1
|
Yang R, Wang H, Wu C, Shi Y, Li H, Bao X, Yang Y, Han S, Yang X, Tao J, Sun H, Wu S, Sun L. PAQR5 drives the malignant progression and shapes the immunosuppressive microenvironment of hepatocellular carcinoma by activating the NF-κB signaling. Biomark Res 2025; 13:70. [PMID: 40336138 PMCID: PMC12060467 DOI: 10.1186/s40364-025-00785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/26/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Progesterone and adipose Q receptor 5 (PAQR5), a membrane receptor characterized by seven transmembrane domains, has been indirectly implicated in pro-carcinogenic activities, though its specific role in hepatocellular carcinoma (HCC) remains to be defined. METHODS This study aimed to elucidate the molecular mechanisms by which PAQR5 facilitates HCC progression and contributes to the immunosuppressive microenvironment through an integrative approach combining multi-omics analysis and experimental validation. Utilizing data from bulk, single-cell, and spatial transcriptomics cohorts, this study systematically assessed the expression patterns, immune landscape, and functional characteristics of PAQR5 across different levels of resolution in HCC. RESULTS PAQR5 expression was significantly upregulated in tumor tissues and correlated with poor clinical outcomes. Enrichment analysis revealed that PAQR5 activated the NF-κB signaling pathway in HCC. Single-cell transcriptomics identified PAQR5 as predominantly localized within malignant cell clusters, with significant association with NF-κB pathway activation. Spatial transcriptomics further corroborated the alignment of PAQR5 expression with tumor cell distribution. In vitro assays showed elevated PAQR5 levels in HCC cell lines, and silencing PAQR5 significantly suppressed cell proliferation, invasion, epithelial-mesenchymal transition (EMT), and prevented the formation of immunosuppressive microenvironment. In vivo studies demonstrated that targeting PAQR5 attenuated tumorigenic potential, disrupted the invasion-metastasis cascade and inhibited the tumor immune escape. Mechanistically, PAQR5 was found to activate NF-κB signaling by inducing ERK phosphorylation, thereby driving proliferation, invasion, EMT, and immune escape in HCC through the pathway.
Collapse
Affiliation(s)
- Ruida Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanhuan Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Cong Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yu Shi
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Hanqi Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xinyue Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yuqian Yang
- Department of Medical Oncology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 711018, Shaanxi, People's Republic of China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xue Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jie Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Hao Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Shaobo Wu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
2
|
Kim Y, Yeuni Y, Heo HJ, Kim ES, Myung K, Baryawno N, Kim YH, Oh CK. Solute carrier family 2 member 2 (glucose transporter 2): a common factor of hepatocyte and hepatocellular carcinoma differentiation. PLoS One 2025; 20:e0321020. [PMID: 40279337 PMCID: PMC12026939 DOI: 10.1371/journal.pone.0321020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/27/2025] [Indexed: 04/27/2025] Open
Abstract
GLUT2 (SLC2A2), a vital glucose transporter in liver, pancreas, and kidney tissues, regulates blood glucose levels and energy metabolism. Beyond its metabolic role, SLC2A2 contributes to cell differentiation and metabolic adaptation during embryogenesis and tissue regeneration. Despite its significance, the role of SLC2A2 in liver differentiation and hepatocellular carcinoma (HCC) remains underexplored. This study investigated SLC2A2's role in liver differentiation using in silico, in vitro, and in vivo approaches. Analysis of GEO datasets (GSE132606, GSE25417, GSE67848) and TCGA HCC data revealed that while SLC2A2 expression decreases with HCC progression, stemness-associated genes, including SOX2 and POU5F1, are upregulated. Zebrafish embryos injected with SLC2A2-targeting morpholino exhibited reduced expression of the liver differentiation marker fabp10a without significantly altering the hepatoblast marker hhex. In HepG2 cells, SLC2A2 knockdown increased stemness and IGF1R pathway markers, indicating a shift toward less differentiated states. These findings suggest that SLC2A2 supports liver differentiation by regulating glucose metabolism and suppressing pathways associated with stemness and malignancy. Targeting SLC2A2 may serve as a promising therapeutic strategy for liver-related diseases, particularly HCC, by addressing its dual role in differentiation and tumor progression. Further mechanistic studies are warranted to fully elucidate these processes.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yu Yeuni
- Biomedical research institute, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hye Jin Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Eun Sun Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Chang-Kyu Oh
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
3
|
Ruan Z, Wang Y, Shi L, Yang XJ. Progress of research on glucose transporter proteins in hepatocellular carcinoma. World J Hepatol 2025; 17:104715. [PMID: 40177207 PMCID: PMC11959659 DOI: 10.4254/wjh.v17.i3.104715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumour with high prevalence and mortality rate worldwide. Metabolic reprogramming of cancer cells may be a major factor in the process of this disease. Glucose transporter proteins (GLUTs) are members of the major facilitator superfamily of membrane transporters, playing a pivotal role in the metabolic reprogramming and tumour progression in HCC. This review discusses the advances in the study of GLUTs in HCC, including the expression patterns, functions and possibilities of GLUTs. In HCC, the expression levels of GLUTs are closely associated with tumour aggressiveness, metabolic reprogramming and prognosis. A series of inhibitors have been demonstrated efficacy in inhibiting HCC cell growth and glucose uptake in in vitro and in vivo models. These inhibitors offer a novel approach to HCC treatment by reducing the glucose metabolism of tumour cells, thereby impeding tumour growth, and concurrently enhancing the sensitivity to chemotherapeutic agents. This reminds us of the urgent need to elucidate GLUTs' roles in HCC and to determine the most effective ways to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Zheng Ruan
- The First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Yan Wang
- Division of Personnel, Gansu Provincial People's Hospital, Lanzhou 730000, Gansu Province, China
| | - Lei Shi
- Department of General Surgery, The Second people's Hospital of Lanzhou, Lanzhou 730000, Gansu Province, China
| | - Xiao-Jun Yang
- Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
4
|
Li Y, Wang M, Bai J, Li X, Xiao S, Song L. Anthocyanins in Black Soybean Coats Promote Apoptosis in Hepatocellular Carcinoma Cells by Regulating the JAK2/STAT3 Pathway. Int J Mol Sci 2025; 26:1070. [PMID: 39940837 PMCID: PMC11817063 DOI: 10.3390/ijms26031070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/23/2024] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The use of black soybean (Glycine max L.), an edible crop prevalent in Asia, has attracted attention for its hepatoprotective properties. Notably, the anthocyanin components in black soybean coats have shown potential in inhibiting tumor growth. Here, anthocyanins were extracted from black soybean coats using both microwave and water bath methods. The physicochemical characteristics of black soybean coat anthocyanins (BSCAs) and their biological activities were examined. The results from the MTT and EDU assays demonstrated a dose-dependent inhibitory effect of BSCAs on hepatocellular carcinoma HepG2 cells, while leaving normal cells unaffected. Flow cytometry and mitochondrial membrane potential assays revealed that BSCA treatment induces apoptosis in HepG2 cells. A network pharmacology approach was employed to explore the relationship between hepatocellular carcinoma and the active ingredients of BSCAs, identifying the JAK/STAT signaling pathway as a potential target. Molecular docking studies confirmed the interaction between BSCA components and JAK2/STAT3 targets. Subsequent Western blot and qPCR experiments validated that BSCAs promote apoptosis in HepG2 cells by modulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yuying Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi Key Laboratory of Biotechnology, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Miaomiao Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi Key Laboratory of Biotechnology, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Jinjing Bai
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi Key Laboratory of Biotechnology, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Xin Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi Key Laboratory of Biotechnology, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Li Song
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi Key Laboratory of Biotechnology, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
5
|
Tehrani HA, Zangi M, Fathi M, Vakili K, Hassan M, Rismani E, Hossein-Khannazer N, Vosough M. GPC-3 in hepatocellular carcinoma; A novel biomarker and molecular target. Exp Cell Res 2025; 444:114391. [PMID: 39725192 DOI: 10.1016/j.yexcr.2024.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is a global health issue due to its late diagnosis and high recurrence rate. The early detection and diagnosis of HCC with specific and sensitive biomarkers and using novel treatment approaches to improve patient outcomes are essential. Glypican-3 (GPC-3) is a cell surface proteoglycan that is overexpressed in many tumors, including HCC. GPC-3 could be used as a specific biomarker for HCC early detection and could be a potential target for precise therapeutic strategies. Effective identification of GPC-3 could improve both diagnosis and targeted therapy of HCC. Moreover, targeted therapy using GPC-3 could result in a better treatment outcome. Recently, GPC3-targeted therapies have been used in different investigational therapeutic approaches like bi-specific/monoclonal antibodies, peptide vaccines, and CAR T cell therapies. This study aims to highlight the theranostic potential of GPC-3 as a novel biomarker for early detection and as a potential molecular target for HCC treatment as well.
Collapse
Affiliation(s)
- Hamed Azhdari Tehrani
- Department of Hematology-Medical Oncology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masood Zangi
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Massoud Vosough
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
6
|
Song L, Zhu C, Shi Q, Xia Y, Liang X, Qin W, Ye T, Yang B, Cao X, Xia J, Zhang K. Gelation embolism agents suppress clinical TACE-incited pro-metastatic microenvironment against hepatocellular carcinoma progression. EBioMedicine 2024; 109:105436. [PMID: 39476535 PMCID: PMC11567102 DOI: 10.1016/j.ebiom.2024.105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Current embolic agents in transcatheter arterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) encounter instability and easy leakage, discounting TACE efficacy with residual HCC. Moreover, clinical TACE aggravates hypoxia and pro-metastatic microenvironments, rendering patients with HCC poor prognosis. METHODS Herein, we developed Zein-based embolic agents that harness water-insoluble but ethanol-soluble Zein to encompass doxorubicin (DOX)-loaded mesoporous hollow MnO2 (HMnO2). The conditions and capacity of HMnO2 to generate reactive oxygen species (ROS) were assayed. Mechanical examinations of Zein-HMnO2@DOX were performed to evaluate its potential as the embolic agent. In vitro experiments were carried out to evaluate the effect of Zein-HMnO2@DOX on HCC. The subcutaneous HCC mouse model and rabbit VX2 HCC model were established to investigate its anti-tumor and anti-metastasis efficacy and explore its potential anti-tumor mechanism. FINDINGS The high adhesion and crosslinking of Zein with HMnO2@DOX impart Zein-HMnO2@DOX with strong mechanical strength to resist deformation and wash-off. Zein gelation and HMnO2 decomposition in response to water and acidic tumor microenvironment, respectively, enable continuous DOX release and Fenton-like reaction for reactive oxygen species (ROS) production and O2 release to execute ROS-enhanced TACE. Consequently, Zein-based embolic agents outperform clinically-used lipiodol to significantly inhibit orthotopic HCC growth. More significantly, O2 release down-regulates hypoxia inducible factor (HIF-1α), vascular endothelial growth factor (VEGF) and glucose transporter protein 1 (GLUT1), which thereby re-programmes TACE-aggravated hypoxic and pro-metastatic microenvironments to repress HCC metastasis towards lung. Mechanistic explorations uncover that such Zein-based TACE agents disrupt oxidative stress, angiogenesis and glycometabolism pathways to inhibit HCC progression. INTERPRETATION This innovative work not only provides a new TACE agent for HCC, but also establishes a new strategy to ameliorate TACE-aggravated hypoxia and metastasis motivation against clinically-common HCC metastasis after TACE operation. FUNDING Excellent Young Science Fund for National Natural Science Foundation of China (82022033); National Natural Science Foundation of China (Grant No. 82373086, 82102761); Major scientific and technological innovation project of Wenzhou Science and Technology Bureau (Grant No. ZY2021009); Shanghai Young Top-Notch Talent.
Collapse
Affiliation(s)
- Li Song
- National Medical Center & National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Chunyan Zhu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China; Department of Stomatology and Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, China
| | - Qing Shi
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Xuefu Lane, Wenzhou, 325000, Zhejiang, China
| | - Yuhan Xia
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170, Shensong Road, Shanghai, 200032, China
| | - Xiayi Liang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Wen Qin
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Tao Ye
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170, Shensong Road, Shanghai, 200032, China
| | - Biwei Yang
- National Medical Center & National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China.
| | - Jinglin Xia
- National Medical Center & National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China; Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Xuefu Lane, Wenzhou, 325000, Zhejiang, China.
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
7
|
Pham YTH, Huang DQ, Zhang Z, Ng CH, Tan DJH, Nguyen HC, Nguyen TC, Behari J, Yuan JM, Luu HN. Changing global epidemiology of chronic hepatitis C virus-related outcomes from 2010 to 2019: cirrhosis is the growing burden of hepatitis C virus-related disease. Eur J Cancer Prev 2024; 33:512-524. [PMID: 38568179 PMCID: PMC11416569 DOI: 10.1097/cej.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
BACKGROUND Chronic infection with hepatitis C virus (HCV) has a long-term impact on hepatic consequences. A comprehensive evaluation of the global burden of HCV-related health outcomes can help to develop a global HCV prevention and treatment program. METHODS We used the 2019 Global Burden of Disease (GBD) Study to comprehensively investigate burden and temporal trends in incidence, mortality and disability-adjusted life-years (DALYs) of HCV-related diseases, including liver cancer and cirrhosis and other liver diseases across 264 countries and territories from 2010 to 2019. RESULTS Globally, there were 152 225 incident cases, 141 811 deaths and approximately 2.9 million DALYs because of HCV-related liver cancer, and 551 668 incident cases, 395 022 deaths and about 12.2 million DALYs because of HCV-related cirrhosis in 2019. Worldwide, during the 2010-2019 period, liver cancer incidence declined, however, there was a 62% increase in cirrhosis incidence. In 2019, the Eastern Mediterranean was the region with the highest rates of incidence and mortality of both liver cancer and cirrhosis. Africa was the region with the fastest-growing trend of incidence of cirrhosis in the 2010-2019 period [annual percentage change (APC) = 2.09, 95% confidence interval (CI): 1.93-2.25], followed by the Western Pacific region (APC = 1.17, 95% CI: 1.09-1.22). Americas were the only region observing increased trends in liver cancer and cirrhosis mortality (APC = 0.70 and 0.12, respectively). We identified three patterns of temporal trends of mortality rates of liver cancer and cirrhosis in countries that reported HCV treatment rates. CONCLUSION Urgent measures are required for diagnosis, treatment and research on HCV-related cirrhosis at global, regional and country levels, particularly in Africa, the Western Pacific and the Eastern Mediterranean.
Collapse
Affiliation(s)
- Yen Thi-Hai Pham
- University of Pittsburgh Medical Center Hillman Cancer Center
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Q. Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Zhongjie Zhang
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Darren Jun Hao Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Hiep C. Nguyen
- Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Tin C. Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, Alabama
| | - Jaideep Behari
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh Medical Center
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jian-Min Yuan
- University of Pittsburgh Medical Center Hillman Cancer Center
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hung N. Luu
- University of Pittsburgh Medical Center Hillman Cancer Center
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Liu Y, Wu Y, Li Z, Wan D, Pan J. Targeted Drug Delivery Strategies for the Treatment of Hepatocellular Carcinoma. Molecules 2024; 29:4405. [PMID: 39339402 PMCID: PMC11434448 DOI: 10.3390/molecules29184405] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent malignant tumors, exhibiting a high incidence rate that presents a substantial threat to human health. The use of sorafenib and lenvatinib, commonly employed as single-agent targeted inhibitors, complicates the treatment process due to the absence of definitive targeting. Nevertheless, the advent of nanotechnology has injected new optimism into the domain of liver cancer therapy. Nanocarriers equipped with active targeting or passive targeting mechanisms have demonstrated the capability to deliver drugs to tumor cells with high efficiency. This approach not only facilitates precise delivery to the affected site but also enables targeted drug release, thereby enhancing therapeutic efficacy. As medical technology progresses, there is an increasing call for innovative treatment modalities, including novel chemotherapeutic agents, gene therapy, phototherapy, immunotherapy, and combinatorial treatments for HCC. These emerging therapies are anticipated to yield improved clinical outcomes for patients, while minimizing systemic toxicity and adverse effects. Consequently, the application of nanotechnology is poised to significantly improve HCC treatment. This review focused on targeted strategies for HCC and the application of nanotechnology in this area.
Collapse
Affiliation(s)
- Yonghui Liu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| | - Yanan Wu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| | - Zijian Li
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Dong Wan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Jie Pan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| |
Collapse
|
9
|
Li X, Jiang X, Lu J, Jiang L, Li Y, Lin Y, Wan F, Wang C. CircETV6 acts as an oncogenic driver in hepatocellular carcinoma progression. J Biochem Mol Toxicol 2024; 38:e23766. [PMID: 39215759 DOI: 10.1002/jbt.23766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Circular RNA (circRNA) plays important role in hepatocellular carcinoma (HCC) progression. However, the role and mechanism of circETV6 in HCC progression remain unclear. The levels of circETV6, ETV6, miR-383-5p, and PTPRE were tested by quantitative reverse-transcription polymerase chain reaction. Cell functions were assessed using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, 5-ethynyl-2'-deoxyuridine assay, colony formation assay, wound healing assay, transwell assay, and flow cytometry. The protein levels of poptosis-related markers and PTPRE were determined by western blot analysis. RNA interaction was analyzed by dual-luciferase reporter assay and RNA pull-down assay. A xenograft model was established to assess circETV6 roles in vivo. CircETV6 was highly expressed in HCC tissues and cells. CircETV6 knockdown repressed HCC cell proliferation, migration, invasion, and cell cycle, while accelerated apoptosis. CircETV6 targeted miR-383-5p, and miR-383-5p inhibition reversed the regulation of circETV6 knockdown on HCC cell progression. CircETV6 promoted PTPRE level via targeting miR-383-5p. Overexpressed PTPRE abolished the inhibition effect of miR-383-5p on HCC cell progression. In addition, circETV6 knockdown slowed HCC tumor growth in vivo. CircETV6 might facilitate HCC progression via the miR-383-5p/PTPRE axis, providing a novel target for HCC treatment.
Collapse
Affiliation(s)
- Xiaoqin Li
- Clinical Laboratory, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Xuemei Jiang
- Clinical Laboratory, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Jing Lu
- Department of Gynecology, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Lan Jiang
- Clinical Laboratory, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Yan Li
- Clinical Laboratory, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Yuting Lin
- Clinical Laboratory, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Feng Wan
- Clinical Laboratory, Urumqi Maternal and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Changmin Wang
- Clinical Laboratory Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| |
Collapse
|
10
|
Newman MT, Mittal R, La Barba D, Sahota A. Remote Hepatocellular Carcinoma Recurrence to Lumbar Spine Post Orthotopic Liver Transplantation-A Report of Two Cases and a Review of the Literature. Transplant Proc 2024; 56:1613-1616. [PMID: 39191548 DOI: 10.1016/j.transproceed.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Late recurrence of hepatocellular carcinoma (HCC) following orthotopic liver transplant (OLT) is infrequently reported, and among cases, those isolated to the spine are rare. Prognoses are poor for this patient population, and no work has been undertaken to create uniform guidelines for management. Here, we report two cases of late recurrent HCC to the spine after OLT and favorable survival outcomes following intervention.
Collapse
Affiliation(s)
- Matthew T Newman
- Department of Internal Medicine, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California.
| | - Rasham Mittal
- Department of Gastroenterology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California; Department of Transplant Hepatology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California
| | - Dean La Barba
- Department of Gastroenterology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California
| | - Amandeep Sahota
- Department of Gastroenterology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California; Department of Transplant Hepatology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California
| |
Collapse
|
11
|
Gharibkandi NA, Wawrowicz K, Walczak R, Majkowska-Pilip A, Wierzbicki M, Bilewicz A. 109Pd/ 109mAg in-vivo generator in the form of nanoparticles for combined β - - Auger electron therapy of hepatocellular carcinoma. EJNMMI Radiopharm Chem 2024; 9:59. [PMID: 39136900 PMCID: PMC11322470 DOI: 10.1186/s41181-024-00293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Convenient therapeutic protocols for hepatocellular carcinoma (HCC) are often ineffective due to late diagnosis and high tumor heterogeneity, leading to poor long-term outcomes. However, recently performed studies suggest that using nanostructures in liver cancer treatment may improve therapeutic effects. Inorganic nanoparticles represent a unique material that tend to accumulate in the liver when introduced in-vivo. Typically, this is a major drawback that prevents the therapeutic use of nanoparticles in medicine. However, in HCC tumours, this may be advantageous because nanoparticles may accumulate in the target organ, where the leaky vasculature of HCC causes their accumulation in tumour cells via the EPR effect. On the other hand, recent studies have shown that combining low- and high-LET radiation emitted from the same radionuclide, such as 161Tb, can increase the effectiveness of radionuclide therapy. Therefore, to improve the efficacy of radionuclide therapy for hepatocellular carcinoma, we suggest utilizing radioactive palladium nanoparticles in the form of 109Pd/109mAg in-vivo generator that simultaneously emits β- particles and Auger electrons. RESULTS Palladium nanoparticles with a size of 5 nm were synthesized using 109Pd produced through neutron irradiation of natural palladium or enriched 108Pd. Unlike the 109Pd-cyclam complex, where the daughter radionuclide diffuses away from the molecules, 109mAg remains within the nanoparticles after the decay of 109Pd. In vitro cell studies using radioactive 109Pd nanoparticles revealed that the nanoparticles accumulated inside cells, reaching around 50% total uptake. The 109Pd-PEG nanoparticles exhibited high cytotoxicity, even at low levels of radioactivity (6.25 MBq/mL), resulting in almost complete cell death at 25 MBq/mL. This cytotoxic effect was significantly greater than that of PdNPs labeled with β- (131I) and Auger electron emitters (125I). The metabolic viability of HCC cells was found to be correlated with cell DNA DSBs. Also, successful radioconjugate anticancer activity was observed in three-dimensional tumor spheroids, resulting in a significant treatment response. CONCLUSION The results indicate that nanoparticles labeled with 109Pd can be effectively used for combined β- - Auger electron-targeted radionuclide therapy of HCC. Due to the decay of both components (β- and Auger electrons), the 109Pd/109mAg in-vivo generator presents a unique potential in this field.
Collapse
Affiliation(s)
- Nasrin Abbasi Gharibkandi
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland
| | - Kamil Wawrowicz
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Rafał Walczak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland.
- Department of Nuclear Medicine, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 St, Warsaw, 02-507, Poland.
| | - Mateusz Wierzbicki
- Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 St, Warsaw, 02-786, Poland
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St, Warsaw, 03-195, Poland.
| |
Collapse
|
12
|
Di T, Luo QY, Song JT, Yan XL, Zhang L, Pan WT, Guo Y, Lu FT, Sun YT, Xia ZF, Yang LQ, Qiu MZ, Yang DJ, Sun J. APG-1252 combined with Cabozantinib inhibits hepatocellular carcinoma by suppressing MEK/ERK and CREB/Bcl-xl pathways. Int Immunopharmacol 2024; 139:112615. [PMID: 39032475 DOI: 10.1016/j.intimp.2024.112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND AND PURPOSE Liver cancer is the fourth leading cause of cancer-related death worldwide, with hepatocellular carcinoma (HCC) being the most common type of primary liver cancer. APG-1252 is a small molecule inhibitor targeting Bcl-2 and Bcl-xl. However, its anti-tumor effects in HCC, alone or in combination with Cabozantinib, have not been extensively studied. EXPERIMENTAL Approach: TCGA database analysis was used to analysis the gene expression levels of Bcl-2 and Bcl-xl in HCC tissues. Western blot was employed to detect the protein expression levels. And the inhibitory effects of APG-1252 and Cabozantinib on the proliferation of HCC cell lines was detected by CCK-8. The effect on the migration and invasion of HCC cells was verified by transwell assay. Huh7 xenograft model in nude mice was used to investigate the combination antitumor effect in vivo. KEY RESULTS Our study demonstrated that APG-1252 monotherapy inhibited the proliferation and migration ability of HCC cells, and induced HCC cells apoptosis. The combination of APG-1252 and Cabozantinib showed significant synergistic antitumor effects. Furthermore, the in vivo experiment demonstrated that the combination therapy exerted a synergistic effect in delaying tumor growth, notably downregulating MEK/ERK phosphorylation levels. In terms of mechanism, Cabozantinib treatment caused an increase in the phosphorylation levels of CREB and Bcl-xl proteins, while the combination with APG-1252 mitigated this effect, thereby enhanced the antitumor effect of Cabozantinib. CONCLUSION AND IMPLICATIONS Our findings suggest that APG-1252 in combination with Cabozantinib offers a more effective treatment strategy for HCC patients, warranting further clinical investigation.
Collapse
Affiliation(s)
- Tian Di
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Qiu-Yun Luo
- Department of Clinical Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiang-Tao Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiang-Lei Yan
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Stockholm, Sweden
| | - Lin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wen-Tao Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yu Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fei-Teng Lu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yu-Ting Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zeng-Fei Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Qiong Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Miao-Zhen Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China; Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Da-Jun Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Jian Sun
- Department of Clinical Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
13
|
Wang Y, Li S, Liu Z, Li X, Yu Y, Liu H. Identification of PPAR-related differentially expressed genes liver hepatocellular carcinoma and construction of a prognostic model based on data analysis and molecular docking. J Cell Mol Med 2024; 28:e18304. [PMID: 38652093 PMCID: PMC11037413 DOI: 10.1111/jcmm.18304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is a significant global health issue with limited treatment options. In this study, single-cell RNA sequencing (scRNA-seq) data were used to explore the molecular mechanisms of LIHC development and identify potential targets for therapy. The expression of peroxisome proliferator-activated receptors (PPAR)-related genes was analysed in LIHC samples, and primary cell populations, including natural killer cells, T cells, B cells, myeloid cells, endothelial cells, fibroblasts and hepatocytes, were identified. Analysis of the differentially expressed genes (DEGs) between normal and tumour tissues revealed significant changes in gene expression in various cell populations. PPAR activity was evaluated using the 'AUCell' R software, which indicated higher scores in the normal versus the malignant hepatocytes. Furthermore, the DEGs showed significant enrichment of pathways related to lipid and glucose metabolism, cell development, differentiation and inflammation. A prognostic model was then constructed using 8 PPARs-related genes, including FABP5, LPL, ACAA1, PPARD, FABP4, PLIN1, HMGCS2 and CYP7A1, identified using least absolute shrinkage and selection operator-Cox regression analysis, and validated in the TCGA-LIHC, ICGI-LIRI and GSE14520 datasets. Patients with low-risk scores had better prognosis in all cohorts. Based on the expression of the eight model genes, two clusters of patients were identified by ConsensusCluster analysis. We also predicted small-molecule drugs targeting the model genes, and identified perfluorohexanesulfonic acid, triflumizole and perfluorononanoic acid as potential candidates. Finally, wound healing assay confirmed that PPARD can promote the migration of liver cancer cells. Overall, our study offers novel perspectives on the molecular mechanisms of LIHC and potential areas for therapeutic intervention, which may facilitate the development of more effective treatment regimens.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Organ Transplantation and HepatobiliaryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Shuqiang Li
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zihang Liu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xuanzheng Li
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yifan Yu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Hao Liu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
14
|
Wang H, Zhang Y, Du S. Integrated analysis of lactate-related genes identifies POLRMT as a novel marker promoting the proliferation, migration and energy metabolism of hepatocellular carcinoma via Wnt/β-Catenin signaling. Am J Cancer Res 2024; 14:1316-1337. [PMID: 38590398 PMCID: PMC10998737 DOI: 10.62347/zttg4319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent and deadly form of cancer globally with typically unfavorable outcomes. Increasing research suggests that lactate serves as an important carbon contributor to cellular metabolism and holds a crucial part in the progression, sustenance, and treatment response of tumors. However, the contribution of lactate-related genes (LRGs) in HCC is still unclear. In this study, we analyzed TCGA datasets and screened 21 differentially expressed LRGs related to long-term survivals in HCC patients. Pan-cancer assays revealed that 21 LRGs expression exhibited a dysregulated level in man types of tumors and associated with clinical prognosis of tumor patients. The analysis of 21 LRGs successfully classified HCC samples into two molecular subtypes, and these two subtypes showed significant differences in clinical information, gene expression, and immune characteristics. Subsequently, based on the aforementioned 21 LRGs, a novel prognostic signature (DTYMK, IRAK1, POLRMT, MPV17, UQCRH, PDSS1, SLC16A3, SPP1 and LDHD) was generated by LASSO-Cox regression analysis. Survival assays demonstrated that the signature performed well in predicting the overall survival of patients with HCC. The results of Gene Set Variation Analysis indicated that the high GSVA scores were associated with poor prognosis. Moreover, we also investigated the correlation between GSVA scores and various signaling pathways in HCC. Among the nine prognostic genes, our attention focused on POLRMT which was highly expressed in HCC specimens based on TCGA datasets and several HCC cell lines. In addition, functional assays indicated that POLRMT distinctly promoted the proliferation, migration and energy metabolism of HCC cells via regulating Wnt/β-Catenin signaling. Overall, through the establishment of a novel prognostic signature, we have provided potential clinical value for assessing the prognosis of HCC patients. Furthermore, our study has identified the high expression of POLRMT in HCC and demonstrated its crucial role in HCC cell proliferation. These findings hold great importance in advancing our understanding of the pathophysiology of HCC, identifying new therapeutic targets, and improving patient survival rates.
Collapse
Affiliation(s)
- Huifen Wang
- Department of Gastroenterology, China-Japan Friendship Hospital Beijing 100029, P. R. China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital Beijing 100029, P. R. China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital Beijing 100029, P. R. China
| |
Collapse
|
15
|
Kam LY, Yeo YH, Ji F, Henry L, Cheung R, Nguyen MH. Treatment rates and factors associated with direct-acting antiviral therapy for insured patients with hepatitis C-related hepatocellular carcinoma - A real-world nationwide study. Aliment Pharmacol Ther 2024; 59:350-360. [PMID: 37937485 DOI: 10.1111/apt.17794] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Since the inception of the interferon-free direct-acting antiviral agents (DAAs) for hepatitis C virus (HCV) infection, guidelines as to who should receive this potentially curative treatment have evolved. Treatment with DAAs is now considered for all patients except for those considered moribund. AIM To determine the DAA treatment rate for patients with HCV-related hepatocellular carcinoma (HCC). METHODS This was a retrospective study from January 2015 to March 2021 of a national sample of privately insured patients with HCV-related HCC using Optum's Clinformatics® Data Mart (CDM) Database - a large, de-identified, adjudicated claims database. RESULTS We identified 3922 patients with HCV-related HCC: 922 (23.5%) received DAA. Compared to untreated patients, DAA-treated patients were younger (65.2 ± 7.5 vs. 66.4 ± 7.5 years, p < 0.001), more frequently saw a gastroenterology/infectious disease (GI/ID) physician (41.2% vs. 34.2%), and had decompensated cirrhosis (56% vs. 53%, p = 0.001). In multivariable analysis, younger age (HR: 0.98, 95% CI: 0.97-0.99, p < 0.001), GI/ID care (HR: 3.06, 95% CI: 2.13-4.51, p < 0.001), and having cirrhosis (compensated: HR: 1.60, 95% CI: 1.18-2.21, p = 0.003; decompensated: HR: 1.45, 95% CI: 1.07-1.98, p = 0.02) were associated with receiving DAA treatment, but not sex, race, or ethnicity. DAA-treated patients had significantly higher 5-year survival than untreated patients (47.2% vs. 35.2%, p < 0.001). Following adjustment for age, sex, race/ethnicity, Charlson Comorbidity Index, and HCC treatment, receiving DAA treatment was associated with lower mortality (aHR: 0.61, 95% CI: 0.53-0.69, p < 0.001). CONCLUSION DAA treatment remains underutilised in insured patients with HCV-related HCC; fewer than one in four patients received treatment. Seeing a specialist and having decompensated cirrhosis were predictors for DAA treatment; additional efforts are needed to increase awareness of HCV treatment.
Collapse
Affiliation(s)
- Leslie Y Kam
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California, USA
| | - Yee Hui Yeo
- Karsh Division of Gastroenterology and Hepatology, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Fanpu Ji
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Linda Henry
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California, USA
| | - Ramsey Cheung
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California, USA
- Division of Gastroenterology and Hepatology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California, USA
- Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, California, USA
| |
Collapse
|
16
|
Chen H, Zhang M, Li J, Liu M, Cao D, Li YY, Yamashita T, Nio K, Tang H. BMP9-ID1 Pathway Attenuates N 6-Methyladenosine Levels of CyclinD1 to Promote Cell Proliferation in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:981. [PMID: 38256056 PMCID: PMC10816017 DOI: 10.3390/ijms25020981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal malignant neoplasm, and the involvement of bone morphogenetic protein 9 (BMP9) has been implicated in the pathogenesis of liver diseases and HCC. Our goal was to investigate the role of BMP9 signaling in regulating N6-methyladenosine (m6A) methylation and cell cycle progression, and evaluate the therapeutic potential of BMP receptor inhibitors for HCC treatment. We observed that elevated levels of BMP9 expression in tumor tissues or serum samples from HCC patients were associated with a poorer prognosis. Through in vitro experiments utilizing the m6A dot blotting assay, we ascertained that BMP9 reduced the global RNA m6A methylation level in Huh7 and Hep3B cells, thereby facilitating their cell cycle progression. This effect was mediated by an increase in the expression of the inhibitor of DNA-binding protein 1 (ID1). Additionally, using methylated RNA immunoprecipitation qPCR(MeRIP-qPCR), we showed that the BMP9-ID1 pathway promoted CyclinD1 expression by decreasing the m6A methylation level in the 5' UTR of mRNA. This occurred through the upregulation of the fat mass and obesity-associated protein (FTO) in Huh7 and Hep3B cells. In our in vivo mouse xenograft models, we demonstrated that blocking the BMP receptor with LDN-212854 effectively suppressed HCC growth and induced global RNA m6A methylation. Overall, our findings indicate that the BMP9-ID1 pathway promotes HCC cell proliferation by down-regulating the m6A methylation level in the 5' UTR of CyclinD1 mRNA. Targeting the BMP9-ID1 pathway holds promise as a potential therapeutic strategy for treating HCC.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mingming Zhang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jianhao Li
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Miao Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dan Cao
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (Y.-Y.L.); (T.Y.)
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (Y.-Y.L.); (T.Y.)
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (Y.-Y.L.); (T.Y.)
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Li T, Lei Z, Wei L, Yang K, Shen J, Hu L. Tumor Necrosis Factor Receptor-Associated Factor 6 and Human Cancer: A Systematic Review of Mechanistic Insights, Functional Roles, and Therapeutic Potential. J Cancer 2024; 15:560-576. [PMID: 38169510 PMCID: PMC10758021 DOI: 10.7150/jca.90059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancer imposes a substantial burden and its incidence is persistently increasing in recent years. Cancer treatment has been difficult due to its inherently complex nature. The tumor microenvironment (TME) includes a complex interplay of cellular and noncellular constituents surrounding neoplastic cells, intricately contributing to the tumor initiation and progression. This critical aspect of tumors involves a complex interplay among cancer, stromal, and inflammatory cells, forming an inflammatory TME that promotes tumorigenesis across all stages. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is implicated in modulating various critical processes linked to tumor pathogenesis, including but not limited to the regulation of tumor cell proliferation, invasion, migration, and survival. Furthermore, TRAF6 prominently contributes to various immune and inflammatory pathways. The TRAF6-mediated activation of nuclear factor (NF)-κB in immune cells governs the production of proinflammatory cytokines. These cytokines sustain inflammation and stimulate tumor growth by activating NF-κB in tumor cells. In this review, we discuss various types of tumors, including gastrointestinal cancers, urogenital cancers, breast cancer, lung cancer, head and neck squamous cell carcinoma, uterine fibroids, and glioma. Employing a rigorous and systematic approach, we comprehensively evaluate the functional repertoire and potential roles of TRAF6 in various cancer types, thus highlighting TRAF6 as a compelling and emerging therapeutic target worthy of further investigation and development.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zhe Lei
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006 Jiangsu, China
| | - Lin Wei
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Jinhong Shen
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiaotong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China
| |
Collapse
|
18
|
Lu S, Zhang C, Wang J, Zhao L, Li G. Research progress in nano-drug delivery systems based on the characteristics of the liver cancer microenvironment. Biomed Pharmacother 2024; 170:116059. [PMID: 38154273 DOI: 10.1016/j.biopha.2023.116059] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
The liver cancer has microenvironmental features such as low pH, M2 tumor-associated macrophage enrichment, low oxygen, rich blood supply and susceptibility to hematotropic metastasis, high chemokine expression, enzyme overexpression, high redox level, and strong immunosuppression, which not only promotes the progression of the disease, but also seriously affects the clinical effectiveness of traditional therapeutic approaches. However, nanotechnology, due to its unique advantages of size effect and functionalized modifiability, can be utilized to develop various responsive nano-drug delivery system (NDDS) by using these characteristic signals of the liver cancer microenvironment as a source of stimulation, which in turn can realize the intelligent release of the drug under the specific microenvironment, and significantly increase the concentration of the drug at the target site. Therefore, researchers have designed a series of stimuli-responsive NDDS based on the characteristics of the liver cancer microenvironment, such as hypoxia, weak acidity, and abnormal expression of proteases, and they have been widely investigated for improving anti-tumor therapeutic efficacy and reducing the related side effects. This paper provides a review of the current application and progress of NDDS developed based on the response and regulation of the microenvironment in the treatment of liver cancer, compares the effects of the microenvironment and the NDDS, and provides a reference for building more advanced NDDS.
Collapse
Affiliation(s)
- Shijia Lu
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Chenxiao Zhang
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Jinglong Wang
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Limei Zhao
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Guofei Li
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China.
| |
Collapse
|
19
|
Li W, Zhao B, Wang Q, Lu J, Wu X, Chen X. Integrated analysis of tumour-derived exosome-related immune genes to predict progression and immune status of hepatocellular carcinoma. Clin Immunol 2023; 256:109774. [PMID: 37774907 DOI: 10.1016/j.clim.2023.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Tumour-derived exosomes (TDEs) play an important role in tumourigenesis and progression by regulating components in the tumour microenvironment (TME), however, the role of TDE-related immune genes in hepatocellular carcinoma is not fully known. We systematically analysed TDE genes from ExoCarta and immune genes from Immport,Machine learning ultimately identified eight TDE-related prognostic immune genes and used them as the basis for constructing a risk model, which was constructed to better predict patients with hepatocellular carcinoma (HCC) compared with published prognostic models. There were significant differences between the high and low risk groups in terms of biological functioning. Low-risk group were more sensitive to immunotherapy, the sensitivity to oxaliplatin and cisplatin differed between the high- and low-risk groups, and knockout of the core gene RAC1 limited the malignant biological behaviour of hepatocellular carcinoma cells. In conclusion, TIRGs are effective in predicting the prognosis of patients with hepatocellular carcinoma and provide a new perspective on immunotherapy and chemotherapy for patients.
Collapse
Affiliation(s)
- Wenhua Li
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Bin Zhao
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Qianwen Wang
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Junxia Lu
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Xiangwei Wu
- Shihezi University School of Medicine, Shihezi 832000, China; The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China.
| | - Xueling Chen
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China.
| |
Collapse
|
20
|
Han X, Sun Q, Xu M, Zhu G, Gao R, Ni B, Li J. Unraveling the Complexities of Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. Semin Liver Dis 2023; 43:383-401. [PMID: 37931901 DOI: 10.1055/s-0043-1776127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have emerged as effective therapeutics for multiple cancers. Nevertheless, as immunotherapeutic approaches are being extensively utilized, substantial hurdles have arisen for clinicians. These include countering ICIs resistance and ensuring precise efficacy assessments of these drugs, especially in the context of hepatocellular carcinoma (HCC). This review attempts to offer a holistic overview of the latest insights into the ICIs resistance mechanisms in HCC, the molecular underpinnings, and immune response. The intent is to inspire the development of efficacious combination strategies. This review also examines the unconventional response patterns, namely pseudoprogression (PsP) and hyperprogression (HPD). The prompt and rigorous evaluation of these treatment efficacies has emerged as a crucial imperative. Multiple clinical, radiological, and biomarker tests have been advanced to meticulously assess tumor response. Despite progress, precise mechanisms of action and predictive biomarkers remain elusive. This necessitates further investigation through prospective cohort studies in the impending future.
Collapse
Affiliation(s)
- Xinpu Han
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qianhui Sun
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Manman Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Guanghui Zhu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ruike Gao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Baoyi Ni
- Department of Oncology, First Hospital of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
21
|
Zhao M, Zhang Y, Li L, Liu X, Zhou W, Wang C, Tang Y. KHDRBS3 accelerates glycolysis and promotes malignancy of hepatocellular carcinoma via upregulating 14-3-3ζ. Cancer Cell Int 2023; 23:244. [PMID: 37848941 PMCID: PMC10583372 DOI: 10.1186/s12935-023-03085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Primary hepatocellular carcinoma (HCC) is a malignancy with high morbidity and mortality. KH domain-containing, RNA-binding signal transduction-associated protein 3 (KHDRBS3) is an RNA-binding protein that is aberrantly expressed in multiple tumors; however, its expression and biological function in HCC have not been reported. METHODS KHDRBS3 knockdown and overexpression were performed using the lentiviral vector system to investigate the effects of KHDRBS3 on cell proliferation, apoptosis, chemoresistance, and glycolysis. Murine xenograft tumor models were constructed to study the role of KHDRBS3 on tumor growth in vivo. Furthermore, RNA-Pull Down and RNA immunoprecipitation were utilized to explore the interaction between KHDRBS3 and 14-3-3ζ, a phosphopeptide-binding molecule encoded by YWHAZ. RESULTS KHDRBS3 was highly expressed in human HCC tissues and predicted the poor prognosis of patients with HCC. Knockdown of KHDRBS3 exhibited a carcinostatic effect in HCC and impeded proliferation and tumor growth, reduced glycolysis, enhanced cell sensitivity to doxorubicin, and induced apoptosis. On the contrary, forced expression of KHDRBS3 expedited the malignant biological behaviors of HCC cells. The expression of KHDRBS3 was positively correlated with the expression of 14-3-3ζ. RNA immunoprecipitation and RNA pull-down assays demonstrated that KHDRBS3 bound to YWHAZ. We further confirmed that 14-3-3ζ silencing significantly reversed the promotion of proliferation and glycolysis and the inhibition of apoptosis caused by KHDRBS3 overexpression. CONCLUSIONS Our findings suggest that KHDRBS3 promotes glycolysis and malignant progression of HCC through upregulating 14-3-3ζ expression, providing a possible target for HCC therapy.
Collapse
Affiliation(s)
- Mingda Zhao
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, 83#, Wenhua Road, Shenyang, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Yibing Zhang
- Department of Medical Affairs, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Longfei Li
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, 83#, Wenhua Road, Shenyang, Liaoning, China
| | - Xiaobin Liu
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, 83#, Wenhua Road, Shenyang, Liaoning, China
| | - Wenping Zhou
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, 83#, Wenhua Road, Shenyang, Liaoning, China
| | - Chunhui Wang
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, 83#, Wenhua Road, Shenyang, Liaoning, China.
| | - Yufu Tang
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, 83#, Wenhua Road, Shenyang, Liaoning, China.
| |
Collapse
|
22
|
Choksi EJ, Elsayed M, Kokabi N. Antitumor Activity of Metformin Combined with Locoregional Therapy for Liver Cancer: Evidence and Future Directions. Cancers (Basel) 2023; 15:4538. [PMID: 37760509 PMCID: PMC10526211 DOI: 10.3390/cancers15184538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
This article aimed to examine the effect of metformin use on improving outcomes after liver-directed therapy in patients with HCC and identify future directions with the adjuvant use of and potential therapeutic agents that operate on similar mechanistic pathways. Databases were queried to identify pertinent articles on metformin's use as an anti-cancer agent in HCC. Eleven studies were included, with five pre-clinical and six clinical studies. The mean overall survival (OS) and progression-free survival were both higher in the locoregional therapy (LRT) + metformin-treated groups. The outcome variables, including local tumor recurrence rate, reduction in HCC tumor growth and size, tumor growth, proliferation, migration and invasion of HCC cells, HCC cell apoptosis, DNA damage, and cell cycle arrest, showed favorable outcomes in the LRT + metformin-treated groups compared with LRT alone. This systemic review provides a strong signal that metformin use can improve the tumor response after locoregional therapy. Well-controlled prospective trials will be needed to elucidate the potential antitumor effects of metformin and other mTOR inhibitors.
Collapse
Affiliation(s)
- Eshani J. Choksi
- School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA;
| | - Mohammad Elsayed
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nima Kokabi
- Department of Radiology, Division of Interventional Radiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
23
|
Wu X, Jin B, Liu X, Mao Y, Wan X, Du S. An immune-related biomarker index for predicting the effectiveness of immunotherapy and prognosis in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:10319-10333. [PMID: 37273105 DOI: 10.1007/s00432-023-04899-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
OBJECTIVE Currently, there are no recognized biomarkers for predicting the immunotherapy response and prognosis of hepatocellular carcinoma (HCC). This study aimed to establish an immune-related gene prognostic index (IRGPI) for HCC, and to investigate the clinical, immune, molecular, and microenvironmental characteristics of the IRGPI subgroups, as well as their impact on the effectiveness of immune checkpoint inhibitors (ICIs) therapy and patients' prognosis. METHODS We analyzed the LIHC dataset (n = 424) from the The Cancer Genome Atlas (TCGA) database and the GSE10140 dataset (n = 84) from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA) and univariate/multivariate Cox regression analysis to identify immune-related hub genes with prognostic significance. Subsequently, The IRGPI was then established with these special genes obtained, and the molecular, immune, and clinicopathological characteristics of the IRGPI subgroups, along with their predictive role in ICIs treatment and HCC prognosis, were investigated. RESULTS The IRGPI was composed of nine genes, namely CHGA, GAL, CCR3, MMP7, STC1, UCN, OXT, SOCS2, and GCG. The IRGPI-high group exhibited a worse prognosis in both the TCGA and GEO databases compared to the IRGPI-low group. The IRGPI-high group was primarily associated with adaptive immune response and cell-cell interaction pathways and exhibited a higher frequency of gene mutations (such as TP53 and CTNNB1), higher expression of PD-L1 and CTLA4, a higher proportion of macrophages M0 and follicular helper T cells, and a higher APC_co_inhibition and T_cell_co-inhibition immune score. Furthermore, the IRGPI-high group was associated with worse immune subtypes, clinicopathological characteristics, immunotherapy response, and clinical prognosis. CONCLUSION IRGPI is a biomarker with significant potential for predicting the immunotherapy response and prognosis of HCC patients, and is closely related to the immunosuppressive microenvironment and poorer clinicopathological characteristics.
Collapse
Affiliation(s)
- Xiang'an Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Dongcheng, Beijing, 100730, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Dongcheng, Beijing, 100730, China
| | - Xiao Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Dongcheng, Beijing, 100730, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Dongcheng, Beijing, 100730, China
| | - Xueshuai Wan
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Dongcheng, Beijing, 100730, China.
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Dongcheng, Beijing, 100730, China.
| |
Collapse
|
24
|
Radwan EM, Abo-Elabass E, Abd El-Baky AE, Alshwyeh HA, Almaimani RA, Almaimani G, Ibrahim IAA, Albogami A, Jaremko M, Alshawwa SZ, Saied EM. Unveiling the antitumor potential of novel N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamides as dual inhibitors of VEGFR2 kinase and cytochrome P450 for targeted treatment of hepatocellular carcinoma. Front Chem 2023; 11:1231030. [PMID: 37601910 PMCID: PMC10436493 DOI: 10.3389/fchem.2023.1231030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Being the sixth most diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide, liver cancer is considered as a serious disease with a high prevalence and poor prognosis. Current anticancer drugs for liver cancer have drawbacks, such as limited efficacy in later stages of the disease, toxicity to healthy cells, and the potential for drug resistance. There is ample evidence that coumarin-based compounds are potent anticancer agents, with numerous analogues currently being investigated in preclinical and clinical studies. The current study aimed to explore the antitumor potency of a new class of 8-methoxycoumarin-3-carboxamides against liver cancer. Toward this aim, we have designed, synthesized, and characterized a new set of N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamide analogues. The assessment of antitumor activity revealed that the synthesized class of compounds possesses substantial cytotoxicity toward Hep-G2 cells when compared to staurosporine, without significant impact on normal cells. Out of the synthesized compounds, compound 7 demonstrated the most potent cytotoxic effect against Hep-G2 cells with an IC50 of 0.75 µM, which was more potent than the drug staurosporine (IC50 = 8.37 µM). The investigation into the mechanism behind the antiproliferative activity of compound 7 revealed that it interferes with DNA replication and induces DNA damage, leading to cell cycle arrest as demonstrated by a significant decrease in the percentage of cells in the G1 and G2/M phases, along with an increase in the percentage of cells in the S phase. Flow cytometric analysis further revealed that compound 7 has the ability to trigger programmed cell death by inducing necrosis and apoptosis in HepG-2 cells. Further explorations into the mechanism of action demonstrated that compound 7 displays a potent dual-inhibitory activity toward cytochrome P450 and vascular endothelial growth factor receptor-2 (VEGFR-2) proteins, as compared to sorafenib drug. Further, detailed computational studies revealed that compound 7 displays a considerable binding affinity toward the binding cavity of VEGFR2 and CYP450 proteins. Taken together, our findings indicate that the newly synthesized class of compounds, particularly compound 7, could serve as a promising scaffold for the development of highly effective anticancer agents against liver cancer.
Collapse
Affiliation(s)
- Eman M. Radwan
- The Division of Organic Chemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Eman Abo-Elabass
- The Division of Biochemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Atef E. Abd El-Baky
- Biochemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said, Egypt
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghassan Almaimani
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulaziz Albogami
- Biology Department, Faculty of science, Al-Baha University, Al Aqiq, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences (BESE) and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
25
|
Caserta S, Gangemi S, Murdaca G, Allegra A. Gender Differences and miRNAs Expression in Cancer: Implications on Prognosis and Susceptibility. Int J Mol Sci 2023; 24:11544. [PMID: 37511303 PMCID: PMC10380791 DOI: 10.3390/ijms241411544] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs are small, noncoding molecules of about twenty-two nucleotides with crucial roles in both healthy and pathological cells. Their expression depends not only on genetic factors, but also on epigenetic mechanisms like genomic imprinting and inactivation of X chromosome in females that influence in a sex-dependent manner onset, progression, and response to therapy of different diseases like cancer. There is evidence of a correlation between miRNAs, sex, and cancer both in solid tumors and in hematological malignancies; as an example, in lymphomas, with a prevalence rate higher in men than women, miR-142 is "silenced" because of its hypermethylation by DNA methyltransferase-1 and it is blocked in its normal activity of regulating the migration of the cell. This condition corresponds in clinical practice with a more aggressive tumor. In addition, cancer treatment can have advantages from the evaluation of miRNAs expression; in fact, therapy with estrogens in hepatocellular carcinoma determines an upregulation of the oncosuppressors miR-26a, miR-92, and miR-122 and, consequently, apoptosis. The aim of this review is to present an exhaustive collection of scientific data about the possible role of sex differences on the expression of miRNAs and the mechanisms through which miRNAs influence cancerogenesis, autophagy, and apoptosis of cells from diverse types of tumors.
Collapse
Affiliation(s)
- Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| |
Collapse
|
26
|
Gao X, Zhao R, Ma H, Zuo S. Efficacy and safety of atezolizumab plus bevacizumab treatment for advanced hepatocellular carcinoma in the real world: a single-arm meta-analysis. BMC Cancer 2023; 23:635. [PMID: 37415136 DOI: 10.1186/s12885-023-11112-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Atezolizumab plus bevacizumab was approved in 2020 as a first-line treatment for advanced hepatocellular carcinoma (HCC). The purpose of this study was to assess the curative effect and tolerability of the combination treatment in advanced HCC. METHODS Web of Science, PubMed and Embase were retrieved for qualified literatures on the treatment of advanced HCC with atezolizumab plus bevacizumab until September 1, 2022. The outcomes included pooled overall response (OR), complete response (CR), partial response (PR), median overall survival (mOS), median progression-free survival (mPFS), and adverse events (AEs). RESULTS Twenty-three studies, comprising 3168 patients, were enrolled. The pooled OR, CR, and PR rates of the long-term (more than six weeks) therapy response based on Response Evaluation Criteria in Solid Tumors (RECIST) were 26%, 2%, and 23%, respectively. The pooled OR, CR, and PR rates of the short-term (six weeks) therapeutic response evaluated with RECIST were 13%, 0%, and 15%, respectively. The pooled mOS and mPFS were 14.7 months and 6.66 months, respectively. During the treatment, 83% and 30% of patients experienced any grade AEs and grade 3 and above AEs, respectively. CONCLUSIONS Atezolizumab in combination with bevacizumab showed good efficacy and tolerability in the treatment of advanced HCC. Compared with short-term, non-first-line, and low-dose therapy, atezolizumab plus bevacizumab in long-term, first-line, and standard-dose treatment for advanced HCC showed a better tumor response rate.
Collapse
Affiliation(s)
- Xiaoqiang Gao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guizhou, 550000, Guiyang, China
| | - Rui Zhao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guizhou, 550000, Guiyang, China
| | - Huaxing Ma
- Department of Emergency Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guizhou, 550000, Guiyang, China.
| |
Collapse
|
27
|
Wei Y, Ke W, Lu Z, Ren Y. PI3K δ inhibitor PI-3065 induces apoptosis in hepatocellular carcinoma cells by targeting survivin. Chem Biol Interact 2023; 371:110343. [PMID: 36623716 DOI: 10.1016/j.cbi.2023.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/17/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, and its clinical treatment remains challenging. The development of new treatment regimens is important for effective HCC treatment. Phosphoinositide 3-kinase (PI3K) is a lipid kinase that plays an important role in cell growth and metabolism and is overexpressed in nearly 50% of patients with HCC. Studies have shown that PI-3065, a small-molecule inhibitor of phosphatidylinositol 3-kinase delta, significantly inhibits solid breast cancer. However, its antitumor effects against HCC and the underlying mechanisms remain unclear. In the present study, we found that PI-3065 dose- and time-dependently reduced HCC cell viability and induced apoptosis while posing no obvious apoptotic toxicity in normal liver cells. Further mechanistic analysis showed that PI-3065 induced apoptosis mainly by inhibiting survivin protein expression, decreasing mitochondrial membrane potential, and promoting cytochrome C release. Simultaneously, PI-3065 markedly suppressed the colony formation, migration, and epithelial-mesenchymal transition abilities of HCC cells. Furthermore, transplantation of nude mice with HCC tumors showed that PI-3065 inhibits HCC tumor growth in vivo by targeting survivin. In summary, PI-3065 specifically inhibited survivin expression and exerted anti-HCC activity in vivo and in vitro, suggesting that it may serve as an effective antitumor drug for HCC treatment, which warrants further study.
Collapse
Affiliation(s)
- Yuze Wei
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Weiwei Ke
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
28
|
Li YK, Zhao JF, Yang CL, Zhan GH, Zhang J, Qin SD, Zhou M, Li MJ, Huang JT, Kong FY, Huang H, Chen JH, Xiang BD. Effects of Clonorchis sinensis combined with Hepatitis B virus infection on the prognosis of patients with Hepatocellular Carcinoma following Hepatectomy. PLoS Negl Trop Dis 2023; 17:e0011012. [PMID: 36638133 PMCID: PMC9879467 DOI: 10.1371/journal.pntd.0011012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/26/2023] [Accepted: 12/09/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND This study aimed to determine the impact of co-infection of Clonorchis sinensis (CS) and hepatitis B virus (HBV) on the prognosis of patients with hepatocellular carcinoma (HCC) following hepatectomy. METHODS The clinicopathological information of 946 patients with HCC following hepatectomy was retrospectively analyzed. The patients were divided into four groups depending on whether they had CS infection and/or HBV infection: double-negative group (infected with neither CS nor HBV), simple CS group (infected with only CS), simple HBV group (infected with only HBV), and double-positive group (co-infected with CS and HBV). Kaplan-Meier curves were used to evaluate the overall survival (OS) and recurrence-free survival (RFS), while log-rank tests were used to compare survival rates. Further, Cox regression was used to perform both univariate and multivariate survival analyses to identify variables linked to the prognosis of HCC. RESULTS The median overall survival (OS) and recurrence-free survival (RFS) in the double-positive, simple CS, simple HBV, and double-negative groups were 27 months and 9 months, 20 months and 7 months, 44 months and 12 months, and 42 months and 17 months, respectively. The double-positive group's 1-year, 3-year, and 5-year OS and RFS rates were 79.2% and 46.9%, 62.6% and 28.4%, 47.8%, and 12.2%, respectively. The simple CS group's 1-year, 3-year, and 5-year OS and RFS rates were 86.3% and 41.5%, 56.5% and 27.7%, 50.2%, and 18.5%, respectively. The simple HBV group's 1-year, 3-year, and 5-year OS and RFS rates were 89.8% and 56.0%, 72.5% and 30.5%, 63.8%, and 19.9%, respectively. The double-negative group's 1-year, 3-year, and 5-year OS and RFS rates were 91.5% and 62.3%, 76.1% and 32.9%, 64.0%, and 22.4%, respectively. Further, according to a Cox multivariate analysis, tumor size (> 5cm), Edmonson grade (III-IV), BCLC-C stage, and tumor satellite focus were independent risk factors for RFS and OS in patients with HCC. CONCLUSION Patients with HCC and Clonorchis sinensis infection experience a poor prognosis after hepatectomy, regardless of whether they are co-infected with HBV.
Collapse
Affiliation(s)
- Yuan-Kuan Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital, Guangxi, China
| | - Jing-Fei Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital, Guangxi, China
| | - Cheng-Lei Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital, Guangxi, China
| | - Guo-Hua Zhan
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital, Guangxi, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital, Guangxi, China
| | - Shang-Dong Qin
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital, Guangxi, China
| | - Min Zhou
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital, Guangxi, China
| | - Min-Jun Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital, Guangxi, China
| | - Jun-Tao Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital, Guangxi, China
| | - Feng-Yao Kong
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital, Guangxi, China
| | - Hai Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Wuming Hospital, Guangxi, China
| | - Jia-Hao Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Wuming Hospital, Guangxi, China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Affiliated Tumor Hospital, Guangxi, China
- * E-mail:
| |
Collapse
|
29
|
Chen Y, Lin QX, Xu YT, Qian FJ, Lin CJ, Zhao WY, Huang JR, Tian L, Gu DN. An anoikis-related gene signature predicts prognosis and reveals immune infiltration in hepatocellular carcinoma. Front Oncol 2023; 13:1158605. [PMID: 37182175 PMCID: PMC10172511 DOI: 10.3389/fonc.2023.1158605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a global health burden with poor prognosis. Anoikis, a novel programmed cell death, has a close interaction with metastasis and progression of cancer. In this study, we aimed to construct a novel bioinformatics model for evaluating the prognosis of HCC based on anoikis-related gene signatures as well as exploring the potential mechanisms. Materials and methods We downloaded the RNA expression profiles and clinical data of liver hepatocellular carcinoma from TCGA database, ICGC database and GEO database. DEG analysis was performed using TCGA and verified in the GEO database. The anoikis-related risk score was developed via univariate Cox regression, LASSO Cox regression and multivariate Cox regression, which was then used to categorize patients into high- and low-risk groups. Then GO and KEGG enrichment analyses were performed to investigate the function between the two groups. CIBERSORT was used for determining the fractions of 22 immune cell types, while the ssGSEA analyses was used to estimate the differential immune cell infiltrations and related pathways. The "pRRophetic" R package was applied to predict the sensitivity of administering chemotherapeutic and targeted drugs. Results A total of 49 anoikis-related DEGs in HCC were detected and 3 genes (EZH2, KIF18A and NQO1) were selected out to build a prognostic model. Furthermore, GO and KEGG functional enrichment analyses indicated that the difference in overall survival between risk groups was closely related to cell cycle pathway. Notably, further analyses found the frequency of tumor mutations, immune infiltration level and expression of immune checkpoints were significantly different between the two risk groups, and the results of the immunotherapy cohort showed that patients in the high-risk group have a better immune response. Additionally, the high-risk group was found to have higher sensitivity to 5-fluorouracil, doxorubicin and gemcitabine. Conclusion The novel signature of 3 anoikis-related genes (EZH2, KIF18A and NQO1) can predict the prognosis of patients with HCC, and provide a revealing insight into personalized treatments in HCC.
Collapse
Affiliation(s)
- Yang Chen
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qiao-xin Lin
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-ting Xu
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Fang-jing Qian
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chen-jing Lin
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-ya Zhao
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-ren Huang
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ling Tian
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Ling Tian, ; Dian-na Gu,
| | - Dian-na Gu
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Ling Tian, ; Dian-na Gu,
| |
Collapse
|
30
|
Pourhamzeh M, Asadian S, Mirzaei H, Minaei A, Shahriari E, Shpichka A, Es HA, Timashev P, Hassan M, Vosough M. Novel antigens for targeted radioimmunotherapy in hepatocellular carcinoma. Mol Cell Biochem 2023; 478:23-37. [PMID: 35708866 DOI: 10.1007/s11010-022-04483-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Liver cancer is the sixth common cancer and forth cause of cancer-related death worldwide. Based on usually advanced stages of hepatocellular carcinoma (HCC) at the time of diagnosis, therapeutic options are limited and, in many cases, not effective, and typically result in the tumor recurrence with a poor prognosis. Radioimmunotherapy (RIT) offers a selective internal radiation therapy approach using beta or alpha emitting radionuclides conjugated with tumor-specific monoclonal antibodies (mAbs), or specific selective peptides. When compared to chemotherapy or radiotherapy, radiolabeled mAbs against cancer-associated antigens could provide a high therapeutic and exclusive radiation dose for cancerous cells while decreasing the exposure-induced side effects to healthy tissues. The recent advances in cancer immunotherapy, such as blockade of immune-checkpoint inhibitors (ICIs), has changed the landscape of cancer therapy, and the efficacy of different classes of immunotherapy has been tested in many clinical trials. Taking into account the use of ICIs in the liver tumor microenvironment, combined therapies with different approaches may enhance the outcome in the future clinical studies. With the development of novel immunotherapy treatment options in the recent years, there has been a great deal of information about combining the diverse treatment modalities to boost the effectiveness of immunomodulatory drugs. In this opinion review, we will discuss the recent advancements in RIT. The current status of immunotherapy and internal radiotherapy will be updated, and we will propose novel approaches for the combination of both techniques. Potential target antigens for radioimmunotherapy in Hepatocellular carcinoma (HCC). HCC radioimmunotherapy target antigens are the most specific and commonly accessible antigens on the surface of HCC cells. CTLA-4 ligand and receptor, TAMs, PD-1/PD-L, TIM-3, specific IEXs/TEXs, ROBO1, and cluster of differentiation antigens CD105, CD147 could all be used in HCC radioimmunotherapy. Abbreviations: TAMs, tumor-associated macrophages; CTLA-4, cytotoxic T-lymphocyte associated antigen-4; PD-1, Programmed cell death protein 1; PD-L, programmed death-ligand1; TIM-3, T-cell immunoglobulin (Ig) and mucin-domain containing protein-3; IEXs, immune cell-derived exosomes; TEXs, tumor-derived exosomes.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Samieh Asadian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Azita Minaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Elahe Shahriari
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | | | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia. .,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
31
|
Huang D, Rao D, Jin Q, Lai M, Zhang J, Lai Z, Shen H, Zhong T. Role of CD147 in the development and diagnosis of hepatocellular carcinoma. Front Immunol 2023; 14:1149931. [PMID: 37090718 PMCID: PMC10115957 DOI: 10.3389/fimmu.2023.1149931] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and the third leading cause of cancer-related deaths worldwide. HCC is characterized by insidious onset, and most patients are diagnosed at an advanced stage with a poor prognosis. Identification of biomarkers for HCC onset and progression is imperative to development of effective diagnostic and therapeutic strategies. CD147 is a glycoprotein that is involved in tumor cell invasion, metastasis and angiogenesis through multiple mechanisms. In this review, we describe the molecular structure of CD147 and its role in regulating HCC invasion, metastasis and angiogenesis. We highlight its potential as a diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dingyu Rao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qing Jin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mi Lai
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiali Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Zhonghong Lai
- Department of traumatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Haibin Shen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Haibin Shen, ; Tianyu Zhong,
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Haibin Shen, ; Tianyu Zhong,
| |
Collapse
|
32
|
Wang T, Rao D, Yu C, Sheng J, Luo Y, Xia L, Huang W. RHO GTPase family in hepatocellular carcinoma. Exp Hematol Oncol 2022; 11:91. [DOI: 10.1186/s40164-022-00344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRHO GTPases are a subfamily of the RAS superfamily of proteins, which are highly conserved in eukaryotic species and have important biological functions, including actin cytoskeleton reorganization, cell proliferation, cell polarity, and vesicular transport. Recent studies indicate that RHO GTPases participate in the proliferation, migration, invasion and metastasis of cancer, playing an essential role in the tumorigenesis and progression of hepatocellular carcinoma (HCC). This review first introduces the classification, structure, regulators and functions of RHO GTPases, then dissects its role in HCC, especially in migration and metastasis. Finally, we summarize inhibitors targeting RHO GTPases and highlight the issues that should be addressed to improve the potency of these inhibitors.
Collapse
|
33
|
Ding W, Zhang Z, Ye N, Zhuang L, Yuan Z, Xue W, Tan Y, Xu X. Identification of Key Genes in the HBV-Related HCC Immune Microenvironment Using Integrated Bioinformatics Analysis. JOURNAL OF ONCOLOGY 2022; 2022:2797033. [PMID: 36281288 PMCID: PMC9587913 DOI: 10.1155/2022/2797033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 09/07/2024]
Abstract
Purpose Hepatocellular carcinoma (HCC) has poor prognosis and high mortality among gastrointestinal tumors because of its insidious onset and strong invasiveness. However, there was little understanding of their pathogenesis. The purpose of this study was to use bioinformatics analysis to identify genes associated with the immune microenvironment in HBV-related HCC and to develop new therapeutic targets to prevent and treat cancer. Methods RNA-seq data of HBV-related HCC cases were downloaded from TCGA-LIHC database. ESTIMATE and Deseq2 algorithms were used to screen out differentially expressed genes (DEGs). WGCNA was used to construct gene coexpression networks. In key modules, functional enrichment analysis was performed. Protein-protein interaction (PPI) was used to screen hub genes, and survival analysis was conducted to assess their prognostic significance. Following, we search for key genes differentially expressed between cancerous and paracancerous tissues in GSE136247 and GSE121248 datasets. Reveal the potential links between key genes in immune infiltration by using TIMER. Finally, in TCGA-LIHC database, integration of key genes with clinical data were used to further validate their correlation with prognosis. Results In the cohort of HBV-related HCC patients, immune/stromal/ESTIMATE scores were not significantly associated with patient prognosis. After bioinformatics analysis, screening out five key genes was significantly related to the prognosis of HBV-related HCC. Downregulation of SLAMF1 and TRAF3IP3 suggested poor prognosis and was related to a variety of immune cell infiltration. Furthermore, compared with adjacent nontumor tissues, TRAF3IP3 and SLAMF1 were highly expressed in tumor tissues and were linked to tumor recurrences. Conclusion In conclusion, SLAMF1 and TRAF3IP3 were identified with higher expression in tumor tissues and associated with tumor recurrence. It will be a new research direction of tumor progress and treatment.
Collapse
Affiliation(s)
- Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213017, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou 213017, China
| | - Zheng Zhang
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213017, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Nianyuan Ye
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213017, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Ling Zhuang
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213017, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Zhiping Yuan
- Department of Gastroenterology, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China
| | - Wenbo Xue
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213017, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Yulin Tan
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213017, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Xuezhong Xu
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou 213017, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| |
Collapse
|
34
|
Peng H, Zhu E, Zhang Y. Advances of cancer-associated fibroblasts in liver cancer. Biomark Res 2022; 10:59. [PMID: 35971182 PMCID: PMC9380339 DOI: 10.1186/s40364-022-00406-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is one of the most common malignant tumors worldwide, it is ranked sixth in incidence and fourth in mortality. According to the distinct origin of malignant tumor cells, liver cancer is mainly divided into hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Since most cases are diagnosed at an advanced stage, the prognosis of liver cancer is poor. Tumor growth depends on the dynamic interaction of various cellular components in the tumor microenvironment (TME). As the most abundant components of tumor stroma, cancer-associated fibroblasts (CAFs) have been involved in the progression of liver cancer. The interplay between CAFs and tumor cells, immune cells, or vascular endothelial cells in the TME through direct cell-to-cell contact or indirect paracrine interaction, affects the initiation and development of tumors. Additionally, CAFs are not a homogeneous cell population in liver cancer. Recently, single-cell sequencing technology has been used to help better understand the diversity of CAFs in liver cancer. In this review, we mainly update the knowledge of CAFs both in HCC and CCA, including their cell origins, chemoresistance, tumor stemness induction, tumor immune microenvironment formation, and the role of tumor cells on CAFs. Understanding the context-dependent role of different CAFs subsets provides new strategies for precise liver cancer treatment.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Erwei Zhu
- The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang, 222006, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
35
|
Ren H, Zheng J, Cheng Q, Yang X, Fu Q. Establishment of a Necroptosis-Related Prognostic Signature to Reveal Immune Infiltration and Predict Drug Sensitivity in Hepatocellular Carcinoma. Front Genet 2022; 13:900713. [PMID: 35957699 PMCID: PMC9357940 DOI: 10.3389/fgene.2022.900713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a common type of primary liver cancer and has a poor prognosis. In recent times, necroptosis has been reported to be involved in the progression of multiple cancers. However, the role of necroptosis in HCC prognosis remains elusive.Methods: The RNA-seq data and clinical information of HCC patients were downloaded from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Differentially expressed genes (DEGs) and prognosis-related genes were explored, and the nonnegative matrix factorization (NMF) clustering algorithm was applied to divide HCC patients into different subtypes. Based on the prognosis-related DEGs, univariate Cox and LASSO Cox regression analyses were used to construct a necroptosis-related prognostic model. The relationship between the prognostic model and immune cell infiltration, tumor mutational burden (TMB), and drug response were explored.Results: In this study, 13 prognosis-related DEGs were confirmed from 18 DEGs and 24 prognostic-related genes. Based on the prognosis-related DEGs, patients in the TCGA cohort were clustered into three subtypes by the NMF algorithm, and patients in C3 had better survival. A necroptosis-related prognostic model was established according to LASSO analysis, and HCC patients in TCGA and ICGC were divided into high- and low-risk groups. Kaplan–Meier (K–M) survival analysis revealed that patients in the high-risk group had a shorter survival time compared to those in the low-risk group. Using univariate and multivariate Cox analyses, the prognostic model was identified as an independent prognostic factor and had better survival predictive ability in HCC patients compared with other clinical biomarkers. Furthermore, the results revealed that the high-risk patients had higher stromal, immune, and ESTIMATE scores; higher TP53 mutation rate; higher TMB; and lower tumor purities compared to those in the low-risk group. In addition, there were significant differences in predicting the drug response between the high- and low-risk groups. The protein and mRNA levels of these prognostic genes were upregulated in HCC tissues compared to normal liver tissues.Conclusion: We established a necroptosis-related prognostic signature that may provide guidance for individualized drug therapy in HCC patients; however, further experimentation is needed to validate our results.
Collapse
Affiliation(s)
- Huili Ren
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Cheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
- *Correspondence: Qin Fu,
| |
Collapse
|
36
|
Schneider KM, Mohs A, Gui W, Galvez EJC, Candels LS, Hoenicke L, Muthukumarasamy U, Holland CH, Elfers C, Kilic K, Schneider CV, Schierwagen R, Strnad P, Wirtz TH, Marschall HU, Latz E, Lelouvier B, Saez-Rodriguez J, de Vos W, Strowig T, Trebicka J, Trautwein C. Imbalanced gut microbiota fuels hepatocellular carcinoma development by shaping the hepatic inflammatory microenvironment. Nat Commun 2022; 13:3964. [PMID: 35803930 PMCID: PMC9270328 DOI: 10.1038/s41467-022-31312-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and therapeutic options for advanced HCC are limited. Here, we observe that intestinal dysbiosis affects antitumor immune surveillance and drives liver disease progression towards cancer. Dysbiotic microbiota, as seen in Nlrp6-/- mice, induces a Toll-like receptor 4 dependent expansion of hepatic monocytic myeloid-derived suppressor cells (mMDSC) and suppression of T-cell abundance. This phenotype is transmissible via fecal microbiota transfer and reversible upon antibiotic treatment, pointing to the high plasticity of the tumor microenvironment. While loss of Akkermansia muciniphila correlates with mMDSC abundance, its reintroduction restores intestinal barrier function and strongly reduces liver inflammation and fibrosis. Cirrhosis patients display increased bacterial abundance in hepatic tissue, which induces pronounced transcriptional changes, including activation of fibro-inflammatory pathways as well as circuits mediating cancer immunosuppression. This study demonstrates that gut microbiota closely shapes the hepatic inflammatory microenvironment opening approaches for cancer prevention and therapy.
Collapse
Affiliation(s)
- Kai Markus Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Antje Mohs
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Wenfang Gui
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Eric J C Galvez
- Helmholtz Centre for Infection Research, Braunschweig, Germany and Hannover Medical School, Hannover, Germany
| | | | - Lisa Hoenicke
- Helmholtz Centre for Infection Research, Braunschweig, Germany and Hannover Medical School, Hannover, Germany
| | - Uthayakumar Muthukumarasamy
- Helmholtz Centre for Infection Research, Braunschweig, Germany and Hannover Medical School, Hannover, Germany
| | - Christian H Holland
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Carsten Elfers
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Konrad Kilic
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Carolin Victoria Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert Schierwagen
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), 08021, Barcelona, Spain
- Translational Hepatology, Department of Internal Medicine I, Goethe University Frankfurt, 60323, Frankfurt, Germany
| | - Pavel Strnad
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Theresa H Wirtz
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eicke Latz
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127, Bonn, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
- German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
| | | | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Willem de Vos
- Laboratory of Microbiology, Wageningen University, 6708 WE, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Till Strowig
- Helmholtz Centre for Infection Research, Braunschweig, Germany and Hannover Medical School, Hannover, Germany
| | - Jonel Trebicka
- European Foundation for the Study of Chronic Liver Failure (EF-CLIF), 08021, Barcelona, Spain
- Translational Hepatology, Department of Internal Medicine I, Goethe University Frankfurt, 60323, Frankfurt, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
37
|
Chakraborty E, Sarkar D. Emerging Therapies for Hepatocellular Carcinoma (HCC). Cancers (Basel) 2022; 14:2798. [PMID: 35681776 PMCID: PMC9179883 DOI: 10.3390/cancers14112798] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 01/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) arises from hepatocytes and accounts for 90% of primary liver cancer. According to Global Cancer Incidence, Mortality and Prevalence (GLOBOCAN) 2020, globally HCC is the sixth most common cancer and the third most common cause of cancer-related deaths. Reasons for HCC prognosis remaining dismal are that HCC is asymptomatic in its early stages, leading to late diagnosis, and it is markedly resistant to conventional chemo- and radiotherapy. Liver transplantation is the treatment of choice in early stages, while surgical resection, radiofrequency ablation (RFA) and trans arterial chemoembolization (TACE) are Food and Drug Administration (FDA)-approved treatments for advanced HCC. Additional first line therapy for advanced HCC includes broad-spectrum tyrosine kinase inhibitors (TKIs), such as sorafenib and lenvatinib, as well as a combination of immunotherapy and anti-angiogenesis therapy, namely atezolizumab and bevacizumab. However, these strategies provide nominal extension in the survival curve, cause broad spectrum toxic side effects, and patients eventually develop therapy resistance. Some common mutations in HCC, such as in telomerase reverse transcriptase (TERT), catenin beta 1 (CTNNB1) and tumor protein p53 (TP53) genes, are still considered to be undruggable. In this context, identification of appropriate gene targets and specific gene delivery approaches create the potential of gene- and immune-based therapies for the safe and effective treatment of HCC. This review elaborates on the current status of HCC treatment by focusing on potential gene targets and advanced techniques, such as oncolytic viral vectors, nanoparticles, chimeric antigen receptor (CAR)-T cells, immunotherapy, and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9), and describes future prospects in HCC treatment.
Collapse
Affiliation(s)
- Eesha Chakraborty
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
38
|
Awosika J, Sohal D. A narrative review of systemic treatment options for hepatocellular carcinoma: state of the art review. J Gastrointest Oncol 2022; 13:426-437. [PMID: 35284102 PMCID: PMC8899752 DOI: 10.21037/jgo-21-274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/14/2021] [Indexed: 06/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive cancer that typically develops in the setting of underlying cirrhosis of the liver. HCC commonly presents in advanced stages and if eligible orthotopic liver transplantation (OLT) and surgical resection/ablation remain as the only curative options. Prior to 2007, no systemic therapy was available that demonstrated an improvement in survival. Underlying cirrhosis and poor synthetic hepatic function provides a major challenge into effective systemic options contributing to the poor success of cytotoxic chemotherapy in HCC. The first drug to achieve clinical success was sorafenib despite the underwhelming overall survival of 3 months. Since then, other targeted therapies have shown modest benefit as well. Most recently, immunotherapy advances have come to the forefront in the management of HCC and combination therapy with immunotherapy and monoclonal antibodies have now surpassed sorafenib as first line treatment. This article will review the various approved and emerging therapies that have had a significant clinical impact and highlight the future directions and ongoing research that will hopefully translate into better outcomes in the treatment approach of advanced HCC.
Collapse
|
39
|
Kim KE, Sinn DH, Choi MS, Kim H. Outcomes of patients presenting with elevated tumor marker levels but negative gadoxetic acid-enhanced liver MRI after a complete response to hepatocellular carcinoma treatment. PLoS One 2022; 17:e0262750. [PMID: 35085305 PMCID: PMC8794219 DOI: 10.1371/journal.pone.0262750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) patients usually achieve a complete response after treatment. This study was aimed to assess the clinical outcome of HCC patients who had achieved a complete response but later presented with elevated tumor marker levels without an identifiable recurrent tumor on gadoxetic acid-enhanced magnetic resonance imaging (MRI). Methods We retrospectively reviewed the clinical outcome of 58 HCC treated patients who had achieved a complete response but later was referred to our institution’s multidisciplinary tumor board for a clinically suspected hidden HCC recurrence based on elevated tumor marker levels but negative gadoxetic acid-enhanced MRI. The imaging studies, tumor markers, and clinical information were reviewed. The total follow-up period was at least 15 months after the initial negative gadoxetic acid-enhanced MRI. Results Follow-up imaging studies detected an HCC lesion in 89.7% (n = 52/58) of the patients within the study period, and approximately half of the tumors (46.2%, n = 24/52) developed within 3 months. The most frequent site of recurrence was the liver (86.5%; n = 45/52), but extra-hepatic metastasis was also common (19.2%; n = 10/52). In 5.8% (n = 3/52), HCC reoccurred in the combined form of intra-hepatic and extra-hepatic recurrence. Extra-hepatic metastasis alone occurred in 13.5% (n = 7/52) of patients. Conclusions HCC frequently recurred within a short interval in patients who achieved a complete response to treatment in the presence of increased tumor marker levels, even if gadoxetic acid-enhanced MRI was negative. Under such circumstances, we suggest a short-term follow-up including, but not limited to, gadoxetic acid-enhanced MRI along with systemic evaluation.
Collapse
Affiliation(s)
- Ka Eun Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Hyun Sinn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Moon Seok Choi
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Honsoul Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
40
|
Altaf S, Saleem F, Sher AA, Ali A. Potential therapeutic strategies to combat HCC. Curr Mol Pharmacol 2022; 15:929-942. [PMID: 34979895 DOI: 10.2174/1874467215666220103111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is a complex, life threatening and most common neoplasm in the world. HCC tumors are genetically and phenotypically heterogeneous and involve various molecular mechanisms and stimulation of several signaling pathways such as Vascular Endothelial Growth Factor, Epidermal Growth Factor Receptors (EGFR), Insulin growth factor, Ras/extracellular signal-stimulated kinase, mammalian goal of rapamycin (mTOR), c-mesenchymal-epithelial transition factor-1 (c-Met), Hedgehog, Wnt and apoptotic signaling. Lately, in patient's multi-kinase cascade blockers such as sorafenib, selumetinib and regorafenib have increased survival rate of progressive HCC. This development presents a step forward towards the therapy of liver cancer infection and attests that molecular systemic rehabilitations can be useful in HCC treatment. The development of these systemic therapeutic agents has further expanded the research area for surplus molecular mediators to auxiliary increase cure rate of patients. This article reviews the complete consideration of focus on cascades, current enduring clinical tests by means of HCC therapeutic mediators, and imminent prospects in the cure of HCC.
Collapse
Affiliation(s)
- Sidra Altaf
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Faiza Saleem
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Azam Ali Sher
- Department of Epidemiology, Michigan State University, Michigan, USA
| | - Ashiq Ali
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
41
|
Zhou K, Nguyen R, Qiao L, George J. Single cell RNA-seq analysis identifies a noncoding RNA mediating resistance to sorafenib treatment in HCC. Mol Cancer 2022; 21:6. [PMID: 34980140 PMCID: PMC8722008 DOI: 10.1186/s12943-021-01473-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 11/29/2021] [Indexed: 01/06/2023] Open
Affiliation(s)
- Kevin Zhou
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia.
| |
Collapse
|
42
|
Mori Y, Matsuda S, Sato M, Muraoka M, Suzuki Y, Tatsumi A, Nakayama Y, Inoue T, Maekawa S, Enomoto N. The Impact of Antiviral Therapy for Hepatitis C Virus on the Survival of Patients after Hepatocellular Carcinoma Treatment. Intern Med 2022; 61:2721-2729. [PMID: 36104175 PMCID: PMC9556239 DOI: 10.2169/internalmedicine.8456-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective Owing to advances in direct-acting antiviral (DAA) therapy, a considerable number of patients with hepatitis C virus (HCV)-positive hepatocellular carcinoma (HCC) are now able to achieve a sustained viral response (SVR) after curative treatment of HCC. However, the beneficial effect of a DAA-SVR on the survival remains unclear. Methods A total of 205 patients with HCC who were HCV-positive with Child-Pugh A at the onset from 2008 to 2018 were categorized into 2 groups: 140 patients untreated for HCV throughout the entire course after HCC development (untreated group) and 65 patients treated for HCV with DAAs following HCC treatment who achieved an SVR (SVR group). After propensity score matching, 63 patients from each group were selected. Using these patients, the survival and maintenance of Child-Pugh A after HCC treatment were compared between the untreated group and SVR group. Results There was a significant difference in the overall survival (p<0.001) and the rate of maintaining Child-Pugh A (p<0.001) between the groups. The 5-year survival rates were 96% (SVR group) and 60% (untreated group), and the proportions of patients with Child-Pugh A at 5 years after HCC treatment were 96% (SVR group) and 38% (untreated group). Conclusion In patients with HCV-positive HCC, achieving a DAA-SVR after HCC treatment significantly improved the overall survival rate compared with HCV-untreated patients. The contribution of DAA-SVR during the course of HCC treatment to a longer survival is mainly due to the prevention of the progression of Child-Pugh A to B/C. Further research is needed to determine whether aggressive antiviral therapy is also effective for HCC patients with Child-Pugh B/C.
Collapse
Affiliation(s)
- Yuki Mori
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Shuya Matsuda
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Mitsuaki Sato
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Masaru Muraoka
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Yuichiro Suzuki
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Akihisa Tatsumi
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Yasuhiro Nakayama
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Taisuke Inoue
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Shinya Maekawa
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Nobuyuki Enomoto
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Japan
| |
Collapse
|
43
|
Yan Z, He M, He L, Wei L, Zhang Y. Identification and Validation of a Novel Six-Gene Expression Signature for Predicting Hepatocellular Carcinoma Prognosis. Front Immunol 2021; 12:723271. [PMID: 34925311 PMCID: PMC8671815 DOI: 10.3389/fimmu.2021.723271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a highly lethal disease. Effective prognostic tools to guide clinical decision-making for HCC patients are lacking. Objective We aimed to establish a robust prognostic model based on differentially expressed genes (DEGs) in HCC. Methods Using datasets from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and the International Genome Consortium (ICGC), DEGs between HCC tissues and adjacent normal tissues were identified. Using TCGA dataset as the training cohort, we applied the least absolute shrinkage and selection operator (LASSO) algorithm and multivariate Cox regression analyses to identify a multi-gene expression signature. Proportional hazard assumptions and multicollinearity among covariates were evaluated while building the model. The ICGC cohort was used for validation. The Pearson test was used to evaluate the correlation between tumor mutational burden and risk score. Through single-sample gene set enrichment analysis, we investigated the role of signature genes in the HCC microenvironment. Results A total of 274 DEGs were identified, and a six-DEG prognostic model was developed. Patients were stratified into low- or high-risk groups based on risk scoring by the model. Kaplan-Meier analysis revealed significant differences in overall survival and progression-free interval. Through univariate and multivariate Cox analyses, the model proved to be an independent prognostic factor compared to other clinic-pathological parameters. Time-dependent receiver operating characteristic curve analysis revealed satisfactory prediction of overall survival, but not progression-free interval. Functional enrichment analysis showed that cancer-related pathways were enriched, while immune infiltration analyses differed between the two risk groups. The risk score did not correlate with levels of PD-1, PD-L1, CTLA4, or tumor mutational burden. Conclusions We propose a six-gene expression signature that could help to determine HCC patient prognosis. These genes may serve as biomarkers in HCC and support personalized disease management.
Collapse
Affiliation(s)
- Zongcai Yan
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Meiling He
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lifeng He
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liuxia Wei
- Department of Oncology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yumei Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
44
|
Sarantis P, Tzanetatou ED, Ioakeimidou E, Vallilas C, Androutsakos T, Damaskos C, Garmpis N, Garmpi A, Papavassiliou AG, Karamouzis MV. Cholangiocarcinoma: the role of genetic and epigenetic factors; current and prospective treatment with checkpoint inhibitors and immunotherapy. Am J Transl Res 2021; 13:13246-13260. [PMID: 35035673 PMCID: PMC8748131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Cholangiocarcinoma (CCA) represents 3% of all gastrointestinal cancers worldwide and is the second most common primary liver tumor after hepatocellular carcinoma. CCA is an aggressive tumor that involves the intrahepatic, perihilar and distal biliary tree, with a poor prognosis and an increasing incidence worldwide. Various genetic and epigenetic factors have been implicated in CCA development. Gene mutations involving apoptosis control and cell cycle evolution, histone modifications, methylation dysregulation and abnormal expression of non-coding RNA are the most important of these factors. Regarding treatment, surgical resection, cisplatin and gemcitabine have long been the most common treatment options, but 5-year survival (7-20%) is disappointing. For that reason, inhibitors and small molecules related to specific mutations and molecular pathways have been introduced. Among them, immunotherapy seems to be a promising treatment in CCA, with multiple regimens being under clinical trial studies. The combinatorial therapy of traditional CCA treatment with tyrosine kinase inhibitors and/or immunotherapy seem to be the future, depending on the molecular profile of each patient's tumor.
Collapse
Affiliation(s)
- Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Eleftheria Dikoglou Tzanetatou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Evangelia Ioakeimidou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Christos Vallilas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Theodoros Androutsakos
- Pathophysiology Department, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
- Renal Transplantation Unit, Laiko General Hospital11527 Athens, Greece
| | - Nikolaos Garmpis
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens11527 Athens, Greece
| |
Collapse
|
45
|
Bhat M, Pasini E, Pastrello C, Angeli M, Baciu C, Abovsky M, Coffee A, Adeyi O, Kotlyar M, Jurisica I. Estrogen Receptor 1 Inhibition of Wnt/β-Catenin Signaling Contributes to Sex Differences in Hepatocarcinogenesis. Front Oncol 2021; 11:777834. [PMID: 34881186 PMCID: PMC8645636 DOI: 10.3389/fonc.2021.777834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Background Hepatocellular Carcinoma (HCC) is a sexually dimorphic cancer, with female sex being independently protective against HCC incidence and progression. The aim of our study was to understand the mechanism of estrogen receptor signaling in driving sex differences in hepatocarcinogenesis. Methods We integrated 1,268 HCC patient sample profiles from publicly available gene expression data to identify the most differentially expressed genes (DEGs). We mapped DEGs into a physical protein interaction network and performed network topology analysis to identify the most important proteins. Experimental validation was performed in vitro on HCC cell lines, in and in vivo, using HCC mouse model. Results We showed that the most central protein, ESR1, is HCC prognostic, as increased ESR1 expression was protective for overall survival, with HR=0.45 (95%CI 0.32-0.64, p=4.4E-06), and was more pronounced in women. Transfection of HCC cell lines with ESR1 and exposure to estradiol affected expression of genes involved in the Wnt/β-catenin signaling pathway. ER-α (protein product of ESR1) agonist treatment in a mouse model of HCC resulted in significantly longer survival and decreased tumor burden (p<0.0001), with inhibition of Wnt/β-Catenin signaling. In vitro experiments confirmed colocalization of β-catenin with ER-α, leading to inhibition of β-catenin-mediated transcription of target genes c-Myc and Cyclin D1. Conclusion Combined, the centrality of ESR1 and its inhibition of the Wnt/β-catenin signaling axis provide a biological rationale for protection against HCC incidence and progression in women.
Collapse
Affiliation(s)
- Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada.,Division of Gastroenterology & Hepatology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Elisa Pasini
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Marc Angeli
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Cristina Baciu
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Mark Abovsky
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Angella Coffee
- Department of Pathology and University of Minnesota Medical Center, University of Minnesota, Minneapolis, MN, United States
| | - Oyedele Adeyi
- Department of Pathology and University of Minnesota Medical Center, University of Minnesota, Minneapolis, MN, United States
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department Computer Science, University of Toronto, Toronto, ON, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
46
|
The Natural Pigment Violacein Potentially Suppresses the Proliferation and Stemness of Hepatocellular Carcinoma Cells In Vitro. Int J Mol Sci 2021; 22:ijms221910731. [PMID: 34639072 PMCID: PMC8509727 DOI: 10.3390/ijms221910731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant type of primary liver cancer with high incidence and mortality, worldwide. A major challenge in the treatment of HCC is chemotherapeutic resistance. It is therefore necessary to develop novel anticancer drugs for suppressing the growth of HCC cells and overcoming drug resistance for improving the treatment of HCC. Violacein is a deep violet-colored indole derivative that is produced by several bacterial strains, including Chromobacterium violaceum, and it possesses numerous pharmacological properties, including antitumor activity. However, the therapeutic effects of violacein and the mechanism underlying its antitumor effect against HCC remain to be elucidated. This study is the first to demonstrate that violacein inhibits the proliferation and stemness of Huh7 and Hep3B HCC cells. The antiproliferative effect of violacein was attributed to cell cycle arrest at the sub-G1 phase and the induction of apoptotic cell death. Violacein induced nuclear condensation, dissipated mitochondrial membrane potential (MMP), increased generation of reactive oxygen species (ROS), activated the caspase cascade, and upregulated p53 and p21. The anticancer effect of violacein on HCC cells was also associated with the downregulation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK)1/2 signaling. Violacein not only suppressed the proliferation and formation of tumorspheres of Huh7 and Hep3B cancer stem-like cells but also reduced the expression of key markers of cancer stemness, including CD133, Sox2, Oct4, and Nanog, by inhibiting the signal transducer and activator of transcription 3 (STAT3)/AKT/ERK pathways. These results suggest the therapeutic potential of violacein in effectively suppressing HCC by targeting the proliferation and stemness of HCC cells.
Collapse
|
47
|
Zhao Y, Wang J, Liu WN, Fong SY, Shuen TWH, Liu M, Harden S, Tan SY, Cheng JY, Tan WWS, Chan JKY, Chee CE, Lee GH, Toh HC, Lim SG, Wan Y, Chen Q. Analysis and Validation of Human Targets and Treatments Using a Hepatocellular Carcinoma-Immune Humanized Mouse Model. Hepatology 2021; 74:1395-1410. [PMID: 33738839 PMCID: PMC9540409 DOI: 10.1002/hep.31812] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Recent development of multiple treatments for human hepatocellular carcinoma (HCC) has allowed for the selection of combination therapy to enhance the effectiveness of monotherapy. Optimal selection of therapies is based on both HCC and its microenvironment. Therefore, it is critical to develop and validate preclinical animal models for testing clinical therapeutic solutions. APPROACH AND RESULTS We established cell line-based or patient-derived xenograft-based humanized-immune-system mouse models with subcutaneous and orthotopic HCC. Mice were injected with human-specific antibodies (Abs) to deplete human immune cells. We analyzed the transcription profiles of HCC cells and human immune cells by using real-time PCR and RNA sequencing. The protein level of HCC tumor cells/tissues or human immune cells was determined by using flow cytometry, western blotting, and immunohistochemistry. The HCC tumor size was measured after single, dual-combination, and triple-combination treatment using N-(1',2-Dihydroxy-1,2'-binaphthalen-4'-yl)-4-methoxybenzenesulfonamide (C188-9), bevacizumab, and pembrolizumab. In this study, human immune cells in the tumor microenvironment were strongly selected and modulated by HCC, which promoted the activation of the IL-6/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in tumor cells and led to augmented HCC proliferation and angiogenesis by releasing angiogenic cytokines in humanized-immune-system mice with HCC. In particular, intratumor human cluster of differentiation-positive (hCD14+ ) cells could produce IL-33 through damage-associated molecular pattern/Toll-like receptor 4/activator protein 1, which up-regulated IL-6 in other intratumor immune cells and activated the JAK2/STAT3 pathway in HCC. Specific knockdown of the CD14 gene in human monocytes could impair IL-33 production induced by cell lysates. Subsequently, we evaluated the in vivo anti-HCC effect of C188-9, bevacizumab, and pembrolizumab. The results showed that the anti-HCC effect of triple-combination therapy was superior to that of single or dual treatments. CONCLUSIONS Humanized-immune-system HCC mouse models are suitable for identifying targets from cancer and immune components and for testing combinational therapies.
Collapse
Affiliation(s)
- Yue Zhao
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Jiaxu Wang
- Genome Institute of SingaporeAgency for Science, Technology and ResearchSingapore
| | - Wai Nam Liu
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Shin Yie Fong
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | | | - Min Liu
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Sarah Harden
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Sue Yee Tan
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Jia Ying Cheng
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Wilson Wei Sheng Tan
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Jerry Kok Yen Chan
- Department of Reproductive MedicineKandang Kerbau Women’s and Children's HospitalSingapore,Experimental Fetal Medicine GroupYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Cheng Ean Chee
- Department of Hematology‐OncologyNational University Cancer InstituteSingapore
| | - Guan Huei Lee
- Division of Gastroenterology and HepatologyNational University Health SystemSingapore
| | - Han Chong Toh
- Division of Medical OncologyNational Cancer Centre SingaporeSingapore
| | - Seng Gee Lim
- Division of Gastroenterology and HepatologyNational University Health SystemSingapore
| | - Yue Wan
- Genome Institute of SingaporeAgency for Science, Technology and ResearchSingapore
| | - Qingfeng Chen
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore,Department of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| |
Collapse
|
48
|
Vogt A, Sadeghlar F, Ayub TH, Schneider C, Möhring C, Zhou T, Mahn R, Bartels A, Praktiknjo M, Kornek MT, Toma M, Schmidt-Wolf IGH, Branchi V, Matthaei H, Kalff JC, Strassburg CP, Gonzalez-Carmona MA. Alpha-Fetoprotein- and CD40Ligand-Expressing Dendritic Cells for Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13133375. [PMID: 34282787 PMCID: PMC8269346 DOI: 10.3390/cancers13133375] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In first clinical trials, vaccinations against tumor-associated antigens (TAA), such as Alpha-Fetoprotein (AFP) using antigen presenting cells, such as dendritic cells (DC), failed to achieve effective immune responses towards hepatocellular carcinoma (HCC). CD40Ligand is a potent immune checkpoint, which can increase the antitumoral immune response of DC. In this study, a subcutaneous vaccination with DCs, which were transduced with AFP-coding adenoviruses and an intratumoral treatment with DCs, which were transduced with CD40L-coding adenoviruses, induced an antitumoral immune response and led to complete remissions and long-term survival in 62% of mice with established HCC. Combined strategy causes rapid and profound changes in the tumor environment with enhanced Th1-cytokine expression, strong tumor infiltration of cytotoxic T lymphocytes and DC, and higher tumor apoptosis, leading to effective tumor regression of HCC. Thus, intratumoral CD40L co-stimulation represents a promising tool for improving tumor-antigen DC-based immunotherapy of HCC. Abstract Dendritic cells (DC) as professional antigen presenting cells are able to prime T-cells against the tumor-associated antigen α-fetoprotein (AFP) for immunotherapy of hepatocellular carcinoma (HCC). However, a strong immunosuppressive tumor environment limits their efficacy in patients. The co-stimulation with CD40Ligand (CD40L) is critical in the maturation of DC and T-cell priming. In this study, the impact of intratumoral (i.t.) CD40L-expressing DC to improve vaccination with murine (m)AFP-transduced DC (Ad-mAFP-DC) was analyzed in subcutaneous (s.c.) and orthotopic murine HCC. Murine DC were adenovirally transduced with Ad-mAFP or Ad-CD40L. Hepa129-mAFP-cells were injected into the right flank or the liver of C3H-mice to induce subcutaneous (s.c.) and orthotopic HCC. For treatments, 106 Ad-mAFP-transduced DC were inoculated s.c. followed by 106 CD40L-expressing DC injected intratumorally (i.t.). S.c. inoculation with Ad-mAFP-transduced DC, as vaccine, induced a delay of tumor-growth of AFP-positive HCC compared to controls. When s.c.-inoculation of Ad-mAFP-DC was combined with i.t.-application of Ad-CD40L-DC synergistic antitumoral effects were observed and complete remissions and long-term survival in 62% of tumor-bearing animals were achieved. Analysis of the tumor environment at different time points revealed that s.c.-vaccination with Ad-mAFP-DC seems to stimulate tumor-specific effector cells, allowing an earlier recruitment of effector T-cells and a Th1 shift within the tumors. After i.t. co-stimulation with Ad-CD40L-DC, production of Th1-cytokines was strongly increased and accompanied by a robust tumor infiltration of mature DC, activated CD4+-, CD8+-T-cells as well as reduction of regulatory T-cells. Moreover, Ad-CD40L-DC induced tumor cell apoptosis. Intratumoral co-stimulation with CD40L-expressing DC significantly improves vaccination with Ad-mAFP-DC in pre-established HCC in vivo. Combined therapy caused an early and strong Th1-shift in the tumor environment as well as higher tumor apoptosis, leading to synergistic tumor regression of HCC. Thus, CD40L co-stimulation represents a promising tool for improving DC-based immunotherapy of HCC.
Collapse
Affiliation(s)
- Annabelle Vogt
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; (A.V.); (F.S.); (T.H.A.); (C.S.); (C.M.); (T.Z.); (R.M.); (A.B.); (M.P.); (M.T.K.); (C.P.S.)
| | - Farsaneh Sadeghlar
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; (A.V.); (F.S.); (T.H.A.); (C.S.); (C.M.); (T.Z.); (R.M.); (A.B.); (M.P.); (M.T.K.); (C.P.S.)
| | - Tiyasha H. Ayub
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; (A.V.); (F.S.); (T.H.A.); (C.S.); (C.M.); (T.Z.); (R.M.); (A.B.); (M.P.); (M.T.K.); (C.P.S.)
| | - Carlo Schneider
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; (A.V.); (F.S.); (T.H.A.); (C.S.); (C.M.); (T.Z.); (R.M.); (A.B.); (M.P.); (M.T.K.); (C.P.S.)
| | - Christian Möhring
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; (A.V.); (F.S.); (T.H.A.); (C.S.); (C.M.); (T.Z.); (R.M.); (A.B.); (M.P.); (M.T.K.); (C.P.S.)
| | - Taotao Zhou
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; (A.V.); (F.S.); (T.H.A.); (C.S.); (C.M.); (T.Z.); (R.M.); (A.B.); (M.P.); (M.T.K.); (C.P.S.)
| | - Robert Mahn
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; (A.V.); (F.S.); (T.H.A.); (C.S.); (C.M.); (T.Z.); (R.M.); (A.B.); (M.P.); (M.T.K.); (C.P.S.)
| | - Alexandra Bartels
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; (A.V.); (F.S.); (T.H.A.); (C.S.); (C.M.); (T.Z.); (R.M.); (A.B.); (M.P.); (M.T.K.); (C.P.S.)
| | - Michael Praktiknjo
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; (A.V.); (F.S.); (T.H.A.); (C.S.); (C.M.); (T.Z.); (R.M.); (A.B.); (M.P.); (M.T.K.); (C.P.S.)
| | - Miroslaw T. Kornek
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; (A.V.); (F.S.); (T.H.A.); (C.S.); (C.M.); (T.Z.); (R.M.); (A.B.); (M.P.); (M.T.K.); (C.P.S.)
| | - Marieta Toma
- Department of Pathology, University Hospital of Bonn, 53127 Bonn, Germany;
| | | | - Vittorio Branchi
- Department of Visceral Surgery, University Hospital of Bonn, 53127 Bonn, Germany; (V.B.); (H.M.); (J.C.K.)
| | - Hanno Matthaei
- Department of Visceral Surgery, University Hospital of Bonn, 53127 Bonn, Germany; (V.B.); (H.M.); (J.C.K.)
| | - Jörg C. Kalff
- Department of Visceral Surgery, University Hospital of Bonn, 53127 Bonn, Germany; (V.B.); (H.M.); (J.C.K.)
| | - Christian P. Strassburg
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; (A.V.); (F.S.); (T.H.A.); (C.S.); (C.M.); (T.Z.); (R.M.); (A.B.); (M.P.); (M.T.K.); (C.P.S.)
| | - Maria A. Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany; (A.V.); (F.S.); (T.H.A.); (C.S.); (C.M.); (T.Z.); (R.M.); (A.B.); (M.P.); (M.T.K.); (C.P.S.)
- Correspondence: ; Tel.: +49-228-287-17017
| |
Collapse
|
49
|
Yang Y, Wu G, Li Q, Zheng Y, Liu M, Zhou L, Chen Z, Wang Y, Guo Q, Ji R, Zhou Y. Angiogenesis-Related Immune Signatures Correlate With Prognosis, Tumor Microenvironment, and Therapeutic Sensitivity in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:690206. [PMID: 34262941 PMCID: PMC8273615 DOI: 10.3389/fmolb.2021.690206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the highly heterogeneous cancers that lacks an effective risk model for prognosis prediction. Therefore, we searched for angiogenesis-related immune genes that affected the prognosis of HCC to construct a risk model and studied the role of this model in HCC. Methods: In this study, we collected the transcriptome data of HCC from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) database. Pearson correlation analysis was performed to identify the association between immune genes and angiogenesis-related genes. Consensus clustering was applied to divide patients into clusters A and B. Subsequently, we studied the differentially expressed angiogenesis-related immune genes (DEari-genes) that affected the prognosis of HCC. The most significant features were identified by least absolute shrinkage and selection operator (LASSO) regression, and a risk model was constructed. The reliability of the risk model was evaluated in the TCGA discovery cohort and the ICGC validation cohort. In addition, we compared the novel risk model to the previous models based on ROC analysis. ssGSEA analysis was used for function evaluation, and pRRophetic was utilized to predict the sensitivity of administering chemotherapeutic agents. Results: Cluster A patients had favorable survival rates. A total of 23 DEari-genes were correlated with the prognosis of HCC. A five-gene (including BIRC5, KITLG, PGF, SPP1, and SHC1) signature-based risk model was constructed. After regrouping the HCC patients by the median score, we could effectively discriminate between them based on the adverse survival outcome, the unique tumor immune microenvironment, and low chemosensitivity. Conclusion: The five-gene signature-based risk score established by ari-genes showed a promising clinical prediction value.
Collapse
Affiliation(s)
- Yuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Guozhi Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Qiang Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Min Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Lingshan Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Zhaofeng Chen
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Qinghong Guo
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Rui Ji
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
50
|
Li N, Luo L, Wei J, Liu Y, Haque N, Huang H, Qi Y, Huang Z. Identification of a new TRAF6 inhibitor for the treatment of hepatocellular carcinoma. Int J Biol Macromol 2021; 182:910-920. [PMID: 33865893 DOI: 10.1016/j.ijbiomac.2021.04.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 01/12/2023]
Abstract
Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) is an E3 ubiquitin ligase that plays a crucial role in signal transduction. Previous studies have demonstrated that TRAF6 is overexpressed in hepatocellular carcinoma (HCC) and that TRAF6 knockdown dramatically attenuates tumor cell growth. Thus, TRAF6 may represent a potential therapeutic target for the treatment of HCC. Herein, we identified bis (4-hydroxy-3,5-dimethylphenyl) sulfone (TMBPS) as a novel inhibitor that can directly bind to and downregulate the level of TRAF6. In vitro experimental results showed that TMBPS arrests the cell cycle in the G2/M phase by inactivating the protein kinase B (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways and induces apoptosis by activating the p38/mitogen-activated protein kinase (MAPK) signaling pathway. In addition, TMBPS exhibited significant tumor growth inhibition in mouse xenograft models. In summary, our findings offer a proof-of-concept for the use of TMBPS as a novel chemotherapy drug for the prevention or treatment of HCC.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Lianxiang Luo
- The Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| | - Jiaen Wei
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Yong Liu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Neshatul Haque
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Hongbin Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yi Qi
- The Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Guangdong Medical University, Dongguan, Guangdong 523808, China; The Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|