1
|
Llada IM, Lourenco JM, Dycus MM, Carpenter JM, Jarrell ZR, Jones DP, Suen G, Hill NS, Filipov NM. Impact of Low-Level Ergot Alkaloids and Endophyte Presence in Tall Fescue Grass on the Metabolome and Microbiome of Fall-Grazing Steers. Toxins (Basel) 2025; 17:251. [PMID: 40423333 DOI: 10.3390/toxins17050251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
Fescue toxicosis (FT) is a mycotoxin-related disease caused by the ingestion of tall fescue, naturally infected with the ergot alkaloid (EA)-producing endophyte Epichloë coenophiala. Some grazing on endophyte-free (E-) or non-toxic (NT), commercial endophyte-infected pastures takes place in the US as well. Earlier, we found that grazing on toxic fescue with low levels of EAs during fall affects thermoregulation, behavior, and weight gain. Building on these findings, the current study aimed to investigate how the presence of low EA-producing E+ or NT endophytes can influence animal metabolome, microbiome, and, ultimately, overall animal health. Eighteen Angus steers were placed on NT, E+, and E- fescue pastures for 28 days. Urine, rumen fluid (RF), rumen solid (RS), and feces were collected pre-exposure, and on days 2, 7, 14, 21, and 28. An untargeted high-resolution metabolomics approach was used to analyze urine and RF, while 16S rRNA-based next-generation sequencing (NGS) was used to examine RF, RS, feces, and fescue plant microbiomes. While alpha- or beta-microbiota diversity across all analyzed matrices were unaffected, there were specific effects of E+ on the relative abundance of some taxa (i.e., Prevotellaceae). Additionally, E+ grazing impacted aromatic amino acid metabolism in the urine and the metabolism of lipids in both the RF and urine. In both matrices, trace amine-related metabolic features differed markedly between E+ and the other groups. Compared to the endophyte-free group, endophyte presence, whether novel or toxic, influenced amino acid and carbohydrate metabolism, as well as unsaturated fatty acid biosynthesis. These findings suggest that low-EA-producing and non-toxic endophytes in fescue have more prominent effects on the metabolome than the microbiome, and this metabolome perturbation might be associated with decreased performance and reported physiological signs of FT.
Collapse
Affiliation(s)
- Ignacio M Llada
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Jeferson M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Madison M Dycus
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Jessica M Carpenter
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Zachery R Jarrell
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nicholas S Hill
- Department of Crop and Soil Sciences, College of Agriculture, University of Georgia, Athens, GA 30602, USA
| | - Nikolay M Filipov
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Ren Z, Wang M, Yu J, Zhang L, Lin Z, Li X, Zhang Y. Unearthing Vertical Stratified Archaeal Community and Associated Methane Metabolism in Thermokarst Sediments. Environ Microbiol 2025; 27:e70110. [PMID: 40390177 DOI: 10.1111/1462-2920.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/02/2025] [Accepted: 05/06/2025] [Indexed: 05/21/2025]
Abstract
Thermokarst lakes are hotspots for greenhouse gas emissions across the Arctic and Qinghai-Tibet Plateau. Investigating the vertical stratification of archaeal communities in thermokarst lake sediments is essential for understanding their ecological roles and contributions to methane production. Here, we analysed archaeal communities along a depth gradient in thermokarst lake sediments. Alpha diversity (richness and Shannon index) generally decreased with depth. Euryarchaeota was the most abundant phylum, though its relative abundance declined with depth, while Thaumarchaeota increased. At the order level, Methanosarcinales and Nitrosopumilales showed increased relative abundance with depth, indicating adaptation to deeper anoxic layers, whereas Methanomicrobiales and Methanotrichales decreased. Beta diversity increased with depth, shifting from stochastic to deterministic processes. Network topology revealed reduced species connectivity but heightened modularity at depth, signalling niche specialisation. Functionally, genes associated with the initial steps of methane metabolism (Fwd, Mtd, Mer) increased with depth, while those involved in later steps (Mtr, Mcr) decreased, suggesting reduced energy conservation efficiency and lower overall methanogenesis rates in deeper sediments. These findings highlight the significant impact of vertical stratification on archaeal community structure, interaction networks, and functional capabilities.
Collapse
Affiliation(s)
- Ze Ren
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Science, Beijing, China
| | - Mei Wang
- School of Geography, South China Normal University, Guangzhou, China
| | - Jinlei Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Science, Beijing, China
| | - Lixiang Zhang
- University of Chinese Academy of Science, Beijing, China
- School of Geography, South China Normal University, Guangzhou, China
| | - Zhenmei Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Science, Beijing, China
| | - Xia Li
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
- State Key Laboratory of Wetland Conservation and Restoration, Beijing Normal University, Beijing, China
| | - Yunlin Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Science, Beijing, China
| |
Collapse
|
3
|
Lv L, Zhang S, Heng S, Wang J, Xia M, Tian J, Wang J, Su J, Lu X, Zhen G. Carbon dots coupled bioelectrocatalysis for enhanced methane productivity in anaerobic co-digestion of sewage sludge and food waste: Focusing on enhancement mechanisms and microbial community succession. BIORESOURCE TECHNOLOGY 2025; 424:132290. [PMID: 39993660 DOI: 10.1016/j.biortech.2025.132290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/01/2025] [Accepted: 02/22/2025] [Indexed: 02/26/2025]
Abstract
The limited electron transfer efficiency and poor stability of microorganisms are challenges in traditional bioelectrocatalytic food waste treatment. Herein, carbon dots (CDs) possess excellent biocompatibility and electrochemical properties. When combined with bioelectrocatalysis, CDs can regulate microbial community structure and enhance electron exchange capacity. The results demonstrated that compared with the control group (28.1 mL/g-VS/d), the CDs at a dosage of 0.50 g/g VS could increase CH4 production by a factor of 7.8. CDs not only increase CH4 production but also improve the digestate's stability, making it suitable for use as bio-fertilizer. Moreover, a significantly high Methanobacterium richness (11.6 %) signified an intensified utilization of hydrogen and formic acid pathways in CH4 production. Particularly, the biocompatible CDs could be absorbed by microorganisms, forming an environmental network that was more conducive to electron transfer with unabsorbed CDs and accelerating interspecies electron transfer. This work provides mechanistic insights into boosting CH4 production in AD.
Collapse
Affiliation(s)
- Lei Lv
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shuting Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shiliang Heng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jiandong Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Mengting Xia
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jiahua Tian
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jiayi Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jinghan Su
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
4
|
Mahayri TM, Mrázek J, Bovera F, Piccolo G, Murgia GA, Moniello G, Fliegerová KO. The inclusion of insect meal from Hermetia illucens larvae in the diet of laying hens (Hy-line Brown) affects the caecal diversity of methanogenic archaea. Poult Sci 2025; 104:105037. [PMID: 40120250 PMCID: PMC11987624 DOI: 10.1016/j.psj.2025.105037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
The effect of the dietary inclusion of Hermetia illucens larvae meal on the diversity of the methanogenic archaea in the caecum of laying hens (Hy-line Brown) was investigated using molecular methods. A total of 27 hens, selected equally for slaughter from 162 birds which were divided equally into 3 treatment groups including control group C with a diet containing corn-soybean meal and 2 experimental groups, HI25 and HI50, in which 25% and 50% of the soybean meal protein was replaced by the protein from a Hermetia illucens larvae meal, respectively. At 40 weeks of age, the methanogenic community of caecal content of 9 hens per group was analyzed using a 16S rRNA gene clone library. A total of 108 positive clones, 35 from the control group, 44 from the HI25 group and 29 from the HI50 group, were analyzed by Sanger sequencing. Methanomicrobiales, Methanobacteriales and Methanomassiliicoccales were the main orders found in groups C and HI25. Methanomassiliicoccales was absent in the HI50 group, which was dominated by the order Methanobacteriales. At the species level, Methanobrevibacter woesei was the most prevalent species in all three groups regardless of diet. Some species were found exclusively either in the control group (Methanogenic archaeon CH1270) or in the HI25 group (Methanorbis furvi strain Ag1). Methanogenic diversity was significantly lower in the HI50 group compared to the control and HI25 groups and Methanomassiliicoccaceae archaeon DOK was completely suppressed in HI50 group. Our preliminary results indicate that ingestion of Hermetia illucens larvae meal has considerable effect on the methanogenic community, promoting the abundance of Methanobrevibacter woesei and suppressing Methanomassiliicoccaceae archaeon DOK in the caeca of laying hens.
Collapse
Affiliation(s)
- Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, 14220 Prague, Czech Republic
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, 14220 Prague, Czech Republic
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via F. Delpino, 1, 80137 Napoli, Italy
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via F. Delpino, 1, 80137 Napoli, Italy
| | | | - Giuseppe Moniello
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| | - Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, 14220 Prague, Czech Republic
| |
Collapse
|
5
|
El Houari A, Ranchou-Peyruse M, Carlier E, Ranchou-Peyruse A, Hirschler-Réa A, Bennisse R, Bouterfas R, McDonald JE, Guyoneaud R, Qatibi AI. Representatives of the Synergistaceae family, taxonomic description and genome sequence of Caenicola nitritireducens gen nov., sp. nov., a novel fermenting and amino-acid degrading bacterium isolated from a municipal anaerobic digester sludge. Syst Appl Microbiol 2025; 48:126607. [PMID: 40288042 DOI: 10.1016/j.syapm.2025.126607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Members of the phylum Synergistota are important but understudied components of microbial communities during anaerobic digestion. In this study, their diversity was assessed in full-scale anaerobic digester sludge samples from Marrakesh wastewater treatment plant (Morocco), using 16S rRNA gene community profiling, as well as targeted isolation, physiological characterization, and genome sequencing of novel Synergistaceae isolates. The 16S rRNA gene analysis identified 23 operational taxonomic units (OTUs) belonging to the family of Synergistaceae, representing 8.8 % of the total microbial community. 17 of these OTUs belonged to previously uncultured taxa. A dominant OTU19, presumably a new representative of the family of Synergistaceae was isolated in pure culture (strain DS-S4T) and subjected to both culture- and genome-based characterizations. Phylogenetic analysis revealed that strain DZ-S4T was related to Cloacibacillus porcorum CL-84T and Cloacibacillus evryensis 158T but with low sequence similarity of 89.94 % and 88.60 %, respectively. Based on genome relatedness, including Average Nucleotide Identity (ANI) and Amino Acid Identity (AAI), strain DZ-S4T is considered to represent a novel genus for which the name Caenicola gen.nov is proposed. Moreover, several phenotypic and eco-physiological properties differentiated the novel isolate from its related species, indicating that the strain represents a new species for which the name Caenicola nitritireducens sp. nov. is proposed, with strain DZ-S4T (=DSM 104940T = JCM 31897T) being the type strain. Additionally, this study investigates the ecological role of strain DZ-S4T, specifically the protein degradation, the bioconversion of carbohydrates, and the nitrite reduction during anaerobic digestion.
Collapse
Affiliation(s)
- Abdelaziz El Houari
- Anaerobic Microbiology Team (E02B26), Sciences and Techniques Faculty, Cadi Ayyad University, PO Box 549, 40 000 Marrakesh, Morocco; Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France.
| | - Magali Ranchou-Peyruse
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France; Université de Pau et des Pays de l'Adour, E2S UPPA, LaTEP, Pau, France
| | - Elisabeth Carlier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France
| | | | - Agnès Hirschler-Réa
- Aix Marseille Univ, Université de Toulon, CNRS, IRD MIO UM110, Marseille, France
| | - Rhizlane Bennisse
- Anaerobic Microbiology Team (E02B26), Sciences and Techniques Faculty, Cadi Ayyad University, PO Box 549, 40 000 Marrakesh, Morocco
| | - Radia Bouterfas
- Anaerobic Microbiology Team (E02B26), Sciences and Techniques Faculty, Cadi Ayyad University, PO Box 549, 40 000 Marrakesh, Morocco; Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France
| | - James E McDonald
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Pau, France
| | - Abdel-Illah Qatibi
- Anaerobic Microbiology Team (E02B26), Sciences and Techniques Faculty, Cadi Ayyad University, PO Box 549, 40 000 Marrakesh, Morocco.
| |
Collapse
|
6
|
Xin Y, Gao Q, Zhang S, Zhang Z, Wang J, Xia X. Microbial regulatory mechanisms underlying methane emission in rivers with different land covers. WATER RESEARCH 2025; 281:123680. [PMID: 40286682 DOI: 10.1016/j.watres.2025.123680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/27/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Inland rivers play a crucial role in regulating the methane (CH4) budget via microbial carbon cycling. CH4 emissions vary significantly among rivers with different land covers, yet the regulatory mechanisms of CH4-cycling microorganisms across different land covers remain less understood. This study intergrates in-situ CH4 measurements with amplicon and metagenomic sequencing to investigate CH4-cycling microbial community composition and metabolic functions in regulating CH4 emissions across rivers with different land covers. Our results show that agricultural and urban rivers significantly increase riverine CH4 emission fluxes by 14 and 34 times than forest rivers, respectively. Urban and agricultural river sediments exhibited higher methanogenic abundance, but lower methanotrophic abundance than forest river sediments. Acetoclastic methanogens dominate the methanogenic communities of agricultural rivers, enhanced by high NO3- and DOC concentrations. Furthermore, methanogenic metagenome-assembled genomes (MAGs) recovered from agricultural rivers, which affiliated to Methanosarcina, carried the complete set of genes encoding for the enzymes in acetoclastic methanogenesis. In contrast, hydrogenotrophic methanogens drive CH4 production in urban rivers, favored by low DOC: NH4+ ratios that enable methanogenesis independent of organic carbon. Lower CH4 emissions in agricultural rivers compared to urban rivers might be partly due to the greater sulfate-dependent anaerobic methane-oxidation. In forest rivers, type I methanotrophs outcompetes methanogens, aided by suitable sediment pH and larger sediment particle sizes, fostering oxic conditions that suppress CH4 emissions. This study reveals versatile microbial mechanisms underlying riverine CH4 emissions across land covers, enhancing understanding of microbial-mediated riverine CH4 cycling.
Collapse
Affiliation(s)
- Yuan Xin
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qun Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Sibo Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhuangzhuang Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Junfeng Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
7
|
Ma W, Lin M, Shen P, Chi H, Zhang W, Zhu J, Tian S, Liu P. Exploring methanogenic archaea and their thermal responses in the glacier-fed stream sediments of Rongbuk River basin, Mt. Everest. FEMS Microbiol Ecol 2025; 101:fiaf044. [PMID: 40275524 PMCID: PMC12038898 DOI: 10.1093/femsec/fiaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
Glacier-fed streams (GFS) are emergent sources of greenhouse gas methane, and methanogenic archaea in sediments contribute largely to stream methane emissions. However, little is known about the methanogenic communities in GFS sediments and their key environmental driving factors. This study analyzed stream sediments from the Rongbuk River basin on Mt. Everest for methanogenic communities and their temperature responses through anaerobic microcosm incubations at 5°C and 15°C. Diverse methanogens were identified, including acetoclastic, hydrogenotrophic, and hydrogen-dependent methylotrophic types. Substantial methane and CO2 production were detected across altitudes and increased significantly at 15°C, with both methane and CO2 production rates negatively correlated with altitude. The temperature sensitivity of CO2 production also showed a negative altitude correlation. Methanogens increased substantially over long-term incubation, dominating the archaeal community. At 15°C, the relative abundance of several methanogenic groups was strongly correlated with altitude, with positive correlations observed for Methanomassiliicoccaceae and Methanoregulaceae, and negative correlations for Methanocellaceae, respectively. Besides altitude, phosphorus, carbon to nitrogen ratio, and pH also affected methanogenic structure, methane and CO2 production, and temperature sensitivities. This study offers new insights into methanogens and methane production in GFS sediments, improving our understanding of GFS carbon cycling and its potential responses to climate change.
Collapse
Affiliation(s)
- Wei Ma
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
| | - Miao Lin
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
| | - Peihua Shen
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
| | - Hongfei Chi
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
| | - Weizhen Zhang
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
- Chayu Monsoon Corridor Observation and Research Station for Multi-Sphere Changes, Xizang Autonomous Region, Chayu 860600, China
| | - Jingyi Zhu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
| | - Shaoyi Tian
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
| | - Pengfei Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Pan-third Pole Biogeochemical Cycling, Gansu Province 730000, China
- Chayu Monsoon Corridor Observation and Research Station for Multi-Sphere Changes, Xizang Autonomous Region, Chayu 860600, China
| |
Collapse
|
8
|
Mullaymeri A, Payr M, Wunderer M, Eva Maria EM, Wagner AO. Shaken not stirred - effect of different mixing modes during the cultivation of methanogenic pure cultures. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100386. [PMID: 40276015 PMCID: PMC12019029 DOI: 10.1016/j.crmicr.2025.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Numerous cultivation techniques for aerobic microorganisms have been extensively investigated in the field of microbiology. Optimisation of these techniques is important for scientific and economic reasons. Methanogenic archaea, however, are obligate anaerobic microorganisms requiring different cultivation techniques than aerobic organisms due to the fundamental differences in physiology. Mixing of aerobic cultures is generally considered as very important as it provides organisms with essential oxygen; however, for anaerobic microorganisms lacking the ability to grow with oxygen, this point in cultivation was widely neglected. This work aimed at investigating the effect of different mixing modes on cultures of the methanogenic archaea Methanomethylovorans thermophila, Methanosarcina acetivorans, Methanosarcina thermophila and Methanococcus vannielii by cultivating them anaerobically in the modes standing/lying, shaken/unshaken and large/small serum flask in order to analyse their impact on the methane and biomass production. This study showed that a shaken incubation mode had a positive impact on methane production and resulted in its accelerated production, especially in hydrogenotrophic cultures; however, higher methane production did not necessarily lead to higher biomass production.
Collapse
Affiliation(s)
- Andja Mullaymeri
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Maria Payr
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Mathias Wunderer
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
9
|
Braga-Nan L, Trably E, Santa-Catalina G, Bernet N, Delgènes JP, Escudié R. Microbial adaptation to H 2 improves the conversion of volatile fatty acids to methane during in situ biomethanation even in CO 2-depleted conditions. BIORESOURCE TECHNOLOGY 2025; 429:132494. [PMID: 40199393 DOI: 10.1016/j.biortech.2025.132494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/11/2025] [Accepted: 04/05/2025] [Indexed: 04/10/2025]
Abstract
The in situ biomethanation process aims to increase the CH4 content in biogas by injecting H2 into anaerobic digesters, improving its energetic value. However, H2 injection causes CO2 depletion hampering in situ biomethanation performances. This work investigated the effect of H2 addition and CO2 depletion on the adaptation of two microbial consortia to in situ biomethanation. In the in situ biomethanation reactors under CO2-non-limiting conditions (biogas CO2 concentration ∼ 18 %) CH4 was the most produced metabolite (∼80 % of the produced gCOD) whatever the microbial consortia. However, in the in situ biomethanation reactors under CO2 limitation (biogas CO2 concentration ∼ 3 %), CH4 and Volatile Fatty Acids (VFA) accounted for 60 and 40 % of the produced gCOD, despite the tested microbial consortia. Interestingly, all control reactors (operated without H2 and/or CO2 addition) produced mostly VFA instead of CH4 (∼70 to 30 % COD-based-proportion). Hence, VFA accumulation was alleviated by H2 injections in both in situ biomethanation conditions. This lower VFA accumulation was associated with the adaptation of the microbial consortia to H2, evidenced by the improved growth of hydrogenotrophic methanogens (HM). Moreover, competition between HM clades may play a role in microbial adaptation to H2. However, low CO2 availability hindered HM growth and led to lower VFA conversion to CH4 in the in situ biomethanation conditions under CO2 limitation. Methanobacterium spp. was highly resistant to CO2 depletion, dominating the archaeal community in these conditions. This study demonstrated that the microbial adaptation to H2 addition, characterised by an improved HM activity, boosted methanogenesis and enhanced indirectly acetogenesis, preventing VFA accumulation even under CO2-depleted conditions.
Collapse
Affiliation(s)
- L Braga-Nan
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - E Trably
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - G Santa-Catalina
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - N Bernet
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - J-P Delgènes
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - R Escudié
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France.
| |
Collapse
|
10
|
Jing Z, Ye F, Liu X, Gao H. A critical review of microbial profiles in black and odorous waters. ENVIRONMENTAL RESEARCH 2025; 270:120972. [PMID: 39884529 DOI: 10.1016/j.envres.2025.120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Black and odorous waters (BOWs) are a serious environmental problem frequently reported over the past few decades. Microorganisms are identified as implementors of the black and odorous phenomenon, which play a crucial role in the decomposition and transformation of pollutants within the BOWs. However, the information on the role of microorganisms in BOWs remains elusive. BOWs are characterized by high concentrations of organic compounds and limited oxygen inputs, which have facilitated the emergence of distinct microbial species. The algae, hydrolytic and fermentative bacterium, sulfate-reducing bacteria, Fe-reducing bacteria and other microorganisms play an important role in the process of blackening and odorization of waters. Studying these specific microbial taxonomies provides valuable insights into their adaptations and contributions to the overall functioning of BOWs. This study comprehensively reviews 1) the microbial community structure, assembly and succession in BOWs; 2) the key microbial profiles involved in BOWs formation; 3) the interspecies interactions process in the BOWs, which are the issues easily overlooked but deserve further research and development.
Collapse
Affiliation(s)
- Zhangmu Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Fanjin Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| |
Collapse
|
11
|
Hai C, Wang L, Wu D, Pei D, Yang Y, Liu X, Zhao Y, Bai C, Su G, Bao Z, Yang L, Li G. Loss of Myostatin leads to low production of CH 4 by altering rumen microbiota and metabolome in cattle. Int J Biol Macromol 2025; 294:139533. [PMID: 39761884 DOI: 10.1016/j.ijbiomac.2025.139533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Myostatin (MSTN) is a protein that plays a crucial role in regulating skeletal muscle development. Despite the known benefits of MSTN mutant cattle for increasing beef production, their potential impact on CH4 emissions has not been quantified. The study comparing wild-type (WT) cattle to MSTN-knockout (MSTN-KO) cattle revealed that CH4 production was lower. Macrogenomic analysis revealed a significant decrease in rumen archaea, with reduced Richness indices (P = 0.036). The MSTN-KO cattle also showed altered archaea distribution and composition at different taxonomic levels. LEfSe results showed changes in 21 methanogenic archaea clades, with obligately hydrogen (H2)-dependent methylotrophs Candidatus Methanoplasma termitum species belonging to Methanomassiliicoccales order demonstrating the most significant decrease. Rumen metabolites revealed a decrease in the ratio of acetate to propionate, indicating a shift in rumen fermentation pattern towards propionate fermentation. Additionally, the changing trend of methanogenic archaea is consistent with the evolution of methanogens, and this is correlated with the higher levels of linoleic acid in the rumen of MSTN-KO cattle. Linoleic acid affects the utilization of H2 by methanogenic archaea, leading to a reduction in obligately H2-dependent methylotrophs. Our study suggests that MSTN-KO cattle have potential as an economically and ecologically benign breed for reducing methane emissions.
Collapse
Affiliation(s)
- Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Linfeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Dongchao Pei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Yuqing Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Yuefang Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China
| | - Zhihua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, College of Ecology and Environment, Inner Mongolia University, Hohhot 010000, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China.
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China.
| |
Collapse
|
12
|
Yusim EJ, Zarecki R, Medina S, Carmi G, Mousa S, Hassanin M, Ronen Z, Wu Z, Jiang J, Baransi-Karkaby K, Avisar D, Sabbah I, Yanuka-Golub K, Freilich S. Integrated use of electrochemical anaerobic reactors and genomic based modeling for characterizing methanogenic activity in microbial communities exposed to BTEX contamination. ENVIRONMENTAL RESEARCH 2025; 268:120691. [PMID: 39746623 DOI: 10.1016/j.envres.2024.120691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved. A reactor system, comprising an Anaerobic Bioreactor (AB) and two Microbial Electrolysis Cell (MEC) chambers, designed to represent different spatial zones along the redox gradient, operated for 160 days with intermittent exposure to BTEX. The functional differentiation of each chamber was reflected by the gas emission profiles: 50%, 12% and 84% methane in the AB, anode and cathode chambers, respectively. The taxonomic profiling, assessed using 16S amplicon sequencing, led to the identification chamber-characteristic taxonomic groups. To translate the taxonomic shift into a functional shift, community dynamics was transformed into a simulative platform based on genome scale metabolic models constructed for 21 species that capture both key functionalities and taxonomies. Representatives include BTEX degraders, fermenters, iron reducers acetoclastic and hydrogenotrophic methanogens. Functionality was inferred according to the identification of the functional gene bamA as a biomarker for anaerobic BTEX degradation, taxonomy and literature support. Comparison of the predicted performances of the reactor-specific communities confirmed that the simulation successfully captured the experimentally recorded functional variation. Variations in the predicted exchange profiles between chambers capture reported and novel competitive and cooperative interactions between methanogens and non-methanogens. Examples include the exchange profiles of hypoxanthine (HYXN) and acetate between fermenters and methanogens, suggesting mechanisms underlying the supportive/repressive effect of taxonomic divergence on methanogenesis. Hence, the platform represents a pioneering attempt to capture the full spectrum of community activity in methanogenic hydrocarbon biodegradation while supporting the future design of optimization strategies.
Collapse
Affiliation(s)
- Evgenia Jenny Yusim
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel; The Water Research Center, The Porter School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 66978, Israel.
| | - Raphy Zarecki
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Shlomit Medina
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Gon Carmi
- Bioinformatics Unit, Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization (ARO) - Volcani Institute, Ramat Yishay, Israel
| | - Sari Mousa
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Mahdi Hassanin
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer 8499000, Israel
| | - Zhiming Wu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Katie Baransi-Karkaby
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; School of Environmental Sciences, University of Haifa, Haifa 3498838, Israel
| | - Dror Avisar
- The Water Research Center, The Porter School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 66978, Israel
| | - Isam Sabbah
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Keren Yanuka-Golub
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel.
| |
Collapse
|
13
|
Deng L, Bölsterli D, Glombitza C, Jørgensen BB, Røy H, Lever MA. Drivers of methane-cycling archaeal abundances, community structure, and catabolic pathways in continental margin sediments. Front Microbiol 2025; 16:1550762. [PMID: 39980692 PMCID: PMC11840676 DOI: 10.3389/fmicb.2025.1550762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 02/22/2025] Open
Abstract
Marine sediments contain Earth's largest reservoir of methane, with most of this methane being produced and consumed in situ by methane-cycling archaea. While numerous studies have investigated communities of methane-cycling archaea in hydrocarbon seeps and sulfate-methane transition zones, less is known about how these archaea change from the seafloor downward throughout diffusion-dominated marine sediments. Focusing on four continental margin sites of the North Sea-Baltic Sea transition, we here investigate the in situ drivers of methane-cycling archaeal community structure and metabolism based on geochemical and stable carbon-isotopic gradients, functional gene (mcrA) copy numbers and phylogenetic compositions, and thermodynamic calculations. We observe major changes in community structure that largely follow vertical gradients in sulfate concentrations and lateral gradients in organic carbon reactivity and content. While methane-cycling archaeal communities in bioturbated and sulfatic zones are dominated by known methyl-disproportionating Methanosarcinaceae and putatively CO2-reducing Methanomicrobiaceae, the communities change toward dominance of methane-oxidizing taxa (ANME-2a-b, ANME-2c, ANME-1a-b) in sulfate-methane transition zones (SMTZs). By contrast, the underlying methanogenesis zones are dominated by the physiologically uncharacterized ANME-1d, new genus-level groups of putatively CO2-reducing Methanomicrobiaceae, and methyl-reducing Methanomassiliicoccales. Notably, mcrA copy numbers of several major taxa increase by 2 to 4 orders of magnitude from the sulfatic zone into the SMTZ or methanic zone, providing evidence of net population growth in subsurface sediment. We propose that burial-related geochemical changes cause methane-cycling archaea in continental margin sediments to go through three successional stages (sulfatic, SMTZ, methanic). Herein, the onset of each new successional stage is characterized by a period of growth- and mortality-driven turnover in the dominant taxa.
Collapse
Affiliation(s)
- Longhui Deng
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Damian Bölsterli
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Clemens Glombitza
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Bo Barker Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Hans Røy
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Mark Alexander Lever
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
| |
Collapse
|
14
|
Sun J, Zhou T, Yin F, Wang S. Anaerobic co-biodegradation of polyhydroxyalkanoate and swine manure for volatile fatty acid production: The impact of C/N ratios and microbial dynamics. BIORESOURCE TECHNOLOGY 2025; 418:131995. [PMID: 39694107 DOI: 10.1016/j.biortech.2024.131995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Polyhydroxyalkanoate (PHA) is the important biodegradable plastic, however, biodegradation of PHA waste in anaerobic environments emits more CH4, a potent greenhouse gas. Bioconversion of PHA waste to useful byproducts - volatile fatty acids (VFAs) is a practical method to upcycle carbon from PHA. In this study, PHA waste was anaerobically co-digested with swine manure (SM) (the typical high nitrogen waste) at different C/N ratios. The results indicate that co-digestion of PHA and SM with a C/N ratio of 32.1 achieved VFA production of 5488 mg COD/L and 0.20 g COD/g VS. No significant differences were found in terms of the highest VFA concentrations between treatments with C/N ratios of 43.4 and 32.1. VFA produciton of 3655 mg COD/L and 0.14 g COD/g VS was achieved at 19 days by adjusting the C/N ratio to 19.2. Four bacteria were identified as dominant microorganisms responsible for converting PHA and SM to VFA.
Collapse
Affiliation(s)
- Jiaxin Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tanlong Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
15
|
González-Piana M, Fernández-Scavino A, Abe DS, Sidagis C, Garreta C, Venturini N, Martinez S, Cuevas J, De Giacomi S, Chalar G. Evaluation of the importance of sediment organic matter composition for CH 4 production by microcosm tests with and without addition of natural sources (cyanobacterial biomass and riparian pasture) in two subtropical, eutrophic reservoirs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4257-4272. [PMID: 39869256 DOI: 10.1007/s11356-025-35943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/11/2025] [Indexed: 01/28/2025]
Abstract
The biochemical composition of sediments, which depends on the origin of the organic matter (OM), is decisive in methane (CH4) production. This study aimed to determine the CH4 produced under anaerobic conditions from different substrates: native reservoir sediments and sediments with the addition of complex OM from Microcystis spp. blooms and terrestrial plants (pasture), alongside the biochemical characterization of the substrates used. The biochemical composition of the sediments explained the differences in CH4 production rate (µmol/g OM/day). Positive correlations were found between CH4 production rate and proteins (PRT) (r = 0.695), lipids (LIP) (r = 0.582), TN (r = 0.605), and biopolymeric carbon (BPC) (r = 0.784). Principal component analysis showed an association of CH4 production rate with PRT, LIP, TN, and BPC concentrations, sharing the same direction of the vectors. The addition of Microcystis bloom and pasture to the sediments significantly increased the rate and production of CH4 compared to native sediments, with higher values for bloom addition. In the studied reservoirs, cyanobacteria biomass is a very important source of organic matter to the sediments and a support for methanogenesis. Nonetheless, OM from surrounding vegetation, mainly pastures, could also play a significant role during events that increase reservoir levels, generating important CH4 emission "hot spots" at the periphery of the reservoirs.
Collapse
Affiliation(s)
- Mauricio González-Piana
- Facultad de Ciencias, Sección Limnología, IECA, Universidad de la República, Montevideo, Uruguay.
| | - Ana Fernández-Scavino
- Departamento de Biociencias, Facultad de Química, Área Microbiología, Universidad de La República, Montevideo, Uruguay
| | - Donato Seiji Abe
- Associação Instituto Internacional de Ecologia e Gerenciamento Ambiental (AIIEGA), São Carlos, SP, Brazil
| | - Corina Sidagis
- Associação Instituto Internacional de Ecologia e Gerenciamento Ambiental (AIIEGA), São Carlos, SP, Brazil
| | - Celina Garreta
- Facultad de Ciencias, Sección Limnología, IECA, Universidad de la República, Montevideo, Uruguay
| | - Natalia Venturini
- Laboratorio de Biogeoquímica Marina (LABIM), Facultad de Ciencias, IECA, Universidad de la República, Montevideo, Uruguay
| | - Stefani Martinez
- Laboratorio de Biogeoquímica Marina (LABIM), Facultad de Ciencias, IECA, Universidad de la República, Montevideo, Uruguay
| | - Julieta Cuevas
- Facultad de Ciencias, Sección Limnología, IECA, Universidad de la República, Montevideo, Uruguay
| | - Sol De Giacomi
- Facultad de Ciencias, Sección Limnología, IECA, Universidad de la República, Montevideo, Uruguay
| | - Guillermo Chalar
- Facultad de Ciencias, Sección Limnología, IECA, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
16
|
Ribeiro AR, Devens KU, Camargo FP, Sakamoto IK, Varesche MBA, Silva EL. Harnessing the Energy Potential and Value-Added Products from the Treatment of Sugarcane Vinasse: Maximizing Methane Production Through Co-Digestion with Sugarcane Molasses and Enhanced Organic Loading. Appl Biochem Biotechnol 2025; 197:964-988. [PMID: 39340631 DOI: 10.1007/s12010-024-05078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
This study assessed the impact of organic loading rate (OLR) on methane (CH4) production in the anaerobic co-digestion (AcoD) of sugarcane vinasse and molasses (SVM) (1:1 ratio) within a thermophilic fluidized bed reactor (AFBR). The OLR ranged from 5 to 27.5 kg COD.m-3.d-1, with a fixed hydraulic retention time (HRT) of 24 h. Organic matter removal varied from 56 to 84%, peaking at an OLR of 5 kg COD.m-3.d-1. Maximum CH4 yield (MY) (272.6 mL CH4.g-1CODrem) occurred at an OLR of 7.5 kg COD.m-3.d-1, while the highest CH4 production rate (MPR) (4.0 L CH4.L-1.d-1) and energy potential (E.P.) (250.5 kJ.d-1) were observed at an OLR of 20 kg COD.m-3.d-1. The AFBR exhibited stability across all OLR. At 22.5 kg COD.m-3.d-1, a decrease in MY indicated methanogenesis imbalance and inhibitory organic compound accumulation. OLR influenced microbial populations, with Firmicutes and Thermotogota constituting 43.9% at 7.5 kg COD.m-3.d-1, and Firmicutes dominating (52.7%) at 27.5 kg COD.m-3.d-1. Methanosarcina (38.9%) and hydrogenotrophic Methanothermobacter (37.6%) were the prevalent archaea at 7.5 kg COD.m-3.d-1 and 27.5 kg COD.m-3.d-1, respectively. Therefore, this study demonstrates that the organic loading rate significantly influences the efficiency of methane production and the stability of microbial communities during the anaerobic co-digestion of sugarcane vinasse and molasses, indicating that optimized conditions can maximize energy yield and maintain methanogenic balance.
Collapse
Affiliation(s)
- Alexandre Rodrigues Ribeiro
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, CEP 13563-120, Brazil
| | - Kauanna Uyara Devens
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, CEP 13563-120, Brazil
| | - Franciele Pereira Camargo
- Bioenergy Research Institute (IPBEN), UNESP- São Paulo State University, Rio Claro, SP, 13500-230, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, CEP 13563-120, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, CEP 13563-120, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235, São Carlos, CEP 13565-905, SP, Brazil.
| |
Collapse
|
17
|
Yang Y, Yang S, Sun J, Zhang Y, Yu X, Li P, Zhang X, Li X. Accelerating electron transfer reduces CH 4 and CO 2 emissions in paddy soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124044. [PMID: 39798325 DOI: 10.1016/j.jenvman.2025.124044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
As an accelerated electron transfer device, the influence of microbial electrochemical snorkel (MES) on soil greenhouse gas production remains unclear. Electron transport is the key to methane production and denitrification. We found that the N2O amount of the MES treatment was comparable to the control however the cumulative CO2 and CH4 emissions were reduced by 50% and 41%, respectively. The content of Fe2+ in MES treatment increased by 31%, which promoted the electron competition of iron reduction to methanogenesis. Furthermore, the competition among iron-reducing, nitrifying and denitrifying bacteria reduced the abundance of methanogens by 19-20%. Additionally, the MES treatment decreased the abundance of genes associated with hydrogen methanogenesis pathway by 6-19%, and inhibited the further conversion of acetyl-CoA into CH4 for acetoclastic methanogenesis. This study reveals effects of accelerating electron transfer on greenhouse gas emission, and provides a novel strategy for reducing greenhouse gas emissions in paddy soil.
Collapse
Affiliation(s)
- Yuewei Yang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, PR China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China
| | - Side Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China
| | - Jialu Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, PR China
| | - Yun Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China; College of Resources and Environment Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xin Yu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, PR China.
| | - Xiaolin Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China.
| |
Collapse
|
18
|
Wen ZP, Sha C, Nawab S, Lu ZJ, Yong YC. One-step transformation of CO 2 to methane by Escherichia coli with a synthetic biomethanation module. Biochem Biophys Res Commun 2025; 746:151284. [PMID: 39761619 DOI: 10.1016/j.bbrc.2024.151284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
The biomethanation process is widely recognized as a significant approach to mitigating carbon dioxide emissions while simultaneously generating methane. However, only a few microorganisms that required intricate culturing conditions were identified for biomethanation. Here, Escherichia coli that featured easy cultivation and versatile chassis was genetically modified for biomethanation for the first time. The nif-related gene cluster with methanogenic capability from Rhodopseudomonas palustris was systematically analyzed, cloned, and integrated into a synthetic biomethanation module. As a result, E. coli BL21 (DE3) and Rosetta (DE3) carrying this synthetic biomethanation module exhibited significant methane production activity, with methane yields reaching 50 nmol/mL and 159 nmol/mL, respectively. This finding provided a simple route to construct synthetic strain for biomethanation, which would advance the fundamental research and be beneficial to further harness the power of biomethanation for practical application.
Collapse
Affiliation(s)
- Ze-Peng Wen
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Chong Sha
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Said Nawab
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Zi-Jie Lu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; School of Emergency Management, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
19
|
Waters SM, Roskam E, Smith PE, Kenny DA, Popova M, Eugène M, Morgavi DP. The role of rumen microbiome in the development of methane mitigation strategies for ruminant livestock. J Dairy Sci 2025:S0022-0302(25)00043-8. [PMID: 39890073 DOI: 10.3168/jds.2024-25778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/30/2024] [Indexed: 02/03/2025]
Abstract
Ruminants play an important role in global food security and nutrition. The rumen microbial community provides ruminants with a unique ability to convert human indigestible plant matter, into high quality edible protein. However, enteric CH4 produced in the rumen is both a potent GHG and a metabolizable energy loss for ruminants. As the rumen microbiome constitutes 15-40% of the inter-animal variation in enteric CH4 emissions, understanding the microbiological mechanisms underpinning ruminal methanogenesis and its interaction with the host animal, is crucial for developing CH4 mitigation strategies. Variation in the relative abundance of different microbial species has been observed in cattle with contrasting residual CH4 emission and CH4 yield with up to 20% of the variation in inter-animal CH4 emissions attributable to the presence of a small number of microbial species. The demonstration of ruminotypes associated with high or low CH4 emissions suggests that interactions within complex microbial consortia and with their host are a major source of variation in CH4 emissions. Consequently, microbiome-assisted genomic approaches are being developed to select low CH4 emitting cattle, with breeding values for enteric CH4 being included as part of national breeding programmes. Generating rumen microbiome data for use in selection programs is expensive, therefore, identifying microbial biomarkers in milk or plasma to develop predictive models which include microbial predictors in equations based on animal related data, is required. A better understanding of the rumen microbiome has also aided the development and refinements of anti-methanogenic feed additives. However, these strategies, which increase the amount of reducing equivalents in the rumen ecosystem, do not generally result in an enrichment of propionate or an improvement in animal performance. Current research aims to provide alternative sinks to reducing equivalents and to stimulate activity of commensal microbes or the supplementation of direct fed microbials to capture lost energy. Furthering our knowledge of the rumen microbiome and its interaction with the host, will aid in the development of CH4 mitigation strategies for ruminant livestock.
Collapse
Affiliation(s)
- S M Waters
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway.
| | - E Roskam
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway; Animal and Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - P E Smith
- Animal and Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - D A Kenny
- Animal and Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - M Popova
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France
| | - M Eugène
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France
| | - D P Morgavi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France
| |
Collapse
|
20
|
Bechtold EK, Ellenbogen JB, Villa JA, de Melo Ferreira DK, Oliverio AM, Kostka JE, Rich VI, Varner RK, Bansal S, Ward EJ, Bohrer G, Borton MA, Wrighton KC, Wilkins MJ. Metabolic interactions underpinning high methane fluxes across terrestrial freshwater wetlands. Nat Commun 2025; 16:944. [PMID: 39843444 PMCID: PMC11754854 DOI: 10.1038/s41467-025-56133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Current estimates of wetland contributions to the global methane budget carry high uncertainty, particularly in accurately predicting emissions from high methane-emitting wetlands. Microorganisms drive methane cycling, but little is known about their conservation across wetlands. To address this, we integrate 16S rRNA amplicon datasets, metagenomes, metatranscriptomes, and annual methane flux data across 9 wetlands, creating the Multi-Omics for Understanding Climate Change (MUCC) v2.0.0 database. This resource is used to link microbiome composition to function and methane emissions, focusing on methane-cycling microbes and the networks driving carbon decomposition. We identify eight methane-cycling genera shared across wetlands and show wetland-specific metabolic interactions in marshes, revealing low connections between methanogens and methanotrophs in high-emitting wetlands. Methanoregula emerged as a hub methanogen across networks and is a strong predictor of methane flux. In these wetlands it also displays the functional potential for methylotrophic methanogenesis, highlighting the importance of this pathway in these ecosystems. Collectively, our findings illuminate trends between microbial decomposition networks and methane flux while providing an extensive publicly available database to advance future wetland research.
Collapse
Affiliation(s)
- Emily K Bechtold
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jared B Ellenbogen
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jorge A Villa
- School of Geosciences, University of Louisiana at Lafayette, Lafayette, LA, USA
| | | | - Angela M Oliverio
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Joel E Kostka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Ruth K Varner
- Department of Earth Sciences and Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH, USA
| | - Sheel Bansal
- United States Geological Survey, Jamestown, ND, USA
| | - Eric J Ward
- University of Maryland, College Park, MD, USA
| | - Gil Bohrer
- Department of Civil, Environmental & Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
21
|
Tan W, Zhong Z, He Q, Yun X, Yang L, Wang X, Ji D, Wang G, Zhao J, Zhang X. Methane emission fluxes and associated microbial community characteristics in a temperate seagrass meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177991. [PMID: 39662403 DOI: 10.1016/j.scitotenv.2024.177991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Seagrass meadows are acknowledged as blue carbon ecosystems, yet they are also ideal habitats for methane (CH4) release, offsetting their ability to mitigate climate change. The global CH4 fluxes in seagrass meadows remain highly uncertain due to regional and species biases, and the microbial mechanisms driving methane release are poorly understood. Here, we investigated CH4 air-sea fluxes, sediment CH4 emission potential and microbes involved in CH4 release using geochemical techniques combined with qPCR and Illumina sequencing in a temperate Zostera japonica and Zostera marina mixed meadow. The CH4 air-sea fluxes fluctuated from -0.42 to 11.42 μmol·m-2·d-1, showing a strong seasonal variation. CH4 emission potential was significantly higher in seagrass vegetated sediments (10.34 ± 2.72 nmol·g-1·d-1) than in the adjacent bare sediments (1.55 ± 1.15 nmol·g-1·d-1), primarily attributed to variations in sediment organic matter content. Diverse methanogens occurred in the seagrass meadow, with Methanolobus dominating in seagrass sediments, while Methanococcoides, Methanosarcina, and Methanoculleus being prevalent in bare sediments. Meanwhile, a variety of methylotrophic groups were detected, including aerobic Gammaproteobacteria, anaerobic Desulfobacterota and Methylomirabilota, as well as archaea Candidatus Methanoperedens. The co-occurrence of these functional groups implied the presence of complex CH4 production and oxidation pathways, which regulated the CH4 budget in the seagrass ecosystems. Taken together, our findings enhance the comprehension of the methane emission process and driving mechanism in seagrass ecosystems.
Collapse
Affiliation(s)
- Wenwen Tan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihai Zhong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianling He
- School of Ocean, Yantai University, Yantai 264005, China
| | - Xin Yun
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Lin Yang
- School of Ocean, Yantai University, Yantai 264005, China
| | - Xin Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daode Ji
- School of Ocean, Yantai University, Yantai 264005, China
| | - Guangyu Wang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Jianmin Zhao
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
22
|
Dar RA, Tsui TH, Zhang L, Smoliński A, Tong YW, Mohamed Rasmey AH, Liu R. Recent achievements in magnetic-field-assisted anaerobic digestion for bioenergy production. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2025; 207:114902. [DOI: 10.1016/j.rser.2024.114902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Belanche A, Bannink A, Dijkstra J, Durmic Z, Garcia F, Santos FG, Huws S, Jeyanathan J, Lund P, Mackie RI, McAllister TA, Morgavi DP, Muetzel S, Pitta DW, Yáñez-Ruiz DR, Ungerfeld EM. Feed additives for methane mitigation: A guideline to uncover the mode of action of antimethanogenic feed additives for ruminants. J Dairy Sci 2025; 108:375-394. [PMID: 39725503 DOI: 10.3168/jds.2024-25046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 12/28/2024]
Abstract
This publication aims to provide guidelines of the knowledge required and the potential research to be conducted in order to understand the mode of action of antimethanogenic feed additives (AMFA). In the first part of the paper, we classify AMFA into 4 categories according to their mode of action: (1) lowering dihydrogen (H2) production; (2) inhibiting methanogens; (3) promoting alternative H2-incorporating pathways; and (4) oxidizing methane (CH4). The second part of the paper presents questions that guide the research to identify the mode of action of an AMFA on the rumen CH4 production from 5 different perspectives: (1) microbiology; (2) cell and molecular biochemistry; (3) microbial ecology; (4) animal metabolism; and (5) cross-cutting aspects. Recommendations are provided to address various research questions within each perspective, along with examples of how aspects of the mode of action of AMFA have been elucidated before. In summary, this paper offers timely and comprehensive guidelines to better understand and reveal the mode of action of current and emerging AMFA.
Collapse
Affiliation(s)
- Alejandro Belanche
- Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Zoey Durmic
- The University of Western Australia, Crawley, WA 6009, Australia
| | - Florencia Garcia
- Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, 5000 Córdoba, Argentina
| | - Fernanda G Santos
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Sharon Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Jeyamalar Jeyanathan
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Peter Lund
- Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, 8830 Tjele, Denmark
| | - Roderick I Mackie
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Diego P Morgavi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genes-Champanelle, France
| | | | - Dipti W Pitta
- School of Veterinary Medicine, New Bolton Center, University of Pennsylvania, Kennett Square, PA 19384
| | | | - Emilio M Ungerfeld
- Instituto de Investigaciones Agropecuarias - Centro Regional de Investigación Carillanca, 4880000 Vilcún, La Araucanía, Chile.
| |
Collapse
|
24
|
Wang Y, Yang Y, Sun J, Wang Y, Liu X, Cao J, Zhang A, Shi C, Pan J. Partitioning Ganoderma lucidum residue biochar differentially boosts anaerobic fermentation performance of cow manure via mediation of anaerobic microbiota assembly. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123033. [PMID: 39486300 DOI: 10.1016/j.jenvman.2024.123033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Biochar is a promising strategy to solve the problem of low efficiency and ammonia inhibition during anaerobic digestion (AD). However, the correlation between biochar partitioning and its stimulatory effects on AD remains uncertain. Here, the effects of partitioned Ganoderma lucidum residue biochar (GLRB) on biogas and methane production were investigated. The GLRB produced at 450 °C, with richer functional groups on its surface, had the optimal enhancement effect on AD, resulting in a 20.59% increase in methane production compared with control. The doses of water-soluble GLRB (LZ450-W) and water-insoluble GLRB (LZ450-R) were not proportional to their enhancement effect on AD. However, the enhancement effect on AD by LZ450-R was better than that of LZ450-W. The optimal dosage of LZ450-W was 0.015 g, which increased methane production by 14.28%. Similarly, methane production increased by 26.91% with the addition of 0.603 g of LZ450-R. LZ450-R had more abundant functional groups on the surface and promoted the abundance of bacteria in the dominant phyla Bacteroidetes, Synergistetes, and Spirochaetes, increasing the rate of hydrolysis. Additionally, methanogens such as Methanobacterium and Methanospirillum were enriched, facilitating methane production by promoting the hydrogenotrophic pathway. Methanobacterium was also negatively correlated with most acid-producing bacteria, whereas Methanobrevibacter was positively correlated with Methanosphaera, Acetivibrio, and other acid-producing bacteria. These findings provide a basis for constructing synthetic microbial communities using biochar as a carrier of microbial inoculum.
Collapse
Affiliation(s)
- Yajing Wang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Yan Yang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Jiahui Sun
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Yueqi Wang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Xiujie Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Jingyu Cao
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Aiai Zhang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Chunfang Shi
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Jiangang Pan
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| |
Collapse
|
25
|
Giménez FJ, Peeters E, Honty M, Leys N, Mijnendonckx K. Isolation and characterization of a novel methanogen Methanosarcina hadiensis sp. nov. from subsurface Boom Clay pore water. Environ Microbiol 2024; 26:e70004. [PMID: 39627874 PMCID: PMC11615132 DOI: 10.1111/1462-2920.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024]
Abstract
Safe geological disposal of radioactive waste requires a thorough understanding of geochemical conditions in the host formation. Boom Clay is a potential candidate in Belgium, where active methanogenesis has been detected in its deep subsurface, influencing the local geochemistry. However, the pathways driving this process and the characteristics of the methanogenic archaea involved remain unclear. We isolated a distinct archaeal strain from Boom Clay pore water and characterized it geno- and phenotypically. Isolate TD41E1-1 belongs to a novel species of the Methanosarcina genus, for which the name Methanosarcina hadiensis sp. nov. is proposed. TD41E1-1 cells are coccus-shaped, irregularly sized cells enveloped by extracellular polymer substances. Growth and substrate utilization experiments and genomic analysis demonstrated that the strain prefers methylated compounds or hydrogen as substrates for methane production. Although it possesses a complete acetoclastic pathway, no growth was observed in the presence of acetate in the tested conditions. Based on its phylogenetic relation to other known Methanosarcina species and on the presence of c-type cytochromes, it can be concluded that the strain likely occupies an intermediate position between type I and type II Methanosarcina species. These findings provide valuable insights for assessing Boom Clay's suitability for geological disposal of radioactive waste.
Collapse
Affiliation(s)
- Francisco Javier Giménez
- Microbiology UnitBelgian Nuclear Research Centre, SCK CENMolBelgium
- Research Group of Microbiology, Department of Bioengineering SciencesVrije Universiteit Brussel (VUB)BrusselBelgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering SciencesVrije Universiteit Brussel (VUB)BrusselBelgium
| | - Miroslav Honty
- R&D Disposal UnitBelgian Nuclear Research Centre, SCK CENMolBelgium
| | - Natalie Leys
- Microbiology UnitBelgian Nuclear Research Centre, SCK CENMolBelgium
| | | |
Collapse
|
26
|
Liu H, Pan Z, Bai Y, Xu S, Wu Z, Ma J, Wang Z, Tian Z, Chen Y. Methanogens dominate methanotrophs and act as a methane source in aquaculture pond sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117317. [PMID: 39571254 DOI: 10.1016/j.ecoenv.2024.117317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
Aquaculture pond sediments act as hotspots for methane (CH4) emissions; however, knowledge gaps on the regulation of microorganisms hinder our further understanding of methane dynamics in aquaculture pond sediment. Using field sampling and molecular analysis, we examined CH4 fluxes, the methanogenic community composition, and their interaction with methanotrophs to comprehensively understand the methane cycling in sediments of aquaculture ponds in northern China. Compared with a fishing pond without feed inputs, the abundances of methanogens mcrA and methanotrophs pmoA genes increased significantly in aquaculture ponds sediments. The dominant methanogens were Methanothrix, Methanoregula, and Methanolinea, and the α-diversity indices of methanogens demonstrated higher levels in 0-5 cm surface sediment. The methanotrophs were dominated by Methylocystis, Methylocaldum, and Methylobacter, and the α-diversity indices of methanotrophs showed no significant difference. The total organic carbon (TOC) contents and oxidation reduction potential (ORP) were the key factors driving methanogenic and methanotrophic communities on methane cycle in aquaculture sediment. The inter-domain ecological network (IDEN) analysis revealed that total number of network nodes, links, connectances, and links per species in the aquaculture sediments presented relatively higher levels, whereas the IDEN modules were fewer. The methanogens dominated in the networks and the interaction of methanogens and methanotrophs was more competitive and complex in aquaculture sediments. These findings highlight the marked methane production in aquaculture sediment, primarily due to the abundance, diversity, and competitive advantage of methanogens over methanotrophic communities.
Collapse
Affiliation(s)
- Hongda Liu
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, PR China; Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei 066003, PR China
| | - Zhe Pan
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei 066003, PR China
| | - Yucen Bai
- Exchange, Development & Service Center for Science & Technology Talents, No. 54 Sanlihe Road, Beijing 100045, PR China
| | - Shaogang Xu
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, PR China
| | - Zhaoxing Wu
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, PR China; Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei 066003, PR China
| | - Junfeng Ma
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, PR China
| | - Zhuonan Wang
- Natural Resources Ecology Laboratory Colorado State University, Fort Collins, CO 80523, USA
| | - Zhaohui Tian
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, PR China.
| | - Yan Chen
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, PR China.
| |
Collapse
|
27
|
Dong W, Zhou J, Zhang CJ, Yang Q, Li M. Methylotrophic substrates stimulated higher methane production than competitive substrates in mangrove sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175677. [PMID: 39181265 DOI: 10.1016/j.scitotenv.2024.175677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Although mangrove forests can uptake atmospheric CO2 and store carbon as organic matter called "blue carbon", it is also an important natural source of greenhouse gas methane. Methanogens are major contributors to methane and play important roles in the global carbon cycle. However, our understanding of the key microbes and metabolic pathways responsible for methanogenesis under specific substrates in mangrove sediments is still very limited. Here, we set an anaerobic incubation to evaluate the responses of methanogens in mangrove sediments from South China to the addition of diverse methanogenic substrates (H2/CO2, acetate, trimethylamine (TMA), and methanethiol (MT)) and further investigated the dynamics of the whole microbial community. Our results showed that diverse substrates stimulated methanogenic activities at different times. The stimulation of methanogenesis was more pronounced at early and late periods by the addition of methylotrophic substrates TMA and MT, respectively. The amplicon sequencing analysis showed that genus Methanococcoides was mainly responsible for TMA-utilized methanogenesis in mangrove sediment, while the multitrophic Methanococcus was most abundant in H2/CO2 and MT treatments. Apart from that, the bacteria enrichments of Syntrophotalea, Clostridium_sensu_stricto_12, Fusibacter in MT treatments might also be associated with the stimulation of methane production. In addition, the metagenomic analysis suggested that Methanosarcinaceae was also one of the key methanogens in MT treatments with different genomic information compared to that in TMA treatments. Finally, the total relative abundances of methanogenesis-related genes were also highest in TMA and MT treatments. These results will help advance our understanding of the contributions of different methanogenesis pathways and methanogens to methane emissions in mangrove sediments.
Collapse
Affiliation(s)
- Weiling Dong
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinjie Zhou
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Cui-Jing Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Qin Yang
- Department of Biological Information, Shenzhen GenDow Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Meng Li
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
28
|
Coon GR, Williams LC, Matthews A, Diaz R, Kevorkian RT, LaRowe DE, Steen AD, Lapham LL, Lloyd KG. Control of hydrogen concentrations by microbial sulfate reduction in two contrasting anoxic coastal sediments. Front Microbiol 2024; 15:1455857. [PMID: 39600573 PMCID: PMC11594503 DOI: 10.3389/fmicb.2024.1455857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Molecular hydrogen is produced by the fermentation of organic matter and consumed by organisms including hydrogenotrophic methanogens and sulfate reducers in anoxic marine sediment. The thermodynamic feasibility of these metabolisms depends strongly on organic matter reactivity and hydrogen concentrations; low organic matter reactivity and high hydrogen concentrations can inhibit fermentation so when organic matter is poor, fermenters might form syntrophies with methanogens and/or sulfate reducers who alleviate thermodynamic stress by keeping hydrogen concentrations low and tightly controlled. However, it is unclear how these metabolisms effect porewater hydrogen concentrations in natural marine sediments of different organic matter reactivities. Methods We measured aqueous concentrations of hydrogen, sulfate, methane, dissolved inorganic carbon, and sulfide with high-depth-resolution and 16S rRNA gene assays in sediment cores with low carbon reactivity in White Oak River (WOR) estuary, North Carolina, and those with high carbon reactivity in Cape Lookout Bight (CLB), North Carolina. We calculated the Gibbs energies of sulfate reduction and hydrogenotrophic methanogenesis. Results Hydrogen concentrations were significantly higher in the sulfate reduction zone at CLB than WOR (mean: 0.716 vs. 0.437 nM H2) with highly contrasting hydrogen profiles. At WOR, hydrogen was extremely low and invariant (range: 0.41-0.52 nM H2) in the upper 15 cm. Deeper than 15 cm, hydrogen became more variable (range: 0.312-2.56 nM H2) and increased until methane production began at ~30 cm. At CLB, hydrogen was highly variable in the upper 15 cm (range: 0.08-2.18 nM H2). Ratios of inorganic carbon production to sulfate consumption show AOM drives sulfate reduction in WOR while degradation of organics drive sulfate reduction in CLB. Discussion We conclude more reactive organic matter increases hydrogen concentrations and their variability in anoxic marine sediments. In our AOM-dominated site, WOR, sulfate reducers have tight control on hydrogen via consortia with fermenters which leads to the lower observed variance due to interspecies hydrogen transfer. After sulfate depletion, hydrogen accumulates and becomes variable, supporting methanogenesis. This suggests that CLB's more reactive organic matter allows fermentation to occur without tight metabolic coupling of fermenters to sulfate reducers, resulting in high and variable porewater hydrogen concentrations that prevent AOM from occurring through reverse hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Gage R. Coon
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Leketha C. Williams
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Adrianna Matthews
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Roberto Diaz
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Richard T. Kevorkian
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Douglas E. LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Andrew D. Steen
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Earth and Planetary Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Department Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Laura L. Lapham
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD, United States
| | - Karen G. Lloyd
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
29
|
Zhang D, Zeng Q, Chen H, Guo D, Li G, Dong H. Enhanced Rock Weathering as a Source of Metals to Promote Methanogenesis and Counteract CO 2 Sequestration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19679-19689. [PMID: 39432802 DOI: 10.1021/acs.est.4c04751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Enhanced weathering of (ultra)mafic rocks has been proposed as a promising approach to sequester atmospheric CO2 and mitigate climate change. However, these silicate rocks contain varying amounts of trace metals, which are essential cofactors of metallaenzymes in methanogens. We found that weathering of crushed peridotite and basalt significantly promoted the growth and methanogenesis of a model methanogen─Methanosarcina acetivorans C2A under the condition of excess substrate. The released trace metals from peridotite and basalt, especially Fe, Ni, and Co, accounted for the promotion effect. Observation at different spatial scales showed a close association between the rocks and cells. Proteomic analysis revealed that rock amendment significantly enhanced the expression of core metalloenzymes in the methylotrophic methanogenesis pathway. Our study uncovers a previously unrecognized but important negative effect of enhanced rock weathering on methane production, which may counteract the carbon sequestration effort.
Collapse
Affiliation(s)
- Donglei Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Qiang Zeng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, China
| | - Hongyu Chen
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Dongyi Guo
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Gaoyuan Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
30
|
Baransi-Karkaby K, Yanuka-Golub K, Hassanin M, Massalha N, Sabbah I. In-situ biological biogas upgrading using upflow anaerobic polyfoam bioreactor: Operational and biological aspects. Biotechnol Bioeng 2024; 121:3471-3483. [PMID: 39036861 DOI: 10.1002/bit.28811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
A high rate upflow anaerobic polyfoam-based bioreactor (UAPB) was developed for lab-scale in-situ biogas upgrading by H2 injection. The reactor, with a volume of 440 mL, was fed with synthetic wastewater at an organic loading rate (OLR) of 3.5 g COD/L·day and a hydraulic retention time (HRT) of 7.33 h. The use of a porous diffuser, alongside high gas recirculation, led to a higher H2 liquid mass transfer, and subsequently to a better uptake for high CH4 content of 56% (starting from 26%). Our attempts to optimize both operational parameters (H2 flow rate and gas recirculation ratio, which is the total flow rate of recirculated gas over the total outlet of gas flow rate) were not initially successful, however, at a very high recirculation ratio (32) and flow rate (54 mL/h), a significant improvement of the hydrogen consumption was achieved. These operational conditions have in turn driven the methanogenic community toward the dominance of Methanosaetaceae, which out-competed Methanosarcinaceae. Nevertheless, highly stable methane production rates of 1.4-1.9 L CH4/Lreactor.day were observed despite the methanogenic turnover. During the different applied operational conditions, the bacterial community was especially impacted, resulting in substantial shifts of taxonomic groups. Notably, Aeromonadaceae was the only bacterial group positively correlated with increasing hydrogen consumption rates. The capacity of Aeromonadaceae to extracellularly donate electrons suggests that direct interspecies electron transfer (DIET) enhanced biogas upgrading. Overall, the proposed innovative biological in-situ biogas upgrading technology using the UAPB configuration shows promising results for stable, simple, and effective biological biogas upgrading.
Collapse
Affiliation(s)
- Katie Baransi-Karkaby
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
- Department of Natural Resources & Environmental Management, Faculty of Management, University of Haifa, Haifa, Israel
| | - Keren Yanuka-Golub
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
| | - Mahdi Hassanin
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
| | - Nedal Massalha
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
- Department of Natural Resources & Environmental Management, Faculty of Management, University of Haifa, Haifa, Israel
| | - Isam Sabbah
- The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel
- Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| |
Collapse
|
31
|
Zhao M, Li D, Liu J, Fang J, Liu C. Fungal Methane Production Under High Hydrostatic Pressure in Deep Subseafloor Sediments. Microorganisms 2024; 12:2160. [PMID: 39597547 PMCID: PMC11596643 DOI: 10.3390/microorganisms12112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Fungi inhabiting deep subseafloor sediments have been shown to possess anaerobic methane (CH4) production capabilities under atmospheric conditions. However, their ability to produce CH4 under in situ conditions with high hydrostatic pressure (HHP) remains unclear. Here, Schizophyllum commune 20R-7-F01, isolated from ~2 km below the seafloor, was cultured in Seawater Medium (SM) in culture bottles fitted with sterile syringes for pressure equilibration. Subsequently, these culture bottles were transferred into 1 L stainless steel pressure vessels at 30 °C for 5 days to simulate in situ HHP and anaerobic environments. Our comprehensive analysis of bioactivity, biomass, and transcriptomics revealed that the S. commune not only survived but significantly enhanced CH4 production, reaching approximately 2.5 times higher levels under 35 MPa HHP compared to 0.1 MPa standard atmospheric pressure. Pathways associated with carbohydrate metabolism, methylation, hydrolase activity, cysteine and methionine metabolism, and oxidoreductase activity were notably activated under HHP. Specifically, key genes involved in fungal anaerobic CH4 synthesis, including methyltransferase mct1 and dehalogenase dh3, were upregulated 7.9- and 12.5-fold, respectively, under HHP. Enhanced CH4 production under HHP was primarily attributed to oxidative stress induced by pressure, supported by intracellular reactive oxygen species (ROS) levels and comparative treatments with cadmium chloride and hydrogen peroxide. These results may provide a strong theoretical basis and practical guidance for future studies on the contribution of fungi to global CH4 flux.
Collapse
Affiliation(s)
- Mengshi Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China; (M.Z.); (D.L.)
| | - Dongxu Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China; (M.Z.); (D.L.)
| | - Jie Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China; (M.Z.); (D.L.)
| |
Collapse
|
32
|
Abid M, Wu J, Yuanyuan Y, Ajmal Z, Mehmood T, Husnain SN, Zhou X. Enhanced anaerobic digestion of freezing and thawing pretreated cow manure with increasing solid content: kinetics and microbial community dynamics. Sci Rep 2024; 14:25579. [PMID: 39461997 PMCID: PMC11512992 DOI: 10.1038/s41598-024-76392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
High solid anaerobic digestion has proved the mainstream technology for the treatment of organic wastes. However, the high molecular weight and complex lignocellulosic structure of cow manure (CM) make it indigestible and inefficient, leading to limit the hydrolysis step of anaerobic digestion at high solid content. To mitigate this bottleneck, an improved cost-effective freezing and thawing pretreatment technique was proposed in this study. The freezing and thawing pretreatment of raw CM without any dilution was done for 20 days. The maximum cumulative methane yield (487 mL CH4 g- 1VS) was achieved at a total solid (TS) of 5% followed by TS of 10% and 15%, which was 13%, 20% and 21% higher than obtained from untreated CM, respectively. The kinetic results revealed that the biodegradable materials could be utilized at increasing TS with decreasing hydrolysis rate. The pretreatment significantly enhanced the methylotrophic methanogenic pathway during high solid anaerobic digestion, which was contrary to the general concept that the process is usually dominated by acetoclastic and hydrogenotrophic methanogens. This study is very important to understand the effect of solid content but also important to understand the effect of freezing and thawing pretreatment on process parameters and microbial community dynamics in high solid anaerobic digestion.
Collapse
Affiliation(s)
- Muhammad Abid
- International Faculty of Applied Technology, Yibin University, Yibin, 644000, Sichuan, China.
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yan Yuanyuan
- Beijing Zhongchi Green Energy Environmental Technology Co., Ltd, Beijing, China
| | - Zeeshan Ajmal
- School of Chemistry and Material Science, Zhejiang Normal University, Jinhua, China
| | - Tariq Mehmood
- Department Sensors and Modeling, Potsdam de Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Syed Nabeel Husnain
- Department of Energy Systems Engineering, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Xu Zhou
- International Faculty of Applied Technology, Yibin University, Yibin, 644000, Sichuan, China
| |
Collapse
|
33
|
Hu Y, Zhou Z, Shen C. Microbial community acclimation during anaerobic digestion of high-oil food waste. Sci Rep 2024; 14:25364. [PMID: 39455737 PMCID: PMC11511842 DOI: 10.1038/s41598-024-77136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Anaerobic digestion is one of the most promising options for the disposal of biodegradable food waste. However, the relatively high content of oil in food waste inhibits the conversion efficiency of anaerobic digestion because of the accumulation of long-chain fatty acids (LCFAs). In this study, activated anaerobic sludge was acclimated to accommodate high-oil conditions. The methane yield of high-oil food waste digested by the acclimated sludge increased by 24.9% compared to that digested by the raw sludge. To determine the internal changes in the acclimated sludge, the shifts in the microbial communities during the acclimation period were investigated via high-throughput sequencing (HTS) based on the 16 S rRNA gene. The results indicated that Bacteroidetes, Firmicutes, Chloroflexi and Proteobacteria were the dominant bacteria at the phylum level. The acclimation time allows some functional bacterial taxa to proliferate, such as Clostridium and Longilinea, which are able to degrade LCFAs and turn them into small organic molecules that also have nutrient value for other bacteria. Among the archaeal communities, the hydrogenotrophic methanogen Methanobacterium nearly supplanted the acetotrophic methanogen Methanosaeta. The time profiles of volatile fatty acids (VFAs) and pH during this period provided additional evidence for the success of the acclimation. This study demonstrated the effectiveness of acclimation and the dynamic of microbial communities, which further contributed to the management and resource utilization of high-oil food waste.
Collapse
Affiliation(s)
- Yangqing Hu
- Fair Friend Institute of Intelligent Manufacturing, Hangzhou Vocational and Technical College, Hangzhou, 310018, China.
- Hangzhou Huaxin Mechanical and Electrical Engineering Co., Ltd, Hangzhou, 310030, China.
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, China.
| | - Zhaozhi Zhou
- Zhejiang Development & Planning Institute, Hangzhou, 310012, China
| | - Ce Shen
- Hangzhou Huaxin Mechanical and Electrical Engineering Co., Ltd, Hangzhou, 310030, China
| |
Collapse
|
34
|
Gao J, Yang J, Dong H, Tao S, Shi J, He B, Bian X, Wu JL, Yin Y, Hu L, Jiang G. The origin of methyl group in methanogen-mediated mercury methylation: From the Wolfe cycle. Proc Natl Acad Sci U S A 2024; 121:e2416761121. [PMID: 39382993 PMCID: PMC11494345 DOI: 10.1073/pnas.2416761121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 10/11/2024] Open
Abstract
Methylmercury (MeHg) is a bioaccumulating neurotoxin mainly produced by anaerobic microorganisms, with methanogen being one of the important methylators. A critical aspect for understanding the mechanism for microbial mercury (Hg) methylation is the origin of the methyl group. However, the origin of methyl group in methanogen-mediated Hg methylation remains unclear. This study aims to identify the source of methyl group for MeHg synthesis in methanogens. Our study revealed that Hg methylation in Methanospirillum hungatei JF-1 is closely related to methanogenesis process, according to the results of proteomic study and substrate limitation study. Next, we proved that nearly all methyl group in MeHg derives from the Wolfe cycle in this species, rather than the previously demonstrated acetyl-coenzyme A pathway, based on the results of 13C labeling study. We then proposed the Wolfe cycle-dependent Hg methylation mechanism in this species. Further genome analyses and 13C labeling experiments indicated that the involvement of the Wolfe cycle in Hg methylation is probably a universal feature among Hg-methylating methanogens. These findings reveal a unique Hg methylation mechanism in methanogens. Our study broadens the carbon substrates and controlling factors for MeHg synthesis in the environment, which can inform the prediction of MeHg production potential and remediation strategies for MeHg contamination.
Collapse
Affiliation(s)
- Jun Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jingyi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Hongzhe Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Shaoyang Tao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310000, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310000, China
| | - Xiqing Bian
- School of Pharmarcy, Macau University of Science and Technology, Macau999078, China
| | - Jian-lin Wu
- School of Pharmarcy, Macau University of Science and Technology, Macau999078, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- School of Environment and Health, Jianghan University, Wuhan430056, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310000, China
- School of Environment and Health, Jianghan University, Wuhan430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| |
Collapse
|
35
|
Wang M, Peñuelas J, Sardans J, Zeng Q, Song Z, Zhou J, Xu X, Zhou X, Fang Y, Vancov T, Wang W. Conversion of coastal marsh to aquaculture ponds decreased the potential of methane production by altering soil chemical properties and methanogenic archaea community structure. WATER RESEARCH 2024; 268:122608. [PMID: 39413712 DOI: 10.1016/j.watres.2024.122608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Coastal wetlands are among the most productive and dynamic ecosystems globally, contributing significantly to atmospheric methane (CH4) emissions. The widespread conversion of these wetlands into aquaculture ponds degrades these ecosystems, yet its effects on CH4 production and associated microbial mechanisms are not well understood. This study aimed to assess the impact of land conversion on CH4 production potential, total and active soil organic C (SOC) content, and microbial communities. We conducted a comparative study on three brackish marshes and adjacent aquaculture ponds in southeastern China. Compared to costal marshes, aquaculture ponds exhibited significantly (P < 0.05) lower CH4 production potential (0.05 vs. 0.02 μg kg-1 h-1), SOC (17.64 vs. 6.97 g kg-1), total nitrogen (TN) content (1.62 vs. 1.24 g kg-1) and carbon/nitrogen (C/N) ratio (10.85 vs. 5.66). CH4 production potential in aquaculture ponds was influenced by both microbial and abiotic factors. Specifically, the relative abundance of Methanosarcina slightly decreased in aquaculture ponds, while the potential for CH4 production declined with lower SOC contents and C/N ratio. Overall, our findings demonstrate that converting natural coastal marshes into aquaculture ponds reduces CH4 production by altering key soil properties and the structure and diversity of methanogenic archaea communities. These results provide empirical evidence to enhance global carbon models, improving predictions of carbon feedback from wetland land conversion in the context of climate change.
Collapse
Affiliation(s)
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Catalonia, Barcelona 08193, Spain; CREAF, Catalonia, Cerdanyola del Vallès 08193, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Catalonia, Barcelona 08193, Spain; CREAF, Catalonia, Cerdanyola del Vallès 08193, Spain
| | - Qingsong Zeng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Zhaoliang Song
- Institute of Surface‑Earth System Science, School of Earth System Science, Tianjin University, No. 92 Weijin Road Nankai District, Tianjin 300072, China
| | - Jingyun Zhou
- Institute of Surface‑Earth System Science, School of Earth System Science, Tianjin University, No. 92 Weijin Road Nankai District, Tianjin 300072, China
| | - Xuping Xu
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Xiaoqi Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Yunying Fang
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Tony Vancov
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
36
|
Ramírez-Arenas PJ, Latisnere-Barragán H, García-Maldonado JQ, López-Cortés A. Highly diverse-Low abundance methanogenic communities in hypersaline microbial mats of Guerrero Negro B.C.S., assessed through microcosm experiments. PLoS One 2024; 19:e0303004. [PMID: 39365803 PMCID: PMC11451985 DOI: 10.1371/journal.pone.0303004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 10/06/2024] Open
Abstract
Methanogenic communities of hypersaline microbial mats of Guerrero Negro, Baja California Sur, Mexico, have been recognized to be dominated by methylotrophic methanogens. However, recent studies of environmental samples have evidenced the presence of hydrogenotrophic and methyl-reducing methanogenic members, although at low relative abundances. Physical and geochemical conditions that stimulate the development of these groups in hypersaline environments, remains elusive. Thus, in this study the taxonomic diversity of methanogenic archaea of two sites of Exportadora de Sal S.A was assessed by mcrA gene high throughput sequencing from microcosm experiments with different substrates (both competitive and non-competitive). Results confirmed the dominance of the order Methanosarcinales in all treatments, but an increase in the abundance of Methanomassiliiccocales was also observed, mainly in the treatment without substrate addition. Moreover, incubations supplemented with hydrogen and carbon dioxide, as well as the mixture of hydrogen, carbon dioxide and trimethylamine, managed to stimulate the richness and abundance of other than Methanosarcinales methanogenic archaea. Several OTUs that were not assigned to known methanogens resulted phylogenetically distributed into at least nine orders. Environmental samples revealed a wide diversity of methanogenic archaea of low relative abundance that had not been previously reported for this environment, suggesting that the importance and diversity of methanogens in hypersaline ecosystems may have been overlooked. This work also provided insights into how different taxonomic groups responded to the evaluated incubation conditions.
Collapse
Affiliation(s)
| | | | - José Q. García-Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Alejandro López-Cortés
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, México
| |
Collapse
|
37
|
Zhang F, Zhao F, Chen Y, Wu Y, Feng Q, Guo R. Comparative study on the effects of anionic, cationic, and nonionic polyacrylamide surface modified magnetic micro-particles (MMP) for anaerobic digestion treatment of vegetable waste water (VWW). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122160. [PMID: 39208750 DOI: 10.1016/j.jenvman.2024.122160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Anaerobic digestion provides a solution for the treatment of vegetable waste water (VWW), but there are currently limited targeted treatment methods available. Building upon previous studies, this research investigated the effects of polyacrylamide-modified magnetic micro-particles (MMP) on anaerobic digestion (AD) of VWW. Three variations of these particles were created by grafting anionic, cationic, and non-ionic polyacrylamide (PAM) onto the MMPs' surfaces, resulting in aPAM-MMP, cPAM-MMP, and nPAM-MMP, respectively. In AD experiments, the addition of aPAM-MMP notably enhanced the degradation of chemical oxygen demand (COD) in VWW. COD decreased to 1290 mg/L in the reactor with aPAM-MMP by day 12 and remained low, while the other reactors had COD concentrations of 4137.5, 5510, and 3010 mg/L on the same day, decreasing thereafter. This modification also improved the production and utilization of hydrogen gas and volatile fatty acids (VFAs), along with the conversion of methane. When tested for bioaffinity using fluorescent GFP-E.coli bacteria, the aPAM-MMP, cPAM-MMP, and nPAM-MMP demonstrated increases in fluorescence intensity by 51.66%, 36.13%, and 37.02%, respectively, compared to unmodified MMP when attached with GFP-E.coli. Further analyses of microbial community revealed that the reactor with aPAM-MMP had the highest microbial richness and enriched bacteria capable of organic matter degradation, such as Bacteroidota, Synergistota, Chloroflexi, Halobacterota phyla, and Parabacteroides, Muribaculaceae, and Azotobacter genera. In conclusion, our experiment verifies that APAM-MMP promotes anaerobic treatment of VWW and provides a novel reference point for enhancing VWW degradation.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Feng Zhao
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Ying Chen
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Yanjun Wu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Quan Feng
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China.
| | - Rongbo Guo
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China.
| |
Collapse
|
38
|
Słowakiewicz M, Goraj W, Segit T, Wątor K, Dobrzyński D. Hydrochemical gradients driving extremophile distribution in saline and brine groundwater of southern Poland. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70030. [PMID: 39440899 PMCID: PMC11497496 DOI: 10.1111/1758-2229.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Extreme environments, such as highly saline ecosystems, are characterised by a limited presence of microbial communities capable of tolerating and thriving under these conditions. To better understand the limits of life and its chemical and microbiological drivers, highly saline and brine groundwaters of Na-Cl and Na-Ca-Cl types with notably diverse SO4 contents were sampled in water intakes and springs from sedimentary aquifers located in the Outer Carpathians and the Carpathian Foredeep basin and its basement in Poland. Chemical and microbiological methods were used to identify the composition of groundwaters, determine microbial diversity, and indicate processes controlling their distribution using multivariate statistical analyses. DNA sequencing targeting V3-V4 and V4-V5 gene regions revealed a predominance of Proteobacteriota, Methanobacteria, Methanomicrobia, and Nanoarchaea in most of the water samples, irrespective of their geological context. Despite the sample-size constraint, redundancy analysis employing a compositional approach to hydrochemical predictors identified Cl/SO4 and Cl/HCO3 ratios, and specific electrical conductivity, as key gradients shaping microbial communities, depending on the analysed gene regions. Analysis of functional groups revealed that methanogenesis, sulphate oxidation and reduction, and the nitrogen cycle define and distinguish the halotolerant communities in the samples. These communities are characterised by an inverse relationship between methanogens and sulphur-cycling microorganisms.
Collapse
Affiliation(s)
| | - Weronika Goraj
- Faculty of MedicineThe John Paul II Catholic University of LublinLublinPoland
| | - Tomasz Segit
- Faculty of GeologyUniversity of WarsawWarsawPoland
| | - Katarzyna Wątor
- Faculty of Geology, Geophysics and Environmental ProtectionAGH University of KrakowKrakówPoland
| | | |
Collapse
|
39
|
Ren L, Chen X, Wu J, Huang S, Williams A, Su Q. Study on membrane fouling mechanisms and mitigation strategies in a pilot-scale anaerobic membrane bioreactor (P-AnMBR) treating digestate. WATER RESEARCH 2024; 263:122166. [PMID: 39088880 DOI: 10.1016/j.watres.2024.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Anaerobic Membrane Bioreactor (AnMBR) are employed for solid-liquid separation in wastewater treatment, enhancing process efficiency of digestion systems treating digestate. However, membrane fouling remains a primary challenge. This study operated a pilot-scale AnMBR (P-AnMBR) to treat high-concentration organic digestate, investigating system performance and fouling mechanisms. P-AnMBR operation reduced acid-producing bacteria and increased methane-producing bacteria on the membrane, preventing acid accumulation and ensuring stable operation. The P-AnMBR effectively removed COD and VFA, achieving removal rates of 82.3 % and 92.0 %, respectively. Higher retention of organic nitrogen and lower retention of ammonia nitrogen were observed. The membrane fouling consisted of organic substances (20.3 %), predominantly polysaccharides, and inorganic substances (79.7 %), primarily Mg ions (10.1 %) and Ca ions (4.5 %). To reduce the increased transmembrane pressure (TMP) caused by fouling (a 10.6-fold increase in filtration resistance), backwash frequency experiment was conducted. It revealed a 30-min backwash frequency minimized membrane flux decline, facilitating recovery to higher flux levels. The water produced amounted to 70.3 m³ over 52 days. The research provided theoretical guidance and practical support for engineering applications, offering practical insights for scaling up P-AnMBR.
Collapse
Affiliation(s)
- Luotong Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Room 4161, No. 4 Academic Building, No. 2999, North Renmin Road, Songjiang District, Shanghai 201620, China
| | - Xiaoguang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Room 4161, No. 4 Academic Building, No. 2999, North Renmin Road, Songjiang District, Shanghai 201620, China.
| | - Jian Wu
- Shanghai Liming Resources Reuse Co. Ltd., Shanghai 201209, China
| | - Shenglin Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Room 4161, No. 4 Academic Building, No. 2999, North Renmin Road, Songjiang District, Shanghai 201620, China
| | - Amankwah Williams
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Room 4161, No. 4 Academic Building, No. 2999, North Renmin Road, Songjiang District, Shanghai 201620, China
| | - Qianyi Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Room 4161, No. 4 Academic Building, No. 2999, North Renmin Road, Songjiang District, Shanghai 201620, China
| |
Collapse
|
40
|
Ban Q, Wang J, Guo P, Yue J, Zhang L, Li J. Improved biohydrogen production by co-fermentation of corn straw and excess sludge: Insights into biochemical process, microbial community and metabolic genes. ENVIRONMENTAL RESEARCH 2024; 256:119171. [PMID: 38763281 DOI: 10.1016/j.envres.2024.119171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The global climate change mainly caused by fossil fuels combustion promotes that zero-carbon hydrogen production through eco-friendly methods has attracted attention in recent years. This investigation explored the biohydrogen production by co-fermentation of corn straw (CS) and excess sludge (ES), as well as comprehensively analyzed the internal mechanism. The results showed that the optimal ratio of CS to ES was 9:1 (TS) with the biohydrogen yield of 101.8 mL/g VS, which was higher than that from the mono-fermentation of CS by 1.0-fold. The pattern of volatile fatty acids (VFAs) indicated that the acetate was the most preponderant by-product in all fermentation systems during the biohydrogen production process, and its yield was improved by adding appropriate dosage of ES. In addition, the content of soluble COD (SCOD) was reduced as increasing ES, while concentration of NH4+-N showed an opposite tendency. Microbial community analysis revealed that the microbial composition in different samples showed a significant divergence. Trichococcus was the most dominant bacterial genus in the optimal ratio of 9:1 (CS/ES) fermentation system and its abundance was as high as 41.8%. The functional genes prediction found that the dominant metabolic genes and hydrogen-producing related genes had not been significantly increased in co-fermentation system (CS/ES = 9:1) compared to that in the mono-fermentation of CS, implying that enhancement of biohydrogen production by adding ES mainly relied on balancing nutrients and adjusting microbial community in this study. Further redundancy analysis (RDA) confirmed that biohydrogen yield was closely correlated with the enrichment of Trichococcus.
Collapse
Affiliation(s)
- Qiaoying Ban
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Jiangwei Wang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China
| | - Panpan Guo
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China
| | - Jiaxin Yue
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China
| | - Liguo Zhang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
41
|
Lyons TW, Tino CJ, Fournier GP, Anderson RE, Leavitt WD, Konhauser KO, Stüeken EE. Co-evolution of early Earth environments and microbial life. Nat Rev Microbiol 2024; 22:572-586. [PMID: 38811839 DOI: 10.1038/s41579-024-01044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/31/2024]
Abstract
Two records of Earth history capture the evolution of life and its co-evolving ecosystems with interpretable fidelity: the geobiological and geochemical traces preserved in rocks and the evolutionary histories captured within genomes. The earliest vestiges of life are recognized mostly in isotopic fingerprints of specific microbial metabolisms, whereas fossils and organic biomarkers become important later. Molecular biology provides lineages that can be overlayed on geologic and geochemical records of evolving life. All these data lie within a framework of biospheric evolution that is primarily characterized by the transition from an oxygen-poor to an oxygen-rich world. In this Review, we explore the history of microbial life on Earth and the degree to which it shaped, and was shaped by, fundamental transitions in the chemical properties of the oceans, continents and atmosphere. We examine the diversity and evolution of early metabolic processes, their couplings with biogeochemical cycles and their links to the oxygenation of the early biosphere. We discuss the distinction between the beginnings of metabolisms and their subsequent proliferation and their capacity to shape surface environments on a planetary scale. The evolution of microbial life and its ecological impacts directly mirror the Earth's chemical and physical evolution through cause-and-effect relationships.
Collapse
Affiliation(s)
- Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA.
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA.
| | - Christopher J Tino
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA.
| | - Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rika E Anderson
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA
- Biology Department, Carleton College, Northfield, MN, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Eva E Stüeken
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
42
|
Flori L, Benedetti G, Martelli A, Calderone V. Microbiota alterations associated with vascular diseases: postbiotics as a next-generation magic bullet for gut-vascular axis. Pharmacol Res 2024; 207:107334. [PMID: 39103131 DOI: 10.1016/j.phrs.2024.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The intestinal microbiota represents a key element in maintaining the homeostasis and health conditions of the host. Vascular pathologies and other risk factors such as aging have been recently associated with dysbiosis. The qualitative and quantitative alteration of the intestinal microbiota hinders correct metabolic homeostasis, causing structural and functional changes of the intestinal wall itself. Impairment of the intestinal microbiota, combined with the reduction of the barrier function, worsen the pathological scenarios of peripheral tissues over time, including the vascular one. Several experimental evidence, collected in this review, describes in detail the changes of the intestinal microbiota in dysbiosis associated with vascular alterations, such as atherosclerosis, hypertension, and endothelial dysfunction, the resulting metabolic disorders and how these can impact on vascular health. In this context, the gut-vascular axis is considered, for the first time, as a merged unit involved in the development and progression of vascular pathologies and as a promising target. Current approaches for the management of dysbiosis such as probiotics, prebiotics and dietary modifications act mainly on the intestinal district. Postbiotics, described as preparation of inanimate microorganisms and/or their components that confers health benefits on the host, represent an innovative strategy for a dual management of intestinal dysbiosis and vascular pathologies. In this context, this review has the further purpose of defining the positive effects of the supplementation of bacterial strains metabolites (short‑chain fatty acids, exopolysaccharides, lipoteichoic acids, gallic acid, and protocatechuic acid) restoring intestinal homeostasis and acting directly on the vascular district through the gut-vascular axis.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| |
Collapse
|
43
|
Chen T, Zhang L, Guo W, Zhang W, Sajjad W, Ilahi N, Usman M, Faisal S, Bahadur A. Temperature drives microbial communities in anaerobic digestion during biogas production from food waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53823-53838. [PMID: 38436844 DOI: 10.1007/s11356-024-32698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Resource depletion and climate changes due to human activities and excessive burning of fossil fuels are the driving forces to explore alternatives clean energy resources. The objective of this study was to investigate the potential of potato peel waste (PPW) at various temperatures T15 (15 °C), T25 (25 °C), and T35 (35 °C) in anaerobic digestion (AD) for biogas generation. The highest biogas and CH4 production (117 mL VS-g and 74 mL VS-g) was observed by applying 35 °C (T35) as compared with T25 (65 mL VS-g and 22 mL VS-g) on day 6. Changes in microbial diversity associated with different temperatures were also explored. The Shannon index of bacterial community was not significantly affected, while there was a positive correlation of archaeal community with the applied temperatures. The bacterial phyla Firmicutes were strongly affected by T35 (39%), whereas Lactobacillus was the dominant genera at T15 (27%). Methanobacterium and Methanosarcina, as archaeal genera, dominated in T35 temperature reactors. In brief, at T35, Proteiniphilum and Methanosarcina were positively correlated with volatile fatty acids (VFAs) concentration. Spearman correlation revealed dynamic interspecies interactions among bacterial and archaeal genera; facilitating the AD system. This study revealed that temperature variations can enhance the microbial community of the AD system, leading to increased biogas production. It is recommended for optimizing the AD of food wastes.
Collapse
Affiliation(s)
- Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Lu Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Guo
- Lanzhou Xinrong Environmental Energy Engineering Technology Co., Ltd, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Usman
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
44
|
Sieborg MU, Nielsen AKH, Ottosen LDM, Daasbjerg K, Kofoed MVW. Bio-integrated carbon capture and utilization: at the interface between capture chemistry and archaeal CO 2 reduction. Nat Commun 2024; 15:7492. [PMID: 39209831 PMCID: PMC11362324 DOI: 10.1038/s41467-024-51700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Carbon capture and utilization (CCU) covers an array of technologies for valorizing carbon dioxide (CO2). To date, most mature CCU technology conducted with capture agents operates against the CO2 gradient to desorb CO2 from capture agents, exhibiting high energy penalties and thermal degradation due to the requirement for thermal swings. This Perspective presents a concept of Bio-Integrated Carbon Capture and Utilization (BICCU), which utilizes methanogens for integrated release and conversion of CO2 captured with capture agents. BICCU hereby substitutes the energy-intensive desorption with microbial conversion of captured CO2 by the methanogenic CO2-reduction pathway, utilizing green hydrogen to generate non-fossil methane.
Collapse
Affiliation(s)
- Mads Ujarak Sieborg
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark
| | - Amalie Kirstine Hessellund Nielsen
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark
- The Novo Nordisk Foundation CO₂ Research Center (CORC), Aarhus University, Aarhus C, Denmark
| | - Lars Ditlev Mørck Ottosen
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark
- The Novo Nordisk Foundation CO₂ Research Center (CORC), Aarhus University, Aarhus C, Denmark
| | - Kim Daasbjerg
- The Novo Nordisk Foundation CO₂ Research Center (CORC), Aarhus University, Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus C, Denmark
| | - Michael Vedel Wegener Kofoed
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark.
- The Novo Nordisk Foundation CO₂ Research Center (CORC), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
45
|
Khan FA, Ali A, Wu D, Huang C, Zulfiqar H, Ali M, Ahmed B, Yousaf MR, Putri EM, Negara W, Imran M, Pandupuspitasari NS. Editing microbes to mitigate enteric methane emissions in livestock. World J Microbiol Biotechnol 2024; 40:300. [PMID: 39134917 DOI: 10.1007/s11274-024-04103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 10/17/2024]
Abstract
Livestock production significantly contributes to greenhouse gas (GHG) emissions particularly methane (CH4) emissions thereby influencing climate change. To address this issue further, it is crucial to establish strategies that simultaneously increase ruminant productivity while minimizing GHG emissions, particularly from cattle, sheep, and goats. Recent advancements have revealed the potential for modulating the rumen microbial ecosystem through genetic selection to reduce methane (CH4) production, and by microbial genome editing including CRISPR/Cas9, TALENs (Transcription Activator-Like Effector Nucleases), ZFNs (Zinc Finger Nucleases), RNA interference (RNAi), Pime editing, Base editing and double-stranded break-free (DSB-free). These technologies enable precise genetic modifications, offering opportunities to enhance traits that reduce environmental impact and optimize metabolic pathways. Additionally, various nutrition-related measures have shown promise in mitigating methane emissions to varying extents. This review aims to present a future-oriented viewpoint on reducing methane emissions from ruminants by leveraging CRISPR/Cas9 technology to engineer the microbial consortia within the rumen. The ultimate objective is to develop sustainable livestock production methods that effectively decrease methane emissions, while maintaining animal health and productivity.
Collapse
Affiliation(s)
- Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Azhar Ali
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Hamza Zulfiqar
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Muhammad Ali
- Institute of Animal and Diary sciences, Faculty of Animal Husbandry, Agriculture University, Faisalabad, Pakistan
| | - Bilal Ahmed
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Muhammad Rizwan Yousaf
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Ezi Masdia Putri
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
46
|
Carreira C, Lønborg C, Acharya B, Aryal L, Buivydaite Z, Borim Corrêa F, Chen T, Lorenzen Elberg C, Emerson JB, Hillary L, Khadka RB, Langlois V, Mason-Jones K, Netherway T, Sutela S, Trubl G, Wa Kang'eri A, Wang R, White RA, Winding A, Zhao T, Sapkota R. Integrating viruses into soil food web biogeochemistry. Nat Microbiol 2024:10.1038/s41564-024-01767-x. [PMID: 39095499 DOI: 10.1038/s41564-024-01767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
The soil microbiome is recognized as an essential component of healthy soils. Viruses are also diverse and abundant in soils, but their roles in soil systems remain unclear. Here we argue for the consideration of viruses in soil microbial food webs and describe the impact of viruses on soil biogeochemistry. The soil food web is an intricate series of trophic levels that span from autotrophic microorganisms to plants and animals. Each soil system encompasses contrasting and dynamic physicochemical conditions, with labyrinthine habitats composed of particles. Conditions are prone to shifts in space and time, and this variability can obstruct or facilitate interactions of microorganisms and viruses. Because viruses can infect all domains of life, they must be considered as key regulators of soil food web dynamics and biogeochemical cycling. We highlight future research avenues that will enable a more robust understanding of the roles of viruses in soil function and health.
Collapse
Affiliation(s)
- Cátia Carreira
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal.
| | | | - Basistha Acharya
- Directorate of Agricultural Research, Nepal Agricultural Research Council, Khajura, Nepal
| | - Laxman Aryal
- Nepal Agricultural Research Council, National Wheat Research Program, Bhairahawa, Nepal
| | - Zivile Buivydaite
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Felipe Borim Corrêa
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Tingting Chen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | | | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Luke Hillary
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Ram B Khadka
- National Plant Pathology Research Center, Nepal Agricultural Research Council, Lalitpur, Nepal
| | - Valérie Langlois
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec City, Québec, Canada
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Suvi Sutela
- Natural Resources Institute Finland, Helsinki, Finland
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Ruiqi Wang
- Department of Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Richard Allen White
- Computational Intelligence to Predict Health and Environmental Risks, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
- North Carolina Research Campus, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anne Winding
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Tianci Zhao
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
47
|
Maslać N, Cadoux C, Bolte P, Murken F, Gu W, Milton RD, Wagner T. Structural comparison of (hyper-)thermophilic nitrogenase reductases from three marine Methanococcales. FEBS J 2024; 291:3454-3480. [PMID: 38696373 DOI: 10.1111/febs.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
The nitrogenase reductase NifH catalyses ATP-dependent electron delivery to the Mo-nitrogenase, a reaction central to biological dinitrogen (N2) fixation. While NifHs have been extensively studied in bacteria, structural information about their archaeal counterparts is limited. Archaeal NifHs are considered more ancient, particularly those from Methanococcales, a group of marine hydrogenotrophic methanogens, which includes diazotrophs growing at temperatures near 92 °C. Here, we structurally and biochemically analyse NifHs from three Methanococcales, offering the X-ray crystal structures from meso-, thermo-, and hyperthermophilic methanogens. While NifH from Methanococcus maripaludis (37 °C) was obtained through heterologous recombinant expression, the proteins from Methanothermococcus thermolithotrophicus (65 °C) and Methanocaldococcus infernus (85 °C) were natively purified from the diazotrophic archaea. The structures from M. thermolithotrophicus crystallised as isolated exhibit high flexibility. In contrast, the complexes of NifH with MgADP obtained from the three methanogens are superposable, more rigid, and present remarkable structural conservation with their homologues. They retain key structural features of P-loop NTPases and share similar electrostatic profiles with the counterpart from the bacterial model organism Azotobacter vinelandii. In comparison to the NifH from the phylogenetically distant Methanosarcina acetivorans, these reductases do not cross-react significantly with Mo-nitrogenase from A. vinelandii. However, they associate with bacterial nitrogenase when ADP·AlF 4 - is added to mimic a transient reactive state. Accordingly, detailed surface analyses suggest that subtle substitutions would affect optimal binding during the catalytic cycle between the NifH from Methanococcales and the bacterial nitrogenase, implying differences in the N2-machinery from these ancient archaea.
Collapse
Affiliation(s)
- Nevena Maslać
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Cécile Cadoux
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Pauline Bolte
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Fenja Murken
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Wenyu Gu
- Laboratory of Microbial Physiology and Resource Biorecovery, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédéral de Lausanne, Switzerland
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Tristan Wagner
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
48
|
Markt R, Prem EM, Lackner N, Mutschlechner M, Illmer P, Wagner AO. Pre-treatment with Trichoderma viride: Towards a better understanding of its consequences for anaerobic digestion. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13281. [PMID: 38940659 PMCID: PMC11212294 DOI: 10.1111/1758-2229.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/30/2024] [Indexed: 06/29/2024]
Abstract
Understanding and optimising biological pre-treatment strategies for enhanced bio-methane production is a central aspect in second-generation biofuel research. In this regard, the application of fungi for pre-treatment seems highly promising; however, understanding the mode of action is crucial. Here, we show how aerobic pre-treatment of crystalline cellulose with the cellulolytic Trichoderma viride affects substrate degradability during mesophilic, anaerobic digestion. It could be demonstrated that fungal pre-treatment resulted in a slightly reduced substrate mass. Nevertheless, no significant impact on the overall methane yield was found during batch fermentation. Short chain organic acids accumulation, thus, overall degradation dynamics including methane production kinetics were affected by the pre-treatment as shown by Gompertz modelling. Finally, 16S rRNA amplicon sequencing followed by ANCOM-BC resulted in up to 53 operative taxonomic units including fermentative, syntrophic and methanogenic taxa, whereby their relative abundances were significantly affected by fungal pre-treatment depending on the duration of the pre-treatment. The results demonstrated the impact of soft rot fungal pre-treatment of cellulose on subsequent anaerobic cellulose hydrolysis as well as on methanogenic activity. To the best of our knowledge, this is the first study to investigate the direct causal effects of pre-treatment with T. viride on basic but crucial anaerobic digestion parameters in a highly standardised approach.
Collapse
Affiliation(s)
- Rudolf Markt
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | - Eva Maria Prem
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | - Nina Lackner
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | | | - Paul Illmer
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | | |
Collapse
|
49
|
Harada M, Endo A, Wada S, Watanabe T, Epron D, Asakawa S. Ubiquity of methanogenic archaea in the trunk of coniferous and broadleaved tree species in a mountain forest. Antonie Van Leeuwenhoek 2024; 117:107. [PMID: 39060562 DOI: 10.1007/s10482-024-02004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Wetwood of living trees is a habitat of methanogenic archaea, but the ubiquity of methanogenic archaea in the trunk of various trees has not been revealed. The present study analysed methanogenic archaeal communities inside coniferous and broadleaved trees in a cold temperate mountain forest by culture-dependent or independent techniques. Heartwood and sapwood segments were obtained from the trunk of seven tree species, Cryptomeria japonica, Quercus crispula, Fraxinus mandshurica, Acer pictum, Aesculus turbinata, Magnolia obovata, and Populus tremula. Amplicon sequencing analysis of 16S rRNA genes showed that Methanobacteriaceae predominated the archaeal communities and Methanomassiliicoccaceae also inhabited some trees. Real-time PCR analysis detected methanogenic archaeal mcrA genes from all the tree species, with a maximum of 107 copies g-1 dry wood. Digital PCR analysis also detected mcrA genes derived from Methanobacterium spp. and Methanobrevibacter spp. from several samples, with a maximum of 105 and 104 copies g-1 dry wood. The enumeration by the most probable number method demonstrated the inhabitation of viable methanogenic archaea inside the trees; 106 cells g-1 dry wood was enumerated from a heartwood sample of C. japonica. Methanogenic archaea related to Methanobacterium beijingense were cultivated from a heartwood sample of Q. crispula and F. mandshurica. The present study demonstrated that the inside of various trees is a common habitat for methanogenic archaeal communities and a potential source of methane in forest ecosystems.
Collapse
Affiliation(s)
- Mikitoshi Harada
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Atsuya Endo
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Shuji Wada
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Takeshi Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| | - Daniel Epron
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Susumu Asakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
50
|
Rasmussen AN, Tolar BB, Bargar JR, Boye K, Francis CA. Diverse and unconventional methanogens, methanotrophs, and methylotrophs in metagenome-assembled genomes from subsurface sediments of the Slate River floodplain, Crested Butte, CO, USA. mSystems 2024; 9:e0031424. [PMID: 38940520 PMCID: PMC11264602 DOI: 10.1128/msystems.00314-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
We use metagenome-assembled genomes (MAGs) to understand single-carbon (C1) compound-cycling-particularly methane-cycling-microorganisms in montane riparian floodplain sediments. We generated 1,233 MAGs (>50% completeness and <10% contamination) from 50- to 150-cm depth below the sediment surface capturing the transition between oxic, unsaturated sediments and anoxic, saturated sediments in the Slate River (SR) floodplain (Crested Butte, CO, USA). We recovered genomes of putative methanogens, methanotrophs, and methylotrophs (n = 57). Methanogens, found only in deep, anoxic depths at SR, originate from three different clades (Methanoregulaceae, Methanotrichaceae, and Methanomassiliicoccales), each with a different methanogenesis pathway; putative methanotrophic MAGs originate from within the Archaea (Candidatus Methanoperedens) in anoxic depths and uncultured bacteria (Ca. Binatia) in oxic depths. Genomes for canonical aerobic methanotrophs were not recovered. Ca. Methanoperedens were exceptionally abundant (~1,400× coverage, >50% abundance in the MAG library) in one sample that also contained aceticlastic methanogens, indicating a potential C1/methane-cycling hotspot. Ca. Methylomirabilis MAGs from SR encode pathways for methylotrophy but do not harbor methane monooxygenase or nitrogen reduction genes. Comparative genomic analysis supports that one clade within the Ca. Methylomirabilis genus is not methanotrophic. The genetic potential for methylotrophy was widespread, with over 10% and 19% of SR MAGs encoding a methanol dehydrogenase or substrate-specific methyltransferase, respectively. MAGs from uncultured Thermoplasmata archaea in the Ca. Gimiplasmatales (UBA10834) contain pathways that may allow for anaerobic methylotrophic acetogenesis. Overall, MAGs from SR floodplain sediments reveal a potential for methane production and consumption in the system and a robust potential for methylotrophy.IMPORTANCEThe cycling of carbon by microorganisms in subsurface environments is of particular relevance in the face of global climate change. Riparian floodplain sediments contain high organic carbon that can be degraded into C1 compounds such as methane, methanol, and methylamines, the fate of which depends on the microbial metabolisms present as well as the hydrological conditions and availability of oxygen. In the present study, we generated over 1,000 MAGs from subsurface sediments from a montane river floodplain and recovered genomes for microorganisms that are capable of producing and consuming methane and other C1 compounds, highlighting a robust potential for C1 cycling in subsurface sediments both with and without oxygen. Archaea from the Ca. Methanoperedens genus were exceptionally abundant in one sample, indicating a potential C1/methane-cycling hotspot in the Slate River floodplain system.
Collapse
Affiliation(s)
- Anna N. Rasmussen
- Department of Earth System Science, Stanford University, Stanford, California, USA
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Bradley B. Tolar
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - John R. Bargar
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kristin Boye
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Christopher A. Francis
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Oceans Department, Stanford University, Stanford, California, USA
| |
Collapse
|