, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214000, China
| | - Huaqing Yu
- Lung transplant center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214000, China
| | - Chao Wang
- General Practice, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214000, China
| | - Jingxiao Gu
- General Practice, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214000, China
| | - Hang Yang
- Lung transplant center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214000, China
| | - Rongrong Wan
- General Practice, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214000, China
| | - Yunyun Zhang
- General Practice, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214000, China
| | - Chunxiao Hu
- Lung transplant center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214000, China
| | - Xiaochuan Cui
- General Practice, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214000, China.
| |
Collapse
|
3
|
Guo Y, Dupart M, Irondelle M, Peraldi P, Bost F, Mazure NM. YAP1 modulation of primary cilia-mediated ciliogenesis in 2D and 3D prostate cancer models. FEBS Lett 2024; 598:3071-3086. [PMID: 39424416 DOI: 10.1002/1873-3468.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
The primary cilium, a non-motile organelle present in most human cells, plays a crucial role in detecting microenvironmental changes and regulating intracellular signaling. Its dysfunction is linked to various diseases, including cancer. We explored the role of ciliated cells in prostate cancer by using Gefitinib and Jasplakinolide compounds to induce ciliated cells in both normal and tumor-like prostate cell lines. We assessed GLI1 and IFT20 expression and investigated YAP1 protein's role, which is implicated in primary cilium regulation. Finally, we examined these compounds in 3D cell models, aiming to simulate in vivo conditions. Our study highlights YAP1 as a potential target for novel genetic models to understand the primary cilium's role in mediating resistance to anticancer treatments.
Collapse
Affiliation(s)
- Yingbo Guo
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| | - Mathilde Dupart
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
- IRCAN, Université Côte d'Azur, Nice Cedex 02, France
| | - Marie Irondelle
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
| | - Pascal Peraldi
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| | - Frederic Bost
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| | - Nathalie M Mazure
- INSERM U1065, C3M, Université Côte d'Azur, Nice Cedex 03, France
- Equipe Labellisée Ligue Contre le Cancer, Xxxxx, France
| |
Collapse
|
4
|
Brendel H, Mittag J, Hofmann A, Hempel H, Giebe S, Diaba-Nuhoho P, Wolk S, Reeps C, Morawietz H, Brunssen C. NADPH Oxidase 4: Crucial for Endothelial Function under Hypoxia-Complementing Prostacyclin. Antioxidants (Basel) 2024; 13:1178. [PMID: 39456432 PMCID: PMC11504732 DOI: 10.3390/antiox13101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Aim: The primary endothelial NADPH oxidase isoform 4 (NOX4) is notably induced during hypoxia, with emerging evidence suggesting its vasoprotective role through H2O2 production. Therefore, we aimed to elucidate NOX4's significance in endothelial function under hypoxia. Methods: Human vessels, in addition to murine vessels from Nox4-/- mice, were explored. On a functional level, Mulvany myograph experiments were performed. To obtain mechanistical insights, human endothelial cells were cultured under hypoxia with inhibitors of hypoxia-inducible factors. Additionally, endothelial cells were cultured under combined hypoxia and laminar shear stress conditions. Results: In human occluded vessels, NOX4 expression strongly correlated with prostaglandin I2 synthase (PTGIS). Hypoxia significantly elevated NOX4 and PTGIS expression and activity in human endothelial cells. Inhibition of prolyl hydroxylase domain (PHD) enzymes, which stabilize hypoxia-inducible factors (HIFs), increased NOX4 and PTGIS expression even under normoxic conditions. NOX4 mRNA expression was reduced by HIF1a inhibition, while PTGIS mRNA expression was only affected by the inhibition of HIF2a under hypoxia. Endothelial function assessments revealed hypoxia-induced endothelial dysfunction in mesenteric arteries from wild-type mice. Mesenteric arteries from Nox4-/- mice exhibited an altered endothelial function under hypoxia, most prominent in the presence of cyclooxygenase inhibitor diclofenac to exclude the impact of prostacyclin. Restored protective laminar shear stress, as it might occur after thrombolysis, angioplasty, or stenting, attenuated the hypoxic response in endothelial cells, reducing HIF1a expression and its target NOX4 while enhancing eNOS expression. Conclusions: Hypoxia strongly induces NOX4 and PTGIS, with a close correlation between both factors in occluded, hypoxic human vessels. This relationship ensured endothelium-dependent vasodilation under hypoxic conditions. Protective laminar blood flow restores eNOS expression and mitigates the hypoxic response on NOX4 and PTGIS.
Collapse
Affiliation(s)
- Heike Brendel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (J.M.); (H.H.); (S.G.); (P.D.-N.); (C.B.)
| | - Jennifer Mittag
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (J.M.); (H.H.); (S.G.); (P.D.-N.); (C.B.)
| | - Anja Hofmann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (A.H.); (S.W.); (C.R.)
| | - Helene Hempel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (J.M.); (H.H.); (S.G.); (P.D.-N.); (C.B.)
| | - Sindy Giebe
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (J.M.); (H.H.); (S.G.); (P.D.-N.); (C.B.)
| | - Patrick Diaba-Nuhoho
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (J.M.); (H.H.); (S.G.); (P.D.-N.); (C.B.)
- Department of Paediatric and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Steffen Wolk
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (A.H.); (S.W.); (C.R.)
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (A.H.); (S.W.); (C.R.)
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (J.M.); (H.H.); (S.G.); (P.D.-N.); (C.B.)
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (J.M.); (H.H.); (S.G.); (P.D.-N.); (C.B.)
| |
Collapse
|
5
|
Yazdani B, Sirous H, Enguita FJ, Brogi S, Wing PAC, Fassihi A. Discovery of novel direct small-molecule inhibitors targeting HIF-2α using structure-based virtual screening, molecular dynamics simulation, and MM-GBSA calculations. Mol Divers 2024; 28:1203-1224. [PMID: 37120484 DOI: 10.1007/s11030-023-10650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
Hypoxia-inducible factors (HIFs) are the main regulatory factors implicated in the adaptation of cancer cells to hypoxic stress, which has provoked much interest as an attractive target for the design of promising chemotherapeutic agents. Since indirect HIF inhibitors (HIFIs) lead to the occurrence of various side effects, the need of the hour is to develop direct HIFIs, physically interacting with important functional domains within the HIF protein structure. Accordingly, in the present study, it was attempted to develop an exhaustive structure-based virtual screening (VS) process coupled with molecular docking, molecular dynamic (MD) simulation, and MM-GBSA calculations for the identification of novel direct inhibitors against the HIF-2α subunit. For this purpose, a focused library of over 200,000 compounds from the NCI database was used for VS against the PAS-B domain of the target protein, HIF-2α. This domain was suggested to be a possible ligand-binding site, which is characterized by a large internal hydrophobic cavity, unique to the HIF-2α subunit. The top-ranked compounds, NSC106416, NSC217021, NSC217026, NSC215639, and NSC277811 with the best docking scores were taken up for the subsequent in silico ADME properties and PAINS filtration. The selected drug-like hits were employed for carrying out MD simulation which was followed by MM-GBSA calculations to retrieve the candidates showing the highest in silico binding affinity towards the PAS-B domain of HIF-2α. The analysis of results indicated that all molecules, except the NSC277811, fulfilled necessary drug-likeness properties. Four selected drug-like candidates, NSC106416, NSC217021, NSC217026, and NSC215639 were found to expose the stability profiles within the cavity located inside the PAS-B domain of HIF-2α over simulation time. Finally, the results of the MM-GBSA rescoring method were indicative of the highest binding affinity of NSC217026 for the binding site of the HIF-2α PAS-B domain among selected final hits. Consequently, the hit NSC217026 could serve as a promising scaffold for further optimization toward the design of direct HIF-2α inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Behnaz Yazdani
- Department of Tissue Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Francisco J Enguita
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Simone Brogi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
| | - Peter A C Wing
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Afshin Fassihi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| |
Collapse
|
6
|
Mazure NM. Oxygen shortage: Himalayan adventures in an incubator. EMBO J 2024; 43:2087-2090. [PMID: 38698216 PMCID: PMC11148003 DOI: 10.1038/s44318-024-00105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
Recent work uncovers local hypoxia in standard cell culture due to excessive cellular oxygen consumption, demanding careful control of cell density and medium volume.
Collapse
Affiliation(s)
- Nathalie M Mazure
- DR1 CNRS, Nice, France.
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Nice, France.
- Equipe labellisée La Ligue contre le Cancer, Nice, France.
| |
Collapse
|
7
|
Odunitan TT, Saibu OA, Apanisile BT, Omoboyowa DA, Balogun TA, Awe AV, Ajayi TM, Olagunju GV, Mahmoud FM, Akinboade M, Adeniji CB, Abdulazeez WO. Integrating biocomputational techniques for Breast cancer drug discovery via the HER-2, BCRA, VEGF and ER protein targets. Comput Biol Med 2024; 168:107737. [PMID: 38000249 DOI: 10.1016/j.compbiomed.2023.107737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Computational modelling remains an indispensable technique in drug discovery. With myriad of high computing resources, and improved modelling algorithms, there has been a high-speed in the drug development cycle with promising success rate compared to the traditional route. For example, lapatinib; a well-known anticancer drug with clinical applications was discovered with computational drug design techniques. Similarly, molecular modelling has been applied to various disease areas ranging from cancer to neurodegenerative diseases. The techniques ranges from high-throughput virtual screening, molecular mechanics with generalized Born and surface area solvation (MM/GBSA) to molecular dynamics simulation. This review focuses on the application of computational modelling tools in the identification of drug candidates for Breast cancer. First, we begin with a succinct overview of molecular modelling in the drug discovery process. Next, we take note of special efforts on the developments and applications of combining these techniques with particular emphasis on possible breast cancer therapeutic targets such as estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor (VEGF), breast cancer gene 1 (BRCA1), and breast cancer gene 2 (BRCA2). Finally, we discussed the search for covalent inhibitors against these receptors using computational techniques, advances, pitfalls, possible solutions, and future perspectives.
Collapse
Affiliation(s)
- Tope T Odunitan
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
| | - Oluwatosin A Saibu
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, USA.
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Damilola A Omoboyowa
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Oyo State, Nigeria
| | - Toheeb A Balogun
- Department of Biological Sciences, University of California, San Diego, CA, USA
| | - Adeyoola V Awe
- Department of Medical Laboratory Science, Lead City, University, Ibadan, Oyo State, Nigeria
| | - Temitope M Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Grace V Olagunju
- Department of Molecular Biology, New Mexico State University, Las Cruces, NM, USA
| | - Fatimah M Mahmoud
- Department of Molecular Biology, New Mexico State University, Las Cruces, NM, USA
| | - Modinat Akinboade
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Catherine B Adeniji
- Department of Environmental Management and Toxicology, Lead City University, Ibadan, Oyo State, Nigeria
| | - Waliu O Abdulazeez
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
8
|
Höfner M, Eubler K, Herrmann C, Berg U, Berg D, Welter H, Imhof A, Forné I, Mayerhofer A. Reduced oxygen concentrations regulate the phenotype and function of human granulosa cells in vitro and cause a diminished steroidogenic but increased inflammatory cellular reaction. Mol Hum Reprod 2023; 30:gaad049. [PMID: 38128016 DOI: 10.1093/molehr/gaad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Oxygen (O2) concentrations have recently been discussed as important regulators of ovarian cells. Human IVF-derived granulosa cells (human GCs) can be maintained in vitro and are a widely used cellular model for the human ovary. Typically, GCs are cultured at atmospheric O2 levels (approximately around 20%), yet the O2 conditions in vivo, especially in the preovulatory follicle, are estimated to be much lower. Therefore, we comprehensively evaluated the consequences of atmospheric versus hypoxic (1% O2) conditions for 4 days on human GCs. We found lower cellular RNA and protein levels but unchanged cell numbers at 1% O2, indicating reduced transcriptional and/or translational activity. A proteomic analysis showed that 391 proteins were indeed decreased, yet 133 proteins were increased under hypoxic conditions. According to gene ontology (GO) enrichment analysis, pathways associated with metabolic processes, for example amino acid-catabolic-processes, mitochondrial protein biosynthesis, and steroid biosynthesis, were downregulated. Pathways associated with glycolysis, chemical homeostasis, cellular response to hypoxia, and actin filament bundle assembly were upregulated. In accordance with lower CYP11A1 (a cholesterol side-chain cleavage enzyme) levels, progesterone release was decreased. A proteome profiler, as well as IL-6 and IL-8 ELISA assays, revealed that hypoxia led to increased secretion of pro-inflammatory and angiogenic factors. Immunofluorescence studies showed nuclear localization of hypoxia-inducible factor 1α (HIF1α) in human GCs upon acute (2 h) exposure to 1% O2 but not in cells exposed to 1% O2 for 4 days. Hence, the role of HIF1α may be restricted to initiation of the hypoxic response in human GCs. The results provide a detailed picture of hypoxia-induced phenotypic changes in human GCs and reveal that chronically low O2 conditions inhibit the steroidogenic but promote the inflammatory phenotype of these cells.
Collapse
Affiliation(s)
- Maria Höfner
- Cell Biology, Anatomy III, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilian-University (LMU), Planegg-Martinsried, Germany
| | - Katja Eubler
- Cell Biology, Anatomy III, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilian-University (LMU), Planegg-Martinsried, Germany
| | - Carola Herrmann
- Cell Biology, Anatomy III, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilian-University (LMU), Planegg-Martinsried, Germany
| | - Ulrike Berg
- Fertility Centre A.R.T., Bogenhausen, Munich, Germany
| | - Dieter Berg
- Fertility Centre A.R.T., Bogenhausen, Munich, Germany
| | - Harald Welter
- Cell Biology, Anatomy III, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilian-University (LMU), Planegg-Martinsried, Germany
| | - Axel Imhof
- Protein Analysis Unit, BMC, Faculty of Medicine, LMU, Planegg-Martinsried, Germany
| | - Ignasi Forné
- Protein Analysis Unit, BMC, Faculty of Medicine, LMU, Planegg-Martinsried, Germany
| | - Artur Mayerhofer
- Cell Biology, Anatomy III, Biomedical Center Munich (BMC), Faculty of Medicine, Ludwig-Maximilian-University (LMU), Planegg-Martinsried, Germany
| |
Collapse
|
9
|
Zhan Y, Ning B, Sun J, Chang Y. Living in a hypoxic world: A review of the impacts of hypoxia on aquaculture. MARINE POLLUTION BULLETIN 2023; 194:115207. [PMID: 37453286 DOI: 10.1016/j.marpolbul.2023.115207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Hypoxia is a harmful result of anthropogenic climate change. With the expansion of global low-oxygen zones (LOZs), many organisms have faced unprecedented challenges affecting their survival and reproduction. Extensive research has indicated that oxygen limitation has drastic effects on aquatic animals, including on their development, morphology, behavior, reproduction, and physiological metabolism. In this review, the global distribution and formation of LOZs were analyzed, and the impacts of hypoxia on aquatic animals and the molecular responses of aquatic animals to hypoxia were then summarized. The commonalities and specificities of the response to hypoxia in aquatic animals in different LOZs were discussed lastly. In general, this review will deepen the knowledge of the impacts of hypoxia on aquaculture and provide more information and research directions for the development of fishery resource protection strategies.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China
| | - Bingyu Ning
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China
| | - Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China; College of Life Science, Liaoning Normal University, Dalian 116029, Liaoning, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China; College of Life Science, Liaoning Normal University, Dalian 116029, Liaoning, PR China.
| |
Collapse
|
10
|
Yurttas AG, Okat Z, Elgun T, Cifci KU, Sevim AM, Gul A. Genetic deviation associated with photodynamic therapy in HeLa cell. Photodiagnosis Photodyn Ther 2023; 42:103346. [PMID: 36809810 DOI: 10.1016/j.pdpdt.2023.103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Photodynamic therapy (PDT) is a method that is used in cancer treatment. The main therapeutic effect is the production of singlet oxygen (1O2). Phthalocyanines for PDT produce high singlet oxygen with absorbers of about 600-700 nm. AIM It is aimed to analyze cancer cell pathways by flow cytometry analysis and cancer-related genes with q-PCR device by applying phthalocyanine L1ZnPC, which we use as photosensitizer in photodynamic therapy, in HELA cell line. In this study, we investigate the molecular basis of L1ZnPC's anti-cancer activity. MATERIAL METHOD The cytotoxic effects of L1ZnPC, a phthalocyanine obtained from our previous study, in HELA cells were evaluated and it was determined that it led to a high rate of death as a result. The result of photodynamic therapy was analyzed using q-PCR. From the data received at the conclusion of this investigation, gene expression values were calculated, and expression levels were assessed using the 2-∆∆Ct method to examine the relative changes in these values. Cell death pathways were interpreted with the FLOW cytometer device. One-Way Analysis of Variance (ANOVA) and the Tukey-Kramer Multiple Comparison Test with Post-hoc Test were used for the statistical analysis. CONCLUSION In our study, it was observed that HELA cancer cells underwent apoptosis at a rate of 80% with drug application plus photodynamic therapy by flow cytometry method. According to q-PCR results, CT values of eight out of eighty-four genes were found to be significant and their association with cancer was evaluated. L1ZnPC is a new phthalocyanine used in this study and our findings should be supported by further studies. For this reason, different analyses are needed to be performed with this drug in different cancer cell lines. In conclusion, according to our results, this drug looks promising but still needs to be analyzed through new studies. It is necessary to examine in detail which signaling pathways they use and their mechanism of action. For this, additional experiments are required.
Collapse
Affiliation(s)
- Asiye Gok Yurttas
- Department of Biochemistry, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Zehra Okat
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Tugba Elgun
- Medical Biology, Faculty of Medicine, Istanbul Biruni University, Istanbul, Turkey
| | - Kezban Ucar Cifci
- Division of Basic Sciences and Health, Hemp Research Institute, Yozgat Bozok University, Yozgat, Turkey; Department of Molecular Medicine, Institute of Health Sciences, University of Health Sciences, Turkey
| | - Altug Mert Sevim
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Gul
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
11
|
Brennan L, Costello MJ, Hejtmancik JF, Menko AS, Riazuddin SA, Shiels A, Kantorow M. Autophagy Requirements for Eye Lens Differentiation and Transparency. Cells 2023; 12:475. [PMID: 36766820 PMCID: PMC9914699 DOI: 10.3390/cells12030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Recent evidence points to autophagy as an essential cellular requirement for achieving the mature structure, homeostasis, and transparency of the lens. Collective evidence from multiple laboratories using chick, mouse, primate, and human model systems provides evidence that classic autophagy structures, ranging from double-membrane autophagosomes to single-membrane autolysosomes, are found throughout the lens in both undifferentiated lens epithelial cells and maturing lens fiber cells. Recently, key autophagy signaling pathways have been identified to initiate critical steps in the lens differentiation program, including the elimination of organelles to form the core lens organelle-free zone. Other recent studies using ex vivo lens culture demonstrate that the low oxygen environment of the lens drives HIF1a-induced autophagy via upregulation of essential mitophagy components to direct the specific elimination of the mitochondria, endoplasmic reticulum, and Golgi apparatus during lens fiber cell differentiation. Pioneering studies on the structural requirements for the elimination of nuclei during lens differentiation reveal the presence of an entirely novel structure associated with degrading lens nuclei termed the nuclear excisosome. Considerable evidence also indicates that autophagy is a requirement for lens homeostasis, differentiation, and transparency, since the mutation of key autophagy proteins results in human cataract formation.
Collapse
Affiliation(s)
- Lisa Brennan
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33460, USA
| | - M. Joseph Costello
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - A. Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marc Kantorow
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33460, USA
| |
Collapse
|
12
|
Moriondo G, Soccio P, Tondo P, Scioscia G, Sabato R, Foschino Barbaro MP, Lacedonia D. Obstructive Sleep Apnea: A Look towards Micro-RNAs as Biomarkers of the Future. BIOLOGY 2022; 12:biology12010066. [PMID: 36671757 PMCID: PMC9855563 DOI: 10.3390/biology12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Sleep-disordered breathing (SDB) includes a broad spectrum of diseases, of which obstructive sleep apnea syndrome (OSA) is the most clinically significant manifestation. OSA is a respiratory disorder characterized by episodes of complete or partial obstruction of the upper airways that disturb ventilation and sleep architecture. In recent years, interest in the clinical implications of OSA seems to have increased, probably due to the numerous studies that have shown the existence of an important correlation between OSA and cardiovascular, dysmetabolic, and neoplastic changes. The guidelines currently available highlight the importance of diagnosis and effective treatment for OSA, underlining the need for new biomarkers that are useful in clinical practice, feasible, and reproducible to guide medical decision making. In this review, we intend to provide an overview of the potential role of microRNAs as new indicators for OSA management. MicroRNAs (miRNAs) are small non-coding RNA molecules that play an important role in RNA silencing and regulation of gene expression at the post-transcriptional level. These can bind specifically to their target genes by forming silencing complexes, thus inducing degradation or altered gene expression. A wide range of miRNAs have been extensively studied in a variety of diseases including cancer, and recently, miRNAs have been shown to have enormous potential to function as diagnostic and clinical biomarkers of disease. This review includes recent studies that establish the inevitable role of miRNAs in the pathogenesis of OSA.
Collapse
Affiliation(s)
- Giorgia Moriondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Piera Soccio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Foggia University Hospital, 71122 Foggia, Italy
- Correspondence:
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Foggia University Hospital, 71122 Foggia, Italy
| | - Roberto Sabato
- Institute of Respiratory Diseases, Policlinico Foggia University Hospital, 71122 Foggia, Italy
| | - Maria Pia Foschino Barbaro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Foggia University Hospital, 71122 Foggia, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Foggia University Hospital, 71122 Foggia, Italy
| |
Collapse
|
13
|
Song B, Modjewski LD, Kapust N, Mizrahi I, Martin WF. The origin and distribution of the main oxygen sensing mechanism across metazoans. Front Physiol 2022; 13:977391. [PMID: 36324306 PMCID: PMC9618697 DOI: 10.3389/fphys.2022.977391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Oxygen sensing mechanisms are essential for metazoans, their origin and evolution in the context of oxygen in Earth history are of interest. To trace the evolution of a main oxygen sensing mechanism among metazoans, the hypoxia induced factor, HIF, we investigated the phylogenetic distribution and phylogeny of 11 of its components across 566 eukaryote genomes. The HIF based oxygen sensing machinery in eukaryotes can be traced as far back as 800 million years (Ma) ago, likely to the last metazoan common ancestor (LMCA), and arose at a time when the atmospheric oxygen content corresponded roughly to the Pasteur point, or roughly 1% of present atmospheric level (PAL). By the time of the Cambrian explosion (541–485 Ma) as oxygen levels started to approach those of the modern atmosphere, the HIF system with its key components HIF1α, HIF1β, PHD1, PHD4, FIH and VHL was well established across metazoan lineages. HIF1α is more widely distributed and therefore may have evolved earlier than HIF2α and HIF3α, and HIF1β and is more widely distributed than HIF2β in invertebrates. PHD1, PHD4, FIH, and VHL appear in all 13 metazoan phyla. The O2 consuming enzymes of the pathway, PHDs and FIH, have a lower substrate affinity, Km, for O2 than terminal oxidases in the mitochondrial respiratory chain, in line with their function as an environmental signal to switch to anaerobic energy metabolic pathways. The ancient HIF system has been conserved and widespread during the period when metazoans evolved and diversified together with O2 during Earth history.
Collapse
Affiliation(s)
- Bing Song
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Luca David Modjewski
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nils Kapust
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be’er-Sheva, Israel
| | - William F. Martin
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- *Correspondence: William F. Martin,
| |
Collapse
|
14
|
Thakkar S, Seetharaman B, Kumar H, Vasantharekha R. Endocrine-Disrupting Chemicals Exposure Alter Neuroendocrine Factors, Disrupt Cardiac Functions and Provokes Hypoxia Conditions in Zebrafish Model. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:201-213. [PMID: 36070142 DOI: 10.1007/s00244-022-00955-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Zebrafish (Danio rerio) is an increasingly popular vertebrate model used for assessing the toxicity of endocrine-disrupting chemicals (EDCs) on living beings. The zebrafish features high genetic homology to mammals, because of its rapid embryonic development, optical transparency of phenotypic screening embryos, high throughput genetic and chemical screening which make them a powerful toxicological model. This systematic review aimed to assess the recent literature on the use of zebrafish model in EDCs toxicity studies. We capture the data on the types of EDCs used, zebrafish life stages associated with the toxicity, and its effects on the alterations in neuroendocrine factors and cardiac hypoxia in zebrafish. A total of 17 articles published between 2010 and 2020 were curated. The information gathered highlighted the association of EDCs with cardiological outcomes and neurobehavioral effects and distorted expression of genes. The genes that were highlighted in the paper include bdnf, ntrk2a, grin2cb, VTG-1, HIF-1α, tnnt2, ntrk1, and pax6b. The effect of EDCs on cardiac hypoxia and neurodevelopmental and behavioral factors of zebrafish were described in all the papers chosen for this review. The involvement of EDCs in altered regulation of gene expression can be studied further to identify the potential EDC compounds on its toxicological and endocrine disruption function at the molecular level.
Collapse
Affiliation(s)
- Sweta Thakkar
- SRM Institute of Science and Technology, Kattankulathur, India
| | | | - Hamsini Kumar
- SRM Institute of Science and Technology, Kattankulathur, India
| | | |
Collapse
|
15
|
Wolf D, Muralidharan A, Mohan S. Role of prolyl hydroxylase domain proteins in bone metabolism. Osteoporos Sarcopenia 2022; 8:1-10. [PMID: 35415275 PMCID: PMC8987327 DOI: 10.1016/j.afos.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/03/2022] Open
Abstract
Cellular metabolism requires dissolved oxygen gas. Because evolutionary refinements have constrained mammalian dissolved oxygen levels, intracellular oxygen sensors are vital for optimizing the bioenergetic and biosynthetic use of dissolved oxygen. Prolyl hydroxylase domain (PHD) homologs 1-3 (PHD1/2/3) are molecular oxygen dependent non-heme dioxygenases whose enzymatic activity is regulated by the concentration of dissolved oxygen. PHD oxygen dependency has evolved into an important intracellular oxygen sensor. The most well studied mechanism of PHD oxygen-sensing is its regulation of the hypoxia-inducible factor (HIF) hypoxia signaling pathway. Heterodimeric HIF transcription factor activity is regulated post-translationally by selective PHD proline hydroxylation of its HIF1α subunit, accelerating HIF1α ubiquitination and proteasomal degradation, preventing HIF heterodimer assembly, nuclear accumulation, and activation of its target oxygen homeostasis genes. Phd2 has been shown to be the key isoform responsible for HIF1α subunit regulation in many cell types and accordingly disruption of the Phd2 gene results in embryonic lethality. In bone cells Phd2 is expressed in high abundance and tightly regulated. Conditional disruption of the Phd1, Phd2 and/or Phd3 gene in various bone cell types using different Cre drivers reveals a major role for PHD2 in skeletal growth and development. In this review, we will summarize the state of current knowledge on the role and mechanism of action of PHD2 as oxygen sensor in regulating bone metabolism.
Collapse
Affiliation(s)
- David Wolf
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
| | - Aruljothi Muralidharan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
- Department Biochemistry and Orthopedic Surgery, Loma Linda University, Loma Linda, CA, 92354, USA
| |
Collapse
|
16
|
Wang P, Gong S, Liao B, Pan J, Wang J, Zou D, Zhao L, Xiong S, Deng Y, Yan Q, Wu N. HIF1α/HIF2α induces glioma cell dedifferentiation into cancer stem cells through Sox2 under hypoxic conditions. J Cancer 2022; 13:1-14. [PMID: 34976166 PMCID: PMC8692689 DOI: 10.7150/jca.54402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: Our previous study showed that glioma stem-like cells could be induced to undergo dedifferentiation under hypoxic conditions, but the mechanism requires further study. HIF1α and HIF2α are the main molecules involved in the response to hypoxia, and Sox2, as a retroelement, plays an important role in the formation of induced pluripotent stem cells, especially in hypoxic microenvironments. Therefore, we performed a series of experiments to verify whether HIF1α, HIF2α and Sox2 regulated glioma cell dedifferentiation under hypoxic conditions. Materials and methods: Sphere formation by single glioma cells was observed, and CD133 and CD15 expression was compared between the normoxic and hypoxic groups. HIF1α, HIF2α, and Sox2 expression was detected using the CGGA database, and the correlation among HIF1α, HIF2α and Sox2 levels was analyzed. We knocked out HIF1α, HIF2α and Sox2 in glioma cells and cultured them under hypoxic conditions to detect CD133 and CD15 expression. The above cells were implanted into mouse brains to analyze tumor volume and survival time. Results: New spheres were formed from single glioma cells in 1% O2, but no spheres were formed in 21% O2. The cells cultured in 1% O2 highly expressed CD133 and CD15 and had a lower apoptosis rate. The CGGA database showed HIF1α and HIF2α expression in glioma. Knocking out HIF1α or HIF2α led to a decrease in CD133 and CD15 expression and inhibited sphere formation under hypoxic conditions. Moreover, tumor volume and weight decreased after HIF1α or HIF2α knockout with the same temozolomide treatment. Sox2 was also highly expressed in glioma, and there was a positive correlation between the HIF1α/HIF2α and Sox2 expression levels. Sox2 was expressed at lower levels after HIF1α or HIF2α was knocked out. Then, Sox2 was knocked out, and we found that CD133 and CD15 expression was decreased. Moreover, a lower sphere formation rate, higher apoptosis rate, lower tumor formation rate and longer survival time after temozolomide treatment were detected in the Sox2 knockout cells. Conclusion: In a hypoxic microenvironment, the HIF1α/HIF2α-Sox2 network induced the formation of glioma stem cells through the dedifferentiation of differentiated glioma cells, thus promoting glioma cell chemoresistance. This study demonstrates that both HIF1α and HIF2α, as genes upstream of Sox2, regulate the malignant progression of glioma through dedifferentiation.
Collapse
Affiliation(s)
- Pan Wang
- Chongqing Medical University, Chongqing 400016, China.,Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Sheng Gong
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Bin Liao
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Jinyu Pan
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Junwei Wang
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Dewei Zou
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Lu Zhao
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Shuanglong Xiong
- Department of Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China Correspondence: Dr. Nan Wu, mailing address: No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, P. R. China. Tel. and E-mail:
| | - Yangmin Deng
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Qian Yan
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Nan Wu
- Chongqing Medical University, Chongqing 400016, China.,Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| |
Collapse
|
17
|
Hypoxia and HIF-1 Trigger Marek’s Disease Virus Reactivation in Lymphoma-Derived Latently Infected T Lymphocytes. J Virol 2021; 96:e0142721. [DOI: 10.1128/jvi.01427-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latency is a hallmark of herpesviruses, allowing them to persist into their host without virions production. Acute exposure to hypoxia (below 3% O
2
) was identified as a trigger of latent-to-lytic switch (reactivation) for human oncogenic gamma-herpesviruses (KSHV and EBV). Therefore, we hypothesized that hypoxia could also induce reactivation of Marek’s disease virus (MDV), sharing biological properties with EBV and KSHV (notably oncogenic properties), into lymphocytes. Acute exposure to hypoxia (1% O
2
) of two MDV-latently infected cell lines derived from MD tumors (3867K and MSB-1) induced MDV reactivation. A bioinformatic analysis of the RB-1B MDV genome revealed 214 putative hypoxia-response element consensus sequences on 119 open reading frames. RT-qPCR analysis showed five MDV genes strongly upregulated early after hypoxia. In 3867K cells under normoxia, pharmacological agents mimicking hypoxia (MLN4924 and CoCl
2
) increased MDV reactivation, but to a lower level than real hypoxia. Overexpression of wild-type or stabilized human hypoxia inducible factor-1α (HIF-1α) in MSB-1 cells in normoxia also promoted MDV reactivation. In such conditions, lytic cycle was detected in cells with a sustainable HIF-1α expression, but also in HIF-1α negative cells, indicating that MDV reactivation is mediated by HIF-1, in a direct and/or indirect manner. Lastly, we demonstrated by a reporter assay that HIF-1α overexpression induced the transactivation of two viral promoters, shown upregulated in hypoxia. These results suggest that hypoxia may play a crucial role in the late lytic replication phase observed
in vivo
in MDV-infected chickens exhibiting tumors, since a hypoxic microenvironment is a hallmark of most solid tumors.
IMPORTANCE
Latent-to-lytic switch of herpesviruses (aka reactivation) is responsible for pathology recurrences and/or viral shedding. Studying physiological triggers of reactivation is therefore important for health to limit lesions and viral transmission. Marek's disease virus (MDV) is a potent oncogenic alpha-herpesvirus establishing latency in T-lymphocytes and causing lethal T-lymphomas in chickens.
In vivo
, a second lytic phase is observed during tumoral stage. Hypoxia being a hallmark of tumors, we wondered whether hypoxia induces MDV reactivation in latently-infected T-lymphocytes, like previously shown for EBV and KSHV in B-lymphocytes. In this study, we demonstrated that acute hypoxia (1% O2) triggers MDV reactivation in two MDV transformed T-cell lines. We provide some molecular basis of this reactivation by showing that hypoxia inducible factor (HIF-1) overexpression induces MDV reactivation to a similar extend than hypoxia after 24 hours. Hypoxia is therefore a reactivation stimulus shared by mammalian and avian oncogenic herpesviruses of different genus.
Collapse
|
18
|
D'Amico AG, Maugeri G, Rasà DM, Reitano R, Saccone S, Federico C, Magro G, D'Agata V. Modulatory role of PACAP and VIP on HIFs expression in lung adenocarcinoma. Peptides 2021; 146:170672. [PMID: 34627957 DOI: 10.1016/j.peptides.2021.170672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
Lung adenocarcinoma is the most frequent form of non-small cell lung cancer. Inside the tumor mass, uncontrolled cell proliferation generates hypoxic areas leading to activation of hypoxia-inducible factors (HIFs) responsible for neovascularization and tumor metastasis. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two neuropeptides widely distributed in respiratory organs. Previous studies have demonstrated that these peptides interfere with hypoxic pathways in various diseases, including tumors. However, their modulatory role in HIFs expression in lung adenocarcinomas has not yet been evaluated. In the present paper, we detected the expression profile of PACAP, VIP and related receptors in healthy and adenocarcinoma human lung tissue. To characterize peptides' modulatory effects on HIFs expression, we also exposed A549 lung adenocarcinoma cells and human normal bronchial epithelial BEAS-2B cells to microenvironmental hypoxia by treating them with deferoxamine (DFX). The results showed that PACAP and VIP significantly reduced HIF-1α and HIF-2α levels in both cell lines following hypoxic stress. The HIF-3α expression profile was related to cellular phenotype as it was lower in BEAS-2B and higher in A549 cells under low oxygen tension. In lung adenocarcinoma cells, peptide treatment restored HIF-3 α expression to control levels. These results suggest that endogenous PACAP and VIP exert controversial roles in cellular hypoxic microenvironments depending on the pathophysiological conditions of the lung tissue.
Collapse
Affiliation(s)
- Agata Grazia D'Amico
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy
| | - Daniela Maria Rasà
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, Univer-sity of Turin, Turin, Italy
| | - Rita Reitano
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, Universi-ty of Catania, 95123, Catania, Italy
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, Universi-ty of Catania, 95123, Catania, Italy
| | - Gaetano Magro
- Section of Anatomic Pathology, Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy.
| |
Collapse
|
19
|
Zangoue M, Zangouei AS, Mojarrad M, Moghbeli M. MicroRNAs as the critical regulators of protein kinases in prostate and bladder cancers. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00190-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Bladder cancer (BCa) and prostate cancer (PCa) are frequent urothelial and genital malignancies with a high ratio of morbidity and mortality which are more common among males. Since BCa and PCa cases are mainly diagnosed in advanced stages with clinical complications, it is required to introduce the efficient early detection markers. Protein kinases are critical factors involved in various cellular processes such as cell growth, motility, differentiation, and metabolism. Deregulation of protein kinases can be frequently observed through the neoplastic transformation and tumor progression. Therefore, kinases are required to be regulated via different genetic and epigenetic processes. MicroRNAs (miRNAs) are among the critical factors involved in epigenetic regulation of protein kinases. Since miRNAs are noninvasive and more stable factors in serum and tissues compared with mRNAs, they can be used as efficient diagnostic markers for the early detection of PCa and BCa.
Main body
In present review, we have summarized all of the reported miRNAs that have been associated with regulation of protein kinases in bladder and prostate cancers.
Conclusions
For the first time, this review highlights the miRNAs as critical factors in regulation of protein kinases during prostate and bladder cancers which paves the way of introducing a noninvasive kinase-specific panel of miRNAs for the early detection of these malignancies. It was observed that the class VIII receptors of tyrosine kinases and non-receptor tyrosine kinases were the most frequent targets for the miRNAs in bladder and prostate cancers, respectively.
Collapse
|
20
|
Min J, Zeng T, Roux M, Lazar D, Chen L, Tudzarova S. The Role of HIF1α-PFKFB3 Pathway in Diabetic Retinopathy. J Clin Endocrinol Metab 2021; 106:2505-2519. [PMID: 34019671 PMCID: PMC8372643 DOI: 10.1210/clinem/dgab362] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness for adults in developed countries. Both microvasculopathy and neurodegeneration are implicated in mechanisms of DR development, with neuronal impairment preceding microvascular abnormalities, which is often underappreciated in the clinic. Most current therapeutic strategies, including anti-vascular endothelial growth factor (anti-VEGF)-antibodies, aim at treating the advanced stages (diabetic macular edema and proliferative diabetic retinopathy) and fail to target the neuronal deterioration. Hence, new therapeutic approach(es) intended to address both vascular and neuronal impairment are urgently needed. The hypoxia-inducible factor 1α (HIF1α)-6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) pathway is critically implicated in the islet pathology of diabetes. Recent evidence highlighted the pathway relevance for pathologic angiogenesis and neurodegeneration, two key aspects in DR. PFKFB3 is key to the sprouting angiogenesis, along with VEGF, by determining the endothelial tip-cell competition. Also, PFKFB3-driven glycolysis compromises the antioxidative capacity of neurons leading to neuronal loss and reactive gliosis. Therefore, the HIF1α-PFKFB3 signaling pathway is unique as being a pervasive pathological component across multiple cell types in the retina in the early as well as late stages of DR. A metabolic point-of-intervention based on HIF1α-PFKFB3 targeting thus deserves further consideration in DR.
Collapse
Affiliation(s)
- Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Margaretha Roux
- Groote Schuur and Red Cross Children’s Hospital, University of Cape Town, South Africa
| | - David Lazar
- Lazar Retina Ophthalmology, Los Angeles, CA, USA
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Lulu Chen, PhD, Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, Hubei, 430022, China.
| | - Slavica Tudzarova
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Correspondence: Slavica Tudzarova, PhD, Larry Hillblom Islet Research Center, University of California Los Angeles, 10833 Le Conte Ave, CHS 33-165, Los Angeles, CA 90095, USA.
| |
Collapse
|
21
|
Estaras M, Gonzalez A. Modulation of cell physiology under hypoxia in pancreatic cancer. World J Gastroenterol 2021; 27:4582-4602. [PMID: 34366624 PMCID: PMC8326256 DOI: 10.3748/wjg.v27.i28.4582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
In solid tumors, the development of vasculature is, to some extent, slower than the proliferation of the different types of cells that form the tissue, both cancer and stroma cells. As a consequence, the oxygen availability is compromised and the tissue evolves toward a condition of hypoxia. The presence of hypoxia is variable depending on where the cells are localized, being less extreme at the periphery of the tumor and more severe in areas located deep within the tumor mass. Surprisingly, the cells do not die. Intracellular pathways that are critical for cell fate such as endoplasmic reticulum stress, apoptosis, autophagy, and others are all involved in cellular responses to the low oxygen availability and are orchestrated by hypoxia-inducible factor. Oxidative stress and inflammation are critical conditions that develop under hypoxia. Together with changes in cellular bioenergetics, all contribute to cell survival. Moreover, cell-to-cell interaction is established within the tumor such that cancer cells and the microenvironment maintain a bidirectional communication. Additionally, the release of extracellular vesicles, or exosomes, represents short and long loops that can convey important information regarding invasion and metastasis. As a result, the tumor grows and its malignancy increases. Currently, one of the most lethal tumors is pancreatic cancer. This paper reviews the most recent advances in the knowledge of how cells grow in a pancreatic tumor by adapting to hypoxia. Unmasking the physiological processes that help the tumor increase its size and their regulation will be of major relevance for the treatment of this deadly tumor.
Collapse
Affiliation(s)
- Matias Estaras
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres 10003, Spain
| | - Antonio Gonzalez
- Department of Physiology, Cell Biology and Communication Research Group, University of Extremadura, Caceres 10003, Spain
| |
Collapse
|
22
|
Disatham J, Brennan L, Chauss D, Kantorow J, Afzali B, Kantorow M. A functional map of genomic HIF1α-DNA complexes in the eye lens revealed through multiomics analysis. BMC Genomics 2021; 22:497. [PMID: 34215186 PMCID: PMC8254356 DOI: 10.1186/s12864-021-07795-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND During eye lens development the embryonic vasculature regresses leaving the lens without a direct oxygen source. Both embryonically and throughout adult life, the lens contains a decreasing oxygen gradient from the surface to the core that parallels the natural differentiation of immature surface epithelial cells into mature core transparent fiber cells. These properties of the lens suggest a potential role for hypoxia and the master regulator of the hypoxic response, hypoxia-inducible transcription factor 1 (HIF1), in the regulation of genes required for lens fiber cell differentiation, structure and transparency. Here, we employed a multiomics approach combining CUT&RUN, RNA-seq and ATACseq analysis to establish the genomic complement of lens HIF1α binding sites, genes activated or repressed by HIF1α and the chromatin states of HIF1α-regulated genes. RESULTS CUT&RUN analysis revealed 8375 HIF1α-DNA binding complexes in the chick lens genome. One thousand one hundred ninety HIF1α-DNA binding complexes were significantly clustered within chromatin accessible regions (χ2 test p < 1 × 10- 55) identified by ATACseq. Formation of the identified HIF1α-DNA complexes paralleled the activation or repression of 526 genes, 116 of which contained HIF1α binding sites within 10kB of the transcription start sites. Some of the identified HIF1α genes have previously established lens functions while others have novel functions never before examined in the lens. GO and pathway analysis of these genes implicate HIF1α in the control of a wide-variety of cellular pathways potentially critical for lens fiber cell formation, structure and function including glycolysis, cell cycle regulation, chromatin remodeling, Notch and Wnt signaling, differentiation, development, and transparency. CONCLUSIONS These data establish the first functional map of genomic HIF1α-DNA complexes in the eye lens. They identify HIF1α as an important regulator of a wide-variety of genes previously shown to be critical for lens formation and function and they reveal a requirement for HIF1α in the regulation of a wide-variety of genes not yet examined for lens function. They support a requirement for HIF1α in lens fiber cell formation, structure and function and they provide a basis for understanding the potential roles and requirements for HIF1α in the development, structure and function of more complex tissues.
Collapse
Affiliation(s)
- Joshua Disatham
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431 USA
| | - Lisa Brennan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431 USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892 USA
| | | | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892 USA
| | - Marc Kantorow
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431 USA
| |
Collapse
|
23
|
Tang S, Fan C, Iroegbu CD, Zhou W, Zhang Z, Wu M, Chen W, Wu X, Peng J, Li Z, Yang J. TMSB4 Overexpression Enhances the Potency of Marrow Mesenchymal Stromal Cells for Myocardial Repair. Front Cell Dev Biol 2021; 9:670913. [PMID: 34178995 PMCID: PMC8221609 DOI: 10.3389/fcell.2021.670913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/06/2021] [Indexed: 01/08/2023] Open
Abstract
Objective The actin-sequestering proteins, thymosin beta-4 (Tβ4) and hypoxia-inducible factor (HIF)-1α, are known to be associated with angiogenesis after myocardial infarction (MI). Herein, we aimed to identify the mechanism of HIF-1α induction by Tβ4 and investigate the effects of bone marrow mesenchymal stromal cells (BMMSCs) transfected with the Tβ4 gene (TMSB4) in a rat model of MI. Methods Rat BMMSCs were isolated, cultured, and transfected with the TMSB4 gene by using the lentivirus-mediated method. Rats with surgically induced MI were randomly divided into three groups (n = 9/group); after 1 week, the rats were injected at the heart infarcted border zone with TMSB4-overexpressed BMMSCs (BMMSC-TMSB4OE), wild-type BMMSCs that expressed normal levels of TMSB4 (BMMSC-TMSB4WT), or medium (MI). The fourth group of animals (n = 9) underwent all surgical procedures necessary for MI induction except for the ligation step (Sham). Four weeks after the injection, heart function was measured using transthoracic echocardiography. Infarct size was calculated by TTC staining, and collagen volume was measured by Masson staining. Angiogenesis in the infarcted heart area was evaluated by CD31 immunofluorescence histochemistry. In vitro experiments were carried out to observe the effect of exogenous Tβ4 on HIF-1α and explore the various possible mechanism(s). Results In vivo experiments showed that vascular density 4 weeks after treatment was about twofold higher in BMMSC-TMSB4OE-treated animals than in BMMSC-TMSB4WT-treated animals (p < 0.05). The cardiac function and infarct size significantly improved in both cell-treatment groups compared to controls. Notably, the cardiac function and infarct size were most prominent in BMMSC-TMSB4OE-treated animals (both p < 0.05). HIF-1α and phosphorylated HIF-1α (p-HIF-1α) in vitro were significantly enhanced by exogenous Tβ4, which was nonetheless blocked by the factor-inhibiting HIF (FIH) promoter (YC-1). The expression of prolyl hydroxylase domain proteins (PHD) was decreased upon treatment with Tβ4 and further decreased with the combined treatment of Tβ4 and FG-4497 (a specific PHD inhibitor). Conclusion TMSB4-transfected BMMSCs might significantly improve recovery from myocardial ischemia and promote the generation of HIF-1α and p-HIF-1α via the AKT pathway, and inhibit the degradation of HIF-1α via the PHD and FIH pathways.
Collapse
Affiliation(s)
- Shiyuan Tang
- Department of the Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengming Fan
- Department of the Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chukwuemeka Daniel Iroegbu
- Department of the Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenwu Zhou
- Department of the Cardiovascular Surgery of the Hunan Provincial People's Hospital, Changsha, China
| | - Zhigong Zhang
- Department of the Cardiovascular Surgery of the Hunan Provincial People's Hospital, Changsha, China
| | - Ming Wu
- Department of the Cardiovascular Surgery of the Hunan Provincial People's Hospital, Changsha, China
| | - Wangping Chen
- Department of the Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoming Wu
- Department of the Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Peng
- Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha, China
| | - Zhihong Li
- Institute of Senile and Aging Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfu Yang
- Department of the Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha, China
| |
Collapse
|
24
|
Alzhrani R, Alsaab HO, Vanamal K, Bhise K, Tatiparti K, Barari A, Sau S, Iyer AK. Overcoming the Tumor Microenvironmental Barriers of Pancreatic Ductal Adenocarcinomas for Achieving Better Treatment Outcomes. ADVANCED THERAPEUTICS 2021; 4:2000262. [PMID: 34212073 PMCID: PMC8240487 DOI: 10.1002/adtp.202000262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with the lowest survival rate among all solid tumors. The lethality of PDAC arises from late detection and propensity of the tumor to metastasize and develop resistance against chemo and radiation therapy. A highly complex tumor microenvironment composed of dense stroma, immune cells, fibroblast, and disorganized blood vessels, is the main obstacle to current PDAC therapy. Despite the tremendous success of immune checkpoint inhibitors (ICIs) in cancers, PDAC remains one of the poorest responders of ICIs therapy. The immunologically "cold" phenotype of PDAC is attributed to the low mutational burden, high infiltration of myeloid-derived suppressor cells and T-regs, contributing to a significant immunotherapy resistance mechanism. Thus, the development of innovative strategies for turning immunologically "cold" tumor into "hot" ones is an unmet need to improve the outcome of PDAC ICIs therapies. Other smart strategies, such as nanomedicines, sonic Hedgehog inhibitor, or smoothened inhibitor, are discussed to enhance chemotherapeutic agents' efficiency by disrupting the PDAC stroma. This review highlights the current challenges and various preclinical and clinical strategies to overcome current PDAC therapy difficulties, thus significantly advancing PDAC research knowledge.
Collapse
Affiliation(s)
- Rami Alzhrani
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kushal Vanamal
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ayatakshi Barari
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|
25
|
Mandula JK, Rodriguez PC. Tumor-related stress regulates functional plasticity of MDSCs. Cell Immunol 2021; 363:104312. [PMID: 33652258 PMCID: PMC8026602 DOI: 10.1016/j.cellimm.2021.104312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) impair protective anti-tumor immunity and remain major obstacles that stymie the effectiveness of promising cancer therapies. Diverse tumor-derived stressors galvanize the differentiation, intra-tumoral expansion, and immunomodulatory function of MDSCs. These tumor-associated 'axes of stress' underwrite the immunosuppressive programming of MDSCs in cancer and contribute to the phenotypic/functional heterogeneity that characterize tumor-MDSCs. This review discusses various tumor-associated axes of stress that direct MDSC development, accumulation, and immunosuppressive function, as well as current strategies aimed at overcoming the detrimental impact of MDSCs in cancer. To better understand the constellation of signals directing MDSC biology, we herein summarize the pivotal roles, signaling mediators, and effects of reactive oxygen/nitrogen species-related stress, chronic inflammatory stress, hypoxia-linked stress, endoplasmic reticulum stress, metabolic stress, and therapy-associated stress on MDSCs. Although therapeutic targeting of these processes remains mostly pre-clinical, intercepting signaling through the axes of stress could overcome MDSC-related immune suppression in tumor-bearing hosts.
Collapse
Affiliation(s)
- Jessica K Mandula
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
26
|
HIF in Nephrotoxicity during Cisplatin Chemotherapy: Regulation, Function and Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13020180. [PMID: 33430279 PMCID: PMC7825709 DOI: 10.3390/cancers13020180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cisplatin is a widely used chemotherapy drug, but its use and efficacy are limited by its nephrotoxicity. HIF has protective effects against kidney injury during cisplatin chemotherapy, but it may attenuate the anti-cancer effect of cisplatin. In this review, we describe the role and regulation of HIF in cisplatin-induced nephrotoxicity and highlight the therapeutic potential of targeting HIF in chemotherapy. Abstract Cisplatin is a highly effective, broad-spectrum chemotherapeutic drug, yet its clinical use and efficacy are limited by its side effects. Particularly, cancer patients receiving cisplatin chemotherapy have high incidence of kidney problems. Hypoxia-inducible factor (HIF) is the “master” transcription factor that is induced under hypoxia to trans-activate various genes for adaptation to the low oxygen condition. Numerous studies have reported that HIF activation protects against AKI and promotes kidney recovery in experimental models of cisplatin-induced acute kidney injury (AKI). In contrast, little is known about the effects of HIF on chronic kidney problems following cisplatin chemotherapy. Prolyl hydroxylase (PHD) inhibitors are potent HIF inducers that recently entered clinical use. By inducing HIF, PHD inhibitors may protect kidneys during cisplatin chemotherapy. However, HIF activation by PHD inhibitors may reduce the anti-cancer effect of cisplatin in tumors. Future studies should test PHD inhibitors in tumor-bearing animal models to verify their effects in kidneys and tumors.
Collapse
|
27
|
Bader SB, Dewhirst MW, Hammond EM. Cyclic Hypoxia: An Update on Its Characteristics, Methods to Measure It and Biological Implications in Cancer. Cancers (Basel) 2020; 13:E23. [PMID: 33374581 PMCID: PMC7793090 DOI: 10.3390/cancers13010023] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Regions of hypoxia occur in most if not all solid cancers. Although the presence of tumor hypoxia is a common occurrence, the levels of hypoxia and proportion of the tumor that are hypoxic vary significantly. Importantly, even within tumors, oxygen levels fluctuate due to changes in red blood cell flux, vascular remodeling and thermoregulation. Together, this leads to cyclic or intermittent hypoxia. Tumor hypoxia predicts for poor patient outcome, in part due to increased resistance to all standard therapies. However, it is less clear how cyclic hypoxia impacts therapy response. Here, we discuss the causes of cyclic hypoxia and, importantly, which imaging modalities are best suited to detecting cyclic vs. chronic hypoxia. In addition, we provide a comparison of the biological response to chronic and cyclic hypoxia, including how the levels of reactive oxygen species and HIF-1 are likely impacted. Together, we highlight the importance of remembering that tumor hypoxia is not a static condition and that the fluctuations in oxygen levels have significant biological consequences.
Collapse
Affiliation(s)
- Samuel B. Bader
- Department of Oncology, The Oxford Institute for Radiation Oncology, Oxford University, Oxford OX3 7DQ, UK;
| | - Mark W. Dewhirst
- Radiation Oncology Department, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ester M. Hammond
- Department of Oncology, The Oxford Institute for Radiation Oncology, Oxford University, Oxford OX3 7DQ, UK;
| |
Collapse
|
28
|
Vitamin C Transporters and Their Implications in Carcinogenesis. Nutrients 2020; 12:nu12123869. [PMID: 33352824 PMCID: PMC7765979 DOI: 10.3390/nu12123869] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin C is implicated in various bodily functions due to its unique properties in redox homeostasis. Moreover, vitamin C also plays a great role in restoring the activity of 2-oxoglutarate and Fe2+ dependent dioxygenases (2-OGDD), which are involved in active DNA demethylation (TET proteins), the demethylation of histones, and hypoxia processes. Therefore, vitamin C may be engaged in the regulation of gene expression or in a hypoxic state. Hence, vitamin C has acquired great interest for its plausible effects on cancer treatment. Since its conceptualization, the role of vitamin C in cancer therapy has been a controversial and disputed issue. Vitamin C is transferred to the cells with sodium dependent transporters (SVCTs) and glucose transporters (GLUT). However, it is unknown whether the impaired function of these transporters may lead to carcinogenesis and tumor progression. Notably, previous studies have identified SVCTs’ polymorphisms or their altered expression in some types of cancer. This review discusses the potential effects of vitamin C and the impaired SVCT function in cancers. The variations in vitamin C transporter genes may regulate the active transport of vitamin C, and therefore have an impact on cancer risk, but further studies are needed to thoroughly elucidate their involvement in cancer biology.
Collapse
|
29
|
Chow T, Wutami I, Lucarelli E, Choong PF, Duchi S, Di Bella C. Creating In Vitro Three-Dimensional Tumor Models: A Guide for the Biofabrication of a Primary Osteosarcoma Model. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:514-529. [PMID: 33138724 DOI: 10.1089/ten.teb.2020.0254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteosarcoma (OS) is a highly aggressive primary bone tumor. The mainstay for its treatment is multiagent chemotherapy and surgical resection, with a 50-70% 5-year survival rate. Despite the huge effort made by clinicians and researchers in the past 30 years, limited progress has been made to improve patient outcomes. As novel therapeutic approaches for OS become available, such as monoclonal antibodies, small molecules, and immunotherapies, the need for OS preclinical model development becomes equally pressing. Three-dimensional (3D) OS models represent an alternative system to study this tumor: In contrast to two-dimensional monolayers, 3D matrices can recapitulate key elements of the tumor microenvironment (TME), such as the cellular interaction with the bone mineralized matrix. The advancement of tissue engineering and biofabrication techniques enables the incorporation of specific TME aspects into 3D models, to investigate the contribution of individual components to tumor progression and enhance understanding of basic OS biology. The use of biomaterials that mimic the extracellular matrix could also facilitate the testing of drugs targeting the TME itself, allowing a larger range of therapeutics to be tested, while averting the ethical implications and high cost associated with in vivo preclinical models. This review aims at serving as a practical guide by delineating the OS TME ("what it is like") and, in turn, propose various biofabrication strategies to create a 3D model ("how to recreate it"), to improve the in vitro representation of the OS tumor and ultimately generate more accurate drug response profiles.
Collapse
Affiliation(s)
- Thomas Chow
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Australia.,BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Ilycia Wutami
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Australia.,BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Peter F Choong
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Serena Duchi
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Claudia Di Bella
- BioFab3D-ACMD, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Surgery, The University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Australia.,Department of Orthopaedics, St Vincent's Hospital Melbourne, Fitzroy, Australia
| |
Collapse
|
30
|
The HIF1α/HIF2α-miR210-3p network regulates glioblastoma cell proliferation, dedifferentiation and chemoresistance through EGF under hypoxic conditions. Cell Death Dis 2020; 11:992. [PMID: 33208727 PMCID: PMC7674439 DOI: 10.1038/s41419-020-03150-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factor 1α (HIF1α) promotes the malignant progression of glioblastoma under hypoxic conditions, leading to a poor prognosis for patients with glioblastoma; however, none of the therapies targeting HIF1α in glioblastoma have successfully eradicated the tumour. Therefore, we focused on the reason and found that treatments targeting HIF1α and HIF2α simultaneously increased tumour volume, but the combination of HIF1α/HIF2α-targeted therapies with temozolomide (TMZ) reduced tumourigenesis and significantly improved chemosensitization. Moreover, miR-210-3p induced HIF1α expression but inhibited HIF2α expression, suggesting that miR-210-3p regulates HIF1α/HIF2α expression. Epidermal growth factor (EGF) has been shown to upregulate HIF1α expression under hypoxic conditions. However, in the present study, in addition to the signalling pathways mentioned above, the upstream proteins HIF1α and HIF2α have been shown to induce EGF expression by binding to the sequences AGGCGTGG and GGGCGTGG. Briefly, in a hypoxic microenvironment the HIF1α/HIF2α-miR210-3p network promotes the malignant progression of glioblastoma through a positive feedback loop with EGF. Additionally, differentiated glioblastoma cells underwent dedifferentiation to produce glioma stem cells under hypoxic conditions, and simultaneous knockout of HIF1α and HIF2α inhibited cell cycle arrest but promoted proliferation with decreased stemness, promoting glioblastoma cell chemosensitization. In summary, both HIF1α and HIF2α regulate glioblastoma cell proliferation, dedifferentiation and chemoresistance through a specific pathway, which is important for glioblastoma treatments.
Collapse
|
31
|
Li Y, Sun XX, Qian DZ, Dai MS. Molecular Crosstalk Between MYC and HIF in Cancer. Front Cell Dev Biol 2020; 8:590576. [PMID: 33251216 PMCID: PMC7676913 DOI: 10.3389/fcell.2020.590576] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
The transcription factor c-MYC (MYC thereafter) is a global regulator of gene expression. It is overexpressed or deregulated in human cancers of diverse origins and plays a key role in the development of cancers. Hypoxia-inducible factors (HIFs), a central regulator for cells to adapt to low cellular oxygen levels, is also often overexpressed and activated in many human cancers. HIF mediates the primary transcriptional response of a wide range of genes in response to hypoxia. Earlier studies focused on the inhibition of MYC by HIF during hypoxia, when MYC is expressed at physiological level, to help cells survive under low oxygen conditions. Emerging evidence suggests that MYC and HIF also cooperate to promote cancer cell growth and progression. This review will summarize the current understanding of the complex molecular interplay between MYC and HIF.
Collapse
Affiliation(s)
- Yanping Li
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - David Z Qian
- The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States.,The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
32
|
An R, Lin B, Zhao S, Cao C, Wang Y, Cheng X, Liu Y, Guo M, Xu H, Wang Y, Hou Z, Guo C. Discovery of novel artemisinin-sulfonamide hybrids as potential carbonic anhydrase IX inhibitors with improved antiproliferative activities. Bioorg Chem 2020; 104:104347. [DOI: 10.1016/j.bioorg.2020.104347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 01/13/2023]
|
33
|
Eleftheriadis T, Pissas G, Mavropoulos A, Nikolaou E, Filippidis G, Liakopoulos V, Stefanidis I. In Mixed Lymphocyte Reaction, the Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitor Roxadustat Suppresses Cellular and Humoral Alloimmunity. Arch Immunol Ther Exp (Warsz) 2020; 68:31. [PMID: 33011826 DOI: 10.1007/s00005-020-00596-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
Hypoxia-inducible factor (HIF) prolyl-hydroxylase inhibitors are currently used for the treatment of renal anemia. Since HIF affects immune cells, we evaluated the effect of such a drug, the roxadustat, on adaptive immunity. Cell proliferation was assessed in a two-way mixed lymphocyte reaction (MLR) with BrdU assay. In CD4+ T cells isolated from the two-way MLRs, western blotting was performed to detect the impact of roxadustat on HIF-1α and HIF-2α, the apoptotic marker cleaved caspase-3, and the master transcription factors of CD4+ T cells differentiation towards Th1, Th2, Th17, Treg and Tfh subsets. The signature cytokines of the above CD4+ T-cell subsets IFN-γ, IL-4, IL-17, IL-10, and IL-21 were measured in the supernatants. For assessing humoral immunity, we developed a suitable antibody-mediated complement-dependent cytotoxicity assay. Roxadustat stabilized HIF-1α and HIF-2α, suppressed cell proliferation, inhibited CD4+ T-cell differentiation into Th1 and Th17 subsets, while it favored differentiation towards Th2, Treg and Tfh. Roxadustat suppressed humoral immunity too. These immunosuppressive properties of roxadustat indicate that the recently introduced HIF prolyl-hydroxylase inhibitors in medical therapeutics may render the patients vulnerable to infections. This possibility should be further evaluated in clinical trials.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110, Larissa, Greece.
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110, Larissa, Greece
| | - Athanasios Mavropoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110, Larissa, Greece
| | - Evdokia Nikolaou
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110, Larissa, Greece
| | - Georgios Filippidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110, Larissa, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110, Larissa, Greece
| |
Collapse
|
34
|
Moein S, Moradzadeh K, Javanmard SH, Nasiri SM, Gheisari Y. In vitro versus in vivo models of kidney fibrosis: Time-course experimental design is crucial to avoid misinterpretations of gene expression data. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:84. [PMID: 33273929 PMCID: PMC7698384 DOI: 10.4103/jrms.jrms_906_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/11/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
Background: In vitro models are common tools in nephrology research. However, their validity has rarely been scrutinized. Materials and Methods: Considering the critical role of transforming growth factor (TGF)-β and hypoxia pathways in kidney fibrosis, kidney-derived cells were exposed to TGF-β and/or hypoxic conditions and the expression levels of some genes related to these two signaling pathways were quantified in a time-course manner. Furthermore, a unilateral ureteral obstruction mouse model was generated, and the expressions of the same genes were assessed. Results: In all in vitro experimental groups, the expression of the genes was noisy with no consistent pattern. However, in the animal model, TGF-β pathway-related genes demonstrated considerable overexpression in the ureteral obstruction group compared with the sham controls. Interestingly, hypoxia pathway genes had prominent fluctuations with very similar patterns in both animal groups, suggesting a periodical pattern not affected by the intervention. Conclusion: The findings of this study suggest that in vitro findings should be interpreted cautiously and if possible are substituted or supported by animal models that are more consistent and reliable. Furthermore, we underscore the importance of time-course evaluation of both case and control groups in gene expression studies to avoid misconceptions caused by gene expression noise or intrinsic rhythms.
Collapse
Affiliation(s)
- Shiva Moein
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kobra Moradzadeh
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Seyed Mahdi Nasiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yousof Gheisari
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.,Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
35
|
Cardiac Transcriptomics Reveals That MAPK Pathway Plays an Important Role in Hypoxia Tolerance in Bighead Carp ( Hypophthalmichthys nobilis). Animals (Basel) 2020; 10:ani10091483. [PMID: 32846886 PMCID: PMC7552209 DOI: 10.3390/ani10091483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/14/2023] Open
Abstract
As aquatic animals, fishes often encounter various situations of low oxygen, and they have evolved the ability to respond to hypoxia stress. Studies of physiological and molecular responses to hypoxia stress are essential to clarify genetic mechanisms underlying hypoxia tolerance in fish. In this study, we performed acute hypoxia treatment in juvenile bighead carp (Hypophthalmicthys nobilis) by decreasing water O2 from 6.5 mg/L to 0.5 mg/L in three hours. This hypoxia stress resulted in a significant increase in blood lactate and serum glucose. Comparisons of heart transcriptome among hypoxia tolerant (HT), hypoxia sensitive (HS), and normoxia control (NC) groups showed that 820, 273, and 301 differentially expressed genes (DEGs) were identified in HS vs. HT, NC vs. HS, and NC vs. HT (false discovery rate (FDR) < 0.01, Fold Change> 2), respectively. KEGG pathway enrichment showed that DEGs between HS and HT groups were mainly involved in mitogen-activated protein kinase (MAPK) signaling, insulin signaling, apoptosis, tight junction and adrenergic signaling in cardiomyocytes pathways, and DEGs in MAPK signaling pathway played a key role in cardiac tolerance to hypoxia. Combined with the results of our previous cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis of hypoxia stress in this species, such genes as stbp2, ttn, mapk, kcnh, and tnfrsf were identified in both studies, representing the significance of these DEGs in hypoxia tolerance in bighead carp. These results provide insights into the understanding of genetic modulations for fish heart coping with hypoxia stress and generate basic resources for future breeding studies of hypoxia resistance in bighead carp.
Collapse
|
36
|
Hypoxia regulates the degradation of non-nuclear organelles during lens differentiation through activation of HIF1a. Exp Eye Res 2020; 198:108129. [PMID: 32628953 DOI: 10.1016/j.exer.2020.108129] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/05/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
Formation of the eye lens depends on the continuous differentiation of lens epithelial cells into lens fiber cells. To attain their mature structure and transparent function, nascent lens fiber cells must complete a precise cellular remodeling program hallmarked by the complete elimination of organelles to form the core lens organelle-free zone (OFZ). Lacking a blood supply, the lens resides in a hypoxic environment that results in a decreasing oxygen concentration from the lens surface to the lens core. This oxygen gradient results in a hypoxic microenvironment in the region of the lens where immature lens fiber cells initiate loss of organelles to form the core OFZ. These features of the lens suggest a potential role for low lens oxygen levels in the regulation of organelle degradation and other events critical for mature lens fiber cell formation. Hypoxia activates the master regulator of the hypoxic response, hypoxia-inducible factor 1a (HIF1a) that regulates hypoxia-responsive genes. To identify a potential role for hypoxia and HIF1a in the elimination of organelles during lens fiber cell maturation, we tested the requirement for hypoxia in the degradation of non-nuclear organelles in ex vivo cultured embryonic chick lenses by monitoring the degradation of mitochondria (MT), Golgi apparatus (GA) and endoplasmic reticulum (ER) under conditions of low (1% O2) and high (21% O2) oxygen. We also examined the requirement for HIF1a activation for elimination of these organelles under the same conditions using a specific HIF1a activator (DMOG) and a specific HIF1a inhibitor (chetomin) and examined the requirements for hypoxia and HIF1a for regulating transcription of BNIP3L that we previously showed to be required for elimination of non-nuclear lens organelles. We used ChIP-qPCR to confirm direct binding of HIF1a to the 5' untranslated region of the BNIP3L gene. Finally, we examined the effects of expressing an oxygen insensitive mutant form of HIF1a (P402A/P565A) and BNIP3L on non-nuclear organelle degradation. Our data demonstrate that hypoxia and HIF1a are required for the degradation of non-nuclear organelles during lens fiber cell formation and that they regulate this process by governing BNIP3L transcription. Our results also provide evidence that hypoxia and HIF1a are essential for achieving mature lens structure.
Collapse
|
37
|
Nam H, Funamoto K, Jeon JS. Cancer cell migration and cancer drug screening in oxygen tension gradient chip. BIOMICROFLUIDICS 2020; 14:044107. [PMID: 32742536 PMCID: PMC7375834 DOI: 10.1063/5.0011216] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/28/2020] [Indexed: 05/07/2023]
Abstract
Cancer metastasis, which is prevalent in malignant tumors, is present in a variety of cases depending on the primary tumor and metastatic site. The cancer metastasis is affected by various factors that surround and constitute a tumor microenvironment. One of the several factors, oxygen tension, can affect cancer cells and induce changes in many ways, including motility, directionality, and viability. In particular, the oxygen tension gradient is formed within a tumor cluster and oxygen is lower toward the center of the cluster from the perivascular area. The simple and efficient designing of the tumor microenvironment using microfluidic devices enables the simplified and robust platform of the complex in vivo microenvironment while observing a clear cause-and-effect between the properties of cancer cells under oxygen tension. Here, a microfluidic device with five channels including a gel channel, media channels, and gas channels is designed. MDA-MB-231cells are seeded in the microfluidic device with hydrogel to simulate their three-dimensional movement in the body. The motility and directionality of the cancer cells under the normoxic and oxygen tension gradient conditions are compared. Also, the viability of the cancer cells is analyzed for each condition when anticancer drugs are applied. Unlike the normoxic condition, under the oxygen tension gradient, cancer cells showed directionality toward higher oxygen tension and decreased viability against the certain anticancer drug. The simplified design of the tumor microenvironment through microfluidic devices enables comprehension of the response of cancer cells to varying oxygen tensions and cancer drugs in the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Hyeono Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | | | | |
Collapse
|
38
|
Kostyuk AI, Kokova AD, Podgorny OV, Kelmanson IV, Fetisova ES, Belousov VV, Bilan DS. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants (Basel) 2020; 9:E516. [PMID: 32545356 PMCID: PMC7346190 DOI: 10.3390/antiox9060516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
39
|
Locatelli F, Del Vecchio L. Are prolyl-hydroxylase inhibitors potential alternative treatments for anaemia in patients with chronic kidney disease? Nephrol Dial Transplant 2020; 35:926-932. [DOI: 10.1093/ndt/gfz031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Prolyl-hydroxylase (PHD) inhibitors (PHD-I) are the most appealing drugs undergoing clinical development for the treatment of anaemia in patients with chronic kidney disease. PHD inhibition mimics the exposure of the body to hypoxia and activates the hypoxia-inducible factor system. Among many other pathways, this activation promotes the production of endogenous erythropoietin (EPO) and the absorption and mobilization of iron. PHD-I are given orally and, differing from erythropoiesis-stimulating agents (ESAs), they correct and maintain haemoglobin levels by stimulating endogenous EPO production. Their efficacy and safety are supported by several Phases I and II studies with relatively short follow-up. This class of drugs has the potential to have a better safety profile than ESAs and there may be additional advantages for cardiovascular disease (CVD), osteoporosis and metabolism. However, possible adverse outcomes are feared. These span from the worsening or occurrence of new cancer, to eye complications or pulmonary hypertension. The data from the ongoing Phase III studies are awaited to better clarify the long-term safety and possible advantages of PHD-I.
Collapse
Affiliation(s)
- Francesco Locatelli
- Department of Nephrology and Dialysis, Alessandro Manzoni Hospital ASST-Lecco, Lecco, Italy
| | - Lucia Del Vecchio
- Department of Nephrology and Dialysis, Alessandro Manzoni Hospital ASST-Lecco, Lecco, Italy
| |
Collapse
|
40
|
Kihira Y, Fujimura Y, Tomita S, Tamaki T, Sato E. Hypoxia‑inducible factor‑1α regulates Lipin1 differently in pre‑adipocytes and mature adipocytes. Mol Med Rep 2020; 22:559-565. [PMID: 32319636 DOI: 10.3892/mmr.2020.11076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/29/2020] [Indexed: 11/05/2022] Open
Abstract
Hypoxia-inducible factor (HIF)-1α is a transcription factor that is activated in low oxygen conditions. Adipose tissues are poorly oxygenated in patients with obesity. The low oxygen conditions in obese adipose tissues induce HIF‑1α in adipocytes. Previous studies using genetically modified mice suggest that HIF‑1α contributes to dysfunction in adipocytes. Lipin1 is a bifunctional protein that works as a phosphatidate phosphatase and transcriptional coactivator, which regulates lipid metabolism and adipogenesis, respectively. HIF‑1α directly regulates Lipin1 in hepatocytes. However, the regulation of Lipin1 by HIF‑1α in adipocytes is not well determined. Therefore, the present study investigated the regulation of Lipin1 by HIF‑1α in adipocytes. Expression levels of Lipin1 were reduced in epididymal adipose tissues of adipocyte‑specific HIF‑1α knockout mice, indicating that HIF‑1α regulates Lipin1 in adipocytes. In differentiated mature adipocytes, a HIF‑1α activator, dimethyloxallyl glycine (DMOG), was demonstrated to increase Lipin1, and a HIF‑1α inhibitor, 3‑(5'‑hydroxymethyl‑2'‑furyl)-1‑benzylindazole (YC‑1), reversed this increase, indicating that HIF‑1α regulates Lipin1 in differentiated adipocytes. However, during differentiation of pre‑adipocytes into adipocytes, YC‑1 increased Lipin1 even though HIF‑1α was decreased. The differentiation efficiency increased with YC‑1 treatment. In addition, DMOG reduced Lipin1 expression levels during differentiation despite increased HIF‑1α. Under these conditions, differentiation efficiency was reduced. These results suggest that Lipin1 is negatively regulated by HIF‑1α in pre‑adipocytes. Our results show that regulation of Lipin1 by HIF‑1α is different in adipocytes and pre‑adipocytes.
Collapse
Affiliation(s)
- Yoshitaka Kihira
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729‑0292, Japan
| | - Yoshino Fujimura
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729‑0292, Japan
| | - Shuhei Tomita
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka‑shi 558‑8585, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto‑cho, Tokushima 770‑8503, Japan
| | - Eiji Sato
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729‑0292, Japan
| |
Collapse
|
41
|
Gkagkalidis K, Kampantais S, Dimitriadis G, Gourvas V, Kapoukranidou D, Mironidou-Tzouveleki M. Expression of HIF-2a in clear-cell renal cell carcinoma independently predicts overall survival. Med Mol Morphol 2020; 53:229-237. [PMID: 32219604 DOI: 10.1007/s00795-020-00249-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/16/2020] [Indexed: 01/05/2023]
Abstract
The purpose of this study is to evaluate the expression and the prognostic role of main factors, involved in the hypoxia pathway, in patients with clear-cell renal cell carcinoma (ccRCC). Immunohistochemical expression of Hypoxia inducible factors (HIF) HIF-1a, HIF-2a, prolyl hydroxylases PHD1, PHD2, PHD3, and factor inhibiting HIF (FIH) was assessed on a tissue microarray, containing tumour and corresponding normal kidney tissue from 66 patients underwent surgery for ccRCC. Expression levels were evaluated in relation to T stage, Fuhrman grade, cancer-specific, and overall survival (OS). Cytoplasmatic expression of HIF-2a was positively correlated with expression of HIF-1a (p = 0.011). HIF-1a expression was also positively correlated with PHD3 and FIH (p = 0.020 and p = 0.039). Expression of HIF-1a was associated with lower Fuhrman grade (p = 0.008), while HIF-2a overexpression with unfavourable grade (p = 0.026). PHD3 was significant downregulated (84.8%). Age, LDH, presence of necrosis, Fuhrman grade, T stage, and HIF-2a cytoplasmatic expression were significant associated with OS of patients in univariable analysis. In multivariable analysis, HIF-2a expression (p = 0.006) and T stage (p = 0.001) remained as the only independent predictors for overall survival. These results indicate that HIF-2a overexpression not only is inversely correlated with Fuhrman grade in ccRCC, but also represents a strong independent prognostic factor for a poor overall survival.
Collapse
Affiliation(s)
- Konstantinos Gkagkalidis
- 1st Urologic Department, Gennimatas General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece. .,A' Laboratory of Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece. .,Private Urological Center, 40 Ekklision 3A, 67100, Xanthi, Greece.
| | - Spyridon Kampantais
- 1st Urologic Department, Gennimatas General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Saint Luke's Private Hospital of Thessaloniki, Thessaloniki, Greece
| | - Georgios Dimitriadis
- 1st Urologic Department, Gennimatas General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Victoras Gourvas
- "Victoras Gourvas" Private Pathology Laboratory, Thessaloniki, Greece
| | - Dorothea Kapoukranidou
- Department of Physiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Mironidou-Tzouveleki
- A' Laboratory of Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
42
|
Siska PJ, Singer K, Evert K, Renner K, Kreutz M. The immunological Warburg effect: Can a metabolic-tumor-stroma score (MeTS) guide cancer immunotherapy? Immunol Rev 2020; 295:187-202. [PMID: 32157706 DOI: 10.1111/imr.12846] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
The "glycolytic switch" also known as the "Warburg effect" is a key feature of tumor cells and leads to the accumulation of lactate and protons in the tumor environment. Intriguingly, non-malignant lymphocytes or stromal cells such as tumor-associated macrophages and cancer-associated fibroblasts contribute to the lactate accumulation in the tumor environment, a phenomenon described as the "Reverse Warburg effect." Localized lactic acidosis has a strong immunosuppressive effect and mediates an immune escape of tumors. However, some tumors do not display the Warburg phenotype and either rely on respiration or appear as a mosaic of cells with different metabolic properties. Based on these findings and on the knowledge that T cell infiltration is predictive for patient outcome, we suggest a metabolic-tumor-stroma score to determine the likelihood of a successful anti-tumor immune response: (a) a respiring tumor with high T cell infiltration ("hot"); (b) a reverse Warburg type with respiring tumor cells but glycolytic stromal cells; (c) a mixed type with glycolytic and respiring compartments; and (d) a glycolytic (Warburg) tumor with low T cell infiltration ("cold"). Here, we provide evidence that these types can be independent of the organ of origin, prognostically relevant and might help select the appropriate immunotherapy approach.
Collapse
Affiliation(s)
- Peter J Siska
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Singer
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Marina Kreutz
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| |
Collapse
|
43
|
Schurich A, Magalhaes I, Mattsson J. Metabolic regulation of CAR T cell function by the hypoxic microenvironment in solid tumors. Immunotherapy 2020; 11:335-345. [PMID: 30678555 DOI: 10.2217/imt-2018-0141] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The field of immunometabolism has attracted growing attention as an area at the heart of immune regulation. Upon activation, T cells undergo significant metabolic changes allowing them to mediate effector responses. The advent of chimeric antigen receptor T cell-adoptive therapy has shown some striking clinical efficacy but fails to induce sufficient antitumor response in many patients. Solid tumors put up significant opposition creating a microenvironment deficient of oxygen and glucose, depriving T cells of energy and pushing them to exhaustion. Here, we focus on immune suppressive mechanisms related to hypoxia in the tumor microenvironment and the resulting metabolic changes in T cells. New therapeutic approaches such as generating chimeric antigen receptor T cells able to withstand the challenging solid tumor microenvironment are needed.
Collapse
Affiliation(s)
- Anna Schurich
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Clinical Immunology, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
44
|
Sadaghianloo N, Contenti J, Dardik A, Mazure NM. Role of Hypoxia and Metabolism in the Development of Neointimal Hyperplasia in Arteriovenous Fistulas. Int J Mol Sci 2019; 20:ijms20215387. [PMID: 31671790 PMCID: PMC6862436 DOI: 10.3390/ijms20215387] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
For patients with end-stage renal disease requiring hemodialysis, their vascular access is both their lifeline and their Achilles heel. Despite being recommended as primary vascular access, the arteriovenous fistula (AVF) shows sub-optimal results, with about 50% of patients needing a revision during the year following creation. After the AVF is created, the venous wall must adapt to new environment. While hemodynamic changes are responsible for the adaptation of the extracellular matrix and activation of the endothelium, surgical dissection and mobilization of the vein disrupt the vasa vasorum, causing wall ischemia and oxidative stress. As a consequence, migration and proliferation of vascular cells participate in venous wall thickening by a mechanism of neointimal hyperplasia (NH). When aggressive, NH causes stenosis and AVF dysfunction. In this review we show how hypoxia, metabolism, and flow parameters are intricate mechanisms responsible for the development of NH and stenosis during AVF maturation.
Collapse
Affiliation(s)
- Nirvana Sadaghianloo
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Vascular Surgery, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| | - Julie Contenti
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Emergency Medicine, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| | - Alan Dardik
- Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA.
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA.
| | - Nathalie M Mazure
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Vascular Surgery, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| |
Collapse
|
45
|
Prolonged hypoxia decreases nuclear pyruvate dehydrogenase complex and regulates the gene expression. Biochem Biophys Res Commun 2019; 520:128-135. [PMID: 31582221 DOI: 10.1016/j.bbrc.2019.09.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 11/20/2022]
Abstract
Cells require proper regulation of energy metabolism to maintain cellular homeostasis. Pyruvate dehydrogenase (PDH) is a metabolic enzyme that converts pyruvate into acetyl-CoA, connecting glycolysis to the TCA cycle, thus regulating cellular energy metabolism. PDH is involved in multiple cellular processes, such as glucose metabolism, fatty acid synthesis, and protein acetylation, all of which are mediated by acetyl-CoA. We previously demonstrated that PDH-E1β is downregulated in prolonged hypoxia and inhibits PDH activity, which serves as machinery to securely inhibit PDH activity together with PDH-E1α phosphorylation. PDH has been identified to localize to the nucleus in addition to mitochondria, but its precise regulatory mechanisms in the nucleus remain elusive. In the present study, we characterized nuclear PDH during prolonged hypoxia. Nuclear PDH complex was downregulated under hypoxic conditions, and PDH activity was reduced. Depletion of HIF-1α partly recovered nuclear levels of the PDH complex. Furthermore, decreased nuclear PDH activity resulted in reduced histone H3 acetylation, altering the gene expression profile of cells exposed to prolonged hypoxia. Taken together, these findings indicate that nuclear PDH complex is downregulated under prolonged hypoxic conditions and controls gene expression.
Collapse
|
46
|
Association of Age with the Expression of Hypoxia-Inducible Factors HIF-1α, HIF-2α, HIF-3α and VEGF in Lung and Heart of Tibetan Sheep. Animals (Basel) 2019; 9:ani9090673. [PMID: 31514457 PMCID: PMC6769909 DOI: 10.3390/ani9090673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The heart and lung play an essential role in physiological homeostasis, especially in a hypoxic environment. The effect of aging on HIF-1α, HIF-2α, HIF-3α and VEGF expression in the heart and lung of Tibetan sheep that were adapted to hypoxia was evaluated in this study. We conclude that HIF-3a and VEGF are important in how the heart responds to hypoxia and that HIF-1a and HIF-2a may help mediate the adaptation by the sheep to hypoxia. The results suggested that the altered expression of these proteins due to hypoxia is regulated at the protein as well as gene levels. The expression of these proteins in alveolar macrophages suggests these cells play an important role in adaption to hypoxia. The research could provide insight into the role of inflammation in response to reduced alveolar PO2, and is useful in understanding how age influences the hypoxia adaption mechanisms of the heart and lung. This may allow a better understanding of chronic mountain sickness that is commonly observed in Tibetan people living at high altitude on the Qinghai-Tibetan plateau. Abstract Hypoxia-inducible factors (HIFs) play an important role in mediating the physiological response to low oxygen environments. However, whether the expression of HIFs changes with age is unknown. In the present study, the effect of aging on HIF-1α, HIF-2α, HIF-3α and VEGF expression in the heart and lung of 30 Tibetan sheep that were adapted to hypoxia was evaluated. The 30 sheep were subdivided into groups of 10 animals that were 1, 2 or 6 years of age. Immunohistochemistry for HIF-1α, HIF-2α, HIF-3α and VEGF revealed that the immunostaining intensity of VEGF protein in the heart and lung was significantly higher than the intensity of immunostaining against the HIFs (p < 0.05). HIF-1α and HIF-2α protein translocated into the nucleus of cardiac muscle cells. However, immunostaining for HIF-3α was restricted to the cytoplasm of the myocardial cells. Immunostaining for HIF-1α, HIF-2α, HIF-3α and VEGF was detected within alveolar macrophages. The concentration of HIF-1α and HIF-2α was higher in the lung of 1-year-old than 6-year-old sheep (p < 0.05). In contrast, HIF-3α and VEGF immunostaining was most prominent in the hearts of the oldest sheep. However, when RT-PCR was used to evaluate RNA within the tissues, the expression of all four studied genes was higher in the lung than in the heart in the 1-year-old sheep (p < 0.05). Furthermore, VEGF and HIF-3α gene expression was higher in the heart from 1-year old than 6-year old sheep (p < 0.05). However, in the lung, HIF-1α and HIF-2α gene expression was lower in 1-year old than 6-year old sheep (p < 0.05). We conclude that HIF-3α and VEGF may play be important in how the heart responds to hypoxia. Additionally, HIF-1α and HIF-2α may have a role in the adaptation of the lung to hypoxia. The expression of these proteins in alveolar macrophages suggests a potential role of these cells in the physiological response to hypoxia. These results are useful in understanding how age influences the hypoxia adaption mechanisms of the heart and lung and may help to better understand chronic mountain sickness that is commonly observed in Tibetan people living on the Qinghai-Tibetan plateau.
Collapse
|
47
|
PIN1 transcript variant 2 acts as a long non-coding RNA that controls the HIF-1-driven hypoxic response. Sci Rep 2019; 9:10599. [PMID: 31332228 PMCID: PMC6646326 DOI: 10.1038/s41598-019-47071-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/10/2019] [Indexed: 02/08/2023] Open
Abstract
The transcription factor HIF-1 induces the expression of genes that are essential for cell survival and oxygen homeostasis in hypoxic conditions. The prolyl isomerase Pin1 plays a role in the regulation of HIF-1α. However, the mechanism by which Pin1 controls HIF-1α remains controversial. Surprisingly, we here show that a PIN1 transcript downregulates HIF-1α as a long non-coding RNA. Pin1-silencing siRNAs augmented the hypoxia-induced expression of HIF-1α, thereby upregulating the expression of HIF-1 target genes. However, the overexpression of Pin1 protein did not inhibit the hypoxic expression of HIF-1α. Pin1 restoration in Pin1-depleted cells also failed to reverse the induction of HIF-1α by Pin1 knockdown. Unexpectedly, HIF-1α was found to be induced by both siRNAs for PIN1 transcript variants 1/2 and that for PIN1 transcript variants 2/3, indicating that the PIN1 transcript variant 2 (PIN1-v2) is responsible for HIF-1α induction. Mechanistically, PIN1-v2, which is classified as a long non-coding RNA due to early termination of translation, was evaluated to inhibit the transcription of HIF1A gene. In conclusion, PIN1-v2 may function in balancing the HIF-1-driven gene expression under hypoxia.
Collapse
|
48
|
McConnell DD, Carr SB, Litofsky NS. Potential effects of nicotine on glioblastoma and chemoradiotherapy: a review. Expert Rev Neurother 2019; 19:545-555. [PMID: 31092064 DOI: 10.1080/14737175.2019.1617701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Glioblastoma multiforme (GBM) has a poor prognosis despite maximal surgical resection with subsequent multi-modal radiation and chemotherapy. Use of tobacco products following diagnosis and during the period of treatment for non-neural tumors detrimentally affects treatment and prognosis. Approximately, 16-28% of patients with glioblastoma continue to smoke after diagnosis and during treatment. The literature is sparse for information-pertaining effects of smoking and nicotine on GBM treatment and prognosis. Areas covered: This review discusses cellular pathways involved in GBM progression that might be affected by nicotine, as well as how nicotine may contribute to resistance to treatment. Similarities of GBM pathways to those in non-neural tumors are investigated for potential effects by nicotine. English language papers were identified using PubMed, Medline and Scopus databases using a combination of keywords including but not limited to the following: nicotine, vaping, tobacco, e-cigarettes, smoking, vaping AND glioblastoma or brain cancer OR/AND temozolomide, carmustine, methotrexate, procarbazine, lomustine, vincristine, and neural tumor cell lines. Expert opinion: Understanding the impact of nicotine on treatment and resistance to chemotherapeutics should allow physicians to educate their patients with GBM with evidence-based recommendations about the effects of continuing to use nicotine-containing products after diagnosis and during treatment.
Collapse
Affiliation(s)
- Diane D McConnell
- a Division of Neurological Surgery , University of Missouri School of Medicine , Columbia , MO , USA
| | - Steven B Carr
- a Division of Neurological Surgery , University of Missouri School of Medicine , Columbia , MO , USA
| | - N Scott Litofsky
- a Division of Neurological Surgery , University of Missouri School of Medicine , Columbia , MO , USA
| |
Collapse
|
49
|
Chafe SC, McDonald PC, Saberi S, Nemirovsky O, Venkateswaran G, Burugu S, Gao D, Delaidelli A, Kyle AH, Baker JHE, Gillespie JA, Bashashati A, Minchinton AI, Zhou Y, Shah SP, Dedhar S. Targeting Hypoxia-Induced Carbonic Anhydrase IX Enhances Immune-Checkpoint Blockade Locally and Systemically. Cancer Immunol Res 2019; 7:1064-1078. [PMID: 31088846 DOI: 10.1158/2326-6066.cir-18-0657] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/19/2019] [Accepted: 05/09/2019] [Indexed: 11/16/2022]
Abstract
Treatment strategies involving immune-checkpoint blockade (ICB) have significantly improved survival for a subset of patients across a broad spectrum of advanced solid cancers. Despite this, considerable room for improving response rates remains. The tumor microenvironment (TME) is a hurdle to immune function, as the altered metabolism-related acidic microenvironment of solid tumors decreases immune activity. Here, we determined that expression of the hypoxia-induced, cell-surface pH regulatory enzyme carbonic anhydrase IX (CAIX) is associated with worse overall survival in a cohort of 449 patients with melanoma. We found that targeting CAIX with the small-molecule SLC-0111 reduced glycolytic metabolism of tumor cells and extracellular acidification, resulting in increased immune cell killing. SLC-0111 treatment in combination with immune-checkpoint inhibitors led to the sensitization of tumors to ICB, which led to an enhanced Th1 response, decreased tumor growth, and reduced metastasis. We identified that increased expression of CA9 is associated with a reduced Th1 response in metastatic melanoma and basal-like breast cancer TCGA cohorts. These data suggest that targeting CAIX in the TME in combination with ICB is a potential therapeutic strategy for enhancing response and survival in patients with hypoxic solid malignancies.
Collapse
Affiliation(s)
- Shawn C Chafe
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Paul C McDonald
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Saeed Saberi
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Oksana Nemirovsky
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Geetha Venkateswaran
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Samantha Burugu
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dongxia Gao
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alberto Delaidelli
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Alastair H Kyle
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jennifer H E Baker
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jordan A Gillespie
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ali Bashashati
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew I Minchinton
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Youwen Zhou
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sohrab P Shah
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada. .,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Wang NN, Chen GN, Qu B, Yu F, Sheng GN, Shi Y. Effect of Hypotensive Brain Death on the Donor Liver and Its Mechanism in an Improved Bama Miniature Pig (Sus scrofa domestica) Model. Transplant Proc 2019; 51:951-959. [PMID: 30979488 DOI: 10.1016/j.transproceed.2019.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 01/04/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND We aimed to observe the effect of hypotensive brain death on the donor liver and understand its pathophysiological mechanism in improved pig model. METHODS The model was induced using the modified intracranial water sac inflation method in 16 Bama miniature pigs. Effects of hypotensive brain death on liver function and tissue morphology were evaluated via changes in liver function enzyme index, liver tissue alkaline phosphatase levels, hourly bile flow, and liver tissue pathology. Its pathophysiological mechanism was examined on the basis of changes in portal vein blood flow, hepatic artery blood flow, portal venous endotoxin level, and liver tissue cytokine levels. RESULTS After model establishment, portal vein blood flow, hepatic arterial blood flow, hourly bile flow, and alkaline phosphatase content in hepatic tissue significantly decreased, and serum aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase levels significantly increased. Hematoxylin-eosin staining of liver tissue showed that after model establishment, hepatic tissue injury was gradually aggravated and hepatic cells were irreversibly damaged at 7 hours. Portal vein endotoxin levels significantly increased after brain death. Tumor necrosis factor α, interleukin 1, and endothelin 1 levels in liver tissues significantly increased at 3, 6, and 12 hours after brain death (P < .05), and hypoxia-inducible factor 1-α and nitric oxide levels significantly decreased (P < .05). CONCLUSIONS Hepatic injury was progressively aggravated under hypotensive brain death. The mechanism of donor liver injury under hypotensive brain death may involve low liver perfusion, release of intestinal endotoxin and inflammatory factors (eg, tumor necrosis factor α and interleukin 1), decreased hypoxia-inducible factor 1-α, and endothelin 1 and nitric oxide imbalance.
Collapse
Affiliation(s)
- N-N Wang
- Postgraduate Training Base, Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Jinzhou Medical University, Tianjin, China
| | - G-N Chen
- Postgraduate Training Base, Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Jinzhou Medical University, Tianjin, China
| | - B Qu
- Postgraduate Training Base, Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Jinzhou Medical University, Tianjin, China.
| | - F Yu
- Department of Emergency, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - G-N Sheng
- Organ Transplantation Center, Tianjin First Center Hospital, Nankai District, Tianjin, China
| | - Y Shi
- Organ Transplantation Center, Tianjin First Center Hospital, Nankai District, Tianjin, China.
| |
Collapse
|