1
|
Xu J, Liu J, Wang Y, Peng L, Li W, Ji L, Yang Y, You B, Huang Y, Fang S, Ni P, Zhang W, Zhou C. Transcriptomics of HERVs reveals clinico-biological characterization of LTR5_Hs and HERVS71 loci in gastric cancer. Transl Oncol 2025; 56:102369. [PMID: 40222339 DOI: 10.1016/j.tranon.2025.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 04/15/2025] Open
Abstract
Human endogenous retroviruses (HERVs), a type of endogenous transposable elements (ETE), have emerged as potential biomarkers and therapeutic targets for cancers. However, the transcriptional relevance of HERV elements in gastric cancer (GC) remains largely unexplored. This study aims to elucidate the interactions between locus-specific HERVs expression and clinical dynamics in GC patients. We compared HERVs locus-specific expression profiles from RNA sequencing of tumor and adjacent tissues, validated using the GEO database and RT-PCR. Analysis of dysregulated ETEs revealed 113 upregulated and 46 downregulated ETEs in tumor tissues compared to adjacent non-tumor tissues. Significant differences were found in HERVs clades such as HERVK, HERVS71, and HERVH. Four clinically relevant HERV elements-LTR5_Hs_1q22 and HERVS71_19q13.22 (int, rve, RNase_H)-were validated in serum samples via RT-PCR. Higher HERVs expression (HERVshigh) correlated with larger tumor size, higher grade, increased lymph node metastasis, and higher Odds ratio compared to lower expression (HERVslow) groups. The diagnostic performance of the four HERV elements surpassed that of conventional biomarkers and improved with combined biomarker analysis. Differential and functional analysis indicated that these HERV elements significantly impacted the cell cycle, with their upregulation linked to tumor growth both in vitro and in vivo. Our exploration demonstrates the clinical significance of HERVs in tumor progression, highlighting their functional role and providing a valuable resource for developing new biomarkers and therapeutic targets in GC.
Collapse
Affiliation(s)
- Juan Xu
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Jie Liu
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Department of Laboratory Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanhuan Wang
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Linjie Peng
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Wang Li
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Likai Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yang Yang
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Benshuai You
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Yan Huang
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Shikun Fang
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Ping Ni
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China; Department of Laboratory Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Li M, Sun Y, Shan X, Tong Y, Fu Y, Ma X, Sun Z, Xiang Y, Zhu Y, Wang T, Wang X, Zhang J, Niu D. Roles of Immunity and Endogenous Retroelements in the Pathogenesis of Rheumatoid Arthritis and Treatment Strategies. Funct Integr Genomics 2025; 25:85. [PMID: 40205241 DOI: 10.1007/s10142-025-01583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory, autoimmune disease that primarily affects the joints. RA usually results in synovial hyperplasia, expansion of "pannus" and destruction of cartilage. The etiology and pathogenesis of RA are not fully understood, but immunity has been shown to play an important role in the development of autoimmune diseases such as RA. In addition, endogenous retroelements, the remnants of ancient retroviruses in the human genome, are involved in cancer and/or immune disorders. As evidenced by increasing evidences that the aberrant expression of retroelements induces innate immunity, despite the fact that the expression of most retroelements has been epigenetically suppressed over a long period of evolution. With the continuous development of disease-modifying anti-rheumatic drugs (DMARDs), RA disease activity has been alleviated and improved. Unfortunately, some patients have a limited response to DMARDs, and the drugs also have the disadvantages of some side effects and high economic costs. This review summarizes the pathogenic mechanisms of RA and endogenous retroelements in autoimmunity, and concludes with a summary of treatments for RA, along with new therapeutic recommendations.
Collapse
Affiliation(s)
- Mingyang Li
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, 666 Wusu Street, Hangzhou, 311300, Zhejiang, China
| | - Yuanyuan Sun
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, 666 Wusu Street, Hangzhou, 311300, Zhejiang, China
| | - Xueting Shan
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, 666 Wusu Street, Hangzhou, 311300, Zhejiang, China
| | - Yuhong Tong
- Fourth School of Clinical Medicine, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310053, China
| | - Yite Fu
- Nanjing Outstanding Gene Technology Co, Nanjing, 210018, Jiangsu, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, 666 Wusu Street, Hangzhou, 311300, Zhejiang, China
| | - Zhongxin Sun
- Department of Plastic, Reconstructive & Hand Microsurgery, Ningbo NO.6 Hospital, Ningbo, 315000, Zhejiang, China
| | - Yun Xiang
- Jinhua Academy of Agricultural Sciences, Jinhua, 321000, Zhejiang, China
| | - Yidan Zhu
- Jinhua Academy of Agricultural Sciences, Jinhua, 321000, Zhejiang, China
| | - Tao Wang
- Nanjing Outstanding Gene Technology Co, Nanjing, 210018, Jiangsu, China
| | - Xin Wang
- Department of Plastic, Reconstructive & Hand Microsurgery, Ningbo NO.6 Hospital, Ningbo, 315000, Zhejiang, China.
| | - Jufang Zhang
- Department of Plastic and Aesthetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, 666 Wusu Street, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
3
|
Lei X, Mao S, Li Y, Huang S, Li J, Du W, Kuang C, Yuan K. ERVcancer: a web resource designed for querying activation of human endogenous retroviruses across major cancer types. J Genet Genomics 2025; 52:583-591. [PMID: 39265822 DOI: 10.1016/j.jgg.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Human endogenous retroviruses (HERVs) comprise approximately 8% of the human genome, integrated into the dynamic regulatory network of cellular potency during early embryonic development. In recent studies, resurgent the transcriptional activity of HERVs has been frequently observed in many types of human cancers, suggesting their potential functions in the occurrence and progression of malignancy. However, a dedicated web resource for querying the relationship between the activation of HERVs and cancer development is lacking. Here, we construct a database to explore the sequence information, expression profiles, survival prognosis, and genetic interactions of HERVs in diverse cancer types. Our database currently contains RNA sequencing data of 580 HERVs across 16,246 samples, including that of 6478 tumoral and 634 normal tissues, 932 cancer cell lines, as well as 151 early embryonic and 8051 human adult tissues. The primary goal is to provide an easily accessible and user-friendly database for professionals in the fields of bioinformatics, pathology, pharmacology, and related areas, enabling them to efficiently screen the activity of HERVs of interest in normal and cancerous tissues and evaluate the clinical relevance. The ERVcancer database is available at http://kyuanlab.com/ervcancer/.
Collapse
Affiliation(s)
- Xiaoyun Lei
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Song Mao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yinshuang Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shi Huang
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China
| | - Jinchen Li
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China
| | - Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan 415000, China
| | - Chunmei Kuang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410000, China; The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
4
|
Zhuang QKW, Bauermeister K, Galvez JH, Alogayil N, Batdorj E, de Villena FPM, Taketo T, Bourque G, Naumova AK. Survey of gene, lncRNA and transposon transcription patterns in four mouse organs highlights shared and organ-specific sex-biased regulation. Genome Biol 2025; 26:74. [PMID: 40140847 PMCID: PMC11948892 DOI: 10.1186/s13059-025-03547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Sex-biased gene regulation is the basis of sexual dimorphism in phenotypes and has been studied across different cell types and different developmental stages. However, sex-biased expression of transposable elements (TEs), which represent nearly half of the mammalian genome and have the potential of influencing genome integrity and regulation, remains underexplored. RESULTS We report a survey of gene, lncRNA, and TE expression in four organs from mice with different combinations of gonadal and genetic sex. The data show remarkable variability among organs with respect to the impact of gonadal sex on transcription with the strongest effects observed in the liver. In contrast, the X-chromosome dosage alone had a modest influence on sex-biased transcription across organs, albeit interaction between X-dosage and gonadal sex cannot be ruled out. The presence of the Y-chromosome influences TE, but not gene or lncRNA, expression in the liver. Notably, 90% of sex-biased TEs (sDETEs) reside in clusters. Moreover, 54% of these clusters overlap or reside less than 100 kb from sex-biased genes or lncRNAs, share the same sex bias, and also have higher expression levels than sDETE clusters that do not co-localize with other types of sex-biased transcripts. We test the heterochromatic sink hypothesis that predicts higher expression of TEs in XX individuals finding no evidence to support it. CONCLUSIONS Our data show that sex-biased expression of TEs varies among organs with the highest numbers of sDETEs found in the liver following trends observed for genes and lncRNAs. It is enhanced by proximity to other types of sex-biased transcripts.
Collapse
Affiliation(s)
- Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, 606-8303, Japan
| | - Klara Bauermeister
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, Montreal, QC, H3A 0G1, Canada
| | - Najla Alogayil
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
| | - Enkhjin Batdorj
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC, H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, 606-8303, Japan.
- Canadian Centre for Computational Genomics, Montreal, QC, H3A 0G1, Canada.
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada.
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
5
|
Krchlikova V, Lu Y, Sauter D. Viral influencers: deciphering the role of endogenous retroviral LTR12 repeats in cellular gene expression. J Virol 2025; 99:e0135124. [PMID: 39887236 PMCID: PMC11853044 DOI: 10.1128/jvi.01351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
The human genome is like a museum of ancient retroviral infections. It contains a large number of endogenous retroviruses (ERVs) that bear witness to past integration events. About 5,000 of them are so-called long terminal repeat 12 (LTR12) elements. Compared with 20,000 human genes, this is a remarkable number. Although LTR12 elements can act as promoters or enhancers of cellular genes, the function of most of these retroviral elements has remained unclear. In our mini-review, we show that different LTR12 elements share many similarities, including common transcription factor binding sites. Furthermore, we summarize novel insights into the epigenetic mechanisms governing their silencing and activation. Specific examples of genes and pathways that are regulated by LTR12 loci are used to illustrate the regulatory network built by these repetitive elements. A particular focus is on their role in the regulation of antiviral immune responses, tumor cell proliferation, and senescence. Finally, we describe how a targeted activation of this fascinating ERV family could be used for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Veronika Krchlikova
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Yueshuang Lu
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Majid M, Liu X, Khan H, Huang Y. Transcriptional dynamics and tissue-specific expression patterns of transposable elements in orthopteran insects. Gene 2025; 936:149090. [PMID: 39549779 DOI: 10.1016/j.gene.2024.149090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Transposable elements (TEs) are prevalent in the genomes of orthopteran insects, contributing significantly to their genome evolution and diversity. In light of the existing gap in our understanding of TEs transcript dynamics in orthopteran insects, we recognize the critical need to undertake comprehensive analyses in this area. Therefore, we have decided to delve into the characterization of TE transcripts, their abundance profiles, and the formation of chimeric transcripts using RNA-seq data and genome assemblies. The transcript analysis of TEs across various species revealed significant differences in TE abundance and expression patterns. In particular, Schistocerca americana exhibited twice the number of transcripts within the genus Schistocerca compared to the average of other species, while Gryllus bimaculatus displayed the lowest number of transcripts. Despite this, all Schistocerca species shared similar fractions of TE transcripts at the clade level, with DNA transposons (45%) being the most abundant, followed by LINE (19%) and LTR elements (18%). Interestingly, Acrida cinerea displayed different TE abundance patterns compared to Schistocerca species, particularly with an increased proportion of LTR transcripts, accounting for 31% of the total transcripts. Further analysis revealed tissue-specific transcriptional activity of TE clades, with notable differences between male and female specimens. In Gryllus bimaculatus, TEs were highly transcribed across ovaries and gut tissues in females compared to male testes and gut. Conversely, Gastrimargus marmoratus displayed higher TE transcription in male tissues compared to females, indicating species-specific expression patterns. A similar pattern has been observed in Acrida cinerea, except in female gonads, where 4618 TEs were transcribed compared to 3757 in male gonads. Despite these variations, no correlation was found between genome size and TE transcript abundance. Additionally, highly conserved TEs were involved in the formation of chimeric transcripts, indicating potential regulatory roles in gene expression. The expression quantification analysis of chimeric TEs and genes revealed tissue-specific expression patterns, and TEs do not control the overall expression of all genes except some, suggesting regulatory roles of TEs in gene expression. Overall, our study underscores tissue-specific variations in TE expression and transcript abundance among different species. Additionally, our findings suggest the involvement of highly conserved TEs in the formation of chimeric transcripts across different species.
Collapse
Affiliation(s)
- Muhammad Majid
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xuanzeng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hashim Khan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
7
|
Morandini F, Lu JY, Rechsteiner C, Shadyab AH, Casanova R, Snively BM, Seluanov A, Gorbunova V. Transposable element 5mC methylation state of blood cells predicts age and disease. NATURE AGING 2025; 5:193-204. [PMID: 39604704 PMCID: PMC11839465 DOI: 10.1038/s43587-024-00757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Transposable elements (TEs) are DNA sequences that expand selfishly in the genome, possibly causing severe cellular damage. While normally silenced, TEs have been shown to activate during aging. DNA 5-methylcytosine (5mC) is one of the main epigenetic modifications by which TEs are silenced and has been used to train highly accurate age predictors. Yet, one common criticism of such predictors is that they lack interpretability. In this study, we investigate the changes in TE 5mC methylation that occur during aging in human blood using published methylation array data. We find that evolutionarily young long interspersed nuclear elements 1 (L1s), the only known TEs capable of autonomous transposition in humans, undergo the fastest loss of 5mC methylation, suggesting an active mechanism of de-repression. The same young L1s also showed preferential gain in chromatin accessibility but not expression. The long terminal repeat retrotransposons THE1A and THE1C also showed very rapid 5mC loss. We then show that accurate age predictors can be trained on both 5mC methylation of individual TE copies and average methylation of TE families genome wide. Lastly, we show that while old L1s gradually lose 5mC during the entire lifespan, demethylation of young L1s only happens late in life and is associated with cancer.
Collapse
Affiliation(s)
| | - Jinlong Y Lu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science and Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ramon Casanova
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Beverly M Snively
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
8
|
Chour M, Porteu F, Depil S, Alcazer V. Endogenous retroelements in hematological malignancies: From epigenetic dysregulation to therapeutic targeting. Am J Hematol 2025; 100:116-130. [PMID: 39387681 PMCID: PMC11625990 DOI: 10.1002/ajh.27501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Endogenous retroelements (EREs), which comprise half of the human genome, play a pivotal role in genome dynamics. Some EREs retained the ability to encode proteins, although most degenerated or served as a source for novel genes and regulatory elements during evolution. Despite ERE repression mechanisms developed to maintain genome stability, widespread pervasive ERE activation is observed in cancer including hematological malignancies. Challenging the perception of noncoding DNA as "junk," EREs are underestimated contributors to cancer driver mechanisms as well as antitumoral immunity by providing innate immune ligands and tumor antigens. This review highlights recent progress in understanding ERE co-option events in cancer and focuses on the controversial debate surrounding their causal role in shaping malignant phenotype. We provide insights into the rapidly evolving landscape of ERE research in hematological malignancies and their clinical implications in these cancers.
Collapse
Affiliation(s)
- Mohamed Chour
- Département de Biologie, Master Biosciences‐SantéÉcole Normale Supérieure de LyonLyonFrance
- Centre International de Recherche en InfectiologieINSERM U1111 CNRS UMR530LyonFrance
| | - Françoise Porteu
- Institut Gustave RoussyINSERM U1287 Université Paris SaclayVillejuifFrance
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de LyonUMR INSERM U1052 CNRS 5286 Université Claude Bernard Lyon 1 Centre Léon BérardLyonFrance
- ErVimmuneLyonFrance
- Centre Léon BérardLyonFrance
- Université Claude Bernard Lyon 1LyonFrance
| | - Vincent Alcazer
- Centre International de Recherche en InfectiologieINSERM U1111 CNRS UMR530LyonFrance
- Université Claude Bernard Lyon 1LyonFrance
- Service d'hématologie CliniqueCentre Hospitalier Lyon Sud, Hospices Civils de LyonPierre‐BéniteFrance
| |
Collapse
|
9
|
Kazerani M, Cernilogar F, Pasquarella A, Hinterberger M, Nuber A, Klein L, Schotta G. Histone methyltransferase SETDB1 safeguards mouse fetal hematopoiesis by suppressing activation of cryptic enhancers. Proc Natl Acad Sci U S A 2024; 121:e2409656121. [PMID: 39689172 DOI: 10.1073/pnas.2409656121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
The H3K9me3-specific histone methyltransferase SETDB1 is critical for proper regulation of developmental processes, but the underlying mechanisms are only partially understood. Here, we show that deletion of Setdb1 in mouse fetal liver hematopoietic stem and progenitor cells (HSPCs) results in compromised stem cell function, enhanced myeloerythroid differentiation, and impaired lymphoid development. Notably, Setdb1-deficient HSPCs exhibit reduced quiescence and increased proliferation, accompanied by the acquisition of a lineage-biased transcriptional program. In Setdb1-deficient HSPCs, we identify genomic regions that are characterized by loss of H3K9me3 and increased chromatin accessibility, suggesting enhanced transcription factor (TF) activity. Interestingly, hematopoietic TFs like PU.1 bind these cryptic enhancers in wild-type HSPCs, despite the H3K9me3 status. Thus, our data indicate that SETDB1 restricts activation of nonphysiological TF binding sites which helps to ensure proper maintenance and differentiation of fetal liver HSPCs.
Collapse
Affiliation(s)
- Maryam Kazerani
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried 82152, Germany
| | - Filippo Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried 82152, Germany
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria 15121, Italy
| | - Alessandra Pasquarella
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried 82152, Germany
| | - Maria Hinterberger
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried 82152, Germany
| | - Alexander Nuber
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried 82152, Germany
| | - Ludger Klein
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried 82152, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried 82152, Germany
| |
Collapse
|
10
|
Stricker E, Peckham-Gregory EC, Lai SY, Sandulache VC, Scheurer ME. Targeted Variant Assessments of Human Endogenous Retroviral Regions in Whole Genome Sequencing Data Reveal Retroviral Variants Associated with Papillary Thyroid Cancer. Microorganisms 2024; 12:2435. [PMID: 39770638 PMCID: PMC11679660 DOI: 10.3390/microorganisms12122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Papillary thyroid cancer (PTC) is one of the fastest-growing cancers worldwide, lacking established causal factors or validated early diagnostics. Human endogenous retroviruses (HERVs), comprising 8% of human genomes, have potential as PTC biomarkers due to their comparably high baseline expression in healthy thyroid tissues, indicating homeostatic roles. However, HERV regions are often overlooked in genome-wide association studies because of their highly repetitive nature, low sequence coverage, and decreased sequencing quality. Using targeted whole-genome sequence analysis in conjunction with high sequencing depth to overcome methodological limitations, we identified associations of specific HERV variants with PTC. Analyzing WGS data from 138 patients with PTC generated through The Cancer Genome Atlas project and 2015 control samples from the 1000 Genomes Project, we examined the mutational variation in HERVs within a 20 kb radius of known cancer predisposition genes (CPGs) differentially expressed in PTC. We discovered 15 common and 13 rare germline HERV variants near or within 20 CPGs that distinguish patients with PTC from healthy controls. We identified intragenic-intronic HERV variants within RYR2, LRP1B, FN1, MET, TCRVB, UNC5D, TRPM3, CNTN5, CD70, RYR1, RUNX1, CRLF2, and PCDH1X, and three variants downstream of SERPINA1 and RUNX1T1. Sanger sequencing analyses of 20 thyroid and 5 non-thyroid cancer cell lines confirmed associations with PTC, particularly for MSTA HERV-L variant rs200077102 within the FN1 gene and HERV-L MLT1A LTR variant rs78588384 within the CNTN5 gene. Variant rs78588384, in particular, was shown in our analyses to be located within a POL2 binding site regulating an alternative transcript of CNTN5. In addition, we identified 16 variants that modified the poly(A) region in Alu elements, potentially altering the potential to retrotranspose. In conclusion, this study serves as a proof-of-concept for targeted variant analysis of HERV regions and establishes a basis for further exploration of HERVs in thyroid cancer development.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular and Human Genomics, Baylor College of Medicine, Houston, TX 77030, USA;
| | | | - Stephen Y. Lai
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vlad C. Sandulache
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Michael E. Scheurer
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer & Hematology Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
12
|
Song Y, Wen H, Zhai X, Jia L, Li L. Functional Bidirectionality of ERV-Derived Long Non-Coding RNAs in Humans. Int J Mol Sci 2024; 25:10481. [PMID: 39408810 PMCID: PMC11476766 DOI: 10.3390/ijms251910481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are widely recognized as the result of exogenous retroviruses infecting the ancestral germline, stabilizing integration and vertical transmission during human genetic evolution. To date, endogenous retroviruses (ERVs) appear to have been selected for human physiological functions with the loss of retrotransposable capabilities. ERV elements were previously regarded as junk DNA for a long time. Since then, the aberrant activation and expression of ERVs have been observed in the development of many kinds of human diseases, and their role has been explored in a variety of human disorders such as cancer. The results show that specific ERV elements play respective crucial roles. Among them, long non-coding RNAs (lncRNAs) transcribed from specific long-terminal repeat regions of ERVs are often key factors. lncRNAs are over 200 nucleotides in size and typically bind to DNA, RNA, and proteins to perform biological functions. Dysregulated lncRNAs have been implicated in a variety of diseases. In particular, studies have shown that the aberrant expression of some ERV-derived lncRNAs has a tumor-suppressive or oncogenic effect, displaying significant functional bidirectionality. Therefore, theses lncRNAs have a promising future as novel biomarkers and therapeutic targets to explore the concise relationship between ERVs and cancers. In this review, we first summarize the role of ERV-derived lncRNAs in physiological regulation, mainly including immunomodulation, the maintenance of pluripotency, and erythropoiesis. In addition, pathological regulation examples of their aberrant activation and expression leading to carcinogenesis are highlighted, and specific mechanisms of occurrence are discussed.
Collapse
Affiliation(s)
- Yanmei Song
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory for the Prevention and Control of Emerging Infectious Diseases and Biosafety, Jinan 250012, China; (Y.S.); (H.W.)
| | - Xiuli Zhai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230000, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100850, China;
| |
Collapse
|
13
|
Su P, Liu Y, Chen T, Xue Y, Zeng Y, Zhu G, Chen S, Teng M, Ci X, Guo M, He MY, Hao J, Chu V, Xu W, Wang S, Mehdipour P, Xu X, Marhon SA, Soares F, Pham NA, Wu BX, Her PH, Feng S, Alshamlan N, Khalil M, Krishnan R, Yu F, Chen C, Burrows F, Hakem R, Lupien M, Harding S, Lok BH, O'Brien C, Berlin A, De Carvalho DD, Brooks DG, Schramek D, Tsao MS, He HH. In vivo CRISPR screens identify a dual function of MEN1 in regulating tumor-microenvironment interactions. Nat Genet 2024; 56:1890-1902. [PMID: 39227744 PMCID: PMC11387198 DOI: 10.1038/s41588-024-01874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/18/2024] [Indexed: 09/05/2024]
Abstract
Functional genomic screens in two-dimensional cell culture models are limited in identifying therapeutic targets that influence the tumor microenvironment. By comparing targeted CRISPR-Cas9 screens in a two-dimensional culture with xenografts derived from the same cell line, we identified MEN1 as the top hit that confers differential dropout effects in vitro and in vivo. MEN1 knockout in multiple solid cancer types does not impact cell proliferation in vitro but significantly promotes or inhibits tumor growth in immunodeficient or immunocompetent mice, respectively. Mechanistically, MEN1 knockout redistributes MLL1 chromatin occupancy, increasing H3K4me3 at repetitive genomic regions, activating double-stranded RNA expression and increasing neutrophil and CD8+ T cell infiltration in immunodeficient and immunocompetent mice, respectively. Pharmacological inhibition of the menin-MLL interaction reduces tumor growth in a CD8+ T cell-dependent manner. These findings reveal tumor microenvironment-dependent oncogenic and tumor-suppressive functions of MEN1 and provide a rationale for targeting MEN1 in solid cancers.
Collapse
Affiliation(s)
- Peiran Su
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yin Liu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyi Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yibo Xue
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yong Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Guanghui Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Sujun Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Mona Teng
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Xinpei Ci
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mengdi Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Michael Y He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jun Hao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vivian Chu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wenxi Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shiyan Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Parinaz Mehdipour
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xin Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fraser Soares
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Bell Xi Wu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Peter Hyunwuk Her
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shengrui Feng
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Najd Alshamlan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Maryam Khalil
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fangyou Yu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Razqallah Hakem
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shane Harding
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Catherine O'Brien
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alejandro Berlin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Schramek
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Wang ZY, Ge LP, Ouyang Y, Jin X, Jiang YZ. Targeting transposable elements in cancer: developments and opportunities. Biochim Biophys Acta Rev Cancer 2024; 1879:189143. [PMID: 38936517 DOI: 10.1016/j.bbcan.2024.189143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Transposable elements (TEs), comprising nearly 50% of the human genome, have transitioned from being perceived as "genomic junk" to key players in cancer progression. Contemporary research links TE regulatory disruptions with cancer development, underscoring their therapeutic potential. Advances in long-read sequencing, computational analytics, single-cell sequencing, proteomics, and CRISPR-Cas9 technologies have enriched our understanding of TEs' clinical implications, notably their impact on genome architecture, gene regulation, and evolutionary processes. In cancer, TEs, including long interspersed element-1 (LINE-1), Alus, and long terminal repeat (LTR) elements, demonstrate altered patterns, influencing both tumorigenic and tumor-suppressive mechanisms. TE-derived nucleic acids and tumor antigens play critical roles in tumor immunity, bridging innate and adaptive responses. Given their central role in oncology, TE-targeted therapies, particularly through reverse transcriptase inhibitors and epigenetic modulators, represent a novel avenue in cancer treatment. Combining these TE-focused strategies with existing chemotherapy or immunotherapy regimens could enhance efficacy and offer a new dimension in cancer treatment. This review delves into recent TE detection advancements, explores their multifaceted roles in tumorigenesis and immune regulation, discusses emerging diagnostic and therapeutic approaches centered on TEs, and anticipates future directions in cancer research.
Collapse
Affiliation(s)
- Zi-Yu Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Ouyang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Jarosz AS, Halo JV. Transcription of Endogenous Retroviruses: Broad and Precise Mechanisms of Control. Viruses 2024; 16:1312. [PMID: 39205286 PMCID: PMC11359688 DOI: 10.3390/v16081312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Endogenous retroviruses (ERVs) are the remnants of retroviral germline infections and are highly abundant in the genomes of vertebrates. At one time considered to be nothing more than inert 'junk' within genomes, ERVs have been tolerated within host genomes over vast timescales, and their study continues to reveal complex co-evolutionary histories within their respective host species. For example, multiple instances have been characterized of ERVs having been 'borrowed' for normal physiology, from single copies to ones involved in various regulatory networks such as innate immunity and during early development. Within the cell, the accessibility of ERVs is normally tightly controlled by epigenetic mechanisms such as DNA methylation or histone modifications. However, these silencing mechanisms of ERVs are reversible, and epigenetic alterations to the chromatin landscape can thus lead to their aberrant expression, as is observed in abnormal cellular environments such as in tumors. In this review, we focus on ERV transcriptional control and draw parallels and distinctions concerning the loss of regulation in disease, as well as their precise regulation in early development.
Collapse
Affiliation(s)
- Abigail S. Jarosz
- Science and Mathematics Division, Lorrain County Community College, Lorrain, OH 44035, USA;
| | - Julia V. Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
16
|
Saw PE, Liu Q, Wong PP, Song E. Cancer stem cell mimicry for immune evasion and therapeutic resistance. Cell Stem Cell 2024; 31:1101-1112. [PMID: 38925125 DOI: 10.1016/j.stem.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/11/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Cancer stem cells (CSCs) are heterogeneous, possess self-renewal attributes, and orchestrate important crosstalk in tumors. We propose that the CSC state represents "mimicry" by cancer cells that leads to phenotypic plasticity. CSC mimicry is suggested as CSCs can impersonate immune cells, vasculo-endothelia, or lymphangiogenic cells to support cancer growth. CSCs facilitate both paracrine and juxtracrine signaling to prime tumor-associated immune and stromal cells to adopt pro-tumoral phenotypes, driving therapeutic resistance. Here, we outline the ingenuity of CSCs' mimicry in their quest to evade immune detection, which leads to immunotherapeutic resistance, and highlight CSC-mimicry-targeted therapeutic strategies for robust immunotherapy.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Zenith Institute of Medical Sciences, Guangzhou 510120, China.
| |
Collapse
|
17
|
Ivancevic A, Simpson DM, Joyner OM, Bagby SM, Nguyen LL, Bitler BG, Pitts TM, Chuong EB. Endogenous retroviruses mediate transcriptional rewiring in response to oncogenic signaling in colorectal cancer. SCIENCE ADVANCES 2024; 10:eado1218. [PMID: 39018396 PMCID: PMC466953 DOI: 10.1126/sciadv.ado1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Cancer cells exhibit rewired transcriptional regulatory networks that promote tumor growth and survival. However, the mechanisms underlying the formation of these pathological networks remain poorly understood. Through a pan-cancer epigenomic analysis, we found that primate-specific endogenous retroviruses (ERVs) are a rich source of enhancers displaying cancer-specific activity. In colorectal cancer and other epithelial tumors, oncogenic MAPK/AP1 signaling drives the activation of enhancers derived from the primate-specific ERV family LTR10. Functional studies in colorectal cancer cells revealed that LTR10 elements regulate tumor-specific expression of multiple genes associated with tumorigenesis, such as ATG12 and XRCC4. Within the human population, individual LTR10 elements exhibit germline and somatic structural variation resulting from a highly mutable internal tandem repeat region, which affects AP1 binding activity. Our findings reveal that ERV-derived enhancers contribute to transcriptional dysregulation in response to oncogenic signaling and shape the evolution of cancer-specific regulatory networks.
Collapse
Affiliation(s)
- Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David M. Simpson
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Olivia M. Joyner
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Stacey M. Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lily L. Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ben G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward B. Chuong
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
18
|
Lee AV, Nestler KA, Chiappinelli KB. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol Ther 2024; 258:108640. [PMID: 38570075 DOI: 10.1016/j.pharmthera.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
DNA methylation is a critical component of gene regulation and plays an important role in the development of cancer. Hypermethylation of tumor suppressor genes and silencing of DNA repair pathways facilitate uncontrolled cell growth and synergize with oncogenic mutations to perpetuate cancer phenotypes. Additionally, aberrant DNA methylation hinders immune responses crucial for antitumor immunity. Thus, inhibiting dysregulated DNA methylation is a promising cancer therapy. Pharmacologic inhibition of DNA methylation reactivates silenced tumor suppressors and bolster immune responses through induction of viral mimicry. Now, with the advent of immunotherapies and discovery of the immune-modulatory effects of DNA methylation inhibitors, there is great interest in understanding how targeting DNA methylation in combination with other therapies can enhance antitumor immunity. Here, we describe the role of aberrant DNA methylation in cancer and mechanisms by which it promotes tumorigenesis and modulates immune responses. Finally, we review the initial discoveries and ongoing efforts to target DNA methylation as a cancer therapeutic.
Collapse
Affiliation(s)
- Abigail V Lee
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Kevin A Nestler
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
19
|
Gharib E, Rejali L, Piroozkhah M, Zonoobi E, Nasrabadi PN, Arabsorkhi Z, Baghdar K, Shams E, Sadeghi A, Kuppen PJK, Salehi Z, Nazemalhosseini-Mojarad E. IL-2RG as a possible immunotherapeutic target in CRC predicting poor prognosis and regulated by miR-7-5p and miR-26b-5p. J Transl Med 2024; 22:439. [PMID: 38720389 PMCID: PMC11080123 DOI: 10.1186/s12967-024-05251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Despite advances in treatment strategies, colorectal cancer (CRC) continues to cause significant morbidity and mortality, with mounting evidence a close link between immune system dysfunctions issued. Interleukin-2 receptor gamma (IL-2RG) plays a pivotal role as a common subunit receptor in the IL-2 family cytokines and activates the JAK-STAT pathway. This study delves into the role of Interleukin-2 receptor gamma (IL-2RG) within the tumor microenvironment and investigates potential microRNAs (miRNAs) that directly inhibit IL-2RG, aiming to discern their impact on CRC clinical outcomes. Bioinformatics analysis revealed a significant upregulation of IL-2RG mRNA in TCGA-COAD samples and showed strong correlations with the infiltration of various lymphocytes. Single-cell analysis corroborated these findings, highlighting IL-2RG expression in critical immune cell subsets. To explore miRNA involvement in IL-2RG dysregulation, mRNA was isolated from the tumor tissues and lymphocytes of 258 CRC patients and 30 healthy controls, and IL-2RG was cloned into the pcDNA3.1/CT-GFP-TOPO vector. Human embryonic kidney cell lines (HEK-293T) were transfected with this construct. Our research involved a comprehensive analysis of miRPathDB, miRWalk, and Targetscan databases to identify the miRNAs associated with the 3' UTR of human IL-2RG. The human microRNA (miRNA) molecules, hsa-miR-7-5p and hsa-miR-26b-5p, have been identified as potent suppressors of IL-2RG expression in CRC patients. Specifically, the downregulation of hsa-miR-7-5p and hsa-miR-26b-5p has been shown to result in the upregulation of IL-2RG mRNA expression in these patients. Prognostic evaluation of IL-2RG, hsa-miR-7-5p, and hsa-miR-26b-5p, using TCGA-COAD data and patient samples, established that higher IL-2RG expression and lower expression of both miRNAs were associated with poorer outcomes. Additionally, this study identified several long non-coding RNAs (LncRNAs), such as ZFAS1, SOX21-AS1, SNHG11, SNHG16, SNHG1, DLX6-AS1, GAS5, SNHG6, and MALAT1, which may act as competing endogenous RNA molecules for IL2RG by sequestering shared hsa-miR-7-5p and hsa-miR-26b-5p. In summary, this investigation underscores the potential utility of IL-2RG, hsa-miR-7-5p, and hsa-miR-26b-5p as serum and tissue biomarkers for predicting CRC patient prognosis while also offering promise as targets for immunotherapy in CRC management.
Collapse
Affiliation(s)
- Ehsan Gharib
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Zonoobi
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Parinaz Nasri Nasrabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Arabsorkhi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghdar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Shams
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman Street, Chamran Expressway, P.O. Box: 19857-17411, Tehran, Iran
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ehsan Nazemalhosseini-Mojarad
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman Street, Chamran Expressway, P.O. Box: 19857-17411, Tehran, Iran.
| |
Collapse
|
20
|
Honda S, Hatamura M, Kunimoto Y, Ikeda S, Minami N. Chimeric PRMT6 protein produced by an endogenous retrovirus promoter regulates cell fate decision in mouse preimplantation embryos†. Biol Reprod 2024; 110:698-710. [PMID: 38196172 DOI: 10.1093/biolre/ioae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/11/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2024] Open
Abstract
Murine endogenous retrovirus with leucine tRNA primer, also known as MERVL, is expressed during zygotic genome activation in mammalian embryos. Here we show that protein arginine N-methyltransferase 6 (Prmt6) forms a chimeric transcript with MT2B2, one of the long terminal repeat sequences of murine endogenous retrovirus with leucine tRNA primer, and is translated into an elongated chimeric protein (PRMT6MT2B2) whose function differs from that of the canonical PRMT6 protein (PRMT6CAN) in mouse preimplantation embryos. Overexpression of PRMT6CAN in fibroblast cells increased asymmetric dimethylation of the third arginine residue of both histone H2A (H2AR3me2a) and histone H4 (H4R3me2a), while overexpression of PRMT6MT2B2 increased only H2AR3me2a. In addition, overexpression of PRMT6MT2B2 in one blastomere of mouse two-cell embryos promoted cell proliferation and differentiation of the blastomere into epiblast cells at the blastocyst stage, while overexpression of PRMT6CAN repressed cell proliferation. This is the first report of the translation of a chimeric protein (PRMT6MT2B2) in mouse preimplantation embryos. Our results suggest that analyzing chimeric transcripts with murine endogenous retrovirus with leucine tRNA primer will provide insight into the relationship between zygotic genome activation and subsequent intra- and extra-cellular lineage determination.
Collapse
Affiliation(s)
- Shinnosuke Honda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Maho Hatamura
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuri Kunimoto
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shuntaro Ikeda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Cortesi A, Gandolfi F, Arco F, Di Chiaro P, Valli E, Polletti S, Noberini R, Gualdrini F, Attanasio S, Citron F, Ho IL, Shah R, Yen EY, Spinella MC, Ronzoni S, Rodighiero S, Mitro N, Bonaldi T, Ghisletti S, Monticelli S, Viale A, Diaferia GR, Natoli G. Activation of endogenous retroviruses and induction of viral mimicry by MEK1/2 inhibition in pancreatic cancer. SCIENCE ADVANCES 2024; 10:eadk5386. [PMID: 38536927 PMCID: PMC10971493 DOI: 10.1126/sciadv.adk5386] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/21/2024] [Indexed: 02/08/2025]
Abstract
While pancreatic ductal adenocarcinomas (PDACs) are addicted to KRAS-activating mutations, inhibitors of downstream KRAS effectors, such as the MEK1/2 kinase inhibitor trametinib, are devoid of therapeutic effects. However, the extensive rewiring of regulatory circuits driven by the attenuation of the KRAS pathway may induce vulnerabilities of therapeutic relevance. An in-depth molecular analysis of the transcriptional and epigenomic alterations occurring in PDAC cells in the initial hours after MEK1/2 inhibition by trametinib unveiled the induction of endogenous retroviruses (ERVs) escaping epigenetic silencing, leading to the production of double-stranded RNAs and the increased expression of interferon (IFN) genes. We tracked ERV activation to the early induction of the transcription factor ELF3, which extensively bound and activated nonsilenced retroelements and synergized with IRF1 (interferon regulatory factor 1) in the activation of IFNs and IFN-stimulated genes. Trametinib-induced viral mimicry in PDAC may be exploited in the rational design of combination therapies in immuno-oncology.
Collapse
Affiliation(s)
- Alice Cortesi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Francesco Gandolfi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Fabiana Arco
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Emanuele Valli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Sara Polletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Francesco Gualdrini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Sergio Attanasio
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francesca Citron
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - I-lin Ho
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rutvi Shah
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Er-Yen Yen
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mara Cetty Spinella
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Simona Ronzoni
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Nico Mitro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti,” Università degli Studi di Milano, Milano 20133, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti,” Università degli Studi di Milano, Milano 20133, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Silvia Monticelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| |
Collapse
|
22
|
Chen M, Huang X, Wang C, Wang S, Jia L, Li L. Endogenous retroviral solo-LTRs in human genome. Front Genet 2024; 15:1358078. [PMID: 38606358 PMCID: PMC11007075 DOI: 10.3389/fgene.2024.1358078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are derived from the infection and integration of exogenetic retroviruses. HERVs account for 8% of human genome, and the majority of HERVs are solitary LTRs (solo-LTRs) due to homologous recombination. Multiple findings have showed that solo-LTRs could provide an enormous reservoir of transcriptional regulatory sequences involved in diverse biological processes, especially carcinogenesis and cancer development. The link between solo-LTRs and human diseases still remains poorly understood. This review focuses on the regulatory modules of solo-LTRs, which contribute greatly to the diversification and evolution of human genes. More importantly, although inactivating mutations, insertions and deletions have been identified in solo-LTRs, the inherited regulatory elements of solo-LTRs initiate the expression of chimeric lncRNA transcripts, which have been reported to play crucial roles in human health and disease. These findings provide valuable insights into the evolutionary and functional mechanisms underlying the presence of HERVs in human genome. Taken together, in this review, we will present evidences showing the regulatory and encoding capacity of solo-LTRs as well as the significant impact on various aspects of human biology.
Collapse
Affiliation(s)
- Mingyue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Xiaolong Huang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Chunlei Wang
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Shibo Wang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Lei Jia
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Lin Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| |
Collapse
|
23
|
Annapragada AV, Niknafs N, White JR, Bruhm DC, Cherry C, Medina JE, Adleff V, Hruban C, Mathios D, Foda ZH, Phallen J, Scharpf RB, Velculescu VE. Genome-wide repeat landscapes in cancer and cell-free DNA. Sci Transl Med 2024; 16:eadj9283. [PMID: 38478628 PMCID: PMC11323656 DOI: 10.1126/scitranslmed.adj9283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Genetic changes in repetitive sequences are a hallmark of cancer and other diseases, but characterizing these has been challenging using standard sequencing approaches. We developed a de novo kmer finding approach, called ARTEMIS (Analysis of RepeaT EleMents in dISease), to identify repeat elements from whole-genome sequencing. Using this method, we analyzed 1.2 billion kmers in 2837 tissue and plasma samples from 1975 patients, including those with lung, breast, colorectal, ovarian, liver, gastric, head and neck, bladder, cervical, thyroid, or prostate cancer. We identified tumor-specific changes in these patients in 1280 repeat element types from the LINE, SINE, LTR, transposable element, and human satellite families. These included changes to known repeats and 820 elements that were not previously known to be altered in human cancer. Repeat elements were enriched in regions of driver genes, and their representation was altered by structural changes and epigenetic states. Machine learning analyses of genome-wide repeat landscapes and fragmentation profiles in cfDNA detected patients with early-stage lung or liver cancer in cross-validated and externally validated cohorts. In addition, these repeat landscapes could be used to noninvasively identify the tissue of origin of tumors. These analyses reveal widespread changes in repeat landscapes of human cancers and provide an approach for their detection and characterization that could benefit early detection and disease monitoring of patients with cancer.
Collapse
Affiliation(s)
- Akshaya V. Annapragada
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Noushin Niknafs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James R. White
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel C. Bruhm
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christopher Cherry
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jamie E. Medina
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vilmos Adleff
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Carolyn Hruban
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dimitrios Mathios
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zachariah H. Foda
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jillian Phallen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert B. Scharpf
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Victor E. Velculescu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
24
|
Dopkins N, Nixon DF. Activation of human endogenous retroviruses and its physiological consequences. Nat Rev Mol Cell Biol 2024; 25:212-222. [PMID: 37872387 DOI: 10.1038/s41580-023-00674-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Human endogenous retroviruses (HERVs) are abundant sequences that persist within the human genome as remnants of ancient retroviral infections. These sequences became fixed and accumulate mutations or deletions over time. HERVs have affected human evolution and physiology by providing a unique repertoire of coding and non-coding sequences to the genome. In healthy individuals, HERVs participate in immune responses, formation of syncytiotrophoblasts and cell-fate specification. In this Review, we discuss how endogenized retroviral motifs and regulatory sequences have been co-opted into human physiology and how they are tightly regulated. Infections and mutations can derail this regulation, leading to differential HERV expression, which may contribute to pathologies including neurodegeneration, pathological inflammation and oncogenesis. Emerging evidence demonstrates that HERVs are crucial to human health and represent an understudied facet of many diseases, and we therefore argue that investigating their fundamental properties could improve existing therapies and help develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Liang B, Yan T, Wei H, Zhang D, Li L, Liu Z, Li W, Zhang Y, Jiang N, Meng Q, Jiang G, Hu Y, Leng J. HERVK-mediated regulation of neighboring genes: implications for breast cancer prognosis. Retrovirology 2024; 21:4. [PMID: 38388382 PMCID: PMC10885364 DOI: 10.1186/s12977-024-00636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/18/2024] [Indexed: 02/24/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are the remnants of ancient retroviral infections integrated into the human genome. Although most HERVs are silenced or rendered inactive by various regulatory mechanisms, they retain the potential to influence the nearby genes. We analyzed the regulatory map of 91 HERV-Ks on neighboring genes in human breast cancer and investigated the impact of HERV-Ks on the tumor microenvironment (TME) and prognosis of breast cancer. Nine RNA-seq datasets were obtained from GEO and NCBI SRA. Differentially expressed genes and HERV-Ks were analyzed using DESeq2. Validation of high-risk prognostic candidate genes using TCGA data. These included Overall survival (multivariate Cox regression model), immune infiltration analysis (TIMER), tumor mutation burden (maftools), and drug sensitivity analysis (GSCA). A total of 88 candidate genes related to breast cancer prognosis were screened, of which CD48, SLAMF7, SLAMF1, IGLL1, IGHA1, and LRRC8A were key genes. Functionally, these six key genes were significantly enriched in some immune function-related pathways, which may be associated with poor prognosis for breast cancer (p = 0.00016), and the expression levels of these genes were significantly correlated with the sensitivity of breast cancer treatment-related drugs. Mechanistically, they may influence breast cancer development by modulating the infiltration of various immune cells into the TME. We further experimentally validated these genes to confirm the results obtained from bioinformatics analysis. This study represents the first report on the regulatory potential of HERV-K in the neighboring breast cancer genome. We identified three key HERV-Ks and five neighboring genes that hold promise as novel targets for future interventions and treatments for breast cancer.
Collapse
Affiliation(s)
- Boying Liang
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China
| | - Tengyue Yan
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Huilin Wei
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China
| | - Die Zhang
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Lanxiang Li
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zengjing Liu
- Genomic Experimental Center, Guangxi Medical University, Nanning, China
| | - Wen Li
- Genomic Experimental Center, Guangxi Medical University, Nanning, China
| | - Yuluan Zhang
- Genomic Experimental Center, Guangxi Medical University, Nanning, China
| | - Nili Jiang
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China
| | - Qiuxia Meng
- Genomic Experimental Center, Guangxi Medical University, Nanning, China
| | - Guiyang Jiang
- Genomic Experimental Center, Guangxi Medical University, Nanning, China
| | - Yanling Hu
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China.
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China.
- Genomic Experimental Center, Guangxi Medical University, Nanning, China.
| | - Jing Leng
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China.
| |
Collapse
|
26
|
Fukuda K. The role of transposable elements in human evolution and methods for their functional analysis: current status and future perspectives. Genes Genet Syst 2024; 98:289-304. [PMID: 37866889 DOI: 10.1266/ggs.23-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Transposable elements (TEs) are mobile DNA sequences that can insert themselves into various locations within the genome, causing mutations that may provide advantages or disadvantages to individuals and species. The insertion of TEs can result in genetic variation that may affect a wide range of human traits including genetic disorders. Understanding the role of TEs in human biology is crucial for both evolutionary and medical research. This review discusses the involvement of TEs in human traits and disease susceptibility, as well as methods for functional analysis of TEs.
Collapse
Affiliation(s)
- Kei Fukuda
- Integrative Genomics Unit, The University of Melbourne
| |
Collapse
|
27
|
Liang Y, Qu X, Shah NM, Wang T. Towards targeting transposable elements for cancer therapy. Nat Rev Cancer 2024; 24:123-140. [PMID: 38228901 DOI: 10.1038/s41568-023-00653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Transposable elements (TEs) represent almost half of the human genome. Historically deemed 'junk DNA', recent technological advancements have stimulated a wave of research into the functional impact of TEs on gene-regulatory networks in evolution and development, as well as in diseases including cancer. The genetic and epigenetic evolution of cancer involves the exploitation of TEs, whereby TEs contribute directly to cancer-specific gene activities. This Review provides a perspective on the role of TEs in cancer as being a 'double-edged sword', both promoting cancer evolution and representing a vulnerability that could be exploited in cancer therapy. We discuss how TEs affect transcriptome regulation and other cellular processes in cancer. We highlight the potential of TEs as therapeutic targets for cancer. We also summarize technical hurdles in the characterization of TEs with genomic assays. Last, we outline open questions and exciting future research avenues.
Collapse
Affiliation(s)
- Yonghao Liang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Xuan Qu
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nakul M Shah
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
28
|
Derakhshan M, Kessler NJ, Hellenthal G, Silver MJ. Metastable epialleles in humans. Trends Genet 2024; 40:52-68. [PMID: 38000919 DOI: 10.1016/j.tig.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/26/2023]
Abstract
First identified in isogenic mice, metastable epialleles (MEs) are loci where the extent of DNA methylation (DNAm) is variable between individuals but correlates across tissues derived from different germ layers within a given individual. This property, termed systemic interindividual variation (SIV), is attributed to stochastic methylation establishment before germ layer differentiation. Evidence suggests that some putative human MEs are sensitive to environmental exposures in early development. In this review we introduce key concepts pertaining to human MEs, describe methods used to identify MEs in humans, and review their genomic features. We also highlight studies linking DNAm at putative human MEs to early environmental exposures and postnatal (including disease) phenotypes.
Collapse
Affiliation(s)
- Maria Derakhshan
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Noah J Kessler
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Matt J Silver
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia.
| |
Collapse
|
29
|
Maeng JH, Jang HJ, Du AY, Tzeng SC, Wang T. Using long-read CAGE sequencing to profile cryptic-promoter-derived transcripts and their contribution to the immunopeptidome. Genome Res 2023; 33:2143-2155. [PMID: 38065624 PMCID: PMC10760525 DOI: 10.1101/gr.277061.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/13/2023] [Indexed: 01/04/2024]
Abstract
Recent studies have shown that the noncoding genome can produce unannotated proteins as antigens that induce immune response. One major source of this activity is the aberrant epigenetic reactivation of transposable elements (TEs). In tumors, TEs often provide cryptic or alternate promoters, which can generate transcripts that encode tumor-specific unannotated proteins. Thus, TE-derived transcripts (TE transcripts) have the potential to produce tumor-specific, but recurrent, antigens shared among many tumors. Identification of TE-derived tumor antigens holds the promise to improve cancer immunotherapy approaches; however, current genomics and computational tools are not optimized for their detection. Here we combined CAGE technology with full-length long-read transcriptome sequencing (long-read CAGE, or LRCAGE) and developed a suite of computational tools to significantly improve immunopeptidome detection by incorporating TE and other tumor transcripts into the proteome database. By applying our methods to human lung cancer cell line H1299 data, we show that long-read technology significantly improves mapping of promoters with low mappability scores and that LRCAGE guarantees accurate construction of uncharacterized 5' transcript structure. Augmenting a reference proteome database with newly characterized transcripts enabled us to detect noncanonical antigens from HLA-pulldown LC-MS/MS data. Lastly, we show that epigenetic treatment increased the number of noncanonical antigens, particularly those encoded by TE transcripts, which might expand the pool of targetable antigens for cancers with low mutational burden.
Collapse
Affiliation(s)
- Ju Heon Maeng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - H Josh Jang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Alan Y Du
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Shin-Cheng Tzeng
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
30
|
Russo M, Piccolo V, Polizzese D, Prosperini E, Borriero C, Polletti S, Bedin F, Marenda M, Michieletto D, Mandana GM, Rodighiero S, Cuomo A, Natoli G. Restrictor synergizes with Symplekin and PNUTS to terminate extragenic transcription. Genes Dev 2023; 37:1017-1040. [PMID: 38092518 PMCID: PMC10760643 DOI: 10.1101/gad.351057.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
Transcription termination pathways mitigate the detrimental consequences of unscheduled promiscuous initiation occurring at hundreds of thousands of genomic cis-regulatory elements. The Restrictor complex, composed of the Pol II-interacting protein WDR82 and the RNA-binding protein ZC3H4, suppresses processive transcription at thousands of extragenic sites in mammalian genomes. Restrictor-driven termination does not involve nascent RNA cleavage, and its interplay with other termination machineries is unclear. Here we show that efficient termination at Restrictor-controlled extragenic transcription units involves the recruitment of the protein phosphatase 1 (PP1) regulatory subunit PNUTS, a negative regulator of the SPT5 elongation factor, and Symplekin, a protein associated with RNA cleavage complexes but also involved in cleavage-independent and phosphatase-dependent termination of noncoding RNAs in yeast. PNUTS and Symplekin act synergistically with, but independently from, Restrictor to dampen processive extragenic transcription. Moreover, the presence of limiting nuclear levels of Symplekin imposes a competition for its recruitment among multiple transcription termination machineries, resulting in mutual regulatory interactions. Hence, by synergizing with Restrictor, Symplekin and PNUTS enable efficient termination of processive, long-range extragenic transcription.
Collapse
Affiliation(s)
- Marta Russo
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Viviana Piccolo
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Danilo Polizzese
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Elena Prosperini
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Carolina Borriero
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Fabio Bedin
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Mattia Marenda
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Gaurav Madappa Mandana
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan I-20139, Italy;
| |
Collapse
|
31
|
Wang Z, Ying Y, Wang M, Chen Q, Wang Y, Yu X, He W, Li J, Zeng S, Xu C. Comprehensive identification of onco-exaptation events in bladder cancer cell lines revealed L1PA2-SYT1 as a prognosis-relevant event. iScience 2023; 26:108482. [PMID: 38058305 PMCID: PMC10696462 DOI: 10.1016/j.isci.2023.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
Transposable elements (TEs) can provide ectopic promoters to drive the expression of oncogenes in cancer, a mechanism known as onco-exaptation. Onco-exaptation events have been extensively identified in various cancers, with bladder cancer showing a high frequency of onco-exaptation events (77%). However, the effect of most of these events in bladder cancer remains unclear. This study identified 44 onco-exaptation events in 44 bladder cancer cell lines in 137 RNA-seq datasets from six publicly available cohorts, with L1PA2 contributing the most events. L1PA2-SYT1, L1PA2-MET, and L1PA2-XCL1 had the highest frequency not only in cell lines but also in TCGA-BLCA samples. L1PA2-SYT1 showed significant tumor specificity and was found to be activated by CpG island demethylation in its promoter. The upregulation of L1PA2-SYT1 enhances the in vitro invasion of bladder cancer and is an independent risk factor for patient's overall survival, suggesting L1PA2-SYT1 being an important event that promotes the development of bladder cancer.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yidie Ying
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Maoyu Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qing Chen
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yi Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xufeng Yu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wei He
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jing Li
- Department of Bioinformatics, Center for Translational Medicine, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
32
|
Kim SJ, Kiser PK, Asfaha S, DeKoter RP, Dick FA. EZH2 inhibition stimulates repetitive element expression and viral mimicry in resting splenic B cells. EMBO J 2023; 42:e114462. [PMID: 37934086 PMCID: PMC10711652 DOI: 10.15252/embj.2023114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Mammalian cells repress expression of repetitive genomic sequences by forming heterochromatin. However, the consequences of ectopic repeat expression remain unclear. Here we demonstrate that inhibitors of EZH2, the catalytic subunit of the Polycomb repressive complex 2 (PRC2), stimulate repeat misexpression and cell death in resting splenic B cells. B cells are uniquely sensitive to these agents because they exhibit high levels of histone H3 lysine 27 trimethylation (H3K27me3) and correspondingly low DNA methylation at repeat elements. We generated a pattern recognition receptor loss-of-function mouse model, called RIC, with mutations in Rigi (encoding for RIG-I), Ifih1 (MDA5), and Cgas. In both wildtype and RIC mutant B cells, EZH2 inhibition caused loss of H3K27me3 at repetitive elements and upregulated their expression. However, NF-κB-dependent expression of inflammatory chemokines and subsequent cell death was suppressed by the RIC mutations. We further show that inhibition of EZH2 in cancer cells requires the same pattern recognition receptors to activate an interferon response. Together, the results reveal chemokine expression induced by EZH2 inhibitors in B cells as a novel inflammatory response to genomic repeat expression. Given the overlap of genes induced by EZH2 inhibitors and Epstein-Barr virus infection, this response can be described as a form of viral mimicry.
Collapse
Affiliation(s)
- Seung J Kim
- London Regional Cancer ProgramChildren's Health Research InstituteLondonONCanada
- London Health Sciences Research InstituteLondonONCanada
- Department of BiochemistryWestern UniversityLondonONCanada
| | - Patti K Kiser
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - Samuel Asfaha
- London Regional Cancer ProgramChildren's Health Research InstituteLondonONCanada
- London Health Sciences Research InstituteLondonONCanada
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
- Department of MedicineWestern UniversityLondonONCanada
| | - Rodney P DeKoter
- Department of Microbiology & ImmunologyWestern UniversityLondonONCanada
| | - Frederick A Dick
- London Regional Cancer ProgramChildren's Health Research InstituteLondonONCanada
- London Health Sciences Research InstituteLondonONCanada
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| |
Collapse
|
33
|
Tam PLF, Leung D. The Molecular Impacts of Retrotransposons in Development and Diseases. Int J Mol Sci 2023; 24:16418. [PMID: 38003607 PMCID: PMC10671454 DOI: 10.3390/ijms242216418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Retrotransposons are invasive genetic elements that constitute substantial portions of mammalian genomes. They have the potential to influence nearby gene expression through their cis-regulatory sequences, reverse transcription machinery, and the ability to mold higher-order chromatin structures. Due to their multifaceted functions, it is crucial for host fitness to maintain strict regulation of these parasitic sequences to ensure proper growth and development. This review explores how subsets of retrotransposons have undergone evolutionary exaptation to enhance the complexity of mammalian genomes. It also highlights the significance of regulating these elements, drawing on recent studies conducted in human and murine systems.
Collapse
Affiliation(s)
- Phoebe Lut Fei Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China;
| | - Danny Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China;
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
34
|
Zhao S, Lu J, Pan B, Fan H, Byrum SD, Xu C, Kim A, Guo Y, Kanchi KL, Gong W, Sun T, Storey AJ, Burkholder NT, Mackintosh SG, Kuhlers PC, Edmondson RD, Strahl BD, Diao Y, Tackett AJ, Raab JR, Cai L, Song J, Wang GG. TNRC18 engages H3K9me3 to mediate silencing of endogenous retrotransposons. Nature 2023; 623:633-642. [PMID: 37938770 PMCID: PMC11000523 DOI: 10.1038/s41586-023-06688-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/27/2023] [Indexed: 11/09/2023]
Abstract
Trimethylation of histone H3 lysine 9 (H3K9me3) is crucial for the regulation of gene repression and heterochromatin formation, cell-fate determination and organismal development1. H3K9me3 also provides an essential mechanism for silencing transposable elements1-4. However, previous studies have shown that canonical H3K9me3 readers (for example, HP1 (refs. 5-9) and MPP8 (refs. 10-12)) have limited roles in silencing endogenous retroviruses (ERVs), one of the main transposable element classes in the mammalian genome13. Here we report that trinucleotide-repeat-containing 18 (TNRC18), a poorly understood chromatin regulator, recognizes H3K9me3 to mediate the silencing of ERV class I (ERV1) elements such as LTR12 (ref. 14). Biochemical, biophysical and structural studies identified the carboxy-terminal bromo-adjacent homology (BAH) domain of TNRC18 (TNRC18(BAH)) as an H3K9me3-specific reader. Moreover, the amino-terminal segment of TNRC18 is a platform for the direct recruitment of co-repressors such as HDAC-Sin3-NCoR complexes, thus enforcing optimal repression of the H3K9me3-demarcated ERVs. Point mutagenesis that disrupts the TNRC18(BAH)-mediated H3K9me3 engagement caused neonatal death in mice and, in multiple mammalian cell models, led to derepressed expression of ERVs, which affected the landscape of cis-regulatory elements and, therefore, gene-expression programmes. Collectively, we describe a new H3K9me3-sensing and regulatory pathway that operates to epigenetically silence evolutionarily young ERVs and exert substantial effects on host genome integrity, transcriptomic regulation, immunity and development.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Bo Pan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Huitao Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- The First Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Chenxi Xu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Arum Kim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krishna L Kanchi
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Tongyu Sun
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nathaniel T Burkholder
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Peyton C Kuhlers
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian D Strahl
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yarui Diao
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jesse R Raab
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ling Cai
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, USA.
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Grillo G, Keshavarzian T, Linder S, Arlidge C, Mout L, Nand A, Teng M, Qamra A, Zhou S, Kron KJ, Murison A, Hawley JR, Fraser M, van der Kwast TH, Raj GV, He HH, Zwart W, Lupien M. Transposable Elements Are Co-opted as Oncogenic Regulatory Elements by Lineage-Specific Transcription Factors in Prostate Cancer. Cancer Discov 2023; 13:2470-2487. [PMID: 37694973 PMCID: PMC10618745 DOI: 10.1158/2159-8290.cd-23-0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/30/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
Transposable elements hold regulatory functions that impact cell fate determination by controlling gene expression. However, little is known about the transcriptional machinery engaged at transposable elements in pluripotent and mature versus oncogenic cell states. Through positional analysis over repetitive DNA sequences of H3K27ac chromatin immunoprecipitation sequencing data from 32 normal cell states, we report pluripotent/stem and mature cell state-specific "regulatory transposable elements." Pluripotent/stem elements are binding sites for pluripotency factors (e.g., NANOG, SOX2, OCT4). Mature cell elements are docking sites for lineage-specific transcription factors, including AR and FOXA1 in prostate epithelium. Expanding the analysis to prostate tumors, we identify a subset of regulatory transposable elements shared with pluripotent/stem cells, including Tigger3a. Using chromatin editing technology, we show how such elements promote prostate cancer growth by regulating AR transcriptional activity. Collectively, our results suggest that oncogenesis arises from lineage-specific transcription factors hijacking pluripotent/stem cell regulatory transposable elements. SIGNIFICANCE We show that oncogenesis relies on co-opting transposable elements from pluripotent stem cells as regulatory elements altering the recruitment of lineage-specific transcription factors. We further discover how co-option is dependent on active chromatin states with important implications for developing treatment options against drivers of oncogenesis across the repetitive DNA. This article is featured in Selected Articles from This Issue, p. 2293.
Collapse
Affiliation(s)
- Giacomo Grillo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tina Keshavarzian
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Simon Linder
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Christopher Arlidge
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Lisanne Mout
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ankita Nand
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mona Teng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Aditi Qamra
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stanley Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ken J. Kron
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - James R. Hawley
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Fraser
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Theodorus H. van der Kwast
- Laboratory Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ganesh V. Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Koga A, Ahmad SF, Panthum T, Singchat W, Srikulnath K. Characterization of the marsupial endogenous retrovirus walb with a focus on satellite DNA formation. Virology 2023; 588:109911. [PMID: 37918186 DOI: 10.1016/j.virol.2023.109911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
The walbRep megasatellite DNA found in the red-necked wallaby was formed from the walb endogenous retrovirus. Our previous PCR experiments suggested the presence of walb and absence of walbRep in the genome of the tammar wallaby, which diverged from the red-necked wallaby 2-3 Mya. The results failed to exclude the possibility that certain walbRep sequences might have remained undetected owing to variation in the primer-annealing regions; therefore, the aforementioned suggestion was not confirmed. To obtain conclusive evidence, we analyzed the structure of walb sequences drawn from the tammar wallaby genome database recently updated to a chromosome-level assembly. All walb copies existed as separate DNA segments, not constituting tandem repeats. We concluded that walbRep was formed in the red-necked wallaby lineage after its divergence from the tammar wallaby. We also confirm the presence of a walb copy with an anomalistic, complex structure and propose a simple model for its generation mechanism.
Collapse
Affiliation(s)
- Akihiko Koga
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
37
|
Lee B, Park J, Voshall A, Maury E, Kang Y, Kim YJ, Lee JY, Shim HR, Kim HJ, Lee JW, Jung MH, Kim SC, Chu HBK, Kim DW, Kim M, Choi EJ, Hwang OK, Lee HW, Ha K, Choi JK, Kim Y, Choi Y, Park WY, Lee EA. Pan-cancer analysis reveals multifaceted roles of retrotransposon-fusion RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562422. [PMID: 37905014 PMCID: PMC10614793 DOI: 10.1101/2023.10.16.562422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Transposon-derived transcripts are abundant in RNA sequences, yet their landscape and function, especially for fusion transcripts derived from unannotated or somatically acquired transposons, remains underexplored. Here, we developed a new bioinformatic tool to detect transposon-fusion transcripts in RNA-sequencing data and performed a pan-cancer analysis of 10,257 cancer samples across 34 cancer types as well as 3,088 normal tissue samples. We identified 52,277 cancer-specific fusions with ~30 events per cancer and hotspot loci within transposons vulnerable to fusion formation. Exonization of intronic transposons was the most prevalent genic fusions, while somatic L1 insertions constituted a small fraction of cancer-specific fusions. Source L1s and HERVs, but not Alus showed decreased DNA methylation in cancer upon fusion formation. Overall cancer-specific L1 fusions were enriched in tumor suppressors while Alu fusions were enriched in oncogenes, including recurrent Alu fusions in EZH2 predictive of patient survival. We also demonstrated that transposon-derived peptides triggered CD8+ T-cell activation to the extent comparable to EBV viruses. Our findings reveal distinct epigenetic and tumorigenic mechanisms underlying transposon fusions across different families and highlight transposons as novel therapeutic targets and the source of potent neoantigens.
Collapse
Affiliation(s)
- Boram Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Junseok Park
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Adam Voshall
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Eduardo Maury
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Bioinformatics and Integrative Genomics Program; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Yeeok Kang
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Yoen Jeong Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jin-Young Lee
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Hye-Ran Shim
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Hyo-Ju Kim
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Jung-Woo Lee
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Min-Hyeok Jung
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Si-Cho Kim
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Hoang Bao Khanh Chu
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Da-Won Kim
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Minjeong Kim
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Eun-Ji Choi
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Ok Kyung Hwang
- New Drug Development Center, KBiohealth, Cheongju-Si, Chungbuk, Republic of Korea
| | - Ho Won Lee
- New Drug Development Center, KBiohealth, Cheongju-Si, Chungbuk, Republic of Korea
| | - Kyungsoo Ha
- New Drug Development Center, KBiohealth, Cheongju-Si, Chungbuk, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Yongjoon Kim
- Cancer Genome Research Center (CGRC), Yonsei University, Seoul, Republic of Korea
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Oliveira DS, Fablet M, Larue A, Vallier A, Carareto CA, Rebollo R, Vieira C. ChimeraTE: a pipeline to detect chimeric transcripts derived from genes and transposable elements. Nucleic Acids Res 2023; 51:9764-9784. [PMID: 37615575 PMCID: PMC10570057 DOI: 10.1093/nar/gkad671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Transposable elements (TEs) produce structural variants and are considered an important source of genetic diversity. Notably, TE-gene fusion transcripts, i.e. chimeric transcripts, have been associated with adaptation in several species. However, the identification of these chimeras remains hindered due to the lack of detection tools at a transcriptome-wide scale, and to the reliance on a reference genome, even though different individuals/cells/strains have different TE insertions. Therefore, we developed ChimeraTE, a pipeline that uses paired-end RNA-seq reads to identify chimeric transcripts through two different modes. Mode 1 is the reference-guided approach that employs canonical genome alignment, and Mode 2 identifies chimeras derived from fixed or insertionally polymorphic TEs without any reference genome. We have validated both modes using RNA-seq data from four Drosophila melanogaster wild-type strains. We found ∼1.12% of all genes generating chimeric transcripts, most of them from TE-exonized sequences. Approximately ∼23% of all detected chimeras were absent from the reference genome, indicating that TEs belonging to chimeric transcripts may be recent, polymorphic insertions. ChimeraTE is the first pipeline able to automatically uncover chimeric transcripts without a reference genome, consisting of two running Modes that can be used as a tool to investigate the contribution of TEs to transcriptome plasticity.
Collapse
Affiliation(s)
- Daniel S Oliveira
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
- Institut Universitaire de France (IUF), Paris, Île-de-FranceF-75231, France
| | - Anaïs Larue
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Agnès Vallier
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Claudia M A Carareto
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
| |
Collapse
|
39
|
Karlow JA, Pehrsson EC, Xing X, Watson M, Devarakonda S, Govindan R, Wang T. Non-small Cell Lung Cancer Epigenomes Exhibit Altered DNA Methylation in Smokers and Never-smokers. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:991-1013. [PMID: 37742993 PMCID: PMC10928376 DOI: 10.1016/j.gpb.2023.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 02/11/2023] [Accepted: 03/14/2023] [Indexed: 09/26/2023]
Abstract
Epigenetic alterations are widespread in cancer and can complement genetic alterations to influence cancer progression and treatment outcome. To determine the potential contribution of DNAmethylation alterations to tumor phenotype in non-small cell lung cancer (NSCLC) in both smoker and never-smoker patients, we performed genome-wide profiling of DNA methylation in 17 primary NSCLC tumors and 10 matched normal lung samples using the complementary assays, methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation sensitive restriction enzyme sequencing (MRE-seq). We reported recurrent methylation changes in the promoters of several genes, many previously implicated in cancer, including FAM83A and SEPT9 (hypomethylation), as well as PCDH7, NKX2-1, and SOX17 (hypermethylation). Although many methylation changes between tumors and their paired normal samples were shared across patients, several were specific to a particular smoking status. For example, never-smokers displayed a greater proportion of hypomethylated differentially methylated regions (hypoDMRs) and a greater number of recurrently hypomethylated promoters, including those of ASPSCR1, TOP2A, DPP9, and USP39, all previously linked to cancer. Changes outside of promoters were also widespread and often recurrent, particularly methylation loss over repetitive elements, highly enriched for ERV1 subfamilies. Recurrent hypoDMRs were enriched for several transcription factor binding motifs, often for genes involved in signaling and cell proliferation. For example, 71% of recurrent promoter hypoDMRs contained a motif for NKX2-1. Finally, the majority of DMRs were located within an active chromatin state in tissues profiled using the Roadmap Epigenomics data, suggesting that methylation changes may contribute to altered regulatory programs through the adaptation of cell type-specific expression programs.
Collapse
Affiliation(s)
- Jennifer A Karlow
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erica C Pehrsson
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark Watson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Siddhartha Devarakonda
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramaswamy Govindan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA.
| |
Collapse
|
40
|
Keighley LM, Lynch-Sutherland CF, Almomani SN, Eccles MR, Macaulay EC. Unveiling the hidden players: The crucial role of transposable elements in the placenta and their potential contribution to pre-eclampsia. Placenta 2023; 141:57-64. [PMID: 37301654 DOI: 10.1016/j.placenta.2023.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The human placenta is a vital connection between maternal and fetal tissues, allowing for the exchange of molecules and modulation of immune interactions during pregnancy. Interestingly, some of the placenta's unique functions can be attributed to transposable elements (TEs), which are DNA sequences that have mobilised into the genome. Co-option throughout mammalian evolution has led to the generation of TE-derived regulators and TE-derived genes, some of which are expressed in the placenta but silenced in somatic tissues. TE genes encompass both TE-derived genes with a repeat element in the coding region and TE-derived regulatory regions such as alternative promoters and enhancers. Placental-specific TE genes are known to contribute to the placenta's unique functions, and interestingly, they are also expressed in some cancers and share similar functions. There is evidence to support that aberrant activity of TE genes may contribute to placental pathologies, cancer and autoimmunity. In this review, we highlight the crucial roles of TE genes in placental function, and how their dysregulation may lead to pre-eclampsia, a common and dangerous placental condition. We provide a summary of the functional TE genes in the placenta to offer insight into their significance in normal and abnormal human development. Ultimately, this review highlights an opportunity for future research to investigate the potential dysregulation of TE genes in the development of placental pathologies such as pre-eclampsia. Further understanding of TE genes and their role in the placenta could lead to significant improvements in maternal and fetal health.
Collapse
Affiliation(s)
- Laura M Keighley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Chiemi F Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Suzan N Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
41
|
Xiao C, Fan T, Zheng Y, Tian H, Deng Z, Liu J, Li C, He J. H3K4 trimethylation regulates cancer immunity: a promising therapeutic target in combination with immunotherapy. J Immunother Cancer 2023; 11:e005693. [PMID: 37553181 PMCID: PMC10414074 DOI: 10.1136/jitc-2022-005693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 08/10/2023] Open
Abstract
With the advances in cancer immunity regulation and immunotherapy, the effects of histone modifications on establishing antitumor immunological ability are constantly being uncovered. Developing combination therapies involving epigenetic drugs (epi-drugs) and immune checkpoint blockades or chimeric antigen receptor-T cell therapies are promising to improve the benefits of immunotherapy. Histone H3 lysine 4 trimethylation (H3K4me3) is a pivotal epigenetic modification in cancer immunity regulation, deeply involved in modulating tumor immunogenicity, reshaping tumor immune microenvironment, and regulating immune cell functions. However, how to integrate these theoretical foundations to create novel H3K4 trimethylation-based therapeutic strategies and optimize available therapies remains uncertain. In this review, we delineate the mechanisms by which H3K4me3 and its modifiers regulate antitumor immunity, and explore the therapeutic potential of the H3K4me3-related agents combined with immunotherapies. Understanding the role of H3K4me3 in cancer immunity will be instrumental in developing novel epigenetic therapies and advancing immunotherapy-based combination regimens.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Chang YS, Hsu MH, Chung CC, Chen HD, Tu SJ, Lee YT, Yen JC, Liu TC, Chang JG. Comprehensive Analysis and Drug Modulation of Human Endogenous Retrovirus in Hepatocellular Carcinomas. Cancers (Basel) 2023; 15:3664. [PMID: 37509325 PMCID: PMC10377948 DOI: 10.3390/cancers15143664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) play an important role in the development of cancer and many diseases. Here, we comprehensively explored the impact of HERVs on hepatocellular carcinomas (HCCs). METHODS We employed Telescope to identify HERVs and quantify their expression in the total RNA sequencing data obtained from 254 HCC samples, comprising 254 tumor tissues and 34 matched normal tissues. RESULTS In total, 3357 locus-specific activations of HERVs were differentially expressed, and 180 were correlated with patient survival. Using these 180 HERVs for classification, we found four subgroups with survival correlation. Higher expression levels of the 180 HERVs were correlated with poorer survival, while age, AFP, some mutations, and copy and structural variants differed among subgroups. The differential expression of host genes in high expression of these 180 HERVs primarily involved the activation of pathways related to immunity and infection, lipid and atherosclerosis, MAPK and NF-kB signaling, and cytokine-cytokine receptor interactions. Conversely, there was a suppression of pathways associated with RNA processing, including nucleocytoplasmic transport, surveillance and ribosome biogenesis, and transcriptional misregulation in cancer pathways. Almost all genes involved in HERV activation restriction, KRAB zinc finger proteins, RNA nucleocytoplasmic transport, stemness, HLA and antigen processing and presentation, and immune checkpoints were overexpressed in cancerous tissues, and many over-expressed HERV-related nearby genes were correlated with high HERV activation and poor survival. Twenty-three immune and stromal cells showed higher expression in non-cancerous than cancerous tissues, and seven were correlated with HERV activation. Small-molecule modulation of alternative splicing (AS) altered the expression of survival-related HERVs and their activation-related genes, as well as nearby genes. CONCLUSION Comprehensive and integrated approaches for evaluating HERV expression and their correlation with specific pathways have the potential to provide new companion diagnostics and therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ming-Hon Hsu
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chin-Chun Chung
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Hong-Da Chen
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Siang-Jyun Tu
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ya-Ting Lee
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ju-Chen Yen
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ta-Chih Liu
- Department of Hematology-Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| | - Jan-Gowth Chang
- Center for Precision Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
43
|
Attig J, Pape J, Doglio L, Kazachenka A, Ottina E, Young GR, Enfield KS, Aramburu IV, Ng KW, Faulkner N, Bolland W, Papayannopoulos V, Swanton C, Kassiotis G. Human endogenous retrovirus onco-exaptation counters cancer cell senescence through calbindin. J Clin Invest 2023; 133:e164397. [PMID: 37192000 PMCID: PMC10348765 DOI: 10.1172/jci164397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
Increased levels and diversity of human endogenous retrovirus (HERV) transcription characterize most cancer types and are linked with disease outcomes. However, the underlying processes are incompletely understood. Here, we show that elevated transcription of HERVH proviruses predicted survival of lung squamous cell carcinoma (LUSC) and identified an isoform of CALB1, encoding calbindin, ectopically driven by an upstream HERVH provirus under the control of KLF5, as the mediator of this effect. HERVH-CALB1 expression was initiated in preinvasive lesions and associated with their progression. Calbindin loss in LUSC cell lines impaired in vitro and in vivo growth and triggered senescence, consistent with a protumor effect. However, calbindin also directly controlled the senescence-associated secretory phenotype (SASP), marked by secretion of CXCL8 and other neutrophil chemoattractants. In established carcinomas, CALB1-negative cancer cells became the dominant source of CXCL8, correlating with neutrophil infiltration and worse prognosis. Thus, HERVH-CALB1 expression in LUSC may display antagonistic pleiotropy, whereby the benefits of escaping senescence early during cancer initiation and clonal competition were offset by the prevention of SASP and protumor inflammation at later stages.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - George Kassiotis
- Retroviral Immunology
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
44
|
Liu Y, Han L. Harnessing transposable elements for cancer therapy. Trends Cancer 2023; 9:526-527. [PMID: 37248150 DOI: 10.1016/j.trecan.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Transposable elements (TEs) can move within the genome and can have a significant role in cancer development. Shah et al. recently identified that TEs have regulatory potentials and that tumor-specific TE-gene chimeric events that produce new isoforms of proteins could serve as universal cancer biomarkers and targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuan Liu
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA.
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA; Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
45
|
Karimzadeh M, Arlidge C, Rostami A, Lupien M, Bratman SV, Hoffman MM. Human papillomavirus integration transforms chromatin to drive oncogenesis. Genome Biol 2023; 24:142. [PMID: 37365652 DOI: 10.1186/s13059-023-02926-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/07/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Human papillomavirus (HPV) drives almost all cervical cancers and up to 70% of head and neck cancers. Frequent integration into the host genome occurs predominantly in tumorigenic types of HPV. We hypothesize that changes in chromatin state at the location of integration can result in changes in gene expression that contribute to the tumorigenicity of HPV. RESULTS We find that viral integration events often occur along with changes in chromatin state and expression of genes near the integration site. We investigate whether introduction of new transcription factor binding sites due to HPV integration could invoke these changes. Some regions within the HPV genome, particularly the position of a conserved CTCF binding site, show enriched chromatin accessibility signal. ChIP-seq reveals that the conserved CTCF binding site within the HPV genome binds CTCF in 4 HPV+ cancer cell lines. Significant changes in CTCF binding pattern and increases in chromatin accessibility occur exclusively within 100 kbp of HPV integration sites. The chromatin changes co-occur with out-sized changes in transcription and alternative splicing of local genes. Analysis of The Cancer Genome Atlas (TCGA) HPV+ tumors indicates that HPV integration upregulates genes which have significantly higher essentiality scores compared to randomly selected upregulated genes from the same tumors. CONCLUSIONS Our results suggest that introduction of a new CTCF binding site due to HPV integration reorganizes chromatin state and upregulates genes essential for tumor viability in some HPV+ tumors. These findings emphasize a newly recognized role of HPV integration in oncogenesis.
Collapse
Affiliation(s)
- Mehran Karimzadeh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Christopher Arlidge
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ariana Rostami
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Scott V Bratman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Michael M Hoffman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
46
|
Lynch-Sutherland CF, McDougall LI, Stockwell PA, Almomani SN, Weeks RJ, Ludgate JL, Gamage TKJB, Chatterjee A, James JL, Eccles MR, Macaulay EC. The transposable element-derived transcript of LIN28B has a placental origin and is not specific to tumours. Mol Genet Genomics 2023:10.1007/s00438-023-02033-1. [PMID: 37269361 PMCID: PMC10363060 DOI: 10.1007/s00438-023-02033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/15/2023] [Indexed: 06/05/2023]
Abstract
Transposable elements (TEs) are genetic elements that have evolved as crucial regulators of human development and cancer, functioning as both genes and regulatory elements. When TEs become dysregulated in cancer cells, they can serve as alternate promoters to activate oncogenes, a process known as onco-exaptation. This study aimed to explore the expression and epigenetic regulation of onco-exaptation events in early human developmental tissues. We discovered co-expression of some TEs and oncogenes in human embryonic stem cells and first trimester and term placental tissues. Previous studies identified onco-exaptation events in various cancer types, including an AluJb SINE element-LIN28B interaction in lung cancer cells, and showed that the TE-derived LIN28B transcript is associated with poor patient prognosis in hepatocellular carcinoma. This study further characterized the AluJb-LIN28B transcript and confirmed that its expression is restricted to the placenta. Targeted DNA methylation analysis revealed differential methylation of the two LIN28B promoters between placenta and healthy somatic tissues, indicating that some TE-oncogene interactions are not cancer-specific but arise from the epigenetic reactivation of developmental TE-derived regulatory events. In conclusion, our findings provide evidence that some TE-oncogene interactions are not limited to cancer and may originate from the epigenetic reactivation of TE-derived regulatory events that are involved in early development. These insights broaden our understanding of the role of TEs in gene regulation and suggest the potential importance of targeting TEs in cancer therapy beyond their conventional use as cancer-specific markers.
Collapse
Affiliation(s)
- Chiemi F Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand.
| | - Lorissa I McDougall
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Suzan N Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Jackie L Ludgate
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Teena K J B Gamage
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
47
|
Modenini G, Abondio P, Guffanti G, Boattini A, Macciardi F. Evolutionarily recent retrotransposons contribute to schizophrenia. Transl Psychiatry 2023; 13:181. [PMID: 37244930 DOI: 10.1038/s41398-023-02472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that constitute half of the human genome. Recent studies suggest that polymorphic non-reference TEs (nrTEs) may contribute to cognitive diseases, such as schizophrenia, through a cis-regulatory effect. The aim of this work is to identify sets of nrTEs putatively linked to an increased risk of developing schizophrenia. To do so, we inspected the nrTE content of genomes from the dorsolateral prefrontal cortex of schizophrenic and control individuals and identified 38 nrTEs that possibly contribute to the emergence of this psychiatric disorder, two of them further confirmed with haplotype-based methods. We then performed in silico functional inferences and found that 9 of the 38 nrTEs act as expression/alternative splicing quantitative trait loci (eQTLs/sQTLs) in the brain, suggesting a possible role in shaping the human cognitive genome structure. To our knowledge, this is the first attempt at identifying polymorphic nrTEs that can contribute to the functionality of the brain. Finally, we suggest that a neurodevelopmental genetic mechanism, which involves evolutionarily young nrTEs, can be key to understanding the ethio-pathogenesis of this complex disorder.
Collapse
Affiliation(s)
| | - Paolo Abondio
- BiGeA Department, University of Bologna, Bologna, Italy
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Guia Guffanti
- Department of Psychiatry, McLean Hospital-Harvard Medical School, Belmont, MA, USA
| | | | - Fabio Macciardi
- Department of Medical Education (Neuroscience), CUSM, Colton, CA, USA.
| |
Collapse
|
48
|
Mosaddeghi P, Farahmandnejad M, Zarshenas MM. The role of transposable elements in aging and cancer. Biogerontology 2023:10.1007/s10522-023-10028-z. [PMID: 37017895 DOI: 10.1007/s10522-023-10028-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 04/06/2023]
Abstract
Transposable elements (TEs) constitute a large portion of the human genome. Various mechanisms at the transcription and post-transcription levels developed to suppress TE activity in healthy conditions. However, a growing body of evidence suggests that TE dysregulation is involved in various human diseases, including age-related diseases and cancer. In this review, we explained how sensing TEs by the immune system could induce innate immune responses, chronic inflammation, and following age-related diseases. We also noted that inflammageing and exogenous carcinogens could trigger the upregulation of TEs in precancerous cells. Increased inflammation could enhance epigenetic plasticity and upregulation of early developmental TEs, which rewires the transcriptional networks and gift the survival advantage to the precancerous cells. In addition, upregulated TEs could induce genome instability, activation of oncogenes, or inhibition of tumor suppressors and consequent cancer initiation and progression. So, we suggest that TEs could be considered therapeutic targets in aging and cancer.
Collapse
Affiliation(s)
- Pouria Mosaddeghi
- Medicinal Plants Processing Research Center, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mitra Farahmandnejad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Quality Control of Drug Products Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
49
|
Hamann MV, Adiba M, Lange UC. Confounding factors in profiling of locus-specific human endogenous retrovirus (HERV) transcript signatures in primary T cells using multi-study-derived datasets. BMC Med Genomics 2023; 16:68. [PMID: 37013607 PMCID: PMC10068191 DOI: 10.1186/s12920-023-01486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERV) are repetitive sequence elements and a substantial part of the human genome. Their role in development has been well documented and there is now mounting evidence that dysregulated HERV expression also contributes to various human diseases. While research on HERV elements has in the past been hampered by their high sequence similarity, advanced sequencing technology and analytical tools have empowered the field. For the first time, we are now able to undertake locus-specific HERV analysis, deciphering expression patterns, regulatory networks and biological functions of these elements. To do so, we inevitable rely on omics datasets available through the public domain. However, technical parameters inevitably differ, making inter-study analysis challenging. We here address the issue of confounding factors for profiling locus-specific HERV transcriptomes using datasets from multiple sources. METHODS We collected RNAseq datasets of CD4 and CD8 primary T cells and extracted HERV expression profiles for 3220 elements, resembling most intact, near full-length proviruses. Looking at sequencing parameters and batch effects, we compared HERV signatures across datasets and determined permissive features for HERV expression analysis from multiple-source data. RESULTS We could demonstrate that considering sequencing parameters, sequencing-depth is most influential on HERV signature outcome. Sequencing samples deeper broadens the spectrum of expressed HERV elements. Sequencing mode and read length are secondary parameters. Nevertheless, we find that HERV signatures from smaller RNAseq datasets do reliably reveal most abundantly expressed HERV elements. Overall, HERV signatures between samples and studies overlap substantially, indicating a robust HERV transcript signature in CD4 and CD8 T cells. Moreover, we find that measures of batch effect reduction are critical to uncover genic and HERV expression differences between cell types. After doing so, differences in the HERV transcriptome between ontologically closely related CD4 and CD8 T cells became apparent. CONCLUSION In our systematic approach to determine sequencing and analysis parameters for detection of locus-specific HERV expression, we provide evidence that analysis of RNAseq datasets from multiple studies can aid confidence of biological findings. When generating de novo HERV expression datasets we recommend increased sequence depth ( > = 100 mio reads) compared to standard genic transcriptome pipelines. Finally, batch effect reduction measures need to be implemented to allow for differential expression analysis.
Collapse
Affiliation(s)
| | - Maisha Adiba
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Ulrike C Lange
- Leibniz Institute of Virology (LIV), Hamburg, Germany.
- Institute for Infection Research and Vaccine Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
50
|
Chimeric transcripts of transposable elements and genes are a source of tumor-specific antigens. Nat Genet 2023; 55:538-539. [PMID: 37012458 DOI: 10.1038/s41588-023-01361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|