1
|
Emamiamin A, Shariati Pour SR, Serra T, Calabria D, Varone M, Di Nardo F, Guardigli M, Anfossi L, Baggiani C, Zangheri M, Mirasoli M. New Frontiers for the Early Diagnosis of Cancer: Screening miRNAs Through the Lateral Flow Assay Method. BIOSENSORS 2025; 15:238. [PMID: 40277551 PMCID: PMC12024991 DOI: 10.3390/bios15040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025]
Abstract
MicroRNAs (miRNAs), which circulate in the serum and plasma, play a role in several biological processes, and their levels in body fluids are associated with the pathogenesis of various diseases, including different types of cancer. For this reason, miRNAs are considered promising candidates as biomarkers for diagnostic purposes, enabling the early detection of pathological onset and monitoring drug responses during therapy. However, current methods for miRNA quantification, such as northern blotting, isothermal amplification, RT-PCR, microarrays, and next-generation sequencing, are limited by their reliance on centralized laboratories, high costs, and the need for specialized personnel. Consequently, the development of sensitive, simple, and one-step analytical techniques for miRNA detection is highly desirable, particularly given the importance of early diagnosis and prompt treatment in cases of cancer. Lateral flow assays (LFAs) are among the most attractive point-of-care (POC) devices for healthcare applications. These systems allow for the rapid and straightforward detection of analytes using low-cost setups that are accessible to a wide audience. This review focuses on LFA-based methods for detecting and quantifying miRNAs associated with the diagnosis of various cancers, with particular emphasis on sensitivity enhancements achieved through the application of different labels and detection systems. Early, non-invasive detection of these diseases through the quantification of tailored biomarkers can significantly reduce mortality, improve survival rates, and lower treatment costs.
Collapse
Affiliation(s)
- Afsaneh Emamiamin
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (A.E.); (S.R.S.P.)
| | - Seyedeh Rojin Shariati Pour
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (A.E.); (S.R.S.P.)
| | - Thea Serra
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy; (T.S.); (F.D.N.); (L.A.); (C.B.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.V.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Marta Varone
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.V.); (M.G.)
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy; (T.S.); (F.D.N.); (L.A.); (C.B.)
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.V.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum—University of Bologna, Via St. Alberto 163, I-48123 Ravenna, Italy
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy; (T.S.); (F.D.N.); (L.A.); (C.B.)
| | - Claudio Baggiani
- Department of Chemistry, University of Turin, Via P. Giuria 5, I-10125 Turin, Italy; (T.S.); (F.D.N.); (L.A.); (C.B.)
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (A.E.); (S.R.S.P.)
- Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum—University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (A.E.); (S.R.S.P.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum—University of Bologna, Via St. Alberto 163, I-48123 Ravenna, Italy
| |
Collapse
|
2
|
Gupta N, LoGrasso G, Hazlett LD, Xu S. New Insight Into the Neuroimmune Interplay In Pseudomonas aeruginosa Keratitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641908. [PMID: 40161776 PMCID: PMC11952346 DOI: 10.1101/2025.03.06.641908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Purpose The miR-183/96/182 cluster (miR-183C) is required for normal functions of sensory neurons (SN) and various immune cells, including myeloid cells (MC). This research aims to reveal the roles of miR-183C of SN in the interplay of corneal sensory nerves (CSN) and MC during Pseudomonas aeruginosa (PA) keratitis. Methods Double-tracing mice with SN-specific (SNS) conditional knockout of miR-183C (CKO) and age- and sex-matched wild type (WT) controls were used. Their CSN are labeled with Red Fluorescent Protein (RFP); MC with Enhanced Green (EG)FP. The left corneas were scarified and infected with ATCC19660 PA. Corneal flatmounts were prepared at 3, 6, and 12 hours post-infection (hpi) and 1, 3, and 5 days (d)pi for confocal microscopy. Myeloperoxidase (MPO) assay and plate count were performed at 1 dpi. Results In WT mice, CSN began to degenerate as early as 3 hpi, starting from the fine terminal CSN in the epithelial/subepithelial layers, most prominently in the central region. By 1 dpi, CSN in the epithelium/subepithelial layer were nearly completely destroyed, while stromal nerves persisted. From 3 dpi, CSN were obliterated in both layers. In CKO vs WT mice, CNS followed a slightly slower pace of degeneration. CSN density was decreased at 3 and 6 hpi. However, at 3 dpi, residual large-diameter stromal CSN were better preserved.MC were decreased in the central cornea at 3 and 6 hpi, but increased in the periphery. Both changes were more prominent in CKO vs WT mice. At 12 hpi, densely packed MC formed a ring-shaped band circling a "dark" zone nearly devoid of MC, colocalizing with CSN most degenerated zone in the central cornea. In CKO vs WT, the ring center was larger with fewer MC. At 1 dpi, the entire cornea was filled with MC; however, MC density was lower in CKO mice. An MPO assay showed decreased neutrophils in PA-infected cornea of CKO mice. This led to a decreased severity of PA keratitis at 3 dpi. Conclusions This double-tracing model reveals the interplay between CSN and MC during PA keratitis with greater clarity, providing new insights into PA keratitis. CSN-imposed modulation on innate immunity is most impressive within 24 hours after infection. Functionally, the miR-183C in CSN modulates CSN density and the dynamics of MC fluxes- a neuroimmune interaction in display.
Collapse
Affiliation(s)
- Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine/Kresge Eye Institute, Detroit, Michigan
| | - Giovanni LoGrasso
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine/Kresge Eye Institute, Detroit, Michigan
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine/Kresge Eye Institute, Detroit, Michigan
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine/Kresge Eye Institute, Detroit, Michigan
| |
Collapse
|
3
|
Mseis-Jackson N, Jiang M, Sharma M, Ranchod A, Williams C, Chen X, Li H. Dynamic regulation of NeuroD1 expression level by a novel viral construct during astrocyte-to-neuron reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638625. [PMID: 40027739 PMCID: PMC11870611 DOI: 10.1101/2025.02.17.638625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Astrocyte-to-neuron reprogramming presents a viable approach for regenerative medicine. The reprogramming factor NeuroD1 has demonstrated capability of neuronal reprogramming with high efficiency both in culture and in the injured central nervous system. High level of NeuroD1 expression is required to break down the cellular identity barrier for a successful reprogramming, and yet persistence of this high level drives the reprogrammed neurons primarily to glutamatergic subtype. This is consistent with the critical role of NeuroD1 in determination of glutamatergic neuronal lineage during development. However, diversified neuronal subtypes are needed to establish appropriate neuronal connectivity in disease/injury conditions. We reason that continuously high level of NeuroD1 expression forces the reprogrammed neurons into glutamatergic subtype, and that reducing NeuroD1 level after reprogramming may allow generation of neurons with diversified subtypes. For this purpose, we engineered a novel viral expression vector by which NeuroD1 expression can be dynamically regulated during the reprogramming process. Specifically, the target site of a neuron-specific microRNA (miR-124) is incorporated in the expression system. Therefore, this novel construct would still achieve a high NeuroD1 expression level in astrocytes for reprogramming to occur and yet reduce its level in the reprogrammed neurons by suppression of endogenous miR-124. In this study, we demonstrated that this construct elicits a dynamic gene expression pattern with much reduced level of NeuroD1 at later stages of neuronal reprogramming. We also showed that this construct still retains relatively high reprogramming efficiency and can generate mature neurons with an enhanced GABAergic neuronal phenotype.
Collapse
|
4
|
Nguyen LNT, Pyburn JS, Nguyen NL, Schank MB, Zhao J, Wang L, Leshaodo TO, El Gazzar M, Moorman JP, Yao ZQ. Epigenetic Regulation by lncRNA GAS5/miRNA/mRNA Network in Human Diseases. Int J Mol Sci 2025; 26:1377. [PMID: 39941145 PMCID: PMC11818527 DOI: 10.3390/ijms26031377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
The interplay between long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) is crucial in the epigenetic regulation of mRNA and protein expression, impacting the development and progression of a plethora of human diseases, such as cancer, cardiovascular disease, inflammatory-associated diseases, and viral infection. Among the many lncRNAs, growth arrest-specific 5 (GAS5) has garnered substantial attention for its evident role in the regulation of significant biological processes such as proliferation, differentiation, senescence, and apoptosis. Through miRNA-mediated signaling pathways, GAS5 modulates disease progression in a cell-type-specific manner, typically by influencing proteins involved in inflammation and cell death. While GAS5 is recognized as a tumor suppressor in cancer, recent reports highlight its broader regulatory capacity in non-cancerous diseases. Its modulation of protein expression through the GAS5/miRNA network has been shown to both mitigate and exacerbate disease, depending on the specific context. Furthermore, the therapeutic potential of GAS5 manipulation, via knockdown or overexpression, offers promising avenues for targeted interventions across human diseases. This review explores the dualistic impacts of the GAS5/miRNA network in conditions such as cancer, cardiovascular disease, viral infections, and inflammatory disorders. Through the evaluation of current evidence, we aim to provide insight into GAS5's biological functions and its implications for future research and therapeutic development.
Collapse
Affiliation(s)
- Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jaeden S. Pyburn
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Nhat Lam Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Madison B. Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Tabitha O. Leshaodo
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| |
Collapse
|
5
|
Nunez DA, Abgoon R, Wijesinghe P, Garnis C. Serum and Plasma miRNA Expression Levels in Sudden Sensorineural Hearing Loss. Int J Mol Sci 2025; 26:1245. [PMID: 39941013 PMCID: PMC11818497 DOI: 10.3390/ijms26031245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Sudden sensorineural hearing loss (SSNHL) is a rapidly developing acquired idiopathic disorder. Differential expressions of microRNAs (miRNAs) have been identified in the acute serum of SSNHL patients. miRNAs are transmitted in both serum and plasma, but it is unknown which better reflects changes associated with inner ear disease. Therefore, we sought to compare the serum and plasma miRNA expression levels in adult SSNHL patients. We extracted and reverse transcribed total RNA from serum and plasma, and analyzed the product with quantitative real-time PCR. hsa-miR-191-5p was used for normalization, and miRNA expression levels were calculated using the delta Ct method. Serum and plasma samples from 17 SSNHL patients (mean age 51.9 years, standard deviation 13.9 years) showed no significant differences in miR-128-3p, miR-132-3p, miR-375-3p, miR-590-5p, miR-30a-3p, miR-140-3p, miR-186-5p, and miR-195-5p expression levels on Wilcoxon signed-rank test analyses. We conclude that plasma and serum are equally suitable for investigating potential miRNA SSNHL disease markers.
Collapse
Affiliation(s)
- Desmond A. Nunez
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada
- Division of Otolaryngology-Head Neck Surgery, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada
| | - Reyhaneh Abgoon
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada
| | - Printha Wijesinghe
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada
- Department of Ophthalmology, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 0A6, Canada
| | - Cathie Garnis
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1G1, Canada
| |
Collapse
|
6
|
Ferro E, Szischik CL, Cunial M, Ventura AC, De Martino A, Bosia C. Out-of-Equilibrium ceRNA Crosstalk. Methods Mol Biol 2025; 2883:167-193. [PMID: 39702709 DOI: 10.1007/978-1-0716-4290-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Among non-coding RNAs, microRNAs are pivotal post-transcriptional regulators of gene expression in higher eukaryotes. Through a titration-based mechanism of interaction with their target RNAs, microRNAs can mediate a weak but pervasive form of RNA cross-regulation, as different endogenous RNAs can be effectively coupled by competing for microRNA binding (a phenomenon now known as "crosstalk"). Mathematical modeling has been proven of great help in unraveling many features of these competing endogenous RNA (ceRNA) interactions. However, although many studies have been devoted to the steady-state properties of this indirect regulatory layer, little is known about how the information encoded in frequency, amplitude, duration, and other features of regulatory signals can affect the resulting ceRNA crosstalk picture and hence the overall patterns of gene expression. Here, we focus on such dynamical aspects, with a special emphasis on the encoding and decoding of time-dependent signals.
Collapse
Affiliation(s)
- Elsi Ferro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, Torino, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le, Candiolo, Italy
| | - Candela L Szischik
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas Argentina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marta Cunial
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le, Candiolo, Italy
| | - Alejandra C Ventura
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas Argentina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea De Martino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, Torino, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le, Candiolo, Italy
| | - Carla Bosia
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, Torino, Italy.
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le, Candiolo, Italy.
| |
Collapse
|
7
|
Rattanapan Y, Nongwa K, Supanpong C, Satsadeedat C, Sai-ong T, Kooltheat N, Chareonsirisuthigul T. Downregulation of miR-25-3p and Its Impact on PTAFR and IGF2BP3 Expression in Type 2 Diabetes Mellitus: Implications for Biomarker Discovery and Disease Pathogenesis. J Clin Med Res 2024; 16:536-546. [PMID: 39635336 PMCID: PMC11614410 DOI: 10.14740/jocmr6099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Background This study is designed to investigate the differential microRNA (miRNA) expression profiles in individuals with and without type 2 diabetes mellitus (T2DM). The focus is on miRNAs that play a crucial role in the onset and progression of T2DM, particularly in glucose metabolism, inflammation, platelet reactivity, and endothelial dysfunction. Methods Twenty samples were categorized into groups of T2DM and non-T2DM, and miRNA profiling was conducted using microarray analysis. The expression levels of the candidate miR-25-3p, as well as its target genes platelet-activating factor receptor (PTAFR) and insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), were validated using quantitative polymerase chain reaction (qPCR). Results The present study revealed a significant reduction in the level of miR-25-3p in the T2DM group compared to the non-T2DM group. This suggests higher levels of PTAFR and IGF2BP3 in individuals with T2DM, indicating a potential biomarker for the condition. Conclusions The downregulation of miR-25-3p, which is associated with increased PTAFR levels, may contribute to heightened platelet reactivity and inflammation, worsening endothelial dysfunction, and potentially influencing vascular complications in diabetes. Additionally, the upregulation of IGF2BP3 is correlated with insulin resistance and β-cell dysfunction, which may contribute to elevated hyperglycemia and hyperinsulinemia, further aggravating the progression of diabetes. These findings highlight the potential of miR-25-3p and IGF2BP3 as biomarkers for T2DM and suggest their possible relevance for improving diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yanisa Rattanapan
- Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Kallayarat Nongwa
- Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Chanoknan Supanpong
- Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Chanasorn Satsadeedat
- Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Thaveesak Sai-ong
- School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nateelak Kooltheat
- Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Takol Chareonsirisuthigul
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Carson LM, Watson EE. Peptide Nucleic Acids: From Origami to Editing. Chempluschem 2024; 89:e202400305. [PMID: 38972843 DOI: 10.1002/cplu.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Peptide nucleic acids (PNAs) combine the programmability of native nucleic acids with the robustness and ease of synthesis of a peptide backbone. These designer biomolecules have demonstrated tremendous utility across a broad range of applications, from the formation of bespoke biosupramolecular architectures to biosensing and gene regulation. Herein, we explore some of the key developments in the application of PNA in chemical biology and biotechnology in the last 5 years and present anticipated key areas of future development.
Collapse
Affiliation(s)
- Liam M Carson
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Emma E Watson
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| |
Collapse
|
9
|
Pastor-Navarro B, Ramírez-Calvo M, Gil Aldea I, Cortell Granero I, López Guerrero JA. The Impact of Tube Type, Centrifugation Conditions, and Hemolysis on Plasma Circulating MicroRNAs. Diagnostics (Basel) 2024; 14:2369. [PMID: 39518337 PMCID: PMC11545111 DOI: 10.3390/diagnostics14212369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In recent years, liquid biopsy has emerged as a promising tool for the diagnosis and prognosis of numerous diseases, including cancer. Among the biomolecules analyzed in liquid biopsies are plasma circulating microRNAs (miRNAs), small non-coding RNAs that have proven to be crucial in the regulation of gene expression and the pathobiology of different health conditions, making them useful as biomarkers. However, variations in preanalytical conditions during biospecimen collection and processing can affect the analytical results. OBJECTIVES Herein, we determined how the type of collection tube, the number of centrifugations, and the degree of hemolysis can affect plasma circulating miRNA levels. METHODS A cohort of 11 healthy donors was included. Whole blood was collected and handled in three different conditions, and miRNAs levels were analyzed using quantitative RT-PCR. RESULTS Our results show that the differences in the type of preservative tubes influence hemolysis, measured as OD at 414 nm. Moreover, the number of centrifugations performed also altered miRNAs levels, increasing or decreasing them depending on the miRNA analyzed. Hence, our study shows that alterations in preanalytical conditions affect miRNAs levels, particularly the number of centrifugations and the type of collection tubes. CONCLUSIONS In our work, we highlight the importance of registering the preanalytical conditions in a standardized way that might be considered when analytical results are obtained.
Collapse
Affiliation(s)
- Belén Pastor-Navarro
- Laboratorio de Biología Molecular, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (B.P.-N.); (M.R.-C.); (I.G.-A.); (I.C.-G.)
- Peptide and Protein Laboratory, Department of Medicinal Chemistry, Unidad Mixta Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Medicine and Health Sciences Faculty, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Marta Ramírez-Calvo
- Laboratorio de Biología Molecular, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (B.P.-N.); (M.R.-C.); (I.G.-A.); (I.C.-G.)
| | - Isabel Gil Aldea
- Laboratorio de Biología Molecular, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (B.P.-N.); (M.R.-C.); (I.G.-A.); (I.C.-G.)
| | - Isabel Cortell Granero
- Laboratorio de Biología Molecular, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (B.P.-N.); (M.R.-C.); (I.G.-A.); (I.C.-G.)
| | - José A. López Guerrero
- Laboratorio de Biología Molecular, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (B.P.-N.); (M.R.-C.); (I.G.-A.); (I.C.-G.)
- Peptide and Protein Laboratory, Department of Medicinal Chemistry, Unidad Mixta Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Medicine and Health Sciences Faculty, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
10
|
Kumar D, Budachetri K, Rikihisa Y, Karim S. Analysis of Amblyomma americanum microRNAs in response to Ehrlichia chaffeensis infection and their potential role in vectorial capacity. Front Cell Infect Microbiol 2024; 14:1427562. [PMID: 39086604 PMCID: PMC11288922 DOI: 10.3389/fcimb.2024.1427562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Background MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
11
|
Murshed A, Alnoud MAH, Ahmad S, Khan SU, Alissa M, Alsuwat MA, Ahmed AE, Khan MU. Genetic Alchemy unveiled: MicroRNA-mediated gene therapy as the Artisan craft in the battlefront against hepatocellular carcinoma-a comprehensive chronicle of strategies and innovations. Front Genet 2024; 15:1356972. [PMID: 38915826 PMCID: PMC11194743 DOI: 10.3389/fgene.2024.1356972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Investigating therapeutic miRNAs is a rewarding endeavour for pharmaceutical companies. Since its discovery in 1993, our understanding of miRNA biology has advanced significantly. Numerous studies have emphasised the disruption of miRNA expression in various diseases, making them appealing candidates for innovative therapeutic approaches. Hepatocellular carcinoma (HCC) is a significant malignancy that poses a severe threat to human health, accounting for approximately 70%-85% of all malignant tumours. Currently, the efficacy of several HCC therapies is limited. Alterations in various biomacromolecules during HCC progression and their underlying mechanisms provide a basis for the investigation of novel and effective therapeutic approaches. MicroRNAs, also known as miRNAs, have been identified in the last 20 years and significantly impact gene expression and protein translation. This atypical expression pattern is strongly associated with the onset and progression of various malignancies. Gene therapy, a novel form of biological therapy, is a prominent research area. Therefore, miRNAs have been used in the investigation of tumour gene therapy. This review examines the mechanisms of action of miRNAs, explores the correlation between miRNAs and HCC, and investigates the use of miRNAs in HCC gene therapy.
Collapse
Affiliation(s)
- Abduh Murshed
- Department of Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mohammed A. H. Alnoud
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Meshari A. Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Prince Sultan Bin Abdelaziz for Environmental Research and Natural Resources Sustainability Center, King Khalid University, Abha, Saudi Arabia
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for XPolymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Su D, Swearson S, Eliason S, Rice K, Amendt B. RNA Technology to Regenerate and Repair Alveolar Bone Defects. J Dent Res 2024; 103:622-630. [PMID: 38715225 PMCID: PMC11122091 DOI: 10.1177/00220345241242047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
microRNA-200a (miR-200a) targets multiple signaling pathways that are involved in osteogenic differentiation and bone development. However, its therapeutic function in osteogenesis and bone regeneration remains unknown. In this study, we use in vitro and in vivo models to investigate the molecular function of miR-200a overexpression and miR-200a inhibition using a plasmid-based miR inhibitor system (PMIS) on osteogenic differentiation and bone regeneration. Inhibition of miR-200a using PMIS-miR-200a significantly increased osteogenic biomarkers of human embryonic palatal mesenchyme cells and promoted bone regeneration in rat tooth socket defects. In rat maxillary M1 molar extractions, the supporting tooth structures were removed with an implant drill to yield a 3-mm defect in the alveolar bone. A collagen sponge was inserted into the open alveolar defect and PMIS-miR-200a plasmid DNA was added to the sponge and the wound sutured to protect the sponge and close the defect. It was important to remove the existing tooth supporting structure, which can influence alveolar bone regeneration. The alveolar bone was regenerated in 4 wk. The collagen sponge acts to stabilize and deliver the PMIS-miR-200a DNA to cells entering the sponge in the bone defect. We show that mesenchymal stem cells expressing CD90 and Stro-1 enter the sponges, take up the DNA, and express PMIS-miR-200a. PMIS-miR-200a initiates a bone regeneration program in transformed cells in vivo. In vitro inhibition of miR-200a was found to upregulate Wnt and BMP signaling activity as well as Runx2, OCN, Lef-1, Msx2, and Dlx5 associated with osteogenesis. Liver and blood toxicity testing of PMIS-miR-200a-treated rats showed no increase in several biomarkers of liver disease. These results demonstrate the therapeutic function of PMIS-miR-200a for rapid bone regeneration. Furthermore, the studies were designed to demonstrate the ease of use of PMIS-miR-200a in solution and applied using a syringe in the clinic through a simple one-time application.
Collapse
Affiliation(s)
- D. Su
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - S. Swearson
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - S. Eliason
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - K.G. Rice
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - B.A. Amendt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
Zhang M, Niu Z, Huang Q, Han L, Du J, Liang J, Cheng Y, Cao R, Yawalkar N, Zhang Z, Yan K. Identification of an exosomal miRNA-mRNA regulatory network contributing to methotrexate efficacy. Int Immunopharmacol 2024; 135:112280. [PMID: 38776848 DOI: 10.1016/j.intimp.2024.112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Methotrexate (MTX) is an economic and effective medicine treatment for psoriasis. Extracellular vesicle (EV) miRNA biomarkers related to its efficiency have been identified in various diseases. Whether certain miRNA profiles are associated with psoriasis treatment is unknown. In order to determine specific miRNA biomarkers for MTX effectiveness prediction and the severity of psoriasis, our study looked at the variations in circulating EV miRNA profiles before and after MTX therapy. METHODS Plasma EV isolation and next-generation sequencing were performed to identify differentially expressed EV miRNAs between GRs (n = 14) and NRs (n = 6). Univariate and multiple linear regression analyses were performed to evaluate the correlation between PASI scores and miRNA expression levels. RESULTS 15 miRNAs out of a total profile of 443 miRNAs were substantially different between GRs and NRs at baseline, 4 of them (miR-199a-5p, miR-195-5p, miR-196a-5p, and miR-1246) have the potential to distinguish between GRs and NRs [area under the curve (AUC) ≥ 0.70, all P < 0.05]. KEGG pathway analyses revealed differentially expressed miRNAs to potentially target immune-related pathways. SIRT1 was discovered to be a target of miR-199a-5p and involved in MAPK signaling pathway. MiR-191-5p and miR-21-5p expression levels have been discovered to positively correlate with PASI scores[P < 0.05]. CONCLUSION This pilot investigation found that miR-199a-5p, miR-195-5p, miR-196a-5p, and miR-1246 might be prospective biomarkers to predict the efficacy of MTX, and that miR-191-5p and miR-21-5p were correlated with psoriasis severity. Five of them previously reported to be involved in MAPK signaling pathway, indicating a potential role of MTX in delaying the progression of psoriatic inflammation.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenmin Niu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Qiong Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling Han
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Juan Du
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanwen Cheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruoshui Cao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Zhenghua Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Kexiang Yan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Kumar D, Budachetri K, Rikihisa Y, Karim S. Analysis of Amblyomma americanum microRNAs in response to Ehrlichia chaffeensis infection and their potential role in vectorial capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592465. [PMID: 38765993 PMCID: PMC11100627 DOI: 10.1101/2024.05.03.592465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
15
|
Chen Y, Chen L, Wu J, Su D. Hsa_circ_0087862 contributes to the progression of colorectal cancer through regulating miR-512-3p/HK2 axis. Pathol Res Pract 2024; 257:155281. [PMID: 38669868 DOI: 10.1016/j.prp.2024.155281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) theratened thousands of people every year. Emerging evidences suggested that circular RNAs (circRNAs) were involved in CRC malignancies. However, the underlying mechanisms have yet not been revealed. METHODS Quantitative real-time PCR (qRT-PCR) was used to determine the expression of circ_0087862 and microRNA-512-3p (miR-512-3p). Western blot was performed to measure the protein expression of hexokinase 2 (HK2), B-cell lymphoma-2 (Bcl-2), BCL2-associated X (Bax) and BCL2 antagonist/killer 1 (Bak). Moreover, 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, colony formation and 5-ethynyl-2'-deoxyuridine (EdU) assay were employed to assess CRC cell proliferation. Also, migration/invasion abilities and apoptosis rates were investigated by transwell assay and flow cytometry. Glucose consumption, lactate production and ATP production were detected using the corresponding kits. Dual-luciferase reporter analysis and RNA immunoprecipitation (RIP) experiments were utilized to analyze the target association of miR-512-3p and circ_0087862 or HK2. Finally, xenograft assay was carried out to analyze the function of circ_0087862 in tumor growth in vivo. RESULTS Circ_0087862 expression was elevated in CRC tissues and cells. Circ_0087862 silencing repressed cell viabilities, proliferation, migration/invasion and glycolysis, and reinforced cell apoptosis. However, HK2 could weaken these impacts. Additionally, miR-512-3p targeted HK2, and circ_0087862 could regulate HK2 expression by miR-512-3p. Furthermore, circ_0087862 silencing decreased CRC cell xenograft tumor growth. CONCLUSION Collectively, our data suggested that circ_0087862 knockdown impeded cell viabilities, proliferation, and glycolysis, and contributed to cell apoptosis in CRC, indicating circ_0087862 as a promising tumor promoter.
Collapse
Affiliation(s)
- Yu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Hubei University of Science and Technology, The Central Hospital of Xianning, Xianning, China
| | - Lu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Hubei University of Science and Technology, The Central Hospital of Xianning, Xianning, China
| | - Jieyun Wu
- Department of Gastroenterology, The First Affiliated Hospital of Hubei University of Science and Technology, The Central Hospital of Xianning, Xianning, China
| | - Dazhi Su
- Department of Gastroenterology, The First Affiliated Hospital of Hubei University of Science and Technology, The Central Hospital of Xianning, Xianning, China.
| |
Collapse
|
16
|
Lin MC, Kuo WH, Chen SY, Hsu JY, Lu LY, Wang CC, Chen YJ, Tsai JS, Li HJ. Ago2/CAV1 interaction potentiates metastasis via controlling Ago2 localization and miRNA action. EMBO Rep 2024; 25:2441-2478. [PMID: 38649663 PMCID: PMC11094075 DOI: 10.1038/s44319-024-00132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Ago2 differentially regulates oncogenic and tumor-suppressive miRNAs in cancer cells. This discrepancy suggests a secondary event regulating Ago2/miRNA action in a context-dependent manner. We show here that a positive charge of Ago2 K212, that is preserved by SIR2-mediated Ago2 deacetylation in cancer cells, is responsible for the direct interaction between Ago2 and Caveolin-1 (CAV1). Through this interaction, CAV1 sequesters Ago2 on the plasma membranes and regulates miRNA-mediated translational repression in a compartment-dependent manner. Ago2/CAV1 interaction plays a role in miRNA-mediated mRNA suppression and in miRNA release via extracellular vesicles (EVs) from tumors into the circulation, which can be used as a biomarker of tumor progression. Increased Ago2/CAV1 interaction with tumor progression promotes aggressive cancer behaviors, including metastasis. Ago2/CAV1 interaction acts as a secondary event in miRNA-mediated suppression and increases the complexity of miRNA actions in cancer.
Collapse
Affiliation(s)
- Meng-Chieh Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, 100229, Taiwan
| | - Shih-Yin Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jing-Ya Hsu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Li-Yu Lu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Chen-Chi Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, 100229, Taiwan
| | - Yi-Ju Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Jia-Shiuan Tsai
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Hua-Jung Li
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan.
- Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
17
|
Song DH, Lee JS, Lee JH, Kim DC, Yang JW, Kim MH, Na JM, Cho HK, Yoo J, An HJ. Exosome-mediated secretion of miR-127-3p regulated by RAB27A accelerates metastasis in renal cell carcinoma. Cancer Cell Int 2024; 24:153. [PMID: 38685086 PMCID: PMC11057152 DOI: 10.1186/s12935-024-03334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The exosome-mediated extracellular secretion of miRNAs occurs in many cancers, and RAB27A is a potent regulator of exosome secretion. For metastatic renal cell carcinoma (RCC), this study examines the mechanisms of cancer metastasis via the RAB27A-regulated secretion of specific miRNAs. METHODS RAB27A knockdown (KD) and overexpressing (OE) RCC cells were used to examine cell migration and adhesion. The particle counts and sizes of exosomes in RAB27A OE cells were analyzed using Exoview, and those of intraluminal vesicles (ILV) and multivesicular bodies (MVB) were measured using an electron microscope. Analysis of RNA sequences, protein-protein interaction networks, and the competing endogenous RNA (ceRNA) network were used to identify representative downregulated miRNAs that are likely to undergo cargo-sorting into exosomes and subsequent secretion. A molecular beacon of miR-137-3p, one of the most representatively downregulated genes with a fold change of 339, was produced, and its secretion was analyzed using Exoview. RAB27A OE and control cells were incubated in an exosome-containing media to determine the uptake of tumor suppressor miRNAs that affect cancer cell metastasis. RESULTS Migration and cell adhesion were higher in RAB27A OE cells than in RAB27A KD cells. Electron microscopy revealed that the numbers of multivesicular bodies and intraluminal vesicles per cell were higher in RAB27A OE cells than in control cells, suggesting their secretion. The finding revealed that miR-127-3p was sorted into exosomes and disposed of extracellularly. Protein-protein interaction analysis revealed MYCN to be the most significant hub for RAB27A-OE RCC cells. ceRNA network analysis revealed that MAPK4 interacted strongly with miR-127-3p. CONCLUSION The disposal of miR-127-3p through exosome secretion in RAB27A overexpressing cells may not inhibit the MAPK pathway to gain metastatic potential by activating MYCN. The exosomes containing miRNAs are valuable therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Dae Hyun Song
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, South Korea
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Jong Sil Lee
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Jeong-Hee Lee
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Dong Chul Kim
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Jung Wook Yang
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Min Hye Kim
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Ji Min Na
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Hyun-Kyung Cho
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Ophthalmology, Gyeongsang National University Changwon Hospital, Gyeongsang National University, School of Medicine, Changwon, South Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21 Plus) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Hyo Jung An
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, South Korea.
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea.
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea.
| |
Collapse
|
18
|
Gambari R, Waziri AD, Goonasekera H, Peprah E. Pharmacogenomics of Drugs Used in β-Thalassemia and Sickle-Cell Disease: From Basic Research to Clinical Applications. Int J Mol Sci 2024; 25:4263. [PMID: 38673849 PMCID: PMC11050010 DOI: 10.3390/ijms25084263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In this short review we have presented and discussed studies on pharmacogenomics (also termed pharmacogenetics) of the drugs employed in the treatment of β-thalassemia or Sickle-cell disease (SCD). This field of investigation is relevant, since it is expected to help clinicians select the appropriate drug and the correct dosage for each patient. We first discussed the search for DNA polymorphisms associated with a high expression of γ-globin genes and identified this using GWAS studies and CRISPR-based gene editing approaches. We then presented validated DNA polymorphisms associated with a high HbF production (including, but not limited to the HBG2 XmnI polymorphism and those related to the BCL11A, MYB, KLF-1, and LYAR genes). The expression of microRNAs involved in the regulation of γ-globin genes was also presented in the context of pharmacomiRNomics. Then, the pharmacogenomics of validated fetal hemoglobin inducers (hydroxyurea, butyrate and butyrate analogues, thalidomide, and sirolimus), of iron chelators, and of analgesics in the pain management of SCD patients were considered. Finally, we discuss current clinical trials, as well as international research networks focusing on clinical issues related to pharmacogenomics in hematological diseases.
Collapse
Affiliation(s)
- Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, Ferrara University, 40124 Ferrara, Italy
| | - Aliyu Dahiru Waziri
- Department of Hematology and Blood Transfusion, Ahmadu Bello University Teaching Hospital Zaria, Kaduna 810001, Nigeria;
| | - Hemali Goonasekera
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo P.O. Box 271, Sri Lanka;
| | - Emmanuel Peprah
- Implementing Sustainable Evidence-Based Interventions through Engagement (ISEE) Lab, Department of Global and Environmental Health, School of Global Public Health, New York University, New York, NY 10003, USA;
| |
Collapse
|
19
|
Gupta N, Somayajulu M, Gurdziel K, LoGrasso G, Aziz H, Rosati R, McClellan S, Pitchaikannu A, Santra M, Shukkur MFA, Stemmer P, Hazlett LD, Xu S. The miR-183/96/182 cluster regulates sensory innervation, resident myeloid cells and functions of the cornea through cell type-specific target genes. Sci Rep 2024; 14:7676. [PMID: 38561433 PMCID: PMC10985120 DOI: 10.1038/s41598-024-58403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
The conserved miR-183/96/182 cluster (miR-183C) is expressed in both corneal resident myeloid cells (CRMCs) and sensory nerves (CSN) and modulates corneal immune/inflammatory responses. To uncover cell type-specific roles of miR-183C in CRMC and CSN and their contributions to corneal physiology, myeloid-specific miR-183C conditional knockout (MS-CKO), and sensory nerve-specific CKO (SNS-CKO) mice were produced and characterized in comparison to the conventional miR-183C KO. Immunofluorescence and confocal microscopy of flatmount corneas, corneal sensitivity, and tear volume assays were performed in young adult naïve mice; 3' RNA sequencing (Seq) and proteomics in the trigeminal ganglion (TG), cornea and CRMCs. Our results showed that, similar to conventional KO mice, the numbers of CRMCs were increased in both MS-CKO and SNS-CKO vs age- and sex-matched WT control littermates, suggesting intrinsic and extrinsic regulations of miR-183C on CRMCs. The number of CRMCs was increased in male vs female MS-CKO mice, suggesting sex-dependent regulation of miR-183C on CRMCs. In the miR-183C KO and SNS-CKO, but not the MS-CKO mice, CSN density was decreased in the epithelial layer of the cornea, but not the stromal layer. Functionally, corneal sensitivity and basal tear volume were reduced in the KO and SNS-CKO, but not the MS-CKO mice. Tear volume in males is consistently higher than female WT mice. Bioinformatic analyses of the transcriptomes revealed a series of cell-type specific target genes of miR-183C in TG sensory neurons and CRMCs. Our data elucidate that miR-183C imposes intrinsic and extrinsic regulation on the establishment and function of CSN and CRMCs by cell-specific target genes. miR-183C modulates corneal sensitivity and tear production through its regulation of corneal sensory innervation.
Collapse
Affiliation(s)
- Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | | | - Giovanni LoGrasso
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Haidy Aziz
- School of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Sharon McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Manoranjan Santra
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Muhammed Farooq Abdul Shukkur
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Paul Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA.
| |
Collapse
|
20
|
Casertano M, Trotta MC, Cenni S, Creoli M, Miele E, Martinelli M, Lepre CC, Russo M, Alfano R, D'Amico M, Strisciuglio C. Infliximab therapy decreases the expression of serum and faecal miR-126 and miR-20a in paediatric Crohn's disease: A pilot study. Acta Paediatr 2024; 113:590-597. [PMID: 38140840 DOI: 10.1111/apa.17072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
AIM We aimed to evaluate the serum and faecal expression of miR-126 and miR-20a in children with Crohn's disease (CD) during infliximab (IFX) therapy. METHODS In this prospective observational study, serum and faeces from CD patients were collected before IFX therapy (T0), after induction (T1) and after 6 months from IFX (T2). IFX levels were determined by Enzyme-linked immunosorbent assay at T1 and T2. miRNAs were profiled through Real-Time RT-PCR. The activity of disease was evaluated through the Paediatric Crohn's disease activity index (PCDAI), serum C-reactive protein (CRP) and faecal calprotectin. RESULTS Nine CD children were enrolled. Serum and faecal miR-126 and miR-20a levels were higher at T0 and showed a time-dependent decrease, being significantly down-regulated after IFX treatment at T2. Specifically, IFX levels recorded at T1 and T2 negatively correlated with the serum and faecal expression of miR-126 and miR-20a. Serum and faecal changes of miR-126 and miR20-a were positively associated with the decrease of the inflammatory marker CRP and PDCAI at all time points. CONCLUSION In children with CD, IFX therapy decreases the expression of serum and faecal miR-126 and miR-20a, suggesting an involvement of these two miRNAs in the action of the drug.
Collapse
Affiliation(s)
- Marianna Casertano
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sabrina Cenni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mara Creoli
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Erasmo Miele
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Massimo Martinelli
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- PhD Course in Translational Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marina Russo
- PhD Course of National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- School of Pharmacology and Clinical Toxicology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences "DAMSS", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele D'Amico
- Therapeutic Monitoring Unit for Biological Drugs, UOC Clinic Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
21
|
Bryant CJ, McCool MA, Rosado González G, Abriola L, Surovtseva Y, Baserga S. Discovery of novel microRNA mimic repressors of ribosome biogenesis. Nucleic Acids Res 2024; 52:1988-2011. [PMID: 38197221 PMCID: PMC10899765 DOI: 10.1093/nar/gkad1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A (p21) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We provide evidence that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
Affiliation(s)
- Carson J Bryant
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mason A McCool
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | | | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
22
|
Kan JY, Shih SL, Yang SF, Chu PY, Chen FM, Li CL, Wu YC, Yeh YT, Hou MF, Chiang CP. Exosomal microRNA-92b Is a Diagnostic Biomarker in Breast Cancer and Targets Survival-Related MTSS1L to Promote Tumorigenesis. Int J Mol Sci 2024; 25:1295. [PMID: 38279296 PMCID: PMC10816035 DOI: 10.3390/ijms25021295] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Exosomal microRNAs (miRNAs) are novel, non-invasive biomarkers for facilitating communication and diagnosing cancer. However, only a few studies have investigated their function and role in the clinical diagnosis of breast cancer. To address this gap, we established a stable cell line, MDA-MB-231-CD63-RFP, and recruited 112 female participants for serum collection. We screened 88 exosomal miRNAs identified through microarray analysis of 231-CD63 and literature screening using real-time PCR; only exosomal miR-92b-5p was significantly increased in patients with breast cancer. It had a significant correlation with stage and discriminated patients from the control with an AUC of 0.787. Exosomal miR-92b-5p impacted the migration, adhesion, and spreading ability of normal human mammary epithelial recipient cells through the downregulation of the actin dynamics regulator MTSS1L. In clinical breast cancer tissue, the expression of MTSS1L was significantly inversely correlated with tissue miR-92b-5p, and high expression of MTSS1L was associated with better 10-year overall survival rates in patients undergoing hormone therapy. In summary, our studies demonstrated that exosomal miR-92b-5p might function as a non-invasive body fluid biomarker for breast cancer detection and provide a novel therapeutic strategy in the axis of miR-92b-5p to MTSS1L for controlling metastasis and improving patient survival.
Collapse
Affiliation(s)
- Jung-Yu Kan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (J.-Y.K.); (S.-L.S.); (F.-M.C.); (C.-L.L.); (Y.-C.W.)
| | - Shen-Liang Shih
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (J.-Y.K.); (S.-L.S.); (F.-M.C.); (C.-L.L.); (Y.-C.W.)
| | - Sheau-Fang Yang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 50544, Taiwan;
| | - Fang-Ming Chen
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (J.-Y.K.); (S.-L.S.); (F.-M.C.); (C.-L.L.); (Y.-C.W.)
| | - Chung-Liang Li
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (J.-Y.K.); (S.-L.S.); (F.-M.C.); (C.-L.L.); (Y.-C.W.)
| | - Yi-Chia Wu
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (J.-Y.K.); (S.-L.S.); (F.-M.C.); (C.-L.L.); (Y.-C.W.)
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yao-Tsung Yeh
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83130, Taiwan;
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (J.-Y.K.); (S.-L.S.); (F.-M.C.); (C.-L.L.); (Y.-C.W.)
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chih-Po Chiang
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (J.-Y.K.); (S.-L.S.); (F.-M.C.); (C.-L.L.); (Y.-C.W.)
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83130, Taiwan;
| |
Collapse
|
23
|
Pereira IDS, Cruz ABD, Maia MM, Carneiro FM, Gava R, Spegiorin LCJF, Brandão CC, Truzzi IGDC, Junior GMDF, de Mattos LC, Pereira-Chioccola VL, Meira-Strejevitch CS. Identification and validation of reference genes of circulating microRNAs for use as control in gestational toxoplasmosis. Mol Biochem Parasitol 2023; 256:111592. [PMID: 37666471 DOI: 10.1016/j.molbiopara.2023.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Toxoplasmosis causes serious harm to the fetus, as tachyzoite dissemination, during pregnancy in women developing the primo-infection. The microRNAs (miRNAs) are small non-coding RNAs, which have regulatory roles in cells by silencing messenger RNA. Circulating miRNA are promising biomarkers for diagnosis and prognosis of numerous diseases. The miRNAs levels are estimated by quantitative real-time PCR (qPCR), however, the relative quantification of each miRNA expression requires proper normalization methods using endogenous miRNAs as control. This study analyzed the expression of three endogenous miRNAs (miR-484, miR -423-3p and miR-26b-5p) for use as normalizers in future studies of target miRNAs for gestational toxoplasmosis (GT). A total of 32 plasma samples were used in all assays divided in 21 from women with GT and 11 from healthy women. The stability of each endogenous miRNA was evaluated by the algorithm methods RefFinder that included GeNorm, Normfinder, BestKeeper and comparative delta-CT programs. The miR-484 was the most stably gene, and equivalently expressed in GT and NC groups. These results contribute to future studies of target miRNAs in clinical samples of women with gestational toxoplasmosis.
Collapse
Affiliation(s)
- Ingrid de Siqueira Pereira
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Allecineia Bispo da Cruz
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Marta Marques Maia
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Francieli Marinho Carneiro
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Ricardo Gava
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | | | | | | | | | | | - Vera Lucia Pereira-Chioccola
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Cristina Silva Meira-Strejevitch
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil.
| |
Collapse
|
24
|
Yu S, Liao J, Lin X, Luo Y, Lu G. Crucial role of autophagy in propofol-treated neurological diseases: a comprehensive review. Front Cell Neurosci 2023; 17:1274727. [PMID: 37946715 PMCID: PMC10631783 DOI: 10.3389/fncel.2023.1274727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Neurological disorders are the leading cause of disability and death globally. Currently, there is a significant concern about the therapeutic strategies that can offer reliable and cost-effective treatment for neurological diseases. Propofol is a widely used general intravenous anesthetic in the clinic. Emerging studies demonstrate that propofol exerts neuroprotective effects on neurological diseases and disorders, while its underlying pathogenic mechanism is not well understood. Autophagy, an important process of cell turnover in eukaryotes, has been suggested to involve in the neuroprotective properties developed by propofol. In this narrative review, we summarized the current evidence on the roles of autophagy in propofol-associated neurological diseases. This study highlighted the effect of propofol on the nervous system and the crucial roles of autophagy. According to the 21 included studies, we found that propofol was a double-edged sword for neurological disorders. Several eligible studies reported that propofol caused neuronal cell damage by regulating autophagy, leading to cognitive dysfunction and other neurological diseases, especially high concentration and dose of propofol. However, some of them have shown that in the model of existing nervous system diseases (e.g., cerebral ischemia-reperfusion injury, electroconvulsive therapy injury, cobalt chloride-induced injury, TNF-α-induced injury, and sleep deprivation-induced injury), propofol might play a neuroprotective role by regulating autophagy, thus improving the degree of nerve damage. Autophagy plays a pivotal role in the neurological system by regulating oxidative stress, inflammatory response, calcium release, and other mechanisms, which may be associated with the interaction of a variety of related proteins and signal cascades. With extensive in-depth research in the future, the autophagic mechanism mediated by propofol will be fully understood, which may facilitate the feasibility of propofol in the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sicong Yu
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Xuezheng Lin
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yu Luo
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Guangtao Lu
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
25
|
Bryant CJ, McCool MA, Rosado-González GT, Abriola L, Surovtseva YV, Baserga SJ. Discovery of novel microRNA mimic repressors of ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.526327. [PMID: 36824951 PMCID: PMC9949135 DOI: 10.1101/2023.02.17.526327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2,603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A ( p21 ) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We discovered that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, directly and potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
|
26
|
Zhenhai Z, Qi C, Shuchao Z, Zhongqi W, Xue S, Zhijun G, Zhijie M, Jianmin L, Beibei L, Yuanyuan G. MiR-205-3p suppresses bladder cancer progression via GLO1 mediated P38/ERK activation. BMC Cancer 2023; 23:956. [PMID: 37814205 PMCID: PMC10563299 DOI: 10.1186/s12885-023-11175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/12/2023] [Indexed: 10/11/2023] Open
Abstract
MicroRNAs (miRNAs) have been reported to serve as potential biomarkers in bladder cancer and play important roles in cancer progression. This study aimed to investigate the biological role of miR-205-3p in bladder cancer. We showed that miR-205-3p was significantly down-regulated in bladder cancer tissues and cells. Moreover, overexpression of miR-205-3p inhibited bladder cancer progression in vitro. Then we confirmed that GLO1, a downstream target of miR-205-3p, mediated the effect of miR-205-3p on bladder cancer cells. In addition, we found that miR-205-3p inhibits P38/ERK activation through repressing GLO1. Eventually, we confirmed that miR-205-3p inhibits the occurrence and progress of bladder cancer by targeting GLO1 in vivo by nude mouse tumorigenesis and immunohistochemistry. In a word, miR-205-3p inhibits proliferation and metastasis of bladder cancer cells by activating the GLO1 mediated P38/ERK signaling pathway and that may be a potential therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Zou Zhenhai
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, 233040, Anhui, Bengbu, Longzihu, Bengbu, China
| | - Cheng Qi
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, 233040, Anhui, Bengbu, Longzihu, Bengbu, China
| | - Zhang Shuchao
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, 233040, Anhui, Bengbu, Longzihu, Bengbu, China
| | - Wang Zhongqi
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, 233040, Anhui, Bengbu, Longzihu, Bengbu, China
| | - Song Xue
- The Central Laboratory of the First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233040, China
| | - Geng Zhijun
- The Central Laboratory of the First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233040, China
| | - Mei Zhijie
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, 233040, Anhui, Bengbu, Longzihu, Bengbu, China
| | - Liu Jianmin
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, 233040, Anhui, Bengbu, Longzihu, Bengbu, China
| | - Liu Beibei
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, 233040, Anhui, Bengbu, Longzihu, Bengbu, China.
| | - Guo Yuanyuan
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, 233040, Anhui, Bengbu, Longzihu, Bengbu, China.
| |
Collapse
|
27
|
Salas-Huetos A, Ribas-Maynou J, Mateo-Otero Y, Tamargo C, Llavanera M, Yeste M. Expression of miR-138 in cryopreserved bovine sperm is related to their fertility potential. J Anim Sci Biotechnol 2023; 14:129. [PMID: 37730625 PMCID: PMC10510164 DOI: 10.1186/s40104-023-00909-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, single-stranded, non-coding RNA molecules of 22-24 nucleotides that regulate gene expression. In the last decade, miRNAs have been described in sperm of several mammals, including cattle. It is known that miRNAs can act as key gene regulators of early embryogenesis in mice and humans; however, little is known about the content, expression, and function of sperm-borne miRNAs in early bovine embryo. In this study, total sperm RNA was isolated from 29 cryopreserved sperm samples (each coming from a separate bull) using a RNeasy kit and treatment with DNase I. RNA concentration and purity were determined through an Epoch spectrophotometer and an Agilent Bioanalyzer. The expression of 10 candidate miRNAs in bovine sperm (bta-miR-10a, bta-miR-10b, bta-miR-138, bta-miR-146b, bta-miR-19b, bta-miR-26a, bta-miR-34a, bta-miR-449a, bta-miR-495 and bta-miR-7), previously identified in testis and/or epididymis, was evaluated with RT-qPCR. The cel-miR-39-3p was used as a spike-in exogenous control. Nonparametric Mann-Whitney tests were run to evaluate which miRNAs were differentially expressed between bulls with high fertility [HF; non-return rates (NRR) ranging from 39.5 to 43.5] and those with subfertility (SF; NRR ranging from 33.3 to 39.3). Several sperm functionality parameters (e.g., viability, membrane stability or oxygen consumption, among others) were measured by multiplexing flow cytometry and oxygen sensing technologies. RESULTS RNA concentration and purity (260/280 nm ratio) (mean ± SD) from the 29 samples were 99.3 ± 84.6 ng/µL and 1.97 ± 0.72, respectively. Bioanalyzer results confirmed the lack of RNA from somatic cells. In terms of the presence or absence of miRNAs, and after applying the Livak method, 8 out of 10 miRNAs (bta-miR-10b, -138, -146b, -19b, -26a, -449a, -495, -7) were consistently detected in bovine sperm, whereas the other two (bta-miR-10a, and -34a) were absent. Interestingly, the relative expression of one miRNA (bta-miR-138) in sperm was significantly lower in the SF than in the HF group (P = 0.038). In addition to being associated to fertility potential, the presence of this miRNA was found to be negatively correlated with sperm oxygen consumption. The expression of three other miRNAs (bta-miR-19b, bta-miR-26a and bta-miR-7) was also correlated with sperm function variables. CONCLUSIONS In conclusion, although functional validation studies are required to confirm these results, this study suggests that sperm bta-miR-138 is involved in fertilization events and beyond, and supports its use as a fertility biomarker in cattle.
Collapse
Affiliation(s)
- Albert Salas-Huetos
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, 17003, Spain.
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, 17003, Spain.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA.
- Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain.
- Present Address: Unit of Preventive Medicine and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, 43201, Spain.
| | - Jordi Ribas-Maynou
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, 17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, 17003, Spain
| | - Yentel Mateo-Otero
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, 17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, 17003, Spain
| | - Carolina Tamargo
- Department of Animal Selection and Reproduction, The Regional Agri-Food Research and Development Service of Asturias (SERIDA), Gijón, 33394, Spain
| | - Marc Llavanera
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, 17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, 17003, Spain
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, 17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, 17003, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
28
|
Liu C, Liu X, Li H, Kang Z. Advances in the regulation of adipogenesis and lipid metabolism by exosomal ncRNAs and their role in related metabolic diseases. Front Cell Dev Biol 2023; 11:1173904. [PMID: 37791070 PMCID: PMC10543472 DOI: 10.3389/fcell.2023.1173904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
Exosomes are membrane-bound extracellular vesicles released following the fusion of multivesicular bodies (MVBs) with the cell membrane. Exosomes transport diverse molecules, including proteins, lipids, DNA and RNA, and regulate distant intercellular communication. Noncoding RNA (ncRNAs) carried by exosomes regulate cell-cell communication in tissues, including adipose tissue. This review summarizes the action mechanisms of ncRNAs carried by exosomes on adipocyte differentiation and modulation of adipogenesis by exosomal ncRNAs. This study aims to provide valuable insights for developing novel therapeutics.
Collapse
Affiliation(s)
- Cong Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xilin Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hong Li
- Department of Nursing, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhichen Kang
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Jo HR, Hwang J, Jeong JH. MicroRNA miR-214-5p induces senescence of microvascular endothelial cells by targeting the JAG1/Notch signaling pathway. Noncoding RNA Res 2023; 8:385-391. [PMID: 37260583 PMCID: PMC10227379 DOI: 10.1016/j.ncrna.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 06/02/2023] Open
Abstract
During cellular senescence, irreversible cell cycle arrest is accompanied by morphological and genetic alterations. MicroRNAs (miRNAs) play a critical role in regulating senescence by modulating the abundance of crucial senescence regulatory proteins. Therefore, to identify novel senescence-associated miRNAs, we analyzed differentially expressed miRNAs in microvascular endothelial cells (MVEC). Among the 80 differentially expressed miRNAs in replicative senescent MVECs, 16 miRNAs of unknown gene ontology were used in the senescence-associated β-galactosidase assay. Thus, we identified miR-214-5p as having high senescence-inducing activity, inhibiting the proliferation and angiogenesis activity of MVECs. To reveal the senescence-regulating mechanism of miR-214-5p, we searched for target genes through sequence- and literature-based analysis. Molecular manipulation of miR-214-5p demonstrated that miR-214-5p regulated the expression and function of Jagged 1 (JAG1) in senescent MVECs. Silencing JAG1 or downstream genes of JAG1-Notch signaling, accelerated the senescence of MVECs. Additionally, ectopic overexpression of JAG1 reversed the senescence-inducing activity of miR-214-5p. In conclusion, we identified miR-214-5p as a senescence-associated miRNA. Targeting miR-214-5p may be a potential strategy to delay vascular aging and overcome the detrimental effects of senescence and age-related diseases.
Collapse
Affiliation(s)
- Hye-ram Jo
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul, 01812, South Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34113, South Korea
| | - Jiwon Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul, 01812, South Korea
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Jae-Hoon Jeong
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul, 01812, South Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34113, South Korea
| |
Collapse
|
30
|
Chi H, Chen H, Wang R, Zhang J, Jiang L, Zhang S, Jiang C, Huang J, Quan X, Liu Y, Zhang Q, Yang G. Proposing new early detection indicators for pancreatic cancer: Combining machine learning and neural networks for serum miRNA-based diagnostic model. Front Oncol 2023; 13:1244578. [PMID: 37601672 PMCID: PMC10437932 DOI: 10.3389/fonc.2023.1244578] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a lethal malignancy that ranks seventh in terms of global cancer-related mortality. Despite advancements in treatment, the five-year survival rate remains low, emphasizing the urgent need for reliable early detection methods. MicroRNAs (miRNAs), a group of non-coding RNAs involved in critical gene regulatory mechanisms, have garnered significant attention as potential diagnostic and prognostic biomarkers for pancreatic cancer (PC). Their suitability stems from their accessibility and stability in blood, making them particularly appealing for clinical applications. METHODS In this study, we analyzed serum miRNA expression profiles from three independent PC datasets obtained from the Gene Expression Omnibus (GEO) database. To identify serum miRNAs associated with PC incidence, we employed three machine learning algorithms: Support Vector Machine-Recursive Feature Elimination (SVM-RFE), Least Absolute Shrinkage and Selection Operator (LASSO), and Random Forest. We developed an artificial neural network model to assess the accuracy of the identified PC-related serum miRNAs (PCRSMs) and create a nomogram. These findings were further validated through qPCR experiments. Additionally, patient samples with PC were classified using the consensus clustering method. RESULTS Our analysis revealed three PCRSMs, namely hsa-miR-4648, hsa-miR-125b-1-3p, and hsa-miR-3201, using the three machine learning algorithms. The artificial neural network model demonstrated high accuracy in distinguishing between normal and pancreatic cancer samples, with verification and training groups exhibiting AUC values of 0.935 and 0.926, respectively. We also utilized the consensus clustering method to classify PC samples into two optimal subtypes. Furthermore, our investigation into the expression of PCRSMs unveiled a significant negative correlation between the expression of hsa-miR-125b-1-3p and age. CONCLUSION Our study introduces a novel artificial neural network model for early diagnosis of pancreatic cancer, carrying significant clinical implications. Furthermore, our findings provide valuable insights into the pathogenesis of pancreatic cancer and offer potential avenues for drug screening, personalized treatment, and immunotherapy against this lethal disease.
Collapse
Affiliation(s)
- Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Haiqing Chen
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Rui Wang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Shengke Zhang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Chenglu Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jinbang Huang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xiaomin Quan
- Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine Second Affiliated DongFang Hospital, Beijing, China
| | - Yunfei Liu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Qinhong Zhang
- Shenzhen Frontiers in Chinese Medicine Research Co., Ltd., Shenzhen, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
31
|
Tang Y, Chen YG, Huang HY, Li SF, Zuo HL, Chen JH, Li LP, Mao RB, Lin YCD, Huang HD. Panax notoginseng alleviates oxidative stress through miRNA regulations based on systems biology approach. Chin Med 2023; 18:74. [PMID: 37337262 DOI: 10.1186/s13020-023-00768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/14/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Herbal medicine Sanqi (SQ), the dried root or stem of Panax notoginseng (PNS), has been reported to have anti-diabetic and anti-obesity effects and is usually administered as a decoction for Chinese medicine. Alternative to utilizing PNS pure compound for treatment, we are motivated to propose an unconventional scheme to investigate the functions of PNS mixture. However, studies providing a detailed overview of the transcriptomics-based signaling network in response to PNS are seldom available. METHODS To explore the reasoning of PNS in treating metabolic disorders such as insulin resistance, we implemented a systems biology-based approach with RNA sequencing (RNA-seq) and miRNA sequencing data to elucidate key pathways, genes and miRNAs involved. RESULTS Functional enrichment analysis revealed PNS up-regulating oxidative stress-related pathways and down-regulating insulin and fatty acid metabolism. Superoxide dismutase 1 (SOD1), peroxiredoxin 1 (PRDX1), heme oxygenase-1 (Hmox1) and glutamate cysteine ligase (GCLc) mRNA and protein levels, as well as related miRNA levels, were measured in PNS treated rat pancreatic β cells (INS-1). PNS treatment up-regulated Hmox1, SOD1 and GCLc expression while down-regulating miR-24-3p and miR-139-5p to suppress oxidative stress. Furthermore, we verified the novel interactions between miR-139-5p and miR-24-3p with GCLc and SOD1. CONCLUSION This work has demonstrated the mechanism of how PNS regulates cellular molecules in metabolic disorders. Therefore, combining omics data with a systems biology strategy could be a practical means to explore the potential function and molecular mechanisms of Chinese herbal medicine in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Yun Tang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Yi-Gang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Shang-Fu Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Hua-Li Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Ji-Hang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Li-Ping Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Run-Bo Mao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China.
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China.
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China.
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
32
|
Bašić D, Ignjatović I, Janković Veličković L, Veljković A. Molecular Characterization of Microrna Interference and Aristolochic Acid Intoxication Found in Upper Tract Urothelial Carcinoma in Patients with Balkan Endemic Nephropathy: A Systematic Review of the Current Literature. Balkan J Med Genet 2023; 25:105-111. [PMID: 37265966 PMCID: PMC10230835 DOI: 10.2478/bjmg-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The term "aristolochic acid nephropathy" (AAN) is used to include any form of toxic interstitial nephropathy that is caused either by ingestion of plants containing aristolochic acids (AA) or by the environmental contaminants in food such as in Balkan endemic nephropathy (BEN). Aristolochic acid (AA) intoxication is strongly associated with the development of upper tract urothelial carcinoma (UTUC); however, the underlying molecular mechanism remains to be defined. MicroRNAs (miRNA) regulate several biological processes, including cell proliferation, differentiation, and metabolism, acting as oncogenes or tumor suppressors. A unique miRNA expression profile suggested that miRNAs could function as regulators in UTUC developmental processes. This review aimed to summarize data available in the literature about underlying molecular mechanisms leading to the expression of miRNAs in AA-UTUC patients with BEN. Strong correlation in AA-UTUC has a distinctive gene alteration pattern, AL-DNA adducts, and a unique tumor protein (TP53) mutational spectrum AAG to TAG (A: T→T: A) transversion in codon 139 (Lys → Stop) of exon 5 activates the p53 tumor suppressor protein. Further, p53 protein is responsible not only for the expression of miRNAs but also acts as a target molecule for miRNAs and plays a crucial function in the AA-UTUC pathogenicity through activation of cyclin-dependent kinase (CyclinD1) and cyclin protein kinase 6(CDK6) to support cell cycle arrest. This study, proposed a molecular mechanism that represented a possible unique relationship between AA intoxication, miRNAs expression, and the progression of UTUC in patients with BEN.
Collapse
Affiliation(s)
- D Bašić
- Urology Clinic, University Clinical Center Niš, Faculty of Medicine, University of Niš, Niš, Serbia
| | - I Ignjatović
- Urology Clinic, University Clinical Center Niš, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Lj Janković Veličković
- Center for Pathology, University Clinical Center Niš, Faculty of Medicine, University of Niš, Niš, Serbia
| | - A Veljković
- Department of Biochemistry, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
33
|
Huang J, Wang T, Qiu Y, Hassanyar AK, Zhang Z, Sun Q, Ni X, Yu K, Guo Y, Yang C, Lü Y, Nie H, Lin Y, Li Z, Su S. Differential Brain Expression Patterns of microRNAs Related to Olfactory Performance in Honey Bees ( Apis mellifera). Genes (Basel) 2023; 14:genes14051000. [PMID: 37239360 DOI: 10.3390/genes14051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
MicroRNAs (miRNAs) play a vital role in the nerve regulation of honey bees (Apis mellifera). This study aims to investigate the differences in expression of miRNAs in a honey bee's brain for olfactory learning tasks and to explore their potential role in a honey bee's olfactory learning and memory. In this study, 12 day old honey bees with strong and weak olfactory performances were utilized to investigate the influence of miRNAs on olfactory learning behavior. The honey bee brains were dissected, and a small RNA-seq technique was used for high-throughput sequencing. The data analysis of the miRNA sequences revealed that 14 differentially expressed miRNAs (DEmiRNAs) between the two groups, strong (S) and weak (W), for olfactory performance in honey bees were identified, which included seven up-regulated and seven down-regulated. The qPCR verification results of the 14 miRNAs showed that four miRNAs (miR-184-3p, miR-276-3p, miR-87-3p, and miR-124-3p) were significantly associated with olfactory learning and memory. The target genes of these DEmiRNAs were subjected to the GO database annotation and KEGG pathway enrichment analyses. The functional annotation and pathway analysis showed that the neuroactive ligand-receptor interaction pathway, oxidative phosphorylation, biosynthesis of amino acids, pentose phosphate pathway, carbon metabolism, and terpenoid backbone biosynthesis may be a great important pathway related to olfactory learning and memory in honey bees. Our findings together further explained the relationship between olfactory performance and the brain function of honey bees at the molecular level and provides a basis for further study on miRNAs related to olfactory learning and memory in honey bees.
Collapse
Affiliation(s)
- Jingnan Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianbao Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanmei Qiu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aqai Kalan Hassanyar
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaonan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Laboratory of Evolution and Diversity Biology, UMR5174, University Toulouse III Paul Sabatier, CNRS, 31062 Toulouse, France
| | - Qiaoling Sun
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xiaomin Ni
- Faculty of Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Kejun Yu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongkang Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Changsheng Yang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yang Lü
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157041, China
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiguo Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Academy of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
34
|
Tupini C, Zurlo M, Gasparello J, Lodi I, Finotti A, Scattolin T, Visentin F, Gambari R, Lampronti I. Combined Treatment of Cancer Cells Using Allyl Palladium Complexes Bearing Purine-Based NHC Ligands and Molecules Targeting MicroRNAs miR-221-3p and miR-222-3p: Synergistic Effects on Apoptosis. Pharmaceutics 2023; 15:pharmaceutics15051332. [PMID: 37242574 DOI: 10.3390/pharmaceutics15051332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Combined treatments employing lower concentrations of different drugs are used and studied to develop new and more effective anticancer therapeutic approaches. The combination therapy could be of great interest in the controlling of cancer. Regarding this, our research group has recently shown that peptide nucleic acids (PNAs) that target miR-221 are very effective and functional in inducing apoptosis of many tumor cells, including glioblastoma and colon cancer cells. Moreover, in a recent paper, we described a series of new palladium allyl complexes showing a strong antiproliferative activity on different tumor cell lines. The present study was aimed to analyze and validate the biological effects of the most active compounds tested, in combination with antagomiRNA molecules targeting two miRNAs, miR-221-3p and miR-222-3p. The obtained results show that a "combination therapy", produced by combining the antagomiRNAs targeting miR-221-3p, miR-222-3p and the palladium allyl complex 4d, is very effective in inducing apoptosis, supporting the concept that the combination treatment of cancer cells with antagomiRNAs targeting a specific upregulated oncomiRNAs (in this study miR-221-3p and miR-222-3p) and metal-based compounds represents a promising therapeutic strategy to increase the efficacy of the antitumor protocol, reducing side effects at the same time.
Collapse
Affiliation(s)
- Chiara Tupini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Irene Lodi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Center of Innovative Therapies for Cystic Fibrosis (InnThera4CF), University of Ferrara, 44121 Ferrara, Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi, University Ca' Foscari, 30174 Venezia-Mestre, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Center of Innovative Therapies for Cystic Fibrosis (InnThera4CF), University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Center of Innovative Therapies for Cystic Fibrosis (InnThera4CF), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
35
|
Papi C, Gasparello J, Zurlo M, Cosenza LC, Gambari R, Finotti A. The Cystic Fibrosis Transmembrane Conductance Regulator Gene (CFTR) Is under Post-Transcriptional Control of microRNAs: Analysis of the Effects of agomiRNAs Mimicking miR-145-5p, miR-101-3p, and miR-335-5p. Noncoding RNA 2023; 9:ncrna9020029. [PMID: 37104011 PMCID: PMC10146138 DOI: 10.3390/ncrna9020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
(1) Background: MicroRNAs are involved in the expression of the gene encoding the chloride channel CFTR (Cystic Fibrosis Transmembrane Conductance Regulator); the objective of this short report is to study the effects of the treatment of bronchial epithelial Calu-3 cells with molecules mimicking the activity of pre-miR-145-5p, pre-miR-335-5p, and pre-miR-101-3p, and to discuss possible translational applications of these molecules in pre-clinical studies focusing on the development of protocols of possible interest in therapy; (2) Methods: CFTR mRNA was quantified by Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR). The production of the CFTR protein was assessed by Western blotting; (3) Results: The treatment of Calu-3 cells with agomiR-145-5p caused the highest inhibition of CFTR mRNA accumulation and CFTR production; (4) Conclusions: The treatment of target cells with the agomiR pre-miR-145-5p should be considered when CFTR gene expression should be inhibited in pathological conditions, such as polycystic kidney disease (PKD), some types of cancer, cholera, and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chiara Papi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, 44121 Ferrara, Italy
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
36
|
Asad S, Mehdi AM, Pujhari S, Rückert C, Ebel GD, Rasgon JL. Identification of MicroRNAs in the West Nile Virus Vector Culex tarsalis (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:182-293. [PMID: 36477983 PMCID: PMC10216877 DOI: 10.1093/jme/tjac182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 05/28/2023]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNAs that regulate gene expression during important biological processes including development and pathogen defense in most living organisms. Presently, no miRNAs have been identified in the mosquito Culex tarsalis (Diptera: Culicidae), one of the most important vectors of West Nile virus (WNV) in North America. We used small RNA sequencing data and in vitro and in vivo experiments to identify and validate a repertoire of miRNAs in Cx. tarsalis mosquitoes. Using bioinformatic approaches we analyzed small RNA sequences from the Cx. tarsalis CT embryonic cell line to discover orthologs for 86 miRNAs. Consistent with other mosquitoes such as Aedes albopictus and Culex quinquefasciatus, miR-184 was found to be the most abundant miRNA in Cx. tarsalis. We also identified 20 novel miRNAs from the recently sequenced Cx. tarsalis genome, for a total of 106 miRNAs identified in this study. The presence of selected miRNAs was biologically validated in both the CT cell line and in adult Cx. tarsalis mosquitoes using RT-qPCR and sequencing. These results will open new avenues of research into the role of miRNAs in Cx. tarsalis biology, including development, metabolism, immunity, and pathogen infection.
Collapse
Affiliation(s)
- Sultan Asad
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Ahmed M Mehdi
- The University of Queensland, Brisbane, Australia Diamantina Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Sujit Pujhari
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV, 89557, USA
- Department of Microbiology, Immunology and Pathology, Center for Vector-borne Infectious Diseases, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USAand
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, Center for Vector-borne Infectious Diseases, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USAand
| | - Jason L Rasgon
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
37
|
miR-34c-3p Regulates Protein Kinase A Activity Independent of cAMP by Dicing prkar2b Transcripts in Theileria annulata-Infected Leukocytes. mSphere 2023; 8:e0052622. [PMID: 36847534 PMCID: PMC10117149 DOI: 10.1128/msphere.00526-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that can play critical roles in regulating various cellular processes, including during many parasitic infections. Here, we report a regulatory role for miR-34c-3p in cAMP-independent regulation of host cell protein kinase A (PKA) activity in Theileria annulata-infected bovine leukocytes. We identified prkar2b (cAMP-dependent protein kinase A type II-beta regulatory subunit) as a novel miR-34c-3p target gene and demonstrate how infection-induced upregulation of miR-34c-3p repressed PRKAR2B expression to increase PKA activity. As a result, the disseminating tumorlike phenotype of T. annulata-transformed macrophages is enhanced. Finally, we extend our observations to Plasmodium falciparum-parasitized red blood cells, where infection-induced augmentation in miR-34c-3p levels led to a drop in the amount of prkar2b mRNA and increased PKA activity. Collectively, our findings represent a novel cAMP-independent way of regulating host cell PKA activity in infections by Theileria and Plasmodium parasites. IMPORTANCE Small microRNA levels are altered in many diseases, including those caused by parasites. Here, we describe how infection by two important animal and human parasites, Theileria annulata and Plasmodium falciparum, induce changes in infected host cell miR-34c-3p levels to regulate host cell PKA kinase activity by targeting mammalian prkar2b. Infection-induced changes in miR-34c-3p levels provide a novel epigenetic mechanism for regulating host cell PKA activity independent of fluxes in cAMP to both aggravate tumor dissemination and improve parasite fitness.
Collapse
|
38
|
Feng H, Jin D, Li J, Li Y, Zou Q, Liu T. Matrix reconstruction with reliable neighbors for predicting potential MiRNA-disease associations. Brief Bioinform 2023; 24:6960615. [PMID: 36567252 DOI: 10.1093/bib/bbac571] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 11/23/2022] [Indexed: 12/27/2022] Open
Abstract
Numerous experimental studies have indicated that alteration and dysregulation in mircroRNAs (miRNAs) are associated with serious diseases. Identifying disease-related miRNAs is therefore an essential and challenging task in bioinformatics research. Computational methods are an efficient and economical alternative to conventional biomedical studies and can reveal underlying miRNA-disease associations for subsequent experimental confirmation with reasonable confidence. Despite the success of existing computational approaches, most of them only rely on the known miRNA-disease associations to predict associations without adding other data to increase the prediction accuracy, and they are affected by issues of data sparsity. In this paper, we present MRRN, a model that combines matrix reconstruction with node reliability to predict probable miRNA-disease associations. In MRRN, the most reliable neighbors of miRNA and disease are used to update the original miRNA-disease association matrix, which significantly reduces data sparsity. Unknown miRNA-disease associations are reconstructed by aggregating the most reliable first-order neighbors to increase prediction accuracy by representing the local and global structure of the heterogeneous network. Five-fold cross-validation of MRRN produced an area under the curve (AUC) of 0.9355 and area under the precision-recall curve (AUPR) of 0.2646, values that were greater than those produced by comparable models. Two different types of case studies using three diseases were conducted to demonstrate the accuracy of MRRN, and all top 30 predicted miRNAs were verified.
Collapse
Affiliation(s)
- Hailin Feng
- School of mathematics and computer science, Zhejiang A&F University, No.666 Wusu Street,Lin'an District, 311300, Hangzhou, China
| | - Dongdong Jin
- School of mathematics and computer science, Zhejiang A&F University, No.666 Wusu Street,Lin'an District, 311300, Hangzhou, China
| | - Jian Li
- School of mathematics and computer science, Zhejiang A&F University, No.666 Wusu Street,Lin'an District, 311300, Hangzhou, China
| | - Yane Li
- School of mathematics and computer science, Zhejiang A&F University, No.666 Wusu Street,Lin'an District, 311300, Hangzhou, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, West District, high tech Zone, 611731, Chengdu, China
| | - Tongcun Liu
- School of mathematics and computer science, Zhejiang A&F University, No.666 Wusu Street,Lin'an District, 311300, Hangzhou, China
| |
Collapse
|
39
|
Cardona E, Milhade L, Pourtau A, Panserat S, Terrier F, Lanuque A, Roy J, Marandel L, Bobe J, Skiba-Cassy S. Tissue origin of circulating microRNAs and their response to nutritional and environmental stress in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158584. [PMID: 36087674 DOI: 10.1016/j.scitotenv.2022.158584] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 05/19/2023]
Abstract
Stresses associated with changes in diet or environmental disturbances are common situations that fish encounter during their lifetime. The stability and ease of measuring microRNAs (miRNAs) present in biological fluids make these molecules particularly interesting biomarkers for non-lethal assessment of stress in animals. Rainbow trout were exposed for four weeks to abiotic stress (moderate hypoxia) and/or nutritional stress (a high-carbohydrate/low-protein diet). Blood plasma and epidermal mucus were sampled at the end of the experiment, and miRNAs were assessed using small RNA sequencing. We identified four miRNAs (miR-122-5p, miR-184-3p, miR-192-5p and miR-194a-5p) and three miRNAs (miR-210-3p, miR-153a-3p and miR-218c-5p) that accumulated in response to stress in blood plasma and epidermal mucus, respectively. In particular, the abundance of miR-210-3p, a hypoxamiR in mammals, increased strongly in the epidermal mucus of rainbow trout subjected to moderate hypoxia, and can thus be considered a relevant biomarker of hypoxic stress in trout. We explored the contribution of 22 tissues/organs to the abundance of circulating miRNAs (c-miRNAs) in blood plasma and epidermal mucus influenced by the treatments. Some miRNAs were tissue-specific, while others were distributed among several tissues. Some c-miRNAs (e.g., miR-210-3p, miR184-3p) showed similar variations in both tissues and fluids, while others showed an inverse trend (e.g., miR-122-5p) or no apparent relationship (e.g. miR-192-5p, miR-194a-5p. Overall, these results demonstrate that c-miRNAs can be used as non-lethal biomarkers to study stress in fish. In particular, the upregulation of miR-210-3p in epidermal mucus induced by hypoxia demonstrates the potential of using epidermal mucus as a matrix for identifying non-invasive biomarkers of stress. This study provides information about the tissue sources of c-miRNAs and highlights the potential difficulty in relating variations in miRNA abundance in biological fluids to that in tissues.
Collapse
Affiliation(s)
- Emilie Cardona
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France; INRAE, UR1037 Fish Physiology and Genomic Laboratory, F-35000 Rennes, France.
| | - Léo Milhade
- IRISA, INRIA, CNRS, University of Rennes 1, UMR 6074, F-35000, Rennes, France
| | - Angéline Pourtau
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France; INRAE, Gip Geves St Martin 0652, F-40390 Saint-Martin-de-Hinx, France
| | - Stéphane Panserat
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Fréderic Terrier
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Anthony Lanuque
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Jérôme Roy
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Julien Bobe
- INRAE, UR1037 Fish Physiology and Genomic Laboratory, F-35000 Rennes, France
| | - Sandrine Skiba-Cassy
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| |
Collapse
|
40
|
Li Z, Zhang Y, Fang J, Xu Z, Zhang H, Mao M, Chen Y, Zhang L, Pian C. NcPath: a novel platform for visualization and enrichment analysis of human non-coding RNA and KEGG signaling pathways. Bioinformatics 2022; 39:6917072. [PMID: 36525367 PMCID: PMC9825761 DOI: 10.1093/bioinformatics/btac812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
SUMMARY Non-coding RNAs play important roles in transcriptional processes and participate in the regulation of various biological functions, in particular miRNAs and lncRNAs. Despite their importance for several biological functions, the existing signaling pathway databases do not include information on miRNA and lncRNA. Here, we redesigned a novel pathway database named NcPath by integrating and visualizing a total of 178 308 human experimentally validated miRNA-target interactions (MTIs), 32 282 experimentally verified lncRNA-target interactions (LTIs) and 4837 experimentally validated human ceRNA networks across 222 KEGG pathways (including 27 sub-categories). To expand the application potential of the redesigned NcPath database, we identified 556 798 reliable lncRNA-protein-coding genes (PCG) interaction pairs by integrating co-expression relations, ceRNA relations, co-TF-binding interactions, co-histone-modification interactions, cis-regulation relations and lncPro Tool predictions between lncRNAs and PCG. In addition, to determine the pathways in which miRNA/lncRNA targets are involved, we performed a KEGG enrichment analysis using a hypergeometric test. The NcPath database also provides information on MTIs/LTIs/ceRNA networks, PubMed IDs, gene annotations and the experimental verification method used. In summary, the NcPath database will serve as an important and continually updated platform that provides annotation and visualization of the pathways on which non-coding RNAs (miRNA and lncRNA) are involved, and provide support to multimodal non-coding RNAs enrichment analysis. The NcPath database is freely accessible at http://ncpath.pianlab.cn/. AVAILABILITY AND IMPLEMENTATION NcPath database is freely available at http://ncpath.pianlab.cn/. The code and manual to use NcPath can be found at https://github.com/Marscolono/NcPath/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zutan Li
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Zhang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingya Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Xu
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210023, China
| | - Hao Zhang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Minfang Mao
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | - Cong Pian
- To whom correspondence should be addressed. or or
| |
Collapse
|
41
|
Wang MN, Lei LL, He W, Ding DW. SPCMLMI: A structural perturbation-based matrix completion method to predict lncRNA–miRNA interactions. Front Genet 2022; 13:1032428. [DOI: 10.3389/fgene.2022.1032428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence indicated that the interaction between lncRNA and miRNA is crucial for gene regulation, which can regulate gene transcription, further affecting the occurrence and development of many complex diseases. Accurate identification of interactions between lncRNAs and miRNAs is helpful for the diagnosis and therapeutics of complex diseases. However, the number of known interactions of lncRNA with miRNA is still very limited, and identifying their interactions through biological experiments is time-consuming and expensive. There is an urgent need to develop more accurate and efficient computational methods to infer lncRNA–miRNA interactions. In this work, we developed a matrix completion approach based on structural perturbation to infer lncRNA–miRNA interactions (SPCMLMI). Specifically, we first calculated the similarities of lncRNA and miRNA, including the lncRNA expression profile similarity, miRNA expression profile similarity, lncRNA sequence similarity, and miRNA sequence similarity. Second, a bilayer network was constructed by integrating the known interaction network, lncRNA similarity network, and miRNA similarity network. Finally, a structural perturbation-based matrix completion method was used to predict potential interactions of lncRNA with miRNA. To evaluate the prediction performance of SPCMLMI, five-fold cross validation and a series of comparison experiments were implemented. SPCMLMI achieved AUCs of 0.8984 and 0.9891 on two different datasets, which is superior to other compared methods. Case studies for lncRNA XIST and miRNA hsa-mir-195–5-p further confirmed the effectiveness of our method in inferring lncRNA–miRNA interactions. Furthermore, we found that the structural consistency of the bilayer network was higher than that of other related networks. The results suggest that SPCMLMI can be used as a useful tool to predict interactions between lncRNAs and miRNAs.
Collapse
|
42
|
Pellegrini M, Bergonzoni G, Perrone F, Squitieri F, Biagioli M. Current Diagnostic Methods and Non-Coding RNAs as Possible Biomarkers in Huntington's Disease. Genes (Basel) 2022; 13:2017. [PMID: 36360254 PMCID: PMC9689996 DOI: 10.3390/genes13112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Whether as a cause or a symptom, RNA transcription is recurrently altered in pathologic conditions. This is also true for non-coding RNAs, with regulatory functions in a variety of processes such as differentiation, cell identity and metabolism. In line with their increasingly recognized roles in cellular pathways, RNAs are also currently evaluated as possible disease biomarkers. They could be informative not only to follow disease progression and assess treatment efficacy in clinics, but also to aid in the development of new therapeutic approaches. This is especially important for neurological and genetic disorders, where the administration of appropriate treatment during the disease prodromal stage could significantly delay, if not halt, disease progression. In this review we focus on the current status of biomarkers in Huntington's Disease (HD), a fatal hereditary and degenerative disease condition. First, we revise the sources and type of wet biomarkers currently in use. Then, we explore the feasibility of different RNA types (miRNA, ncRNA, circRNA) as possible biomarker candidates, discussing potential advantages, disadvantages, sources of origin and the ongoing investigations on this topic.
Collapse
Affiliation(s)
- Miguel Pellegrini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Guendalina Bergonzoni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Federica Perrone
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Marta Biagioli
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
43
|
Cao B, Li R, Xiao S, Deng S, Zhou X, Zhou L. Predicting miRNA-disease association through combining miRNA function and network topological similarities based on MINE. iScience 2022; 25:105299. [DOI: 10.1016/j.isci.2022.105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
|
44
|
Hussein AM, Balachandar N, Mathieu J, Ruohola-Baker H. Molecular Regulators of Embryonic Diapause and Cancer Diapause-like State. Cells 2022; 11:cells11192929. [PMID: 36230891 PMCID: PMC9562880 DOI: 10.3390/cells11192929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Embryonic diapause is an enigmatic state of dormancy that interrupts the normally tight connection between developmental stages and time. This reproductive strategy and state of suspended development occurs in mice, bears, roe deer, and over 130 other mammals and favors the survival of newborns. Diapause arrests the embryo at the blastocyst stage, delaying the post-implantation development of the embryo. This months-long quiescence is reversible, in contrast to senescence that occurs in aging stem cells. Recent studies have revealed critical regulators of diapause. These findings are important since defects in the diapause state can cause a lack of regeneration and control of normal growth. Controlling this state may also have therapeutic applications since recent findings suggest that radiation and chemotherapy may lead some cancer cells to a protective diapause-like, reversible state. Interestingly, recent studies have shown the metabolic regulation of epigenetic modifications and the role of microRNAs in embryonic diapause. In this review, we discuss the molecular mechanism of diapause induction.
Collapse
Affiliation(s)
- Abdiasis M. Hussein
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nanditaa Balachandar
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai 603203, India
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Comparative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
45
|
Hu J, Huang H, Xi Z, Ma S, Ming J, Dong F, Guo H, Zhang H, Zhao E, Yao G, Yang L, Zhang F, Zheng W, Chen H, Huang T, Li L. LncRNA SEMA3B-AS1 inhibits breast cancer progression by targeting miR-3940/KLLN axis. Cell Death Dis 2022; 13:800. [PMID: 36123344 PMCID: PMC9485163 DOI: 10.1038/s41419-022-05189-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023]
Abstract
Long noncoding RNAs (lncRNAs) play crucial regulatory roles in the progression of various cancers. However, the functional roles of lncRNAs in breast cancer remain unclear. In this study, we investigated the functional role of a novel long noncoding RNA SEMA3B-AS1 (lncRNA SEAS1) in breast cancer progression and the underlying mechanisms. SEAS1 was downregulated in the triple-negative breast cancer (TNBC) tissues compared with the para-carcinoma tissues, which was associated with poor prognosis of TNBC patients. We demonstrated that SEAS1 knockdown significantly increased the proliferation, migration, and invasion of TNBC cell lines, whereas SEAS1 overexpression reversed these effects. Bioinformatics analysis demonstrated that microRNA (miR)-3940-3p was a potential target of SEAS1. Mechanistically, RNA immunoprecipitation (RIP) and luciferase reporter assays confirmed that lncRNA SEMA3B-AS1 acted as sponge for miR-3940-3p, preventing the degradation of its target gene KLLN, which acts as a tumor-inhibiter in TNBC. Moreover, RNA pulldown, mass spectrometry, ChIP, and luciferase reporter assays confirmed that SMAD3 directly interacted with the promoter of SEAS1 and suppressed its transcription, thereby promoting TNBC progression. The clinical samples of TNBC confirmed SEAS1 was correlated inversely with lymphatic and distant metastasis. In conclusion, our findings reveal a novel pathway for TNBC progression via SMAD3/lncRNA SEAS1/miR-3940-3p/KLLN axis, and suggest that SEAS1 may serve as a potential biomarker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Jin Hu
- grid.33199.310000 0004 0368 7223Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.412632.00000 0004 1758 2270 Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haohao Huang
- grid.417279.eDepartment of Neurosurgery, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, 430070 PR China
| | - Zihan Xi
- grid.33199.310000 0004 0368 7223Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Shenghui Ma
- grid.417279.eDepartment of Neurosurgery, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, 430070 PR China
| | - Jie Ming
- grid.33199.310000 0004 0368 7223Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Fang Dong
- grid.33199.310000 0004 0368 7223Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Hui Guo
- grid.33199.310000 0004 0368 7223Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Huiqiong Zhang
- grid.33199.310000 0004 0368 7223Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Ende Zhao
- grid.33199.310000 0004 0368 7223Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Guojie Yao
- grid.417279.eDepartment of Neurosurgery, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, 430070 PR China
| | - Liu Yang
- grid.417279.eDepartment of Neurosurgery, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, 430070 PR China
| | - Feng Zhang
- Department of Emergency Medicine, Affiliated Hospital of Sergeant School Affiliated to Army Medical University, Shijiazhuang, 516562 China
| | - Wuping Zheng
- grid.443397.e0000 0004 0368 7493Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570102 China
| | - Hengyu Chen
- grid.443397.e0000 0004 0368 7493Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570102 China
| | - Tao Huang
- grid.33199.310000 0004 0368 7223Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Lei Li
- grid.33199.310000 0004 0368 7223Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
46
|
Oyelami FO, Usman T, Suravajhala P, Ali N, Do DN. Emerging Roles of Noncoding RNAs in Bovine Mastitis Diseases. Pathogens 2022; 11:pathogens11091009. [PMID: 36145441 PMCID: PMC9501195 DOI: 10.3390/pathogens11091009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are an abundant class of RNA with varying nucleotide lengths. They have been shown to have great potential in eutherians/human disease diagnosis and treatments and are now gaining more importance for the improvement of diseases in livestock. To date, thousands of ncRNAs have been discovered in the bovine genome and the continuous advancement in deep sequencing technologies and various bioinformatics tools has enabled the elucidation of their roles in bovine health. Among farm animals' diseases, mastitis, a common inflammatory disease in cattle, has caused devastating economic losses to dairy farmers over the last few decades. Here, we summarize the biology of bovine mastitis and comprehensively discuss the roles of ncRNAs in different types of mastitis infection. Based on our findings and relevant literature, we highlighted various evidence of ncRNA roles in mastitis. Different approaches (in vivo versus in vitro) for exploring ncRNA roles in mastitis are emphasized. More particularly, the potential applications of emerging genome editing technologies, as well as integrated omics platforms for ncRNA studies and implications for mastitis are presented.
Collapse
Affiliation(s)
- Favour Oluwapelumi Oyelami
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Tahir Usman
- College of Veterinary Sciences & Animal Husbandry, Abdul Wali Khan University, Mardan 23200, KP, Pakistan
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana 690525, Kerala, India
| | - Nawab Ali
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, KP, Pakistan
| | - Duy N. Do
- Faculty of Veterinary Medicine, Viet Nam National University of Agriculture, Hanoi 100000, Vietnam
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Correspondence: ; Tel.: +1-9029578789
| |
Collapse
|
47
|
Ma M, Na S, Zhang X, Chen C, Xu J. SFGAE: a self-feature-based graph autoencoder model for miRNA-disease associations prediction. Brief Bioinform 2022; 23:6678419. [PMID: 36037084 DOI: 10.1093/bib/bbac340] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence has suggested that microRNAs (miRNAs) are important biomarkers of various diseases. Numerous graph neural network (GNN) models have been proposed for predicting miRNA-disease associations. However, the existing GNN-based methods have over-smoothing issue-the learned feature embeddings of miRNA nodes and disease nodes are indistinguishable when stacking multiple GNN layers. This issue makes the performance of the methods sensitive to the number of layers, and significantly hurts the performance when more layers are employed. In this study, we resolve this issue by a novel self-feature-based graph autoencoder model, shortened as SFGAE. The key novelty of SFGAE is to construct miRNA-self embeddings and disease-self embeddings, and let them be independent of graph interactions between two types of nodes. The novel self-feature embeddings enrich the information of typical aggregated feature embeddings, which aggregate the information from direct neighbors and hence heavily rely on graph interactions. SFGAE adopts a graph encoder with attention mechanism to concatenate aggregated feature embeddings and self-feature embeddings, and adopts a bilinear decoder to predict links. Our experiments show that SFGAE achieves state-of-the-art performance. In particular, SFGAE improves the average AUC upon recent GAEMDA [1] on the benchmark datasets HMDD v2.0 and HMDD v3.2, and consistently performs better when less (e.g. 10%) training samples are used. Furthermore, SFGAE effectively overcomes the over-smoothing issue and performs stably well on deeper models (e.g. eight layers). Finally, we carry out case studies on three human diseases, colon neoplasms, esophageal neoplasms and kidney neoplasms, and perform a survival analysis using kidney neoplasm as an example. The results suggest that SFGAE is a reliable tool for predicting potential miRNA-disease associations.
Collapse
Affiliation(s)
- Mingyuan Ma
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing, China
| | - Sen Na
- International Computer Science Institute and Department of Statistics, University of California, Berkeley, Berkeley CA, USA
| | - Xiaolu Zhang
- Department of Information Systems, City University of Hong Kong, Hong Kong, China
| | - Congzhou Chen
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing, China
| | - Jin Xu
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing, China
| |
Collapse
|
48
|
Combined Treatment of Bronchial Epithelial Calu-3 Cells with Peptide Nucleic Acids Targeting miR-145-5p and miR-101-3p: Synergistic Enhancement of the Expression of the Cystic Fibrosis Transmembrane Conductance Regulator ( CFTR) Gene. Int J Mol Sci 2022; 23:ijms23169348. [PMID: 36012615 PMCID: PMC9409490 DOI: 10.3390/ijms23169348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encodes for a chloride channel defective in Cystic Fibrosis (CF). Accordingly, upregulation of its expression might be relevant for the development of therapeutic protocols for CF. MicroRNAs are deeply involved in the CFTR regulation and their targeting with miRNA inhibitors (including those based on Peptide Nucleic Acids, PNAs)is associated with CFTR upregulation. Targeting of miR-145-5p, miR-101-3p, and miR-335-5p with antisense PNAs was found to be associated with CFTR upregulation. The main objective of this study was to verify whether combined treatments with the most active PNAs are associated with increased CFTR gene expression. The data obtained demonstrate that synergism of upregulation of CFTR production can be obtained by combined treatments of Calu-3 cells with antisense PNAs targeting CFTR-regulating microRNAs. In particular, highly effective combinations were found with PNAs targeting miR-145-5p and miR-101-3p. Content of mRNAs was analyzed by RT-qPCR, the CFTR production by Western blotting. Combined treatment with antagomiRNAs might lead to maximized upregulation of CFTR and should be considered in the development of protocols for CFTR activation in pathological conditions in which CFTR gene expression is lacking, such as Cystic Fibrosis.
Collapse
|
49
|
Quantitation of MicroRNA-155 in Human Cells by Heterogeneous Enzyme-Linked Oligonucleotide Assay Coupled with Mismatched Catalytic Hairpin Assembly Reaction. BIOSENSORS 2022; 12:bios12080570. [PMID: 35892467 PMCID: PMC9332365 DOI: 10.3390/bios12080570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/18/2022]
Abstract
In the present work, we describe the development of a chemiluminescent enzyme-linked oligonucleotide assay coupled with mismatched catalytic hairpin assembly (mCHA) amplification for the quantitative determination of microRNA-155. To improve its sensitivity, a polymerase-free mCHA reaction was applied as an isothermal amplification method. The detection limit of the proposed assay was 400 fM. In addition, the high specificity of the assay was demonstrated. The proposed assay allowed assessment of the content of microRNA-155 in human cancer lines such as HepG2, Caco2, MCF7, and HeLa. The quantitation of microRNA-155 was performed after purification of short RNAs (less than 200 nt) from cell lysates since a high matrix effect was observed without this pre-treatment. The results of the quantitative determination of the microRNA content in cells were normalized using nematode microRNA-39, the concentration of which was determined using a heterogeneous assay developed by us using a strategy identical to that of the microRNA-155 assay.
Collapse
|
50
|
Zhang Y, Jiao Z, Chen M, Shen B, Shuai Z. Roles of Non-Coding RNAs in Primary Biliary Cholangitis. Front Mol Biosci 2022; 9:915993. [PMID: 35874606 PMCID: PMC9305664 DOI: 10.3389/fmolb.2022.915993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune-mediated chronic cholestatic liver disease, fatigue, and skin itching are the most common clinical symptoms. Its main pathological feature is the progressive damage and destruction of bile duct epithelial cells. Non-coding RNA (NcRNA, mainly including microRNA, long non-coding RNA and circular RNA) plays a role in the pathological and biological processes of various diseases, especially autoimmune diseases. Many validated ncRNAs are expected to be biomarkers for the diagnosis or treatment of PBC. This review will elucidate the pathogenesis of PBC and help to identify potential ncRNA biomarkers for PBC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziying Jiao
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Shen
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Zongwen Shuai,
| |
Collapse
|