1
|
Cui X, Liu W, Jiang H, Zhao Q, Hu Y, Tang X, Liu X, Dai H, Rui H, Liu B. IL-12 family cytokines and autoimmune diseases: A potential therapeutic target? J Transl Autoimmun 2025; 10:100263. [PMID: 39759268 PMCID: PMC11697604 DOI: 10.1016/j.jtauto.2024.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025] Open
Abstract
In recent years, the discovery of IL-12 family cytokines, which includes IL-12, IL-23, IL-27, IL-35, and IL-39, whose biological functions directly or indirectly affect various autoimmune diseases. In autoimmune diseases, IL-12 family cytokines are aberrantly expressed to varying degrees. These cytokines utilize shared subunits to influence T-cell activation and differentiation, thereby regulating the balance of T-cell subsets, which profoundly impacts the onset and progression of autoimmune diseases. In such conditions, IL-12 family members are aberrantly expressed to varying degrees. By exploring their immunomodulatory functions, researchers have identified varying therapeutic potentials for each member. This review examines the physiological functions of the major IL-12 family members and their interactions, discusses their roles in several autoimmune diseases, and summarizes the progress of clinical studies involving monoclonal antibodies targeting IL-12 and IL-23 subunits currently available for treatment.
Collapse
Affiliation(s)
- Xiaoyu Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Wu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Xinyue Tang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Xianli Liu
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100310, China
| | - Haoran Dai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100310, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
2
|
Jana M, Mondal S, Jana A, Pahan K. Induction of IL-2 by interleukin-12 p40 homodimer and IL-12, but not IL-23, in microglia and macrophages: Implications for multiple sclerosis. Cytokine 2024; 174:156457. [PMID: 38056248 PMCID: PMC10872483 DOI: 10.1016/j.cyto.2023.156457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
The level of IL-2 increases markedly in serum and central nervous system (CNS) of patients with multiple sclerosis (MS) and animals with experimental allergic encephalomyelitis (EAE). However, mechanisms by which IL-2 is induced under autoimmune demyelinating conditions are poorly understood. The present study underlines the importance of IL-12p40 homodimer (p402), the so-called biologically inactive molecule, in inducing the expression of IL-2 in mouse BV-2 microglial cells, primary mouse and human microglia, mouse peritoneal macrophages, RAW264.7 macrophages, and T cells. Interestingly, we found that p402 and IL-12p70 (IL-12), but not IL-23, dose-dependently induced the production of IL-2 and the expression of IL-2 mRNA in microglial cells. Similarly, p402 also induced the activation of IL-2 promoter in microglial cells and RAW264.7 cells. Among various stimuli tested, p402 was the most potent stimulus followed by IFN-γ, bacterial lipopolysaccharide, HIV-1 gp120, and IL-12 in inducing the activation of IL-2 promoter in microglial cells. Moreover, p402, but not IL-23, increased NFATc2 mRNA expression and the transcriptional activity of NFAT. Furthermore, induction of IL-2 mRNA expression by over-expression of p40, but not by p19, cDNA indicated that p40, but not p19, is responsible for the induction of IL-2 mRNA in microglia. Finally, by using primary microglia from IL to 12 receptor β1 deficient (IL-12Rβ1-/-) and IL-12 receptor β2 deficient (IL-12Rβ2-/-) mice, we demonstrate that p402 induces the expression of IL-2 via IL-12Rβ1, but not IL-12Rβ2. In experimental autoimmune encephalomyelitis, an animal model of MS, neutralization of p402 by mAb a3-1d led to decrease in clinical symptoms and reduction in IL-2 in T cells and microglia. These results delineate a new biological function of p402, which is missing in the so-called autoimmune cytokine IL-23, and raise the possibility of controlling increased IL-2 and the disease process of MS via neutralization of p402.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Arundhati Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue, Chicago, IL, USA.
| |
Collapse
|
3
|
Ren Z, Zhang H, Yu H, Zhu X, Lin J. Roles of four targets in the pathogenesis of graves' orbitopathy. Heliyon 2023; 9:e19250. [PMID: 37810014 PMCID: PMC10558314 DOI: 10.1016/j.heliyon.2023.e19250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Graves' orbitopathy (GO) is an autoimmune disease that involves complex immune systems. The mainstays of clinical management for this disease are surgery, targeted drugs therapy, and no-targeted drugs drug therapy. targeted drugs can improve therapeutic efficacy and enhance the quality of life for GO patients. However, as a second-line treatment for GO, targeted drugs such as tocilizumab and rituximab have very limited therapeutic effects and may be accompanied by side effects. The introduction of Teprotumumab, which targets IGF-IR, has made significant progress in the clinical management of GO. The pathophysiology of GO still remains uncertain as it involves a variety of immune cells and fibroblast interactions as well as immune responses to relevant disease targets of action. Therfore, learning more about immune response feedback pathways and potential targets of action will assist in the treatment of GO. In this discussion, we explore the pathogenesis of GO and relevant work, and highlight four potential targets for GO: Interleukin-23 receptor (IL-23 R), Leptin receptor (LepR), Orbital fibroblast activating factors, and Plasminogen activator inhibitor-1 (PAI-1). A deeper understanding of the pathogenesis of GO and the role of potential target signaling pathways is crucial for effective treatment of this disease.
Collapse
Affiliation(s)
- Ziqiang Ren
- College of Life Sciences, Yantai University, Shandong, China
- Fengjin Biomedical Co., Ltd, Shandong, China
| | - Hailing Zhang
- College of Life Sciences, Yantai University, Shandong, China
| | - Haiwen Yu
- College of Life Sciences, Yantai University, Shandong, China
| | - Xiqiang Zhu
- Fengjin Biomedical Co., Ltd, Shandong, China
| | - Jian Lin
- College of Life Sciences, Yantai University, Shandong, China
| |
Collapse
|
4
|
Zehra Okus F, Busra Azizoglu Z, Canatan H, Eken A. S1P analogues SEW2871, BAF312 and FTY720 affect human Th17 and Treg generation ex vivo. Int Immunopharmacol 2022; 107:108665. [DOI: 10.1016/j.intimp.2022.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/05/2022]
|
5
|
Czajka-Francuz P, Cisoń-Jurek S, Czajka A, Kozaczka M, Wojnar J, Chudek J, Francuz T. Systemic Interleukins' Profile in Early and Advanced Colorectal Cancer. Int J Mol Sci 2021; 23:124. [PMID: 35008550 PMCID: PMC8745135 DOI: 10.3390/ijms23010124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023] Open
Abstract
Tumor microenvironment (TME) is characterized by mutual interactions of the tumor, stromal and immune cells. Early and advanced colorectal tumors differ in structure and present altered serum cytokine levels. Mutual crosstalk among TME infiltrating cells may shift the balance into immune suppressive or pro-inflammatory, antitumor response this way influencing patients' prognosis. Cancer-related inflammation affects all the body and this way, the systemic level of cytokines could reflect TME processes. Despite numerous studies, it is still not known how systemic cytokines levels change during colorectal cancer (CRC) tumor development. Better understanding tumor microenvironment processes could help in planning therapeutic interventions and more accurate patient prognosis. To contribute to the comprehension of these processes within TME, we reviewed cytokines levels from clinical trials in early and advanced colorectal cancer. Presented data were analyzed in the context of experimental studies and studies analyzing tumor infiltration with immune cells. The review summarizes clinical data of cytokines secreted by tumor microenvironment cells: lymphocytes T helper 1 (Th1), lymphocytes T helper 2 (Th2), lymphocytes T helper 17 (Th17), regulatory T cells (Treg cells), regulatory T cells (Breg cells), M1/M2 macrophages, N1/N2 neutrophils, myeloid-derived suppressor cells (MDSC), dendritic cells (DC), innate lymphoid cells (ILC) natural killer (NK) cells and tumor cells.
Collapse
Affiliation(s)
- Paulina Czajka-Francuz
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Sylwia Cisoń-Jurek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Aleksander Czajka
- Department of General Surgery, Vascular Surgery, Angiology and Phlebology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Maciej Kozaczka
- Department of Radiotherapy and Chemotherapy, National Institute of Oncology, Public Research Institute in Gliwice, 44-101 Gliwice, Poland;
| | - Jerzy Wojnar
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Tomasz Francuz
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
6
|
Huang J, Wang L, Yu C, Fu Z, Liu C, Zhang H, Wang K, Guo X, Wang J. Characterization of a reliable cell-based reporter gene assay for measuring bioactivities of therapeutic anti-interleukin-23 monoclonal antibodies. Int Immunopharmacol 2020; 85:106647. [DOI: 10.1016/j.intimp.2020.106647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
|
7
|
Yang C, Mai H, Peng J, Zhou B, Hou J, Jiang D. STAT4: an immunoregulator contributing to diverse human diseases. Int J Biol Sci 2020; 16:1575-1585. [PMID: 32226303 PMCID: PMC7097918 DOI: 10.7150/ijbs.41852] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 4 (STAT4) is a member of the STAT family and localizes to the cytoplasm. STAT4 is phosphorylated after a variety of cytokines bind to the membrane, and then dimerized STAT4 translocates to the nucleus to regulate gene expression. We reviewed the essential role played by STAT4 in a wide variety of cells and the pathogenesis of diverse human diseases, especially many kinds of autoimmune and inflammatory diseases, via activation by different cytokines through the Janus kinase (JAK)-STAT signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| |
Collapse
|
8
|
Elessawi DF, Alkady MM, Ibrahim IM. Diagnostic and prognostic value of serum IL-23 in colorectal cancer. Arab J Gastroenterol 2019; 20:65-68. [PMID: 31155425 DOI: 10.1016/j.ajg.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/11/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND STUDY AIMS Cytokines play a pivotal role in the induction of host immune responses against tumour growth and are involved in the development and progression of colorectal cancer in humans. The role of IL-23 in colorectal cancer is still unclear. Thus, we aimed to determine IL-23 levels in the development and progression of colorectal (CRC) cancer. PATIENTS AND METHODS Thirty two patients with colorectal cancer aged 60.4 ± 3.5 years. and 20 age, sex and BMI ‑matched healthy control subjects were included in the study. Serum IL-23 levels were determined using enzyme linked immunosorbent assay. C-reactive protein (CRP) levels were determined using a turbidimetric immunoassay. Carcinoembryonic antigen (CEA) and carbohydrate antigen (CA 19-9) were measured by radioimmunoassay. RESULTS IL-23 levels were found significantly higher in patients relative to the control subjects (p < 0.001) and were gradually increased with TNM tumour stage progression. The mean CRP, CEA and CA-19-9 levels also were significantly higher in patients (p < 0.001). There was a significant correlation between the serum levels of IL-23 and the other measured parameters in CRC patients. The area under receiver operating characteristic curve (ROC) for serum IL-23 was 0.955 at cut off value ≥57.15 with sensitivity 96% and specificity 100%. CONCLUSION The observed results suggest that IL-23 may have a potential role in the pathogenesis and progression of colorectal malignancy and may be a good marker of colorectal cancer and stage progression.
Collapse
Affiliation(s)
- Dina F Elessawi
- Internal Medicine, Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Manal M Alkady
- Clinical Pathology, Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Iman M Ibrahim
- Clinical Pathology, Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
9
|
Jenvey CJ, Shircliff AL, Bannantine JP, Stabel JR. Phenotypes of macrophages present in the intestine are impacted by stage of disease in cattle naturally infected with Mycobacterium avium subsp. paratuberculosis. PLoS One 2019; 14:e0217649. [PMID: 31121006 PMCID: PMC6532939 DOI: 10.1371/journal.pone.0217649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/15/2019] [Indexed: 01/01/2023] Open
Abstract
Macrophages play an important role in the host immune response to Mycobacterium avium subsp. paratuberculosis (MAP) infection, however, MAP is able to disrupt normal macrophage functions to avoid destruction. It is unclear whether the phenotypes of macrophages present in the target tissue play a role in the inability to clear MAP infection. The aim of this study was to identify macrophage phenotypes (host defense or resolution and repair) present within the bovine ileum of naturally infected cattle, as well as to ascertain abundance of each macrophage phenotype present during different stages of MAP infection. Immunofluorescent (IF) labeling was performed on frozen bovine mid-ileal tissue sections collected from 28 Holstein dairy cows. Comprehensive IF staining for cytokines, such as IFN-γ, IL-1Ra, IL-1β, IL-10, TGF-β, TNF-α, and uNOS, along with markers such as CD163, CD206, and TLR4, served to define the macrophage phenotypes. Overall, cows in the clinical stage of disease demonstrated significantly higher numbers of resolution and repair macrophages and lower numbers of host defense macrophages in the ileal tissue. Interestingly, subclinically affected cows with asymptomatic disease had a nearly equal ratio of host defense and resolution and repair macrophage phenotypes, whereas macrophage phenotype was skewed to a host defense macrophage in the tissues of the control noninfected cows. The preponderance of M2-like resolution and repair phenotype for macrophages in the tissues of cows with clinical disease would explain why the host fails to control and/or clear the infection, leading to a higher MAP burden. The results of the current study offer insight into the disparate macrophage phenotypes present in the bovine ileum during different stages of infection.
Collapse
Affiliation(s)
- Caitlin J. Jenvey
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, IA, United States of America
| | - Adrienne L. Shircliff
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, IA, United States of America
| | - John P. Bannantine
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, IA, United States of America
| | - Judith R. Stabel
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, IA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Critical role of interleukin-23 in development of asthma promoted by cigarette smoke. J Mol Med (Berl) 2019; 97:937-949. [PMID: 31020341 DOI: 10.1007/s00109-019-01768-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/12/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
It has been recently reported that cigarette smoke exposure during allergen sensitization facilitates the development of allergic asthma; however, the underlying mechanisms remain elusive. We evaluated the role of interleukin (IL-23) in a cigarette smoke extract (CSE)-induced Dermatophagoides pteronyssinus (Dp)-allergic asthma mouse model. BALB/c mice were exposed to CSE during allergen sensitization period. Anti-IL-23p19 or IL-23R antibody was administered during the sensitization period. And we evaluated several immunological responses. The expression of IL-23 and IL-23 receptor (IL-23R) was examined in lung tissue. IL-23 and IL-23R expression was increased in the airway epithelium of Dp/CSE co-administered mice. CSE administration during the sensitization promoted Dp-allergic sensitization and the development of asthma phenotypes. Additionally, the proportion of innate lymphoid type 2 cells (ILC2) was also increased by CSE and Dp co-instillation. Anti-IL-23 or IL-23R antibody treatment during allergen sensitization significantly diminished phenotypes of allergic asthma and the ILC2 population. The levels of IL-33 and thymic stromal lymphopoietin (TSLP) were also significantly reduced by anti-IL-23 or IL-23R antibody treatment. IL-23 may thus play a significant role in cigarette smoke-induced allergic sensitization and asthma development. Clinically, the increase in allergen sensitization due to cigarette exposure causes onset of asthma, and IL-23 may be important in this mechanism. KEY MESSAGES: IL-23 and IL-23R expression was increased in the lung epithelium of Dp and CSE co-exposed mice during sensitization period. The population of ILC2s was increased in Dp and CSE co-exposed mice during sensitization period. Anti-IL23 or IL-23R antibody treatment with co-administration of CSE and HDM during sensitization period significantly suppresses ILC2. In vitro, IL-23 blockade in Dp and CSE-stimulated epithelial cells suppressed IL-13 expression in ILC2.
Collapse
|
11
|
Abumaree MH, Alshehri NA, Almotery A, Al Subayyil AM, Bahattab E, Abomaray FM, Khatlani T, Kalionis B, Jawdat D, El-Muzaini MF, Al Jumah MA, AlAskar AS. Preconditioning human natural killer cells with chorionic villous mesenchymal stem cells stimulates their expression of inflammatory and anti-tumor molecules. Stem Cell Res Ther 2019; 10:50. [PMID: 30728068 PMCID: PMC6366106 DOI: 10.1186/s13287-019-1153-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/22/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stem cells derived from the chorionic villi of human placentae (pMSCs) produce a unique array of mediators that regulate the essential cellular functions of their target cells. These properties make pMSCs attractive candidates for cell-based therapy. Here, we examined the effects of culturing human natural killer (NK) cells with pMSCs on NK cell functions. Methods pMSCs were cultured with IL-2-activated and non-activated NK cells. NK cell proliferation and cytolytic activities were monitored. NK cell expression of receptors mediating their cytolytic activity against pMSCs, and the mechanisms underlying this effect on pMSCs, were also investigated. Results Our findings show that IL-2-activated NK cells, but not freshly isolated NK cells, efficiently lyse pMSCs and that this response might involve the activating NK cell receptor CD69. Interestingly, although pMSCs expressed HLA class I molecules, they were nevertheless lysed by NK cells, suggesting that HLA class I antigens do not play a significant role in protecting pMSCs from NK cell cytolytic activity. Co-culturing NK cells with pMSCs also inhibited NK cell expression of receptors, including CD69, NKpG2D, CD94, and NKp30, although these co-cultured NK cells were not inhibited in lysing cancer cells in vitro. Importantly, co-cultured NK cells significantly increased their production of molecules with anti-tumor effects. Conclusions These findings suggest that pMSCs might have potential applications in cancer therapy.
Collapse
Affiliation(s)
- M H Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code 1515, Riyadh, Saudi Arabia. .,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, 11481, Mail Code 3124, Riyadh, Saudi Arabia.
| | - N A Alshehri
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code 1515, Riyadh, Saudi Arabia
| | - A Almotery
- College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, P.O. Box 3660, 11481, Mail Code, Riyadh, 3124, Saudi Arabia
| | - A M Al Subayyil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code 1515, Riyadh, Saudi Arabia
| | - E Bahattab
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Saudi Arabia
| | - F M Abomaray
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, 14186, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - T Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code 1515, Riyadh, Saudi Arabia
| | - B Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - D Jawdat
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code 1515, Riyadh, Saudi Arabia
| | - M F El-Muzaini
- Department of Obstetrics and Gynaecology, King Abdulaziz Medical City, Minstry of National Guard Health Affairs, P.O. Box 3660, 11481, Mail Code, Riyadh, 3124, Saudi Arabia
| | - M A Al Jumah
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code 1515, Riyadh, Saudi Arabia
| | - A S AlAskar
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code 1515, Riyadh, Saudi Arabia.,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, 11481, Mail Code, Riyadh, 3124, Saudi Arabia.,Adult Hematology and Stem Cell Transplantation, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code, Riyadh, 1515, Saudi Arabia
| |
Collapse
|
12
|
Galdino NAL, Loures FV, de Araújo EF, da Costa TA, Preite NW, Calich VLG. Depletion of regulatory T cells in ongoing paracoccidioidomycosis rescues protective Th1/Th17 immunity and prevents fatal disease outcome. Sci Rep 2018; 8:16544. [PMID: 30410119 PMCID: PMC6224548 DOI: 10.1038/s41598-018-35037-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/25/2018] [Indexed: 12/24/2022] Open
Abstract
In human paracoccidioidomycosis (PCM), a primary fungal infection typically diagnosed when the disease is already established, regulatory T cells (Treg) cells are associated with disease severity. Experimental studies in pulmonary PCM confirmed the detrimental role of these cells, but in most studies, Tregs were depleted prior to or early during infection. These facts led us to study the effects of Treg cell depletion using a model of ongoing PCM. Therefore, Treg cell depletion was achieved by treatment of transgenic C57BL/6DTR/eGFP (DEREG) mice with diphtheria toxin (DT) after 3 weeks of intratracheal infection with 1 × 106 Paracoccidioides brasiliensis yeasts. At weeks 6 and 10 post-infection, DT-treated DEREG mice showed a reduced number of Treg cells associated with decreased fungal burdens in the lungs, liver and spleen, reduced tissue pathology and mortality. Additionally, an increased influx of activated CD4+ and CD8+ T cells into the lungs and elevated production of Th1/Th17 cytokines was observed in DT-treated mice. Altogether, our data demonstrate for the first time that Treg cell depletion in ongoing PCM rescues infected hosts from progressive and potentially fatal PCM; furthermore, our data indicate that controlling Treg cells could be explored as a novel immunotherapeutic procedure.
Collapse
Affiliation(s)
- Nayane A L Galdino
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flávio V Loures
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - Eliseu F de Araújo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tania A da Costa
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Nycolas W Preite
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vera Lúcia G Calich
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Saba Khan N, Verma R, Pradhan D, Nayek A, Bhuyan R, Kumar Sahu T, Kumar Jain A. Analysis of interleukin 23 and 7G10 interactions for computational design of lead antibodies against immune-mediated inflammatory diseases. J Recept Signal Transduct Res 2018; 38:327-334. [PMID: 30481093 DOI: 10.1080/10799893.2018.1511729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Wealth of structural data on theurapeutic targets in complex with monoclonal antibodies (mAbs) and advances in molecular modeling algorithms present exciting opportunities in the field of novel biologic design. Interleukin 23 (IL23), a well-known drug target for autoimmune diseases, in complex with mAb 7G10 offers prospect to design potent lead antibodies by traversing the complete epitope-paratope interface. Herein, key interactions aiding antibody-based neutralization in IL23-7G10 complex are resolute through PyMOL, LigPlot+, Antibody i-Patch, DiscoTope and FoldX. Six amino acids Ser31, Val33, Asn55, Lys59 in heavy chain and His34, Ser93 in light chain are subjected to in silico mutagenesis with residues Met, Trp, Ile, Leu and Arg. A set of 431 mutant macromolecules are outlined. Binding affinities of these molecules with IL23 are estimated through protein-protein docking by employing ZDOCK, ClusPro and RosettaDock. Subsequently, the macromolecules revealed comparable result with 7G10 are cross validated through binding free-energy calculations by applying Molecular Mechanics/Poisson Boltzman Surface Area method in CHARMM. Thirty nine designed theoretical antibodies showed improved outcome in all evaluations; from these, top 10 molecules showed at least nine unit better binding affinity compared to the known mAb. These molecules have the potential to act as lead antibodies. Subsequent molecular dynamics simulations too favored prospective of best ranked molecule to have therapeutic implications in autoimmune and inflammatory diseases. Abbreviations: IL23: interleukin 23; IL17: interleukin17; Ab: antibody; Ag: antigen; mAbs: monoclonal antibodies; STAT3: signal transducer and activator of transcription 3; STAT4: signal transducer and activator of transcription 4; PDB: protein databank; MM/PBSA: molecular mechanics Poisson-Boltzmann surface area; Ag-Ab: antigen- antibody complex; SPC/E: extended simple point charge; SD: steepest descents; PME: particle mesh ewald; dG: binding free energies; Fv: variable fragment.
Collapse
Affiliation(s)
- Noor Saba Khan
- a Biomedical Informatics Centre , ICMR-National Institute of Pathology , New Delhi , India
| | - Rashi Verma
- a Biomedical Informatics Centre , ICMR-National Institute of Pathology , New Delhi , India
| | - Dibyabhaba Pradhan
- a Biomedical Informatics Centre , ICMR-National Institute of Pathology , New Delhi , India.,b ICMR-AIIMS Computational Genomics Centre , Indian Council of Medical Research , New Delhi , India
| | - Arnab Nayek
- a Biomedical Informatics Centre , ICMR-National Institute of Pathology , New Delhi , India
| | - Rajabrata Bhuyan
- c Bioinformatics Infrastructure Facility , University of Kalyani , West Bengal , India
| | - Tanmaya Kumar Sahu
- d Centre for Agricultural Bioinformatics , ICAR-ISARI , New Delhi , India
| | - Arun Kumar Jain
- a Biomedical Informatics Centre , ICMR-National Institute of Pathology , New Delhi , India
| |
Collapse
|
14
|
Taki T, Takeichi T, Sugiura K, Akiyama M. Roles of aberrant hemichannel activities due to mutant connexin26 in the pathogenesis of KID syndrome. Sci Rep 2018; 8:12824. [PMID: 30150638 PMCID: PMC6110719 DOI: 10.1038/s41598-018-30757-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Germline missense mutations in GJB2 encoding connexin (Cx) 26 have been found in keratitis, ichthyosis and deafness (KID) syndrome. We explored the effects of three mouse Cx26 mutants (Cx26-G12R, -G45E and -D50N) corresponding to KID syndrome-causative human mutants on hemichannel activities leading to cell death and the expression of immune response-associated genes. We analyzed the 3D images of cells expressing wild-type (WT) or mutant Cx26 molecules to demonstrate clearly the intracellular localization of Cx26 mutants and hemichannel formation. High extracellular Ca2+ conditions lead to the closure of gap junction hemichannels in Cx26-G12R or Cx26-G45E expressing cells, resulting in prohibition of the Cx26 mutant-induced cell death. Fluorescent dye uptake assays revealed that cells with Cx26-D50N had aberrantly high hemichannel activities, which were abolished by a hemichannel blocker, carbenoxolone and 18α-Glycyrrhetinic acid. These results further support the idea that abnormal hemichannel activities play important roles in the pathogenesis of KID syndrome. Furthermore, we revealed that the expressions of IL15, CCL5, IL1A, IL23R and TLR5 are down-regulated in keratinocytes expressing Cx26-D50N, suggesting that immune deficiency in KID syndrome expressing Cx26-D50N might be associated not only with skin barrier defects, but also with the down-regulated expression of immune response-related genes.
Collapse
Affiliation(s)
- T Taki
- Department of Dermatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - T Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - K Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - M Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
15
|
Bousoik E, Montazeri Aliabadi H. "Do We Know Jack" About JAK? A Closer Look at JAK/STAT Signaling Pathway. Front Oncol 2018; 8:287. [PMID: 30109213 PMCID: PMC6079274 DOI: 10.3389/fonc.2018.00287] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Janus tyrosine kinase (JAK) family of proteins have been identified as crucial proteins in signal transduction initiated by a wide range of membrane receptors. Among the proteins in this family JAK2 has been associated with important downstream proteins, including signal transducers and activators of transcription (STATs), which in turn regulate the expression of a variety of proteins involved in induction or prevention of apoptosis. Therefore, the JAK/STAT signaling axis plays a major role in the proliferation and survival of different cancer cells, and may even be involved in resistance mechanisms against molecularly targeted drugs. Despite extensive research focused on the protein structure and mechanisms of activation of JAKs, and signal transduction through these proteins, their importance in cancer initiation and progression seem to be underestimated. This manuscript is an attempt to highlight the role of JAK proteins in cancer biology, the most recent developments in targeting JAKs, and the central role they play in intracellular cross-talks with other signaling cascades.
Collapse
Affiliation(s)
- Emira Bousoik
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States.,School of Pharmacy, Omar Al-Mukhtar University, Dèrna, Libya
| | - Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States
| |
Collapse
|
16
|
Ziblat A, Nuñez SY, Raffo Iraolagoitia XL, Spallanzani RG, Torres NI, Sierra JM, Secchiari F, Domaica CI, Fuertes MB, Zwirner NW. Interleukin (IL)-23 Stimulates IFN-γ Secretion by CD56 bright Natural Killer Cells and Enhances IL-18-Driven Dendritic Cells Activation. Front Immunol 2018; 8:1959. [PMID: 29403472 PMCID: PMC5785728 DOI: 10.3389/fimmu.2017.01959] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/19/2017] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-23 is a member of the IL-12 family of cytokines that, as the other members of this family, is secreted by monocytes, macrophages, and dendritic cells (DC) upon recognition of bacterial, viral, and fungal components. IL-23 is critical during immunity against acute infections, and it is also involved in the development of autoimmune diseases. Although immunoregulatory effects of IL-23 on mouse natural killer (NK) cells have been described, the effect of IL-23 on human NK cells remains ill-defined. In this study, we observed that monocytes stimulated with LPS secreted IL-23 and that blockade of this cytokine during monocyte and NK cell coculture led to a diminished production of IFN-γ by NK cells. Accordingly, rIL-23-induced NK cell activation and stimulated IFN-γ production by CD56bright NK cells. This effect involved MEK1/MEK2, JNK, PI3K, mammalian target of rapamycin, and NF-κB, but not STAT-1, STAT-3, nor p38 MAPK pathways. Moreover, while NK cell-mediated cytotoxicity remained unaltered, antibody-dependent cellular cytotoxicity (ADCC) was enhanced after IL-23 stimulation. In addition, IL-23 displayed a synergistic effect with IL-18 for IFN-γ production by both CD56bright and CD56dim NK cells, and this effect was due to a priming effect of IL-23 for IL-18 responsiveness. Furthermore, NK cells pre-stimulated with IL-18 promoted an increase in CD86 expression and IL-12 secretion by DC treated with LPS, and IL-23 potentiated these effects. Moreover, IL-23-driven enhancement of NK cell “helper” function was dependent on NK cell-derived IFN-γ. Therefore, our results suggest that IL-23 may trigger NK cell-mediated “helper” effects on adaptive immunity, shaping T cell responses during different pathological situations through the regulation of DC maturation.
Collapse
Affiliation(s)
- Andrea Ziblat
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina
| | - Sol Y Nuñez
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina
| | - Ximena Lucía Raffo Iraolagoitia
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina
| | - Raúl German Spallanzani
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina
| | - Nicolás I Torres
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina
| | - Jessica M Sierra
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina
| | - Florencia Secchiari
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina
| | - Carolina I Domaica
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina
| | - Mercedes B Fuertes
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina
| | - Norberto W Zwirner
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Amer T, El-Baz R, Mokhtar AR, El-Shaer S, Elshazli R, Settin A. Genetic polymorphisms of IL-23R (rs7517847) and LEP (rs7799039) among Egyptian patients with hepatocellular carcinoma. Arch Physiol Biochem 2017; 123:279-285. [PMID: 28452232 DOI: 10.1080/13813455.2017.1320680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Genetic polymorphisms of IL-23 R (rs7517847) and LEP (rs7799039) have been stated to be associated with various types of human cancers. The purpose of this work is to test the association of these genetic polymorphisms with hepatocellular carcinoma (HCC) among Egyptian patients. SUBJECTS AND METHODS This study involved 150 unrelated Egyptian HCC patients in addition to 100 healthy controls from the same locality. DNA was genotyped for these genetic polymorphisms using the PCR-RFLP technique. RESULTS The frequency of the IL-23 R (rs7517847) G and LEP (rs7799039) G alleles were significantly higher among HCC patients compared to controls (p = .004 and .02). However, HCC patients with the IL-23 R GG and LEP GG genotypes showed no significant difference compared to others regarding their clinical and laboratory markers. CONCLUSIONS IL-23 R (rs7517847) and LEP (rs7799039) polymorphisms were associated with an increased risk but not affecting the clinical presentation of HCC among Egyptian patients.
Collapse
Affiliation(s)
- Tahani Amer
- a Department of Zoology , College of Science, Mansoura University , Mansoura , Egypt
| | - Rizk El-Baz
- b Genetics Unit , Children Hospital, Mansoura University , Mansoura , Egypt
| | - Abdel-Rahman Mokhtar
- c Department of Internal Medicine , College of Medicine, Mansoura University , Mansoura , Egypt
| | - Saad El-Shaer
- a Department of Zoology , College of Science, Mansoura University , Mansoura , Egypt
| | - Rami Elshazli
- d Department of Biochemistry , College of Pharmacy, Horus University in Egypt (HUE) , New Damietta , Egypt
| | - Ahmad Settin
- b Genetics Unit , Children Hospital, Mansoura University , Mansoura , Egypt
| |
Collapse
|
18
|
Tonini A, Gualtieri B, Panduri S, Romanelli M, Chiricozzi A. A new class of biologic agents facing the therapeutic paradigm in psoriasis: anti-IL-23 agents. Expert Opin Biol Ther 2017; 18:135-148. [DOI: 10.1080/14712598.2018.1398729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Lee PW, Smith AJ, Yang Y, Selhorst AJ, Liu Y, Racke MK, Lovett-Racke AE. IL-23R-activated STAT3/STAT4 is essential for Th1/Th17-mediated CNS autoimmunity. JCI Insight 2017; 2:91663. [PMID: 28878115 DOI: 10.1172/jci.insight.91663] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/27/2017] [Indexed: 01/13/2023] Open
Abstract
The factors that promote the differentiation of pathogenic T cells in autoimmune diseases are poorly defined. Use of genetically modified mice has provided insight into molecules necessary for the development of autoimmunity, but the sum of the data has led to contradictory observations based on what is currently known about specific molecules in specific signaling pathways. To define the minimum signals required for development of encephalitogenic T cells that cause CNS autoimmunity, myelin-specific T cells were differentiated with various cytokine cocktails, and pathogenicity was determined by transfer into mice. IL-6+IL-23 or IL-12+IL-23 generated encephalitogenic T cells and recapitulated the essential cytokine signals provided by antigen-presenting cells, and both IL-6 and IL-12 induced IL-23 receptor expression on both mouse and human naive T cells. IL-23 signaled through both STAT3 and STAT4, and disruption in STAT4 signaling impaired CNS autoimmunity independent of IL-12. These data explain why IL-12-deficient mice develop CNS autoimmunity, while STAT4-deficient mice are resistant. CD4+ memory T cells from multiple sclerosis patients had significantly higher levels of p-STAT3/p-STAT4, and p-STAT3/p-STAT4 heterodimers were observed upon IL-23 signaling, suggesting that p-STAT3/p-STAT4 induced by IL-23 signaling orchestrate the generation of pathogenic T cells in CNS autoimmunity, regardless of Th1 or Th17 phenotype.
Collapse
Affiliation(s)
- Priscilla W Lee
- Department of Microbial Infection and Immunity.,Molecular, Cellular and Developmental Biology Program
| | | | | | | | - Yue Liu
- Department of Microbial Infection and Immunity
| | - Michael K Racke
- Department of Neurology, and.,Department of Neuroscience, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity.,Department of Neuroscience, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
20
|
IL-23 and Th17 Disease in Inflammatory Arthritis. J Clin Med 2017; 6:jcm6090081. [PMID: 28850053 PMCID: PMC5615274 DOI: 10.3390/jcm6090081] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/06/2017] [Accepted: 08/26/2017] [Indexed: 12/18/2022] Open
Abstract
IL-23, which is composed of p19 and p40 subunits, is a proinflammatory cytokine that contributes to the formation and maintenance of Th17 cells in inflammatory autoimmune diseases. IL-23 is a human osteoclastogenic cytokine and anti-IL-23 antibody attenuates paw volume and joint destruction in CIA rats. IL-23 levels in serum and synovial fluid are high in rheumatoid arthritis (RA) patients, and IL-23 may be a useful biomarker for the diagnosis of RA. In addition, IL-23 affects the pathogenesis of inflammation and bone destruction through interaction with other cytokines such as IL-17 and TNF-α. Furthermore, polymorphisms of IL23R are a risk factor for ankylosing spondylitis (AS) and psoriatic arthritis (PsA), which indicates that IL-23 is also involved in the pathogenesis of spondyloarthritis (SpA). Finally, IL-17 and IL-23 inhibitors reduce the clinical manifestations of SpA. Thus, the IL-23/Th17 pathway is a therapeutic target for the treatment of inflammatory arthritis.
Collapse
|
21
|
Role of Interferons in the Development of Diagnostics, Vaccines, and Therapy for Tuberculosis. J Immunol Res 2017; 2017:5212910. [PMID: 28713838 PMCID: PMC5496129 DOI: 10.1155/2017/5212910] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/09/2017] [Indexed: 01/14/2023] Open
Abstract
Tuberculosis (TB) is an airborne infection caused by Mycobacterium tuberculosis (Mtb). About one-third of the world's population is latently infected with TB and 5–15% of them will develop active TB in their lifetime. It is estimated that each case of active TB may cause 10–20 new infections. Host immune response to Mtb is influenced by interferon- (IFN-) signaling pathways, particularly by type I and type II interferons (IFNs). The latter that consists of IFN-γ has been associated with the promotion of Th1 immune response which is associated with protection against TB. Although this aspect remains controversial at present due to the lack of established correlates of protection, currently, there are different prophylactic, diagnostic, and immunotherapeutic approaches in which IFNs play an important role. This review summarizes the main aspects related with the biology of IFNs, mainly associated with TB, as well as presents the main applications of these cytokines related to prophylaxis, diagnosis, and immunotherapy of TB.
Collapse
|
22
|
Li J, Wei H, Krystek SR, Bond D, Brender TM, Cohen D, Feiner J, Hamacher N, Harshman J, Huang RYC, Julien SH, Lin Z, Moore K, Mueller L, Noriega C, Sejwal P, Sheppard P, Stevens B, Chen G, Tymiak AA, Gross ML, Schneeweis LA. Mapping the Energetic Epitope of an Antibody/Interleukin-23 Interaction with Hydrogen/Deuterium Exchange, Fast Photochemical Oxidation of Proteins Mass Spectrometry, and Alanine Shave Mutagenesis. Anal Chem 2017; 89:2250-2258. [PMID: 28193005 PMCID: PMC5347259 DOI: 10.1021/acs.analchem.6b03058] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epitope mapping the specific residues of an antibody/antigen interaction can be used to support mechanistic interpretation, antibody optimization, and epitope novelty assessment. Thus, there is a strong need for mapping methods, particularly integrative ones. Here, we report the identification of an energetic epitope by determining the interfacial hot-spot that dominates the binding affinity for an anti-interleukin-23 (anti-IL-23) antibody by using the complementary approaches of hydrogen/deuterium exchange mass spectrometry (HDX-MS), fast photochemical oxidation of proteins (FPOP), alanine shave mutagenesis, and binding analytics. Five peptide regions on IL-23 with reduced backbone amide solvent accessibility upon antibody binding were identified by HDX-MS, and five different peptides over the same three regions were identified by FPOP. In addition, FPOP analysis at the residue level reveals potentially key interacting residues. Mutants with 3-5 residues changed to alanine have no measurable differences from wild-type IL-23 except for binding of and signaling blockade by the 7B7 anti-IL-23 antibody. The M5 IL-23 mutant differs from wild-type by five alanine substitutions and represents the dominant energetic epitope of 7B7. M5 shows a dramatic decrease in binding to BMS-986010 (which contains the 7B7 Fab, where Fab is fragment antigen-binding region of an antibody), yet it maintains functional activity, binding to p40 and p19 specific reagents, and maintains biophysical properties similar to wild-type IL-23 (monomeric state, thermal stability, and secondary structural features).
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4889, USA
| | - Hui Wei
- Biologics Development, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534
| | - Stanley R. Krystek
- Molecular Structure & Design, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Derek Bond
- Process Development, Bristol-Myers Squibb, 1201 Eastlake Ave E., Seattle WA 98102
| | - Ty M. Brender
- Discovery Biology, Bristol-Myers Squibb, 1201 Eastlake Ave E., Seattle WA 98102
| | - Daniel Cohen
- Protein Science, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Jena Feiner
- Applied Genomics, Bristol-Myers Squibb, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534
| | - Nels Hamacher
- Molecular Structure & Design, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Johanna Harshman
- Molecular Structure & Design, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Richard Y.-C. Huang
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Susan H. Julien
- Protein Engineering, Bristol-Myers Squibb, 1201 Eastlake Ave E., Seattle WA 98102
| | - Zheng Lin
- Protein Science, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Kristina Moore
- Protein Science, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Luciano Mueller
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Claire Noriega
- Protein Engineering, Bristol-Myers Squibb, 1201 Eastlake Ave E., Seattle WA 98102
| | - Preeti Sejwal
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Paul Sheppard
- Protein Engineering, Bristol-Myers Squibb, 1201 Eastlake Ave E., Seattle WA 98102
| | - Brenda Stevens
- Protein Engineering, Bristol-Myers Squibb, 1201 Eastlake Ave E., Seattle WA 98102
| | - Guodong Chen
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Adrienne A. Tymiak
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4889, USA
| | - Lumelle A. Schneeweis
- Protein Science, Bristol-Myers Squibb, Rt. 206 & Province Line Rd, Princeton, NJ 08543
| |
Collapse
|
23
|
|
24
|
Li Y, Wang H, Lu H, Hua S. Regulation of Memory T Cells by Interleukin-23. Int Arch Allergy Immunol 2016; 169:157-62. [PMID: 27100864 DOI: 10.1159/000445834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Interleukin-23 (IL-23), a member of the IL-12 family of cytokines, is a heterodimeric cytokine. It is composed of subunits p40 (shared with IL-12) and p19 (an IL-12 p35-related subunit) and is secreted by several types of immune cells, such as natural killer cells and dendritic cells. The IL-23 receptor is composed of the subunit IL-12Rβ1 and the IL-23-specific subunit IL-23R. The binding of IL-23 to its specific cell surface receptor regulates a number of functions, including proliferation and differentiation of cells and secretion of cell factors. Memory T cells are a subset of T cells that secrete numerous important cell factors, and they function in the immune response to infection and diseases like cancer, autoimmune disease and bronchial asthma. IL-23R is expressed on the surface of memory T cells, which suggests that it can specifically regulate memory T cell function. IL-23 has been widely used as a clinical indicator in immune-related diseases and shows potential for use in disease treatment. Here we review the current progress in the study of the role of IL-23 in the regulation of memory T cells.
Collapse
Affiliation(s)
- Yanchun Li
- Division 1, Pediatric Respiratory Department, The First Hospital of Jilin University, Changchun, China
| | | | | | | |
Collapse
|
25
|
The phosphodiesterase 4 inhibitor roflumilast augments the Th17-promoting capability of dendritic cells by enhancing IL-23 production, and impairs their T cell stimulatory activity due to elevated IL-10. Int Immunopharmacol 2016; 35:174-184. [PMID: 27070502 DOI: 10.1016/j.intimp.2016.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/20/2022]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors serve to prevent degradation of the intracellular second messenger cAMP, resulting in broad anti-inflammatory effects on different cell types including immune cells. Agents that elevate cAMP levels via activation of adenylate cyclase have been shown to imprint a Th17-promoting capacity in dendritic cells (DCs). Therefore, we studied the potential of therapeutically relevant PDE inhibitors to induce a pronounced Th17-skewing capacity in DCs. Here we show that mouse bone marrow-derived (BM-) DCs when treated with the PDE4 inhibitor roflumilast (ROF, trade name: Daxas) in the course of stimulation with LPS (ROF-DCs) evoked elevated IL-17 levels in cocultured allogeneic T cells. In addition, as compared with control settings, levels of IFN-γ remained unaltered, while contents of Th2 cytokines (IL-5, IL-10) were diminished. ROF enhanced expression of the Th17-promoting factor IL-23 in BM-DCs. In line, neutralizing antibodies specific for IL-23 or IL-6 when applied to DC/T cell cocultures partially inhibited the IL17-promoting effect of ROF-DCs. Furthermore, ROF-DCs displayed a markedly diminished allogeneic T cell stimulatory capacity due to enhanced production of IL-10, which was restored upon application of IL-10 specific neutralizing antibody to DC/T cell cocultures. Both the IL-17-inducing and impaired T cell stimulatory capacity of BM-DCs were mimicked by a specific activator of protein kinase A, while stimulation of EPACs (exchange proteins of activated cAMP) did not yield such effects. Taken together, our findings suggest that PDE4 inhibitors aside from their broad overall anti-inflammatory effects may enhance the Th17-polarizing capacity in DCs as an unwanted side effect.
Collapse
|
26
|
Abomaray FM, Al Jumah MA, Kalionis B, AlAskar AS, Al Harthy S, Jawdat D, Al Khaldi A, Alkushi A, Knawy BA, Abumaree MH. Human Chorionic Villous Mesenchymal Stem Cells Modify the Functions of Human Dendritic Cells, and Induce an Anti-Inflammatory Phenotype in CD1+ Dendritic Cells. Stem Cell Rev Rep 2016; 11:423-41. [PMID: 25287760 DOI: 10.1007/s12015-014-9562-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mesenchymal stem cells derived from the chorionic villi of human term placenta (pMSCs) have drawn considerable interest because of their multipotent differentiation potential and their immunomodulatory capacity. These properties are the foundation for their clinical application in the fields of stem cell transplantation and regenerative medicine. Previously, we showed that pMSCs induce an anti-inflammatory phenotype in human macrophages. In this study, we determined whether pMSCs modify the differentiation and maturation of human monocytes into dendritic cells (DCs). The consequences on dendritic function and on T cell proliferation were also investigated. METHODS Interleukin-4 (IL-4) and granulocyte-macrophage colony stimulating factor (GM-CSF) were used to stimulate the differentiation of monocytes into immature dendritic cells (iDCs), which were subsequently co-cultured with pMSCs. Lipopolysaccharide (LPS) was used to induce maturation of iDCs into mature dendritic cells (mDCs). Flow cytometry and enzyme-linked immunosorbent assays (ELISA) were used to quantify the effect pMSC co-culturing on DC differentiation using CD1a, a distinctive marker of DCs, as well as other molecules important in the immune functions of DCs. The phagocytic activity of iDCs co-cultured with pMSCs, and the effects of iDCs and mDC stimulation on T cell proliferation, were also investigated. RESULTS Monocyte differentiation into iDCs was inhibited when co-cultured with pMSCs and maturation of iDCs by LPS treatment was also prevented in the presence of pMSCs as demonstrated by reduced expression of CD1a and CD83, respectively. The inhibitory effect of pMSCs on iDC differentiation was dose dependent. In addition, pMSC co-culture with iDCs and mDCs resulted in both phenotypic and functional changes as shown by reduced expression of costimulatory molecules (CD40, CD80, CD83 and CD86) and reduced capacity to stimulate CD4(+) T cell proliferation. In addition, pMSC co-culture increased the surface expression of major histocompatibility complex (MHC-II) molecules on iDCs but decreased MHC-II expression on mDCs. Moreover, pMSC co-culture with iDCs or mDCs increased the expression of immunosuppressive molecules [B7H3, B7H4, CD273, CD274 and indoleamine-pyrrole 2,3-dioxygenase (IDO). Additionally, the secretion of IL-12 and IL-23 by iDCs and mDCs co-cultured with pMSCs was decreased. Furthermore, pMSC co-culture with mDCs decreased the secretion of IL-12 and INF-γ whilst increasing the secretion of IL-10 in a T cell proliferation experiment. Finally, pMSC co-culture with iDCs induced the phagocytic activity of iDCs. CONCLUSIONS We have shown that pMSCs have an inhibitory effect on the differentiation, maturation and function of DCs, as well as on the proliferation of T cells, suggesting that pMSCs can control the immune responses at multiple levels.
Collapse
Affiliation(s)
- F M Abomaray
- King Abdullah International Medical Research Center, P.O. Box 22490, Riyadh, 11426, Mail Code 1515, Kingdom of Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Halwani R, Sultana A, Al-Kufaidy R, Jamhawi A, Vazquez-Tello A, Al-Muhsen S. Th-17 regulatory cytokines inhibit corticosteroid induced airway structural cells apoptosis. Respir Res 2016; 17:6. [PMID: 26772733 PMCID: PMC4715361 DOI: 10.1186/s12931-015-0307-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022] Open
Abstract
Background Although corticosteroid is a powerful anti-inflammatory drug that is used widely to control asthma, still severe asthmatics can develop steroid resistance. Airway fibroblasts are quite resistant to steroids during Idiopathic pulmonary fibrosis (IPF) and fibrosis in asthmatic lungs is not always controlled. Th-17 regulatory cytokine which are elevated in lung tissues of asthmatics were shown to enhance the survival of various types of cells. STAT factors are central to this anti-apoptotic function. However, it is not yet clear whether these cytokines contribute to steroid hypo-responsiveness in asthma. Therefore, in this study, we investigated the ability of Th-17 regulatory cytokines, specifically IL-21, IL22 and IL23, to protect structural airway cells against dexamethasone-induced apoptosis. Methods Primary human fibroblasts, ASM cells, and lung endothelial cells line were treated with IL-21, IL-22, and IL-23 cytokines before incubation with dexamethasone and the level of apoptosis was determined by measuring cellular Annexin-V using Flow cytometry. Results Our data indicated that treatment with Th-17 regulatory cytokines was effective in inhibiting induced apoptosis for both fibroblasts and endothelial cells but not ASM cells. STAT3 phosphorylation levels were also upregulated in fibroblasts and endothelial upon treatment with these cytokines. Interestingly, inhibiting STAT3 phosphorylation abrogated IL-21, IL-22, and IL-23 anti-apoptotic effect on fibroblasts and endothelial cells. Conclusions This data suggest that Th-17 regulatory cytokines may play a critical role in regulating the survival of fibroblasts during asthma, IPF as well as other chronic lung inflammatory diseases leading to enhanced fibrosis. Accordingly, findings of this paper may pave the way for more extensive research on the role of these regulatory cytokines in fibrosis development in various chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rabih Halwani
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia.
| | - Asma Sultana
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia.,Prince Naif Health Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Roua Al-Kufaidy
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia
| | - Amer Jamhawi
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia
| | - Alejandro Vazquez-Tello
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia
| | - Saleh Al-Muhsen
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, P. O. Box 2925, Postal Code 11461, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Intracellular Networks of the PI3K/AKT and MAPK Pathways for Regulating Toxoplasma gondii-Induced IL-23 and IL-12 Production in Human THP-1 Cells. PLoS One 2015; 10:e0141550. [PMID: 26528819 PMCID: PMC4631599 DOI: 10.1371/journal.pone.0141550] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells.
Collapse
|
29
|
IL-1RT1 signaling antagonizes IL-11 induced STAT3 dependent cardiac and antral stomach tumor development through myeloid cell enrichment. Oncotarget 2015; 6:679-95. [PMID: 25528766 PMCID: PMC4359248 DOI: 10.18632/oncotarget.2707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/08/2014] [Indexed: 01/04/2023] Open
Abstract
IL-1 is key driver of gastric tumorigenesis and is a downstream target of IL-11 signaling. Recently, IL-1 cytokines, particularly IL-1β, have been flagged as therapeutic targets for gastric cancer treatment. Here, we assess the requirement for IL-1 signaling in gastric tumorigenesis. gp130757FF xIL-1RT1-/- mice were generated to determine the pathological consequence of ablated IL-1 signaling in the IL-11 dependent gp130757FF mouse model of gastric tumorigenesis. Gastric lesions in gp130757FF xIL-1RT1-/- mice were increased in incidence and size compared to gp130757FF mice. Proximal gastric lesions originated from the cardiac region and were associated with elevated STAT3 activation, loss of specialized gastric cells and a modulated immune response including increased expression of TNF-α and MDSC associated genes. Administration of IL-11 to IL-1RT1-/- mice showed similar changes to gp130757FF xIL-1RT1-/- mice. Spleens from IL-11 treated wildtype mice showed an enrichment of MDSC and gp130757FF xIL-1RT1-/- mice had increased MDSCs in the stomach compared to gp130757FF mice. Furthermore, crossing TNF-α-/- to gp130757FF mice resulted in reduced lesion size. We conclude that IL-1 signaling antagonizes IL-11/STAT3 mediated pathology and the genetic deletion of IL-1RT1 results in increased tumor burden. We provide evidence that a likely mechanism is due to IL-11/STAT3 dependent enrichment of MDSCs.
Collapse
|
30
|
Elevated Circulating Levels of Inflammatory Markers in Patients with Acute Coronary Syndrome. Int J Vasc Med 2015; 2015:805375. [PMID: 26504600 PMCID: PMC4609512 DOI: 10.1155/2015/805375] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
Objective. We evaluated inflammatory cytokines and chemokine in peripheral blood mononuclear cells (PBMCs) in patients with either acute coronary syndrome (ACS) or stable coronary artery disease (CAD). Methods. We enrolled 20 ACS patients and 50 stable CAD patients without previous history of ACS who underwent cardiac catheterization. Patients with an estimated glomerular filtration rate of ≤30 mL/min/1.73 m(2) and C-reactive protein of ≥1.0 mg/dL were excluded. Blood samples were collected from the patients just before catheterization, and PBMCs were isolated from the whole blood. The levels of inflammatory cytokines and chemokine were measured by using real-time quantitative polymerase chain reaction and immunoassays. Results. The expression of tumor necrosis factor alpha (TNF-α), interleukin- (IL-) 6, IL-10, IL-23A, IL-27, and IL-37 was significantly higher in the ACS group than in the CAD group (P < 0.05). In contrast, the expression of IL-33 was significantly lower in the ACS group than in the CAD group (P < 0.05). The ACS patients had higher plasma levels of TNF-α, IL-6, and IL-10 in the ACS group than in the CAD group. Conclusion. Circulating levels of pro-/anti-inflammatory cytokines, including IL-23A, IL-27, IL-33, and IL-37, may be associated with the pathogenesis of atherosclerosis in ACS patients.
Collapse
|
31
|
Hamdy G, Darweesh H, Fawzy S, Khattab EA, Fawzy E, Sheta M. Association of interleukin-23 receptor (IL-23R) gene polymorphisms (rs11209026, rs2201841 and rs10889677) with Egyptian rheumatoid arthritis patients. THE EGYPTIAN RHEUMATOLOGIST 2015. [DOI: 10.1016/j.ejr.2014.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Hamdy G, Darweesh H, Khattab EA, Fawzy S, Fawzy E, Sheta M. Evidence of association of interleukin-23 receptor gene polymorphisms with Egyptian rheumatoid arthritis patients. Hum Immunol 2015; 76:417-20. [DOI: 10.1016/j.humimm.2015.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 05/22/2014] [Accepted: 03/31/2015] [Indexed: 11/30/2022]
|
33
|
Iacob RE, Krystek SR, Huang RYC, Wei H, Tao L, Lin Z, Morin PE, Doyle ML, Tymiak AA, Engen JR, Chen G. Hydrogen/deuterium exchange mass spectrometry applied to IL-23 interaction characteristics: potential impact for therapeutics. Expert Rev Proteomics 2015; 12:159-69. [PMID: 25711416 DOI: 10.1586/14789450.2015.1018897] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IL-23 is an important therapeutic target for the treatment of inflammatory diseases. Adnectins are targeted protein therapeutics that are derived from domain III of human fibronectin and have a similar protein scaffold to antibodies. Adnectin 2 was found to bind to IL-23 and compete with the IL-23/IL-23R interaction, posing a potential protein therapeutic. Hydrogen/deuterium exchange mass spectrometry and computational methods were applied to probe the binding interactions between IL-23 and Adnectin 2 and to determine the correlation between the two orthogonal methods. This review summarizes the current structural knowledge about IL-23 and focuses on the applicability of hydrogen/deuterium exchange mass spectrometry to investigate the higher order structure of proteins, which plays an important role in the discovery of new and improved biotherapeutics.
Collapse
Affiliation(s)
- Roxana E Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu S, He H, Yu R, Han L, Wang C, Cui Y, Li C. The rs7517847 polymorphism in the IL-23R gene is associated with gout in a Chinese Han male population. Mod Rheumatol 2015; 25:449-52. [PMID: 25661540 DOI: 10.3109/14397595.2014.964823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Gout is a polygenic auto-inflammatory disease, in which inflammation plays an important role in disease pathogenesis. The cytokine interleukin (IL)-23 promotes inflammation and helps to guide inflammatory cells, while studies have shown that the IL-23R gene is associated with susceptibility to several immune-related diseases. This study aimed to determine whether the IL-23R rs7517847 (G/T) polymorphism is associated with gout in a Chinese Han male population. METHODS We recruited 400 patients with gout and 582 gout-free controls. After obtaining blood samples for DNA extraction, genotyping of the rs7517847 polymorphism was performed by fluorescence-based quantitative PCR using TaqMan probes. An association analysis was carried out using the χ(2) test. A genotype-phenotype analysis was also conducted. RESULTS Both genotypic and allelic frequencies of rs7517847 differed significantly between gout patients and controls (χ(2) = 6.792, df = 2, P = 0.034 by genotype; χ(2) = 4.202, df = 1, P = 0.04 by allele). CONCLUSIONS IL-23R may be associated with gout in a Chinese Han male population, although our findings should be confirmed using larger sample sizes and other independent populations.
Collapse
Affiliation(s)
- Shiguo Liu
- Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Medical College, Qingdao University , Qingdao , P. R. China
| | | | | | | | | | | | | |
Collapse
|
35
|
Temizoz B, Kuroda E, Ohata K, Jounai N, Ozasa K, Kobiyama K, Aoshi T, Ishii KJ. TLR9 and STING agonists synergistically induce innate and adaptive type-II IFN. Eur J Immunol 2015; 45:1159-69. [PMID: 25529558 PMCID: PMC4671267 DOI: 10.1002/eji.201445132] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 12/17/2014] [Indexed: 11/06/2022]
Abstract
Agonists for TLR9 and Stimulator of IFN Gene (STING) act as vaccine adjuvants that induce type-1 immune responses. However, currently available CpG oligodeoxynucleotide (ODN) (K-type) induces IFNs only weakly and STING ligands rather induce type-2 immune responses, limiting their potential therapeutic applications. Here, we show a potent synergism between TLR9 and STING agonists. Together, they make an effective type-1 adjuvant and an anticancer agent. The synergistic effect between CpG ODN (K3) and STING-ligand cyclic GMP-AMP (cGAMP), culminating in NK cell IFN-γ (type-II IFN) production, is due to the concurrent effects of IL-12 and type-I IFNs, which are differentially regulated by IRF3/7, STING, and MyD88. The combination of CpG ODN with cGAMP is a potent type-1 adjuvant, capable of inducing strong Th 1-type responses, as demonstrated by enhanced antigen-specific IgG2c and IFN-γ production, as well as cytotoxic CD8(+) T-cell responses. In our murine tumor models, intratumoral injection of CpG ODN and cGAMP together reduced tumor size significantly compared with the singular treatments, acting as an antigen-free anticancer agent. Thus, the combination of CpG ODN and a STING ligand may offer therapeutic application as a potent type-II IFN inducer.
Collapse
Affiliation(s)
- Burcu Temizoz
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang Y, Zhang WY, Han QW, Liu Y, Dai HR, Guo YL, Bo J, Fan H, Zhang Y, Zhang YJ, Chen MX, Feng KC, Wang QS, Fu XB, Han WD. Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells. Clin Immunol 2014; 155:160-75. [DOI: 10.1016/j.clim.2014.10.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 12/16/2022]
|
37
|
Shajarian M, Alsahebfosoul F, Etemadifar M, Sedaghat N, Shahbazi M, Firouzabadi FP, Dezashibi HM. IL-23 Plasma level measurement in relapsing remitting multiple sclerosis (RRMS) patients compared to healthy subjects. Immunol Invest 2014; 44:36-44. [DOI: 10.3109/08820139.2014.930477] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Delgoffe GM, Vignali DAA. STAT heterodimers in immunity: A mixed message or a unique signal? JAKSTAT 2014; 2:e23060. [PMID: 24058793 PMCID: PMC3670269 DOI: 10.4161/jkst.23060] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/14/2023] Open
Abstract
Cytokine signals are essential for generating a robust and specialized immune response. These signals are typically transmitted via canonical STAT homodimers. However, the number of STAT molecules utilized by cytokine signaling cascades within immune cells are limited, and so the mechanism used to deliver complex signals remains elusive. Heterodimerization of STAT proteins is one potential mechanism for signals to be modified downstream of the receptor and may play an important role in dictating the targets of specific cytokine signaling. In this review, we discuss our current understanding of the prevalence of STAT heterodimers, how they are formed and what their physiologic role may be in vivo.
Collapse
Affiliation(s)
- Greg M Delgoffe
- Department of Immunology; St. Jude Children's Research Hospital; Memphis, TN USA
| | | |
Collapse
|
39
|
Ogola GO, Ouma C, Jura WGZO, Muok EO, Colebunders R, Mwinzi PN. A non-synonymous polymorphism in IL-23R Gene (rs1884444) is associated with reduced risk to schistosomiasis-associated Immune Reconstitution Inflammatory Syndrome in a Kenyan population. BMC Infect Dis 2014; 14:316. [PMID: 24912586 PMCID: PMC4057813 DOI: 10.1186/1471-2334-14-316] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/29/2014] [Indexed: 11/10/2022] Open
Abstract
Background Human Immunodeficiency Virus (HIV) and Schistosomiasis co-infection is common among residents at the shores of Lake Victoria in Kenya. About 36% of this population initiating antiretroviral therapy (ART) experience Immune Reconstitution Inflammatory Syndrome (IRIS) that complicates recovery. Several IL-23R alleles have been associated with susceptibility to both autoimmune and inflammatory diseases through T-helper type 17 (TH17) cells. However, whether or not variants within the IL-23R increase susceptibility to IRIS in western Kenya is unknown. The objective of the current study was to determine the association between IL-23R gene polymorphisms, CD4+ cell counts and HIV RNA levels and IRIS in HIV and Schistosoma mansoni co-infected patients undergoing highly active anti-retroviral therapy (HAART). Methods A three-month case–control study was conducted on antiretroviral naïve schistosomiasis/HIV co-infected fishermen starting HAART in Uyoma Rarieda, Siaya County, Kenya. Seventy one patients were sampled at baseline and followed up for three months, to establish if they developed Schistosoma-related IRIS. In addition, the CD4+ cell counts and HIV RNA levels were determined in pre- and post-administration of HAART. Variations at five polymorphic sites of IL-23R (rs1884444, rs11465754, rs6682925, rs7530511 and rs7539625) based on >10% minor allele frequency in Yoruban reference population was determined using Allelic Discrimination Assay. The association between the five variants and susceptibility to IRIS was determined using logistic regression while controlling for potential confounders. In addition, the functional differences between the baseline CD4 + Cell counts and viral loads were determined using medians while across IL-23R genotypes were determined using Kruskal-Wallis tests. Results Overall, 26 (36.6%) patients developed schistosomiasis-associated IRIS at a median age of 35.5 years. Carriage of the TT genotype at the non-synonymous rs1884444 T > G relative to GG, was associated with a decreased risk of schistosomiasis-associated IRIS (OR, 0.25, 95% CI, 0.07-0.96, P = 0.043) while both baseline CD4+ cell counts and viral loads had no association with IRIS. Conclusion These findings indicate that the non-synonymous variant rs1884444 T > G of IL-23R is associated with a decreased risk to schistosomiasis-associated IRIS. However, additional studies in a larger cohort and with an all inclusive polymorphic variants in the synonymous and non-synonymous regions need to be evaluated.
Collapse
|
40
|
Accardo A, Vitiello M, Tesauro D, Galdiero M, Finamore E, Martora F, Mansi R, Ringhieri P, Morelli G. Self-assembled or mixed peptide amphiphile micelles from Herpes simplex virus glycoproteins as potential immunomodulatory treatment. Int J Nanomedicine 2014; 9:2137-48. [PMID: 24855352 PMCID: PMC4019629 DOI: 10.2147/ijn.s57656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The use of micelle aggregates formed from peptide amphiphiles (PAs) as potential synthetic self-adjuvant vaccines to treat Herpes simplex virus (HSV) infection are reported here. The PAs were based on epitopes gB409–505 and gD301–309, selected from HSV envelope glycoprotein B (gB) and glycoprotein D (gD), that had their N-terminus modified with hydrophobic moieties containing two C18 hydrocarbon chains. Pure and mixed micelles of gB and/or gD peptide epitopes were easily prepared after starting with the synthesis of corresponding PAs by solid phase methods. Structural characterization of the aggregates confirmed that they were sufficiently stable and compatible with in vivo use: critical micelle concentration values around 4.0 ⋅ 10−7 mol ⋅ Kg−1; hydrodynamic radii (RH) between 50–80 nm, and a zeta potential (ζ) around − 40 mV were found for all aggregates. The in vitro results indicate that both peptide epitopes and micelles, at 10 μM, triggered U937 and RAW 264.7 cells to release appreciable levels of cytokines. In particular, interleukin (IL)-23-, IL-6-, IL-8- or macrophage inflammatory protein (MIP)-2-, and tumor necrosis factor (TNF)-α-release increased considerably when cells were treated with the gB-micelles or gD-micelles compared with the production of the same cytokines when the stimulus was the single gB or gD peptide.
Collapse
Affiliation(s)
- Antonella Accardo
- Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy
| | - Mariateresa Vitiello
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy ; Department of Clinical Pathology and Transfusion Medicine, University Hospital "Ruggi d'Aragona", Salerno, Italy
| | - Diego Tesauro
- Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy
| | - Marilena Galdiero
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy
| | - Emiliana Finamore
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy
| | - Francesca Martora
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy
| | - Rosalba Mansi
- Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy
| | - Paola Ringhieri
- Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy
| |
Collapse
|
41
|
Chiricozzi A, Saraceno R, Chimenti MS, Guttman-Yassky E, Krueger JG. Role of IL-23 in the pathogenesis of psoriasis: a novel potential therapeutic target? Expert Opin Ther Targets 2014; 18:513-25. [PMID: 24568095 DOI: 10.1517/14728222.2014.889686] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Psoriasis is a chronic inflammatory skin disorder determined by the activation of several immune cells and resident tissue cells. Various cytokines mediate inflammatory signals, including IL-23, which is an important factor involved in the differentiation of T helper (Th17) cells. AREAS COVERED Increasing evidence suggests that IL-23 is a central cytokine to the pathogenesis of psoriasis. An overview on both experimental and human data will be reported in order to support the hypothesis of a key pathogenic role of IL-23/Th17 axis. EXPERT OPINION Targeting IL-23 might be a more selective, valid and effective therapeutic approach, which, potentially, may show important advantages in terms of long-term efficacy and safety in the treatment of psoriasis.
Collapse
Affiliation(s)
- Andrea Chiricozzi
- University of Rome Tor Vergata, Department of Dermatology , Via Montpellier 1, 00133, Rome , Italy +39 339 566 8320 ; +39 062 090 2742 ;
| | | | | | | | | |
Collapse
|
42
|
Colonic immunopathogenesis of Clostridium difficile infections. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:509-17. [PMID: 24477852 DOI: 10.1128/cvi.00770-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There are major gaps in our understanding of the immunopathogenesis of Clostridium difficile infections (CDIs). In this study, 36 different biomarkers were examined in the stools of CDI and non-CDI patients using the Proteome Profiler human cytokine array assay and quantitative enzyme-linked immunosorbent assay. Diarrheal stools from patients with CDI (CDI-positive diarrheal stools) showed higher relative amounts of the following inflammatory markers than the diarrheal stools from CDI-negative patients (CDI-negative diarrheal stools): C5a, CD40L, granulocyte colony-stimulating factor, I-309, interleukin-13 (IL-13), IL-16, IL-27, monocyte chemoattractant protein 1, tumor necrosis factor alpha, and IL-8. IL-8 and IL-23 were present in a larger number of CDI-positive diarrheal stools than CDI-negative diarrheal stools. Th1 and Th2 cytokines were not significantly different between the CDI-positive and CDI-negative diarrheal stools. Lactoferrin and calprotectin concentrations were also higher in the CDI-positive diarrheal stools. Our results demonstrate that CDI elicits a proinflammatory host response, and we report for the first time that IL-23 is a major marker in CDI-positive diarrheal stools. IL-23 may explain the lack of a robust immunological response exhibited by a proportion of CDI patients and may relate to recurrence; the IL-23 levels induced during CDI in these patients may be inadequate to sustain the cellular immunity conferred by this cytokine in promoting the induction and proliferation of effector memory T cells.
Collapse
|
43
|
Zhang L, Li J, Li L, Zhang J, Wang X, Yang C, Li Y, Lan F, Lin P. IL-23 selectively promotes the metastasis of colorectal carcinoma cells with impaired Socs3 expression via the STAT5 pathway. Carcinogenesis 2014; 35:1330-40. [PMID: 24464786 DOI: 10.1093/carcin/bgu017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interleukin-23 (IL-23) is a conventional proinflammatory IL related to colorectal carcinoma (CRC). The signal transducer and activator of transcription (STAT) and suppressors of cytokine signaling (Socs) molecules, respectively, serve as agonists and antagonists of IL-23-associated inflammation. However, it remains unknown whether IL-23 directly affects CRC metastasis. In this study, we measured the metastasis of several human CRC cell lines stimulated by IL-23 in vitro and in vivo. Interestingly, the prometastasis effect of IL-23 was observed only in SW-620 cells. IL-23-associated migration and invasion was mediated by the phosphorylation of STAT5. The expression of Socs3 in SW-620 was impaired by IL-23 via DNA methylation and DNA methyltransferase-1 (DNMT-1)-dependent way. The DNMT-1-associated regulation was not observed in the other three cells. Socs3 was further confirmed to inhibit the prometastatic function of IL-23 both in vitro and in vivo. We analyzed the clinical correlation between the level of IL-23 in tumors and the metastasis of CRC and found that higher IL-23 levels along with lower Socs3 in CRC tissues accounted for more metastatic cases. In conclusion, it was demonstrated that IL-23, assisted by STAT5, might only promote the metastasis of CRC with deficient Socs3 expression in which IL-23-induced DNMT-1 was involved. It was elucidated that Socs3 seemed to be one of the important factors that mediate the selectivity of IL-23. Taken together, these discoveries give rise to new insights into the role of IL-23 in cancer biology and provide additional preclinical data regarding IL-23-associated therapy for CRC.
Collapse
Affiliation(s)
- Le Zhang
- Division of Geriatrics, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy and Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jun Li
- Division of Geriatrics, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy and Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Li Li
- Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jie Zhang
- Division of Geriatrics, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy and Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Xiaodong Wang
- Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Chuanhua Yang
- Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Yanyan Li
- Division of Geriatrics, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy and Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Feng Lan
- Division of Geriatrics, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy and Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Ping Lin
- Division of Geriatrics, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy and Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
44
|
Abstract
Despite dramatic advances in surgical techniques, imaging and adjuvant radiotherapy or chemotherapy, the prognosis for patients with malignant glial tumors remains dismal. Based on the current knowledge regarding immune responses in the healthy CNS and glioma-bearing hosts, this review discusses dendritic cell-based immunotherapeutic approaches for malignant gliomas and the relevance of recent clinical trials and their outcomes. It is now recognized that the CNS is not an immunologically tolerated site and clearance of arising glioma cells is a routine physiologic function of the normal, noncompromised immune system. To escape from immune surveillance, however, clinically apparent gliomas develop complex mechanisms that suppress tumoricidal immune responses. Although the use of dendritic cells for the treatment of glioma patients may be the most appropriate approach, an effective treatment paradigm for these tumors may eventually require the use of several types of treatment. Additionally, given the heterogeneity of this disease process and an immune-refractory tumor cell population, the series use of rational multiple modalities that target disparate tumor characteristics may be the most effective therapeutic strategy to treat malignant gliomas.
Collapse
Affiliation(s)
- Yasuharu Akasaki
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Suite 800 East, 8631 West 3 Street, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
45
|
|
46
|
CD11c+ alveolar macrophages are a source of IL-23 during lipopolysaccharide-induced acute lung injury. Shock 2013; 39:447-52. [PMID: 23481504 DOI: 10.1097/shk.0b013e31828f9c92] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Acute lung injury (ALI) is a severe pulmonary disease causing high numbers of fatalities worldwide. Innate immune responses are an integral part of the pathophysiologic events during ALI. Interleukin 23 (IL-23) is a proinflammatory mediator known to direct the inflammatory responses in various settings of infection, autoimmunity, and cancer. Interleukin 23 has been associated with proliferation and effector functions in T(H)17 cells. Surprisingly, little is known about production of IL-23 during ALI. In this study, we found expression of mRNA for IL-23p19 to be 10-fold elevated in lung homogenates of C57BL/6 mice after lipopolysaccharide (LPS)-induced ALI. Likewise, concentrations of IL-23 significantly increased in bronchoalveolar lavage fluids. Experiments with IL-23-deficient mice showed that endogenous IL-23 was required for production of IL-17A during LPS-ALI. CD11c-diphtheria toxin receptor transgenic mice were used to selectively deplete CD11c cells, the data suggesting that IL-23 production is dependent at least in part on CD11c cells during ALI. No alterations of IL-23 levels were observed in Rag-1-deficient mice as compared with wild-type C57BL/6 mice following ALI. The mouse alveolar macrophage cell line, MH-S, as well as primary alveolar macrophages displayed abundant surface expression of CD11c. Activation of these macrophages by LPS resulted in release of IL-23 in vitro. Our findings identify CD11c macrophages in the lung are likely an important source of IL-23 during ALI, which may be helpful for better understanding of this disease.
Collapse
|
47
|
Zhang HL, Zheng XY, Zhu J. Th1/Th2/Th17/Treg cytokines in Guillain–Barré syndrome and experimental autoimmune neuritis. Cytokine Growth Factor Rev 2013. [DOI: 10.1016/j.cytogfr.2013.05.005 10.1016/j.cytogfr.2013.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
48
|
Zhang HL, Zheng XY, Zhu J. Th1/Th2/Th17/Treg cytokines in Guillain–Barré syndrome and experimental autoimmune neuritis. Cytokine Growth Factor Rev 2013; 24:443-53. [DOI: 10.1016/j.cytogfr.2013.05.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/08/2013] [Accepted: 05/21/2013] [Indexed: 12/12/2022]
|
49
|
Hepatitis B virus induces IL-23 production in antigen presenting cells and causes liver damage via the IL-23/IL-17 axis. PLoS Pathog 2013; 9:e1003410. [PMID: 23825942 PMCID: PMC3694858 DOI: 10.1371/journal.ppat.1003410] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 04/25/2013] [Indexed: 12/20/2022] Open
Abstract
IL-23 regulates myriad processes in the innate and adaptive immune systems, and is a critical mediator of the proinflammatory effects exerted by Th17 cells in many diseases. In this study, we investigated whether and how hepatitis B virus (HBV) causes liver damage directly through the IL-23 signaling pathway. In biopsied liver tissues from HBV-infected patients, expression of both IL-23 and IL-23R was remarkably elevated. In vivo observations also indicated that the main sources of IL-23 were myeloid dendritic cells (mDCs) and macrophages. Analysis of in vitro differentiated immature DCs and macrophages isolated from healthy donors revealed that the HBV surface antigen (HBsAg) efficiently induces IL-23 secretion in a mannose receptor (MR)-dependent manner. Culture with an endosomal acidification inhibitor and the dynamin inhibitor showed that, upon binding to the MR, the HBsAg is taken up by mDCs and macrophages through an endocytosis mechanism. In contrast, although the HBV core antigen (HBcAg) can also stimulate IL-23 secretion from mDCs, the process was MR- and endocytosis-independent. In addition, IL-23 was shown to be indispensible for HBsAg-stimulated differentiation of naïve CD4(+) T cells into Th17 cells, which were determined to be the primary source of IL-17 in HBV-infected livers. The cognate receptor, IL-17R, was found to exist on the hepatic stellate cells and mDCs, both of which might represent the potential target cells of IL-17 in hepatitis B disease. These data provide novel insights into a yet unrecognized mechanism of HBV-induced hepatitis, by which increases in IL-23 expression, through an MR/endocytosis-dependent or -independent manner, produce liver damage through the IL-23/IL-17 axis.
Collapse
|
50
|
Himani GS, Prabhuji MLV, Karthikeyan BV. Gingival crevicular fluid and interleukin-23 concentration in systemically healthy subjects: their relationship in periodontal health and disease. J Periodontal Res 2013; 49:237-45. [DOI: 10.1111/jre.12100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2013] [Indexed: 11/30/2022]
Affiliation(s)
- G. S. Himani
- Department of Periodontics; MGM Dental College and Hospital; Navi Mumbai Maharashtra India
| | - M. L. V. Prabhuji
- Department of Periodontics and Implantology; Krishnadevaraya College of Dental Sciences and Hospital; Bangalore Karnataka India
| | - B. V. Karthikeyan
- Department of Periodontics and Implantology; Krishnadevaraya College of Dental Sciences and Hospital; Bangalore Karnataka India
| |
Collapse
|