1
|
Xia Y, Yao Y, Feng Y, Zhou Y, Jiang M, Ding Z, Qian J, Bai H, Cai M, Yao D. Toll-Like Receptor 4 (TLR4) Promotes DRG Regeneration and Repair after Sciatic Nerve Injury via the ERK-NF-kB Pathway. Mol Neurobiol 2025; 62:4172-4189. [PMID: 39420131 PMCID: PMC11880167 DOI: 10.1007/s12035-024-04483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
Previously, we found that the expression of Toll-like receptor 4 (TLR4) is altered after sciatic nerve injury, and its differential expression plays a key role in recovery. However, the mechanisms by which TLR4 affects neuronal function in the dorsal root ganglion (DRG) have not been completely evaluated. The objective is to determine TLR4 expression in DRG tissues after sciatic neural injury and exploring the effects of TLR4 knockdown and overexpression in the DRG on neuronal function and nerve regeneration in rats in vivo and in vitro. We established a model of nerve injury and utilized molecular biology and cell biology experiments to explore the molecular mechanisms by which TLR4 in the DRG affects sciatic nerve restoration and regeneration after injury. Verified the localization of TLR4 in DRG neurons. Investigated pathways that related to apoptosis or nerve regeneration by which TLR4 regulates the function of DRG neurons. TLR4 expression was upregulated in the DRG tissues of rats after sciatic nerve injury. TLR4 overexpression promoted axon regeneration and inhibited apoptosis in DRG neurons. TLR4 promoted the regeneration of axons and the recovery of motor and sensory functions in the sciatic nerve after injury in vivo, and the data showed that TLR4 may regulate the function of DRG neurons and promote nerve repair and regeneration through the ERK and NF-κB signaling pathways in vivo and ex vivo. The study suggests that TLR4 may regulate the function of DRG neurons and promote nerve regeneration by affecting the ERK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yiming Xia
- Medical School of Nantong University, No. 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yi Yao
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, People's Republic of China
| | - Yumei Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu, 226019, People's Republic of China
| | - Yiyue Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu, 226019, People's Republic of China
| | - Maorong Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu, 226019, People's Republic of China
| | - Zihan Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu, 226019, People's Republic of China
| | - Jiaxi Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu, 226019, People's Republic of China
| | - Huiyuan Bai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu, 226019, People's Republic of China
| | - Min Cai
- Medical School of Nantong University, No. 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Dengbing Yao
- Medical School of Nantong University, No. 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu, 226019, People's Republic of China.
| |
Collapse
|
2
|
Yousefi Y, Haider Z, Grondin JA, Wang H, Haq S, Banskota S, Seto T, Surette M, Khan WI. Gut microbiota regulates intestinal goblet cell response and mucin production by influencing the TLR2-SPDEF axis in an enteric parasitic infection. Mucosal Immunol 2025:S1933-0219(25)00033-9. [PMID: 40164286 DOI: 10.1016/j.mucimm.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Alterations in goblet cell biology constitute one of the most effective host responses against enteric parasites. In the gastrointestinal (GI) tract, millions of bacteria influence these goblet cell responses by binding to pattern recognition receptors such as toll-like receptors (TLRs). Studies suggest that the gut microbiota also interacts bidirectionally with enteric parasites, including Trichuris muris. Here, we study the roles of T. muris-altered microbiota and the TLR2-SPDEF axis in parasitic host defense. In acute T. muris infection, we observed altered gut microbiota composition, which, when transferred to germ-free mice, resulted in increased goblet cell numbers, Th2 cytokines and Muc2 expression, as well as increased Tlr2. Further, antibiotic (ABX)-treated TLR2-/- mice, despite having received the same T. muris-altered microbiota, displayed diminished Th2 response, Muc2 expression, and, intriguingly, diminished SPDEF expression compared to wildtype counterparts. When infected with T. muris, SPDEF-/- mice exhibited a reduced Th2 response and altered microbial composition compared to SPDEF+/+, particularly on day 14 post-infection, and this microbiota was sufficient to alter host goblet cell response when transferred to ABX-treated mice. Taken together, our findings suggest the TLR2-SPDEF axis, via T. muris-induced microbial changes, is an important regulator of goblet cell function and host's parasitic defense.
Collapse
Affiliation(s)
- Yeganeh Yousefi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zarin Haider
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Huaqing Wang
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Suhrid Banskota
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tyler Seto
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
3
|
Selheim F, Aasebø E, Reikvam H, Bruserud Ø, Hernandez-Valladares M. Proteomic Comparison of Acute Myeloid Leukemia Cells and Normal CD34 + Bone Marrow Cells: Studies of Leukemia Cell Differentiation and Regulation of Iron Metabolism/Ferroptosis. Proteomes 2025; 13:11. [PMID: 39982321 PMCID: PMC11843884 DOI: 10.3390/proteomes13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive bone marrow malignancy that can be cured only by intensive chemotherapy possibly combined with allogeneic stem cell transplantation. We compared the pretreatment proteomic profiles of AML cells derived from 50 patients at the time of first diagnosis with normal CD34+ bone marrow cells. A comparison based on all AML and CD34+ normal cell populations identified 121 differentially abundant proteins that showed at least 2-fold differences, and these proteins included several markers of neutrophil differentiation (e.g., TLR2, the integrins ITGM and ITGX, and downstream mediators including RHO GTPase, S100A8, S100A9, S100A22). However, the expression of these 121 proteins varied between patients, and a subset of 28 patients was characterized by increased long-term AML-free survival, signs of myeloid AML cell differentiation, and favorable genetic abnormalities. These two main patient subsets (28 with differentiation versus 22 with fewer signs of differentiation) also differed with regard to the phosphorylation of 16 differentially abundant proteins. Furthermore, we also classified our patients based on their expression of 16 proteins involved in the regulation of iron metabolism/ferroptosis and showing differential expression when comparing AML cells and normal CD34+ cells. Among the 22 patients with less favorable prognosis, we could then identify a genetically heterogeneous subset characterized by adverse prognosis (i.e., death from primary resistance/relapse) and an iron metabolism/ferroptosis protein profile showing similarities with normal CD34+ cells. We conclude that proteomic profiles differ between AML and normal CD34+ cells; especially, proteomic differences reflecting differentiation and regulation of iron metabolism/ferroptosis are associated with risk of relapse after intensive conventional therapy.
Collapse
Affiliation(s)
- Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (F.S.); (M.H.-V.)
| | - Elise Aasebø
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.)
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (F.S.); (M.H.-V.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
4
|
Wu Q, Wang Q, Hu K, Luo T, Liu J, Xue Y, Li L, Yang C, Lin R, Pan H, Wang J, Guo Z. Proline/serine-rich coiled-coil protein 1 alleviates pyroptosis in murine bone marrow-derived macrophages. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39935324 DOI: 10.3724/abbs.2025012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Pyroptosis is a regulated inflammatory cell death process that plays an essential role in various diseases. This study investigates the role of proline/serine-rich coiled-coil protein 1 (PSRC1) in pyroptosis and inflammation in macrophages. This study reports that PSRC1 expression is decreased in pyroptotic macrophages and that knockout of PSRC1 exacerbates pyroptosis and inflammation. PSRC1 overexpression alleviates pyroptosis and inflammation in macrophages. RNA-seq analysis reveals that PSRC1 regulates the expression of genes involved in the extracellular matrix (ECM). Specifically, PSRC1 downregulates the expression of periostin (POSTN), an ECM component. Knockdown of POSTN suppresses macrophage pyroptosis mediated by low expression of PSRC1. These findings suggest that PSRC1 can alleviate pyroptosis and inflammation in bone marrow-derived macrophages (BMDMs) by regulating the ECM and negatively regulating POSTN. This study provides insights into the role of PSRC1 in macrophage pyroptosis and identifies a potential target for the treatment of inflammatory diseases. Further research is needed to confirm these findings in vivo and in various disease models.
Collapse
Affiliation(s)
- Qiao Wu
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Qianqian Wang
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Kexin Hu
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Tiantian Luo
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China; Chengdu 610014, China
| | - Jichen Liu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Yazhi Xue
- Department of General Practice, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Ling Li
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Cuiqi Yang
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Rongzhan Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Hangyu Pan
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Jinhao Wang
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Zhigang Guo
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
5
|
Mzimela NC, Sosibo AM, Ngubane PS, Khathi A. Investigation into changes in inflammatory and immune cell markers in pre-diabetic patients from Durban, South Africa. J Immunotoxicol 2024; 21:2290282. [PMID: 38099331 DOI: 10.1080/1547691x.2023.2290282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The prevalence of pre-diabetes is increasing in rapidly urbanizing cities, especially in individuals aged 25 - 45 years old. Studies also indicate that this condition is associated with aberrant immune responses that are also influenced by environmental factors. This study sought to investigate changes in the concentration of immune cells and select inflammatory markers in patients with pre-diabetes in Durban, South Africa. Blood samples collected from King Edward Hospital, after obtaining ethics approval, were divided into non-diabetic (ND), pre-diabetic (PD) and type 2 diabetic (T2D) using ADA criteria. In each sample, the concentration of immune cells and select inflammatory markers were determined. The results showed a significant increase in eosinophil and basophil levels in the PD group as compared to the ND group. Compared to ND, the PD and T2D groups had significant increases in serum TNFα, CD40L and fibrinogen concentrations. Additionally, there were decreases in serum CRP, IL-6, and P-selectin in the PD group while these markers increased in the T2D group. These findings were indicative of immune activation and highlight the impact of pre-diabetes in this population. More studies are recommended with a higher number of samples that are stratified by gender and represent the gender ratio in the city.
Collapse
Affiliation(s)
- Nomusa Christina Mzimela
- School of Laboratory Medicine and Medical Science, College of Health Sciences
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | | | - Andile Khathi
- School of Laboratory Medicine and Medical Science, College of Health Sciences
| |
Collapse
|
6
|
Xu H, He J, Du H, Jing X, Liu X. Evaluation of the Choroid Plexus Epithelium Inflammation TLR4/NF-κB/NKCC1 Signal Pathway Activation in the Development of Hydrocephalus. CNS Neurosci Ther 2024; 30:e70085. [PMID: 39450988 PMCID: PMC11503839 DOI: 10.1111/cns.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Hydrocephalus is characterized by secretion, circulation, and absorption disorder of cerebrospinal fluid (CSF) with high morbidity and complication rate. The relationship between inflammation and abnormal secretion of CSF by choroid plexus epithelium (CPE) had received more attention. In this study, we aim to detect the role of Toll-like receptor 4/nuclear factor-kappa B/Na+/K+/2Cl-cotransporter 1(TLR4/NF-κB/NKCC1) signal pathway in the development of hydrocephalus. METHOD Hydrocephalus was induced in adult rats (8 weeks) by intracisternal kaolin injection, then pyrrolidinedithiocarbamate (PDTC) and bumetanide were administrated to the rats mode. Then the rat model was evaluated, and ventricular volume was calculated at different time points. Then CPE, cortex, preventricular tissue, and CSF were obtained. Protein expressions of TLR-4, NKCC/serine-threonine STE20/SPS1-related, proline-alanine-rich kinase (SPAK), pNKCC1, pSPAK, GFAP, AQP1, and AQP4 were measured by RT-PCR, western blot, and immunofluorescence (IF) stains in CPE, respectively. RESULT Our data showed that inflammation factors tumor necrosis factor-(TNF-α), interleukin 18(IL-18), and glial fibrillary acidic protein (GFAP) concentrations were significantly higher in the model group than in controls. The TLR4/NF-κB/NKCC1 signal pathway were actived by NF-κB-p65, NKCC1, pNKCC1- pSPAK complex, and Aquaporin1 (AQP1) high expression. PDTC and bumetanide use can help regular TLR4/NF-κB/NKCC1 expression and reduced AQP1 expression by down-regulate NF-B-p65 and inhibiting NKCC1, respectively. As a result, the treatment groups alleviated CPE abnormal secretion and ventricle enlargement. CONCLUSION These results confirmed that the inflammatory reaction contributes TLR4/NF-κB/NKCC1 mediated CPE abnormal secretion and consequent hydrocephalus. Regulation of TLR4/NF-κB/NKCC1 and AQP1 can prevent this process. Our study provides a strong rationale for further exploring alleviating CPE abnormal secretion as a therapeutic perspective of hydrocephalus.
Collapse
Affiliation(s)
- Hao Xu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Jiawei He
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen UniversitySchool of Medicine, Xiamen UniversityXiamenFujianChina
| | - Hua Du
- Key Laboratory of High Magnetic Field and Ion Beam Physical BiologyHefei Institutes of Physical Science, CASHefeiAnhuiP. R. China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control TechnologyHefei Institutes of Physical Science, CASHefeiAnhuiP. R. China
| | - Xiaolei Jing
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Xinfeng Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
7
|
Mandlem VKK, Rivera A, Khan Z, Quazi SH, Deba F. TLR4 induced TRPM2 mediated neuropathic pain. Front Pharmacol 2024; 15:1472771. [PMID: 39329114 PMCID: PMC11424904 DOI: 10.3389/fphar.2024.1472771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Ion channels play an important role in mediating pain through signal transduction, regulation, and control of responses, particularly in neuropathic pain. Transient receptor potential channel superfamily plays an important role in cation permeability and cellular signaling. Transient receptor potential channel Melastatin 2 (TRPM2) subfamily regulates Ca2+ concentration in response to various chemicals and signals from the surrounding environment. TRPM2 has a role in several physiological functions such as cellular osmosis, temperature sensing, cellular proliferation, as well as the manifestation of many disease processes such as pain process, cancer, apoptosis, endothelial dysfunction, angiogenesis, renal and lung fibrosis, and cerebral ischemic stroke. Toll-like Receptor 4 (TLR4) is a critical initiator of the immune response to inflammatory stimuli, particularly those triggered by Lipopolysaccharide (LPS). It activates downstream pathways leading to the production of oxidative molecules and inflammatory cytokines, which are modulated by basal and store-operated calcium ion signaling. The cytokine production and release cause an imbalance of antioxidant enzymes and redox potential in the Endoplasmic Reticulum and mitochondria due to oxidative stress, which results from TLR-4 activation and consequently induces the production of inflammatory cytokines in neuronal cells, exacerbating the pain process. Very few studies have reported the role of TRPM2 and its association with Toll-like receptors in the context of neuropathic pain. However, the molecular mechanism underlying the interaction between TRPM2 and TLR-4 and the quantum of impact in acute and chronic neuropathic pain remains unclear. Understanding the link between TLR-4 and TRPM2 will provide more insights into pain regulation mechanisms for the development of new therapeutic molecules to address neuropathic pain.
Collapse
Affiliation(s)
- Venkata Kiran Kumar Mandlem
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| | - Ana Rivera
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| | - Zaina Khan
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
- Departmental of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Sohel H Quazi
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
- Department of Biology, Division of Natural and Computation Sciences, Texas College, Tyler, TX, United States
| | - Farah Deba
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| |
Collapse
|
8
|
Akthar I, Yousef MS, Mansouri A, Shimada M, Miyamoto A. Sperm hyperactivation in the uterus and oviduct: a double-edged sword for sperm and maternal innate immunity toward fertility. Anim Reprod 2024; 21:e20240043. [PMID: 39176001 PMCID: PMC11340796 DOI: 10.1590/1984-3143-ar2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 08/24/2024] Open
Abstract
In cattle, artificial insemination (AI) is a technique that allows breeding by depositing frozen-thawed and extended semen into the female reproductive tract. The semen contains sperm with various motility patterns including dead, progressive and hyperactivated. Sperm hyperactivation is high amplitude, asymmetrical beating of sperm tail which usually occurs in the oviduct as part of the capacitation process, but it can also be induced by cryopreservation. After insemination, sperm enter the uterine glands and trigger a pro-inflammatory response in the uterus. Hyperactivated sperm, stimulated by sperm-Toll-like receptor 2 (TLR2), penetrates the mucus and uterine glands more efficiently and enhances the immune response. This facilitates the clearance of excess and dead sperm from the uterus. Some sperm escape the immune response and reach the oviduct either before or after the immune response is initiated. In the oviduct, sperm bind to the epithelium and form a reservoir. This triggers an anti-inflammatory response and preserves the fertilization potential of sperm. Hyperactivation facilitates sperm detaching from the epithelium, swimming through the viscous mucus and cumulus cells, and penetrating the egg's zona pellucida. Sperm-TLR2 activation enhances Ca2+-influx and acrosome reaction, which enables sperm to penetrate and fertilize oocytes during in vitro fertilization. Altogether, post-AI in cattle, sperm and maternal immunity interact differentially depending upon the site of sperm hyperactivation - whether it occurs within the uterus or oviduct. Specifically, hyperactivated sperm that enter the uterus after AI or are triggered via sperm-TLR2 activation or other stimuli contribute to sperm-induced uterine inflammation. Such hyperactivated sperm may impede their capacity to ascend to the oviduct. Conversely, sperm that become hyperactivated within the oviduct modulate their interactions with the oviduct and oocytes, which is pivotal during fertilization process. Indeed, the location and timing of sperm hyperactivation partially via TLR2 activation are critical determinants of their different influence on fertility.
Collapse
Affiliation(s)
- Ihshan Akthar
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Samy Yousef
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Alireza Mansouri
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
9
|
Chisholm LO, Jeon CK, Prell JS, Harms MJ. Changing expression system alters oligomerization and proinflammatory activity of recombinant human S100A9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.608001. [PMID: 39185185 PMCID: PMC11343194 DOI: 10.1101/2024.08.14.608001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
S100A9 is a Damage Associated Molecular Pattern (DAMP) that activates the innate immune system via Toll-like receptor 4 (TLR4). Despite many years of study, the mechanism of activation remains unknown. To date, much of the biochemical characterization of S100A9 has been performed using recombinant S100A9 expressed in E. coli (S100A9ec). TLR4 is the canonical receptor for LPS, a molecule found in the outer membrane of E. coli, raising the possibility of artifacts due to LPS contamination. Here we report characterization of LPS-free recombinant S100A9 expressed in insect cells (S100A9in). We show that S100A9in does not activate TLR4. This difference does not appear to be due to LPS contamination, protein misfolding, purification artifacts, or differences in phosphorylation. We show instead that S100A9in adopts an altered oligomeric state compared to S100A9ec. Disrupting oligomer formation with the E. coli disaggregase SlyD restores activity to S100A9in. Our results also indicate that the oligomeric state of S100A9 is a major factor in its ability to activate TLR4 and that this can be altered in unexpected ways by the recombinant expression system used to produce the protein.
Collapse
Affiliation(s)
- Lauren O. Chisholm
- Department of Chemistry & Biochemistry, University of Oregon, Eugene OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Chae Kyung Jeon
- Department of Chemistry & Biochemistry, University of Oregon, Eugene OR 97403
- Materials Science Institute, University of Oregon, Eugene, OR 97403
| | - James S. Prell
- Department of Chemistry & Biochemistry, University of Oregon, Eugene OR 97403
- Materials Science Institute, University of Oregon, Eugene, OR 97403
| | - Michael J. Harms
- Department of Chemistry & Biochemistry, University of Oregon, Eugene OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
10
|
Dinice L, Esposito G, Cacciamani A, Balzamino BO, Cosimi P, Cafiero C, Ripandelli G, Micera A. TLR2 and TLR4 Are Expressed in Epiretinal Membranes: Possible Links with Vitreous Levels of Complement Fragments and DAMP-Related Proteins. Int J Mol Sci 2024; 25:7732. [PMID: 39062973 PMCID: PMC11276880 DOI: 10.3390/ijms25147732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Previous studies reported the expression of toll-like receptors (TLRs), merely TLR2 and TLR4, and complement fragments (C3a, C5b9) in vitreoretinal disorders. Other than pathogens, TLRs can recognize endogenous products of tissue remodeling as damage-associated molecular pattern (DAMPs). The aim of this study was to confirm the expression of TLR2 and TLR4 in the fibrocellular membranes and vitreal fluids (soluble TLRs) of patients suffering of epiretinal membranes (ERMs) and assess their association with disease severity, complement fragments and inflammatory profiles. Twenty (n = 20) ERMs and twelve (n = 12) vitreous samples were collected at the time of the vitrectomy. Different severity-staged ERMs were processed for: immunolocalization (IF), transcriptomic (RT-PCR) and proteomics (ELISA, IP/WB, Protein Chip Array) analysis. The investigation of targets included TLR2, TLR4, C3a, C5b9, a few selected inflammatory biomarkers (Eotaxin-2, Rantes, Vascular Endothelial Growth Factor (VEGFA), Vascular Endothelial Growth Factor receptor (VEGFR2), Interferon-γ (IFNγ), Interleukin (IL1β, IL12p40/p70)) and a restricted panel of matrix enzymes (Matrix metalloproteinases (MMPs)/Tissue Inhibitor of Metallo-Proteinases (TIMPs)). A reduced cellularity was observed as function of ERM severity. TLR2, TLR4 and myD88 transcripts/proteins were detected in membranes and decreased upon disease severity. The levels of soluble TLR2 and TLR4, as well as C3a, C5b9, Eotaxin-2, Rantes, VEGFA, VEGFR2, IFNγ, IL1β, IL12p40/p70, MMP7 and TIMP2 levels were changed in vitreal samples. Significant correlations were observed between TLRs and complement fragments and between TLRs and some inflammatory mediators. Our findings pointed at TLR2 and TLR4 over-expression at early stages of ERM formation, suggesting the participation of the local immune response in the severity of disease. These activations at the early-stage of ERM formation suggest a potential persistence of innate immune response in the early phases of fibrocellular membrane formation.
Collapse
Affiliation(s)
- Lucia Dinice
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS—Fondazione Bietti, 00184 Rome, Italy; (L.D.); (G.E.); (B.O.B.)
| | - Graziana Esposito
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS—Fondazione Bietti, 00184 Rome, Italy; (L.D.); (G.E.); (B.O.B.)
| | - Andrea Cacciamani
- Surgical Retina Research Unit, IRCCS—Fondazione Bietti, 00184 Rome, Italy; (A.C.); (P.C.); (G.R.)
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS—Fondazione Bietti, 00184 Rome, Italy; (L.D.); (G.E.); (B.O.B.)
| | - Pamela Cosimi
- Surgical Retina Research Unit, IRCCS—Fondazione Bietti, 00184 Rome, Italy; (A.C.); (P.C.); (G.R.)
| | - Concetta Cafiero
- Anatomic Pathology Unit, Fabrizio Spaziani Hospital, 03100 Frosinone, Italy;
| | - Guido Ripandelli
- Surgical Retina Research Unit, IRCCS—Fondazione Bietti, 00184 Rome, Italy; (A.C.); (P.C.); (G.R.)
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS—Fondazione Bietti, 00184 Rome, Italy; (L.D.); (G.E.); (B.O.B.)
| |
Collapse
|
11
|
Kwabena Danso I, Woo JH, Hoon Baek S, Kim K, Lee K. Pulmonary toxicity assessment of polypropylene, polystyrene, and polyethylene microplastic fragments in mice. Toxicol Res 2024; 40:313-323. [PMID: 38525136 PMCID: PMC10959865 DOI: 10.1007/s43188-023-00224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024] Open
Abstract
Polypropylene (PP), polystyrene (PS), and polyethylene (PE) plastics are commonly used in household items such as electronic housings, food packaging, bottles, bags, toys, and roofing membranes. The presence of inhalable microplastics in indoor air has become a topic of concern as many people spent extended periods of time indoors during the COVID-19 pandemic lockdown restrictions, however, the toxic effects on the respiratory system are not properly understood. We examined the toxicity of PP, PS, and PE microplastic fragments in the pulmonary system of C57BL/6 mice. For 14 days, mice were intratracheally instilled 5 mg/kg PP, PS, and PE daily. The number of inflammatory cells such as macrophages, neutrophils, and eosinophils in the bronchoalveolar lavage fluid (BALF) of PS-instilled mice was significantly higher than that in the vehicle control (VC). The levels of inflammatory cytokines and chemokines in BALF of PS-instilled mice increased compared to the VC. However, the inflammatory responses in PP- and PE-stimulated mice were not significantly different from those in the VC group. We observed elevated protein levels of toll-like receptor (TLR) 2 in the lung tissue of PP-instilled mice and TLR4 in the lung tissue of PS-instilled mice compared with those to the VC, while TLR1, TLR5, and TLR6 protein levels remained unchanged. Phosphorylation of nuclear factor kappa B (NF-κB) and IĸB-α increased significantly in PS-instilled mice compared with that in VC. Furthermore, Nucleotide‑binding oligomerization domain‑like receptor family pyrin domain‑containing 3 (NLRP3) inflammasome components including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and Caspase-1 in the lung tissue of PS-instilled mice increased compared with that in the VC, but not in PP- and PE-instilled mice. These results suggest that PS microplastic fragment stimulation induces pulmonary inflammation due to NF-ĸB and NLRP3 inflammasome activation by the TLR4 pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00224-x.
Collapse
Affiliation(s)
- Isaac Kwabena Danso
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-Gil, Jeongeup, Jeollabuk-do 56212 Republic of Korea
- Department of Human and Environmental Toxicology, Korea National University of Science & Technology, Daejeon, 34113 Republic of Korea
| | - Jong-Hwan Woo
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-Gil, Jeongeup, Jeollabuk-do 56212 Republic of Korea
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Jeollabuk do, Iksan-si, Republic of Korea
| | - Seung Hoon Baek
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-Gil, Jeongeup, Jeollabuk-do 56212 Republic of Korea
- Department of Human and Environmental Toxicology, Korea National University of Science & Technology, Daejeon, 34113 Republic of Korea
| | - Kilsoo Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061 Republic of Korea
- College of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Buk-Gu, Daegu, 41566 Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-Gil, Jeongeup, Jeollabuk-do 56212 Republic of Korea
- Department of Human and Environmental Toxicology, Korea National University of Science & Technology, Daejeon, 34113 Republic of Korea
| |
Collapse
|
12
|
Knopf JD, Steigleder SS, Korn F, Kühnle N, Badenes M, Tauber M, Theobald SJ, Rybniker J, Adrain C, Lemberg MK. RHBDL4-triggered downregulation of COPII adaptor protein TMED7 suppresses TLR4-mediated inflammatory signaling. Nat Commun 2024; 15:1528. [PMID: 38453906 PMCID: PMC10920636 DOI: 10.1038/s41467-024-45615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
The toll-like receptor 4 (TLR4) is a central regulator of innate immunity that primarily recognizes bacterial lipopolysaccharide cell wall constituents to trigger cytokine secretion. We identify the intramembrane protease RHBDL4 as a negative regulator of TLR4 signaling. We show that RHBDL4 triggers degradation of TLR4's trafficking factor TMED7. This counteracts TLR4 transport to the cell surface. Notably, TLR4 activation mediates transcriptional upregulation of RHBDL4 thereby inducing a negative feedback loop to reduce TLR4 trafficking to the plasma membrane. This secretory cargo tuning mechanism prevents the over-activation of TLR4-dependent signaling in an in vitro Mycobacterium tuberculosis macrophage infection model and consequently alleviates septic shock in a mouse model. A hypomorphic RHBDL4 mutation linked to Kawasaki syndrome, an ill-defined inflammatory disorder in children, further supports the pathophysiological relevance of our findings. In this work, we identify an RHBDL4-mediated axis that acts as a rheostat to prevent over-activation of the TLR4 pathway.
Collapse
Affiliation(s)
- Julia D Knopf
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Susanne S Steigleder
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Friederike Korn
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Nathalie Kühnle
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Marina Badenes
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
- Faculty of Veterinary Medicine, Lusofona University and Faculty of Veterinary Nursing, Polytechnic Institute of Lusofonia, Lisbon, Portugal
| | - Marina Tauber
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931, Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931, Cologne, Germany
| | - Colin Adrain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Bonhomme D, Cavaillon JM, Werts C. The dangerous liaisons in innate immunity involving recombinant proteins and endotoxins: Examples from the literature and the Leptospira field. J Biol Chem 2024; 300:105506. [PMID: 38029965 PMCID: PMC10777017 DOI: 10.1016/j.jbc.2023.105506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Endotoxins, also known as lipopolysaccharides (LPS), are essential components of cell walls of diderm bacteria such as Escherichia coli. LPS are microbe-associated molecular patterns that can activate pattern recognition receptors. While trying to investigate the interactions between proteins and host innate immunity, some studies using recombinant proteins expressed in E. coli reported interaction and activation of immune cells. Here, we set out to provide information on endotoxins that are highly toxic to humans and bind to numerous molecules, including recombinant proteins. We begin by outlining the history of the discovery of endotoxins, their receptors and the associated signaling pathways that confer extreme sensitivity to immune cells, acting alone or in synergy with other microbe-associated molecular patterns. We list the various places where endotoxins have been found. Additionally, we warn against the risk of data misinterpretation due to endotoxin contamination in recombinant proteins, which is difficult to estimate with the Limulus amebocyte lysate assay, and cannot be completely neutralized (e.g., treatment with polymyxin B or heating). We further illustrate our point with examples of recombinant heat-shock proteins and viral proteins from severe acute respiratory syndrome coronavirus 2, dengue and HIV, for which endotoxin contamination has eventually been shown to be responsible for the inflammatory roles previously ascribed. We also critically appraised studies on recombinant Leptospira proteins regarding their putative inflammatory roles. Finally, to avoid these issues, we propose alternatives to express recombinant proteins in nonmicrobial systems. Microbiologists wishing to undertake innate immunity studies with their favorite pathogens should be aware of these difficulties.
Collapse
Affiliation(s)
- Delphine Bonhomme
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | | | - Catherine Werts
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France.
| |
Collapse
|
14
|
Chen B, Di B. Endogenous Ligands of TLR4 in Microglia: Potential Targets for Related Neurological Diseases. Curr Drug Targets 2024; 25:953-970. [PMID: 39234911 DOI: 10.2174/0113894501316051240821060249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Chronic inflammation mediated by microglia is a cause of some neuroinflammatory diseases. TLR4, a natural immune receptor on microglia, plays an important role in the occurrence of inflammation and the process of diseases. TLR4 can be activated by a variety of ligands to trigger inflammatory responses, including endogenous ligands HMGB1, S100A8/9, Heme, and Fetuin-A. As ligands derived from the body itself, they have the ability to bind directly to TLR4 and can be used as inducers of aseptic inflammation. In the past 20 years, targeting ligands rather than receptors has become an emerging therapeutic strategy for the treatment of diseases, so understanding the relationship between microglia, TLR4, TLR4 ligands, and corresponding diseases may have new implications for the treatment of diseases. In the article, we will discuss the TLR4 and the endogenous substances that can activate the TLR4 signaling pathway and present literature support for their role in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Bo Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
- Office of China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, P.R. China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
- Office of China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, P.R. China
| |
Collapse
|
15
|
Yang Y, Jin C, Yeo A, Jin B. Multiple Factors Determine the Oncolytic or Carcinogenic Effects of TLRs Activation in Cancer. J Immunol Res 2024; 2024. [DOI: 10.1155/2024/1111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2025] Open
Abstract
Toll‐like receptors (TLRs) belong to a germline‐encoded protein family. These are pattern recognition receptors. They sense pathogen‐associated molecular patterns (PAMPs). When this occurs, activation of the NF‐ĸB pathway follows. This triggers the innate immune response of the host. The consequent inflammatory cytokine response usually contributes to the elimination of the pathogen. Activation of TLRs also induces an adaptive immune response by a cross‐prime mechanism. This mechanism is employed in cancer immunotherapy. Using TLR ligands as adjuvants induces upregulation of costimulatory signals which in turn activates a cytotoxic leukocyte response against cancer cells. However, TLRs are also overexpressed in human cancer cells resulting in increased cell proliferation, migration, invasion, and angiogenesis. An intracellular adaptor, myeloid differentiation factor 88 (MyD88) probably mediates this process. MyD88 is intimately involved with all TLRs except TLR3. One consequence of the interaction between a TLR and MyD88 is activation of NF‐ĸB. In this context of a variety of proinflammtory cytokines being produced, chronic inflammation may result. Inflammation is an important protective mechanism. However, chronic inflammation is also involved in carcinogenesis. Activation of NF‐ĸB inhibits apoptosis and under certain circumstances, tumor cell survival. In this review, the potential therapeutic value of TLRs in immunotherapy and its role in oncogenesis are explored. The emerging use of artificial intelligence is mentioned.
Collapse
|
16
|
Zhang Y, Yang W, Kumagai Y, Loza M, Zhang W, Park SJ, Nakai K. Multi-omics computational analysis unveils the involvement of AP-1 and CTCF in hysteresis of chromatin states during macrophage polarization. Front Immunol 2023; 14:1304778. [PMID: 38173717 PMCID: PMC10761412 DOI: 10.3389/fimmu.2023.1304778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Macrophages display extreme plasticity, and the mechanisms and applications of polarization and de-/repolarization of macrophages have been extensively investigated. However, the regulation of macrophage hysteresis after de-/repolarization remains unclear. In this study, by using a large-scale computational analysis of macrophage multi-omics data, we report a list of hysteresis genes that maintain their expression patterns after polarization and de-/repolarization. While the polarization in M1 macrophages leads to a higher level of hysteresis in genes associated with cell cycle progression, cell migration, and enhancement of the immune response, we found weak levels of hysteresis after M2 polarization. During the polarization process from M0 to M1 and back to M0, the factors IRFs/STAT, AP-1, and CTCF regulate hysteresis by altering their binding sites to the chromatin. Overall, our results show that a history of polarization can lead to hysteresis in gene expression and chromatin accessibility over a given period. This study contributes to the understanding of de-/repolarization memory in macrophages.
Collapse
Affiliation(s)
- Yubo Zhang
- Department of Computational Biology and Medical Science, the University of Tokyo, Tokyo, Japan
| | - Wenbo Yang
- Department of Computational Biology and Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yutaro Kumagai
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Martin Loza
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Weihang Zhang
- Department of Computational Biology and Medical Science, the University of Tokyo, Tokyo, Japan
| | - Sung-Joon Park
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Science, the University of Tokyo, Tokyo, Japan
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Iovino M, Colonval M, Wilkin C, L’homme L, Lassence C, Campas M, Peulen O, de Tullio P, Piette J, Legrand-Poels S. Novel XBP1s-independent function of IRE1 RNase in HIF-1α-mediated glycolysis upregulation in human macrophages upon stimulation with LPS or saturated fatty acid. Front Immunol 2023; 14:1204126. [PMID: 37711626 PMCID: PMC10498766 DOI: 10.3389/fimmu.2023.1204126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
In obesity, adipose tissue infiltrating macrophages acquire a unique pro-inflammatory polarization, thereby playing a key role in the development of chronic inflammation and Type 2 diabetes. Increased saturated fatty acids (SFAs) levels have been proposed to drive this specific polarization. Accordingly, we investigated the immunometabolic reprogramming in SFA-treated human macrophages. As expected, RNA sequencing highlighted a pro-inflammatory profile but also metabolic signatures including glycolysis and hypoxia as well as a strong unfolded protein response. Glycolysis upregulation was confirmed in SFA-treated macrophages by measuring glycolytic gene expression, glucose uptake, lactate production and extracellular acidification rate. Like in LPS-stimulated macrophages, glycolysis activation in SFA-treated macrophages was dependent on HIF-1α activation and fueled the production of pro-inflammatory cytokines. SFAs and LPS both induced IRE1α endoribonuclease activity, as demonstrated by XBP1 mRNA splicing, but with different kinetics matching HIF-1α activation and the glycolytic gene expression. Interestingly, the knockdown of IRE1α and/or the pharmacological inhibition of its RNase activity prevented HIF-1α activation and significantly decreased glycolysis upregulation. Surprisingly, XBP1s appeared to be dispensable, as demonstrated by the lack of inhibiting effect of XBP1s knockdown on glycolytic genes expression, glucose uptake, lactate production and HIF-1α activation. These experiments demonstrate for the first time a key role of IRE1α in HIF-1α-mediated glycolysis upregulation in macrophages stimulated with pro-inflammatory triggers like LPS or SFAs through XBP1s-independent mechanism. IRE1 could mediate this novel function by targeting other transcripts (mRNA or pre-miRNA) through a mechanism called regulated IRE1-dependent decay or RIDD. Deciphering the underlying mechanisms of this novel IRE1 function might lead to novel therapeutic targets to curtail sterile obesity- or infection-linked inflammation.
Collapse
Affiliation(s)
- Margaud Iovino
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Megan Colonval
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Chloé Wilkin
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Laurent L’homme
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Cédric Lassence
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | - Manon Campas
- Clinical Metabolomics Group, CIRM, ULiège, Liege, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA, ULiège, Liège, Belgium
| | | | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | | |
Collapse
|
18
|
Satta S, Beal R, Smith R, Luo X, Ferris GR, Langford-Smith A, Teasdale J, Ajime TT, Serré J, Hazell G, Newby GS, Johnson JL, Kurinna S, Humphries MJ, Gayan-Ramirez G, Libby P, Degens H, Yu B, Johnson T, Alexander Y, Jia H, Newby AC, White SJ. A Nrf2-OSGIN1&2-HSP70 axis mediates cigarette smoke-induced endothelial detachment: implications for plaque erosion. Cardiovasc Res 2023; 119:1869-1882. [PMID: 36804807 PMCID: PMC10405570 DOI: 10.1093/cvr/cvad022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 02/20/2023] Open
Abstract
AIMS Endothelial erosion of plaques is responsible for ∼30% of acute coronary syndromes (ACS). Smoking is a risk factor for plaque erosion, which most frequently occurs on the upstream surface of plaques where the endothelium experiences elevated shear stress. We sought to recreate these conditions in vitro to identify potential pathological mechanisms that might be of relevance to plaque erosion. METHODS AND RESULTS Culturing human coronary artery endothelial cells (HCAECs) under elevated flow (shear stress of 7.5 Pa) and chronically exposing them to cigarette smoke extract (CSE) and tumour necrosis factor-alpha (TNFα) recapitulated a defect in HCAEC adhesion, which corresponded with augmented Nrf2-regulated gene expression. Pharmacological activation or adenoviral overexpression of Nrf2 triggered endothelial detachment, identifying Nrf2 as a mediator of endothelial detachment. Growth/Differentiation Factor-15 (GDF15) expression was elevated in this model, with protein expression elevated in the plasma of patients experiencing plaque erosion compared with plaque rupture. The expression of two Nrf2-regulated genes, OSGIN1 and OSGIN2, was increased by CSE and TNFα under elevated flow and was also elevated in the aortas of mice exposed to cigarette smoke in vivo. Knockdown of OSGIN1&2 inhibited Nrf2-induced cell detachment. Overexpression of OSGIN1&2 induced endothelial detachment and resulted in cell cycle arrest, induction of senescence, loss of focal adhesions and actin stress fibres, and disturbed proteostasis mediated in part by HSP70, restoration of which reduced HCAEC detachment. In ACS patients who smoked, blood concentrations of HSP70 were elevated in plaque erosion compared with plaque rupture. CONCLUSION We identified a novel Nrf2-OSGIN1&2-HSP70 axis that regulates endothelial adhesion, elevated GDF15 and HSP70 as biomarkers for plaque erosion in patients who smoke, and two therapeutic targets that offer the potential for reducing the risk of plaque erosion.
Collapse
Affiliation(s)
- Sandro Satta
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Robert Beal
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Rhys Smith
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Xing Luo
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, & The Key Laboratory of Medical Ischemia, Chinese Ministry of Education, Harbin 150086, China
| | - Glenn R Ferris
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Alex Langford-Smith
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Jack Teasdale
- Bristol Medical School, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Tom Tanjeko Ajime
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jef Serré
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Georgina Hazell
- Bristol Medical School, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Graciela Sala Newby
- Bristol Medical School, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Jason L Johnson
- Bristol Medical School, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Svitlana Kurinna
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Peter Libby
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
- Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto g. 6, LT-44221 Kaunas, Lithuania
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, & The Key Laboratory of Medical Ischemia, Chinese Ministry of Education, Harbin 150086, China
| | - Thomas Johnson
- Department of Cardiology, Bristol Heart Institute, Upper Maudlin St., Bristol BS2 8HW, UK
| | - Yvonne Alexander
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Haibo Jia
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, & The Key Laboratory of Medical Ischemia, Chinese Ministry of Education, Harbin 150086, China
| | - Andrew C Newby
- Bristol Medical School, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Stephen J White
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| |
Collapse
|
19
|
Colleselli K, Stierschneider A, Wiesner C. An Update on Toll-like Receptor 2, Its Function and Dimerization in Pro- and Anti-Inflammatory Processes. Int J Mol Sci 2023; 24:12464. [PMID: 37569837 PMCID: PMC10419760 DOI: 10.3390/ijms241512464] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
While a certain level of inflammation is critical for humans to survive infection and injury, a prolonged inflammatory response can have fatal consequences. Pattern recognition Toll-like receptors (TLRs) are key players in the initiation of an inflammatory process. TLR2 is one of the most studied pattern recognition receptors (PRRs) and is known to form heterodimers with either TLR1, TLR4, TLR6, and TLR10, allowing it to recognize a wide range of pathogens. Although a large number of studies have been conducted over the past decades, there are still many unanswered questions regarding TLR2 mechanisms in health and disease. In this review, we provide an up-to-date overview of TLR2, including its homo- and heterodimers. Furthermore, we will discuss the pro- and anti-inflammatory properties of TLR2 and recent findings in prominent TLR2-associated infectious and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| |
Collapse
|
20
|
Wang C, Yi Z, Jiao Y, Shen Z, Yang F, Zhu S. Gut Microbiota and Adipose Tissue Microenvironment Interactions in Obesity. Metabolites 2023; 13:821. [PMID: 37512528 PMCID: PMC10383923 DOI: 10.3390/metabo13070821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity is an increasingly serious global health problem. Some studies have revealed that the gut microbiota and its metabolites make important contributions to the onset of obesity. The gut microbiota is a dynamic ecosystem composed of diverse microbial communities with key regulatory functions in host metabolism and energy balance. Disruption of the gut microbiota can result in obesity, a chronic metabolic condition characterized by the excessive accumulation of adipose tissue. Host tissues (e.g., adipose, intestinal epithelial, and muscle tissues) can modulate the gut microbiota via microenvironmental interactions that involve hormone and cytokine secretion, changes in nutrient availability, and modifications of the gut environment. The interactions between host tissues and the gut microbiota are complex and bidirectional, with important effects on host health and obesity. This review provides a comprehensive summary of gut microbiota changes associated with obesity, the functional roles of gut microbiota-derived metabolites, and the importance of the complex interactions between the gut microbiota and target tissues in the pathogenesis of obesity. It places particular emphasis on the roles of adipose tissue microenvironment interactions in the onset of obesity.
Collapse
Affiliation(s)
- Congcong Wang
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zihan Yi
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ye Jiao
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhong Shen
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Fei Yang
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shankuan Zhu
- Chronic Disease Research Institute, The Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Najjar RS. The Impacts of Animal-Based Diets in Cardiovascular Disease Development: A Cellular and Physiological Overview. J Cardiovasc Dev Dis 2023; 10:282. [PMID: 37504538 PMCID: PMC10380617 DOI: 10.3390/jcdd10070282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States, and diet plays an instrumental role in CVD development. Plant-based diets have been strongly tied to a reduction in CVD incidence. In contrast, animal food consumption may increase CVD risk. While increased serum low-density lipoprotein (LDL) cholesterol concentrations are an established risk factor which may partially explain the positive association with animal foods and CVD, numerous other biochemical factors are also at play. Thus, the aim of this review is to summarize the major cellular and molecular effects of animal food consumption in relation to CVD development. Animal-food-centered diets may (1) increase cardiovascular toll-like receptor (TLR) signaling, due to increased serum endotoxins and oxidized LDL cholesterol, (2) increase cardiovascular lipotoxicity, (3) increase renin-angiotensin system components and subsequent angiotensin II type-1 receptor (AT1R) signaling and (4) increase serum trimethylamine-N-oxide concentrations. These nutritionally mediated factors independently increase cardiovascular oxidative stress and inflammation and are all independently tied to CVD development. Public policy efforts should continue to advocate for the consumption of a mostly plant-based diet, with the minimization of animal-based foods.
Collapse
Affiliation(s)
- Rami Salim Najjar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
22
|
Wenger M, Grosse-Kathoefer S, Kraiem A, Pelamatti E, Nunes N, Pointner L, Aglas L. When the allergy alarm bells toll: The role of Toll-like receptors in allergic diseases and treatment. Front Mol Biosci 2023; 10:1204025. [PMID: 37426425 PMCID: PMC10325731 DOI: 10.3389/fmolb.2023.1204025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Toll-like receptors of the human immune system are specialized pathogen detectors able to link innate and adaptive immune responses. TLR ligands include among others bacteria-, mycoplasma- or virus-derived compounds such as lipids, lipo- and glycoproteins and nucleic acids. Not only are genetic variations in TLR-related genes associated with the pathogenesis of allergic diseases, including asthma and allergic rhinitis, their expression also differs between allergic and non-allergic individuals. Due to a complex interplay of genes, environmental factors, and allergen sources the interpretation of TLRs involved in immunoglobulin E-mediated diseases remains challenging. Therefore, it is imperative to dissect the role of TLRs in allergies. In this review, we discuss i) the expression of TLRs in organs and cell types involved in the allergic immune response, ii) their involvement in modulating allergy-associated or -protective immune responses, and iii) how differential activation of TLRs by environmental factors, such as microbial, viral or air pollutant exposure, results in allergy development. However, we focus on iv) allergen sources interacting with TLRs, and v) how targeting TLRs could be employed in novel therapeutic strategies. Understanding the contributions of TLRs to allergy development allow the identification of knowledge gaps, provide guidance for ongoing research efforts, and built the foundation for future exploitation of TLRs in vaccine design.
Collapse
|
23
|
Luo Y, Vivaldi Marrero E, Choudhary V, Bollag WB. Phosphatidylglycerol to Treat Chronic Skin Wounds in Diabetes. Pharmaceutics 2023; 15:1497. [PMID: 37242739 PMCID: PMC10222993 DOI: 10.3390/pharmaceutics15051497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This review proposes the use of dioleoylphosphatidylglycerol (DOPG) to enhance diabetic wound healing. Initially, the characteristics of diabetic wounds are examined, focusing on the epidermis. Hyperglycemia accompanying diabetes results in enhanced inflammation and oxidative stress in part through the generation of advanced glycation end-products (AGEs), in which glucose is conjugated to macromolecules. These AGEs activate inflammatory pathways; oxidative stress results from increased reactive oxygen species generation by mitochondria rendered dysfunctional by hyperglycemia. These factors work together to reduce the ability of keratinocytes to restore epidermal integrity, contributing to chronic diabetic wounds. DOPG has a pro-proliferative action on keratinocytes (through an unclear mechanism) and exerts an anti-inflammatory effect on keratinocytes and the innate immune system by inhibiting the activation of Toll-like receptors. DOPG has also been found to enhance macrophage mitochondrial function. Since these DOPG effects would be expected to counteract the increased oxidative stress (attributable in part to mitochondrial dysfunction), decreased keratinocyte proliferation, and enhanced inflammation that characterize chronic diabetic wounds, DOPG may be useful in stimulating wound healing. To date, efficacious therapies to promote the healing of chronic diabetic wounds are largely lacking; thus, DOPG may be added to the armamentarium of drugs to enhance diabetic wound healing.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
| | - Edymarie Vivaldi Marrero
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
| | - Vivek Choudhary
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
24
|
Ezz MA, Mansouri A, Akthar I, Yousef MS, Kowsar R, Miyamoto A. Hyaluronan regulates sperm-induced inflammatory response by enhancing sperm attachment to bovine endometrial epithelial cells via CD44: in-silico and in-vitro approaches. Front Endocrinol (Lausanne) 2023; 14:1134868. [PMID: 37234812 PMCID: PMC10206253 DOI: 10.3389/fendo.2023.1134868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, we reported that sperm induce cluster of differentiation 44 (CD44) expression and Toll-like receptor 2 (TLR2)-mediated inflammatory response in bovine uterus. In the present study, we hypothesized that the interaction between CD44 of bovine endometrial epithelial cells (BEECs) and hyaluronan (HA) affects sperm attachment and thereby enhancing TLR2-mediated inflammation. To test our hypothesis, at first, in-silico approaches were employed to define the binding affinity of HA for CD44 and TLR2. Further, an in-vitro experiment using the sperm-BEECs co-culture model was applied to investigate the effect of HA on sperm attachment and inflammatory response. Here, low molecular weight (LMW) HA at different concentrations (0, 0.1, 1, or 10 µg/mL) was incubated with BEECs for 2 h followed by the co-culture without- or with non-capacitated washed sperm (106/ml) for additional 3 h was performed. The present in-silico model clarified that CD44 is a high-affinity receptor for HA. Moreover, TLR2 interactions with HA oligomer (4- and 8-mers) target a different subdomain (h-bonds) compared to TLR2-agonist (PAM3) which targets a central hydrophobic pocket. However, the interaction of LMW HA (32-mers) with TLR2 revealed no stability of HA at any pocket of TLR2. Notably, the immunofluorescence analysis revealed the HA localization in both endometrial stroma and epithelia of ex-vivo endometrial explant. Moreover, ELISA showed significant levels of HA in BEECs culture media. Importantly, BEECs pretreatment with HA prior to sperm exposure increased the number of attached sperm to BEECs, and upregulated the transcriptional levels of pro-inflammatory genes (TNFA, IL-1B, IL-8, and PGES) in BEECs in response to sperm. However, BEECs treated with HA only (no sperm exposure) did not show any significant effect on the transcript abundance of pro-inflammatory genes when compared to the non-treated BEECs. Altogether, our findings strongly suggest a possible cross-talk between sperm and endometrial epithelial cells via HA and HA binding receptors (CD44 and TLR2) to induce a pro-inflammatory response in bovine uterus.
Collapse
Affiliation(s)
- Mohamed Aboul Ezz
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Alireza Mansouri
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ihshan Akthar
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Samy Yousef
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
25
|
Bruserud Ø, Mosevoll KA, Bruserud Ø, Reikvam H, Wendelbo Ø. The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells 2023; 12:cells12071003. [PMID: 37048076 PMCID: PMC10093057 DOI: 10.3390/cells12071003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important effector cells of the innate immune system and as regulators of the host immune response. The regulation of neutrophil migration is therefore important both for the infection-directed host response and for the development of organ dysfunctions in sepsis. Downregulation of CXCR4/CXCL12 stimulates neutrophil migration from the bone marrow. This is followed by transmigration/extravasation across the endothelial cell barrier at the infection site; this process is directed by adhesion molecules and various chemotactic gradients created by chemotactic cytokines, lipid mediators, bacterial peptides, and peptides from damaged cells. These mechanisms of neutrophil migration are modulated by sepsis, leading to reduced neutrophil migration and even reversed migration that contributes to distant organ failure. The sepsis-induced modulation seems to differ between neutrophil subsets. Furthermore, sepsis patients should be regarded as heterogeneous because neutrophil migration will possibly be further modulated by the infecting microorganisms, antimicrobial treatment, patient age/frailty/sex, other diseases (e.g., hematological malignancies and stem cell transplantation), and the metabolic status. The present review describes molecular mechanisms involved in the regulation of neutrophil migration; how these mechanisms are altered during sepsis; and how bacteria/fungi, antimicrobial treatment, and aging/frailty/comorbidity influence the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Øystein Bruserud
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| | - Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
26
|
Fowler TE, Choudhary V, Melnyk S, Farsi M, Chang LY, Fortingo N, Chen X, Watsky MA, Bollag WB. Dioleoylphosphatidylglycerol Inhibits Heat Shock Protein B4 (HSPB4)-Induced Inflammatory Pathways In Vitro. Int J Mol Sci 2023; 24:5839. [PMID: 36982926 PMCID: PMC10059050 DOI: 10.3390/ijms24065839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
Our previous work shows that dioleoylphosphatidylglycerol (DOPG) accelerates corneal epithelial healing in vitro and in vivo by unknown mechanisms. Prior data demonstrate that DOPG inhibits toll-like receptor (TLR) activation and inflammation induced by microbial components (pathogen-associated molecular patterns, PAMPs) and by endogenous molecules upregulated in psoriatic skin, which act as danger-associated molecular patterns (DAMPs) to activate TLRs and promote inflammation. In the injured cornea, sterile inflammation can result from the release of the DAMP molecule, heat shock protein B4 (HSPB4), to contribute to delayed wound healing. Here, we show in vitro that DOPG inhibits TLR2 activation induced in response to HSPB4, as well as DAMPs that are elevated in diabetes, a disease that also slows corneal wound healing. Further, we show that the co-receptor, cluster of differentiation-14 (CD14), is necessary for PAMP/DAMP-induced activation of TLR2, as well as of TLR4. Finally, we simulated the high-glucose environment of diabetes to show that elevated glucose levels enhance TLR4 activation by a DAMP known to be upregulated in diabetes. Together, our results demonstrate the anti-inflammatory actions of DOPG and support further investigation into its development as a possible therapy for corneal injury, especially in diabetic patients at high risk of vision-threatening complications.
Collapse
Affiliation(s)
- Teresa E. Fowler
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Vivek Choudhary
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Samuel Melnyk
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Mishma Farsi
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Luke Y. Chang
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Nyemkuna Fortingo
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Xunsheng Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Mitchell A. Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
27
|
Luo Y, Ye Y, Chen Y, Zhang C, Sun Y, Wang C, Ou J. A degradome-based prognostic signature that correlates with immune infiltration and tumor mutation burden in breast cancer. Front Immunol 2023; 14:1140993. [PMID: 36993976 PMCID: PMC10040797 DOI: 10.3389/fimmu.2023.1140993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionFemale breast cancer is the most common malignancy worldwide, with a high disease burden. The degradome is the most abundant class of cellular enzymes that play an essential role in regulating cellular activity. Dysregulation of the degradome may disrupt cellular homeostasis and trigger carcinogenesis. Thus we attempted to understand the prognostic role of degradome in breast cancer by means of establishing a prognostic signature based on degradome-related genes (DRGs) and assessed its clinical utility in multiple dimensions.MethodsA total of 625 DRGs were obtained for analysis. Transcriptome data and clinical information of patients with breast cancer from TCGA-BRCA, METABRIC and GSE96058 were collected. NetworkAnalyst and cBioPortal were also utilized for analysis. LASSO regression analysis was employed to construct the degradome signature. Investigations of the degradome signature concerning clinical association, functional characterization, mutation landscape, immune infiltration, immune checkpoint expression and drug priority were orchestrated. Cell phenotype assays including colony formation, CCK8, transwell and wound healing were conducted in MCF-7 and MDA-MB-435S breast cancer cell lines, respectively.ResultsA 10-gene signature was developed and verified as an independent prognostic predictor combined with other clinicopathological parameters in breast cancer. The prognostic nomogram based on risk score (calculated based on the degradome signature) showed favourable capability in survival prediction and advantage in clinical benefit. High risk scores were associated with a higher degree of clinicopathological events (T4 stage and HER2-positive) and mutation frequency. Regulation of toll-like receptors and several cell cycle promoting activities were upregulated in the high-risk group. PIK3CA and TP53 mutations were dominant in the low- and high-risk groups, respectively. A significantly positive correlation was observed between the risk score and tumor mutation burden. The infiltration levels of immune cells and the expressions of immune checkpoints were significantly influenced by the risk score. Additionally, the degradome signature adequately predicted the survival of patients undergoing endocrinotherapy or radiotherapy. Patients in the low-risk group may achieve complete response after the first round of chemotherapy with cyclophosphamide and docetaxel, whereas patients in the high-risk group may benefit from 5-flfluorouracil. Several regulators of the PI3K/AKT/mTOR signaling pathway and the CDK family/PARP family were identified as potential molecular targets in the low- and high-risk groups, respectively. In vitro experiments further revealed that the knockdown of ABHD12 and USP41 significantly inhibit the proliferation, invasion and migration of breast cancer cells.ConclusionMultidimensional evaluation verified the clinical utility of the degradome signature in predicting prognosis, risk stratification and guiding treatment for patients with breast cancer.
Collapse
Affiliation(s)
- Yulou Luo
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yinghui Ye
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Chenguang Zhang
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yutian Sun
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengwei Wang
- Cancer Research Institute of Xinjiang Uygur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Chengwei Wang, ; Jianghua Ou,
| | - Jianghua Ou
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Chengwei Wang, ; Jianghua Ou,
| |
Collapse
|
28
|
Luo Y, Uaratanawong R, Choudhary V, Hardin M, Zhang C, Melnyk S, Chen X, Bollag WB. Advanced Glycation End Products and Activation of Toll-like Receptor-2 and -4 Induced Changes in Aquaporin-3 Expression in Mouse Keratinocytes. Int J Mol Sci 2023; 24:1376. [PMID: 36674890 PMCID: PMC9864132 DOI: 10.3390/ijms24021376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Prolonged inflammation and impaired re-epithelization are major contributing factors to chronic non-healing diabetic wounds; diabetes is also characterized by xerosis. Advanced glycation end products (AGEs), and the activation of toll-like receptors (TLRs), can trigger inflammatory responses. Aquaporin-3 (AQP3) plays essential roles in keratinocyte function and skin wound re-epithelialization/re-generation and hydration. Suberanilohydroxamic acid (SAHA), a histone deacetylase inhibitor, mimics the increased acetylation observed in diabetes. We investigated the effects of TLR2/TLR4 activators and AGEs on keratinocyte AQP3 expression in the presence and absence of SAHA. Primary mouse keratinocytes were treated with or without TLR2 agonist Pam3Cys-Ser-(Lys)4 (PAM), TLR4 agonist lipopolysaccharide (LPS), or AGEs, with or without SAHA. We found that (1) PAM and LPS significantly upregulated AQP3 protein basally (without SAHA) and PAM downregulated AQP3 protein with SAHA; and (2) AGEs (100 µg/mL) increased AQP3 protein expression basally and decreased AQP3 levels with SAHA. PAM and AGEs produced similar changes in AQP3 expression, suggesting a common pathway or potential crosstalk between TLR2 and AGEs signaling. Our findings suggest that TLR2 activation and AGEs may be beneficial for wound healing and skin hydration under normal conditions via AQP3 upregulation, but that these pathways are likely deleterious in diabetes chronically through decreased AQP3 expression.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Rawipan Uaratanawong
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Department of Medicine (Dermatology), Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Vivek Choudhary
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mary Hardin
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Catherine Zhang
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Samuel Melnyk
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Xunsheng Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
29
|
León B. Understanding the development of Th2 cell-driven allergic airway disease in early life. FRONTIERS IN ALLERGY 2023; 3:1080153. [PMID: 36704753 PMCID: PMC9872036 DOI: 10.3389/falgy.2022.1080153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Allergic diseases, including atopic dermatitis, allergic rhinitis, asthma, and food allergy, are caused by abnormal responses to relatively harmless foreign proteins called allergens found in pollen, fungal spores, house dust mites (HDM), animal dander, or certain foods. In particular, the activation of allergen-specific helper T cells towards a type 2 (Th2) phenotype during the first encounters with the allergen, also known as the sensitization phase, is the leading cause of the subsequent development of allergic disease. Infants and children are especially prone to developing Th2 cell responses after initial contact with allergens. But in addition, the rates of allergic sensitization and the development of allergic diseases among children are increasing in the industrialized world and have been associated with living in urban settings. Particularly for respiratory allergies, greater susceptibility to developing allergic Th2 cell responses has been shown in children living in urban environments containing low levels of microbial contaminants, principally bacterial endotoxins [lipopolysaccharide (LPS)], in the causative aeroallergens. This review highlights the current understanding of the factors that balance Th2 cell immunity to environmental allergens, with a particular focus on the determinants that program conventional dendritic cells (cDCs) toward or away from a Th2 stimulatory function. In this context, it discusses transcription factor-guided functional specialization of type-2 cDCs (cDC2s) and how the integration of signals derived from the environment drives this process. In addition, it analyzes observational and mechanistic studies supporting an essential role for innate sensing of microbial-derived products contained in aeroallergens in modulating allergic Th2 cell immune responses. Finally, this review examines whether hyporesponsiveness to microbial stimulation, particularly to LPS, is a risk factor for the induction of Th2 cell responses and allergic sensitization during infancy and early childhood and the potential factors that may affect early-age response to LPS and other environmental microbial components.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
30
|
Hata M, Andriessen EMMA, Hata M, Diaz-Marin R, Fournier F, Crespo-Garcia S, Blot G, Juneau R, Pilon F, Dejda A, Guber V, Heckel E, Daneault C, Calderon V, Des Rosiers C, Melichar HJ, Langmann T, Joyal JS, Wilson AM, Sapieha P. Past history of obesity triggers persistent epigenetic changes in innate immunity and exacerbates neuroinflammation. Science 2023; 379:45-62. [PMID: 36603072 DOI: 10.1126/science.abj8894] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Age-related macular degeneration is a prevalent neuroinflammatory condition and a major cause of blindness driven by genetic and environmental factors such as obesity. In diseases of aging, modifiable factors can be compounded over the life span. We report that diet-induced obesity earlier in life triggers persistent reprogramming of the innate immune system, lasting long after normalization of metabolic abnormalities. Stearic acid, acting through Toll-like receptor 4 (TLR4), is sufficient to remodel chromatin landscapes and selectively enhance accessibility at binding sites for activator protein-1 (AP-1). Myeloid cells show less oxidative phosphorylation and shift to glycolysis, ultimately leading to proinflammatory cytokine transcription, aggravation of pathological retinal angiogenesis, and neuronal degeneration associated with loss of visual function. Thus, a past history of obesity reprograms mononuclear phagocytes and predisposes to neuroinflammation.
Collapse
Affiliation(s)
- Masayuki Hata
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada.,Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Elisabeth M M A Andriessen
- Department of Biomedical Sciences, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Maki Hata
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Roberto Diaz-Marin
- Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Frédérik Fournier
- Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Sergio Crespo-Garcia
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada.,Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Guillaume Blot
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada.,Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Rachel Juneau
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Frédérique Pilon
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Agnieszka Dejda
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Vera Guber
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Emilie Heckel
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Centre Hospitalier Universitaire Ste-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Caroline Daneault
- Department of Nutrition, University of Montreal, Montreal, Quebec, Plateforme métabolomique de l'Institut de Cardiologie de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Virginie Calderon
- Bioinformatics & Molecular Biology Core Facility, Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Christine Des Rosiers
- Department of Nutrition, University of Montreal, Montreal, Quebec, Plateforme métabolomique de l'Institut de Cardiologie de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Heather J Melichar
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jean-Sebastien Joyal
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Centre Hospitalier Universitaire Ste-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Ariel M Wilson
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Przemyslaw Sapieha
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada.,Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| |
Collapse
|
31
|
Dopico J, Botelho J, Ouro A, Domínguez C, Machado V, Aramburu-Nuñez M, Custodia A, Blanco T, Vázquez-Reza M, Romaus-Sanjurjo D, Blanco J, Leira R, Sobrino T, Leira Y. Association between periodontitis and peripheral markers of innate immunity activation and inflammation. J Periodontol 2023; 94:11-19. [PMID: 35665930 DOI: 10.1002/jper.22-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Immune response leading to increased systemic inflammation is one of the mechanisms linking periodontitis to chronic inflammatory diseases. The aim of this study was to compare the expression of toll-like receptors 2 and 4 in monocytes and neutrophils (TLR2M, TLR2N, TLR4M, and TLR4N) and its endogenous ligands (cellular fibronectin [cFN] and heat shock protein 60 [HSP60]) in patients with and without periodontitis. Additionally, the relationship between cFN and HSP60 expression with innate immunity activation and systemic inflammatory response (interleukin 6 [IL-6]) was also evaluated. METHODS A case-controlled study was designed in which 30 patients with periodontitis (cases) and 30 age- and sex-matched participants without periodontitis (controls) were included. Fasting blood samples were collected to determine: (1) expression of TLR2N, TLR2M, TLR4N, and TLR4M by flow cytometry; and (2) serum concentrations of cFN, HSP60, and IL-6 by ELISA technique. RESULTS Expression of TLR2M (411.5 [314.2, 460.0] vs. 236.5 [204.0, 333.0] AFU), TLR2N (387.0 [332.0, 545.5] vs 230.0 [166.2, 277.7] AFU), TLR4M (2478.5 [1762.2, 2828.0] vs 1705.0 [1274.5, 1951.2] AFU), and TLR4N (2791.0 [2306.7, 3226.2] vs. 1866.0 [1547.5, 2687.2] AFU) as well as serum levels of cFN (301.1 [222.2, 410.9] vs. 156.4 [115.3, 194.0] ng/ml) and IL-6 (10.4 [6.5, 11.5] vs. 3.5 [2.6, 4.9] pg/ml) were significantly higher in periodontitis patients than those without periodontitis. A positive association was found between periodontitis and cFN (odds ratio [OR] = 1.028, p < 0.001), TLR2N (OR = 1.026, p < 0.001), TLR4M (OR = 1.001, p = 0.002), and IL-6 (OR = 1.774, p < 0.001). CONCLUSIONS Periodontitis patients exhibited high expression of TLRs, cFN, and IL-6.
Collapse
Affiliation(s)
- José Dopico
- Faculty of Odontology and Medicine, Periodontology Unit, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - João Botelho
- Periodontology Department and Evidence-Based Hub, Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz and Cooperative de Ensino Superior, Caparica, Portugal
| | - Alberto Ouro
- NeuroAging Group, Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Clara Domínguez
- Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - Vanessa Machado
- Periodontology Department and Evidence-Based Hub, Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz and Cooperative de Ensino Superior, Caparica, Portugal
| | - Marta Aramburu-Nuñez
- NeuroAging Group, Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Antía Custodia
- NeuroAging Group, Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Teresa Blanco
- Allergy Department, University Hospital Puerta del Hierro, Madrid, Spain
| | - María Vázquez-Reza
- Faculty of Odontology and Medicine, Periodontology Unit, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group, Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan Blanco
- Faculty of Odontology and Medicine, Periodontology Unit, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rogelio Leira
- Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Group, Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Yago Leira
- Faculty of Odontology and Medicine, Periodontology Unit, University of Santiago de Compostela, Santiago de Compostela, Spain.,NeuroAging Group, Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
32
|
Sun Q, Zhang S, Zhang BY, Zhang Y, Yao L, Hu J, Zhang HH. microRNA-181a contributes to gastric hypersensitivity in rats with diabetes by regulating TLR4 expression. Mol Pain 2023; 19:17448069231159356. [PMID: 36750423 PMCID: PMC9989404 DOI: 10.1177/17448069231159356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Aim: The aim of this study is to investigate the mechanism and interaction of microRNA-181a (miR-181a), toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) in gastric hypersensitivity in diabetic rats. Methods: Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in female SD rats. Gastric balloon distension technique was used to measure diabetic gastric hypersensitivity. Gastric-specific (T7-T10) dorsal root ganglion (DRG) neurons were acutely dissociated to measure excitability with patch-clamp techniques. Western blotting was employed to measure the expressions of TLR4, TRAF6 and NF-κB subunit p65 in T7-T10 DRGs. The expressions of microRNAs in T7-T10 DRGs were measured with quantitative real-time PCR and fluorescence in situ hybridization. Dual-luciferase reporter gene assay was used to detect the targeting regulation of microRNAs on TLR4. Results: (1) Diabetic rats were more sensitive to graded gastric balloon distention at 2 and 4 weeks. (2) The expression of TLR4 was significantly up-regulated in T7-T10 DRGs of diabetic rats. Intrathecal injection of CLI-095 (TLR4-selective inhibitor) attenuated diabetic gastric hypersensitivity, and markedly reversed the hyper-excitability of gastric-specific DRG neurons. (3) The expressions of miR-181a and miR-7a were significantly decreased in diabetic rats. MiR-181a could directly regulate the expression of TLR4, while miR-7a couldn't. (4) Intrathecal injection of miR-181a agomir down-regulated the expression of TLR4, reduced the hyper-excitability of gastric-specific neurons, and alleviated gastric hypersensitivity. (5) p65 and TLR4 were co-expressed in Dil-labeled DRG neurons. (6) Inhibition of p65 attenuated diabetic gastric hypersensitivity and hyper-excitability of gastric-specific DRG neurons. (7) The expression of TRAF6 was significantly up-regulated in diabetic rats. CLI-095 treatment also reduced the expression of TRAF6 and p65. Conclusion: The reduction of microRNA-181a in T7-T10 DRGs might up-regulate TLR4 expression. TLR4 activated NF-κB through MyD88-dependent signaling pathway, increased excitability of gastric-specific DRG neurons, and contributed to diabetic gastric hypersensitivity.
Collapse
Affiliation(s)
- Qian Sun
- Center for Translational Pain Medicine, Institute of Neuroscience, 12582Soochow University, Suzhou, China
| | - Shiyu Zhang
- Department of Endocrinology, the Second Affiliated Hospital, 12582Soochow University, Suzhou, China
| | - Bing-Yu Zhang
- Department of Emergency, 199193The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yilian Zhang
- Department of Endocrinology, the Second Affiliated Hospital, 12582Soochow University, Suzhou, China
| | - Lijun Yao
- Department of Endocrinology, 602846The Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Ji Hu
- Department of Endocrinology, the Second Affiliated Hospital, 12582Soochow University, Suzhou, China
| | - Hong-Hong Zhang
- Department of Endocrinology, the Second Affiliated Hospital, 12582Soochow University, Suzhou, China.,Clinical Research Center of Neurological Disease, 12582The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
33
|
Fortingo N, Melnyk S, Sutton SH, Watsky MA, Bollag WB. Innate Immune System Activation, Inflammation and Corneal Wound Healing. Int J Mol Sci 2022; 23:14933. [PMID: 36499260 PMCID: PMC9740891 DOI: 10.3390/ijms232314933] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Corneal wounds resulting from injury, surgeries, or other intrusions not only cause pain, but also can predispose an individual to infection. While some inflammation may be beneficial to protect against microbial infection of wounds, the inflammatory process, if excessive, may delay corneal wound healing. An examination of the literature on the effect of inflammation on corneal wound healing suggests that manipulations that result in reductions in severe or chronic inflammation lead to better outcomes in terms of corneal clarity, thickness, and healing. However, some acute inflammation is necessary to allow efficient bacterial and fungal clearance and prevent corneal infection. This inflammation can be triggered by microbial components that activate the innate immune system through toll-like receptor (TLR) pathways. In particular, TLR2 and TLR4 activation leads to pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) activation. Similarly, endogenous molecules released from disrupted cells, known as damage-associated molecular patterns (DAMPs), can also activate TLR2, TLR4 and NFκB, with the resultant inflammation worsening the outcome of corneal wound healing. In sterile keratitis without infection, inflammation can occur though TLRs to impact corneal wound healing and reduce corneal transparency. This review demonstrates the need for acute inflammation to prevent pathogenic infiltration, while supporting the idea that a reduction in chronic and/or excessive inflammation will allow for improved wound healing.
Collapse
Affiliation(s)
- Nyemkuna Fortingo
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Samuel Melnyk
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Sarah H. Sutton
- Department of Medical Illustration, Augusta University, Augusta, GA 30907, USA
| | - Mitchell A. Watsky
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
34
|
Mukherjee R, Somovilla VJ, Chiodo F, Bruijns S, Pieters RJ, Garssen J, van Kooyk Y, Kraneveld AD, van Bergenhenegouwen J. Human Milk Oligosaccharide 2'-Fucosyllactose Inhibits Ligand Binding to C-Type Lectin DC-SIGN but Not to Langerin. Int J Mol Sci 2022; 23:ijms232314745. [PMID: 36499067 PMCID: PMC9737664 DOI: 10.3390/ijms232314745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Human milk oligosaccharides (HMOs) and their most abundant component, 2'-Fucosyllactose (2'-FL), are known to be immunomodulatory. Previously, it was shown that HMOs and 2'-FL bind to the C-type lectin receptor DC-SIGN. Here we show, using a ligand-receptor competition assay, that a whole mixture of HMOs from pooled human milk (HMOS) and 2'-FL inhibit the binding of the carbohydrate-binding receptor DC-SIGN to its prototypical ligands, fucose and the oligosaccharide Lewis-B, (Leb) in a dose-dependent way. Interestingly, such inhibition by HMOS and 2'-FL was not detected for another C-type lectin, langerin, which is evolutionarily similar to DC-SIGN. The cell-ligand competition assay using DC-SIGN expressing cells confirmed that 2'-FL inhibits the binding of DC-SIGN to Leb. Molecular dynamic (MD) simulations show that 2'-FL exists in a preorganized bioactive conformation before binding to DC-SIGN and this conformation is retained after binding to DC-SIGN. Leb has more flexible conformations and utilizes two binding modes, which operate one at a time via its two fucoses to bind to DC-SIGN. Our hypothesis is that 2'-FL may have a reduced entropic penalty due to its preorganized state, compared to Leb, and it has a lower binding enthalpy, suggesting a better binding to DC-SIGN. Thus, due to the better binding to DC-SIGN, 2'-FL may replace Leb from its binding pocket in DC-SIGN. The MD simulations also showed that 2'-FL does not bind to langerin. Our studies confirm 2'-FL as a specific ligand for DC-SIGN and suggest that 2'-FL can replace other DC-SIGN ligands from its binding pocket during the ligand-receptor interactions in possible immunomodulatory processes.
Collapse
Affiliation(s)
- Reshmi Mukherjee
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
- Division of Chemical Biology and Drug Discovery, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
- Correspondence: (R.M.); (A.D.K.); Tel.: +31-686-088-526 (R.M.); +31-30-2534-509 (A.D.K.)
| | - Victor J. Somovilla
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Infection and Immunity Research Institute, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Sven Bruijns
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Infection and Immunity Research Institute, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Roland J. Pieters
- Division of Chemical Biology and Drug Discovery, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Infection and Immunity Research Institute, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
- Correspondence: (R.M.); (A.D.K.); Tel.: +31-686-088-526 (R.M.); +31-30-2534-509 (A.D.K.)
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
35
|
Chiang MC, Chern E. Ocular surface microbiota: Ophthalmic infectious disease and probiotics. Front Microbiol 2022; 13:952473. [PMID: 36060740 PMCID: PMC9437450 DOI: 10.3389/fmicb.2022.952473] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, increasing studies have emphasized the importance of commensal bacteria in humans, including microbiota in the oral cavity, gut, vagina, or skin. Ocular surface microbiota (OSM) is gaining great importance as new methodologies for bacteria DNA sequencing have been published. This review outlines the current understanding and investigation of OSM and introduces the new concept of the gut–eye axis. Moreover, we have collected current studies that focus on the relationship between ophthalmic infectious disease and alterations in the OSM or human gut microbiota. Finally, we discuss the current application of probiotics in ophthalmic infectious disease, its limitations to date, and futural directions.
Collapse
Affiliation(s)
- Ming-Cheng Chiang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Edward Chern
| |
Collapse
|
36
|
Chowdhury AA, Godbole NM, Chataut N, Kosanke S, Rodgers K, Awasthi S. Effects of SPA4 peptide on lipopolysaccharide-disrupted lung epithelial barrier, injury, and function in a human cell system and mouse model of lung injury. Physiol Rep 2022; 10:e15353. [PMID: 35838161 PMCID: PMC9284632 DOI: 10.14814/phy2.15353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 05/03/2023] Open
Abstract
Disrupted epithelial barrier, fluid accumulation, inflammation, and compromised physiology are hallmarks of lung injury. Here we investigated the structural stability of the Toll-like receptor-4 (TLR4)-interacting SPA4 peptide, its effect on Pseudomonas aeruginosa lipopolysaccharide (LPS)-disrupted epithelial barrier in a human cell system, and lung injury markers in a mouse model of LPS-induced lung inflammation. The structural properties of SPA4 peptide were investigated using circular dichroism and UV-VIS spectroscopy. The transepithelial electrical resistance (TEER), an indicator of barrier function, was measured after the cells were challenged with 1 μg/ml LPS and treated with 10 or 100 μM SPA4 peptide. The expression and localization of tight junction proteins were studied by immunoblotting and immunocytochemistry, respectively. Mice were intratracheally challenged with 5 μg LPS per g body weight and treated with 50 μg SPA4 peptide. The lung wet/dry weight ratios or edema, surfactant protein-D (SP-D) levels in serum, lung function, tissue injury, body weights, and temperature, and survival were determined as study parameters. The spectroscopy results demonstrated that the structure was maintained among different batches of SPA4 peptide throughout the study. Treatment with 100 μM SPA4 peptide restored the LPS-disrupted epithelial barrier, which correlated with the localization pattern of Zonula Occludens (ZO)-1 and occludin proteins. Correspondingly, SPA4 peptide treatment helped suppress the lung edema and levels of serum SP-D, improved some of the lung function parameters, and reduced the mortality risk against LPS challenge. Our results suggest that the anti-inflammatory activity of the SPA4 peptide facilitates the resolution of lung pathology.
Collapse
Affiliation(s)
- Asif Alam Chowdhury
- Department of Pharmaceutical SciencesUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Nachiket M. Godbole
- Department of Pharmaceutical SciencesUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Neha Chataut
- Department of Pharmaceutical SciencesUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Stanley Kosanke
- Division of Comparative MedicineUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Karla Rodgers
- Department of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Shanjana Awasthi
- Department of Pharmaceutical SciencesUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| |
Collapse
|
37
|
Electroacupuncture at Zusanli Alleviates Sepsis by Regulating the TLR4-MyD88-NF-Kappa B Pathway and Diversity of Intestinal Flora. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6706622. [PMID: 35722155 PMCID: PMC9205730 DOI: 10.1155/2022/6706622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Background Electroacupuncture (EA) at the Zusanli acupoint (ST36) has shown therapeutic potential for sepsis due to its ability to limit inflammation and to regulate gastrointestinal tract symptoms. However, the mechanisms contributing to the effects of EA at ST36 on sepsis and connections with the intestinal flora remain unclear. This study was designed to explore the effects of EA at ST36 on Toll-like receptor 4 signaling and the intestinal flora. Methods ICR mice were randomly divided into 4 groups: control group, model group, EA group, and sham EA group. EA at ST36 was performed at 2.5 mA and 2 to 100 Hz, and the 30 min of dense wave was achieved over 5 days. A sepsis model was built by intraperitoneal injection of lipopolysaccharide (LPS, 10 mg/mL). The levels of expression of interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), and IL-10 were detected by enzyme-linked immunosorbent assays, and lactate dehydrogenase (LDH) levels in serum were measured by biochemical tests. Expression levels of Bax, Bcl2, cleaved caspase-3, Toll-like receptor (TLR4), nuclear factor-kappa B (NF-κB), and myeloid differentiation factor 88 (MyD88) were assessed by the Western blotting. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining was used to evaluate apoptosis. The intestinal microecology was assessed via 16S rRNA gene sequencing. Results EA at ST36 reduced the expression of IL-1β, IL-6, and TNF-α and increased the expression of IL-10 to inhibit the inflammatory response. EA at ST36 also inhibited apoptosis, as measured by TUNEL staining, and decreased the Bax/Bcl2 ratio and levels of caspase-3 and cleaved caspase-3, as well as LDH release. Our results suggest that alleviation of sepsis may correlate with the downregulation of levels of TLR4, NF-κB, and MyD88. Importantly, EA at ST36 improved the diversity of the intestinal flora and increased the abundance of Firmicutes and Actinobacteria. Conclusion. EA at ST36 prevented sepsis from worsening by inhibiting inflammation and apoptosis, which correlated with the regulation of the TLR4/NF-κB/MyD88 signaling axis and modulation of the intestinal flora.
Collapse
|
38
|
Zhang Y, Li H, Wang C, Lv H, Fu S. Toll like receptor 4 gene Asp299Gly polymorphism increases the risk of diabetic microvascular complications: a meta analysis. Diabetol Metab Syndr 2022; 14:79. [PMID: 35672795 PMCID: PMC9172045 DOI: 10.1186/s13098-022-00849-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/29/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE The relationship between Toll like receptor 4(TLR4) gene Asp299Gly polymorphism and diabetic microvascular complications (DMI) is unclear. Therefore, the aim of this meta analysis was to explore the relationship between TLR4 Asp299Gly polymorphism and DMI. METHODS System search PubMed, Web of science, Springer, Cochrane library, ELSEVIER, Wanfang database, VIP, CNKI, a case-control study of the correlation between TLR4 gene Asp299Gly polymorphism and DMI published before June 2020 was collected. RESULTS We included 6 articles, a total of 11 studies involving patients with type 2 diabetes mellitus (T2DM) complicated by microvascular complications 1834 cases, without corresponding microvascular complications 4069 cases. TLR4 gene Asp299Gly polymorphism increased the risk of microvascular complications in T2DM (dominant model OR = 1.52, 95% CI 1.10-2.09, p = 0.01; allelic model OR = 1.42, 95% CI 1.02-1.96, p = 0.04). Subgroup analysis by race and different type of microvascular complications, we found that TLR4 gene Asp299Gly polymorphism was associated with increased risk of microvascular complications in the Caucasian population (dominant model OR = 1.69, 95% CI 1.22-2.35, P = 0.002; allelic model OR = 1.56, 95% CI 1.10-2.21, P = 0.01) and increased the risk of retinopathy in patients with T2DM(dominant model OR = 1.81, 95% CI 1.04-3.14, P = 0.03; allelic model OR = 1.77, 95% CI 1.05-2.98, P = 0.03). CONCLUSION TLR4 gene Asp299Gly polymorphism was associated with increased risk of microvascular complications in patients with T2DM, especially diabetic retinopathy (DR).
Collapse
Affiliation(s)
- Yuqi Zhang
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000 Gansu People’s Republic of China
| | - Huanhuan Li
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000 Gansu People’s Republic of China
| | - Chenyi Wang
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000 Gansu People’s Republic of China
| | - Haihong Lv
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu People’s Republic of China
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu People’s Republic of China
| |
Collapse
|
39
|
Macrophage NOX2 NADPH oxidase maintains alveolar homeostasis in mice. Blood 2022; 139:2855-2870. [PMID: 35357446 PMCID: PMC9101249 DOI: 10.1182/blood.2021015365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
The leukocyte NADPH oxidase 2 (NOX2) plays a key role in pathogen killing and immunoregulation. Genetic defects in NOX2 result in chronic granulomatous disease (CGD), associated with microbial infections and inflammatory disorders, often involving the lung. Alveolar macrophages (AMs) are the predominant immune cell in the airways at steady state, and limiting their activation is important, given the constant exposure to inhaled materials, yet the importance of NOX2 in this process is not well understood. In this study, we showed a previously undescribed role for NOX2 in maintaining lung homeostasis by suppressing AM activation, in CGD mice or mice with selective loss of NOX2 preferentially in macrophages. AMs lacking NOX2 had increased cytokine responses to Toll-like receptor-2 (TLR2) and TLR4 stimulation ex vivo. Moreover, between 4 and 12 week of age, mice with global NOX2 deletion developed an activated CD11bhigh subset of AMs with epigenetic and transcriptional profiles reflecting immune activation compared with WT AMs. The presence of CD11bhigh AMs in CGD mice correlated with an increased number of alveolar neutrophils and proinflammatory cytokines at steady state and increased lung inflammation after insults. Moreover, deletion of NOX2 preferentially in macrophages was sufficient for mice to develop an activated CD11bhigh AM subset and accompanying proinflammatory sequelae. In addition, we showed that the altered resident macrophage transcriptional profile in the absence of NOX2 is tissue specific, as those changes were not seen in resident peritoneal macrophages. Thus, these data demonstrate that the absence of NOX2 in alveolar macrophages leads to their proinflammatory remodeling and dysregulates alveolar homeostasis.
Collapse
|
40
|
Ortiz-Lopez LI, Choudhary V, Bollag WB. Updated Perspectives on Keratinocytes and Psoriasis: Keratinocytes are More Than Innocent Bystanders. PSORIASIS (AUCKLAND, N.Z.) 2022; 12:73-87. [PMID: 35529056 PMCID: PMC9075909 DOI: 10.2147/ptt.s327310] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/08/2022] [Indexed: 02/02/2023]
Abstract
Psoriasis is a complex disease triggered by genetic, immunologic, and environmental stimuli. Many genes have been linked to psoriasis, like the psoriasis susceptibility genes, some of which are critical in keratinocyte biology and epidermal barrier function. Still, the exact pathogenesis of psoriasis is unknown. In the disease, the balance between the proliferative and differentiative processes of keratinocytes becomes altered. Multiple studies have highlighted the role of dysregulated immune cells in provoking the inflammatory responses seen in psoriasis. In addition to immune cells, accumulating evidence shows that keratinocytes are involved in psoriasis pathogenesis, as discussed in this review. Although certain immune cell-derived factors stimulate keratinocyte hyperproliferation, activated keratinocytes can also produce anti-microbial peptides, cytokines, and chemokines that can promote their proliferation, as well as recruit immune cells to help initiate and reinforce inflammatory feedback loops. Psoriatic keratinocytes also show intrinsic differences from normal keratinocytes even after removal from the in vivo inflammatory environment; thus, psoriatic keratinocytes have been found to exhibit abnormal calcium metabolism and possible epigenetic changes that contribute to psoriasis. The Koebner phenomenon, in which injury promotes the development of psoriatic lesions, also provides evidence for keratinocytes' contributions to disease pathogenesis. Furthermore, transgenic mouse studies have confirmed the importance of keratinocytes in the etiology of psoriasis. Finally, in addition to immune cells and keratinocytes, data in the literature support roles for other cell types, tissues, and systems in psoriasis development. These other contributors are all potential targets for therapies, suggesting the importance of a holistic approach when treating psoriasis.
Collapse
Affiliation(s)
- Laura I Ortiz-Lopez
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Vivek Choudhary
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Wendy B Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
- Department of Dermatology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
41
|
Thomas JHL, Lui L, Abell A, Tieu W, Somogyi AA, Bajic JE, Hutchinson MR. Toll-like receptors change morphine-induced antinociception, tolerance and dependence: Studies using male and female TLR and signalling gene KO mice. Brain Behav Immun 2022; 102:71-85. [PMID: 35131445 DOI: 10.1016/j.bbi.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/22/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLR) have been proposed as a site of action that alters opioid pharmacodynamics. However, a comprehensive assessment of acute opioid antinociception, tolerance and withdrawal behaviours in genetic null mutant strains with altered innate immune signalling has not been performed. Nor has the impact of genetic deletion of TLR2/4 on high-affinity opioid receptor binding. Here we show that diminished TLR signalling potentiates acute morphine antinociception equally in male and female mice. However, only male TIR8 null mutant mice showed reduced morphine analgesia. Analgesic tolerance was prevented in TLR2 and TLR4 null mutants, but not MyD88 animals. Withdrawal behaviours were only protected in TLR2-/- mice. In silico docking simulations revealed opioid ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. There was no binding of [3H](-)-naloxone or [3H]diprenorphine to TLR4 in the concentrations explored. These data confirm that opioids have high efficacy activity at innate immune pattern recognition binding sites but do not bind to TLR4 and identify critical pathway and sex-specific effects of the complex innate immune signalling contributions to opioid pharmacodynamics. These data further support the behavioural importance of the TLR-opioid interaction but fail to demonstrate direct evidence for high-affinity binding of the TLR4 signalling complex to ligands.
Collapse
Affiliation(s)
- Jacob H L Thomas
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Discipline of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Liang Lui
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew Abell
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; ARC Centre for Nanoscale BioPhotonics, University of Adelaide, SA 5005, Australia
| | - William Tieu
- Discipline of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew A Somogyi
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Juliana E Bajic
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; ARC Centre for Nanoscale BioPhotonics, University of Adelaide, SA 5005, Australia
| | - Mark R Hutchinson
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; ARC Centre for Nanoscale BioPhotonics, University of Adelaide, SA 5005, Australia.
| |
Collapse
|
42
|
Prenatal and adolescent alcohol exposure programs immunity across the lifespan: CNS-mediated regulation. Pharmacol Biochem Behav 2022; 216:173390. [PMID: 35447157 DOI: 10.1016/j.pbb.2022.173390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022]
Abstract
For many individuals, first exposure to alcohol occurs either prenatally due to maternal drinking, or during adolescence, when alcohol consumption is most likely to be initiated. Prenatal Alcohol Exposure (PAE) and its associated Fetal Alcohol Spectrum Disorders (FASD) in humans is associated with earlier initiation of alcohol use and increased rates of Alcohol Use Disorders (AUD). Initiation of alcohol use and misuse in early adolescence correlates highly with later AUD diagnosis as well. Thus, PAE and adolescent binge drinking set the stage for long-term health consequences due to adverse effects of alcohol on subsequent immune function, effects that may persist across the lifespan. The overarching goal of this review, therefore, is to determine the extent to which early developmental exposure to alcohol produces long-lasting, and potentially life-long, changes in immunological function. Alcohol affects the whole body, yet most studies are narrowly focused on individual features of immune function, largely ignoring the systems-level interactions required for effective host defense. We therefore emphasize the crucial role of the Central Nervous System (CNS) in orchestrating host defense processes. We argue that alcohol-mediated disruption of host immunity can occur through both (a) direct action of ethanol on neuroimmune processes, that subsequently disrupt peripheral immune function (top down); and (b) indirect action of ethanol on peripheral immune organs/cells, which in turn elicit consequent changes in CNS neuroimmune function (bottom up). Recognizing that alcohol consumption across the entire body, we argue in favor of integrative, whole-organism approaches toward understanding alcohol effects on immune function, and highlight the need for more work specifically examining long-lasting effects of early developmental exposure to alcohol (prenatal and adolescent periods) on host immunity.
Collapse
|
43
|
Ghosh M, Basak S, Dutta S. Natural selection shaped the evolution of amino acid usage in mammalian toll like receptor genes. Comput Biol Chem 2022; 97:107637. [DOI: 10.1016/j.compbiolchem.2022.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/09/2021] [Accepted: 01/30/2022] [Indexed: 11/03/2022]
|
44
|
Miao Y, Niu D, Wang Z, Wang J, Wu Z, Bao J, Jin X, Li R, Ishfaq M, Li J. Methylsulfonylmethane ameliorates inflammation via NF-κB and ERK/JNK-MAPK signaling pathway in chicken trachea and HD11 cells during Mycoplasma gallisepticum infection. Poult Sci 2022; 101:101706. [PMID: 35121233 PMCID: PMC9024008 DOI: 10.1016/j.psj.2022.101706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 01/01/2023] Open
Abstract
Mycoplasma gallisepticum (MG) is an avian pathogen that commonly causes respiratory diseases in poultry. Methylsulfonylmethane (MSM) is a sulfur-containing natural compound that could alleviate inflammatory injury through its excellent anti-inflammatory and antioxidant properties. However, it is still unclear whether MSM prevents MG infection. The purpose of this study is to determine whether MSM has mitigative effects on MG-induced inflammatory injury in chicken and chicken like macrophages (HD11 cells). In this research, White Leghorn chickens and HD11 cells were used to build the MG-infection model. Besides, the protective effects of MSM against MG infection were evaluated by detecting MG colonization, histopathological changes, oxidative stress and inflammatory injury of trachea, and HD11 cells. The results revealed that MG infection induced inflammatory injury and oxidative stress in trachea and HD11 cells. However, MSM treatment significantly ameliorated oxidative stress, partially alleviated the abnormal morphological changes and reduced MG colonization under MG infection. Moreover, MSM reduced the mRNA expression of proinflammatory cytokines-related genes and decreased the number of death cells under MG infection. Importantly, the protective effects of MSM were associated with suppression of nuclear factor-kappa B (NF-κB) and extracellular signal-related kinases (ERK)/Jun amino terminal kinases (JNK)-mitogen-activated protein kinases (MAPK) pathway in trachea and HD11 cells. These results proved that MSM has protective effects on MG-induced inflammation in chicken, and supplied a better strategy for the protective intervention of this disease.
Collapse
Affiliation(s)
- Yusong Miao
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Dong Niu
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Ze Wang
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Jian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Jiaxin Bao
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Xiaodi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Xiangfang District, Harbin 150030, P. R. China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Xiangfang District, Harbin 150030, P. R. China.
| |
Collapse
|
45
|
Yang G, Zhang X. Trimethylamine N-oxide promotes hyperlipidemia acute pancreatitis via inflammatory response. Can J Physiol Pharmacol 2022; 100:61-67. [PMID: 34793682 DOI: 10.1139/cjpp-2021-0421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Trimethylamine N-oxide (TMAO), a metabolite of gut microbiota, is involved in the regulation of lipid metabolism and inflammatory response; however, the role of TMAO in hyperlipidemia acute pancreatitis (HAP) is not clear. In this study, HAP mice were used as an animal model to explore the effects and possible mechanism of TMAO on HAP, which may provide new ideas for the treatment of HAP. Results found that the levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol, nonestesterified fatty acid, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, α-amylase, TMAO, and flavin-containing monooxygenase 3 were significantly increased, the levels of high-density lipoprotein cholesterol and insulin were significantly decreased, and there was an obvious pancreatic injury and inflammatory response in the model group. The choline analogue 3,3-dimethyl-1-butanol (DMB) treatment reversed the changes of serum biochemical parameters, alleviated the pancreatic tissue injury, and reduced the levels of inflammatory cytokines. Further studies of toll-like receptor (TLR)/p-glycoprotein 65 (p65) pathway found that the expressions of TLR2, TLR4, and p-p65/p65 in the model group were significantly increased, which was more obvious after Escherichia coli (Migula) Castellani & Chalmers treatment, while activation of the TLR/p65 pathway was inhibited by DMB. The results indicated that TMAO promotes HAP by promoting inflammatory response through TLR/p65 signaling pathway, suggesting that TMAO may be a potential target of HAP.
Collapse
Affiliation(s)
- Guodong Yang
- Department of Gastroenterology and Hepatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xiaoying Zhang
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| |
Collapse
|
46
|
Kim HJ, Lee EH, Lim YH, Jeong D, Na HS, Jung Y. Pathophysiological Role of TLR4 in Chronic Relapsing Itch Induced by Subcutaneous Capsaicin Injection in Neonatal Rats. Immune Netw 2022; 22:e20. [PMID: 35573151 PMCID: PMC9066010 DOI: 10.4110/in.2022.22.e20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/01/2022] Open
Abstract
Despite the high prevalence of chronic dermatitis and the accompanied intractable itch, therapeutics that specifically target itching have low efficacy. Increasing evidence suggests that TLRs contribute to immune activation and neural sensitization; however, their roles in chronic itch remain elusive. Here, we show that the RBL-2H3 mast cell line expresses TLR4 and that treatment with a TLR4 antagonist opposes the LPS dependent increase in mRNA levels of Th2 and innate cytokines. The pathological role of TLR4 activation in itching was studied in neonate rats that developed chronic itch due to neuronal damage after receiving subcutaneous capsaicin injections. Treatment with a TLR4 antagonist protected these rats with chronic itch against scratching behavior and chronic dermatitis. TLR4 antagonist treatment also restored the density of cutaneous nerve fibers and inhibited the histopathological changes that are associated with mast cell activation after capsaicin injection. Additionally, the expression of IL-1β, IL-4, IL-5, IL-10, and IL-13 mRNA in the lesional skin decreased after TLR4 antagonist treatment. Based on these data, we propose that inhibiting TLR4 alleviated itch in a rat model of chronic relapsing itch, and the reduction in the itch was associated with TLR4 signaling in mast cells and nerve fibers.
Collapse
Affiliation(s)
- Hee Joo Kim
- Department of Dermatology, Gachon Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Korea
| | - Eun-Hui Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Korea
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
| | - Yoon Hee Lim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Korea
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
| | - Dongil Jeong
- Department of Dermatology, Gachon Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Heung Sik Na
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - YunJae Jung
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Korea
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, Korea
| |
Collapse
|
47
|
Miao Y, Niu D, Wang Z, Wang J, Wu Z, Bao J, Hu W, Guo Y, Li R, Ishfaq M, Li J. Mycoplasma gallisepticum induced inflammation-mediated Th1/Th2 immune imbalance via JAK/STAT signaling pathway in chicken trachea: Involvement of respiratory microbiota. Vet Microbiol 2022; 265:109330. [PMID: 34995932 DOI: 10.1016/j.vetmic.2021.109330] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 01/09/2023]
Abstract
The respiratory microbiota plays a significant role in the host defense against Mycoplasma gallisepticum (MG) infection. The results showed that MG infection changed respiratory microbiota composition, which lead to the tracheal inflammation injury and oxidative stress. MG infection significantly induced immunosuppression in chickens at day 3 and 5 post-infection. In addition, MG infection increased the expressions of pro-inflammatory cytokines in tracheal tissues and activated TLR4 mediated JAK/STAT signaling pathway at day 3 post-infection compared to the control group. Meanwhile, the expressions of pro-inflammatory cytokines were decreased and the expressions of JAK/STAT signaling pathway were decreased at day 5 and day 7 post-infection. On the contrary, the expressions of anti-inflammatory cytokines were significantly decreased at day 3 post-infection and were increased at day 5 and day 7 post-infection in the MG infection group. The antibiotic cocktail group received the respiratory microbiota from the MG infection group, which induced inflammatory injury and oxidative stress, induced mucosal barrier damage by down regulating tight junction-related genes and altered the expressions of mucin, which could be the possible causes of dysregulated immune responses. Importantly, the expressions of pro-inflammatory cytokines were significantly decreased and TLR4 mediated JAK/STAT signaling pathway was downregulated at day 1 and 3 post-transplantation. While, respiratory microbiota transplanted from MG infection significantly increased the expressions of pro-inflammatory cytokines and activated JAK/STAT signaling at day 7 post-transplantation. These results highlighted the role of respiratory microbiota in MG-induced tracheal inflammation injury, and offered a new strategy for the preventive intervention of this disease.
Collapse
Affiliation(s)
- Yusong Miao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Dong Niu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Ze Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Jian Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Jiaxin Bao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Wanying Hu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Yuquan Guo
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Muhammad Ishfaq
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; College of Computer Science, Huanggang Normal University, Huanggang 438000, PR China.
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China.
| |
Collapse
|
48
|
Yildirim S, Ozkan A, Aytac G, Agar A, Tanriover G. Role of melatonin in TLR4-mediated inflammatory pathway in the MTPT-induced mouse model. Neurotoxicology 2021; 88:168-177. [PMID: 34808223 DOI: 10.1016/j.neuro.2021.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022]
Abstract
Neuroinflammation has an essential role in various neurodegenerative diseases including Parkinson's disease (PD). Microglial activation as a result of neuroinflammation exacerbates the pathological consequences of the disease. The toxic effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes alpha-synuclein (α-synuclein) accumulation, which leads to dopaminergic neuron death in the MPTP-induced mouse model. Toll-like receptor 4 (TLR4) stimulates release of cytokine through NF-kB by activating glial cells, thus resulting in the death of dopaminergic neurons. Melatonin has the ability to cross the blood-brain barrier and protect neurons through anti-inflammatory properties. We hypothesized that melatonin could suppress TLR4-mediated neuroinflammation, decrease cytokine release due to the inflammatory response, and reduce dopaminergic neuron loss in the MPTP-induced mouse model. In the MPTP-induced mouse model, we aimed to assess the neuroinflammatory responses caused by TLR4 activation as well as the effect of melatonin on these responses. Three-month-old male C57BL/6 mice were randomly divided into five groups; Control (Group-C), Sham (Group-S), Melatonin-treated (Group-M), MPTP-injected (Group-P), and MPTP + melatonin-injected (Group-P + M). MPTP toxin (20 mg/kg) was dissolved in saline and intraperitoneally (i.p.) injected to mice for two days with 12 h intervals. The total dose per mouse was 80 mg/kg. Melatonin was administered (20 mg/kg) intraperitoneally to Group-M and Group-P + M twice a day for five days. Eight days after starting the experiment, the motor activities of mice were evaluated by locomotor activity tests. The effects on dopamine neurons in the SNPc was determined by tyrosine hydroxylase (TH) immunohistochemistry. TLR4, α-synuclein, and p65 expression was evaluated by immunostaining as well. The amount of TNF-alpha in the total brain was evaluated by western blot analysis. In our results seen that locomotor activity was lower in Group-P compared to Group-C. However, melatonin administration was improved this impairment. MPTPcaused decrease in TH immuno-expression in dopaminergic neurons in Group-P. TLR4 (p < 0.001), α-synuclein (p < 0.001), and p65 (p < 0.01) immuno-expressions were also decreased in Group-P+M compared to Group-P (using MPTP). TNF-α expression was lower in Group-C, Group-S, Group-M, and Group-P+M, when compared to Group-P (p < 0.0001) due to the absence of inflammatory response. In conclusion, our study revealed that melatonin administration reduced α-synuclein aggregation and TLR4-mediated inflammatory response in the MPTP-induced mouse model.
Collapse
Affiliation(s)
- Sendegul Yildirim
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey
| | - Ayse Ozkan
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Gunes Aytac
- TOBB University of Economics & Technology, Faculty of Medicine, Department of Anatomy, Ankara, Turkey; University of Hawai'i at Mānoa, John A. Burns School of Medicine, Department of Anatomy, Biochemistry & Physiology, Hawaii, USA
| | - Aysel Agar
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Gamze Tanriover
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey; Akdeniz University, Faculty of Medicine, Department of Medical Biotechnology, Antalya, Turkey.
| |
Collapse
|
49
|
Hebbel RP, Vercellotti GM. Multiple inducers of endothelial NOS (eNOS) dysfunction in sickle cell disease. Am J Hematol 2021; 96:1505-1517. [PMID: 34331722 PMCID: PMC9292023 DOI: 10.1002/ajh.26308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
A characteristic aspect of the robust, systemic inflammatory state in sickle cell disease is dysfunction of endothelial nitric oxide synthase (eNOS). We identify 10 aberrant endothelial cell inputs, present in the specific sickle context, that are known to have the ability to cause eNOS dysfunction. These are: endothelial arginase depletion, asymmetric dimethylarginine, complement activation, endothelial glycocalyx degradation, free fatty acids, inflammatory mediators, microparticles, oxidized low density lipoproteins, reactive oxygen species, and Toll‐like receptor 4 signaling ligands. The effect of true eNOS dysfunction on clinical testing using flow‐mediated dilation can be simulated by two known examples of endothelial dysfunction mimicry (hemoglobin consumption of NO; and oxidation of smooth muscle cell soluble guanylate cyclase). This lends ambiguity to interpretation of such clinical testing. The presence of these multiple perturbing factors argues that a therapeutic approach targeting only a single injurious endothelial input (or either example of mimicry) would not be sufficiently efficacious. This would seem to argue for identifying therapeutics that directly protect eNOS function or application of multiple therapeutic approaches.
Collapse
Affiliation(s)
- Robert P. Hebbel
- Division of Hematology‐Oncology‐Transplantation, Department of Medicine University of Minnesota Medical School Minneapolis Minnesota USA
| | - Gregory M. Vercellotti
- Division of Hematology‐Oncology‐Transplantation, Department of Medicine University of Minnesota Medical School Minneapolis Minnesota USA
| |
Collapse
|
50
|
Danielsen PH, Bendtsen KM, Knudsen KB, Poulsen SS, Stoeger T, Vogel U. Nanomaterial- and shape-dependency of TLR2 and TLR4 mediated signaling following pulmonary exposure to carbonaceous nanomaterials in mice. Part Fibre Toxicol 2021; 18:40. [PMID: 34717665 PMCID: PMC8557558 DOI: 10.1186/s12989-021-00432-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
Background Pulmonary exposure to high doses of engineered carbonaceous nanomaterials (NMs) is known to trigger inflammation in the lungs paralleled by an acute phase response. Toll-like receptors (TLRs), particularly TLR2 and TLR4, have recently been discussed as potential NM-sensors, initiating inflammation. Using Tlr2 and Tlr4 knock out (KO) mice, we addressed this hypothesis and compared the pattern of inflammation in lung and acute phase response in lung and liver 24 h after intratracheal instillation of three differently shaped carbonaceous NMs, spherical carbon black (CB), multi-walled carbon nanotubes (CNT), graphene oxide (GO) plates and bacterial lipopolysaccharide (LPS) as positive control.
Results The LPS control confirmed a distinct TLR4-dependency as well as a pronounced contribution of TLR2 by reducing the levels of pulmonary inflammation to 30 and 60% of levels in wild type (WT) mice. At the doses chosen, all NM caused comparable neutrophil influxes into the lungs of WT mice, and reduced levels were only detected for GO-exposed Tlr2 KO mice (35%) and for CNT-exposed Tlr4 KO mice (65%). LPS-induced gene expression was strongly TLR4-dependent. CB-induced gene expression was unaffected by TLR status. Both GO and MWCNT-induced Saa1 expression was TLR4-dependent. GO-induced expression of Cxcl2, Cxcl5, Saa1 and Saa3 were TLR2-dependent. NM-mediated hepatic acute phase response in terms of liver gene expression of Saa1 and Lcn2 was shown to depend on TLR2 for all three NMs. TLR4, in contrast, was only relevant for the acute phase response caused by CNTs, and as expected by LPS. Conclusion TLR2 and TLR4 signaling was not involved in the acute inflammatory response caused by CB exposure, but contributed considerably to that of GO and CNTs, respectively. The strong involvement of TLR2 in the hepatic acute phase response caused by pulmonary exposure to all three NMs deserves further investigations. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00432-z.
Collapse
Affiliation(s)
| | | | | | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD) Helmholtz Zentrum München, Neuherberg, Germany
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark. .,DTU Food, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|