1
|
Ji Q, Wu Y, Albers A, Fang M, Qian X. Strategies for Advanced Oncolytic Virotherapy: Current Technology Innovations and Clinical Approaches. Pharmaceutics 2022; 14:1811. [PMID: 36145559 PMCID: PMC9504140 DOI: 10.3390/pharmaceutics14091811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy is a type of nanomedicine with a dual antitumor mechanism. Viruses are engineered to selectively infect and lyse cancer cells directly, leading to the release of soluble antigens which induce systemic antitumor immunity. Representative drug Talimogene laherparepvec has showed promising therapeutic effects in advanced melanoma, especially when combined with immune checkpoint inhibitors with moderate adverse effects. Diverse viruses like herpes simplex virus, adenovirus, vaccina virus, and so on could be engineered as vectors to express different transgenic payloads, vastly expanding the therapeutic potential of oncolytic virotherapy. A number of related clinical trials are under way which are mainly focusing on solid tumors. Studies about further optimizing the genome of oncolytic viruses or improving the delivering system are in the hotspot, indicating the future development of oncolytic virotherapy in the clinic. This review introduces the latest progress in clinical trials and pre-clinical studies as well as technology innovations directed at oncolytic viruses. The challenges and perspectives of oncolytic virotherapy towards clinical application are also discussed.
Collapse
Affiliation(s)
- Qing Ji
- Department of Rare and Head & Neck Oncology, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuchen Wu
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Andreas Albers
- Department of Otolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Meiyu Fang
- Department of Rare and Head & Neck Oncology, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xu Qian
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
2
|
Boukouris AE, Theochari M, Stefanou D, Papalambros A, Felekouras E, Gogas H, Ziogas DC. Latest evidence on immune checkpoint inhibitors in metastatic colorectal cancer: A 2022 update. Crit Rev Oncol Hematol 2022; 173:103663. [PMID: 35351582 DOI: 10.1016/j.critrevonc.2022.103663] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
The long-term remissions induced by immune-checkpoint inhibitors (ICIs) in many types of cancers have opened up the possibility of a broader use of immunotherapy in less immunogenic but genetically heterogeneous tumours. Regarding metastatic colorectal cancer (mCRC), in first-line setting, pembrolizumab has been approved as preferred option and nivolumab, alone or in combination with ipilimumab as alternative option for patients with mismatch-repair-deficient and microsatellite instability-high (dMMR/MSI-H) disease, independently of their eligibility for intensive chemotherapy. In subsequent lines, both these immunotherapeutic regimens (e.g., pembrolizumab and nivolumab+/-ipilimumab) as well as dostarlimab-gxly are currently recommended for patients with dMMR/MSI-H chemo-resistant mCRC who have not previously received an ICI. Beginning from the rationale behind the immune-mediated interplay in the dMMR/MSI-H bowel microenvironment, we provide here an update on the evolution status of all available, approved or not, ICIs in mCRC, describing their efficacy and toxicity profile with an emphasis on the pivotal trials supporting current colorectal indications. For each ICI agent, the results from combinations under investigation, particularly for those being upgraded in clinical phasing, the perspectives but also the limitations of main ongoing trials are thoroughly discussed. In the close future, upcoming data are expected to confirm the clinical benefit of ICIs and to further expand their role in mCRC.
Collapse
Affiliation(s)
- Aristeidis E Boukouris
- First Department of Internal Medicine, Korgialeneion-Benakeion General Hospital, Athens, Greece.
| | - Maria Theochari
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Dimitra Stefanou
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Alexandros Papalambros
- First Department of Surgery, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece.
| | - Evangelos Felekouras
- First Department of Surgery, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens, Greece.
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
3
|
Abd-Aziz N, Poh CL. Development of oncolytic viruses for cancer therapy. Transl Res 2021; 237:98-123. [PMID: 33905949 DOI: 10.1016/j.trsl.2021.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Oncolytic virotherapy is a therapeutic approach that uses replication-competent viruses to kill cancers. The ability of oncolytic viruses to selectively replicate in cancer cells leads to direct cell lysis and induction of anticancer immune response. Like other anticancer therapies, oncolytic virotherapy has several limitations such as viral delivery to the target, penetration into the tumor mass, and antiviral immune responses. This review provides an insight into the different characteristics of oncolytic viruses (natural and genetically modified) that contribute to effective applications of oncolytic virotherapy in preclinical and clinical trials, and strategies to overcome the limitations. The potential of oncolytic virotherapy combining with other conventional treatments or cancer immunotherapies involving immune checkpoint inhibitors and CAR-T therapy could form part of future multimodality treatment strategies.
Collapse
Affiliation(s)
- Noraini Abd-Aziz
- Centre for Virus and Vaccine Research (CVVR), School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research (CVVR), School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
4
|
Watanabe N, McKenna MK, Rosewell Shaw A, Suzuki M. Clinical CAR-T Cell and Oncolytic Virotherapy for Cancer Treatment. Mol Ther 2020; 29:505-520. [PMID: 33130314 DOI: 10.1016/j.ymthe.2020.10.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has recently garnered success with the induction of clinical responses in tumors, which are traditionally associated with poor outcomes. Chimeric antigen receptor T (CAR-T) cells and oncolytic viruses (OVs) have emerged as promising cancer immunotherapy agents. Herein, we provide an overview of the current clinical status of CAR-T cell and OV therapies. While preclinical studies have demonstrated curative potential, the benefit of CAR-T cells and OVs as single-agent treatments remains limited to a subset of patients. Combinations of different targeted therapies may be required to achieve efficient, durable responses against heterogeneous tumors, as well as the microenvironment. Using a combinatorial approach to take advantage of the unique features of CAR-T cells and OVs with other treatments can produce additive therapeutic effects. This review also discusses ongoing clinical evaluations of these combination strategies for improved outcomes in treatment of resistant malignancies.
Collapse
Affiliation(s)
- Norihiro Watanabe
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Mary Kathryn McKenna
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Amanda Rosewell Shaw
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Masataka Suzuki
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Novel Oncolytic Virus Armed with Cancer Suicide Gene and Normal Vasculogenic Gene for Improved Anti-Tumor Activity. Cancers (Basel) 2020; 12:cancers12051070. [PMID: 32344903 PMCID: PMC7281019 DOI: 10.3390/cancers12051070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Here, we developed a novel oncolytic vaccinia virus (NOV) with the dual advantages of cancer selectivity and normal vessel reconstructive activity by replacing the viral thymidine kinase (vTk) and vaccinia growth factor (VGF) genes with genes encoding TNF-related apoptosis-inducing ligand (TRAIL) and angiopoietin 1 (Ang1), respectively. The pan-cancer-specific oncolytic potency of NOV was confirmed in various human and mouse cancer cell lines (colon, liver, pancreas, cholangiocarcinoma, cervical cancer, osteosarcoma, and melanoma). Vaccinia virus (VV) treatment directly induced early apoptosis in tumors within 24 h, and this effect was enhanced with further engineering; VGF and Tk deletion with Ang1 and TRAIL insertion. Meanwhile, treatment with the conventional anti-cancer drug cisplatin did not induce apoptosis. A virus-treated CT26 mouse colon cancer syngeneic model showed attenuated tumor growth, which was in accordance with the results of percent survival measurement, CD8 expression analysis, and TUNEL staining with advanced genetic engineering (vAng1 < vTRAIL < NOV). Taken together, our results indicate that NOV induces cancer tissue apoptosis and anti-tumor immunity and may constitute a highly advantageous therapeutic agent for next-generation solid tumor virotherapy with pan-cancer-specific oncolytic activity and high biosafety.
Collapse
|
6
|
Tintelnot J, Stein A. Immunotherapy in colorectal cancer: Available clinical evidence, challenges and novel approaches. World J Gastroenterol 2019; 25:3920-3928. [PMID: 31413527 PMCID: PMC6689806 DOI: 10.3748/wjg.v25.i29.3920] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/21/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
In contrast to other tumor types, immunotherapy has not yet become a relevant part of the treatment landscape of unselected colorectal cancer. Beside the small subgroup of deficient mismatch repair or microsatellite instable tumors (about 5%) as a surrogate for high mutational burden and subsequently high neoantigen load and immunogenicity, inhibitors of programmed death 1 (PD-1), programmed death ligand 1 (PD-L1) and/or cytotoxic T lymphocyte-associated antigen-4 were not or only modestly effective in metastatic colorectal cancer. Thus, a variety of combination approaches with chemotherapy, targeted therapy, toll-like receptor agonists, local ablation or oncolytic viruses is currently being evaluated in different disease settings. Despite several encouraging single arm data already presented or published, available randomized data are unimpressive. Adding PD-1/PD-L1 inhibitors to fluoropyrimidines and bevacizumab maintenance showed no beneficial impact on delaying progression. In refractory disease, the combination of PD-1/PD-L1 and MEK inhibitor was not different from regorafenib, whereas a PD-1/PD-L1 and cytotoxic T lymphocyte-associated antigen-4 inhibitor combination demonstrated better overall survival compared to supportive care alone. Clinical trials in all disease settings applying different combination approaches are ongoing and may define the role of immunotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Joseph Tintelnot
- Department of Internal Medicine II (Oncology Center), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Alexander Stein
- Department of Internal Medicine II (Oncology Center), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
7
|
Ding AS, Routkevitch D, Jackson C, Lim M. Targeting Myeloid Cells in Combination Treatments for Glioma and Other Tumors. Front Immunol 2019; 10:1715. [PMID: 31396227 PMCID: PMC6664066 DOI: 10.3389/fimmu.2019.01715] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells constitute a significant part of the immune system in the context of cancer, exhibiting both immunostimulatory effects, through their role as antigen presenting cells, and immunosuppressive effects, through their polarization to myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages. While they are rarely sufficient to generate potent anti-tumor effects on their own, myeloid cells have the ability to interact with a variety of immune populations to aid in mounting an appropriate anti-tumor immune response. Therefore, myeloid therapies have gained momentum as a potential adjunct to current therapies such as immune checkpoint inhibitors (ICIs), dendritic cell vaccines, oncolytic viruses, and traditional chemoradiation to enhance therapeutic response. In this review, we outline critical pathways involved in the recruitment of the myeloid population to the tumor microenvironment and in their polarization to immunostimulatory or immunosuppressive phenotypes. We also emphasize existing strategies of modulating myeloid recruitment and polarization to improve anti-tumor immune responses. We then summarize current preclinical and clinical studies that highlight treatment outcomes of combining myeloid targeted therapies with other immune-based and traditional therapies. Despite promising results from reports of limited clinical trials thus far, there remain challenges in optimally harnessing the myeloid compartment as an adjunct to enhancing anti-tumor immune responses. Further large Phase II and ultimately Phase III clinical trials are needed to elucidate the treatment benefit of combination therapies in the fight against cancer.
Collapse
Affiliation(s)
| | | | | | - Michael Lim
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|