1
|
Köşeci T, Seyyar M, Aydınalp Camadan Y, Çelik H, Mete B, Demirhindi H, Eser K, Ata S, Solmaz AA, Çil T. HALP Score in Predicting Response to Treatment in Patients with Early-Stage Gastric Cancer: A Multi-Centred Retrospective Cohort Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2087. [PMID: 39768966 PMCID: PMC11678702 DOI: 10.3390/medicina60122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: The HALP (Haemoglobin, Albumin, Lymphocyte and Platelet) score is used to predict the prognosis of different types of cancer. This study aimed to investigate the role of the HALP score in predicting pathological response in early-stage gastric cancer patients. Materials and Methods: This retrospective cohort study was conducted on 118 patients diagnosed with early-stage gastric cancer and subjected to perioperative (FLOT) treatment between 2018 and 2023. The role of the HALP score in predicting the pathological response to perioperative treatment in patients was investigated. Results: The mean age of the 118 patients included in the study was 61.3 ± 11.1 (min = 23; max = 86). In the ROC analysis, the optimum cut-off value for the HALP score in pathological response classification was found to be 28.9 (AUC = 0.710, sensitivity = 56.7%, specificity = 80%, PPV = 86.79%, NPV = 46.15%). The pathological response rate was 69% in all patients, 87% in patients with a HALP score ≥ 28.9, and 52% in patients with a HALP score < 28.9 (p < 0.001). The probability of pathological response is 6.5 times higher in patients with a HALP score ≥ 28.9. In the Fagan nomogram, when the HALP score was ≥28.9, our pathological response probability estimate (post-test response probability) was found to increase to 64.8% (Positive Likelihood Ratio = 3, Negative Likelihood Ratio = 0.53). In patients with HALP scores ≥ 28.9 and <28.9, progression rates were 16.7% and 47.8%, respectively (p < 0.001), and median survival times were 45.4 and 30.6 months (p < 0.001). Conclusions: The HALP score is a useful and easily accessible score for determining pathological responses in patients with locally advanced gastric cancer.
Collapse
Affiliation(s)
- Tolga Köşeci
- Medical Oncology Department, Faculty of Medicine, Çukurova University, Adana 01330, Türkiye;
| | - Mustafa Seyyar
- Medical Oncology Department, Gaziantep City Hospital, Gaziantep 27470, Türkiye;
| | | | - Halil Çelik
- Medical Oncology Department, Faculty of Medicine, Mersin University, Mersin 33340, Türkiye; (H.Ç.); (K.E.)
| | - Burak Mete
- Public Health Department, Faculty of Medicine, Çukurova University, Adana 01330, Türkiye; (B.M.); (H.D.)
| | - Hakan Demirhindi
- Public Health Department, Faculty of Medicine, Çukurova University, Adana 01330, Türkiye; (B.M.); (H.D.)
| | - Kadir Eser
- Medical Oncology Department, Faculty of Medicine, Mersin University, Mersin 33340, Türkiye; (H.Ç.); (K.E.)
| | - Serdar Ata
- Medical Oncology Department, Afyon State Hospital, Afyon 03030, Türkiye;
| | - Ali Alper Solmaz
- Medical Oncology Department, Adana City Hospital, Adana 01370, Türkiye; (A.A.S.); (T.Ç.)
| | - Timuçin Çil
- Medical Oncology Department, Adana City Hospital, Adana 01370, Türkiye; (A.A.S.); (T.Ç.)
| |
Collapse
|
2
|
Cárdenas G, Chávez-Canales M, Espinosa AM, Jordán-Ríos A, Malagon DA, Murillo MFM, Araujo LVT, Campos RLB, Wong-Chew RM, González LER, Cresencio KI, Velázquez EG, de la Cerda MR, Leyva Y, Hernández-Ruiz J, Hernández-Medel ML, León-Hernández M, Quero KM, Monciváis AS, Sarmiento EB, Reynoso RIA, Reyes DM, Del Río Ambriz LR, Hernández JSG, Cruz J, Ferrer SIV, Huerta L, Fierro NA, Hernández M, Pérez-Tapia M, Meneses G, Rosas G, Hernández-Aceves JA, Cervantes-Torres J, Valdez RA, Rodríguez AF, Espíndola-Arriaga E, Ortiz M, Salazar EA, Barba CC, Besedovsky H, Romano MC, Jung H, Bobes RJ, Soldevila G, López-Alvarenga JC, Fragoso G, Laclette JP, Sciutto E. Intranasal Versus Intravenous Dexamethasone to Treat Hospitalized COVID-19 Patients: A Randomized Multicenter Clinical Trial. Arch Med Res 2024; 55:102960. [PMID: 38290199 DOI: 10.1016/j.arcmed.2024.102960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND SARS-CoV2 induces flu-like symptoms that can rapidly progress to severe acute lung injury and even death. The virus also invades the central nervous system (CNS), causing neuroinflammation and death from central failure. Intravenous (IV) or oral dexamethasone (DXM) reduced 28 d mortality in patients who required supplemental oxygen compared to those who received conventional care alone. Through these routes, DMX fails to reach therapeutic levels in the CNS. In contrast, the intranasal (IN) route produces therapeutic levels of DXM in the CNS, even at low doses, with similar systemic bioavailability. AIMS To compare IN vs. IV DXM treatment in hospitalized patients with COVID-19. METHODS A controlled, multicenter, open-label trial. Patients with COVID-19 (69) were randomly assigned to receive IN-DXM (0.12 mg/kg for three days, followed by 0.6 mg/kg for up to seven days) or IV-DXM (6 mg/d for 10 d). The primary outcome was clinical improvement, as defined by the National Early Warning Score (NEWS) ordinal scale. The secondary outcome was death at 28 d between IV and IN patients. Effects of both treatments on biochemical and immunoinflammatory profiles were also recorded. RESULTS Initially, no significant differences in clinical severity, biometrics, and immunoinflammatory parameters were found between both groups. The NEWS-2 score was reduced, in 23 IN-DXM treated patients, with no significant variations in the 46 IV-DXM treated ones. Ten IV-DXM-treated patients and only one IN-DXM patient died. CONCLUSIONS IN-DMX reduced NEWS-2 and mortality more efficiently than IV-DXM, suggesting that IN is a more efficient route of DXM administration.
Collapse
Affiliation(s)
- Graciela Cárdenas
- Neurology Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - María Chávez-Canales
- Research Unit Universidad Autónoma de Mexico, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana María Espinosa
- Clinical Pharmacology Unit, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | | | - Daniel Anica Malagon
- Clinical Pharmacology Unit, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | | | | | | | - Rosa María Wong-Chew
- Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | | - Yoana Leyva
- Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Joselin Hernández-Ruiz
- Clinical Pharmacology Unit, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | | | - Mireya León-Hernández
- Clinical Pharmacology Unit, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | - Karen Medina Quero
- Hospital Militar, Secretaría de la Defensa Nacional, Mexico City, Mexico
| | | | | | | | | | | | | | - Jocelyn Cruz
- Neurology Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Sergio Iván Valdés Ferrer
- Neurology and Psychiatry Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Leonor Huerta
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nora Alma Fierro
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marisela Hernández
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mayra Pérez-Tapia
- Bioprocess Development and Research Unit, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriela Meneses
- Instituto de Diagnóstico y Referencia Epidemiológicos Dr. Manuel Martínez Báez, Mexico City, Mexico
| | - Gabriela Rosas
- Faculty of Medicine, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Juan Alberto Hernández-Aceves
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jaquelynne Cervantes-Torres
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ricardo A Valdez
- Physiology, Biophysics and Neurosciences Department, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anai Fuentes Rodríguez
- National Flow Cytometry Laboratory, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Erick Espíndola-Arriaga
- National Flow Cytometry Laboratory, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Mauricio Ortiz
- National Flow Cytometry Laboratory, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Evelyn Alvarez Salazar
- National Flow Cytometry Laboratory, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Carlos Castellanos Barba
- National Flow Cytometry Laboratory, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | - Hugo Besedovsky
- Institute of Physiology and Pathophysiology, Marburg, Germany
| | - Marta C Romano
- Physiology, Biophysics and Neurosciences Department, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Helgi Jung
- Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raúl J Bobes
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Soldevila
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; National Flow Cytometry Laboratory, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México
| | | | - Gladis Fragoso
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Pedro Laclette
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edda Sciutto
- Inmunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
3
|
Farahbakht E, Alsinani Y, Safari M, Hofmeister M, Rezaie R, Sharifabadi A, Jahromi MK. Immunoinflammatory Response to Acute Noise Stress in Male Rats Adapted with Different Exercise Training. Noise Health 2023; 25:226-235. [PMID: 38358238 PMCID: PMC10849015 DOI: 10.4103/nah.nah_23_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Objective Noise pollution is a kind of stress that impairs various physiological functions. This study evaluated the effect of high-intensity interval training (HIIT) and moderate-intensity continuous training (MCT) on corticosterone, interleukin-6 (IL-6), and monocyte responses to acute noise stress in male rats. Design Forty-two male Wistar rats were divided into seven groups, including control which was assessed at the beginning, control time which was assessed simultaneously with experimental groups (CT), HIIT, MCT, HIIT followed by noise stress (HIIT+S), MCT followed by noise stress (MCT+S), and noise stress. HIIT and MCT were performed for 8 weeks. Noise stress was induced for one session. Blood samples were taken 48 hours after the last exercise session in training and CT groups and immediately after acute noise stress in stress groups of HIIT+S, MCT+S, and noise stress. Results In response to acute noise stress, MCT and HIIT adaptations increased corticosterone, while reduced monocytes compared to CT. MCT increased basal corticosterone and IL-6 and decreased monocytes; however, in response to acute noise stress, corticosterone was higher and monocyte count was lower in the HIIT+S group. Regarding the effect of training, corticosterone and monocytes in MCT were higher than in HIIT. The serum level of IL-6 was lower in MCT than CT group, while it was not significantly different between stress groups. Conclusion In response to noise stress, previous exercise, especially HIIT, increased stress while did not increase inflammatory and innate immune response.
Collapse
Affiliation(s)
- Elaheh Farahbakht
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
| | | | - Mohammadamin Safari
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Martin Hofmeister
- Department Food and Nutrition, Consumer Centre of the German Federal State of Bavaria, Munich, Germany
| | - Rasoul Rezaie
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Alireza Sharifabadi
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Maryam Koushkie Jahromi
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Duzkopru Y, Kocanoglu A, Dogan O, Sahinli H, Cilbir E, Altinbas M. Hemoglobin, albumin, lymphocyte, and platelet score as a predictor of prognosis in metastatic gastric cancer. World J Gastrointest Oncol 2023; 15:1626-1635. [PMID: 37746652 PMCID: PMC10514725 DOI: 10.4251/wjgo.v15.i9.1626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 07/29/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND The hemoglobin, albumin, lymphocyte, and platelet (HALP) score, derived from a composite evaluation of markers reflecting the tumor-inflammation relationship and nutritional status, has been substantiated as a noteworthy prognostic determinant for diverse malignancies. AIM To investigate how the HALP score relates to prognosis in patients with metastatic gastric cancer. METHODS The cutoff values for the HALP score, neutrophil/lymphocyte ratio, and platelet/lymphocyte ratio were determined using receiver operating characteristic analysis. Low HALP scores were defined as those less than 24.79 and high HALP scores as those greater than 24.79. RESULTS The study cohort comprised 147 patients and 110 of them (74.8%) were male. The patients' median age was 63 (22-89) years. The median overall survival was significantly superior in the patients with high HALP scores than in those with low HALP scores (10.4 mo vs 7.5 mo, respectively; P < 0.001). CONCLUSION The HALP score was found to be a prognostic factor in patients with metastatic gastric cancer.
Collapse
Affiliation(s)
- Yakup Duzkopru
- Department of Medical Oncology, Ankara Etlik City Hospital, Ankara 06170, Turkey
| | - Abdulkadir Kocanoglu
- Department of Medical Oncology, Ankara Etlik City Hospital, Ankara 06170, Turkey
| | - Ozlem Dogan
- Department of Medical Oncology, Ankara Etlik City Hospital, Ankara 06170, Turkey
| | - Hayriye Sahinli
- Department of Medical Oncology, Ankara Etlik City Hospital, Ankara 06170, Turkey
| | - Ebru Cilbir
- Department of Medical Oncology, Ankara Etlik City Hospital, Ankara 06170, Turkey
| | - Mustafa Altinbas
- Department of Medical Oncology, Ankara Etlik City Hospital, Ankara 06170, Turkey
| |
Collapse
|
5
|
Grandoni F, Hussen J, Signorelli F, Napolitano F, Scatà MC, De Donato I, Cappelli G, Galiero G, Grassi C, De Carlo E, Petrini S, De Matteis G, Martucciello A. Evaluation of Hematological Profiles and Monocyte Subpopulations in Water Buffalo Calves after Immunization with Two Different IBR Marker Vaccines and Subsequent Infection with Bubaline alphaherpesvirus-1. Vaccines (Basel) 2023; 11:1405. [PMID: 37766082 PMCID: PMC10537172 DOI: 10.3390/vaccines11091405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Bubaline alphaherpesvirus-1 (BuAHV-1) and Bovine alphaherpesvirus-1 (BoAHV-1) are respiratory viruses that can cause an infection known as "Infectious Bovine Rhinotracheitis" (IBR) in both water buffalo and bovine species. As the main disease control strategy, vaccination can protect animals from clinical disease through the development of specific humoral and cell-mediated immune responses. In the present study, the time-related circulatory kinetics of hematological profile and bubaline monocyte subsets have been investigated in vaccinated buffalo calves after challenge infections with BuAHV-1. Thirteen buffalo calves were selected and grouped into the VAX-1 group, which received an IBR-live-attenuated gE-/tk-deleted marker vaccine; the VAX-2 group, which received an IBR-inactivated gE-deleted marker vaccine; the CNT group, which remained an unvaccinated control. Fifty-five days after the first vaccination, the animals were infected with 5 × 105.00 TCID50/mL of wild-type BuAHV-1 strain via the intranasal route. Whole blood samples were collected at 0, 2, 4, 7, 10, 15, 30, and 63 days post-challenge (PCDs) for the analysis of hematological profiles and the enumeration of monocyte subsets via flow cytometry. The analysis of leukocyte compositions revealed that neutrophils were the main leukocyte population, with a relative increase during the acute infection. On the other hand, a general decrease in the proportion of lymphocytes was observed early in the post-infection, both for the VAX-1 and VAX-2 groups, while in the CNT group, the decrease was observed later at +30 and +63 PCDs. An overall infection-induced increase in blood total monocytes was observed in all groups. The rise was especially marked in the animals vaccinated with an IBR-live-attenuated gE-/tK-deleted marker vaccine (VAX-1 group). A multicolor flow cytometry panel was used to identify the bubaline monocyte subpopulations (classical = cM; intermediate = intM; and non-classical = ncM) and to investigate their variations during BuAHV-1 infection. Our results showed an early increase in cMs followed by a second wave of intMs. This increase was observed mainly after stimulation with live-attenuated viruses in the VAX-1 group compared with the animals vaccinated with the inactivated vaccine or the non-vaccinated animal group. In summary, the present study characterized, for the first time, the hematological profile and distribution of blood monocyte subsets in vaccinated and non-vaccinated water buffalo in response to experimental infection with BuAHV-1. Although not experimentally proven, our results support the hypothesis of a linear developmental relationship between monocyte subsets.
Collapse
Affiliation(s)
- Francesco Grandoni
- Research Centre for Animal Production and Aquaculture, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), 00015 Monterotondo, Italy
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 36362, Saudi Arabia
| | - Federica Signorelli
- Research Centre for Animal Production and Aquaculture, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), 00015 Monterotondo, Italy
| | - Francesco Napolitano
- Research Centre for Animal Production and Aquaculture, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), 00015 Monterotondo, Italy
| | - Maria Carmela Scatà
- Research Centre for Animal Production and Aquaculture, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), 00015 Monterotondo, Italy
| | - Immacolata De Donato
- National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 84132 Salerno, Italy
| | - Giovanna Cappelli
- National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 84132 Salerno, Italy
| | - Giorgio Galiero
- National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 84132 Salerno, Italy
| | - Carlo Grassi
- National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 84132 Salerno, Italy
| | - Esterina De Carlo
- National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 84132 Salerno, Italy
| | - Stefano Petrini
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati”, 06126 Perugia, Italy
| | - Giovanna De Matteis
- Research Centre for Animal Production and Aquaculture, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), 00015 Monterotondo, Italy
| | - Alessandra Martucciello
- National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 84132 Salerno, Italy
| |
Collapse
|
6
|
van der Pan K, de Bruin-Versteeg S, Damasceno D, Hernández-Delgado A, van der Sluijs-Gelling AJ, van den Bossche WBL, de Laat IF, Díez P, Naber BAE, Diks AM, Berkowska MA, de Mooij B, Groenland RJ, de Bie FJ, Khatri I, Kassem S, de Jager AL, Louis A, Almeida J, van Gaans-van den Brink JAM, Barkoff AM, He Q, Ferwerda G, Versteegen P, Berbers GAM, Orfao A, van Dongen JJM, Teodosio C. Development of a standardized and validated flow cytometry approach for monitoring of innate myeloid immune cells in human blood. Front Immunol 2022; 13:935879. [PMID: 36189252 PMCID: PMC9519388 DOI: 10.3389/fimmu.2022.935879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Innate myeloid cell (IMC) populations form an essential part of innate immunity. Flow cytometric (FCM) monitoring of IMCs in peripheral blood (PB) has great clinical potential for disease monitoring due to their role in maintenance of tissue homeostasis and ability to sense micro-environmental changes, such as inflammatory processes and tissue damage. However, the lack of standardized and validated approaches has hampered broad clinical implementation. For accurate identification and separation of IMC populations, 62 antibodies against 44 different proteins were evaluated. In multiple rounds of EuroFlow-based design-testing-evaluation-redesign, finally 16 antibodies were selected for their non-redundancy and separation power. Accordingly, two antibody combinations were designed for fast, sensitive, and reproducible FCM monitoring of IMC populations in PB in clinical settings (11-color; 13 antibodies) and translational research (14-color; 16 antibodies). Performance of pre-analytical and analytical variables among different instruments, together with optimized post-analytical data analysis and reference values were assessed. Overall, 265 blood samples were used for design and validation of the antibody combinations and in vitro functional assays, as well as for assessing the impact of sample preparation procedures and conditions. The two (11- and 14-color) antibody combinations allowed for robust and sensitive detection of 19 and 23 IMC populations, respectively. Highly reproducible identification and enumeration of IMC populations was achieved, independently of anticoagulant, type of FCM instrument and center, particularly when database/software-guided automated (vs. manual “expert-based”) gating was used. Whereas no significant changes were observed in identification of IMC populations for up to 24h delayed sample processing, a significant impact was observed in their absolute counts after >12h delay. Therefore, accurate identification and quantitation of IMC populations requires sample processing on the same day. Significantly different counts were observed in PB for multiple IMC populations according to age and sex. Consequently, PB samples from 116 healthy donors (8-69 years) were used for collecting age and sex related reference values for all IMC populations. In summary, the two antibody combinations and FCM approach allow for rapid, standardized, automated and reproducible identification of 19 and 23 IMC populations in PB, suited for monitoring of innate immune responses in clinical and translational research settings.
Collapse
Affiliation(s)
- Kyra van der Pan
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Daniela Damasceno
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca, and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Alejandro Hernández-Delgado
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca, and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | - Wouter B. L. van den Bossche
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Department of Immunology, Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Inge F. de Laat
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Paula Díez
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Annieck M. Diks
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Bas de Mooij
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Rick J. Groenland
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Fenna J. de Bie
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Indu Khatri
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Sara Kassem
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Anniek L. de Jager
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Alesha Louis
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Julia Almeida
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca, and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | - Alex-Mikael Barkoff
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku (UTU), Turku, Finland
| | - Qiushui He
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku (UTU), Turku, Finland
| | - Gerben Ferwerda
- Section of Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Pauline Versteegen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Guy A. M. Berbers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca, and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jacques J. M. van Dongen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca, and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- *Correspondence: Jacques J. M. van Dongen,
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca, and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
7
|
Polilli E, Frattari A, Esposito JE, D’Amato M, Rapacchiale G, D’Intino A, Albani A, Di Iorio G, Carinci F, Parruti G. Reliability of predictive models to support early decision making in the emergency department for patients with confirmed diagnosis of COVID-19: the Pescara Covid Hospital score. BMC Health Serv Res 2022; 22:1062. [PMID: 35986291 PMCID: PMC9390116 DOI: 10.1186/s12913-022-08421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background The hospital management of patients diagnosed with COVID-19 can be hampered by heterogeneous characteristics at entry into the emergency department. We aimed to identify demographic, clinical and laboratory parameters associated with higher risks of hospitalisation, oxygen support, admission to intensive care and death, to build a risk score for clinical decision making at presentation to the emergency department. Methods We carried out a retrospective study using linked administrative data and laboratory parameters available in the initial phase of the pandemic at the emergency department of the regional reference hospital of Pescara, Abruzzo, Italy, March–June 2020. Logistic regression and Cox modelling were used to identify independent predictors for risk stratification. Validation was carried out collecting data from an extended timeframe covering other variants of concern, including Alpha (December 2020–January 2021) and Delta/Omicron (January–March 2022). Results Several clinical and laboratory parameters were significantly associated to the outcomes of interest, independently from age and gender. The strongest predictors were: for hospitalisation, monocyte distribution width ≥ 22 (4.09; 2.21–7.72) and diabetes (OR = 3.04; 1.09–9.84); for oxygen support: saturation < 95% (OR = 11.01; 3.75–41.14), lactate dehydrogenase≥237 U/L (OR = 5.93; 2.40–15.39) and lymphocytes< 1.2 × 103/μL (OR = 4.49; 1.84–11.53); for intensive care, end stage renal disease (OR = 59.42; 2.43–2230.60), lactate dehydrogenase≥334 U/L (OR = 5.59; 2.46–13.84), D-dimer≥2.37 mg/L (OR = 5.18; 1.14–26.36), monocyte distribution width ≥ 25 (OR = 3.32; 1.39–8.50); for death, procalcitonin≥0.2 ng/mL (HR = 2.86; 1.95–4.19) and saturation < 96% (HR = 2.74; 1.76–4.28). Risk scores derived from predictive models using optimal thresholds achieved values of the area under the curve between 81 and 91%. Validation of the scoring algorithm for the evolving virus achieved accuracy between 65 and 84%. Conclusions A set of parameters that are normally available at emergency departments of any hospital can be used to stratify patients with COVID-19 at risk of severe conditions. The method shall be calibrated to support timely clinical decision during the first hours of admission with different variants of concern. Supplementary Information The online version contains supplementary material available at 10.1186/s12913-022-08421-4.
Collapse
|
8
|
Güç ZG, Alacacıoğlu A, Kalender ME, Oflazoğlu U, Ünal S, Yıldız Y, Salman T, Küçükzeybek Y, Tarhan MO. HALP score and GNRI: Simple and easily accessible indexes for predicting prognosis in advanced stage NSCLC patients. The İzmir oncology group (IZOG) study. Front Nutr 2022; 9:905292. [PMID: 36061883 PMCID: PMC9437940 DOI: 10.3389/fnut.2022.905292] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/01/2022] [Indexed: 12/27/2022] Open
Abstract
ObjectiveThe Hemoglobin, Albumin, Lymphocyte, and Platelet (HALP) Score and the Geriatric Nutrition Risk Index (GNRI) are used as prognostic factors in different types of cancers. In this study we analyzed the prognostic value of the HALP Score and the GNRI calculated prior to first-line treatment in patients diagnosed with de novo metastatic non-small cell lung cancer (mNSCLC).Materials and methodsDe novo mNSCLC patients were retrospectively evaluated from January 2016 to December 2019. Patients with Driver’s mutation, severe comorbidities, active infection, or insufficient organ function, and those receiving anti-inflammatory treatment were excluded from the study. Optimal cut-off points for the HALP score and the GNRI were calculated with the receiver operating characteristic (ROC) curve analysis. Predictive factors for overall survival (OS) were assessed with univariate and multivariate Cox proportional hazard analyses, and OS was studied with the Kaplan–Meier analysis.ResultsThe study included 401 patients in total. In the ROC curve analysis, the cut-off points were found 23.24 (AUC = 0.928; 95% CI: 0.901–0.955, p < 0.001) for HALP, and 53.60 (AUC = 0.932; 95% CI: 0.908–0.955, p < 0.001) for GNRI. Groups with lower HALP scores and lower GNRI had significantly shorter OS compared to those with higher HALP scores and GNRIs. Univariate analysis showed that male gender, smoking, high ECOG score, low HALP score and low GNRI were associated with worse survival rates. Multivariate analysis showed that low HALP score (HR = 2.988, 95% CI: 2.065–4.324, p < 0.001); low GNRI score (HR = 2.901, 95% CI: 2.045–4.114, p < 0.001) and smoking history (HR = 1.447, 95% CI: 1.046–2.001, p = 0.025) were independent factors associated with worse OS rates.ConclusionOur study showed the HALP score and the GNRI to be of prognostic value as simple, cost-effective, and useful markers that predict OS in de novo mNSCLC patients.
Collapse
Affiliation(s)
- Zeynep Gülsüm Güç
- Department of Medical Oncology, İzmir Katip Çelebi University, Atatürk Training and Research Hospital, İzmir, Turkey
- *Correspondence: Zeynep Gülsüm Güç,
| | - Ahmet Alacacıoğlu
- Department of Medical Oncology, İzmir Katip Çelebi University, Atatürk Training and Research Hospital, İzmir, Turkey
| | - Mehmet Eren Kalender
- Department of Medical Oncology, İzmir Katip Çelebi University, Atatürk Training and Research Hospital, İzmir, Turkey
| | - Utku Oflazoğlu
- Department of Medical Oncology, İzmir Katip Çelebi University, Atatürk Training and Research Hospital, İzmir, Turkey
| | - Sinan Ünal
- Department of Medical Oncology, İzmir Katip Çelebi University, Atatürk Training and Research Hospital, İzmir, Turkey
| | - Yaşar Yıldız
- Department of Medical Oncology, İzmir Katip Çelebi University, Atatürk Training and Research Hospital, İzmir, Turkey
| | - Tarık Salman
- Department of Medical Oncology, İzmir Katip Çelebi University, Atatürk Training and Research Hospital, İzmir, Turkey
| | - Yüksel Küçükzeybek
- Department of Medical Oncology, İzmir Katip Çelebi University, Atatürk Training and Research Hospital, İzmir, Turkey
| | - Mustafa Oktay Tarhan
- Department of Medical Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
9
|
Chew K, Lee B, van Haren SD, Nanishi E, O’Meara T, Splaine JB, DeLeon M, Soni D, Seo HS, Dhe-Paganon S, Ozonoff A, Smith JA, Levy O, Dowling DJ. Adjuvant Discovery via a High Throughput Screen using Human Primary Mononuclear Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.17.496630. [PMID: 35860217 PMCID: PMC9298130 DOI: 10.1101/2022.06.17.496630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motivation Vaccines are a key biomedical intervention to prevent the spread of infectious diseases, but their efficacy can be limited by insufficient immunogenicity and nonuniform reactogenic profiles. Adjuvants are molecules that potentiate vaccine responses by inducing innate immune activation. However, there are a limited number of adjuvants in approved vaccines, and current approaches for preclinical adjuvant discovery and development are inefficient. To enhance adjuvant identification, we developed a protocol based on in vitro screening of human primary leukocytes. Summary We describe a methodology utilizing high-throughput and high-content screening for novel adjuvant candidates that was used to screen a library of ~2,500 small molecules via a 384-well quantitative combined cytokine and flow cytometry immunoassay in primary human peripheral blood mononuclear cells (PBMCs) from 4 healthy adult study participants. Hits were identified based on their induction of soluble cytokine (TNF, IFNg and IL-10) secretion and PBMC maturation (CD 80/86, Ox40, and HLA-DR) in at least two of the four donors screened. From an initial set of 197 compounds identified using these biomarkers-an 8.6% hit rate-we downselected to five scaffolds that demonstrated robust efficacy and potency in vitro and evaluated the top hit, vinblastine sulfate, for adjuvanticity in vivo. Vinblastine sulfate significantly enhanced murine humoral responses to recombinant SARS-CoV-2 spike protein, including a four-fold enhancement of IgG titer production when compared to treatment with the spike antigen alone. Overall, we outline a methodology for discovering immunomodulators with adjuvant potential via high-throughput screening of PBMCs in vitro that yielded a lead compound with in vivo adjuvanticity.
Collapse
Affiliation(s)
- Katherine Chew
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Branden Lee
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Timothy O’Meara
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | | | - Maria DeLeon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Jennifer A. Smith
- ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - David J. Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Liu Y, Tao X, Tao J. Strategies of Targeting Inflammasome in the Treatment of Systemic Lupus Erythematosus. Front Immunol 2022; 13:894847. [PMID: 35664004 PMCID: PMC9157639 DOI: 10.3389/fimmu.2022.894847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ dysfunction resulting from the production of multiple autoantibodies and adaptive immune system abnormalities involving T and B lymphocytes. In recent years, inflammasomes have been recognized as an important component of innate immunity and have attracted increasing attention because of their pathogenic role in SLE. In short, inflammasomes regulate the abnormal differentiation of immune cells, modulate pathogenic autoantibodies, and participate in organ damage. However, due to the clinical heterogeneity of SLE, the pathogenic roles of inflammasomes are variable, and thus, the efficacy of inflammasome-targeting therapies is uncertain. To provide a foundation for the development of such therapeutic strategies, in this paper, we review the role of different inflammasomes in the pathogenesis of SLE and their correlation with clinical phenotypes and propose some corresponding treatment strategies.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinyu Tao
- Department of Clinical Medicine "5 + 3" Integration, The First Clinical College, Anhui Medical University, Hefei, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
11
|
Swaminathan M, Kopyt N, Atta MG, Radhakrishnan J, Umanath K, Nguyen S, O'Rourke B, Allen A, Vaninov N, Tilles A, LaPointe E, Blair A, Gemmiti C, Miller B, Parekkadan B, Barcia RN. Pharmacological effects of ex vivo mesenchymal stem cell immunotherapy in patients with acute kidney injury and underlying systemic inflammation. Stem Cells Transl Med 2021; 10:1588-1601. [PMID: 34581517 PMCID: PMC8641088 DOI: 10.1002/sctm.21-0043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/07/2021] [Accepted: 06/30/2021] [Indexed: 01/20/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have natural immunoregulatory functions that have been explored for medicinal use as a cell therapy with limited success. A phase Ib study was conducted to evaluate the safety and immunoregulatory mechanism of action of MSCs using a novel ex vivo product (SBI-101) to preserve cell activity in patients with severe acute kidney injury. Pharmacological data demonstrated MSC-secreted factor activity that was associated with anti-inflammatory signatures in the molecular and cellular profiling of patient blood. Systems biology analysis captured multicompartment effects consistent with immune reprogramming and kidney tissue repair. Although the study was not powered for clinical efficacy, these results are supportive of the therapeutic hypothesis, namely, that treatment with SBI-101 elicits an immunotherapeutic response that triggers an accelerated phenotypic switch from tissue injury to tissue repair. Ex vivo administration of MSCs, with increased power of testing, is a potential new biological delivery paradigm that assures sustained MSC activity and immunomodulation.
Collapse
Affiliation(s)
- Madhav Swaminathan
- Department of Anesthesiology, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Nelson Kopyt
- Nephrology Section, Department of Medicine, Lehigh Valley Health Network, Allentown, Pennsylvania, USA
| | - Mohamed G Atta
- Department of Medicine, Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jai Radhakrishnan
- Columbia University Medical Center, Division of Nephrology, NY Presbyterian Hospital/Columbia, New York, New York, USA
| | - Kausik Umanath
- Division of Nephrology and Hypertension, Henry Ford Hospital, Detroit, Michigan, USA.,Division of Nephrology and Hypertension, Wayne State University, Detroit, Michigan, USA
| | - Sunny Nguyen
- Sentien Biotechnologies, Lexington, Massachusetts, USA
| | | | - Ashley Allen
- Sentien Biotechnologies, Lexington, Massachusetts, USA
| | | | - Arno Tilles
- Sentien Biotechnologies, Lexington, Massachusetts, USA
| | | | - Andrew Blair
- Sentien Biotechnologies, Lexington, Massachusetts, USA
| | - Chris Gemmiti
- Sentien Biotechnologies, Lexington, Massachusetts, USA
| | - Brian Miller
- Sentien Biotechnologies, Lexington, Massachusetts, USA
| | - Biju Parekkadan
- Sentien Biotechnologies, Lexington, Massachusetts, USA.,Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Rita N Barcia
- Sentien Biotechnologies, Lexington, Massachusetts, USA
| |
Collapse
|
12
|
Zhai B, Chen J, Wu J, Yang L, Guo X, Shao J, Xu H, Shen A. Predictive value of the hemoglobin, albumin, lymphocyte, and platelet (HALP) score and lymphocyte-to-monocyte ratio (LMR) in patients with non-small cell lung cancer after radical lung cancer surgery. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:976. [PMID: 34277776 PMCID: PMC8267290 DOI: 10.21037/atm-21-2120] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Background Examining the analytical worth of the preoperative hemoglobin, albumin, lymphocyte, platelet (HALP) score and lymphocyte-to-monocyte ratio (LMR) within diseased persons having non-small cell lung cancer (NSCLC) after radical lung cancer surgery. Methods Clinical data concerning 238 diseased persons with NSCLC who underwent radical lung cancer resection within Nantong Cancer Hospital between January 2009 and October 2015 had been looking back studied. ROC curve had been employed in regulating optimal critical worth of HALP and LMR that had been 48.00 and 6.30 singly. A 5-year amplification observed survival concerning diseased persons, and clinicopathological stuff assessed using statistics procedure. Kaplan Meier method, log rank test had been exploited from the point of view to analyze for surviving, and Cox regression analysis had been exploited for univariate and multivariate analysis. Eventually, a nomogram had been produced to examine the confirmation internally. Results Kaplan Meier survival assessment revealed top HALP class's overall survival (OS) was significantly higher than below HALP class's (P<0.001), and high LMR group's OS was also greater than below LMR class's (P=0.001). Patients possessing average continuance period of 4 years. Further stratified study revealed high HALP class possessed notable OS as compared below HALP class (P=0.0002), and top LMR class possessed considerable OS as compared to below LMR class (P=0.003) in lung adenocarcinoma. In non-adenocarcinoma, there was no substantial difference in OS between two classes (P>0.05). Preoperative HALP and LMR remained independent risk constituents for tumor progression (P=0.005, P=0.028), lymph node metastasis and level of differentiation also had a certain effect on tumor progression (P<0.05), according to Cox multivariate analysis. Rise in HALP and LMR will help diseased persons having NSCLC live longer. The nomogram's c-index in inside validation was 0.672 (95% confidence interval: 0.626-0.718). Conclusions Preoperative HALP versus LMR are independent predictive aspect within NSCLC diseased persons linked to clinicopathological features, and has a particular value in determining bodement.
Collapse
Affiliation(s)
- Baoqian Zhai
- Department of Oncology, Nantong University, Nantong, China.,Cancer Research Center Nantong, The Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, China
| | - Jia Chen
- Department of Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, China
| | - Jiacheng Wu
- Department of Urology, The Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, China
| | - Lei Yang
- Department of Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, China
| | - Xiaoli Guo
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jingjing Shao
- Cancer Research Center Nantong, The Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, China
| | - Hong Xu
- Nantong Center for Disease Control and Prevention Institute of Chronic Non-Communicable Diseases Prevention and Control, Nantong, China
| | - Aiguo Shen
- Department of Oncology, Nantong University, Nantong, China.,Cancer Research Center Nantong, The Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
13
|
Mokgalaboni K, Dludla PV, Mkandla Z, Mutize T, Nyambuya TM, Mxinwa V, Nkambule BB. Differential expression of glycoprotein IV on monocyte subsets following high-fat diet feeding and the impact of short-term low-dose aspirin treatment. Metabol Open 2020; 7:100047. [PMID: 33015602 PMCID: PMC7520890 DOI: 10.1016/j.metop.2020.100047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/06/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To assess the levels of glycoprotein GPIV (CD36) expression on peripheral blood monocyte subsets, in a mouse model of glucose intolerance. Moreover, to determine the effect of; low-dose aspirin (LDA) alone, LDA combined with metformin, or clopidogrel alone, on the expression of CD36 on subsets of circulating monocytes. METHOD The study consisted of two experimental phases. In experiment one, the mice (n = 14) were randomised to receive a low-fat diet (LFD) or a high-fat diet (HFD) for eight weeks. Whereas the secondary phase of the experiment, comprised of twenty-four HFD-fed mice treated with LDA alone (3 mg/kg), or in combination with metformin (150 mg/kg), or clopidogrel alone (10 mg/kg) for six weeks. The surface expression of CD36 on monocytes was measured using flow cytometry. RESULT The levels of CD36 expression on monocytes were upregulated in the HFD-fed compared to LFD-fed group (p < 0.05). In addition, HFD group showed; no significant changes in body weight (p = 0.3848), however, blood glucose (p = 0.0002) and insulin (p = 0.0360) levels were markedly increased following HFD-feeding. Interestingly, all treatments reduced the expression of CD36 on monocytes, decreased fasting blood glucose levels (p = 0.0024) and increased circulating monocyte levels (p = 0.0217) when compared to the untreated HFD group. Moreover, treatment with LDA alone increased basophils levels (p = 0.0272), while when combined with metformin showed an improved effect in enhancing eosinophil levels (p = 0.0302). CONCLUSION HFD-feeding increased the expression of CD36 on monocyte subsets. LDA as a monotherapy or combined with metformin was as effective as clopidogrel monotherapy, in downregulating the expression of CD36 on monocyte subsets. These treatments may be of relevance in preventing cardiovascular complications associated with impaired glucose tolerance.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform (BRIP), The South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Zibusiso Mkandla
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Tinashe Mutize
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Tawanda Maurice Nyambuya
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| |
Collapse
|
14
|
Byrnes D, Masterson CH, Artigas A, Laffey JG. Mesenchymal Stem/Stromal Cells Therapy for Sepsis and Acute Respiratory Distress Syndrome. Semin Respir Crit Care Med 2020; 42:20-39. [PMID: 32767301 DOI: 10.1055/s-0040-1713422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis and acute respiratory distress syndrome (ARDS) constitute devastating conditions with high morbidity and mortality. Sepsis results from abnormal host immune response, with evidence for both pro- and anti-inflammatory activation present from the earliest phases. The "proinflammatory" response predominates initially causing host injury, with later-phase sepsis characterized by immune cell hypofunction and opportunistic superinfection. ARDS is characterized by inflammation and disruption of the alveolar-capillary membrane leading to injury and lung dysfunction. Sepsis is the most common cause of ARDS. Approximately 20% of deaths worldwide in 2017 were due to sepsis, while ARDS occurs in over 10% of all intensive care unit patients and results in a mortality of 30 to 45%. Given the fact that sepsis and ARDS share some-but not all-underlying pathophysiologic injury mechanisms, the lack of specific therapies, and their frequent coexistence in the critically ill, it makes sense to consider therapies for both conditions together. In this article, we will focus on the therapeutic potential of mesenchymal stem/stromal cells (MSCs). MSCs are available from several tissues, including bone marrow, umbilical cord, and adipose tissue. Allogeneic administration is feasible, an important advantage for acute conditions like sepsis or ARDS. They possess diverse mechanisms of action of relevance to sepsis and ARDS, including direct and indirect antibacterial actions, potent effects on the innate and adaptive response, and pro-reparative effects. MSCs can be preactivated thereby potentiating their effects, while the use of their extracellular vesicles can avoid whole cell administration. While early-phase clinical trials suggest safety, considerable challenges exist in moving forward to phase III efficacy studies, and to implementation as a therapy should they prove effective.
Collapse
Affiliation(s)
- Declan Byrnes
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Claire H Masterson
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Antonio Artigas
- Critical Care Center, Corporació Sanitaria Parc Tauli, CIBER Enfermedades Respiratorias, Autonomous University of Barcelona, Sabadell, Spain
| | - John G Laffey
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,Department of Anaesthesia, SAOLTA University Health Group, Galway University Hospitals, Galway, Ireland
| |
Collapse
|
15
|
Cordes F, Foell D, Ding JN, Varga G, Bettenworth D. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn's disease. World J Gastroenterol 2020; 26:4055-4075. [PMID: 32821070 PMCID: PMC7403801 DOI: 10.3748/wjg.v26.i28.4055] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/24/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
In 2018, the pan-Janus kinase (JAK) inhibitor tofacitinib was launched for the treatment of ulcerative colitis (UC). Although tofacitinib has proven efficacious in patients with active UC, it failed in patients with Crohn's disease (CD). This finding strongly hints at a different contribution of JAK signaling in both entities. Here, we review the current knowledge on the interplay between the JAK/signal transducer and activator of transcription (STAT) pathway and inflammatory bowel diseases (IBD). In particular, we provide a detailed overview of the differences and similarities of JAK/STAT-signaling in UC and CD, highlight the impact of the JAK/STAT pathway in experimental colitis models and summarize the published evidence on JAK/STAT-signaling in immune cells of IBD as well as the genetic association between the JAK/STAT pathway and IBD. Finally, we describe novel treatment strategies targeting JAK/STAT inhibition in UC and CD and comment on the limitations and challenges of the new drug class.
Collapse
Affiliation(s)
- Friederike Cordes
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster D-48149, Germany
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University Children’s Hospital Münster, Münster D-48149, Germany
| | - John Nik Ding
- Department of Gastroenterology, St. Vincent’s Hospital, Melbourne 3002, Australia
- Department of Medicine, University of Melbourne, East Melbourne 3002, Australia
| | - Georg Varga
- Department of Pediatric Rheumatology and Immunology, University Children’s Hospital Münster, Münster D-48149, Germany
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster D-48149, Germany
| |
Collapse
|
16
|
Zhang C, Frye MD, Sun W, Sharma A, Manohar S, Salvi R, Hu BH. New insights on repeated acoustic injury: Augmentation of cochlear susceptibility and inflammatory reaction resultant of prior acoustic injury. Hear Res 2020; 393:107996. [PMID: 32534268 DOI: 10.1016/j.heares.2020.107996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
In industrial and military settings, individuals who suffer from one episode of acoustic trauma are likely to sustain another episode of acoustic stress, creating an opportunity for a potential interaction between the two stress conditions. We previously demonstrated that acoustic overstimulation perturbs the cochlear immune environment. However, how the cochlear immune system responds to repeated acoustic overstimulation is unknown. Here, we used a mouse model to investigate the cochlear immune response to repeated stress. We reveal that exposure to an intense noise at 120 dB SPL for 1 h activates the cochlear immune response in a time-dependent fashion with substantial expansion and activation of the macrophage population in the cochlea at 2-days post-exposure. At 20-days post-exposure, the number and pro-inflammatory phenotypes of cochlear macrophages have significantly subsided, but have yet to return to homeostatic levels. Monocytes with anti-inflammatory phenotypes are recruited into the cochlea. With the presence of this residual immune activation, a second exposure to the same noise provokes an exaggerated inflammatory response as evidenced by exacerbated maturation of macrophages. Furthermore, the second noise causes greater sensory cell pathogenesis. Unlike the first noise-induced damage that occurs mainly between 0 and 2 days post-exposure, the second noise-induced damage occurs more frequently between 2 and 20 days post-exposure, the period when secondary damage takes place. These observations suggest that repeated acoustic overstimulation exacerbates cochlear inflammation and secondary sensory cell pathogenesis. Together, our results suggest that the cochlear immune system plays an important role in modulating cochlear responses to repeated acoustic stress.
Collapse
Affiliation(s)
- Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Mitchell D Frye
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Wei Sun
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Ashu Sharma
- Department of Oral Biology, University at Buffalo, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA, 14214.
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| |
Collapse
|
17
|
Shen XB, Wang Y, Shan BJ, Lin L, Hao L, Liu Y, Wang W, Pan YY. Prognostic Significance Of Platelet-To-Lymphocyte Ratio (PLR) And Mean Platelet Volume (MPV) During Etoposide-Based First-Line Treatment In Small Cell Lung Cancer Patients. Cancer Manag Res 2019; 11:8965-8975. [PMID: 31802938 PMCID: PMC6802562 DOI: 10.2147/cmar.s215361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Background Small cell lung cancer (SCLC) is a special type of lung cancer and it is responsive to chemotherapy. Blood parameters have been proved to be associated with survival for many types of malignancies. This study aimed to investigate the prognostic significance of platelet-to-lymphocyte ratio (PLR) and mean platelet volume (MPV) for SCLC patients with etoposide-based first-line treatment. Methods We retrospectively identified 138 patients diagnosed as SCLC who underwent etoposide-based first-line chemotherapy. The patients’ baseline clinical characteristics and blood parameters were collected. Kaplan–Meier analysis and Cox regression methods were used to determine the factors associated with progression-free survival (PFS). Results The optimal cut-off value of diagnosis was depended on the ROC curve, the cut-off value of pretreatment PLR was 190 (sensitivity 39.0%, specificity 88.5%), and the cut-off value of pretreatment MPV was 10.0 (sensitivity 60.7%, specificity 61%). Kaplan–Meier analysis showed patients with high PLR levels in baseline had worse PFS than those with low PLR levels (P <0.001). Multivariate analysis revealed pretreatment MPV was an independent prognostic factor for PFS (HR: 0.815, 95% CI: 0.711–0.933, P =0.003). Further research suggested continuous high PLR indicated a poor therapy outcome (P =0.002). Conclusion Pretreatment MPV can be an independent predictor for first-line treatment outcome and a continuously high level of PLR suggested inferior PFS in etoposide-treated SCLC patients.
Collapse
Affiliation(s)
- Xia-Bo Shen
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, People's Republic of China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, People's Republic of China
| | - Yong Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, People's Republic of China
| | - Ben-Jie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, People's Republic of China
| | - Lin Lin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, People's Republic of China
| | - Li Hao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, People's Republic of China
| | - Yu Liu
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, People's Republic of China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, People's Republic of China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, People's Republic of China
| | - Yue-Yin Pan
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, People's Republic of China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, People's Republic of China
| |
Collapse
|
18
|
Effects of dietary glutamine supplementation on immune cell polarization and muscle regeneration in diabetic mice with limb ischemia. Eur J Nutr 2019; 59:921-933. [PMID: 31062080 DOI: 10.1007/s00394-019-01951-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/18/2019] [Indexed: 01/24/2023]
Abstract
PURPOSE Diabetes is a chronic inflammatory disorder resulting in endothelial dysfunction which contributes to peripheral arterial disease and limb ischemia. Leukocytes play critical roles in vascular and tissue remodelling after ischemia. This study investigated the effects of dietary glutamine (GLN) supplementation on immune cell polarization in diabetic mice subjected to limb ischemia. METHODS Diabetes was induced by an intraperitoneal injection of streptozotocin for 5 consecutive days in C57BL/6J mice. Diabetic mice were fed the AIN-93 diet or an AIN-93 diet in which a part of the casein was replaced by GLN. After 3 weeks of the dietary intervention, mice were subjected to unilateral femoral artery ligation to induce limb ischemia. RESULTS GLN supplementation enhanced the proportion of anti-inflammatory monocytes and regulatory T cells in the blood. Expression of C-C motif chemokine receptor 5 by activated CD4+ T cells was promoted and prolonged in the GLN-supplemented group. GLN downregulated the percentage of M1 macrophages in muscle tissues which was correlated with lower levels of C-C motif chemokine ligand 2 in plasma. The muscle M1/M2 ratio was also reduced in the GLN group. Gene expression of interleukin-6 was suppressed by GLN supplementation, while expression levels of the peroxisome proliferator-activated receptor γ and myogenic differentiation 1 genes were elevated in post-ischemic muscles. Histological findings also indicated that muscle regeneration was accelerated in the GLN group. CONCLUSIONS GLN supplementation in diabetic mice may exert more-balanced polarization of CD4+ T cells, monocytes, and macrophages, thus attenuating inflammatory responses and contributing to muscle regeneration after limb ischemia.
Collapse
|
19
|
Qiao C, Zhang Q, Jiang Q, Zhang T, Chen M, Fan Y, Ding J, Lu M, Hu G. Inhibition of the hepatic Nlrp3 protects dopaminergic neurons via attenuating systemic inflammation in a MPTP/p mouse model of Parkinson's disease. J Neuroinflammation 2018; 15:193. [PMID: 29966531 PMCID: PMC6029067 DOI: 10.1186/s12974-018-1236-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/25/2018] [Indexed: 01/16/2023] Open
Abstract
Background Parkinson’s disease (PD) is a neurodegenerative disorder with progressive loss of dopaminergic (DA) neurons. Systemic inflammation is shown to initiate and exacerbate DA neuronal degeneration in the substantia nigra. The infiltration and transformation of immune cells from the peripheral tissues are detected in and around the affected brain regions of PD patients. Our previous studies demonstrated the crucial role that microglial Nod-like receptor protein (NLRP) 3 inflammasome plays in the pathogenesis of PD. Nevertheless, the direct linkage between peripheral inflammation and DA neuron death remains obscure. Methods In the present study, we detected the NLRP3 expressions in the midbrain, liver, and bone marrow-derived macrophages in response to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) acute and chronic challenge. We then used a tail vein injection of Nlrp3-siRNA wrapped with lentivirus to explore the potential influence of hepatic NLRP3 inflammasome-mediated inflammation on neuronal injury in a mouse model of PD via immunohistochemistry, ELISA, and Western blotting analysis. Results We showed that siNlrp3 downregulated the NLRP3 protein expression and inhibited the activation of NLRP3 inflammasomes in mice livers. The tail vein injection of LV3-siNlrp3 reduced the liver pro-inflammatory cytokine production, which subsequently alleviated MPTP-triggered microglial activation and DA neuron loss in the midbrain. These findings indicated that inhibition of hepatic NLRP3 inflammasome weakens inflammatory cytokines spreading into the brain and delays the progress of neuroinflammation and DA neuronal degeneration. Conclusion This study gives us an insight into the direct linkage between liver inflammation and DA neuron damage in the pathogenesis of PD and provides the potential target of NLRP3 for developing novel drugs for PD therapy. Electronic supplementary material The online version of this article (10.1186/s12974-018-1236-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen Qiao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,Department of Clinical Pharmacy, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Qian Zhang
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Qingling Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Ting Zhang
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Miaomiao Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yi Fan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China. .,Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China. .,Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|