1
|
Dąbrowska AM, Dudka J. Fexaramine as the intestine-specific farnesoid X receptor agonist: A promising agent to treat obesity and metabolic disorders. Drug Discov Today 2025; 30:104386. [PMID: 40409402 DOI: 10.1016/j.drudis.2025.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 05/08/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
Fexaramine, a gut-restricted farnesoid X receptor (FXR) agonist, promotes glucose and lipid homeostasis, improves insulin sensitivity, promotes white adipose tissue browning, and stimulates nonshivering thermogenesis. Enhancement in energy expenditure due to an increase in amount of energy burned by brown and 'beige' adipocytes results in subsequent weight loss. Fexaramine is poorly absorbed into circulation when delivered orally, which limits systemic FXR activation and toxicity. An increase in β3-adrenoceptor signaling, activation of Takeda G protein-coupled receptor 5/glucagon-like peptide-1 (TGR5/GLP-1) signaling, and induction of fibroblast growth factor (FGF)-19/FGF-15 play crucial roles in fexaramine metabolic actions. Intestinal FXR activation is a promising, potentially safe approach for treating obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Anna Maria Dąbrowska
- Department of Toxicology, Medical University of Lublin, Poland, Jaczewskiego Street 8b, 20-090 Lublin, Poland; Endocrinology Outpatient Clinic, Lublin, Poland.
| | - Jarosław Dudka
- Department of Toxicology, Medical University of Lublin, Poland, Jaczewskiego Street 8b, 20-090 Lublin, Poland
| |
Collapse
|
2
|
Carbone F, Després JP, Ioannidis JPA, Neeland IJ, Garruti G, Busetto L, Liberale L, Ministrini S, Vilahur G, Schindler TH, Macedo MP, Di Ciaula A, Krawczyk M, Geier A, Baffy G, Faienza MF, Farella I, Santoro N, Frühbeck G, Yárnoz-Esquiroz P, Gómez-Ambrosi J, Chávez-Manzanera E, Vázquez-Velázquez V, Oppert JM, Kiortsis DN, Sbraccia P, Zoccali C, Portincasa P, Montecucco F. Bridging the gap in obesity research: A consensus statement from the European Society for Clinical Investigation. Eur J Clin Invest 2025:e70059. [PMID: 40371883 DOI: 10.1111/eci.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/12/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Most forms of obesity are associated with chronic diseases that remain a global public health challenge. AIMS Despite significant advancements in understanding its pathophysiology, effective management of obesity is hindered by the persistence of knowledge gaps in epidemiology, phenotypic heterogeneity and policy implementation. MATERIALS AND METHODS This consensus statement by the European Society for Clinical Investigation identifies eight critical areas requiring urgent attention. Key gaps include insufficient long-term data on obesity trends, the inadequacy of body mass index (BMI) as a sole diagnostic measure, and insufficient recognition of phenotypic diversity in obesity-related cardiometabolic risks. Moreover, the socio-economic drivers of obesity and its transition across phenotypes remain poorly understood. RESULTS The syndemic nature of obesity, exacerbated by globalization and environmental changes, necessitates a holistic approach integrating global frameworks and community-level interventions. This statement advocates for leveraging emerging technologies, such as artificial intelligence, to refine predictive models and address phenotypic variability. It underscores the importance of collaborative efforts among scientists, policymakers, and stakeholders to create tailored interventions and enduring policies. DISCUSSION The consensus highlights the need for harmonizing anthropometric and biochemical markers, fostering inclusive public health narratives and combating stigma associated with obesity. By addressing these gaps, this initiative aims to advance research, improve prevention strategies and optimize care delivery for people living with obesity. CONCLUSION This collaborative effort marks a decisive step towards mitigating the obesity epidemic and its profound impact on global health systems. Ultimately, obesity should be considered as being largely the consequence of a socio-economic model not compatible with optimal human health.
Collapse
Affiliation(s)
- Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Jean-Pierre Després
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Québec, Canada
- VITAM - Centre de Recherche en santé Durable, Centre intégré Universitaire de santé et de Services Sociaux de la Capitale-Nationale, Québec, Québec, Canada
| | - John P A Ioannidis
- Department of Medicine, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Biomedical Science, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
| | - Ian J Neeland
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Cardiovascular Disease, Harrington Heart and Vascular Institute, Cleveland, Ohio, USA
| | - Gabriella Garruti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Luca Busetto
- Department of Medicine, University of Padua, Padua, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Cardiology Department, Luzerner Kantonspital, Lucerne, Switzerland
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | - Thomas H Schindler
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria Paula Macedo
- APDP - Diabetes Portugal, Education and Research Center, Lisbon, Portugal
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Agostino Di Ciaula
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Marcin Krawczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Andreas Geier
- Interdisciplinary Amyloidosis Center of Northern Bavaria, University Hospital of Würzburg, Würzburg, Germany
- Department of Internal Medicine II, Hepatology, University Hospital of Würzburg, Würzburg, Germany
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Ilaria Farella
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Nicola Santoro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Yárnoz-Esquiroz
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Chávez-Manzanera
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Jean-Michel Oppert
- Department of Nutrition, Pitié-Salpêtrière Hospital (AP-HP), Human Nutrition Research Center Ile-de-France (CRNH IdF), Sorbonne University, Paris, France
| | - Dimitrios N Kiortsis
- Atherothrombosis Research Centre, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| | - Piero Portincasa
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| |
Collapse
|
3
|
Meessen ECE, Majait S, Ay Ü, Olde Damink SW, Romijn JA, Holst JJ, Hartmann B, Kuipers F, Nieuwdorp M, Schaap FG, Groen AK, Kemper EM, Soeters MR. Glycodeoxycholic Acid Inhibits Primary Bile Acid Synthesis With Minor Effects on Glucose and Lipid Homeostasis in Humans. J Clin Endocrinol Metab 2025; 110:1468-1477. [PMID: 38864544 PMCID: PMC12012696 DOI: 10.1210/clinem/dgae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Bile acids play vital roles in control of lipid, glucose, and energy metabolism by activating Takeda G protein-coupled receptor 5 and Farnesoid X receptor, the latter promoting production of the endocrine-acting fibroblast growth factor 19 (FGF19). Short-term administration of single bile acids has been reported to enhance plasma levels of GLP-1 and to enhance energy expenditure. However, prolonged bile acid supplementation (eg, of chenodeoxycholic acid for gallstone dissolution) has been reported to have adverse effects. STUDY DESIGN In this proof-of-concept study, we assessed the safety and metabolic effects of oral glycine-conjugated deoxycholic acid (GDCA) administration at 10 mg/kg/day using regular and slow-release capsules (mimicking physiological bile acid release) over 30 days in 2 groups of each 10 healthy lean men, respectively. MAIN FINDINGS GDCA increased postprandial total bile acid and FGF19 concentrations while suppressing those of the primary bile acids chenodeoxycholic acid and cholic acid. Plasma levels of 7α-hydroxy-4-cholesten-3-one were reduced, indicating repressed hepatic bile acid synthesis. There were minimal effects on indices of lipid, glucose, and energy metabolism. No serious adverse events were reported during GDCA administration in either capsule types, although 50% of participants showed mild increases in plasma levels of liver transaminases and 80% (regular capsules) and 50% (slow-release capsules) of participants experienced gastrointestinal adverse events. CONCLUSION GDCA administration leads to elevated FGF19 levels and effectively inhibits primary bile acid synthesis, supporting therapy compliance and its effectiveness. However, effects on lipid, glucose, and energy metabolism were minimal, indicating that expanding the pool of this relatively hydrophobic bile acid does not impact energy metabolism in healthy subjects.
Collapse
Affiliation(s)
- Emma C E Meessen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centres—Location AMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Soumia Majait
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC Location AMC, 1105 AZ, Amsterdam, The Netherlands
| | - Ümran Ay
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Steven W Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Johannes A Romijn
- Department of Internal Medicine, Amsterdam University Medical Centres—Location AMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Folkert Kuipers
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 CZ, Groningen, The Netherlands
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Centres—Location AMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 HX, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Albert K Groen
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Centres—Location AMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - E Marleen Kemper
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC Location AMC, 1105 AZ, Amsterdam, The Netherlands
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Centres—Location AMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centres—Location AMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Iannone V, Vaittinen M, Gómez-Gallego C, Mikkonen S, Lok J, D'Auria G, Vazquez-Uribe R, Tikkanen I, Sommer MOA, El-Nezami H, Kolehmainen M. The effect of aldafermin expressing-Escherichia coli Nissle 1917 along with dietary change on visceral adipose tissue in MASLD mouse model. Int J Obes (Lond) 2025:10.1038/s41366-025-01774-w. [PMID: 40211057 DOI: 10.1038/s41366-025-01774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Visceral adipose tissue (VAT) accumulation in obesity has been implicated as a key factor in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). Apart from lifestyle change interventions, there is no effective therapy against MASLD. In this study, the effect of a novel microbial therapy along with dietary change on VAT and VAT-liver crosstalk was evaluated in a MASLD mouse model. METHODS MASLD was induced by feeding eighteen C57BL/6J male mice with the American Lifestyle-Induced Obesity diet for fourteen weeks. Subsequently, during the following seven weeks, all mice were switched to standard diet and the intervention group received single gelatine cubes containing 109 CFU each of aldafermin-expressing Escherichia coli Nissle (EcNA, n = 6); while the control groups received either 109 CFU/gelatine cube of non-modified Escherichia coli Nissle (EcN, n = 6) or gelatin cube with no treatment (CTRL, n = 6). The effect of EcNA on epididymal visceral adipose tissue (eVAT) morphology was evaluated by histology and the gene expression profile in eVAT and liver by RNA-sequencing analysis. RESULTS After seven weeks of intervention, EcNA, when compared to CTRL group, induced smaller adipocytes (p-value = 0.0217 for diameter, p-value = 0.0386 for area). Gene Set Enrichment Analysis in eVAT showed significant upregulation of fatty acid metabolism (FDR-adjusted p-value = 0.001), oxidative phosphorylation (FDR-adjusted p-value < 2.2e-16), peroxisome (FDR-adjusted p-value = 0.0185), and thermogenesis (FDR-adjusted p-value = 0.0199) pathways when EcNA was compared to EcN group. In addition, the impact of EcNA in eVAT-liver gene expression crosstalk was underlined by the upregulation of Bcl6 and Cnst expression in both tissues when EcNA was compared to CTRL and EcN groups. CONCLUSIONS These results support the beneficial effects of EcNA, along with dietary change intervention, in obesity-associated MASLD. This microbial therapy could potentially boost the improvements induced by dietary change in eVAT metabolism and its crosstalk with the liver.
Collapse
Affiliation(s)
- Valeria Iannone
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Maija Vaittinen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Carlos Gómez-Gallego
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Santtu Mikkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Giuseppe D'Auria
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, FISABIO, Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Ruben Vazquez-Uribe
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ida Tikkanen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Morten Otto Alexander Sommer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hani El-Nezami
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Molecular and Cell Biology Research Area, School of Biological Sciences, University of Hong Kong, Hong Kong SAR, Hong Kong, China
| | - Marjukka Kolehmainen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
5
|
Zangerolamo L, Carvalho M, Solon C, Sidarta-Oliveira D, Soares GM, Marmentini C, Boschero AC, Tseng YH, Velloso LA, Barbosa HCL. Central FGF19 signaling enhances energy homeostasis and adipose tissue thermogenesis through sympathetic activation in obese mice. Am J Physiol Endocrinol Metab 2025; 328:E524-E542. [PMID: 40059865 DOI: 10.1152/ajpendo.00488.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/17/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Fibroblast growth factor 19 (FGF19) signaling in the brain is associated with body weight loss, reduced food intake, and improved glycemic control in obese mice through unclear mechanisms. Here, we investigated the effects of central FGF19 administration on peripheral tissues, focusing on adipose tissue and its contributions to body weight loss. Using single-cell RNA sequencing of the adult murine hypothalamus, we found that FGF19 has the potential to target multiple cell populations, including astrocytes-tanycytes, microglia, neurons, and oligodendrocytes. Central delivery of FGF19 decreased body weight gain and ameliorated glucose-insulin homeostasis in diet-induced obese (DIO) mice. These results were accompanied by increased energy expenditure and reduced peripheric inflammation. Notably, these effects were attributable to the increased activity of thermogenic adipocytes, as upregulated thermogenic markers in brown and inguinal adipose tissue and improved cold tolerance were induced by central FGF19. However, under blunted sympathetic activity, the described effects were abolished. Moreover, cold exposure induced upregulation of FGF19 receptors and coreceptors specifically in the hypothalamus, suggesting a critical metabolic adaptation for thermoregulation and energy homeostasis. Our findings indicate that central FGF19 signaling improves energy homeostasis in DIO mice, at least in part, by stimulating sympathetic activity and adipose tissue thermogenesis. These findings highlight FGF19's potential as a therapeutic target for obesity and metabolic disorders.NEW & NOTEWORTHY Although most studies associate central fibroblast growth factor 19 (FGF19) with reduced food intake, our findings highlight its role in enhancing thermogenesis in white and brown adipose tissues through sympathetic activation. Central FGF19 not only regulates feeding but also drives peripheral adaptations critical for energy homeostasis and body weight control under obesogenic conditions. These insights underscore the significance of top-down mechanisms in FGF19 action and its therapeutic potential for combating obesity.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Carina Solon
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Gabriela M Soares
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Carine Marmentini
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Antonio C Boschero
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Sao Paulo, Brazil
| |
Collapse
|
6
|
Golounina O, Minniakhmetov I, Salakhov R, Khusainova R, Zakharova E, Bychkov I, Mokrysheva N. Pathogenetic therapeutic approaches for endocrine diseases based on antisense oligonucleotides and RNA-interference. Front Endocrinol (Lausanne) 2025; 16:1525373. [PMID: 39944202 PMCID: PMC11813780 DOI: 10.3389/fendo.2025.1525373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/13/2025] [Indexed: 05/09/2025] Open
Abstract
Molecular therapy uses nucleic acid-based therapeutics agents and becomes a promising alternative for disease conditions unresponsive to traditional pharmaceutical approaches. Antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) are two well-known strategies used to modulate gene expression. RNA-targeted therapy can precisely modulate the function of target RNA with minimal off-target effects and can be rationally designed based on sequence data. ASOs and siRNA-based drugs have unique capabilities for using in target groups of patients or can be tailored as patient-customized N-of-1 therapeutic approach. Antisense therapy can be utilized not only for the treatment of monogenic diseases but also holds significant promise for addressing polygenic and complex diseases by targeting key genes and molecular pathways involved in disease pathogenesis. In the context of endocrine disorders, molecular therapy is particularly effective in modulating pathogenic mechanisms such as defective insulin signaling, beta-cell dysfunction and hormonal imbalances. Furthermore, siRNA and ASOs have the ability to downregulate overactive signaling pathways that contribute to complex, non-monogenic endocrine disorders, thereby addressing these conditions at their molecular origin. ASOs are also being studied worldwide as unique candidates for developing therapies for N-of-1 therapies. The sequence-specific ASOs binding provides exceptional accuracy in N-of-1 approaches, when the oligonucleotide can be targeted to a patient's exact mutant sequence. In this review we focus on diseases of the endocrine system and discuss potential RNA-targeted therapeutic opportunities in diabetes mellitus, including monogenic beta cell diabetes, and obesity, including syndrome obesity and monogenic obesity, as well as in non-monogenic or complex endocrine disorders. We also provide an overview of currently developed and available antisense molecules, and describe potentials of antisense-based therapeutics for the treatment of rare and «ultrarare» endocrine diseases.
Collapse
Affiliation(s)
- Olga Golounina
- Department of Clinical Endocrinology, Endocrinology Research Centre, Moscow, Russia
| | - Ildar Minniakhmetov
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Ramil Salakhov
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Rita Khusainova
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Ekaterina Zakharova
- Selective Screening Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Igor Bychkov
- Laboratory of Experimental Gene Therapy for Inherited Metabolic Diseases, Research Centre for Medical Genetics, Moscow, Russia
| | - Natalia Mokrysheva
- Department of Clinical Endocrinology, Endocrinology Research Centre, Moscow, Russia
| |
Collapse
|
7
|
Yao L, Zhou X, Jiang X, Chen H, Li Y, Xiong X, Tang Y, Zhang H, Qiao P. High-fat diet promotes gestational diabetes mellitus through modulating gut microbiota and bile acid metabolism. Front Microbiol 2025; 15:1480446. [PMID: 39935515 PMCID: PMC11810896 DOI: 10.3389/fmicb.2024.1480446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/27/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction Gestational diabetes mellitus (GDM) is a condition characterized by glucose intolerance during pregnancy, estimated to affect approximately 20% of the whole pregnancies and is increasing in prevalence globally. However, there is still a big gap in knowledge about the association between gut microbiota associated metabolism alterations and GDM development. Methods All the participants accomplished the validated internet-based dietary questionnaire for Chinese and serum, fecal samples were collected. HFD, control diet or colesevelam intervention was fed to GDM mice models or Fxr-/- mice models, with or without antibiotics cocktail treatment. Fecal microbiota transplantation were used for further validation. Gut microbiota and metabolites were detected by metagenomic sequencing and high-performance liquid chromatography-mass spectrometry, respectively. Bile acids of serum, fecal samples from human and mice were analysised. Body weight, average feed intake, blood glucose, insulin levels and oral glucose tolerance test was performed among each groups. Expression levels of Fxr, Shp and Fgf15 mRNA and protein were detected by quantitative reverse transcription polymerase chain reaction and western blot, respectively. Results Our data indicated that high fat diet (HFD) was linked with higher prevalence of GDM, and HFD was positively associated with poor prognosis in GDM patients. Moreover, compared with normal diet (ND) group, GDM patients from HFD group performed a loss of gut microbiota diversity and enrichment of Alistipes onderdonkii, Lachnospiraceae bacterium 1_7_58FAA, and Clostridium aspaaragiforme while ruduction of Akkermansiaceae, Paraprevotell xylaniphila, and Prevotella copri. Additionally, HFD aggravated GDM in mice and gut microbiota depletion by antibiotics crippled the effect of excess fat intake. BAs profile altered in HFD GDM patients and mice models. Fecal microbiota transplantation (FMT) further confirmed that gut microbiota contributed to bile acids (BAs) metabolic dysfunction during HFD-associated GDM development. Mechanically, HFD-FMT administration activated Fxr, Shp, and Fgf15 activity, disturbed the glucose metabolism and aggravated insulin resistance but not in HFD-FMT Fxr-/- mice and ND-FMT Fxr-/- mice. Furthermore, colesevelam intervention alleviated HFD-associated GDM development, improved BAs metabolism, suppressed Fxr, Shp, and Fgf15 activity only in WT mice but not in the Fxr-/- HFD + Colesevelam group and Fxr-/- HFD group. HFD induced GDM and contributed to poor prognosis in GDM parturients through inducing gut microbial dysbiosis and metabolic alteration, especially appeared in BAs profile. Moreover, Fxr pathway participated in regulating HFD-associated gut microbiota disordered BAs metabolites and aggravating GDM in mice. Discussion Modulating gut microbiota and BAs metabolites could be a potential therapeutic strategy in the prevention and treatment of HFD-associated GDM.
Collapse
Affiliation(s)
- Lei Yao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefei Zhou
- Department of Gynaecology and Obstetrics, The Center of Red Cross Hospital of Harbin, Harbin, China
| | - Xianqi Jiang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Chen
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanliang Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Xiong
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Tang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haogang Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengfei Qiao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Zhu Z, Hu B, Zhu D, Li X, Chen D, Wu N, Rao Q, Zhang Z, Wang H, Zhu Y. Bromocriptine sensitivity in bromocriptine-induced drug-resistant prolactinomas is restored by inhibiting FGF19/FGFR4/PRL. J Endocrinol Invest 2025; 48:67-80. [PMID: 38926262 DOI: 10.1007/s40618-024-02408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE At present, various treatment strategies are available for pituitary adenomas, including medications, surgery and radiation. The guidelines indicate that pharmacological treatments, such as bromocriptine (BRC) and cabergoline (CAB), are important treatments for prolactinomas, but drug resistance is an urgent problem that needs to be addressed. Therefore, exploring the mechanism of drug resistance in prolactinomas is beneficial for clinical treatment. METHODS In our research, BRC-induced drug-resistant cells were established. Previous RNA sequencing data and an online database were used for preliminary screening of resistance-related genes. Cell survival was determined by Cell Counting Kit-8 (CCK-8) assay, colony formation assays and flow cytometry. Quantitative real-time polymerase chain reaction (qRT‒PCR), western blotting, immunohistochemistry, immunofluorescence and Co-immunoprecipitation (Co-IP) were used to assess the molecular changes and regulation. The therapeutic efficacy of BRC and FGFR4 inhibitor fisogatinib (FISO) combination was evaluated in drug-resistant cells and xenograft tumors in nude mice. RESULTS Consistent with the preliminary results of RNA sequencing and database screening, fibroblast growth factor 19 (FGF19) expression was elevated in drug-resistant cells and tumor samples. With FGF19 silencing, drug-resistant cells exhibited increased sensitivity to BRC and decreased intracellular phosphorylated fibroblast growth factor receptor 4 (FGFR4) levels. After confirming that FGF19 binds to FGFR4 in prolactinoma cells, we found that FGF19/FGFR4 regulated prolactin (PRL) synthesis through the ERK1/2 and JNK signaling pathways. Regarding the effect of targeting FGF19/FGFR4 on BRC efficacy, FISO and BRC synergistically inhibited the growth of tumor cells, promoted apoptosis and reduced PRL levels. CONCLUSION Overall, our study revealed FGF19/FGFR4 as a new mechanism involved in the drug resistance of prolactinomas, and combination therapy targeting the pathway could be helpful for the treatment of BRC-induced drug-resistant prolactinomas.
Collapse
Affiliation(s)
- Z Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - B Hu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - D Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - X Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - D Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - N Wu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Q Rao
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Z Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - H Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| | - Y Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
- Department of Histology and Embryology, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
9
|
Edirisinghe O, Ternier G, Alraawi Z, Suresh Kumar TK. Decoding FGF/FGFR Signaling: Insights into Biological Functions and Disease Relevance. Biomolecules 2024; 14:1622. [PMID: 39766329 PMCID: PMC11726770 DOI: 10.3390/biom14121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Fibroblast Growth Factors (FGFs) and their cognate receptors, FGFRs, play pivotal roles in a plethora of biological processes, including cell proliferation, differentiation, tissue repair, and metabolic homeostasis. This review provides a comprehensive overview of FGF-FGFR signaling pathways while highlighting their complex regulatory mechanisms and interconnections with other signaling networks. Further, we briefly discuss the FGFs involvement in developmental, metabolic, and housekeeping functions. By complementing current knowledge and emerging research, this review aims to enhance the understanding of FGF-FGFR-mediated signaling and its implications for health and disease, which will be crucial for therapeutic development against FGF-related pathological conditions.
Collapse
Affiliation(s)
- Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Gaëtane Ternier
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Zeina Alraawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Thallapuranam Krishnaswamy Suresh Kumar
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| |
Collapse
|
10
|
Li Y, Dai C, Yang H, Zeng H, Ruan Y, Dai M, Hao J, Wang L, Yan X, Ji F. Cross-sectional and Mendelian randomization study of fibroblast growth factor 19 reveals causal associations with metabolic diseases. J Gastroenterol Hepatol 2024; 39:2872-2879. [PMID: 39091021 DOI: 10.1111/jgh.16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/29/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND AND AIM Fibroblast growth factor 19 (FGF19) is an intestinal-derived factor that plays a role in metabolic diseases. We performed a differential study of circulating FGF19 levels and investigated the causal effects of FGF19 on metabolic diseases using Mendelian randomization (MR). METHODS Firstly, 958 subjects were included in the physical examination center of affiliated hospital from January 2019 to January 2021. Dividing the subjects into different subgroups to compare FGF19 levels. We conducted a two-sample MR analysis of genetically predicted circulating FGF19 in relation to alcohol, cardiovascular and metabolic biomarkers and diseases, and liver function biomarkers using publicly available genome-wide association study summary statistics data. RESULTS The circulating FGF19 levels in nonalcoholic fatty liver disease (NAFLD) patients were lower than those without NAFLD (P < 0.001). The FGF19 levels in participants with obese were lower than those without obese (P < 0.001). In two-sample MR analyses, genetically predicted higher circulating FGF19 levels was significantly associated with lower aspartate aminotransferase, γ-glutamyltransferase, triglycerides, total cholesterol, low-density lipoprotein, and C-reactive protein concentrations (P < 0.05) and a negative correlation with cardiovascular disease and cirrhosis whereas a positive association with type 2 diabetes mellitus (P < 0.05). CONCLUSIONS Our study found that circulating FGF19 levels were lower in NAFLD and obese populations. Additionally, our MR research results support the causal effects of FGF19 on improved liver function, lipids, and reduced the occurrence of inflammation, cardiovascular disease, and cirrhosis. We found a positive correlation with diabetes, which may indicate a compensatory increase in regulating above FGF19 resistance states in humans.
Collapse
Affiliation(s)
- Yan Li
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Central Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Changyong Dai
- Department of Infectious Diseases, Huaian Hospital of Huaian City, Huaian, Jiangsu, China
| | - Haiqing Yang
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huang Zeng
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuhua Ruan
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingjia Dai
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jungui Hao
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liping Wang
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuebing Yan
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fang Ji
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
11
|
Yang Z, Zarbl H, Kong B, Taylor R, Black K, Kipen H, Basaly V, Fang M, Guo GL. Liver-gut axis signaling regulates circadian energy metabolism in shift workers. FASEB J 2024; 38:e70203. [PMID: 39588921 PMCID: PMC11590413 DOI: 10.1096/fj.202402102r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Circadian rhythm is critical to maintaining the whole-body metabolic homeostasis of an organism. Chronic disruption of circadian rhythm by shift work is an important risk factor for metabolic diseases. Fibroblast growth factor 15/19 (FGF15/19), a key component in the liver-gut axis, potently suppresses bile acid (BA) synthesis and improves insulin sensitivity. FGF15/19 emerges as a novel pharmaceutical target for prevention and treatment of metabolic diseases. The nicotinamide adenine dinucleotide (NAD+)-dependent sirtuin 1 (SIRT1) deacetylase plays an important role in the maintenance of hepatic homeostasis by linking hepatic metabolism to circadian rhythm. Here, our clinical study identified that circadian rhythmicity and levels of plasma FGF19 and BA profiling, and cellular NAD+-dependent SIRT1 signaling were disturbed in night shift (NS, n = 10) compared to day shift (DS, n = 12) nurses. Our in vitro data showed that recombinant FGF19 protein rescued cellular circadian rhythm disrupted by SIRT1 inhibitors. Furthermore, we determined the effect of FGF15 on circadian rhythm and hepatic metabolism in wild-type (WT), Fgf15 knockout (KO), and Fgf15 transgenic (TG) mice. The expressions of circadian-controlled genes (CCGs) involved in SIRT1 signaling, BA and lipid metabolism, and inflammation were disrupted in Fgf15 KO compared to WT and/or Fgf15 TG mice. Moreover, systemic FGF15 deficiency led to the circadian disturbance of NAD+-dependent SIRT1 signaling and significant reduction during nighttime in mice. These findings suggest that FGF15/19 regulates the circadian energy metabolism, which warrants further studies as a putative prognostic biomarker and pharmaceutical target for preventing against metabolic diseases associated with chronic shift work.
Collapse
Affiliation(s)
- Zhenning Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Department of Environmental and Occupational Health and Justice, School of Public Health, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Rulaiha Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Kathleen Black
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Howard Kipen
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Department of Environmental and Occupational Health and Justice, School of Public Health, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Mingzhu Fang
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Department of Environmental and Occupational Health and Justice, School of Public Health, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Environmental and Occupational Health Sciences Institute, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- VA New Jersey Health Care SystemVeterans Administration Medical CenterEast OrangeNew JerseyUSA
| |
Collapse
|
12
|
Bazhan N, Kazantseva A, Dubinina A, Balybina N, Jakovleva T, Makarova E. Age of Cafeteria Diet Onset Influences Obesity Phenotype in Mice in a Sex-Specific Manner. Int J Mol Sci 2024; 25:12436. [PMID: 39596499 PMCID: PMC11595127 DOI: 10.3390/ijms252212436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
We investigated the influence of sex and the age of obesogenic diet initiation on the obesity phenotypes at a later age. C57Bl mice started the Cafeteria Diet (CafD, with increased fat and carbohydrates, ad libitum, from 7 weeks of age (7CafD, pre-puberty) or 17 weeks of age (7CafD, post-puberty) while control C57Bl mice were fed regular chow. At 27 weeks of age, 7CafD males (n = 9) compared to 17CafD males (n = 7) had lower body weight, white adipose tissue (WAT) relative weight, and plasma cholesterol levels, and a higher expression of thermogenic genes in WAT and brown adipose tissue (BAT), and fatty acid oxidation (FAO) and insulin signalling genes in muscles. The 7CafD females (n = 8), compared to 17CafD females (n = 6), had higher plasma triglyceride levels and hepatic glycogen content, but lower insulin sensitivity and hepatic expression of FAO and insulin signalling genes. The 7CafD females, compared to 7CafD males, had more WAT, and a reduced expression of FAO genes in muscles and thermogenic genes in WAT. The 17CafD females, compared to 17CafD males, had lower plasma leptin and insulin levels, and higher insulin sensitivity and expression of insulin signalling genes in the liver and muscles. Thus, the initiation of the obesogenic diet before puberty led to a more adaptive metabolic phenotypes in males, and after puberty, in females.
Collapse
Affiliation(s)
- Nadezhda Bazhan
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (N.B.); (T.J.); (E.M.)
| | | | | | | | | | | |
Collapse
|
13
|
Bouju A, Nusse R, Wu PV. A primer on the pleiotropic endocrine fibroblast growth factor FGF19/FGF15. Differentiation 2024; 140:100816. [PMID: 39500656 DOI: 10.1016/j.diff.2024.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024]
Abstract
Fibroblast Growth Factor 19 (FGF19) is a member of the Fibroblast Growth Factor (FGF) family, known for its role in various cellular processes including embryonic development and metabolic regulation. FGF19 functions as an endocrine factor, influencing energy balance, bile acid synthesis, glucose and lipid metabolism, as well as cell proliferation. FGF19 has a conserved structure typical of FGFs but exhibits unique features. Unlike most FGFs, which act locally, FGF19 travels through the bloodstream to distant targets including the liver. Its interaction with the β-Klotho (KLB) co-receptor and FGF Receptor 4 (FGFR4) in hepatocytes or FGFR1c in extrahepatic tissues initiates signaling cascades crucial for its biological functions. Although the mouse ortholog, FGF15, diverges significantly from human FGF19 in protein sequence and receptor binding, studies of FGF15-deficient mice have led to a better understanding of the proteins' role in bile acid regulation, metabolism, and embryonic development. Overexpression studies in transgenic mice have further revealed roles in not only ameliorating metabolic diseases but also in promoting hepatocyte proliferation and tumorigenesis. This review summarizes the gene and protein structure of FGF19/15, its expression patterns, phenotypes in mutant models, and implication in human diseases, providing insights into potential therapeutic strategies targeting the FGF19 signaling pathway.
Collapse
Affiliation(s)
- Agathe Bouju
- Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Sorbonne University, Paris, France
| | - Roel Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Peng V Wu
- Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA; Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
14
|
Kim MK, Kwon HS, Baek KH, Song KH. Bile acids, fibroblast growth factor-19, and glucagon-like peptide-1 levels in the long term after bariatric surgery. Asian J Surg 2024:S1015-9584(24)02313-3. [PMID: 39424505 DOI: 10.1016/j.asjsur.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVES Glucagon-like peptide-1(GLP-1) is a hormone often measured in the short-term following Roux-en-Y gastric bypass (RYGB) due to its elevation and association with improvement of glucose metabolism. We examined the durability of this effect in patients with type 2 diabetes mellitus (DM) in the long term after RYGB. METHODS Obese patients with type 2 DM who had received RYGB 10 years ago (n = 10) were enrolled and a meal tolerance test (MTT) was performed. A matched control group with type 2 DM (n = 5) underwent MTT. RESULTS Glucose levels during the MTT did not differ between patients with RYGB and the nonsurgical group. Insulin, C-peptide and GLP-1 levels during MTT were significantly higher in patients with RYGB compared with the nonsurgical group (Area under the curve [AUC] of insulin; 57.4 ± 22.9 vs. 27.7 ± 11.1 mIU/L•hr, P = 0.008; AUC of total GLP-1; 189.4 ± 74.72 vs. 52.13 ± 10.23 pM •hr, P = 0.002), and in particular, peak insulin, C-peptide and GLP-1 levels observed 30-45 min after eating were markedly different from those in the nonsurgical group. Bile acids (BAs) and fibroblast growth factor 19 (FGF-19) levels during MTT were higher in patients with RYGB compared with the nonsurgical group. Peak BAs and FGF-19 levels tended to be higher in the RYGB. CONCLUSIONS An enhanced GLP-1 response was noted 10 years after RYGB, strongly suggesting a durability of this effect. BAs and FGF-19 were increased in the RYGB group, but not as much as the pronounced increase in GLP-1 secretion.
Collapse
Affiliation(s)
- Mee Kyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, South Korea
| | - Hyuk-Sang Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, South Korea
| | - Ki-Hyun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, South Korea
| | - Ki-Ho Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, South Korea.
| |
Collapse
|
15
|
Lopez-Pascual A, Russo-Cabrera JS, Ardaiz N, Palmer T, Graham AR, Uriarte I, Gomar C, Ruiz-Guillamon D, Latasa MU, Arechederra M, Fontanellas A, Monte MJ, Marin JJG, Berasain C, Del Rio CL, Fernandez-Barrena MG, Martini PGV, Schultz JR, Berraondo P, Avila MA. Non-mitogenic FGF19 mRNA-based therapy for the treatment of experimental metabolic dysfunction-associated steatotic liver disease (MASLD). Clin Sci (Lond) 2024; 138:1265-1284. [PMID: 39301694 DOI: 10.1042/cs20241137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) represents a global health threat. MASH pathophysiology involves hepatic lipid accumulation and progression to severe conditions like cirrhosis and, eventually, hepatocellular carcinoma. Fibroblast growth factor (FGF)-19 has emerged as a key regulator of metabolism, offering potential therapeutic avenues for MASH and associated disorders. We evaluated the therapeutic potential of non-mitogenic (NM)-FGF19 mRNA formulated in liver-targeted lipid nanoparticles (NM-FGF19-mRNAs-LNPs) in C57BL/6NTac male mice with diet-induced obesity and MASH (DIO-MASH: 40% kcal fat, 20% kcal fructose, 2% cholesterol). After feeding this diet for 21 weeks, NM-FGF19-mRNAs-LNPs or control (C-mRNA-LNPs) were administered (0.5 mg/kg, i.v.) weekly for another six weeks, in which diet feeding continued. NM-FGF19-mRNAs-LNPs treatment in DIO-MASH mice resulted in reduced body weight, adipose tissue depots, and serum transaminases, along with improved insulin sensitivity. Histological analyses confirmed the reversal of MASH features, including steatosis reduction without worsening fibrosis. NM-FGF19-mRNAs-LNPs reduced total hepatic bile acids (BAs) and changed liver BA composition, markedly influencing cholesterol homeostasis and metabolic pathways as observed in transcriptomic analyses. Extrahepatic effects included the down-regulation of metabolic dysfunction-associated genes in adipose tissue. This study highlights the potential of NM-FGF19-mRNA-LNPs therapy for MASH, addressing both hepatic and systemic metabolic dysregulation. NM-FGF19-mRNA demonstrates efficacy in reducing liver steatosis, improving metabolic parameters, and modulating BA levels and composition. Given the central role played by BA in dietary fat absorption, this effect of NM-FGF19-mRNA may be mechanistically relevant. Our study underscores the high translational potential of mRNA-based therapies in addressing the multifaceted landscape of MASH and associated metabolic perturbations.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Joan S Russo-Cabrera
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Nuria Ardaiz
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | | | | | - Iker Uriarte
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Celia Gomar
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - David Ruiz-Guillamon
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Maria U Latasa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maria Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Antonio Fontanellas
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maria J Monte
- CIBERehd, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Jose J G Marin
- CIBERehd, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | | | - Maite G Fernandez-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | | | | | - Pedro Berraondo
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERonc, Madrid, Spain
| | - Matias A Avila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| |
Collapse
|
16
|
Wada N, Murakami T, Fauzi M, Sakaki K, Oshima S, Shimada Y, Asai K, Oshima A, Nomura S, Joo E, Mori M, Fujiwara R, Shide K, Wada K, Yabe D, Inagaki N, Harada N. Elevated Serum Growth Differentiation Factor 15 Levels as a Potential Biomarker of the Efficacy of Imeglimin in Individuals With Type 2 Diabetes Mellitus: An Exploratory Study. J Clin Med Res 2024; 16:503-508. [PMID: 39544328 PMCID: PMC11557504 DOI: 10.14740/jocmr6031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Background The aim of the present study was to conduct a prospective observational study to explore the effects of imeglimin on systemic energy metabolism/body composition and to identify potential mitochondria-related biomarkers of the efficacy of the drug in clinical settings. Methods In this prospective observational study, 16 participants with type 2 diabetes mellitus in the diabetes clinic of Kyoto University Hospital were enrolled. Individuals were started on imeglimin as monotherapy or add-on therapy. Results After 3 months under imeglimin treatment, there was no significant change in basal metabolism or body composition. However, serum levels of growth differentiation factor 15 (GDF15) were higher while those of serum fibroblast growth factor 21 and urine 8-hydroxy-2'-deoxyguanosine were not changed. Additional in vitro examination revealed that imeglimin induces GDF15 protein release from human hepatocytes. Conclusions Three-month imeglimin treatment increased serum GDF15 levels in clinical type 2 diabetes mellitus patients along with little change in basal metabolism or body composition, suggesting GDF15 as a potential marker for the efficacy of imeglimin.
Collapse
Affiliation(s)
- Naoki Wada
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- These authors contributed equally to this work
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- These authors contributed equally to this work
| | - Muhammad Fauzi
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kentaro Sakaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinobu Oshima
- Department of Metabolism and Clinical Nutrition, Kyoto University Hospital, Kyoto, Japan
| | - Yoshihito Shimada
- Department of Metabolism and Clinical Nutrition, Kyoto University Hospital, Kyoto, Japan
| | - Kanae Asai
- Department of Metabolism and Clinical Nutrition, Kyoto University Hospital, Kyoto, Japan
| | - Ayako Oshima
- Department of Metabolism and Clinical Nutrition, Kyoto University Hospital, Kyoto, Japan
| | - Satoko Nomura
- Department of Metabolism and Clinical Nutrition, Kyoto University Hospital, Kyoto, Japan
| | - Erina Joo
- Department of Metabolism and Clinical Nutrition, Kyoto University Hospital, Kyoto, Japan
| | - Michiko Mori
- Department of Metabolism and Clinical Nutrition, Kyoto University Hospital, Kyoto, Japan
| | - Ryoko Fujiwara
- Department of Metabolism and Clinical Nutrition, Kyoto University Hospital, Kyoto, Japan
| | - Kenichiro Shide
- Department of Metabolism and Clinical Nutrition, Kyoto University Hospital, Kyoto, Japan
| | - Keiko Wada
- Department of Metabolism and Clinical Nutrition, Kyoto University Hospital, Kyoto, Japan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Endocrinology and Metabolism, School of Medical Sciences, University of Fukui, Japan
| |
Collapse
|
17
|
Huang Y, Chen H, Chen J, Wu Q, Zhang W, Li D, Lu Y, Chen Y. Yellow tea polysaccharides protect against non-alcoholic fatty liver disease via regulation of gut microbiota and bile acid metabolism in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155919. [PMID: 39153277 DOI: 10.1016/j.phymed.2024.155919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a major clinical and global public health issue, with no specific pharmacological treatment available. Currently, there is a lack of approved drugs for the clinical treatment of NAFLD. Large-leaf yellow tea polysaccharides (YTP) is a natural biomacromolecule with excellent prebiotic properties and significant therapeutic effects on multiple metabolic diseases. However, the specific mechanisms by which YTP regulates NAFLD remain unclear. PURPOSE This study aims to explore the prebiotic effects of YTP and the potential mechanisms by which it inhibits hepatic cholesterol accumulation in NAFLD mice. METHODS The effects of YTP on lipid accumulation were evaluated in NAFLD mice through obesity trait analysis and bile acids (BAs) metabolism assessment. Additionally, fecal microbiota transplantation (FMT) was performed, and high-throughput sequencing was employed to investigate the mechanisms underlying YTP's regulatory effects on gut microbiota and BA metabolism. RESULTS Our study demonstrated that YTP altered the constitution of colonic BA, particularly increasing the levels of conjugated BA and non-12OH BA, which suppressed ileum FXR receptors and hepatic BA reabsorption, facilitated BA synthesis, and fecal BA excretion. The modifications were characterized by a decrease in the levels of FXR, FGF15, FGFR4, and ASBT proteins, and an increase in the levels of Cyp7a1 and Cyp27a1 proteins. YTP might affect enterohepatic circulation and by the activated the hepatic FXR-SHP pathway. Meanwhile, YTP reshaped the intestinal microbiome structure by decreasing BSH-producing genera and increasing taurine metabolism genera. The correlation analysis implied that Muribaculaceae, Pseudomonas, acterium_coprostanoligenes_group, Clostridiales, Lachnospiraceae_NK4A136_group, Delftia, Dubosiella, and Romboutsia were strongly correlated with specific BA monomers. CONCLUSIONS YTP modulates bile salt hydrolase-related microbial genera to activate alternative bile acid synthesis pathways, thereby inhibiting NAFLD progression. These results suggest that YTP may serve as a potential probiotic formulation, offering a feasible dietary intervention for NAFLD.
Collapse
Affiliation(s)
- Yuzhe Huang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Hao Chen
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Jielin Chen
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Qingxi Wu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Wenna Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yongming Lu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory for Ecological Engineering and Biotechnology of Anhui Province, Hefei 230601, PR China.
| |
Collapse
|
18
|
Wean J, Baranwal S, Miller N, Shin JH, O'Rourke RW, Burant CF, Seeley RJ, Rothberg AE, Bozadjieva-Kramer N. Gut-muscle communication links FGF19 levels to the loss of lean muscle mass following rapid weight loss. DIABETES & METABOLISM 2024; 50:101570. [PMID: 39134173 DOI: 10.1016/j.diabet.2024.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/18/2024]
Abstract
OBJECTIVE Optimal weight loss involves decreasing adipose tissue while preserving lean muscle mass. Identifying molecular mediators that preserve lean muscle mass is therefore a clinically important goal. We have shown that circulating, postprandial FGF19 levels are lower in patients with obesity and decrease further with comorbidities such as type 2 diabetes and MASLD. Preclinical studies have shown that FGF15 (mouse ortholog of human FGF19) is necessary to protect against lean muscle mass loss following metabolic surgery-induced weight loss in a mouse model of diet-induced obesity. We evaluated if non-surgical weight loss interventions also lead to increased systemic levels of FGF19 and whether FGF19 levels are predictive of lean muscle mass following rapid weight loss in human subjects with obesity. RESEARCH DESIGN AND METHODS Weight loss was induced in 176 subjects with obesity via a very low-energy diet, VLED (800 kcal/d) in the form of total liquid meal replacement for 3-4 months. We measured plasma FGF19 levels at baseline and following VLED-induced weight loss. Multiple linear regression was performed to assess if FGF19 levels were predictive of lean mass at baseline (obesity) and following VLED. RESULTS Postprandial levels of FGF19 increased significantly following VLED-weight loss. Multiple linear regression analysis showed that baseline (obesity) FGF19 levels, but not post VLED FGF19 levels, significantly predicted the percent of lean muscle mass after VLED-induced weight loss, while controlling for age, sex, and the baseline percent lean mass. CONCLUSION These data identify gut-muscle communication and FGF19 as a potentially important mediator of the preservation of lean muscle mass during rapid weight loss.
Collapse
Affiliation(s)
- Jordan Wean
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Salisha Baranwal
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Nicole Miller
- Department of Internal Medicine, Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States; Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, MI, United States
| | - Charles F Burant
- Department of Internal Medicine, Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Amy E Rothberg
- Department of Internal Medicine, Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States; Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, MI, United States.
| |
Collapse
|
19
|
Carvalho MBD, Jorge GMCP, Zanardo LW, Hamada LM, Izabel LDS, Santoro S, Magdalon J. The role of FGF19 in metabolic regulation: insights from preclinical models to clinical trials. Am J Physiol Endocrinol Metab 2024; 327:E279-E289. [PMID: 39017679 DOI: 10.1152/ajpendo.00156.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Fibroblast growth factor 19 (FGF19) is a hormone synthesized in enterocytes in response to bile acids. This review explores the pivotal role of FGF19 in metabolism, addressing the urgent global health concern of obesity and its associated pathologies, notably type 2 diabetes. The intriguing inverse correlation between FGF19 and body mass or visceral adiposity, as well as its rapid increase following bariatric surgery, emphasizes its potential as a therapeutic target. This article meticulously examines the impact of FGF19 on metabolism by gathering evidence primarily derived from studies conducted in animal models or cell lines, using both FGF19 treatment and genetic modifications. Overall, these studies demonstrate that FGF19 has antidiabetic and antiobesogenic effects. A thorough examination across metabolic tissues, including the liver, adipose tissue, skeletal muscle, and the central nervous system, is conducted, unraveling the intricate interplay of FGF19 across diverse organs. Moreover, we provide a comprehensive overview of clinical trials involving an FGF19 analog called aldafermin, emphasizing promising results in diseases such as nonalcoholic steatohepatitis and diabetes. Therefore, we aim to foster a deeper understanding of FGF19 role and encourage further exploration of its clinical applications, thereby advancing the field and offering innovative approaches to address the escalating global health challenge of obesity and related metabolic conditions.
Collapse
Affiliation(s)
- Marcela Botelho de Carvalho
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Luiza Wolf Zanardo
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Leticia Miho Hamada
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Larissa Dos Santos Izabel
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Juliana Magdalon
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
20
|
Phan P, Ternier G, Edirisinghe O, Kumar TKS. Exploring endocrine FGFs - structures, functions and biomedical applications. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:68-99. [PMID: 39309613 PMCID: PMC11411148 DOI: 10.62347/palk2137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024]
Abstract
The family of fibroblast growth factors (FGFs) consists of 22 members with diverse biological functions in cells, from cellular development to metabolism. The family can be further categorized into three subgroups based on their three modes of action. FGF19, FGF21, and FGF23 are endocrine FGFs that act in a hormone-like/endocrine manner to regulate various metabolic activities. However, all three members of the endocrine family require both FGF receptors (FGFRs) and klotho co-receptors to elicit their functions. α-klotho and β-klotho act as scaffolds to bring endocrine FGFs closer to their receptors (FGFRs) to form active complexes. Numerous novel studies about metabolic FGFs' structures, mechanisms, and physiological insights have been published to further understand the complex molecular interactions and physiological activities of endocrine FGFs. Herein, we aim to review the structures, physiological functions, binding mechanisms to cognate receptors, and novel biomedical applications of endocrine FGFs in recent years.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Gaёtane Ternier
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of ArkansasFayetteville, AR 72701, USA
| | | |
Collapse
|
21
|
Ramkissoon R, Cao S, Shah VH. The Pathophysiology of Portal Hypertension. Clin Liver Dis 2024; 28:369-381. [PMID: 38945632 DOI: 10.1016/j.cld.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
This article reviews the pathophysiology of portal hypertension that includes multiple mechanisms internal and external to the liver. This article starts with a review of literature describing the cellular and molecular mechanisms of portal hypertension, microvascular thrombosis, sinusoidal venous congestion, portal angiogenesis, vascular hypocontractility, and hyperdynamic circulation. Mechanotransduction and the gut-liver axis, which are newer areas of research, are reviewed. Dysfunction of this axis contributes to chronic liver injury, inflammation, fibrosis, and portal hypertension. Sequelae of portal hypertension are discussed in subsequent studies.
Collapse
Affiliation(s)
- Resham Ramkissoon
- Department of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55902, USA
| | - Sheng Cao
- Mayo College of Medicine, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55902, USA
| | - Vijay H Shah
- Department of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55902, USA; Department of Internal Medicine, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55902, USA.
| |
Collapse
|
22
|
Amaral Raposo M, Sousa Oliveira E, Dos Santos A, Guadagnini D, El Mourabit H, Housset C, Lemoinne S, Abdalla Saad MJ. Impact of cholecystectomy on the gut-liver axis and metabolic disorders. Clin Res Hepatol Gastroenterol 2024; 48:102370. [PMID: 38729564 DOI: 10.1016/j.clinre.2024.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Cholecystectomy is considered as a safe procedure to treat patients with gallstones. However, epidemiological studies highlighted an association between cholecystectomy and metabolic disorders, such as type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease (MASLD), independently of the gallstone disease. Following cholecystectomy, bile acids flow directly from the liver into the intestine, leading to changes in the entero-hepatic circulation of bile acids and their metabolism. The changes in bile acids metabolism impact the gut microbiota. Therefore, cholecystectomized patients display gut dysbiosis characterized by a reduced diversity, a loss of bacteria producing short-chain fatty acids and an increase in pro-inflammatory bacteria. Alterations of both bile acids metabolism and gut microbiota occurring after cholecystectomy can promote the development of metabolic disorders. In this review, we discuss the impact of cholecystectomy on bile acids and gut microbiota and its consequences on metabolic functions.
Collapse
Affiliation(s)
- Mariana Amaral Raposo
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Emília Sousa Oliveira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil
| | - Andrey Dos Santos
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil
| | - Haquima El Mourabit
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Chantal Housset
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Sara Lemoinne
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis, European Reference Network on Hepatological Diseases (ERN Rare-Liver), Saint-Antoine Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France.
| | - Mário José Abdalla Saad
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil.
| |
Collapse
|
23
|
Zhang J, Li Y, Yang L, Ma N, Qian S, Chen Y, Duan Y, Xiang X, He Y. New advances in drug development for metabolic dysfunction-associated diseases and alcohol-associated liver disease. Cell Biosci 2024; 14:90. [PMID: 38971765 PMCID: PMC11227172 DOI: 10.1186/s13578-024-01267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024] Open
Abstract
Metabolic disorders are currently threatening public health worldwide. Discovering new targets and developing promising drugs will reduce the global metabolic-related disease burden. Metabolic disorders primarily consist of lipid and glucose metabolic disorders. Specifically, metabolic dysfunction-associated steatosis liver disease (MASLD) and alcohol-associated liver disease (ALD) are two representative lipid metabolism disorders, while diabetes mellitus is a typical glucose metabolism disorder. In this review, we aimed to summarize the new drug candidates with promising efficacy identified in clinical trials for these diseases. These drug candidates may provide alternatives for patients with metabolic disorders and advance the progress of drug discovery for the large disease burden.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yixin Li
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China
| | - Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ningning Ma
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shengying Qian
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingfen Chen
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China.
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Portincasa P, Khalil M, Mahdi L, Perniola V, Idone V, Graziani A, Baffy G, Di Ciaula A. Metabolic Dysfunction-Associated Steatotic Liver Disease: From Pathogenesis to Current Therapeutic Options. Int J Mol Sci 2024; 25:5640. [PMID: 38891828 PMCID: PMC11172019 DOI: 10.3390/ijms25115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The epidemiological burden of liver steatosis associated with metabolic diseases is continuously growing worldwide and in all age classes. This condition generates possible progression of liver damage (i.e., inflammation, fibrosis, cirrhosis, hepatocellular carcinoma) but also independently increases the risk of cardio-metabolic diseases and cancer. In recent years, the terminological evolution from "nonalcoholic fatty liver disease" (NAFLD) to "metabolic dysfunction-associated fatty liver disease" (MAFLD) and, finally, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been paralleled by increased knowledge of mechanisms linking local (i.e., hepatic) and systemic pathogenic pathways. As a consequence, the need for an appropriate classification of individual phenotypes has been oriented to the investigation of innovative therapeutic tools. Besides the well-known role for lifestyle change, a number of pharmacological approaches have been explored, ranging from antidiabetic drugs to agonists acting on the gut-liver axis and at a systemic level (mainly farnesoid X receptor (FXR) agonists, PPAR agonists, thyroid hormone receptor agonists), anti-fibrotic and anti-inflammatory agents. The intrinsically complex pathophysiological history of MASLD makes the selection of a single effective treatment a major challenge, so far. In this evolving scenario, the cooperation between different stakeholders (including subjects at risk, health professionals, and pharmaceutical industries) could significantly improve the management of disease and the implementation of primary and secondary prevention measures. The high healthcare burden associated with MASLD makes the search for new, effective, and safe drugs a major pressing need, together with an accurate characterization of individual phenotypes. Recent and promising advances indicate that we may soon enter the era of precise and personalized therapy for MASLD/MASH.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Perniola
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Idone
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
- Aboca S.p.a. Società Agricola, 52037 Sansepolcro, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| |
Collapse
|
25
|
Bozadjieva-Kramer N, Shin JH, Li Z, Rupp AC, Miller N, Kernodle S, Lanthier N, Henry P, Seshadri N, Myronovych A, MacDougald OA, O’Rourke RW, Kohli R, Burant CF, Rothberg AE, Seeley RJ. Intestinal FGF15 regulates bile acid and cholesterol metabolism but not glucose and energy balance. JCI Insight 2024; 9:e174164. [PMID: 38587078 PMCID: PMC11128213 DOI: 10.1172/jci.insight.174164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/21/2024] [Indexed: 04/09/2024] Open
Abstract
Fibroblast growth factor 15/19 (FGF15/19, mouse/human ortholog) is expressed in the ileal enterocytes of the small intestine and released postprandially in response to bile acid absorption. Previous reports of FGF15-/- mice have limited our understanding of gut-specific FGF15's role in metabolism. Therefore, we studied the role of endogenous gut-derived FGF15 in bile acid, cholesterol, glucose, and energy balance. We found that circulating levels of FGF19 were reduced in individuals with obesity and comorbidities, such as type 2 diabetes and metabolic dysfunction-associated fatty liver disease. Gene expression analysis of ileal FGF15-positive cells revealed differential expression during the obesogenic state. We fed standard chow or a high-fat metabolic dysfunction-associated steatohepatitis-inducing diet to control and intestine-derived FGF15-knockout (FGF15INT-KO) mice. Control and FGF15INT-KO mice gained similar body weight and adiposity and did not show genotype-specific differences in glucose, mixed meal, pyruvate, and glycerol tolerance. FGF15INT-KO mice had increased systemic bile acid levels but decreased cholesterol levels, pointing to a primary role for gut-derived FGF15 in regulating bile acid and cholesterol metabolism when exposed to obesogenic diet. These studies show that intestinal FGF15 plays a specific role in bile acid and cholesterol metabolism regulation but is not essential for energy and glucose balance.
Collapse
Affiliation(s)
- Nadejda Bozadjieva-Kramer
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- Department of Surgery and
| | | | - Ziru Li
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Alan C. Rupp
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole Miller
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nicolas Lanthier
- Hepato-Gastroenterology Department, Saint-Luc University Clinics, and
- Laboratory of Hepatology and Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Paulina Henry
- Pathological Anatomy Department, Institute of Pathology and Genetics, Gosselies, Belgium
| | | | | | - Ormond A. MacDougald
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert W. O’Rourke
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- Department of Surgery and
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Charles F. Burant
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy E. Rothberg
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
26
|
Maresca R, Mignini I, Varca S, Calvez V, Termite F, Esposto G, Laterza L, Scaldaferri F, Ainora ME, Gasbarrini A, Zocco MA. Inflammatory Bowel Diseases and Non-Alcoholic Fatty Liver Disease: Piecing a Complex Puzzle Together. Int J Mol Sci 2024; 25:3278. [PMID: 38542249 PMCID: PMC10970310 DOI: 10.3390/ijms25063278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 01/03/2025] Open
Abstract
Inflammatory bowel diseases (IBD), comprising Crohn's disease and ulcerative colitis, are systemic and multifaceted disorders which affect other organs in addition to the gastrointestinal tract in up to 50% of cases. Extraintestinal manifestations may present before or after IBD diagnosis and negatively impact the intestinal disease course and patients' quality of life, often requiring additional diagnostic evaluations or specific treatments. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. Current evidence shows an increased prevalence of NAFLD (and its more advanced stages, such as liver fibrosis and steatohepatitis) in IBD patients compared to the general population. Many different IBD-specific etiopathogenetic mechanisms have been hypothesized, including chronic inflammation, malabsorption, previous surgical interventions, changes in fecal microbiota, and drugs. However, the pathophysiological link between these two diseases is still poorly understood. In this review, we aim to provide a comprehensive overview of the potential mechanisms which have been investigated so far and highlight open issues still to be addressed for future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Catholic University of Rome, 00168 Rome, Italy; (R.M.); (I.M.); (S.V.); (V.C.); (F.T.); (G.E.); (L.L.); (F.S.); (M.E.A.); (A.G.)
| |
Collapse
|
27
|
Zeng T, Tang X, Bai X, Xiong H. FGF19 Promotes the Proliferation and Insulin Secretion from Human Pancreatic β Cells Via the IRS1/GLUT4 Pathway. Exp Clin Endocrinol Diabetes 2024; 132:152-161. [PMID: 38513652 DOI: 10.1055/a-2250-7830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a commonly observed complication associated with obesity. The effect of fibroblast growth factor 19 (FGF19), a promising therapeutic agent for metabolic disorders, on pancreatic β cells in obesity-associated T2DM remains poorly understood. METHODS Human pancreatic β cells were cultured with high glucose (HG) and palmitic acid (PA), followed by treatment with FGF19. The cell proliferation, apoptosis, and insulin secretion were evaluated by CCK-8, qRT-PCR, ELISA, flow cytometry, and western blotting. The expression of the insulin receptor substrate (IRS)/glucose transporter (GLUT) pathway was evaluated. The interaction between FGF19 and IRS1 was predicted using the STRING database and verified by co-immunoprecipitation and immunofluorescence. The regulatory effects of the IRS1/GLUT4 pathway on human pancreatic β cells were assessed by overexpressing IRS1 and silencing IRS1 and GLUT4. RESULTS HG+PA treatment reduced the human pancreatic β cell proliferation and insulin secretion and promoted cell apoptosis. However, FGF19 treatment restored these alterations and significantly increased the expressions of IRS1, GLUT1, and GLUT4 in the IRS/GLUT pathway. Furthermore, FGF19 and IRS1 were found to interact. IRS1 overexpression partially promoted the proliferation of pancreatic β cells and insulin secretion through GLUT4. Additionally, the silencing of IRS1 or GLUT4 attenuated the therapeutic effects of FGF19. CONCLUSION In conclusion, FGF19 partly promoted the proliferation and insulin secretion of human pancreatic β cells and inhibited apoptosis by upregulating the IRS1/GLUT4 pathway. These findings establish a theoretical framework for the clinical utilization of FGF19 in the treatment of obesity-associated T2DM.
Collapse
Affiliation(s)
- Ting Zeng
- Department of Endocrinology, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| | - Xi Tang
- Department of Cardiology, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| | - Xiaosu Bai
- Department of Endocrinology, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| | - Haiyan Xiong
- Department of Nursing, Longhua District People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
28
|
Li X, Lu W, Kharitonenkov A, Luo Y. Targeting the FGF19-FGFR4 pathway for cholestatic, metabolic, and cancerous diseases. J Intern Med 2024; 295:292-312. [PMID: 38212977 DOI: 10.1111/joim.13767] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Human fibroblast growth factor 19 (FGF19, or FGF15 in rodents) plays a central role in controlling bile acid (BA) synthesis through a negative feedback mechanism. This process involves a postprandial crosstalk between the BA-activated ileal farnesoid X receptor and the hepatic Klotho beta (KLB) coreceptor complexed with fibrobalst growth factor receptor 4 (FGFR4) kinase. Additionally, FGF19 regulates glucose, lipid, and energy metabolism by coordinating responses from functional KLB and FGFR1-3 receptor complexes on the periphery. Pharmacologically, native FGF19 or its analogs decrease elevated BA levels, fat content, and collateral tissue damage. This makes them effective in treating both cholestatic diseases such as primary biliary or sclerosing cholangitis (PBC or PSC) and metabolic abnormalities such as nonalcoholic steatohepatitis (NASH). However, chronic administration of FGF19 drives oncogenesis in mice by activating the FGFR4-dependent mitogenic or hepatic regenerative pathway, which could be a concern in humans. Agents that block FGF19 or FGFR4 signaling have shown great potency in preventing FGF19-responsive hepatocellular carcinoma (HCC) development in animal models. Recent phase 1/2 clinical trials have demonstrated promising results for several FGF19-based agents in selectively treating patients with PBC, PSC, NASH, or HCC. This review aims to provide an update on the clinical development of both analogs and antagonists targeting the FGF19-FGFR4 signaling pathway for patients with cholestatic, metabolic, and cancer diseases. We will also analyze potential safety and mechanistic concerns that should guide future research and advanced trials.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmacological Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqin Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| | | | - Yongde Luo
- School of Pharmacological Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
29
|
Ferrell JM, Dilts M, Pokhrel S, Stahl Z, Boehme S, Wang X, Chiang JYL. Fibroblast Growth Factor 19 Alters Bile Acids to Induce Dysbiosis in Mice With Alcohol-Induced Liver Disease. Cell Mol Gastroenterol Hepatol 2024; 18:71-87. [PMID: 38417701 PMCID: PMC11127034 DOI: 10.1016/j.jcmgh.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND & AIMS Excessive alcohol consumption can lead to alcohol-associated liver disease, a spectrum of conditions ranging from steatosis to fibrosis and cirrhosis. Bile acids regulate metabolic pathways by binding to cellular and nuclear receptors, and they also interact with the gut microbiome to control microbial overgrowth. Fibroblast growth factor 19 (FGF-19) is an ileum-derived hormone induced and released in response to bile acid activation of the nuclear receptor farnesoid X receptor. FGF-19 signaling is dysregulated with ethanol consumption and is increased in patients with alcoholic hepatitis. Here, we examined the effects of FGF-19 in a mouse model of chronic + binge ethanol feeding. METHODS After injection of adeno-associated virus-green fluorescent protein or AAV-FGF-19, female C57BL/6J mice were pair-fed a Lieber DeCarli liquid diet (5% v/v) or control diet for 10 days and were given a bolus gavage of 5% ethanol or maltose control to represent a binge drinking episode. Tissues were collected for analysis 9 hours after the binge. RESULTS Chronic + binge ethanol feeding induced steatosis regardless of FGF-19 expression. Interestingly, FGF-19 and ethanol resulted in significantly increased liver inflammation, as measured by Il6, Tgfβ, and Tnfα, compared with ethanol alone. Both ethanol and FGF-19 decreased bile acid synthesis, and FGF-19 significantly reduced secondary bile acids, leading to overgrowth of specific pathogenic bacteria including Enterococcus faecalis, Escherichia coli, and Clostridium perfringens. CONCLUSIONS Dysregulation of FGF-19 and consequent changes in bile acid synthesis and composition during alcohol consumption may be a contributing factor to alcohol-induced liver disease and dysbiosis.
Collapse
Affiliation(s)
- Jessica M Ferrell
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio.
| | - Matthew Dilts
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Sabita Pokhrel
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Zachary Stahl
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Shannon Boehme
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown Ohio
| | - John Y L Chiang
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
30
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
31
|
Soares GM, Balbo SL, Bronczek GA, Vettorazzi JF, Marmentini C, Zangerolamo L, Velloso LA, Carneiro EM. Vertical sleeve gastrectomy improves glucose-insulin homeostasis by enhancing β-cell function and survival via FGF15/19. Am J Physiol Endocrinol Metab 2024; 326:E134-E147. [PMID: 38117265 DOI: 10.1152/ajpendo.00218.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Vertical sleeve gastrectomy (VSG) restores glucose homeostasis in obese mice and humans. In addition, the increased fibroblast growth factor (FGF)15/19 circulating level postsurgery has been implicated in this effect. However, the impact of FGF15/19 on pancreatic islets remains unclear. Using a diet-induced obese mice model, we demonstrate that VSG attenuates insulin hypersecretion in isolated pancreatic islets, likely due to morphological alterations in the endocrine pancreas such as reduction in islet, β-cell, and α-cell mass. In addition, VSG relieves gene expression of endoplasmic reticulum (ER) stress and inflammation markers in islets from obese mice. Incubation of INS-1E β-cells with serum from obese mice induced dysfunction and cell death, whereas these conditions were not induced with serum from obese mice submitted to VSG, implicating the involvement of a humoral factor. Indeed, VSG increased FGF15 circulating levels in obese mice, as well as the expression of FGF receptor 1 (Fgfr1) and its coreceptor β-klotho (Klb), both in pancreatic islets from VSG mice and in INS-1E cells treated with the serum from these mice. Moreover, exposing INS-1E cells to an FGFR inhibitor abolished the effects of VSG serum on insulin secretion and cell death. Also, recombinant FGF19 prevents INS-1E cells from dysfunction and death induced by serum from obese mice. These findings indicate that the amelioration of glucose-insulin homeostasis promoted by VSG is mediated, at least in part, by FGF15/19. Therefore, approaches promoting FGF15/19 release or action may restore pancreatic islet function in obesity.NEW & NOTEWORTHY Vertical sleeve gastrectomy (VSG) decreases insulin secretion, endoplasmic reticulum (ER) stress, and inflammation in pancreatic islets from obese mice. In addition, VSG increased fibroblast growth factor (FGF)15 circulating levels in obese mice, as well as the expression of FGF receptor 1 (Fgfr1) and its coreceptor β-klotho (Klb), both in pancreatic islets from VSG mice and in INS-1E β-cells treated with the serum from these mice. Serum from operated mice protects INS-1E cells from dysfunction and apoptosis, which was mediated by FGF15/19.
Collapse
Affiliation(s)
- Gabriela M Soares
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Sandra L Balbo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Laboratory of Endocrine Physiology and Metabolism, Biological Sciences and Health Center, Western Paraná State University (UNIOESTE), Cascavel, Brazil
| | - Gabriela A Bronczek
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jean F Vettorazzi
- Latin-American Institute of Life and Nature Sciences, Federal University of Latin-American Integration (UNILA), Foz do Iguacu, Brazil
| | - Carine Marmentini
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucas Zangerolamo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lício A Velloso
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Everardo M Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
32
|
Zangerolamo L, Carvalho M, Velloso LA, Barbosa HCL. Endocrine FGFs and their signaling in the brain: Relevance for energy homeostasis. Eur J Pharmacol 2024; 963:176248. [PMID: 38056616 DOI: 10.1016/j.ejphar.2023.176248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Since their discovery in 2000, there has been a continuous expansion of studies investigating the physiology, biochemistry, and pharmacology of endocrine fibroblast growth factors (FGFs). FGF19, FGF21, and FGF23 comprise a subfamily with attributes that distinguish them from typical FGFs, as they can act as hormones and are, therefore, referred to as endocrine FGFs. As they participate in a broad cross-organ endocrine signaling axis, endocrine FGFs are crucial lipidic, glycemic, and energetic metabolism regulators during energy availability fluctuations. They function as powerful metabolic signals in physiological responses induced by metabolic diseases, like type 2 diabetes and obesity. Pharmacologically, FGF19 and FGF21 cause body weight loss and ameliorate glucose homeostasis and energy expenditure in rodents and humans. In contrast, FGF23 expression in mice and humans has been linked with insulin resistance and obesity. Here, we discuss emerging concepts in endocrine FGF signaling in the brain and critically assess their putative role as therapeutic targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
33
|
Sadowska A, Poniedziałek-Czajkowska E, Mierzyński R. The Role of the FGF19 Family in the Pathogenesis of Gestational Diabetes: A Narrative Review. Int J Mol Sci 2023; 24:17298. [PMID: 38139126 PMCID: PMC10743406 DOI: 10.3390/ijms242417298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications. Understanding the pathogenesis and appropriate diagnosis of GDM enables the implementation of early interventions during pregnancy that reduce the risk of maternal and fetal complications. At the same time, it provides opportunities to prevent diabetes, metabolic syndrome, and cardiovascular diseases in women with GDM and their offspring in the future. Fibroblast growth factors (FGFs) represent a heterogeneous family of signaling proteins which play a vital role in cell proliferation and differentiation, repair of damaged tissues, wound healing, angiogenesis, and mitogenesis and also affect the regulation of carbohydrate, lipid, and hormone metabolism. Abnormalities in the signaling function of FGFs may lead to numerous pathological conditions, including metabolic diseases. The FGF19 subfamily, also known as atypical FGFs, which includes FGF19, FGF21, and FGF23, is essential in regulating metabolic homeostasis and acts as a hormone while entering the systemic circulation. Many studies have pointed to the involvement of the FGF19 subfamily in the pathogenesis of metabolic diseases, including GDM, although the results are inconclusive. FGF19 and FGF21 are thought to be associated with insulin resistance, an essential element in the pathogenesis of GDM. FGF21 may influence placental metabolism and thus contribute to fetal growth and metabolism regulation. The observed relationship between FGF21 and increased birth weight could suggest a potential role for FGF21 in predicting future metabolic abnormalities in children born to women with GDM. In this group of patients, different mechanisms may contribute to an increased risk of cardiovascular diseases in women in later life, and FGF23 appears to be their promising early predictor. This study aims to present a comprehensive review of the FGF19 subfamily, emphasizing its role in GDM and predicting its long-term metabolic consequences for mothers and their offspring.
Collapse
Affiliation(s)
| | - Elżbieta Poniedziałek-Czajkowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland; (A.S.); (R.M.)
| | | |
Collapse
|
34
|
Morón-Ros S, Blasco-Roset A, Navarro-Gascon A, Rupérez C, Zamora M, Crispi F, Uriarte I, Fernández-Barrena MG, Avila M, Ferrer-Curriu G, Lupón J, Bayés-Genis A, Villarroya F, Gavaldà-Navarro A, Planavila A. A new FGF15/19-mediated gut-to-heart axis controls cardiac hypertrophy. J Pathol 2023; 261:335-348. [PMID: 37650293 DOI: 10.1002/path.6193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023]
Abstract
FGF15 and its human orthologue, FGF19, are members of the endocrine FGF family and are secreted by ileal enterocytes in response to bile acids. FGF15/19 mainly targets the liver, but recent studies indicate that it also regulates skeletal muscle mass and adipose tissue plasticity. The aim of this study was to determine the role(s) of the enterokine FGF15/19 during the development of cardiac hypertrophy. Studies in a cohort of humans suffering from heart failure showed increased circulating levels of FGF19 compared with control individuals. We found that mice lacking FGF15 did not develop cardiac hypertrophy in response to three different pathophysiological stimuli (high-fat diet, isoproterenol, or cold exposure). The heart weight/tibia length ratio and the cardiomyocyte area (as measures of cardiac hypertrophy development) under hypertrophy-inducing conditions were lower in Fgf15-null mice than in wild-type mice, whereas the levels of the cardiac damage marker atrial natriuretic factor (Nppa) were up-regulated. Echocardiographic measurements showed similar results. Moreover, the genes involved in fatty acid metabolism were down-regulated in Fgf15-null mice. Conversely, experimental increases in FGF15 induced cardiac hypertrophy in vivo, without changes in Nppa and up-regulation of metabolic genes. Finally, in vitro studies using cardiomyocytes showed that FGF19 had a direct effect on these cells promoting hypertrophy. We have identified herein an inter-organ signaling pathway that runs from the gut to the heart, acts through the enterokine FGF15/19, and is involved in cardiac hypertrophy development and regulation of fatty acid metabolism in the myocardium. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Samantha Morón-Ros
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Artur Navarro-Gascon
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Celia Rupérez
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Monica Zamora
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Fatima Crispi
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maite G Fernández-Barrena
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Matias Avila
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Gemma Ferrer-Curriu
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Josep Lupón
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Antoni Bayés-Genis
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Anna Planavila
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
35
|
Huang W, Shen B, Li X, Zhang T, Zhou X. Benefits of Combining Sonchus brachyotus DC. Extracts and Synbiotics in Alleviating Non-Alcoholic Fatty Liver Disease. Foods 2023; 12:3393. [PMID: 37761102 PMCID: PMC10530047 DOI: 10.3390/foods12183393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease, commonly abbreviated to NAFLD, is a pervasive ailment within the digestive system, exhibiting a rising prevalence, and impacting individuals at increasingly younger ages. Those afflicted by NAFLD face a heightened vulnerability to the onset of profound liver fibrosis, cardiovascular complications, and malignancies. Currently, NAFLD poses a significant threat to human health, and there is no approved therapeutic treatment for it. Recent studies have shown that synbiotics, which regulate intestinal microecology, can positively impact glucolipid metabolism, and improve NAFLD-related indicators. Sonchus brachyotus DC., a Chinese herb, exhibits hepatoprotective and potent antioxidant properties, suggesting its potential therapeutic use in NAFLD. Our preclinical animal model investigation suggests that the synergy between Sonchus brachyotus DC. extracts and synbiotics is significantly more effective in preventing and treating NAFLD, compared to the isolated use of either component. As a result, this combination holds the potential to introduce a fresh and encouraging therapeutic approach to addressing NAFLD.
Collapse
Affiliation(s)
- Wenwu Huang
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| | - Boyuan Shen
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| | - Xiumei Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research of CAAS, Beijing 100000, China;
| | - Tongcun Zhang
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| | - Xiang Zhou
- College of Life Sciences & Health, Wuhan University of Science & Technology, Wuhan 430065, China; (W.H.); (B.S.); (T.Z.)
| |
Collapse
|
36
|
Yin C, Zhong R, Zhang W, Liu L, Chen L, Zhang H. The Potential of Bile Acids as Biomarkers for Metabolic Disorders. Int J Mol Sci 2023; 24:12123. [PMID: 37569498 PMCID: PMC10418921 DOI: 10.3390/ijms241512123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/15/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Bile acids (BAs) are well known to facilitate the absorption of dietary fat and fat-soluble molecules. These unique steroids also function by binding to the ubiquitous cell membranes and nuclear receptors. As chemical signals in gut-liver axis, the presence of metabolic disorders such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), and even tumors have been reported to be closely related to abnormal levels of BAs in the blood and fecal metabolites of patients. Thus, the gut microbiota interacting with BAs and altering BA metabolism are critical in the pathogenesis of numerous chronic diseases. This review intends to summarize the mechanistic links between metabolic disorders and BAs in gut-liver axis, and such stage-specific BA perturbation patterns may provide clues for developing new auxiliary diagnostic means.
Collapse
Affiliation(s)
| | | | | | | | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (R.Z.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (R.Z.)
| |
Collapse
|
37
|
Shao Y, Chen S, Han L, Liu J. Pharmacotherapies of NAFLD: updated opportunities based on metabolic intervention. Nutr Metab (Lond) 2023; 20:30. [PMID: 37415199 DOI: 10.1186/s12986-023-00748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/22/2023] [Indexed: 07/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that is becoming increasingly prevalent, and it ranges from simple steatosis to cirrhosis. However, there is still a lack of pharmacotherapeutic strategies approved by the Food and Drug Administration, which results in a higher risk of death related to carcinoma and cardiovascular complications. Of note, it is well established that the pathogenesis of NAFLD is tightly associated with whole metabolic dysfunction. Thus, targeting interconnected metabolic conditions could present promising benefits to NAFLD, according to a number of clinical studies. Here, we summarize the metabolic characteristics of the development of NAFLD, including glucose metabolism, lipid metabolism and intestinal metabolism, and provide insight into pharmacological targets. In addition, we present updates on the progresses in the development of pharmacotherapeutic strategies based on metabolic intervention globally, which could lead to new opportunities for NAFLD drug development.
Collapse
Affiliation(s)
- Yaodi Shao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Suzhen Chen
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liu Han
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junli Liu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
38
|
Wang S, Zha L, Cui X, Yeh Y, Liu R, Jing J, Shi H, Chen W, Hanover J, Yin J, Yu L, Xue B, Shi H. Epigenetic Regulation of Hepatic Lipid Metabolism by DNA Methylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206068. [PMID: 37282749 PMCID: PMC10369300 DOI: 10.1002/advs.202206068] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Indexed: 06/08/2023]
Abstract
While extensive investigations have been devoted to the study of genetic pathways related to fatty liver diseases, much less is known about epigenetic mechanisms underlying these disorders. DNA methylation is an epigenetic link between environmental factors (e.g., diets) and complex diseases (e.g., non-alcoholic fatty liver disease). Here, it is aimed to study the role of DNA methylation in the regulation of hepatic lipid metabolism. A dynamic change in the DNA methylome in the liver of high-fat diet (HFD)-fed mice is discovered, including a marked increase in DNA methylation at the promoter of Beta-klotho (Klb), a co-receptor for the biological functions of fibroblast growth factor (FGF)15/19 and FGF21. DNA methyltransferases (DNMT) 1 and 3A mediate HFD-induced methylation at the Klb promoter. Notably, HFD enhances DNMT1 protein stability via a ubiquitination-mediated mechanism. Liver-specific deletion of Dnmt1 or 3a increases Klb expression and ameliorates HFD-induced hepatic steatosis. Single-nucleus RNA sequencing analysis reveals pathways involved in fatty acid oxidation in Dnmt1-deficient hepatocytes. Targeted demethylation at the Klb promoter increases Klb expression and fatty acid oxidation, resulting in decreased hepatic lipid accumulation. Up-regulation of methyltransferases by HFD may induce hypermethylation of the Klb promoter and subsequent down-regulation of Klb expression, resulting in the development of hepatic steatosis.
Collapse
Affiliation(s)
- Shirong Wang
- Department of BiologyGeorgia State UniversityAtlantaGA30303USA
| | - Lin Zha
- Department of BiologyGeorgia State UniversityAtlantaGA30303USA
- The Northern Medical DistrictChinese PLA General HospitalBeijing100094China
| | - Xin Cui
- Department of BiologyGeorgia State UniversityAtlantaGA30303USA
| | - Yu‐Te Yeh
- Department of Internal MedicineUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Ruochuan Liu
- Department of Chemistry and the Center for Diagnosis and TherapeuticsGeorgia State UniversityAtlantaGA30303
| | - Jia Jing
- Department of BiologyGeorgia State UniversityAtlantaGA30303USA
| | - Huidong Shi
- GRU Cancer Center and Department of Biochemistry and Molecular BiologyMedical College of GeorgiaAugusta UniversityAugustaGA30912USA
| | - Weiping Chen
- Genomic Core Lab of National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD20855USA
| | - John Hanover
- Genomic Core Lab of National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD20855USA
| | - Jun Yin
- Department of Chemistry and the Center for Diagnosis and TherapeuticsGeorgia State UniversityAtlantaGA30303
| | - Liqing Yu
- Department of Internal MedicineUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Bingzhong Xue
- Department of BiologyGeorgia State UniversityAtlantaGA30303USA
| | - Hang Shi
- Department of BiologyGeorgia State UniversityAtlantaGA30303USA
| |
Collapse
|
39
|
Wei M, Cao WB, Zhao RD, Sun DP, Liang YZ, Huang YD, Cheng ZW, Ouyang J, Yang WS, Yu WB. Fibroblast growth factor 15, induced by elevated bile acids, mediates the improvement of hepatic glucose metabolism after sleeve gastrectomy. World J Gastroenterol 2023; 29:3280-3291. [PMID: 37377582 PMCID: PMC10292143 DOI: 10.3748/wjg.v29.i21.3280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Fibroblast growth factor (FGF) 15/19, which is expressed in and secreted from the distal ileum, can regulate hepatic glucose metabolism in an endocrine manner. The levels of both bile acids (BAs) and FGF15/19 are elevated after bariatric surgery. However, it is unclear whether the increase in FGF15/19 is induced by BAs. Moreover, it remains to be understood whether FGF15/19 elevations contribute to improvements in hepatic glucose metabolism after bariatric surgery.
AIM To investigate the mechanism of improvement of hepatic glucose metabolism by elevated BAs after sleeve gastrectomy (SG).
METHODS By calculating and comparing the changes of body weight after SG with SHAM group, we examined the weight-loss effect of SG. The oral glucose tolerance test (OGTT) test and area under the curve of OGTT curves were used to assess the anti-diabetic effects of SG. By detecting the glycogen content, expression and activity of glycogen synthase as well as the glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (Pepck), we evaluated the hepatic glycogen content and gluconeogenesis activity. We examined the levels of total BA (TBA) together with the farnesoid X receptor (FXR)-agonistic BA subspecies in systemic serum and portal vein at week 12 post-surgery. Then the histological expression of ileal FXR and FGF15 and hepatic FGF receptor 4 (FGFR4) with its corresponding signal pathways involved in glucose metabolism were detected.
RESULTS After surgery, food intake and body weight gain of SG group was decreased compare with the SHAM group. The hepatic glycogen content and glycogen synthase activity was significantly stimulated after SG, while the expression of the key enzyme for hepatic gluconeogenesis: G6Pase and Pepck, were depressed. TBA levels in serum and portal vein were both elevated after SG, the FXR-agonistic BA subspecies: Chenodeoxycholic acid (CDCA), lithocholic acid (LCA) in serum and CDCA, DCA, LCA in portal vein were all higher in SG group than that in SHAM group. Consequently, the ileal expression of FXR and FGF15 were also advanced in SG group. Moreover, the hepatic expression of FGFR4 was stimulated in SG-operated rats. As a result, the activity of its corresponding pathway for glycogen synthesis: FGFR4-Ras-extracellular signal regulated kinase pathway was stimulated, while the corresponding pathway for hepatic gluconeogenesis: FGFR4- cAMP regulatory element-binding protein- peroxisome proliferator-activated receptor γ coactivator-1α pathway was suppressed.
CONCLUSION Elevated BAs after SG induced FGF15 expression in distal ileum by activating their receptor FXR. Furthermore, the promoted FGF15 partly mediated the improving effects on hepatic glucose metabolism of SG.
Collapse
Affiliation(s)
- Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Wei-Bo Cao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ru-Dong Zhao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Dan-Ping Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Ze Liang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ya-Di Huang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ze-Wei Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Jun Ouyang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Wen-Shuo Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Wen-Bin Yu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
40
|
Carson MD, Warner AJ, Geiser VL, Hathaway-Schrader JD, Alekseyenko AV, Marshall J, Westwater C, Novince CM. Prolonged Antibiotic Exposure during Adolescence Dysregulates Liver Metabolism and Promotes Adiposity in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:796-812. [PMID: 36906264 PMCID: PMC10284030 DOI: 10.1016/j.ajpath.2023.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023]
Abstract
Antibiotic administration during early life has been shown to have lasting effects on the gut microbiota, which have been linked to sustained alterations in liver metabolism and adiposity. Recent investigations have discerned that the gut microbiota continues to develop toward an adult-like profile during adolescence. However, the impact of antibiotic exposure during adolescence on metabolism and adiposity is unclear. Herein, a retrospective analysis of Medicaid claims data was performed, which indicated that tetracycline class antibiotics are commonly prescribed for the systemic treatment of adolescent acne. The purpose of this was to discern the impact of a prolonged tetracycline antibiotic exposure during adolescence on the gut microbiota, liver metabolism, and adiposity. Male C57BL/6T specific pathogen-free mice were administered a tetracycline antibiotic during the pubertal/postpubertal adolescent growth phase. Groups were euthanized at different time points to assess immediate and sustained antibiotic treatment effects. Antibiotic exposure during adolescence caused lasting genera-level shifts in the intestinal bacteriome and persistent dysregulation of metabolic pathways in the liver. Dysregulated hepatic metabolism was linked to sustained disruption of the intestinal farnesoid X receptor-fibroblast growth factor 15 axis, a gut-liver endocrine axis that supports metabolic homeostasis. Antibiotic exposure during adolescence increased subcutaneous, visceral, and marrow adiposity, which intriguingly manifested following antibiotic therapy. This preclinical work highlights that prolonged antibiotic courses for the clinical treatment of adolescent acne may have unintended deleterious effects on liver metabolism and adiposity.
Collapse
Affiliation(s)
- Matthew D Carson
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Amy J Warner
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Vincenza L Geiser
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Alexander V Alekseyenko
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Biomedical Informatics Center, Program for Human Microbiome Research, Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Healthcare Leadership and Management, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina
| | - Julie Marshall
- Division of Population Oral Health, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Caroline Westwater
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
41
|
Goutam RS, Kumar V, Lee U, Kim J. Exploring the Structural and Functional Diversity among FGF Signals: A Comparative Study of Human, Mouse, and Xenopus FGF Ligands in Embryonic Development and Cancer Pathogenesis. Int J Mol Sci 2023; 24:ijms24087556. [PMID: 37108717 PMCID: PMC10146080 DOI: 10.3390/ijms24087556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fibroblast growth factors (FGFs) encode a large family of growth factor proteins that activate several intracellular signaling pathways to control diverse physiological functions. The human genome encodes 22 FGFs that share a high sequence and structural homology with those of other vertebrates. FGFs orchestrate diverse biological functions by regulating cellular differentiation, proliferation, and migration. Dysregulated FGF signaling may contribute to several pathological conditions, including cancer. Notably, FGFs exhibit wide functional diversity among different vertebrates spatiotemporally. A comparative study of FGF receptor ligands and their diverse roles in vertebrates ranging from embryonic development to pathological conditions may expand our understanding of FGF. Moreover, targeting diverse FGF signals requires knowledge regarding their structural and functional heterogeneity among vertebrates. This study summarizes the current understanding of human FGF signals and correlates them with those in mouse and Xenopus models, thereby facilitating the identification of therapeutic targets for various human disorders.
Collapse
Affiliation(s)
- Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- iPS Bio, Inc., 3F, 16 Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si 13522, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
42
|
Kulkarni MB, Ayachit NH, Aminabhavi TM. A Short Review on Miniaturized Biosensors for the Detection of Nucleic Acid Biomarkers. BIOSENSORS 2023; 13:412. [PMID: 36979624 PMCID: PMC10046286 DOI: 10.3390/bios13030412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Even today, most biomarker testing is executed in centralized, dedicated laboratories using bulky instruments, automated analyzers, and increased analysis time and expenses. The development of miniaturized, faster, low-cost microdevices is immensely anticipated for substituting for these conventional laboratory-oriented assays and transferring diagnostic results directly onto the patient's smartphone using a cloud server. Pioneering biosensor-based approaches might make it possible to test biomarkers with reliability in a decentralized setting, but there are still a number of issues and restrictions that must be resolved before the development and use of several biosensors for the proper understanding of the measured biomarkers of numerous bioanalytes such as DNA, RNA, urine, and blood. One of the most promising processes to address some of the issues relating to the growing demand for susceptible, quick, and affordable analysis techniques in medical diagnostics is the creation of biosensors. This article critically discusses a short review of biosensors used for detecting nucleic acid biomarkers, and their use in biomedical prognostics will be addressed while considering several essential characteristics.
Collapse
Affiliation(s)
- Madhusudan B. Kulkarni
- School of Electronics and Communication Engineering, KLE Technological University, Vidyanagar, Hubballi 580023, Karnataka, India
- Medical Physics Department, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI 53705, USA
| | - Narasimha H. Ayachit
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Tejraj M. Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| |
Collapse
|
43
|
Vonderohe C, Guthrie G, Burrin DG. Fibroblast growth factor 19 secretion and function in perinatal development. Am J Physiol Gastrointest Liver Physiol 2023; 324:G190-G195. [PMID: 36648144 PMCID: PMC9942882 DOI: 10.1152/ajpgi.00208.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Limited work has focused on fibroblast growth factor-19 (FGF19) secretion and function in the perinatal period. FGF19 is a potent growth factor that coordinates development of the brain, eye, inner ear, and skeletal system in the embryo, but after birth, FGF19 transitions to be an endocrine regulator of the classic pathway of hepatic bile acid synthesis. FGF19 has emerged as a mediator of metabolism and bile acid synthesis in aged animals and adults in the context of liver disease and metabolic dysfunction. FGF19 has also been shown to have systemic insulin-sensitizing and skeletal muscle hypertrophic effects when induced or supplemented at supraphysiological levels in adult rodent models. These effects could be beneficial to improve growth and nutritional outcomes in preterm infants, which are metabolically resistant to the anabolic effects of enteral nutrition. Existing clinical data on FGF19 secretion and function in the perinatal period in term and preterm infants has been equivocal. Studies in pigs show that FGF19 expression and secretion are upregulated with gestational age and point to molecular and endocrine factors that may be involved. Work focused on FGF19 in pediatric diseases suggests that augmentation of FGF19 secretion by activation of gut FXR signaling is associated with benefits in diseases such as short bowel syndrome, parenteral nutrition-associated liver disease, and biliary atresia. Future work should focus on characterization of FGF19 secretion and the mechanism underpinning the transition of FGF19 function as an embryological growth factor to metabolic and bile acid regulator.
Collapse
Affiliation(s)
- Caitlin Vonderohe
- United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Houston, Texas, United States
- Department of Pediatrics, Gastroenterology and Nutrition, Baylor College of Medicine, Houston, Texas, United States
| | - Gregory Guthrie
- United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Houston, Texas, United States
- Department of Pediatrics, Gastroenterology and Nutrition, Baylor College of Medicine, Houston, Texas, United States
| | - Douglas G Burrin
- United States Department of Agriculture-Agricultural Research Service Children's Nutrition Research Center, Houston, Texas, United States
- Department of Pediatrics, Gastroenterology and Nutrition, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
44
|
Guo Q, Hou X, Cui Q, Li S, Shen G, Luo Q, Wu H, Chen H, Liu Y, Chen A, Zhang Z. Pectin mediates the mechanism of host blood glucose regulation through intestinal flora. Crit Rev Food Sci Nutr 2023; 64:6714-6736. [PMID: 36756885 DOI: 10.1080/10408398.2023.2173719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Pectin is a complex polysaccharide found in plant cell walls and interlayers. As a food component, pectin is benefit for regulating intestinal flora. Metabolites of intestinal flora, including short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides (LPS), are involved in blood glucose regulation. SCFAs promote insulin synthesis through the intestine-GPCRs-derived pathway and hepatic adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway to promote hepatic glycogen synthesis. On the one hand, BAs stimulate intestinal L cells and pancreatic α cells to secrete Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) through receptors G protein-coupled receptor (TGR5) and farnesoid X receptor (FXR). On the other hand, BAs promote hepatic glycogen synthesis through AMPK pathway. LPS inhibits the release of inflammatory cytokines through Toll-like receptors (TLRs)-myeloid differentiation factor 88 (MYD88) pathway and mitogen-activated protein kinase (MAPK) pathway, thereby alleviating insulin resistance (IR). In brief, both SCFAs and BAs promote GLP-1 secretion through different pathways, employing strategies of increasing glucose consumption and decreasing glucose production to maintain normal glucose levels. Notably, pectin can also directly inhibit the release of inflammatory cytokines through the -TLRs-MYD88 pathway. These data provide valuable information for further elucidating the relationship between pectin-intestinal flora-glucose metabolism.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qiang Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hejun Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
45
|
Jin L, Yang R, Geng L, Xu A. Fibroblast Growth Factor-Based Pharmacotherapies for the Treatment of Obesity-Related Metabolic Complications. Annu Rev Pharmacol Toxicol 2023; 63:359-382. [PMID: 36100222 DOI: 10.1146/annurev-pharmtox-032322-093904] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fibroblast growth factor (FGF) family, which comprises 22 structurally related proteins, plays diverse roles in cell proliferation, differentiation, development, and metabolism. Among them, two classical members (FGF1 and FGF4) and two endocrine members (FGF19 and FGF21) are important regulators of whole-body energy homeostasis, glucose/lipid metabolism, and insulin sensitivity. Preclinical studies have consistently demonstrated the therapeutic benefits of these FGFs for the treatment of obesity, diabetes, dyslipidemia, and nonalcoholic steatohepatitis (NASH). Several genetically engineered FGF19 and FGF21 analogs with improved pharmacodynamic and pharmacokinetic properties have been developed and progressed into various stages of clinical trials. These FGF analogs are effective in alleviating hepatic steatosis, steatohepatitis, and liver fibrosis in biopsy-confirmed NASH patients, whereas their antidiabetic and antiobesity effects are mildand vary greatly in different clinical trials. This review summarizes recent advances in biopharmaceutical development of FGF-based therapies against obesity-related metabolic complications, highlights major challenges in clinical implementation, and discusses possible strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
46
|
Chan J, Chan J, Shao L, Stawicki SS, Pham VC, Akita RW, Hafner M, Crocker L, Yu K, Koerber JT, Schaefer G, Comps-Agrar L. Systematic pharmacological analysis of agonistic and antagonistic fibroblast growth factor receptor 1 MAbs reveals a similar unique mode of action. J Biol Chem 2023; 299:102729. [PMID: 36410439 PMCID: PMC9758440 DOI: 10.1016/j.jbc.2022.102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is a receptor tyrosine kinase that plays a major role in developmental processes and metabolism. The dysregulation of FGFR1 through genetic aberrations leads to skeletal and metabolic diseases as well as cancer. For this reason, FGFR1 is a promising therapeutic target, yet a very challenging one due to potential on-target toxicity. More puzzling is that both agonistic and antagonistic FGFR1 antibodies are reported to exhibit similar toxicity profiles in vivo, namely weight loss. In this study, we aimed to assess and compare the mechanism of action of these molecules to better understand this apparent contradiction. By systematically comparing the binding of these antibodies and the activation or the inhibition of the major FGFR1 signaling events, we demonstrated that the molecules displayed similar properties and can behave either as an agonist or antagonist depending on the presence or the absence of the endogenous ligand. We further demonstrated that these findings translated in xenografts mice models. In addition, using time-resolved FRET and mass spectrometry analysis, we showed a functionally distinct FGFR1 active conformation in the presence of an antibody that preferentially activates the FGFR substrate 2 (FRS2)-dependent signaling pathway, demonstrating that modulating the geometry of a FGFR1 dimer can effectively change the signaling outputs and ultimately the activity of the molecule in preclinical studies. Altogether, our results highlighted how bivalent antibodies can exhibit both agonistic and antagonistic activities and have implications for targeting other receptor tyrosine kinases with antibodies.
Collapse
Affiliation(s)
- Jocelyn Chan
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA
| | - Joyce Chan
- Department of Biochemical and Cellular Pharmacology, Genentech Inc, South San Francisco, USA
| | - Lily Shao
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA
| | - Scott S Stawicki
- Department of Antibody Engineering, Genentech Inc, South San Francisco, California, USA
| | - Victoria C Pham
- Department of Microchemistry, Proteomics, Lipidomics and NGS, Genentech Inc, South San Francisco, California, USA
| | - Rob W Akita
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA
| | - Marc Hafner
- Department of Oncology Bioinformatics, Genentech Inc, South San Francisco, California, USA
| | - Lisa Crocker
- Department of Translational Oncology, Genentech Inc, South San Francisco, California, USA
| | - Kebing Yu
- Department of Microchemistry, Proteomics, Lipidomics and NGS, Genentech Inc, South San Francisco, California, USA
| | - James T Koerber
- Department of Antibody Engineering, Genentech Inc, South San Francisco, California, USA
| | - Gabriele Schaefer
- Department of Molecular Oncology, Genentech Inc, South San Francisco, California, USA.
| | - Laetitia Comps-Agrar
- Department of Biochemical and Cellular Pharmacology, Genentech Inc, South San Francisco, USA.
| |
Collapse
|
47
|
Nonogaki K, Kaji T. Ingestion of whey protein and β-conglycinin exerts opposite effects on intestinal FGF15 and serotonin secretion in mice. Front Endocrinol (Lausanne) 2023; 14:1080790. [PMID: 36777350 PMCID: PMC9911684 DOI: 10.3389/fendo.2023.1080790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Farnesoid X receptor (FXR) and Takeda G protein-coupled Receptor 5 (TGR5), the intestinal bile acid (BA) receptors, regulate the gut-derived hormones including fibroblast growth factor 15/19 (FGF15/19) and serotonin (5-hydrooxytryptamine, 5-HT). Here we show that ingestion of whey protein isolate, a milk protein, significantly decreased expression of heteromeric organic solute transporter Ostα and Ostβ, which is the basolateral BA transporter in the enterocyte, and increased the expression of FXR and FGF15 in C57BL6J mouse ileum and plasma FGF15 levels. In addition, the ingestion of whey protein isolate significantly suppressed expression of hepatic cholesterol-7α hydroxylase (CYP7A1), which induces the primary BA synthesis, bile salt export pump (BSEP) and sodium-taurocholate cotransporting polypeptide (NTCP), which are the key transporters for the BA excretion and uptake in the liver, and genes involved in gluconeogenesis, and decreased the primary BAs including cholic acid, taurocholic acid, glycocholic acid, and taurochenodeoxycholic acid in the liver compared with controls. Moreover, ingestion of whey protein isolate significantly decreased the expression of TGR5, glucagon-like peptide 1 (GLP-1), and tryptophan hydroxylase1 (Tph1) in the small intestine, leading to decreases in plasma 5-HT and insulin levels. On the other hand, ingestion of the soy protein β-conglycinin significantly increased the expression of Ostα and Ostβ, and decreased the expression of FGF15 in the ileum and plasma FGF15 levels, leading to the increases in expression of hepatic CYP7A1, BSEP, NTCP, and genes involved in gluconeogenesis, and the primary BAs in the liver. Moreover, ingestion of β-conglycinin significantly increased the expression of intestinal TGR5, GLP-1, and Tph1, leading to increases in plasma 5-HT and insulin levels. These findings suggest that whey protein and β-conglycinin have opposite effects on intestinal FGF15 and 5-HT secretion in mice.
Collapse
|
48
|
Pohlhammer J, Heinzl MW, Klammer C, Feldbauer R, Rosenberger K, Resl M, Wagner T, Obendorf F, Egger‐Salmhofer M, Dieplinger B, Clodi M. Glucose and lipopolysaccharide differentially regulate fibroblast growth factor 21 in healthy male human volunteers - A prospective cross-over trial. J Cell Mol Med 2022; 26:5998-6005. [PMID: 36415151 PMCID: PMC9753437 DOI: 10.1111/jcmm.17614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) affects the regulation of metabolism. Additionally, anti-inflammatory properties are attributed to FGF21, and studies in animals and humans show conflicting results. This study aimed to investigate how FGF21 is affected by glucose and lipopolysaccharide (LPS) in humans. Therefore, FGF21 was measured eight times at different time points within 48 h in this prospective cross-over trial after glucose and LPS on two different study days. The study included ten healthy, non-smoking male subjects aged 18-40. Repeated measures analysis of variance and paired t-test as post hoc analysis were applied. The administration of glucose and LPS resulted in a significant difference in regulating FGF21 (p < 0.001). After glucose administration, FGF21 declined sharply at 360 min, with a subsequent steep increase that exceeded baseline levels. LPS induced a drop in FGF21 after 180 min, while the baseline concentrations were not reached. After 180 min and 24 h, a statistically significant difference was demonstrated after adjusting the Bonferroni-Holm method. So, our results support the hypothesis that glucose and LPS differentially affect the human expression of FGF21 over 48 h.
Collapse
Affiliation(s)
- Johannes Pohlhammer
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| | - Matthias Wolfgang Heinzl
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| | - Carmen Klammer
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| | - Roland Feldbauer
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| | | | - Michael Resl
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| | - Thomas Wagner
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| | - Florian Obendorf
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| | - Margot Egger‐Salmhofer
- Department of Laboratory MedicineKonventhospital Barmherzige Brueder Linz and Ordensklinikum Linz Barmherzige SchwesternLinzAustria
| | - Benjamin Dieplinger
- Department of Laboratory MedicineKonventhospital Barmherzige Brueder Linz and Ordensklinikum Linz Barmherzige SchwesternLinzAustria
| | - Martin Clodi
- Department of MedicineKonventhospital Barmherzige Brueder Linz (St. John of God Hospital Linz)LinzAustria,ICMR–Institute for Cardiovascular and Metabolic Research, JKU LinzLinzAustria
| |
Collapse
|
49
|
Matye DJ, Qin X, Hasan MN, Gu L, Clayton YD, Li F, Li T. Effects of apical sodium-bile acid transporter inhibitor and obeticholic acid co-treatment in experimental non-alcoholic steatohepatitis. LIVER RESEARCH 2022; 6:276-283. [PMID: 36819659 PMCID: PMC9933918 DOI: 10.1016/j.livres.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
Background and aims Several bile acids-based monotherapies have been developed for non-alcoholic steatohepatitis (NASH) treatment but clinical trial findings suggest that they do not satisfactorily improve NASH and liver fibrosis in many patients. Recently, we have shown that combining a gut-restricted apical sodium-bile acid transporter (ASBT) inhibitor GSK2330672 (GSK) with adeno-associated virus (AAV)-mediated liver fibroblast growth factor 15 (FGF15) overexpression provides significantly improved efficacy than either single treatment against NASH and liver fibrosis in a high fat, cholesterol, and fructose (HFCFr) diet-induced NASH mouse model. The beneficial effects of the combined treatment can be attributed to the markedly reduced bile acid pool that reduces liver bile acid burden and intestinal lipid absorption. The aim of this study is to further investigate if combining GSK treatment with the orally bioavailable obeticholic acid (OCA), which induces endogenous FGF15 and inhibits hepatic bile acid synthesis, can achieve similar anti-NASH effect as the GSK+AAV-FGF15 co-treatment in HFCFr-diet-fed mice. Materials and methods Male C57BL/6J mice were fed HFCFr diet to induce NASH and liver fibrosis. The effect of GSK, OCA, and GSK+OCA treatments on NASH development was compared and contrasted among all groups. Results Findings from this study showed that the GSK+OCA co-treatment did not cause persistent reduction of obesity over a 12-week treatment period. Neither single treatment nor the GSK+OCA co-treatment reduce hepatic steatosis, but all three treatments reduced hepatic inflammatory cytokines and fibrosis by a similar magnitude. The GSK+OCA co-treatment caused a higher degree of total bile acid pool reduction (~55%) than either GSK or OCA treatment alone. However, such bile acid pool reduction was insufficient to cause increased fecal lipid loss. The GSK+OCA co-treatment prevented GSK-mediated induction of hepatic cholesterol 7alpha-hydroxylase but failed to induce ileal FGF15 expression. GSK did not reduce gallbladder OCA amount in the GSK+OCA group compared to the OCA group, suggesting that ASBT inhibition does not reduce hepatic OCA distribution. Conclusions Unlike the GSK+AAV-FGF15 co-treatment, the GSK+OCA co-treatment does not provide improved efficacy against NASH and liver fibrosis than either single treatment in mice. The lack of synergistic effect may be partly attributed to the moderate reduction of total bile acid pool and the lack of high level of FGF15 exposure as seen in the GSK+AAV-FGF15 co-treatment.
Collapse
Affiliation(s)
- David J. Matye
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xuan Qin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Mohammad Nazmul Hasan
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lijie Gu
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yung Dai Clayton
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- NMR and Drug Metabolism Core, Baylor College of Medicine, Houston, TX, USA
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
50
|
Di Ciaula A, Bonfrate L, Baj J, Khalil M, Garruti G, Stellaard F, Wang HH, Wang DQH, Portincasa P. Recent Advances in the Digestive, Metabolic and Therapeutic Effects of Farnesoid X Receptor and Fibroblast Growth Factor 19: From Cholesterol to Bile Acid Signaling. Nutrients 2022; 14:4950. [PMID: 36500979 PMCID: PMC9738051 DOI: 10.3390/nu14234950] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Bile acids (BA) are amphiphilic molecules synthesized in the liver (primary BA) starting from cholesterol. In the small intestine, BA act as strong detergents for emulsification, solubilization and absorption of dietary fat, cholesterol, and lipid-soluble vitamins. Primary BA escaping the active ileal re-absorption undergo the microbiota-dependent biotransformation to secondary BA in the colon, and passive diffusion into the portal vein towards the liver. BA also act as signaling molecules able to play a systemic role in a variety of metabolic functions, mainly through the activation of nuclear and membrane-associated receptors in the intestine, gallbladder, and liver. BA homeostasis is tightly controlled by a complex interplay with the nuclear receptor farnesoid X receptor (FXR), the enterokine hormone fibroblast growth factor 15 (FGF15) or the human ortholog FGF19 (FGF19). Circulating FGF19 to the FGFR4/β-Klotho receptor causes smooth muscle relaxation and refilling of the gallbladder. In the liver the binding activates the FXR-small heterodimer partner (SHP) pathway. This step suppresses the unnecessary BA synthesis and promotes the continuous enterohepatic circulation of BAs. Besides BA homeostasis, the BA-FXR-FGF19 axis governs several metabolic processes, hepatic protein, and glycogen synthesis, without inducing lipogenesis. These pathways can be disrupted in cholestasis, nonalcoholic fatty liver disease, and hepatocellular carcinoma. Thus, targeting FXR activity can represent a novel therapeutic approach for the prevention and the treatment of liver and metabolic diseases.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-059 Lublin, Poland
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Frans Stellaard
- Institute of Clinical Chemistry and Clinical Pharmacology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany
| | - Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| |
Collapse
|