1
|
Zeng H, Ma Z, Tao Y, Cheng C, Lin J, Fang J, Wei Y, Liu H, Zou F, Cui E, Zhang Y. Predicting early recurrence in hepatocellular carcinoma after hepatectomy using GD-EOB-DTPA enhanced MRI-based model. Eur J Radiol 2025; 188:112130. [PMID: 40305886 DOI: 10.1016/j.ejrad.2025.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/19/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
PURPOSE To develop and validate a comprehensive model for predicting postoperative early recurrence of hepatocellular carcinoma (HCC) based on gadoxetate disodium (Gd-EOB-DTPA)-enhanced MRI. METHODS 239 patients with HCC who underwent curative surgical resection were recruited from two centers between April 2017 and December 2022. Radiomics features were extracted from the region of interest (ROI) on preoperative Gd-EOB-DTPA-enhanced MR images, and consistency analysis was performed to select stable radiomics features. Significant variables in the univariate and multivariate logistic regression analysis were included in clinical-radiologic model. Nomograms were constructed by combining the best performing radiologic and clinical-radiologic characteristics. Recurrence-free survival (RFS) comparisons were conducted using the log-rank test based on high versus low model-derived scores. RESULTS The radiomics model based on multiple phases MR outperformed all other radiomics models and had the best discrimination for early recurrence, with AUC of 0.799 and 0.743 in the training and validation sets, respectively. In the entire cohort, high-risk patients exhibited significantly lower RFS compared to low-risk patients. CONCLUSION The nomogram integrating Gd-EOB-DTPA enhanced MRI radiomics features and clinical-radiologic characteristics demonstrate superior predictive performance with postoperative early recurrence in patients with HCC. The model can identify patients at high risk and provide support for individualized treatment planning.
Collapse
Affiliation(s)
- Hanqiu Zeng
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Zichang Ma
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yuxi Tao
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Ci Cheng
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Junyu Lin
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Jiayu Fang
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yuhan Wei
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Huajin Liu
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Feixiang Zou
- Department of Radiology, People's Hospital of Wuchuan Gelao and Miao Autonomous County, Zunyi 5643000 Guizhou, China
| | - Enming Cui
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, China.
| | - Yaqin Zhang
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China.
| |
Collapse
|
2
|
Qin Y, Zhang LG, Zhou X, Song C, Wu Y, Tang M, Ling Z, Wang J, Cai H, Peng Z, Feng ST. Explainable Fusion Model for Predicting Postoperative Early Recurrence in Hepatocellular Carcinoma Using Gadoxetic Acid-Enhanced MRI Habitat Imaging. Acad Radiol 2025:S1076-6332(25)00317-4. [PMID: 40379586 DOI: 10.1016/j.acra.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/17/2025] [Accepted: 04/07/2025] [Indexed: 05/19/2025]
Abstract
RATIONALE AND OBJECTIVES To develop an explainable fusion model that combines clinical, radiomic, and habitat features to predict postoperative early recurrence in hepatocellular carcinoma (HCC). METHODS The bicentric retrospective study included 370 patients with surgically confirmed early-stage HCC who underwent gadoxetic acid-enhanced MRI. The patients were stratified into a training cohort (n=296) and an external validation cohort (n=74). From the hepatobiliary phase images, habitat and radiomics features were extracted across the entire tumor and used to construct radiomics and habitat models. Additionally, a clinical model was established utilizing relevant clinical features. Subsequently, all previously mentioned features were merged to construct the fusion model (HabRad_FB). Diagnostic performance of these models was assessed and compared using the area under the receiver operating characteristic curve (AUC), net reclassification index (NRI), and integrated discrimination improvement (IDI). The fusion model was then interpreted using SHapley Additive exPlanations (SHAP) analysis. RESULTS Tumor recurrence was observed in 73 out of 370 patients (19.7%; 55.2±11.3 years; male=333). Among all study cohorts, the HabRad_FB model showed the highest AUC (0.820-0.959), outperforming the clinical (0.517-0.729), radiomics (0.707-0.815), and habitat (0.729-0.861) models. The HabRad_FB model also demonstrated significant improvement in IDI in the training cohort and NRI in the validation cohort. SHAP force plots provided valuable insights into the interpretation of HabRad_FB model's predictions for early recurrence. CONCLUSION The HabRad_FB, an explainable fusion model, aids clinicians in accurately and non-invasively predicting the early recurrence of HCC preoperatively. This model might provide great potential in prognostic prediction and clinical management.
Collapse
Affiliation(s)
- Yanjin Qin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, Guangzhou 510080, China
| | - Lie-Guang Zhang
- Department of Radiology, Guangzhou Eighth People's Hospital, Guangzhou, Medical University, Guangzhou 510060, China
| | - Xiaoqi Zhou
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, Guangzhou 510080, China
| | - Chenyu Song
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, Guangzhou 510080, China
| | - Yuxin Wu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, Guangzhou 510080, China
| | - Mimi Tang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, Guangzhou 510080, China
| | - Zhoukun Ling
- Department of Radiology, Guangzhou Eighth People's Hospital, Guangzhou, Medical University, Guangzhou 510060, China
| | - Jifei Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, Guangzhou 510080, China
| | - Huasong Cai
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, Guangzhou 510080, China
| | - Zhenpeng Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, Guangzhou 510080, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, Guangzhou 510080, China.
| |
Collapse
|
3
|
Zhou J, Yang D, Tang H. Magnetic resonance imaging radiomics based on artificial intelligence is helpful to evaluate the prognosis of single hepatocellular carcinoma. Heliyon 2025; 11:e41735. [PMID: 39866463 PMCID: PMC11761343 DOI: 10.1016/j.heliyon.2025.e41735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/04/2025] [Accepted: 01/05/2025] [Indexed: 01/28/2025] Open
Abstract
Background Previous studies mostly use single-type features to establish a prediction model. We aim to develop a comprehensive prediction model that effectively identify patients with poor prognosis for single hepatocellular carcinoma (HCC) based on artificial intelligence (AI). Patients and methods: 236 single HCC patients were studied to establish a comprehensive prediction model. We collected the basic information of patients and used AI to extract the features of magnetic resonance (MR) images. Results The clinical model based on linear regression (LR) algorithm (AUC: 0.658, 95%CI: 0.5021-0.8137), the radiomics model and deep transfer learning (DTL) model based on light gradient-boosting machine (Light GBM) algorithm (AUC: 0.761, 95%CI: 0.6326-0.8886 and AUC: 0.784, 95%CI: 0.6587-0.9087, respectively) were the optimal prediction models. A comparison revealed that the integrated nomogram had the largest area under the receiver operating characteristic curve (AUC) (all P < 0.05). In the training cohort, the integrated nomogram was predictive of recurrence-free survival (RFS) as well as overall survival (OS) (C-index: 0.735 and 0.712, P < 0.001). In the test cohort, the integrated nomogram also can predict RFS and OS (C-index: 0.718 and 0.740, P < 0.001) in patients. Conclusion The integrated nomogram composed of signatures in the prediction models can not only predict the postoperative recurrence of single HCC patients but also stratify the risk of OS after the operation.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daofeng Yang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Lanza C, Ascenti V, Amato GV, Pellegrino G, Triggiani S, Tintori J, Intrieri C, Angileri SA, Biondetti P, Carriero S, Torcia P, Ierardi AM, Carrafiello G. All You Need to Know About TACE: A Comprehensive Review of Indications, Techniques, Efficacy, Limits, and Technical Advancement. J Clin Med 2025; 14:314. [PMID: 39860320 PMCID: PMC11766109 DOI: 10.3390/jcm14020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Transcatheter arterial chemoembolization (TACE) is a proven and widely accepted treatment option for hepatocellular carcinoma and it is recommended as first-line non-curative therapy for BCLC B/intermediate HCC (preserved liver function, multifocal, no cancer-related symptoms) in patients without vascular involvement. Different types of TACE are available nowadays, including TAE, c-TACE, DEB-TACE, and DSM-TACE, but at present there is insufficient evidence to recommend one TACE technique over another and the choice is left to the operator. This review then aims to provide a comprehensive overview of the current literature on indications, types of procedures, safety, and efficacy of different TACE treatments.
Collapse
Affiliation(s)
- Carolina Lanza
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Velio Ascenti
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (V.A.); (G.V.A.); (G.P.); (S.T.); (J.T.)
| | - Gaetano Valerio Amato
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (V.A.); (G.V.A.); (G.P.); (S.T.); (J.T.)
| | - Giuseppe Pellegrino
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (V.A.); (G.V.A.); (G.P.); (S.T.); (J.T.)
| | - Sonia Triggiani
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (V.A.); (G.V.A.); (G.P.); (S.T.); (J.T.)
| | - Jacopo Tintori
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (V.A.); (G.V.A.); (G.P.); (S.T.); (J.T.)
| | - Cristina Intrieri
- Postgraduate School in Diangostic Imaging, Università degli Studi di Siena, 20122 Milan, Italy;
| | - Salvatore Alessio Angileri
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Pierpaolo Biondetti
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Serena Carriero
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Pierluca Torcia
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Anna Maria Ierardi
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
| | - Gianpaolo Carrafiello
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda—Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (C.L.); (P.B.); (S.C.); (P.T.); (A.M.I.); (G.C.)
- Faculty of Health Science, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| |
Collapse
|
5
|
Dai T, Gu QB, Peng YJ, Yu CL, Liu P, He YQ. Preoperative Noninvasive Prediction of Recurrence-Free Survival in Hepatocellular Carcinoma Using CT-Based Radiomics Model. J Hepatocell Carcinoma 2024; 11:2211-2222. [PMID: 39558966 PMCID: PMC11571988 DOI: 10.2147/jhc.s493044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024] Open
Abstract
Purpose This study aims to explore the value of radiomics combined with clinical parameters in predicting recurrence-free survival (RFS) after the resection of hepatocellular carcinoma (HCC). Patients and Methods In this retrospective study, a total of 322 patients with HCC who underwent contrast-enhanced computed tomography (CT) and radical surgical resection were enrolled and randomly divided into a training group (n = 223) and a validation group (n = 97). In the training group, Univariate and multivariate Cox regression analyses were employed to obtain clinical variables related to RFS for constructing the clinical model. The least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses were employed to construct the radiomics model, and the clinical-radiomics model was further constructed. Model prediction performance was subsequently assessed by the area under the time-dependent receiver operating characteristic curve (AUC) and calibration curve. Additionally, Kaplan-Meier analysis was used to evaluate the model's value in predicting RFS. Correlations between radiomics features and pathological parameters were analyzed. Results The clinical-radiomics model predicted RFS at 1, 2, and 3 years more accurately than the clinical or radiomics model alone (training group, AUC = 0.834, 0.765 and 0.831, respectively; validation group, AUC = 0.715, 0.710 and 0.793, respectively). The predicted high-risk subgroup based on the clinical-radiomics nomogram had shorter RFS than predicted low-risk subgroup in data sets, enabling risk stratification of various clinical subgroups. Correlation analysis revealed that the rad-score was positively related to microvascular invasion (MVI) and Edmondson-Steiner grade. Conclusion The clinical-radiomics model effectively predicts RFS in HCC patients and identifies high-risk individuals for recurrence.
Collapse
Affiliation(s)
- Ting Dai
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
| | - Qian-Biao Gu
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
| | - Ying-Jie Peng
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
| | - Chuan-Lin Yu
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
| | - Peng Liu
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
| | - Ya-Qiong He
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, People’s Republic of China
| |
Collapse
|
6
|
Wunderlich AP, Lisson C, Götz M. Editorial for "Multi-Phase MRI-Based Radiomics for Predicting Histological Grade of Hepatocellular Carcinoma". J Magn Reson Imaging 2024; 60:2128-2129. [PMID: 38411266 DOI: 10.1002/jmri.29323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Affiliation(s)
- Arthur P Wunderlich
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, Ulm, Germany
- Division for Experimental Radiology, Ulm University Medical Center, Ulm, Germany
| | - Catharina Lisson
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, Ulm, Germany
- Division for Experimental Radiology, Ulm University Medical Center, Ulm, Germany
| | - Michael Götz
- Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, Ulm, Germany
- Division for Experimental Radiology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
7
|
Wu L, Lai Q, Li S, Wu S, Li Y, Huang J, Zeng Q, Wei D. Artificial intelligence in predicting recurrence after first-line treatment of liver cancer: a systematic review and meta-analysis. BMC Med Imaging 2024; 24:263. [PMID: 39375586 PMCID: PMC11457388 DOI: 10.1186/s12880-024-01440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND The aim of this study was to conduct a systematic review and meta-analysis to comprehensively evaluate the performance and methodological quality of artificial intelligence (AI) in predicting recurrence after single first-line treatment for liver cancer. METHODS A rigorous and systematic evaluation was conducted on the AI studies related to recurrence after single first-line treatment for liver cancer, retrieved from the PubMed, Embase, Web of Science, Cochrane Library, and CNKI databases. The area under the curve (AUC), sensitivity (SENC), and specificity (SPEC) of each study were extracted for meta-analysis. RESULTS Six percutaneous ablation (PA) studies, 16 surgical resection (SR) studies, and 5 transarterial chemoembolization (TACE) studies were included in the meta-analysis for predicting recurrence after hepatocellular carcinoma (HCC) treatment, respectively. Four SR studies and 2 PA studies were included in the meta-analysis for recurrence after intrahepatic cholangiocarcinoma (ICC) and colorectal cancer liver metastasis (CRLM) treatment. The pooled SENC, SEPC, and AUC of AI in predicting recurrence after primary HCC treatment via PA, SR, and TACE were 0.78, 0.90, and 0.92; 0.81, 0.77, and 0.86; and 0.73, 0.79, and 0.79, respectively. The values for ICC treated with SR and CRLM treated with PA were 0.85, 0.71, 0.86 and 0.69, 0.63,0.74, respectively. CONCLUSION This systematic review and meta-analysis demonstrates the comprehensive application value of AI in predicting recurrence after a single first-line treatment of liver cancer, with satisfactory results, indicating the clinical translation potential of AI in predicting recurrence after liver cancer treatment.
Collapse
Affiliation(s)
- Linyong Wu
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Qingfeng Lai
- Second Ward of Nephrology Department, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Songhua Li
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Shaofeng Wu
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Yizhong Li
- Department of Radiology, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Ju Huang
- Department of Radiology, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Qiuli Zeng
- Second Ward of Nephrology Department, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Dayou Wei
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China.
| |
Collapse
|
8
|
Kuang F, Gao Y, Zhou Q, Lu C, Lin Q, Al Mamun A, Pan J, Shi S, Tu C, Shao C. MRI Radiomics Combined with Clinicopathological Factors for Predicting 3-Year Overall Survival of Hepatocellular Carcinoma After Hepatectomy. J Hepatocell Carcinoma 2024; 11:1445-1457. [PMID: 39050810 PMCID: PMC11268741 DOI: 10.2147/jhc.s464916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Background A limited number of studies have examined the use of radiomics to predict 3-year overall survival (OS) after hepatectomy in patients with hepatocellular carcinoma (HCC). This study develops 3-year OS prediction models for HCC patients after liver resection using MRI radiomics and clinicopathological factors. Materials and Methods A retrospective analysis of 141 patients who underwent surgical resection of HCC was performed. Patients were randomized into two set: the training set (n=98) and the validation set (n=43) including the survival groups (n=111) and non-survival groups (n=30) based on 3-year survival after hepatectomy. Furthermore, x2 or Fisher's exact test, univariate and multivariate logistic regression analyses were conducted to determine independent clinicopathological risk factors associated with 3-year OS. 1688 quantitative imaging features were extracted from preoperative T2-weighted imaging (T2WI) and contrast-enhanced magnetic resonance imaging (CE-MRI) of arterial phase (AP), portal venous phases (PVP)and delay period (DP). The features were selected using the variance threshold method, the select K best method and the least absolute shrinkage and selection operator (LASSO) algorithm. By using Bernoulli Naive Bayes (BernoulliNB) and Multinomial Naive Bayes (MultinomialNB) classifiers, we constructed models based on the independent clinicopathological factors and Rad-scores. To determine the best model, receiver operating characteristics (ROC) and Delong's test were used. Moreover, calibration curves were used to determine the calibration ability of the model, while decision curve analysis (DCA) was implemented to evaluate its clinical benefit. Results The fusion model showed excellent prediction precision with AUC of 0.910 and 0.846 in training and validation set and revealed significant diagnostic accuracy and value in the calibration curve and DCA analysis. Conclusion Nomograms based on MRI radiomics and clinicopathological factors have significant predictive value for 3-year OS after hepatectomy and can be used for risk classification.
Collapse
Affiliation(s)
- Fangyuan Kuang
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People’s Republic of China
- Department of Hepatopancreatobiliary Surgery, People Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Yang Gao
- Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Qingyun Zhou
- Department of Hepatopancreatobiliary Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Chenying Lu
- Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Qiaomei Lin
- Department of Hepatopancreatobiliary Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Abdullah Al Mamun
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Junle Pan
- First Academy of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Shuibo Shi
- The First Clinical Medical College of Nanchang University, Nanchang City, Jiangxi, 330000, People’s Republic of China
| | - Chaoyong Tu
- Department of Hepatopancreatobiliary Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Chuxiao Shao
- Department of Hepatopancreatobiliary Surgery, People Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, Zhejiang, 323000, People’s Republic of China
| |
Collapse
|
9
|
Hu Y, Zhang L, Zhang H, Zhang B, Yang J, Li R. Prediction power of radiomics in early recurrence of hepatocellular carcinoma: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e38721. [PMID: 38968499 PMCID: PMC11224803 DOI: 10.1097/md.0000000000038721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/06/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Raiomics is an emerging auxiliary diagnostic tool, but there are still differences in whether it can be applied to predict early recurrence of hepatocellular carcinoma (HCC). The purpose of this meta-analysis was to systematically evaluate the predictive power of radiomics in the early recurrence (ER) of HCC. METHODS Comprehensive studies on the application of radiomics to predict ER in HCC patients after hepatectomy or curative ablation were systematically screened in Embase, PubMed, and Web of Science. RESULTS Ten studies which is involving a total of 1929 patients were reviewed. The overall estimates of radiomic models for sensitivity and specificity in predicting the ER of HCC were 0.79 (95% confidence interval [CI]: 0.68-0.87) and 0.83 (95% CI: 0.73-0.90), respectively. The area under the summary receiver operating characteristic curve (SROC) was 0.88 (95% CI: 0.85-0.91). CONCLUSIONS The imaging method is a reliable method for diagnosing HCC. Radiomics, which is based on medical imaging, has excellent power in predicting the ER of HCC. With the help of radiomics, we can predict the recurrence of HCC after surgery more effectively and provide a useful reference for clinical practice.
Collapse
Affiliation(s)
- Yanzi Hu
- Department of Radiology, Yuhuan Second People’s Hospital, Zhejiang, China
| | - Limin Zhang
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huangqi Zhang
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Binhao Zhang
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Jiawen Yang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Renzhan Li
- Department of Radiology, Sanmen People’s Hospital, Zhejiang Province, China
| |
Collapse
|
10
|
Lee JH, Hwang JA, Gu K, Shin J, Han S, Kim YK. Magnetic resonance elastography as a preoperative assessment for predicting intrahepatic recurrence in patients with hepatocellular carcinoma. Magn Reson Imaging 2024; 109:127-133. [PMID: 38513784 DOI: 10.1016/j.mri.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Magnetic resonance elastography (MRE) is a noninvasive tool for diagnosing hepatic fibrosis with high accuracy. We investigated the preoperative clinical and imaging predictors of intrahepatic recurrence after curative resection of hepatocellular carcinoma (HCC), and evaluated MRE as a predictor of intrahepatic recurrence. METHODS We retrospectively evaluated 80 patients who underwent preoperative contrast-enhanced magnetic resonance imaging (MRI) with two-dimensional MRE and curative resection for treatment-naïve HCC between May 2019 and December 2021. Liver stiffness (LS) was measured on the elastograms, and the optimal cutoff of LS for predicting intrahepatic recurrence was obtained using receiver operating characteristic (ROC) analysis. An LS above this cutoff was defined as MRE-recurrence. Preoperative imaging features of the tumor were assessed on MRI, including features in the Liver Imaging Reporting and Data System and microvascular invasion (MVI). Recurrence-free survival (RFS) rates were estimated using the Kaplan-Meier method, and differences were compared using the log-rank test. Using a Cox proportional hazards model, we conducted a multivariable analysis to investigate the factors affecting recurrence-free survival. RESULTS During a median follow-up period of 32 months (range, 4-52 months), thirteen patients (16.3%) developed intrahepatic recurrence. ROC analysis determined an LS cutoff of ≥4.35 kPa to define MRE-recurrence. The 4-year RFS rate was significantly higher in patients without MRE-recurrence than in those with MRE-recurrence (93.4% vs. 48.9%; p = 0.001). In multivariable analysis, MRE-recurrence (Hazard ratio [HR], 5.9; 95% confidence interval [CI], 1.5-23.1) and MVI (HR, 3.4; 95% CI, 1.0-11.3) were independent predictors of intrahepatic recurrence. CONCLUSIONS Patients without MRE-recurrence had significantly higher RFS rates than those with MRE-recurrence. MRE-recurrence and MVI were independent predictors of intrahepatic recurrence in patients after curative resection for HCC.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeong Ah Hwang
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Kyowon Gu
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jaeseung Shin
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seungchul Han
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Kon Kim
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Xie Q, Zhao Z, Yang Y, Wang X, Wu W, Jiang H, Hao W, Peng R, Luo C. A clinical-radiomic-pathomic model for prognosis prediction in patients with hepatocellular carcinoma after radical resection. Cancer Med 2024; 13:e7374. [PMID: 38864473 PMCID: PMC11167608 DOI: 10.1002/cam4.7374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/21/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
PURPOSE Radical surgery, the first-line treatment for patients with hepatocellular cancer (HCC), faces the dilemma of high early recurrence rates and the inability to predict effectively. We aim to develop and validate a multimodal model combining clinical, radiomics, and pathomics features to predict the risk of early recurrence. MATERIALS AND METHODS We recruited HCC patients who underwent radical surgery and collected their preoperative clinical information, enhanced computed tomography (CT) images, and whole slide images (WSI) of hematoxylin and eosin (H & E) stained biopsy sections. After feature screening analysis, independent clinical, radiomics, and pathomics features closely associated with early recurrence were identified. Next, we built 16 models using four combination data composed of three type features, four machine learning algorithms, and 5-fold cross-validation to assess the performance and predictive power of the comparative models. RESULTS Between January 2016 and December 2020, we recruited 107 HCC patients, of whom 45.8% (49/107) experienced early recurrence. After analysis, we identified two clinical features, two radiomics features, and three pathomics features associated with early recurrence. Multimodal machine learning models showed better predictive performance than bimodal models. Moreover, the SVM algorithm showed the best prediction results among the multimodal models. The average area under the curve (AUC), accuracy (ACC), sensitivity, and specificity were 0.863, 0.784, 0.731, and 0.826, respectively. Finally, we constructed a comprehensive nomogram using clinical features, a radiomics score and a pathomics score to provide a reference for predicting the risk of early recurrence. CONCLUSIONS The multimodal models can be used as a primary tool for oncologists to predict the risk of early recurrence after radical HCC surgery, which will help optimize and personalize treatment strategies.
Collapse
Affiliation(s)
- Qu Xie
- Department of Hepato‐Pancreato‐Biliary & Gastric Medical OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Zeyin Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan UniversityChangshaHunanChina
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
| | - Yanzhen Yang
- Department of Hepato‐Pancreato‐Biliary & Gastric Medical OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Xiaohong Wang
- Department of Intestinal OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
| | - Wei Wu
- Department of PathologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
| | - Haitao Jiang
- Department of RadiologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
| | - Weiyuan Hao
- Department of InterventionZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
| | - Ruizi Peng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
| | - Cong Luo
- Department of Hepato‐Pancreato‐Biliary & Gastric Medical OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
| |
Collapse
|
12
|
Liu L, Qin S, Lin K, Xu Q, Yang Y, Cai J, Zeng Y, Yuan S, Xiang B, Lau WY, Zhou W. Development and comprehensive validation of a predictive prognosis model for very early HCC recurrence within one year after curative resection: a multicenter cohort study. Int J Surg 2024; 110:3401-3411. [PMID: 38626419 PMCID: PMC11175792 DOI: 10.1097/js9.0000000000001467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/31/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND The high incidence of early recurrence after liver resection (LR) for hepatocellular carcinoma (HCC) is the main obstacle in achieving good long-term survival outcomes. The aim of the present study is to develop a prognostic model in predicting the risk of very early (1-year) recurrence. MATERIAL AND METHODS Consecutive patients who underwent LR for HCC with curative intent at multicenters in China were enrolled in this study. The VERM-pre (the Preoperative Very Early Recurrence Model of HCC) with good performance was derived and validated by internal and external cohorts retrospectively and by another two-center cohort prospectively. RESULTS Seven thousand four hundred one patients were enrolled and divided randomly into three cohorts. Eight variables (tumor diameter, tumor number, macrovascular invasion, satellite nodule, alpha-fetoprotein, level of HBV-DNA, γ-GT, and prothrombin time) were identified as independent risk factors for recurrence-free survival on univariate and multivariate analyses. The VERM-pre model was developed which showed a high capacity of discrimination (C-index: 0.722; AUROC at 1-year: 0.722)) and was validated comprehensively by the internal, external, and prospective cohorts, retrospectively. Calibration plots showed satisfactory fitting of probability of early HCC recurrence in the cohorts. Three risk strata were derived to have significantly different recurrence-free survival rates (low-risk: 80.4-85.4%; intermediate-risk: 59.7-64.8%; high-risk: 32.6-42.6%). In the prospective validation cohort, the swimming plot illustrated consistent outcomes with the beginning predictive score. CONCLUSION The VERM-pre model accurately predicted the 1-year recurrence rates of HCC after LR with curative intent. The model was retrospectively and prospectively validated and then developed as the online tool.
Collapse
Affiliation(s)
- Lei Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital
| | - Shangdong Qin
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning
| | - Kongying Lin
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou
| | - Qingguo Xu
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital
| | - Jinzhen Cai
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University
| | - Yongyi Zeng
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital
| | - Bangde Xiang
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning
| | - Wan Yee Lau
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital
- Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Chen JP, Yang RH, Zhang TH, Liao LA, Guan YT, Dai HY. Pre-operative enhanced magnetic resonance imaging combined with clinical features predict early recurrence of hepatocellular carcinoma after radical resection. World J Gastrointest Oncol 2024; 16:1192-1203. [PMID: 38660657 PMCID: PMC11037060 DOI: 10.4251/wjgo.v16.i4.1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/28/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Indentifying predictive factors for postoperative recurrence of hepatocellular carcinoma (HCC) has great significance for patient prognosis. AIM To explore the value of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) enhanced magnetic resonance imaging (MRI) combined with clinical features in predicting early recurrence of HCC after resection. METHODS A total of 161 patients with pathologically confirmed HCC were enrolled. The patients were divided into early recurrence and non-early recurrence group based on the follow-up results. The clinical, laboratory, pathological results and Gd-EOB-DTPA enhanced MRI imaging features were analyzed. RESULTS Of 161 patients, 73 had early recurrence and 88 were had non-early recurrence. Univariate analysis showed that patient age, gender, serum alpha-fetoprotein level, the Barcelona Clinic Liver Cancer stage, China liver cancer (CNLC) stage, microvascular invasion (MVI), pathological satellite focus, tumor size, tumor number, tumor boundary, tumor capsule, intratumoral necrosis, portal vein tumor thrombus, large vessel invasion, nonperipheral washout, peritumoral enhancement, hepatobiliary phase (HBP)/tumor signal intensity (SI)/peritumoral SI, HBP peritumoral low signal and peritumoral delay enhancement were significantly associated with early recurrence of HCC after operation. Multivariate logistic regression analysis showed that patient age, MVI, CNLC stage, tumor boundary and large vessel invasion were independent predictive factors. External data validation indicated that the area under the curve of the combined predictors was 0.861, suggesting that multivariate logistic regression was a reasonable predictive model for early recurrence of HCC. CONCLUSION Gd-EOB-DTPA enhanced MRI combined with clinical features would help predicting the early recurrence of HCC after operation.
Collapse
Affiliation(s)
- Jian-Ping Chen
- Department of Intervention, Meizhou People’s Hospital, Meizhou 514031, Guangdong Province, China
| | - Ri-Hui Yang
- Department of Medical Imaging, Meizhou People’s Hospital, Meizhou 514031, Guangdong Province, China
| | - Tian-Hui Zhang
- Department of Medical Imaging, Meizhou People’s Hospital, Meizhou 514031, Guangdong Province, China
| | - Li-An Liao
- Department of Medical Imaging, Meizhou People’s Hospital, Meizhou 514031, Guangdong Province, China
| | - Yu-Ting Guan
- Department of Medical Imaging, Meizhou People’s Hospital, Meizhou 514031, Guangdong Province, China
| | - Hai-Yang Dai
- Department of Medical Imaging, Huizhou Municipal Central Hospital, Huizhou 516001, Guangdong Province, China
| |
Collapse
|
14
|
Mao B, Ren Y, Yu X, Liang X, Ding X. Preoperative prediction for early recurrence of hepatocellular carcinoma using machine learning-based radiomics. Front Oncol 2024; 14:1346124. [PMID: 38559563 PMCID: PMC10978579 DOI: 10.3389/fonc.2024.1346124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To develop a contrast-enhanced computed tomography (CECT) based radiomics model using machine learning method and assess its ability of preoperative prediction for the early recurrence of hepatocellular carcinoma (HCC). Methods A total of 297 patients confirmed with HCC were assigned to the training dataset and test dataset based on the 8:2 ratio, and the follow-up period of the patients was from May 2012 to July 2017. The lesion sites were manually segmented using ITK-SNAP, and the pyradiomics platform was applied to extract radiomic features. We established the machine learning model to predict the early recurrence of HCC. The accuracy, AUC, standard deviation, specificity, and sensitivity were applied to evaluate the model performance. Results 1,688 features were extracted from the arterial phase and venous phase images, respectively. When arterial phase and venous phase images were employed correlated with clinical factors to train a prediction model, it achieved the best performance (AUC with 95% CI 0.8300(0.7560-0.9040), sensitivity 89.45%, specificity 79.07%, accuracy 82.67%, p value 0.0064). Conclusion The CECT-based radiomics may be helpful to non-invasively reveal the potential connection between CECT images and early recurrence of HCC. The combination of radiomics and clinical factors could boost model performance.
Collapse
Affiliation(s)
- Bing Mao
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Yajun Ren
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuan Yu
- Department of Medical Imaging, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinliang Liang
- Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Xiangming Ding
- Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Li J, Ma Y, Yang C, Qiu G, Chen J, Tan X, Zhao Y. Radiomics analysis of R2* maps to predict early recurrence of single hepatocellular carcinoma after hepatectomy. Front Oncol 2024; 14:1277698. [PMID: 38463221 PMCID: PMC10920317 DOI: 10.3389/fonc.2024.1277698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the effectiveness of radiomics analysis with R2* maps in predicting early recurrence (ER) in single hepatocellular carcinoma (HCC) following partial hepatectomy. METHODS We conducted a retrospective analysis involving 202 patients with surgically confirmed single HCC having undergone preoperative magnetic resonance imaging between 2018 and 2021 at two different institutions. 126 patients from Institution 1 were assigned to the training set, and 76 patients from Institution 2 were assigned to the validation set. A least absolute shrinkage and selection operator (LASSO) regularization was conducted to operate a logistic regression, then features were identified to construct a radiomic score (Rad-score). Uni- and multi-variable tests were used to assess the correlations of clinicopathological features and Rad-score with ER. We then established a combined model encompassing the optimal Rad-score and clinical-pathological risk factors. Additionally, we formulated and validated a predictive nomogram for predicting ER in HCC. The nomogram's discrimination, calibration, and clinical utility were thoroughly evaluated. RESULTS Multivariable logistic regression revealed the Rad-score, microvascular invasion (MVI), and α fetoprotein (AFP) level > 400 ng/mL as significant independent predictors of ER in HCC. We constructed a nomogram based on these significant factors. The areas under the receiver operator characteristic curve of the nomogram and precision-recall curve were 0.901 and 0.753, respectively, with an F1 score of 0.831 in the training set. These values in the validation set were 0.827, 0.659, and 0.808. CONCLUSION The nomogram that integrates the radiomic score, MVI, and AFP demonstrates high predictive efficacy for estimating the risk of ER in HCC. It facilitates personalized risk classification and therapeutic decision-making for HCC patients.
Collapse
Affiliation(s)
- Jia Li
- Department of Oncology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Yunhui Ma
- Department of Oncology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Chunyu Yang
- Department of Radiology, The First School of Clinical Medicine, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Ganbin Qiu
- Imaging Department of Zhaoqing Medical College, Zhaoqing, China
| | - Jingmu Chen
- Department of Radiology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Xiaoliang Tan
- Department of Radiology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Yue Zhao
- Department of Radiology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| |
Collapse
|
16
|
Jin J, Jiang Y, Zhao YL, Huang PT. Radiomics-based Machine Learning to Predict the Recurrence of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. Acad Radiol 2024; 31:467-479. [PMID: 37867018 DOI: 10.1016/j.acra.2023.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023]
Abstract
RATIONALE AND OBJECTIVES Recurrence of hepatocellular carcinoma (HCC) is a major concern in its management. Accurately predicting the risk of recurrence is crucial for determining appropriate treatment strategies and improving patient outcomes. A certain amount of radiomics models for HCC recurrence prediction have been proposed. This study aimed to assess the role of radiomics models in the prediction of HCC recurrence and to evaluate their methodological quality. MATERIALS AND METHODS Databases Cochrane Library, Web of Science, PubMed, and Embase were searched until July 11, 2023 for studies eligible for the meta-analysis. Their methodological quality was evaluated using the Radiomics Quality Score (RQS). The predictive ability of the radiomics model, clinical model, and the combined model integrating the clinical characteristics with radiomics signatures was measured using the concordance index (C-index), sensitivity, and specificity. Radiomics models in included studies were compared based on different imaging modalities, including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound/sonography (US), contrast-enhanced ultrasound (CEUS). RESULTS A total of 49 studies were included. On the validation cohort, radiomics model performed better (CT: C-index = 0.747, 95% CI: 0.70-0.79; MRI: C-index = 0.788, 95% CI: 0.75-0.83; CEUS: C-index = 0.763, 95% CI: 0.60-0.93) compared to the clinical model (C-index = 0.671, 95% CI: 0.65-0.70), except for ultrasound-based models (C-index = 0.560, 95% CI: 0.53-0.59). The combined model outperformed other models (CT: C-index = 0.790, 95% CI: 0.76-0.82; MRI: C-index = 0.826, 95% CI: 0.79-0.86; US: C-index = 0.760, 95% CI: 0.65-0.87), except for CEUS-based combined models (C-index = 0.707, 95% CI: 0.44-0.97). CONCLUSION Radiomics holds the potential to predict HCC recurrence and demonstrates enhanced predictive value across various imaging modalities when integrated with clinical features. Nevertheless, further studies are needed to optimize the radiomics approach and validate the results in larger, multi-center cohorts.
Collapse
Affiliation(s)
- Jin Jin
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China (J.J., Y.J., Y.-L.Z., P.-L.H.)
| | - Ying Jiang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China (J.J., Y.J., Y.-L.Z., P.-L.H.)
| | - Yu-Lan Zhao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China (J.J., Y.J., Y.-L.Z., P.-L.H.)
| | - Pin-Tong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China (J.J., Y.J., Y.-L.Z., P.-L.H.); Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China (P.-L.H.); Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, P.R. China (P.-L.H.).
| |
Collapse
|
17
|
Brancato V, Cerrone M, Garbino N, Salvatore M, Cavaliere C. Current status of magnetic resonance imaging radiomics in hepatocellular carcinoma: A quantitative review with Radiomics Quality Score. World J Gastroenterol 2024; 30:381-417. [PMID: 38313230 PMCID: PMC10835534 DOI: 10.3748/wjg.v30.i4.381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Radiomics is a promising tool that may increase the value of magnetic resonance imaging (MRI) for different tasks related to the management of patients with hepatocellular carcinoma (HCC). However, its implementation in clinical practice is still far, with many issues related to the methodological quality of radiomic studies. AIM To systematically review the current status of MRI radiomic studies concerning HCC using the Radiomics Quality Score (RQS). METHODS A systematic literature search of PubMed, Google Scholar, and Web of Science databases was performed to identify original articles focusing on the use of MRI radiomics for HCC management published between 2017 and 2023. The methodological quality of radiomic studies was assessed using the RQS tool. Spearman's correlation (ρ) analysis was performed to explore if RQS was correlated with journal metrics and characteristics of the studies. The level of statistical signi-ficance was set at P < 0.05. RESULTS One hundred and twenty-seven articles were included, of which 43 focused on HCC prognosis, 39 on prediction of pathological findings, 16 on prediction of the expression of molecular markers outcomes, 18 had a diagnostic purpose, and 11 had multiple purposes. The mean RQS was 8 ± 6.22, and the corresponding percentage was 24.15% ± 15.25% (ranging from 0.0% to 58.33%). RQS was positively correlated with journal impact factor (IF; ρ = 0.36, P = 2.98 × 10-5), 5-years IF (ρ = 0.33, P = 1.56 × 10-4), number of patients included in the study (ρ = 0.51, P < 9.37 × 10-10) and number of radiomics features extracted in the study (ρ = 0.59, P < 4.59 × 10-13), and time of publication (ρ = -0.23, P < 0.0072). CONCLUSION Although MRI radiomics in HCC represents a promising tool to develop adequate personalized treatment as a noninvasive approach in HCC patients, our study revealed that studies in this field still lack the quality required to allow its introduction into clinical practice.
Collapse
Affiliation(s)
- Valentina Brancato
- Department of Information Technology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Cerrone
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Nunzia Garbino
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Marco Salvatore
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SYNLAB SDN, Naples 80143, Italy
| |
Collapse
|
18
|
Zhang C, Tao Y, Yang R, Wang Y, Yu Y, Zhou Y. Prediction of Non-Transplantable Recurrence After Liver Resection for Solitary Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:229-240. [PMID: 38298271 PMCID: PMC10827633 DOI: 10.2147/jhc.s412933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
Purpose Using a combination model of preoperative imaging and clinical factors to predict non-transplantable recurrence (NTR) after liver resection and assist solitary hepatocellular carcinoma (HCC) patients in the selection of early treatment options. Patients and Methods A retrospective analysis was conducted on 253 solitary HCC patients who underwent radical resection and had preoperative MRI. NTR patients were defined as those exceeding the University of California, San Francisco (UCSF) criteria at the time of recurrence. Cox regression analysis was employed to identify preoperative factors associated with NTR based on clinical and tumor imaging characteristics. A risk scoring model (NTRScore) was developed and validated. Results Among the 253 patients, 86 (33.9%) experienced recurrence, and among those with recurrence, 34 patients (39.5%) developed NTR. In multivariate analysis, factors associated with NTR included alpha-fetoprotein (AFP) [>10 ng/mL] [HR: 3.42, 95% confidence interval (CI): 1.54-7.63, P: 0.003], arterial phase hyperenhancement (APHE) [HR: 2.23, 95% CI: 1.03-4.81, P: 0.041], washout[HR: 0.35, 95% CI: 0.15-0.84, P: 0.019], and capsule [HR: 0.44, 95% CI: 0.22-0.88, P: 0.021]. The β-coefficients of these variables were utilized to develop the weighted NTRScore(c-index 0.72, 95% CI: 0.65-0.79). The NTR occurrence increased across the three categories (low: 5.6%, medium: 13.6%, high: 35.1%, p < 0.001), and the Kaplan-Meier curves of recurrence-free survival(RFS) and overall survival(OS) show significant differences (p = 0.004 and p<0.001). Furthermore, the higher NTR categories may be associated with an increased risk of extrahepatic recurrence. Conclusion The NTRScore demonstrated strong discriminatory ability and may serve as a clinically useful tool to assist in risk stratification and potential to guide treatment and optimal surveillance for patients of solitary hepatocellular carcinoma within UCSF criteria.
Collapse
Affiliation(s)
- Chunhui Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150010, People’s Republic of China
| | - Yuqing Tao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150010, People’s Republic of China
| | - Rui Yang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150010, People’s Republic of China
| | - Yueqi Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150010, People’s Republic of China
| | - Yanyan Yu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150010, People’s Republic of China
| | - Yang Zhou
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150010, People’s Republic of China
| |
Collapse
|
19
|
Wang X, Yu Y, Tao Y, Wang Y, Zhang C, Cui Y, Zhou Y. Clinical-Radiological Characteristic for Predicting Ultra-Early Recurrence After Liver Resection in Solitary Hepatocellular Carcinoma Patients. J Hepatocell Carcinoma 2023; 10:2323-2335. [PMID: 38146465 PMCID: PMC10749548 DOI: 10.2147/jhc.s434955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023] Open
Abstract
Objective This study aims to identify independent risk factors for ultra-early recurrence in patients with early solitary hepatocellular carcinoma (HCC) and develop an individualized predictive nomogram for ultra-early recurrence. Materials and Methods A total of 332 patients with early solitary HCC who underwent curative liver resection at our hospital from January 2015 to May 2021 were included in this study. Based on the patients' recurrence status at 6 months, they were divided into the non-ultra-early recurrence group and the ultra-early recurrence group. Univariate and multivariate Cox regression analyses were used to construct the nomogram, and internal validation of its performance was performed using calibration plots with bootstrapping. Results Among the 332 patients with early solitary HCC, 39 (11.7%) experienced ultra-early recurrence. Tumor morphology, age > 46 years, AFP > 332.4 ng/mL, GGT > 51.2 U/L, ALP > 126 U/L, PT > 12.8 s, and satellite nodules were identified as independent prognostic factors for ultra-early recurrence in patients with early solitary HCC and were incorporated into the final predictive nomogram. The C-index of the nomogram and bootstrap resampling were 0.842 and 0.815, respectively. The calibration plot demonstrated good agreement between the predicted and observed probabilities of ultra-early recurrence, and DCA indicated the favorable clinical utility of the nomogram. Additionally, AFP > 332.4 ng/mL, AST > 35 U/L, GGT > 51.2 U/L, ALP > 126 U/L, tumor morphology, tumor size, satellite nodules, and intratumoral hemorrhage were identified as risk factors for overall survival in patients with early solitary HCC. Conclusion Our study establishes a nomogram for predicting the postoperative ultra-early recurrence status in patients with early solitary HCC, which provides valuable supplementary decision-making information for clinical decision-makers and guides the selection of the most appropriate treatment strategy.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Yanyan Yu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Yuqing Tao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Yueqi Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Chunhui Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Yali Cui
- Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Yang Zhou
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
20
|
Cannella R, Santinha J, Bèaufrere A, Ronot M, Sartoris R, Cauchy F, Bouattour M, Matos C, Papanikolaou N, Vilgrain V, Dioguardi Burgio M. Performances and variability of CT radiomics for the prediction of microvascular invasion and survival in patients with HCC: a matter of chance or standardisation? Eur Radiol 2023; 33:7618-7628. [PMID: 37338558 DOI: 10.1007/s00330-023-09852-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES To measure the performance and variability of a radiomics-based model for the prediction of microvascular invasion (MVI) and survival in patients with resected hepatocellular carcinoma (HCC), simulating its sequential development and application. METHODS This study included 230 patients with 242 surgically resected HCCs who underwent preoperative CT, of which 73/230 (31.7%) were scanned in external centres. The study cohort was split into training set (158 patients, 165 HCCs) and held-out test set (72 patients, 77 HCCs), stratified by random partitioning, which was repeated 100 times, and by a temporal partitioning to simulate the sequential development and clinical use of the radiomics model. A machine learning model for the prediction of MVI was developed with least absolute shrinkage and selection operator (LASSO). The concordance index (C-index) was used to assess the value to predict the recurrence-free (RFS) and overall survivals (OS). RESULTS In the 100-repetition random partitioning cohorts, the radiomics model demonstrated a mean AUC of 0.54 (range 0.44-0.68) for the prediction of MVI, mean C-index of 0.59 (range 0.44-0.73) for RFS, and 0.65 (range 0.46-0.86) for OS in the held-out test set. In the temporal partitioning cohort, the radiomics model yielded an AUC of 0.50 for the prediction of MVI, a C-index of 0.61 for RFS, and 0.61 for OS, in the held-out test set. CONCLUSIONS The radiomics models had a poor performance for the prediction of MVI with a large variability in the model performance depending on the random partitioning. Radiomics models demonstrated good performance in the prediction of patient outcomes. CLINICAL RELEVANCE STATEMENT Patient selection within the training set strongly influenced the performance of the radiomics models for predicting microvascular invasion; therefore, a random approach to partitioning a retrospective cohort into a training set and a held-out set seems inappropriate. KEY POINTS • The performance of the radiomics models for the prediction of microvascular invasion and survival widely ranged (AUC range 0.44-0.68) in the randomly partitioned cohorts. • The radiomics model for the prediction of microvascular invasion was unsatisfying when trying to simulate its sequential development and clinical use in a temporal partitioned cohort imaged with a variety of CT scanners. • The performance of the radiomics models for the prediction of survival was good with similar performances in the 100-repetition random partitioning and temporal partitioning cohorts.
Collapse
Affiliation(s)
- Roberto Cannella
- Department of Radiology, Hôpital Beaujon, 100 Boulevard du Général Leclerc, 92110, Clichy, France
- Section of Radiology-BiND, University Hospital 'Paolo Giaccone', Palermo, Italy
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, Palermo, Italy
| | - Joao Santinha
- Champalimaud Foundation-Centre for the Unknown, 1400-038, Lisbon, Portugal
| | | | - Maxime Ronot
- Department of Radiology, Hôpital Beaujon, 100 Boulevard du Général Leclerc, 92110, Clichy, France
- Université de Paris, INSERM U1149 'centre de recherche sur l'inflammation', CRI, Paris, France
| | - Riccardo Sartoris
- Department of Radiology, Hôpital Beaujon, 100 Boulevard du Général Leclerc, 92110, Clichy, France
- Université de Paris, INSERM U1149 'centre de recherche sur l'inflammation', CRI, Paris, France
| | - Francois Cauchy
- Department of HPB Surgery and Liver Transplantation, Hôpital Beaujon, Clichy, France
| | | | - Celso Matos
- Champalimaud Foundation-Centre for the Unknown, 1400-038, Lisbon, Portugal
| | | | - Valérie Vilgrain
- Department of Radiology, Hôpital Beaujon, 100 Boulevard du Général Leclerc, 92110, Clichy, France
- Université de Paris, INSERM U1149 'centre de recherche sur l'inflammation', CRI, Paris, France
| | - Marco Dioguardi Burgio
- Department of Radiology, Hôpital Beaujon, 100 Boulevard du Général Leclerc, 92110, Clichy, France.
- Université de Paris, INSERM U1149 'centre de recherche sur l'inflammation', CRI, Paris, France.
| |
Collapse
|
21
|
Kang W, Cao X, Luo J. Effect of multiple peritumoral regions of interest ranges based on computed tomography radiomics for the prediction of early recurrence of hepatocellular carcinoma after resection. Quant Imaging Med Surg 2023; 13:6668-6682. [PMID: 37869280 PMCID: PMC10585524 DOI: 10.21037/qims-23-226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/07/2023] [Indexed: 10/24/2023]
Abstract
Background Early recurrence (ER) of hepatocellular carcinoma (HCC) is defined as recurrence that occurs within two years after resection. Our study aimed to determine the optimal peritumoral regions of interest (ROI) range by comparing the effect of multiple peritumoral radiomics ROIs on predicting ER of HCC, and to develop and validate a combined clinical-radiomics prediction model. Methods A total of 160 HCC patients were randomly divided into a training cohort (n=112) and a validation cohort (n=48). The intratumoral original ROI was outlined based on enhanced computed tomography images and then used as the base to sequentially extend outward 1-5 mm to form peritumoral ROI. We developed a logistic regression model to predict ER of HCC. The efficacy of different ROI prediction models was compared to determine the optimal ROI. The combined model divided the patients into a high-risk group and low-risk group. Results Ninety-seven (60.6%) of the patients were ER; the remaining 63 (39.4%) were not ER. The area under the curve values and 95% confidence intervals for ROI 3 were 0.867 (0.802-0.933) and 0.807 (0.682-0.931) in the training and validation cohorts, respectively, and ROI 3 was identified as the optimal ROI. Multivariate logistic regression analysis determined microvascular invasion (MVI) (P=0.037) and alpha-fetoprotein (AFP) (P=0.013) to be independent risk factors for ER. The combined clinical-radiomic model containing the radiomics score, MVI, and AFP had the optimal predictive efficacy, with area under the curve values and 95% confidence intervals of 0.903 (0.848-0.957) and 0.830 (0.709-0.952) in the training and validation cohort, respectively. Subgroup analysis showed significantly ER predicted in the high-risk group than the low-risk group (P<0.001). Conclusions Peritumoral radiomics 3 mm range was determined as the optimal ROI in this study. The clinical-radiomics combined models can effectively stratify high- and low-risk patients for timely clinical treatment and decision making.
Collapse
Affiliation(s)
- Wendi Kang
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaomeng Cao
- Department of General Surgery, Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Jianwei Luo
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
22
|
Marinelli B, Chen M, Stocker D, Charles D, Radell J, Lee JY, Fauveau V, Bello-Martinez R, Kim E, Taouli B. Early Prediction of Response of Hepatocellular Carcinoma to Yttrium-90 Radiation Segmentectomy Using a Machine Learning MR Imaging Radiomic Approach. J Vasc Interv Radiol 2023; 34:1794-1801.e2. [PMID: 37364730 DOI: 10.1016/j.jvir.2023.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
PURPOSE To assess the accuracy of a machine learning (ML) approach based on magnetic resonance (MR) imaging radiomic quantification obtained before treatment and early after treatment for prediction of early hepatocellular carcinoma (HCC) response to yttrium-90 transarterial radioembolization (TARE). MATERIALS AND METHODS In this retrospective single-center study of 76 patients with HCC, baseline and early (1-2 months) post-TARE MR images were collected. Semiautomated tumor segmentation facilitated extraction of shape, first-order histogram, and custom signal intensity-based radiomic features, which were then trained (n = 46) using a ML XGBoost model and validated on a separate cohort (n = 30) not used in training to predict treatment response assessed at 4-6 months (based on modified Response and Evaluation Criteria in Solid Tumors criteria). Performance of this ML radiomic model was compared with those of models comprising clinical parameters and standard imaging characteristics using area under the receiver operating curve (AUROC) analysis for prediction of complete response (CR). RESULTS Seventy-six tumors with a mean (±SD) diameter of 2.6 cm ± 1.6 were included. Sixty, 12, 1, and 3 patients were classified as having CR, partial response, stable disease, and progressive disease, respectively, at 4-6 months posttreatment on the basis of MR images. In the validation cohort, the radiomic model showed good performance (AUROC, 0.89) for prediction of CR, compared with models comprising clinical and standard imaging criteria (AUROC, 0.58 and 0.59, respectively). Baseline imaging features appeared to be more heavily weighted in the radiomic model. CONCLUSIONS The use of ML modeling of radiomic data combining baseline and early follow-up MR imaging could predict HCC response to TARE. These models need to be investigated further in an independent cohort.
Collapse
Affiliation(s)
- Brett Marinelli
- Biomedical Engineering and Imaging Institute; Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Mark Chen
- Department of Diagnostic, Interventional and Molecular Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel Stocker
- Institute of Interventional and Diagnostic Radiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Dudley Charles
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Jake Radell
- Department of Diagnostic, Interventional and Molecular Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Yoep Lee
- Department of Diagnostic, Interventional and Molecular Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Edward Kim
- Department of Diagnostic, Interventional and Molecular Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bachir Taouli
- Biomedical Engineering and Imaging Institute; Department of Diagnostic, Interventional and Molecular Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
23
|
Li Z, Yu J, Li Y, Liu Y, Zhang M, Yang H, Du Y. Preoperative Radiomics Nomogram Based on CT Image Predicts Recurrence-Free Survival After Surgical Resection of Hepatocellular Carcinoma. Acad Radiol 2023; 30:1531-1543. [PMID: 36653278 DOI: 10.1016/j.acra.2022.12.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
RATIONALE AND OBJECTIVES To construct preoperative models based on CT radiomics, radiologic and clinical features to predict recurrence-free survival (RFS) after liver resection (LR) of BCLC 0 to B stage hepatocellular carcinoma (HCC) and to classify the prognosis. MATERIALS AND METHODS This study retrospectively analyzed 161 HCC patients who underwent radical LR. Two methods, the least absolute shrinkage and selection operator and random survival forest analysis, were performed for radiomics signature (RS) construction. Univariate and multivariate stepwise Cox regression analyses were performed to establish a combined nomogram (RCN) of RS and clinical parameters and a clinical nomogram (CN). The performance of the models was assessed comprehensively using Harrell's concordance index (C-index), the calibration curve, and decision curve analysis. The discrimination accuracy of the models was compared using integrated discrimination improvement index (IDI). The risk stratification effect was assessed with Kaplan-Meier survival analysis and subgroup analysis. RESULTS The RCN achieved a C-index of 0.792/0.758 in the training/validation set, which was higher than the CN, RS, and BCLC stage system. The discriminatory accuracy of the RCN was improved when compared to the CN, RS, and BCLC staging systems (IDI > 0). Decision curve analysis reflected the clinical net benefit of the RCN. The RCN allows risk stratification of patients in different clinical subgroups. CONCLUSION The integrated model combining RS and clinical factors can more effectively predict RFS after LR of BCLC 0 to B stage HCC patients and can effectively stratify the prognostic risk.
Collapse
Affiliation(s)
- Zeyong Li
- Department of Radiology, Bishan Hospital of Chongqing Medical University, Bishan, Chongqing, China
| | - Jialin Yu
- Department of Radiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Shapingba, Chongqing, China
| | - Yehan Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan South Road, Nanchong, Sichuan, China, 637000
| | - Ying Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan South Road, Nanchong, Sichuan, China, 637000
| | - Manjing Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan South Road, Nanchong, Sichuan, China, 637000
| | - Hanfeng Yang
- Department of Radiology and Interventional Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yong Du
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan South Road, Nanchong, Sichuan, China, 637000.
| |
Collapse
|
24
|
Jiang C, Cai YQ, Yang JJ, Ma CY, Chen JX, Huang L, Xiang Z, Wu J. Radiomics in the diagnosis and treatment of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2023; 22:346-351. [PMID: 37019775 DOI: 10.1016/j.hbpd.2023.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor. At present, early diagnosis of HCC is difficult and therapeutic methods are limited. Radiomics can achieve accurate quantitative evaluation of the lesions without invasion, and has important value in the diagnosis and treatment of HCC. Radiomics features can predict the development of cancer in patients, serve as the basis for risk stratification of HCC patients, and help clinicians distinguish similar diseases, thus improving the diagnostic accuracy. Furthermore, the prediction of the treatment outcomes helps determine the treatment plan. Radiomics is also helpful in predicting the HCC recurrence, disease-free survival and overall survival. This review summarized the role of radiomics in the diagnosis, treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Yi-Qi Cai
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Jia-Jia Yang
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Can-Yu Ma
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Jia-Xi Chen
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
25
|
Yan M, Zhang X, Zhang B, Geng Z, Xie C, Yang W, Zhang S, Qi Z, Lin T, Ke Q, Li X, Wang S, Quan X. Deep learning nomogram based on Gd-EOB-DTPA MRI for predicting early recurrence in hepatocellular carcinoma after hepatectomy. Eur Radiol 2023; 33:4949-4961. [PMID: 36786905 PMCID: PMC10289921 DOI: 10.1007/s00330-023-09419-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 02/15/2023]
Abstract
OBJECTIVES The accurate prediction of post-hepatectomy early recurrence in patients with hepatocellular carcinoma (HCC) is crucial for decision-making regarding postoperative adjuvant treatment and monitoring. We aimed to explore the feasibility of deep learning (DL) features derived from gadoxetate disodium (Gd-EOB-DTPA) MRI, qualitative features, and clinical variables for predicting early recurrence. METHODS In this bicentric study, 285 patients with HCC who underwent Gd-EOB-DTPA MRI before resection were divided into training (n = 195) and validation (n = 90) sets. DL features were extracted from contrast-enhanced MRI images using VGGNet-19. Three feature selection methods and five classification methods were combined for DL signature construction. Subsequently, an mp-MR DL signature fused with multiphase DL signatures of contrast-enhanced images was constructed. Univariate and multivariate logistic regression analyses were used to identify early recurrence risk factors including mp-MR DL signature, microvascular invasion (MVI), and tumor number. A DL nomogram was built by incorporating deep features and significant clinical variables to achieve early recurrence prediction. RESULTS MVI (p = 0.039), tumor number (p = 0.001), and mp-MR DL signature (p < 0.001) were independent risk factors for early recurrence. The DL nomogram outperformed the clinical nomogram in the training set (AUC: 0.949 vs. 0.751; p < 0.001) and validation set (AUC: 0.909 vs. 0.715; p = 0.002). Excellent DL nomogram calibration was achieved in both training and validation sets. Decision curve analysis confirmed the clinical usefulness of DL nomogram. CONCLUSION The proposed DL nomogram was superior to the clinical nomogram in predicting early recurrence for HCC patients after hepatectomy. KEY POINTS • Deep learning signature based on Gd-EOB-DTPA MRI was the predominant independent predictor of early recurrence for hepatocellular carcinoma (HCC) after hepatectomy. • Deep learning nomogram based on clinical factors and Gd-EOB-DTPA MRI features is promising for predicting early recurrence of HCC. • Deep learning nomogram outperformed the conventional clinical nomogram in predicting early recurrence.
Collapse
Affiliation(s)
- Meng Yan
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
| | - Xiao Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
- Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Artificial Intelligence and Clinical Innovation Research, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
| | - Zhijun Geng
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, People's Republic of China
| | - Chuanmiao Xie
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, People's Republic of China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, No. 1023, Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
| | - Zhendong Qi
- Department of Radiology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Road, Haizhu District, Guangzhou, 510282, People's Republic of China
| | - Ting Lin
- Department of Radiology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Road, Haizhu District, Guangzhou, 510282, People's Republic of China
| | - Qiying Ke
- Medical Imaging Center, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16, Airport Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Xinming Li
- Department of Radiology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Road, Haizhu District, Guangzhou, 510282, People's Republic of China.
| | - Shutong Wang
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhong Shan Road 2, Yuexiu District, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Xianyue Quan
- Department of Radiology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Road, Haizhu District, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
26
|
Wang Q, Sheng Y, Jiang Z, Liu H, Lu H, Xing W. What Imaging Modality Is More Effective in Predicting Early Recurrence of Hepatocellular Carcinoma after Hepatectomy Using Radiomics Analysis: CT or MRI or Both? Diagnostics (Basel) 2023; 13:2012. [PMID: 37370907 DOI: 10.3390/diagnostics13122012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND It is of great importance to predict the early recurrence (ER) of hepatocellular carcinoma (HCC) after hepatectomy using preoperative imaging modalities. Nevertheless, no comparative studies have been conducted to determine which modality, CT or MRI with radiomics analysis, is more effective. METHODS We retrospectively enrolled 119 HCC patients who underwent preoperative CT and MRI. A total of 3776 CT features and 4720 MRI features were extracted from the whole tumor. The minimum redundancy and maximum relevance algorithm (MRMR) and least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection, then support vector machines (SVMs) were applied for model construction. Multivariable logistic regression analysis was employed to construct combined models that integrate clinical-radiological-pathological (CRP) traits and radscore. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were used to compare the efficacy of CT, MRI, and CT and MRI models in the test cohort. RESULTS The CT model and MRI model showed no significant difference in the prediction of ER in HCC patients (p = 0.911). RadiomicsCT&MRI demonstrated a superior predictive performance than either RadiomicsCT or RadiomicsMRI alone (p = 0.032, 0.039). The combined CT and MRI model can significantly stratify patients at high risk of ER (area under the curve (AUC) of 0.951 in the training set and 0.955 in the test set) than the CT model (AUC of 0.894 and 0.784) and the MRI model (AUC of 0.856 and 0.787). DCA demonstrated that the CT and MRI model provided a greater net benefit than the models without radiomics analysis. CONCLUSIONS No significant difference was found in predicting the ER of HCC between CT models and MRI models. However, the multimodal radiomics model derived from CT and MRI can significantly improve the prediction of ER in HCC patients after resection.
Collapse
Affiliation(s)
- Qing Wang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Ye Sheng
- Department of Interventional Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Zhenxing Jiang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Haifeng Liu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Haitao Lu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou 213200, China
| |
Collapse
|
27
|
Tian H, Xie Y, Wang Z. Radiomics for preoperative prediction of early recurrence in hepatocellular carcinoma: a meta-analysis. Front Oncol 2023; 13:1114983. [PMID: 37350952 PMCID: PMC10282764 DOI: 10.3389/fonc.2023.1114983] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Background/Objective Early recurrence (ER) affects the long-term survival prognosis of patients with hepatocellular carcinoma (HCC). Many previous studies have utilized CT/MRI-based radiomics to predict ER after radical treatment, achieving high predictive value. However, the diagnostic performance of radiomics for the preoperative identification of ER remains uncertain. Therefore, we aimed to perform a meta-analysis to investigate the predictive performance of radiomics for ER in HCC. Methods A systematic literature search was conducted in PubMed, Web of Science (including MEDLINE), EMBASE and the Cochrane Central Register of Controlled Trials to identify studies that utilized radiomics methods to assess ER in HCC. Data were extracted and quality assessed for retrieved studies. Statistical analyses included pooled data, tests for heterogeneity, and publication bias. Meta-regression and subgroup analyses were performed to investigate potential sources of heterogeneity. Results The analysis included fifteen studies involving 3,281 patients focusing on preoperative CT/MRI-based radiomics for the prediction of ER in HCC. The combined sensitivity, specificity, and area under the curve (AUC) of the receiver operating characteristic were 75% (95% CI: 65-82), 78% (95% CI: 68-85), and 83% (95% CI: 79-86), respectively. The combined positive likelihood ratio, negative likelihood ratio, diagnostic score, and diagnostic odds ratio were 3.35 (95% CI: 2.41-4.65), 0.33 (95% CI: 0.25-0.43), 2.33 (95% CI: 1.91-2.75), and 10.29 (95% CI: 6.79-15.61), respectively. Substantial heterogeneity was observed among the studies (I²=99%; 95% CI: 99-100). Meta-regression showed imaging equipment contributed to the heterogeneity of specificity in subgroup analysis (P= 0.03). Conclusion Preoperative CT/MRI-based radiomics appears to be a promising and non-invasive predictive approach with moderate ER recognition performance.
Collapse
Affiliation(s)
- Huan Tian
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Yong Xie
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
28
|
Guo L, Li X, Zhang C, Xu Y, Han L, Zhang L. Radiomics Based on Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Preoperative Differentiation of Combined Hepatocellular-Cholangiocarcinoma from Hepatocellular Carcinoma: A Multi-Center Study. J Hepatocell Carcinoma 2023; 10:795-806. [PMID: 37288140 PMCID: PMC10243611 DOI: 10.2147/jhc.s406648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Purpose To explore whether texture features based on magnetic resonance can distinguish diseases combined hepatocellular-cholangiocarcinoma (cHCC-CC) from hepatocellular carcinoma (HCC) before operation. Methods The clinical baseline data and MRI information of 342 patients with pathologically diagnosed cHCC-CC and HCC in two medical centers were collected. The data were divided into the training set and the test set at a ratio of 7:3. MRI images of tumors were segmented with ITK-SNAP software, and python open-source platform was used for texture analysis. Logistic regression as the base model, mutual information (MI) and Least Absolute Shrinkage and Selection Operator (LASSO) regression were used to select the most favorable features. The clinical, radiomics, and clinic-radiomics model were constructed based on logistic regression. The model's effectiveness was comprehensively evaluated by the receiver operating characteristic (ROC) curve, area under the curve (AUC), sensitivity, specificity, and Youden index which is the main, and the model results were exported by SHapley Additive exPlanations (SHAP). Results A total of 23 features were included. Among all models, the arterial phase-based clinic-radiomics model showed the best performance in differentiating cHCC-CC from HCC before an operation, with the AUC of the test set being 0.863 (95% CI: 0.782 to 0.923), the specificity and sensitivity being 0.918 (95% CI: 0.819 to 0.973) and 0.738 (95% CI: 0.580 to 0.861), respectively. SHAP value results showed that the RMS was the most important feature affecting the model. Conclusion Clinic-radiomics model based on DCE-MRI may be useful to distinguish cHCC-CC from HCC in a preoperative setting, especially in the arterial phase, and RMS has the greatest impact.
Collapse
Affiliation(s)
- Le Guo
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xijun Li
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, Hunan Province, People’s Republic of China
| | - Chao Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yang Xu
- Department of Interventional, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lujun Han
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Ling Zhang
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
29
|
Kucukkaya AS, Zeevi T, Chai NX, Raju R, Haider SP, Elbanan M, Petukhova-Greenstein A, Lin M, Onofrey J, Nowak M, Cooper K, Thomas E, Santana J, Gebauer B, Mulligan D, Staib L, Batra R, Chapiro J. Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning. Sci Rep 2023; 13:7579. [PMID: 37165035 PMCID: PMC10172370 DOI: 10.1038/s41598-023-34439-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/29/2023] [Indexed: 05/12/2023] Open
Abstract
Tumor recurrence affects up to 70% of early-stage hepatocellular carcinoma (HCC) patients, depending on treatment option. Deep learning algorithms allow in-depth exploration of imaging data to discover imaging features that may be predictive of recurrence. This study explored the use of convolutional neural networks (CNN) to predict HCC recurrence in patients with early-stage HCC from pre-treatment magnetic resonance (MR) images. This retrospective study included 120 patients with early-stage HCC. Pre-treatment MR images were fed into a machine learning pipeline (VGG16 and XGBoost) to predict recurrence within six different time frames (range 1-6 years). Model performance was evaluated with the area under the receiver operating characteristic curves (AUC-ROC). After prediction, the model's clinical relevance was evaluated using Kaplan-Meier analysis with recurrence-free survival (RFS) as the endpoint. Of 120 patients, 44 had disease recurrence after therapy. Six different models performed with AUC values between 0.71 to 0.85. In Kaplan-Meier analysis, five of six models obtained statistical significance when predicting RFS (log-rank p < 0.05). Our proof-of-concept study indicates that deep learning algorithms can be utilized to predict early-stage HCC recurrence. Successful identification of high-risk recurrence candidates may help optimize follow-up imaging and improve long-term outcomes post-treatment.
Collapse
Affiliation(s)
- Ahmet Said Kucukkaya
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
- Institute of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tal Zeevi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Nathan Xianming Chai
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Rajiv Raju
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Stefan Philipp Haider
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Mohamed Elbanan
- Department of Diagnostic Radiology, Bridgeport Hospital, Yale New Haven Health System, 267 Grant Street, Bridgeport, CT, 06610, USA
| | - Alexandra Petukhova-Greenstein
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
- Institute of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
- Visage Imaging, Inc., 12625 High Bluff Drive, Suite 205, San Diego, CA, 92130, USA
| | - John Onofrey
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Michal Nowak
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Kirsten Cooper
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Elizabeth Thomas
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Jessica Santana
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Bernhard Gebauer
- Institute of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - David Mulligan
- Transplantation and Immunology, Department of Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Lawrence Staib
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Ramesh Batra
- Transplantation and Immunology, Department of Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA.
| |
Collapse
|
30
|
Mo ZY, Chen PY, Lin J, Liao JY. Pre-operative MRI features predict early post-operative recurrence of hepatocellular carcinoma with different degrees of pathological differentiation. LA RADIOLOGIA MEDICA 2023; 128:261-273. [PMID: 36763316 PMCID: PMC10020263 DOI: 10.1007/s11547-023-01601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE To investigate the value of pre-operative gadoxetate disodium (Gd-EOB-DTPA) enhanced MRI predicting early post-operative recurrence (< 2 years) of hepatocellular carcinoma (HCC) with different degrees of pathological differentiation. METHODS Retrospective analysis of pre-operative MR imaging features of 177 patients diagnosed as suffering from HCC and that underwent radical resection. Multivariate logistic regression assessment was adopted to assess predictors for HCC recurrence with different degrees of pathological differentiation. The area under the curve (AUC) of receiver operating characteristics (ROC) was utilized to assess the diagnostic efficacy of the predictors. RESULTS Among the 177 patients, 155 (87.5%) were males, 22 (12.5%) were females; the mean age was 49.97 ± 10.71 years. Among the predictors of early post-operative recurrence of highly-differentiated HCC were an unsmooth tumor margin and an incomplete/without tumor capsule (p = 0.037 and 0.033, respectively) whereas those of early post-operative recurrence of moderately-differentiated HCC were incomplete/without tumor capsule, peritumoral enhancement along with peritumoral hypointensity (p = 0.006, 0.046 and 0.004, respectively). The predictors of early post-operative recurrence of poorly-differentiated HCC were peritumoral enhancement, peritumoral hypointensity, and tumor thrombosis (p = 0.033, 0.006 and 0.021, respectively). The AUCs of the multi-predictor diagnosis of early post-operative recurrence of highly-, moderately-, and poorly-differentiated HCC were 0.841, 0.873, and 0.875, respectively. The AUCs of the multi-predictor diagnosis were each higher than for those predicted separately. CONCLUSIONS The imaging parameters for predicting early post-operative recurrence of HCC with different degrees of pathological differentiation were different and combining these predictors can improve the diagnostic efficacy of early post-operative HCC recurrence.
Collapse
Affiliation(s)
- Zhi-ying Mo
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Pei-yin Chen
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Jie Lin
- Department of Bone Surgery, Wuzhou Peopleʹs Hospital, No. 139 Sanlong Road, Wuzhou, 543000 Guangxi China
| | - Jin-yuan Liao
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
31
|
Park S, Kim JH, Kim J, Joseph W, Lee D, Park SJ. Development of a deep learning-based auto-segmentation algorithm for hepatocellular carcinoma (HCC) and application to predict microvascular invasion of HCC using CT texture analysis: preliminary results. Acta Radiol 2023; 64:907-917. [PMID: 35570797 DOI: 10.1177/02841851221100318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Automatic segmentation has recently been developed to yield objective data. Prediction of microvascular invasion (MVI) of hepatocellular carcinoma (HCC) using radiomics has been reported. PURPOSE To develop a deep learning-based auto-segmentation algorithm (DL-AS) for the detection of HCC and to predict MVI using computed tomography (CT) texture analysis. MATERIAL AND METHODS We retrospectively collected training data from 249 patients with HCC and validation set from 35 patients. Lesions of the training set were manually drawn by radiologist, in the delayed phase. 2D U-Net was selected as the DL architecture. Using the validation set, one radiologist manually drew 2D and 3D regions of interest twice, and the developed DL-AS was performed twice with a one-month time interval. The reproducibility was calculated using intraclass correlation coefficients (ICC). Logistic regression was performed to predict MVI. RESULTS ICC was in the range of 0.190-0.998/0.341-0.997 in the manual 3D/2D segmentation. In contrast, it was perfect in 3D/2D using DL-AS, with a success rate of 88.6% for the detection of HCC. For predicting MVI, sphericity was a significant parameter (odds ratio <0.001; 95% confidence interval <0.001-0.206; P = 0.020) for predicting MVI using 2D DL-AS. However, 3D DL-AS segmentation did not yield a predictive parameter. CONCLUSION The auto-segmentation of HCC using DL-AS provides perfect reproducibility, although it failed to detect 11.4% (4/35). However, the extracted parameters yielded different important predictors of MVI in HCC. Sphericity was a significant predictor in 2D DL-AS and 3D manual segmentation, while discrete compactness was a significant predictor in 2D manual segmentation.
Collapse
Affiliation(s)
- Sungeun Park
- Department of Radiology, 119754Konkuk University Medical Center, Seoul, Republic of Korea
| | - Jung Hoon Kim
- Department of Radiology, 58927Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, 37990Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jieun Kim
- Department of Radiology, 58927Seoul National University Hospital, Seoul, Republic of Korea
| | | | - Doohee Lee
- Medical IP Co., Ltd, Seoul, Republic of Korea
| | | |
Collapse
|
32
|
Association of Multi-Phasic MR-Based Radiomic and Dosimetric Features with Treatment Response in Unresectable Hepatocellular Carcinoma Patients following Novel Sequential TACE-SBRT-Immunotherapy. Cancers (Basel) 2023; 15:cancers15041105. [PMID: 36831445 PMCID: PMC9954441 DOI: 10.3390/cancers15041105] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
This study aims to investigate the association of pre-treatment multi-phasic MR-based radiomics and dosimetric features with treatment response to a novel sequential trans-arterial chemoembolization (TACE) plus stereotactic body radiotherapy (SBRT) plus immunotherapy regimen in unresectable Hepatocellular Carcinoma (HCC) sub-population. Twenty-six patients with unresectable HCC were retrospectively analyzed. Radiomic features were extracted from 42 lesions on arterial phase (AP) and portal-venous phase (PVP) MR images. Delta-phase (DeltaP) radiomic features were calculated as AP-to-PVP ratio. Dosimetric data of the tumor was extracted from dose-volume-histograms. A two-sided independent Mann-Whitney U test was used to assess the clinical association of each feature, and the classification performance of each significant independent feature was assessed using logistic regression. For the 3-month timepoint, four DeltaP-derived radiomics that characterize the temporal change in intratumoral randomness and uniformity were the only contributors to the treatment response association (p-value = 0.038-0.063, AUC = 0.690-0.766). For the 6-month timepoint, DeltaP-derived radiomic features (n = 4) maintained strong clinical associations with the treatment response (p-value = 0.047-0.070, AUC = 0.699-0.788), additional AP-derived radiomic features (n = 4) that reflect baseline tumoral arterial-enhanced signal pattern and tumor morphology (n = 1) that denotes initial tumor burden were shown to have strong associations with treatment response (p-value = 0.028-0.074, AUC = 0.719-0.773). This pilot study successfully demonstrated associations of pre-treatment multi-phasic MR-based radiomics with tumor response to the novel treatment regimen.
Collapse
|
33
|
Sheng R, Jin K, Sun W, Gao S, Zhang Y, Wu D, Zeng M. Prediction of therapeutic response of advanced hepatocellular carcinoma to combined targeted immunotherapy by MRI. Magn Reson Imaging 2023; 96:1-7. [PMID: 36270416 DOI: 10.1016/j.mri.2022.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To assess the value of pre-treatment MRI in predicting treatment response to combined targeted immunotherapy in advanced hepatocellular carcinoma (HCC). METHODS Totally 35 HCC participants who underwent pre-treatment contrast-enhanced MRI and received combined tyrosine kinase inhibitor (TKI) and anti-PD-1 antibody treatment were enrolled. Univariable and multivariable logistic regression analyses were carried out for comparing clinical and MRI characteristics between patients with therapeutic response and those without. A predictive model based on MRI data and the corresponding nomogram were developed using data generated by multivariate analysis, and the diagnostic performance was evaluated. A cutoff for the combined index was measured by receiver operating characteristic curve analysis, and progression-free survival (PFS) rates were compared between cases with high and low combined index values. RESULTS Fifteen (42.86%) cases achieved overall response during treatment. Multivariable analysis revealed that homogeneous signal (odds ratio [OR] = 13.51, P = 0.010) and no arterial peritumoral enhancement (APE; OR = 10.29, P = 0.024) independently predicted treatment response. The combined model including both significant MRI parameters showed a satisfactory predictive performance with the largest area under the curve of 0.837 (95%CI 0.673-0.939), and both sensitivity and specificity of 80.0%. HCCs with high-combined index had higher PFS rate compared with those showing a low value (P = 0.034). CONCLUSION The combination of pre-treatment MRI features of homogeneous signal and no APE could be used for predicting treatment response to combined targeted immunotherapy in advanced HCC.
Collapse
Affiliation(s)
- Ruofan Sheng
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Fujian 361006, China; Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kaipu Jin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Wei Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Yunfei Zhang
- Shanghai Institute of Medical Imaging, 200032 Shanghai, China; Central Research Institute, United Imaging Healthcare, 201807 Shanghai, China
| | - Dong Wu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 200032 Shanghai, China.
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 200032 Shanghai, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, 200032 Shanghai, China.
| |
Collapse
|
34
|
Bodard S, Liu Y, Guinebert S, Kherabi Y, Asselah T. Performance of Radiomics in Microvascular Invasion Risk Stratification and Prognostic Assessment in Hepatocellular Carcinoma: A Meta-Analysis. Cancers (Basel) 2023; 15:cancers15030743. [PMID: 36765701 PMCID: PMC9913680 DOI: 10.3390/cancers15030743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Primary liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer death. Advances in phenomenal imaging are paving the way for application in diagnosis and research. The poor prognosis of advanced HCC warrants a personalized approach. The objective was to assess the value of imaging phenomics for risk stratification and prognostication of HCC. METHODS We performed a meta-analysis of manuscripts published to January 2023 on MEDLINE addressing the value of imaging phenomics for HCC risk stratification and prognostication. Publication information for each were collected using a standardized data extraction form. RESULTS Twenty-seven articles were analyzed. Our study shows the importance of imaging phenomics in HCC MVI prediction. When the training and validation datasets were analyzed separately by the random-effects model, in the training datasets, radiomics had good MVI prediction (AUC of 0.81 (95% CI 0.76-0.86)). Similar results were found in the validation datasets (AUC of 0.79 (95% CI 0.72-0.85)). Using the fixed effects model, the mean AUC of all datasets was 0.80 (95% CI 0.76-0.84). CONCLUSIONS Imaging phenomics is an effective solution to predict microvascular invasion risk, prognosis, and treatment response in patients with HCC.
Collapse
Affiliation(s)
- Sylvain Bodard
- Service de Radiologie Adulte, Hôpital Universitaire Necker-Enfants Malades, AP-HP Centre, 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
- CNRS, INSERM, UMR 7371, Laboratoire d’Imagerie Biomédicale, Sorbonne Université, 75006 Paris, France
- Correspondence: ; Tel.: +33-6-18-81-62-10
| | - Yan Liu
- Faculty of Life Science and Medicine, King’s College London, London WC2R 2LS, UK
- Median Technologies, 1800 Route des Crêtes, 06560 Valbonne, France
| | - Sylvain Guinebert
- Service de Radiologie Adulte, Hôpital Universitaire Necker-Enfants Malades, AP-HP Centre, 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
| | - Yousra Kherabi
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
| | - Tarik Asselah
- Faculté de Médecine, Université Paris Cité, 75007 Paris, France
- Service d’Hépatologie, INSERM, UMR1149, Hôpital Beaujon, AP-HP.Nord, 92110 Clichy, France
| |
Collapse
|
35
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
36
|
Li Q, Wei Y, Zhang T, Che F, Yao S, Wang C, Shi D, Tang H, Song B. Predictive models and early postoperative recurrence evaluation for hepatocellular carcinoma based on gadoxetic acid-enhanced MR imaging. Insights Imaging 2023; 14:4. [PMID: 36617581 PMCID: PMC9826770 DOI: 10.1186/s13244-022-01359-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The prognosis of hepatocellular carcinoma (HCC) is still poor largely due to the high incidence of recurrence. We aimed to develop and validate predictive models of early postoperative recurrence for HCC using clinical and gadoxetic acid-enhanced magnetic resonance (MR) imaging-based findings. METHODS In this retrospective case-control study, 209 HCC patients, who underwent gadoxetic acid-enhanced MR imaging before curative-intent resection, were enrolled. Boruta algorithm and backward stepwise selection with Akaike information criterion (AIC) were used for variables selection Random forest, Gradient-Boosted decision tree and logistic regression model analysis were used for model development. The area under the receiver operating characteristic curve (AUC), calibration plots, and decision curve analysis were used to evaluate model's performance. RESULTS One random forest model with Boruta algorithm (RF-Boruta) was developed consisting of preoperative serum ALT and AFP levels and six MRI findings, while preoperative serum AST and AFP levels and four MRI findings were included in one logistic regression model with backward stepwise selection method (Logistic-AIC).The two predictive models demonstrated good discrimination performance in both the training set (RF-Boruta: AUC, 0.820; Logistic-AIC: AUC, 0.853), internal validation set (RF-Boruta: AUC, 0.857, Logistic-AIC: AUC, 0.812) and external validation set(RF-Boruta: AUC, 0.805, Logistic-AIC: AUC, 0.789). Besides, in both the internal validation and external validation sets, the RF-Boruta model outperformed Barcelona Clinic Liver Cancer (BCLC) stage (p < 0.05). CONCLUSIONS The RF-Boruta and Logistic-AIC models with good prediction performance for early postoperative recurrence may lead to optimal and comprehensive treatment approaches, and further improve the prognosis of HCC after resection.
Collapse
Affiliation(s)
- Qian Li
- grid.412901.f0000 0004 1770 1022Department of Radiology, Sichuan University, West China Hospital, No. 37, GUOXUE Alley, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Yi Wei
- grid.412901.f0000 0004 1770 1022Department of Radiology, Sichuan University, West China Hospital, No. 37, GUOXUE Alley, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Tong Zhang
- grid.412901.f0000 0004 1770 1022Department of Radiology, Sichuan University, West China Hospital, No. 37, GUOXUE Alley, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Feng Che
- grid.412901.f0000 0004 1770 1022Department of Radiology, Sichuan University, West China Hospital, No. 37, GUOXUE Alley, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Shan Yao
- grid.412901.f0000 0004 1770 1022Department of Radiology, Sichuan University, West China Hospital, No. 37, GUOXUE Alley, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Cong Wang
- grid.414011.10000 0004 1808 090XDepartment of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan Province People’s Republic of China
| | - Dandan Shi
- grid.414011.10000 0004 1808 090XDepartment of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan Province People’s Republic of China
| | - Hehan Tang
- grid.412901.f0000 0004 1770 1022Department of Radiology, Sichuan University, West China Hospital, No. 37, GUOXUE Alley, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Bin Song
- grid.412901.f0000 0004 1770 1022Department of Radiology, Sichuan University, West China Hospital, No. 37, GUOXUE Alley, Chengdu, 610041 Sichuan Province People’s Republic of China ,Department of Radiology, Sanya People’s Hospital, Sanya, 572000 People’s Republic of China
| |
Collapse
|
37
|
Tao YY, Shi Y, Gong XQ, Li L, Li ZM, Yang L, Zhang XM. Radiomic Analysis Based on Magnetic Resonance Imaging for Predicting PD-L2 Expression in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:365. [PMID: 36672315 PMCID: PMC9856314 DOI: 10.3390/cancers15020365] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignant tumour and the third leading cause of cancer death in the world. The emerging field of radiomics involves extracting many clinical image features that cannot be recognized by the human eye to provide information for precise treatment decision making. Radiomics has shown its importance in HCC identification, histological grading, microvascular invasion (MVI) status, treatment response, and prognosis, but there is no report on the preoperative prediction of programmed death ligand-2 (PD-L2) expression in HCC. The purpose of this study was to investigate the value of MRI radiomic features for the non-invasive prediction of immunotherapy target PD-L2 expression in hepatocellular carcinoma (HCC). A total of 108 patients with HCC confirmed by pathology were retrospectively analysed. Immunohistochemical analysis was used to evaluate the expression level of PD-L2. 3D-Slicer software was used to manually delineate volumes of interest (VOIs) and extract radiomic features on preoperative T2-weighted, arterial-phase, and portal venous-phase MR images. Least absolute shrinkage and selection operator (LASSO) was performed to find the best radiomic features. Multivariable logistic regression models were constructed and validated using fivefold cross-validation. The area under the receiver characteristic curve (AUC) was used to evaluate the predictive performance of each model. The results show that among the 108 cases of HCC, 50 cases had high PD-L2 expression, and 58 cases had low PD-L2 expression. Radiomic features correlated with PD-L2 expression. The T2-weighted, arterial-phase, and portal venous-phase and combined MRI radiomics models showed AUCs of 0.789 (95% CI: 0.702-0.875), 0.727 (95% CI: 0.632-0.823), 0.770 (95% CI: 0.682-0.875), and 0.871 (95% CI: 0.803-0.939), respectively. The combined model showed the best performance. The results of this study suggest that prediction based on the radiomic characteristics of MRI could noninvasively predict the expression of PD-L2 in HCC before surgery and provide a reference for the selection of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Yun-Yun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Yue Shi
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xue-Qin Gong
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Li Li
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Zu-Mao Li
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
38
|
Yao Y, Jia C, Zhang H, Mou Y, Wang C, Han X, Yu P, Mao N, Song X. Applying a nomogram based on preoperative CT to predict early recurrence of laryngeal squamous cell carcinoma after surgery. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:435-452. [PMID: 36806538 DOI: 10.3233/xst-221320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
PURPOSE To identify the value of a computed tomography (CT)-based radiomics model to predict probability of early recurrence (ER) in patients diagnosed with laryngeal squamous cell carcinoma (LSCC) after surgery. MATERIALS AND METHOD Pre-operative CT scans of 140 LSCC patients treated by surgery are reviewed and selected. These patients are randomly split into the training set (n = 97) and test set (n = 43). The regions of interest of each patient were delineated manually by two senior radiologists. Radiomics features are extracted from CT images acquired in non-enhanced, arterial, and venous phases. Variance threshold, one-way ANOVA, and least absolute shrinkage and selection operator algorithm are used for feature selection. Then, radiomics models are built with five algorithms namely, k-nearest neighbor (KNN), logistic regression (LR), linear support vector machine (LSVM), radial basis function SVM (RSVM), and polynomial SVM (PSVM). Clinical factors are selected using univariate and multivariate logistic regressions. Last, a radiomics nomogram incorporating the radiomics signature and clinical factors is built to predict ER and its efficiency is evaluated by receiver operating characteristic (ROC) curve and calibration curve. Decision curve analysis (DCA) is also used to evaluate clinical usefulness. RESULTS Four features are remarkably associated with ER in patients with LSCC. Applying to test set, the area under the ROC curves (AUCs) of KNN, LR, LSVM, RSVM, and PSVM are 0.936, 0.855, 0.845, 0.829, and 0.794, respectively. The radiomics nomogram shows better discrimination (with AUC: 0.939, 95% CI: 0.867-0.989) than the best radiomics model and the clinical model. Predicted and actual ERs in the calibration curves are in good agreement. DCA shows that the radiomics nomogram is clinically useful. CONCLUSION The radiomics nomogram, as a noninvasive prediction tool, exhibits favorable performance for ER prediction of LSCC patients after surgery.
Collapse
Affiliation(s)
- Yao Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Chuanliang Jia
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Big data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Haicheng Zhang
- Big data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Cai Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xiao Han
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Pengyi Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ning Mao
- Big data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| |
Collapse
|
39
|
Chen Z, Wang Y, Zhang H, Yin H, Hu C, Huang Z, Tan Q, Song B, Deng L, Xia Q. Deep Learning Models for Severity Prediction of Acute Pancreatitis in the Early Phase From Abdominal Nonenhanced Computed Tomography Images. Pancreas 2023; 52:e45-e53. [PMID: 37378899 DOI: 10.1097/mpa.0000000000002216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
OBJECTIVES To develop and validate deep learning (DL) models for predicting the severity of acute pancreatitis (AP) by using abdominal nonenhanced computed tomography (CT) images. METHODS The study included 978 AP patients admitted within 72 hours after onset and performed abdominal CT on admission. The image DL model was built by the convolutional neural networks. The combined model was developed by integrating CT images and clinical markers. The performance of the models was evaluated by using the area under the receiver operating characteristic curve. RESULTS The clinical, Image DL, and the combined DL models were developed in 783 AP patients and validated in 195 AP patients. The combined models possessed the predictive accuracy of 90.0%, 32.4%, and 74.2% for mild, moderately severe, and severe AP. The combined DL model outperformed clinical and image DL models with 0.820 (95% confidence interval, 0.759-0.871), the sensitivity of 84.76% and the specificity of 66.67% for predicting mild AP and the area under the receiver operating characteristic curve of 0.920 (95% confidence interval, 0.873-0.954), the sensitivity of 90.32%, and the specificity of 82.93% for predicting severe AP. CONCLUSIONS The DL technology allows nonenhanced CT images as a novel tool for predicting the severity of AP.
Collapse
Affiliation(s)
- Zhiyao Chen
- From the Pancreatitis Center, Center of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Huiling Zhang
- Infervision Medical Technology Co., Ltd, Beijing, China
| | - Hongkun Yin
- Infervision Medical Technology Co., Ltd, Beijing, China
| | - Cheng Hu
- From the Pancreatitis Center, Center of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Zixing Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingyuan Tan
- From the Pancreatitis Center, Center of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, China
| | | | - Lihui Deng
- From the Pancreatitis Center, Center of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xia
- From the Pancreatitis Center, Center of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Liu HF, Zhang YZZ, Wang Q, Zhu ZH, Xing W. A nomogram model integrating LI-RADS features and radiomics based on contrast-enhanced magnetic resonance imaging for predicting microvascular invasion in hepatocellular carcinoma falling the Milan criteria. Transl Oncol 2023; 27:101597. [PMID: 36502701 PMCID: PMC9758568 DOI: 10.1016/j.tranon.2022.101597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To establish and validate a nomogram model incorporating both liver imaging reporting and data system (LI-RADS) features and contrast enhanced magnetic resonance imaging (CEMRI)-based radiomics for predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC) falling the Milan criteria. METHODS In total, 161 patients with 165 HCCs diagnosed with MVI (n = 99) or without MVI (n = 66) were assigned to a training and a test group. MRI LI-RADS characteristics and radiomics features selected by the LASSO algorithm were used to establish the MRI and Rad-score models, respectively, and the independent features were integrated to develop the nomogram model. The predictive ability of the nomogram was evaluated with receiver operating characteristic (ROC) curves. RESULTS The risk factors associated with MVI (P<0.05) were related to larger tumor size, nonsmooth margin, mosaic architecture, corona enhancement and higher Rad-score. The areas under the ROC curve (AUCs) of the MRI feature model for predicting MVI were 0.85 (95% CI: 0.78-0.92) and 0.85 (95% CI: 0.74-0.95), and those for the Rad-score were 0.82 (95% CI: 0.73-0.90) and 0.80 (95% CI: 0.67-0.93) in the training and test groups, respectively. The nomogram presented improved AUC values of 0.87 (95% CI: 0.81-0.94) in the training group and 0.89 (95% CI: 0.81-0.98) in the test group (P<0.05) for predicting MVI. The calibration curve and decision curve analysis demonstrated that the nomogram model had high goodness-of-fit and clinical benefits. CONCLUSIONS The nomogram model can effectively predict MVI in patients with HCC falling within the Milan criteria and serves as a valuable imaging biomarker for facilitating individualized decision-making.
Collapse
Affiliation(s)
- Hai-Feng Liu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Yan-Zhen-Zi Zhang
- Department of Pathology, Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Qing Wang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Zu-Hui Zhu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China.
| |
Collapse
|
41
|
Yang X, Yuan C, Zhang Y, Li K, Wang Z. Predicting hepatocellular carcinoma early recurrence after ablation based on magnetic resonance imaging radiomics nomogram. Medicine (Baltimore) 2022; 101:e32584. [PMID: 36596081 PMCID: PMC9803514 DOI: 10.1097/md.0000000000032584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aim of this study is to investigate a model for predicting the early recurrence of hepatocellular carcinoma (HCC) after ablation. METHODS A total of 181 patients with HCC after ablation (train group was 119 cases; validation group was 62 cases) were enrolled. The cases of early recurrence in the set of train and validation were 63 and 31, respectively. Radiomics features were extracted from the enhanced magnetic resonance imaging scanning, including pre-contrast injection, arterial phase, late arterial phase, portal venous phase, and delayed phase. The least absolute shrinkage and selection operator cox proportional hazards regression after univariate and multivariate analysis was used to screen radiomics features and build integrated models. The nomograms predicting recurrence and survival of patients of HCC after ablation were established based on the clinical, imaging, and radiomics features. The area under the curve (AUC) of the receiver operating characteristic curve and C-index for the train and validation group was used to evaluate model efficacy. RESULTS Four radiomics features were selected out of 34 texture features to formulate the rad-score. Multivariate analyses suggested that the rad-score, number of lesions, integrity of the capsule, pathological type, and alpha-fetoprotein were independent influencing factors. The AUC of predicting early recurrence at 1, 2, and 3 years in the train group was 0.79 (95% CI: 0.72-0.88), 0.72 (95% CI: 0.63-0.82), and 0.71 (95% CI: 0.61-0.83), respectively. The AUC of predicting early recurrence at 1, 2, and 3 years in the validation group was 0.72 (95% CI: 0.58-0.84), 0.61 (95% CI: 0.45-0.78) and 0.64 (95% CI: 0.40-0.87). CONCLUSION The model for early recurrence of HCC after ablation based on the clinical, imaging, and radiomics features presented good predictive performance. This may facilitate the early treatment of patients.
Collapse
Affiliation(s)
- Xiaozhen Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chunwang Yuan
- Department of Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yinghua Zhang
- Department of Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Kang Li
- Biomedical Information Center, Beijing You’An Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- * Correspondence: Zhenchang Wang, Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China (e-mail: )
| |
Collapse
|
42
|
Huang Z, Zhou P, Li S, Li K. Prediction of the Ki-67 marker index in hepatocellular carcinoma based on Dynamic Contrast-Enhanced Ultrasonography with Sonazoid. Insights Imaging 2022; 13:199. [PMID: 36536262 PMCID: PMC9763522 DOI: 10.1186/s13244-022-01320-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ki-67 is widely used as a proliferative and prognostic factor in HCC. This study aimed to analyze the relationship between dynamic contrast-enhanced ultrasonography (DCE-US) parameters and Ki-67 expression. METHODS One hundred and twenty patients with histopathologically confirmed HCC who underwent DCE-US were included in this prospective study. Patients were classified according to the Ki-67 marker index into low Ki-67 (< 10%) (n = 84) and high Ki-67 (≥ 10%) groups (n = 36). Quantitative perfusion parameters were obtained and analyzed. RESULTS Clinicopathological features (pathological grade and microvascular invasion) were significantly different between the high and low Ki-67 expression groups (p = 0.029 and p = 0.020, respectively). In the high Ki-67 expression group, the peak energy (PE) in the arterial phase and fall time (FT) were significantly different between the HCC lesions and distal liver parenchyma (p = 0.016 and p = 0.025, respectively). PE in the Kupffer phase was significantly different between the HCC lesions and the distal liver parenchyma in the low Ki-67 expression group (p = 0.029). The difference in PE in the Kupffer phase between HCC lesions and distal liver parenchyma was significantly different between the high and low Ki-67 expression groups (p = 0.045). The difference in PE in the Kupffer phase between HCC lesions and distal liver parenchyma < - 4.0 × 107 a.u. may contribute to a more accurate diagnosis of the high Ki-67 expression group, and the sensitivity and specificity were 82.9% and 38.7%, respectively. CONCLUSIONS The DCE-US parameters have potential as biomarkers for predicting Ki-67 expression in patients with HCC.
Collapse
Affiliation(s)
- Zhe Huang
- grid.412793.a0000 0004 1799 5032Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - PingPing Zhou
- grid.412793.a0000 0004 1799 5032Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ShanShan Li
- grid.412793.a0000 0004 1799 5032Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiyan Li
- grid.412793.a0000 0004 1799 5032Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Fahmy D, Alksas A, Elnakib A, Mahmoud A, Kandil H, Khalil A, Ghazal M, van Bogaert E, Contractor S, El-Baz A. The Role of Radiomics and AI Technologies in the Segmentation, Detection, and Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14246123. [PMID: 36551606 PMCID: PMC9777232 DOI: 10.3390/cancers14246123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss the current clinical applications of radiomics and AI in the detection, segmentation, and management of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to guide proper treatment planning.
Collapse
Affiliation(s)
- Dalia Fahmy
- Diagnostic Radiology Department, Mansoura University Hospital, Mansoura 35516, Egypt
| | - Ahmed Alksas
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Heba Kandil
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Faculty of Computer Sciences and Information, Mansoura University, Mansoura 35516, Egypt
| | - Ashraf Khalil
- College of Technological Innovation, Zayed University, Abu Dhabi 4783, United Arab Emirates
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Eric van Bogaert
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
44
|
Zhao JW, Shu X, Chen XX, Liu JX, Liu MQ, Ye J, Jiang HJ, Wang GS. Prediction of early recurrence of hepatocellular carcinoma after liver transplantation based on computed tomography radiomics nomogram. Hepatobiliary Pancreat Dis Int 2022; 21:543-550. [PMID: 35705443 DOI: 10.1016/j.hbpd.2022.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 05/24/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Early recurrence results in poor prognosis of patients with hepatocellular carcinoma (HCC) after liver transplantation (LT). This study aimed to explore the value of computed tomography (CT)-based radiomics nomogram in predicting early recurrence of patients with HCC after LT. METHODS A cohort of 151 patients with HCC who underwent LT between December 2013 and July 2019 were retrospectively enrolled. A total of 1218 features were extracted from enhanced CT images. The least absolute shrinkage and selection operator algorithm (LASSO) logistic regression was used for dimension reduction and radiomics signature building. The clinical model was constructed after the analysis of clinical factors, and the nomogram was constructed by introducing the radiomics signature into the clinical model. The predictive performance and clinical usefulness of the three models were evaluated using receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA), respectively. Calibration curves were plotted to assess the calibration of the nomogram. RESULTS There were significant differences in radiomics signature among early recurrence patients and non-early recurrence patients in the training cohort (P < 0.001) and validation cohort (P < 0.001). The nomogram showed the best predictive performance, with the largest area under the ROC curve in the training (0.882) and validation (0.917) cohorts. Hosmer-Lemeshow testing confirmed that the nomogram showed good calibration in the training (P = 0.138) and validation (P = 0.396) cohorts. DCA showed if the threshold probability is within 0.06-1, the nomogram had better clinical usefulness than the clinical model. CONCLUSIONS Our CT-based radiomics nomogram can preoperatively predict the risk of early recurrence in patients with HCC after LT.
Collapse
Affiliation(s)
- Jing-Wei Zhao
- Department of Radiology, the Third Medical Center, Chinese PLA General Hospital, The Training Site for Postgraduate of Jinzhou Medical University, Beijing 100039, China; Department of Radiology, the Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Xin Shu
- Medical School of Chinese PLA, Beijing 100853, China
| | - Xiao-Xia Chen
- Department of Radiology, the Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Jia-Xiong Liu
- Department of Radiology, the Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Mu-Qing Liu
- Department of Radiology, the Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Ju Ye
- Department of Radiology, the Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Hui-Jie Jiang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Gui-Sheng Wang
- Department of Radiology, the Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
45
|
Mao Q, Zhou MT, Zhao ZP, Liu N, Yang L, Zhang XM. Role of radiomics in the diagnosis and treatment of gastrointestinal cancer. World J Gastroenterol 2022; 28:6002-6016. [PMID: 36405385 PMCID: PMC9669820 DOI: 10.3748/wjg.v28.i42.6002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/24/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Gastrointestinal cancer (GIC) has high morbidity and mortality as one of the main causes of cancer death. Preoperative risk stratification is critical to guide patient management, but traditional imaging studies have difficulty predicting its biological behavior. The emerging field of radiomics allows the conversion of potential pathophysiological information in existing medical images that cannot be visually recognized into high-dimensional quantitative image features. Tumor lesion characterization, therapeutic response evaluation, and survival prediction can be achieved by analyzing the relationships between these features and clinical and genetic data. In recent years, the clinical application of radiomics to GIC has increased dramatically. In this editorial, we describe the latest progress in the application of radiomics to GIC and discuss the value of its potential clinical applications, as well as its limitations and future directions.
Collapse
Affiliation(s)
- Qi Mao
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Mao-Ting Zhou
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Zhang-Ping Zhao
- Department of Radiology, Panzhihua Central Hospital, Panzhihua 617000, Sichuan Province, China
| | - Ning Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
46
|
Zhang X, Wang C, Zheng D, Liao Y, Wang X, Huang Z, Zhong Q. Radiomics nomogram based on multi-parametric magnetic resonance imaging for predicting early recurrence in small hepatocellular carcinoma after radiofrequency ablation. Front Oncol 2022; 12:1013770. [PMID: 36439458 PMCID: PMC9686343 DOI: 10.3389/fonc.2022.1013770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/24/2022] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND There are few studies on the application of radiomics in the risk prediction of early recurrence (ER) after radiofrequency ablation (RFA). This study evaluated the value of a multi-parametric magnetic resonance imaging (MRI, mpMRI)-based radiomics nomogram in predicting ER of small hepatocellular carcinoma (HCC) after RFA. MATERIALS AND METHODS A retrospective analysis was performed on 90 patients with small HCC who were treated with RFA. Patients were divided into two groups according to recurrence within 2 years: the ER group (n=38) and the non-ER group (n=52). Preoperative T1WI, T2WI, and contrast-enhanced MRI (CE-MRI) were used for radiomic analysis. Tumor segmentation was performed on the images and applied to extract 1316 radiomics features. The most predictive features were selected using analysis of variance + Mann-Whitney, Spearman's rank correlation test, random forest (importance), and least absolute shrinkage and selection operator analysis. Radiomics models based on each sequence or combined sequences were established using logistic regression analysis. A predictive nomogram was constructed based on the radiomics score (rad-score) and clinical predictors. The predictive efficiency of the nomogram was evaluated using the area under the receiver operating characteristic curve (AUC). Decision curve analysis (DCA) was used to evaluate the clinical efficacy of the nomogram. RESULTS The radiomics model mpMRI, which is based on T1WI, T2WI, and CE-MRI sequences, showed the best predictive performance, with an AUC of 0.812 for the validation cohort. Combined with the clinical risk factors of albumin level, number of tumors, and rad-score of mpMRI, the AUC of the preoperative predictive nomogram in the training and validation cohorts were 0.869 and 0.812, respectively. DCA demonstrated that the combined nomogram is clinically useful. CONCLUSIONS The multi-parametric MRI-based radiomics nomogram has a high predictive value for ER of small HCC after RFA, which could be helpful for personalized risk stratification and further treatment decision-making for patients with small HCC.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Radiology, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chuandong Wang
- Department of Thyroid and Breast Surgery, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Dan Zheng
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Radiology, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Yuting Liao
- Institute of Precision Medicine, GE Healthcare, Shanghai, China
| | - Xiaoyang Wang
- Department of Radiology, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Zhifeng Huang
- Department of Radiology, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Qun Zhong
- Department of Radiology, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
47
|
He Y, Liang T, Chen Z, Mo S, Liao Y, Gao Q, Huang K, Peng T, Zhou W, Han C. Recurrence of Early Hepatocellular Carcinoma after Surgery May Be Related to Intestinal Oxidative Stress and the Development of a Predictive Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7261786. [PMID: 36238647 PMCID: PMC9553367 DOI: 10.1155/2022/7261786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
Abstract
Background Early stage hepatocellular carcinoma (HCC) has a high recurrence rate after surgery and lacks reliable predictive tools. We explored the potential of combining enhanced CT with gut microbiome to develop a predictive model for recurrence after early HCC surgery. Methods A total of 112 patients with early HCC who underwent hepatectomy from September 2018 to December 2020 were included in this study, and the machine learning method was divided into a training group (N = 71) and a test group (N = 41) with the observed endpoint of recurrence-free survival (RFS). Features were extracted from the arterial and portal phases of enhanced computed tomography (CT) images and gut microbiome, and features with minimum absolute contraction and selection operator regression were created, and the extracted features were scored to create a preoperative prediction model by using the multivariate Cox regression analysis with risk stratification analysis. Results In the study cohort, the model constructed by combining radiological and gut flora features provided good predictive performance (C index, 0.811 (0.650-0.972)). The combined radiology and gut flora-based model constructed risk strata with high, intermediate, or low risk of recurrence and different characteristics of recurrent tumor imaging and gut flora. Recurrence of early stage hepatocellular carcinoma may be associated with oxidative stress in the intestinal flora. Conclusions This study successfully constructs a risk model integrating enhanced CT and gut microbiome characteristics that can be used for the risk of postoperative recurrence in patients with early HCC. In addition, intestinal flora associated with HCC recurrence may be involved in oxidative stress.
Collapse
Affiliation(s)
- Yongfei He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tianyi Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zijun Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shutian Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuan Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qiang Gao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Weijie Zhou
- Deputy Chief Technician of Laboratory, Baise People's Hospital, Baise, Guangxi Zhuang Autonomous Region, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
48
|
Ameli S, Venkatesh BA, Shaghaghi M, Ghadimi M, Hazhirkarzar B, Rezvani Habibabadi R, Aliyari Ghasabeh M, Khoshpouri P, Pandey A, Pandey P, Pan L, Grimm R, Kamel IR. Role of MRI-Derived Radiomics Features in Determining Degree of Tumor Differentiation of Hepatocellular Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12102386. [PMID: 36292074 PMCID: PMC9600274 DOI: 10.3390/diagnostics12102386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background: To investigate radiomics ability in predicting hepatocellular carcinoma histological degree of differentiation by using volumetric MR imaging parameters. Methods: Volumetric venous enhancement and apparent diffusion coefficient were calculated on baseline MRI of 171 lesions. Ninety-five radiomics features were extracted, then random forest classification identified the performance of the texture features in classifying tumor degree of differentiation based on their histopathological features. The Gini index was used for split criterion, and the random forest was optimized to have a minimum of nine participants per leaf node. Predictor importance was estimated based on the minimal depth of the maximal subtree. Results: Out of 95 radiomics features, four top performers were apparent diffusion coefficient (ADC) features. The mean ADC and venous enhancement map alone had an overall error rate of 39.8%. The error decreased to 32.8% with the addition of the radiomics features in the multi-class model. The area under the receiver-operator curve (AUC) improved from 75.2% to 83.2% with the addition of the radiomics features for distinguishing well- from moderately/poorly differentiated HCCs in the multi-class model. Conclusions: The addition of radiomics-based texture analysis improved classification over that of ADC or venous enhancement values alone. Radiomics help us move closer to non-invasive histologic tumor grading of HCC.
Collapse
Affiliation(s)
- Sanaz Ameli
- Department of Radiology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA
| | | | - Mohammadreza Shaghaghi
- Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA
| | - Maryam Ghadimi
- Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA
| | - Bita Hazhirkarzar
- Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA
| | - Roya Rezvani Habibabadi
- Department of Radiology, University of Florida College of Medicine, 1600 SW Archer Rd., Gainesville, FL 32610, USA
| | - Mounes Aliyari Ghasabeh
- Department of Radiology, Saint Louis University, 1201 S Grand Blvd, St. Louis, MO 63104, USA
| | - Pegah Khoshpouri
- Department of Radiology, University of Washington Main Hospital, 1959 NE Pacific St., 2nd Floor, Seattle, WA 98195, USA
| | - Ankur Pandey
- Department of Radiology, University of Maryland Medical Center, 22 S Greene St., Baltimore, MD 21201, USA
| | - Pallavi Pandey
- Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA
| | - Li Pan
- Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA
| | - Robert Grimm
- Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA
| | - Ihab R. Kamel
- Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA
- Correspondence:
| |
Collapse
|
49
|
Wang L, Feng B, Wang S, Hu J, Liang M, Li D, Wang S, Ma X, Zhao X. Diagnostic value of whole-tumor apparent diffusion coefficient map radiomics analysis in predicting early recurrence of solitary hepatocellular carcinoma ≤ 5 cm. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:3290-3300. [PMID: 35776146 DOI: 10.1007/s00261-022-03582-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To evaluate the role of whole-tumor radiomics analysis of apparent diffusion coefficient (ADC) maps in predicting early recurrence (ER) of solitary hepatocellular carcinoma (HCC) ≤ 5 cm and compare the diagnostic efficiency of whole-tumor and single-slice ADC measurements. METHODS One hundred and seventy patients with primary HCC were randomly divided into the training set (n = 119) and the test set (n = 51). The diagnostic efficiency was compared between the whole-tumor and single-slice ADC measurements. The clinical-radiological model was established by selected significant clinical characteristics and qualitative imaging features. The radiomics model was constructed using the least absolute shrinkage and selection operator (LASSO) logistic regression algorithm. The significant clinical-radiological risk factors and radiomics features were integrated to develop the combined model. Receiver operating characteristic (ROC) curves were used for evaluating the predictive performance. RESULTS Cirrhosis, age, and albumin were significantly associated with ER in the clinical-radiological model selected by the random forest classifier. The diagnostic efficiency of the whole-tumor ADC measurements was slight higher than that of the single-slice (AUC = 0.602 and 0.586, respectively). The clinical-radiological model (AUC = 0.84 and 0.82 in the training and test sets, respectively) showed better diagnostic performance than the radiomics model (AUC = 0.70 and 0.69 in the training and test sets, respectively) in predicting ER. The combined model showed optimal predictive performance with the highest AUC values of 0.88 and 0.85 in the training and test sets, respectively. CONCLUSIONS The whole-tumor ADC measurements performed better than the single-slice ADC measurements. The clinical-radiological model performed better than the radiomics model for predicting ER in patients with solitary HCC ≤ 5 cm.
Collapse
Affiliation(s)
- Leyao Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bing Feng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sicong Wang
- Magnetic Resonance Imaging Research, General Electric Healthcare (China), Beijing, 100176, China
| | - Jiesi Hu
- Institute of Electronical and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, 518055, China
| | - Meng Liang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dengfeng Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuang Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaohong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
50
|
Wang L, Zhang L, Jiang B, Zhao K, Zhang Y, Xie X. Clinical application of deep learning and radiomics in hepatic disease imaging: a systematic scoping review. Br J Radiol 2022; 95:20211136. [PMID: 35816550 PMCID: PMC10162062 DOI: 10.1259/bjr.20211136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/26/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Artificial intelligence (AI) has begun to play a pivotal role in hepatic imaging. This systematic scoping review summarizes the latest progress of AI in evaluating hepatic diseases based on computed tomography (CT) and magnetic resonance (MR) imaging. METHODS We searched PubMed and Web of Science for publications, using terms related to deep learning, radiomics, imaging methods (CT or MR), and the liver. Two reviewers independently selected articles and extracted data from each eligible article. The Quality Assessment of Diagnostic Accuracy Studies-AI (QUADAS-AI) tool was used to assess the risk of bias and concerns regarding applicability. RESULTS The screening identified 45 high-quality publications from 235 candidates, including 8 on diffuse liver diseases and 37 on focal liver lesions. Nine studies used deep learning and 36 studies used radiomics. All 45 studies were rated as low risk of bias in patient selection and workflow, but 36 (80%) were rated as high risk of bias in the index test because they lacked external validation. In terms of concerns regarding applicability, all 45 studies were rated as low concerns. These studies demonstrated that deep learning and radiomics can evaluate liver fibrosis, cirrhosis, portal hypertension, and a series of complications caused by cirrhosis, predict the prognosis of malignant hepatic tumors, and differentiate focal hepatic lesions. CONCLUSIONS The latest studies have shown that deep learning and radiomics based on hepatic CT and MR imaging have potential application value in the diagnosis, treatment evaluation, and prognosis prediction of common liver diseases. The AI methods may become useful tools to support clinical decision-making in the future. ADVANCES IN KNOWLEDGE Deep learning and radiomics have shown their potential in the diagnosis, treatment evaluation, and prognosis prediction of a series of common diffuse liver diseases and focal liver lesions.
Collapse
Affiliation(s)
- Lingyun Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beibei Jiang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keke Zhao
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaping Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqian Xie
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|