1
|
Kleszcz R, Majchrzak-Celińska A, Baer-Dubowska W. Tannins in cancer prevention and therapy. Br J Pharmacol 2025; 182:2075-2093. [PMID: 37614022 DOI: 10.1111/bph.16224] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
Tannins are a heterogenous class of polyphenolic natural products with promising cancer chemopreventive and therapeutic potential. Studies undertaken over the last 30 years have demonstrated their capacity to target many cellular pathways and molecules important in the development of cancer. Recently, new mechanisms that might be important in anti-carcinogenic activity, such as inhibition of epithelial-to-mesenchymal transition, reduction of cancer stem cell creation, and modulation of cancer cells metabolism have been described. Along with the mechanisms underlying the anti-cancer activity of tannins, this review focuses on their possible application as chemosensitizers in adjuvant therapy and countering multidrug resistance. Furthermore, characteristic physicochemical properties of some tannins, particularly tannic acid, are useful in the formation of nanovehicles for anticancer drugs or the isolation of circulating cancer cells. These new potential applications of tannins deserve further studies. Well-designed clinical trials, which are scarce, are needed to assess the therapeutic effects of tannins themselves or as adjuvants in cancer treatment. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
2
|
Aroonthongsawat P, Manocheewa S, Srisawat C, Punnakitikashem P, Suwanwong Y. Enhancement of the in vitro anti-leukemic effect of the histone deacetylase inhibitor romidepsin using Poly-(D, L-lactide-co-glycolide) nanoparticles as a drug carrier. Eur J Pharm Sci 2025; 207:107043. [PMID: 39952370 DOI: 10.1016/j.ejps.2025.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
The goal of this work is to develop a delivery system for histone deacetylase inhibitor (HDACi) romidepsin (ROM) using Poly(D, L-lactide-co-glycolide) as a carrier and evaluate its anti-leukemic effects. Romidepsin-loaded nanoparticles (ROM NPs) required for this purpose were fabricated using a single emulsion-solvent evaporation technique. Their physical characteristics and in vitro drug release profiles were studied, alongside biocompatibility and hemocompatibility assessments. Cell viability assays and Annexin V/Propidium Iodide (PI) staining were conducted to evaluate the anti-leukemic and apoptosis induction efficiency of ROM NPs in vitro. ROM NPs displayed a spherical shape with an average hydrodynamic size of about 149.7 ± 8.4 nm, a PDI of 0.11 ± 0.03, and a zeta potential of -25.27 ± 2.12 mV. The nanoparticles demonstrated a high encapsulation efficiency of ROM (∼93 %) and these nanoparticles effectively entered acute leukemia cells, including U937 and Jurkat. ROM NPs also exhibited a prolonged biphasic release pattern, specifically, the initial burst release phase occurred within the first 24 h, followed by a slower, sustained release. Additionally, they showed no hematological or biological toxicity, indicating their potential use for the delivery of anti-cancer drugs through the circulatory system. In tests on acute leukemia cell lines, ROM NPs showed significantly stronger anti-leukemic effects and induced apoptosis to a greater extent compared to free ROM. In summary, ROM NPs represent a promising therapy option for leukemia according to their enhanced anti-leukemic effects. Further modification of this strategy could be performed to enable target specificity, hence minimizing damage to normal cells.
Collapse
Affiliation(s)
- Pinyadapat Aroonthongsawat
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriphan Manocheewa
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Primana Punnakitikashem
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Yaneenart Suwanwong
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Biosensors and Bioengineering (CEBB), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Guha S, Jagadeesan Y, Pandey MM, Mittal A, Chitkara D. Targeting the epigenome with advanced delivery strategies for epigenetic modulators. Bioeng Transl Med 2025; 10:e10710. [PMID: 39801754 PMCID: PMC11711227 DOI: 10.1002/btm2.10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 01/16/2025] Open
Abstract
Epigenetics mechanisms play a significant role in human diseases by altering DNA methylation status, chromatin structure, and/or modifying histone proteins. By modulating the epigenetic status, the expression of genes can be regulated without any change in the DNA sequence itself. Epigenetic drugs exhibit promising therapeutic efficacy against several epigenetically originated diseases including several cancers, neurodegenerative diseases, metabolic disorders, cardiovascular disorders, and so forth. Currently, a considerable amount of research is focused on discovering new drug molecules to combat the existing research gap in epigenetic drug therapy. A novel and efficient delivery system can be established as a promising approach to overcome the drawbacks associated with the current epigenetic modulators. Therefore, formulating the existing epigenetic drugs with distinct encapsulation strategies in nanocarriers, including solid lipid nanoparticles, nanogels, bio-engineered nanocarriers, liposomes, surface modified nanoparticles, and polymer-drug conjugates have been examined for therapeutic efficacy. Nonetheless, several epigenetic modulators are untouched for their therapeutic potential through different delivery strategies. This review provides a comprehensive up to date discussion on the research findings of various epigenetics mechanism, epigenetic modulators, and delivery strategies utilized to improve their therapeutic outcome. Furthermore, this review also highlights the recently emerged CRISPR tool for epigenome editing.
Collapse
Affiliation(s)
- Sonia Guha
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Yogeswaran Jagadeesan
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Murali Monohar Pandey
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Anupama Mittal
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Deepak Chitkara
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| |
Collapse
|
4
|
Nazari-Vanani R, Kayani Z, Karimian K, Ajdari MR, Heli H. Development of New Nanoniosome Carriers for Vorinostat: Evaluation of Anticancer Efficacy In Vitro. J Pharm Sci 2024; 113:2584-2594. [PMID: 38801974 DOI: 10.1016/j.xphs.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Vorinostat (VST) is a chemotherapeutic agent administrated for various types of cancers. However, it suffers from side effects and chemoresistance that reduce its application. Different nanoniosomes comprised Span 20, 60, 65 and 80 were prepared by the thin film hydration method and loaded with VST. The nanoniosomes were physicochemically characterized using particle size analysis and field emission scanning electron microscopy. The best formulation that was prepared using Span 65 (VST-NN-S65) included vesicle size of 127 nm with a narrow size distribution. VST-NN-S65 had an entrapment efficiency and loading capacity of 81.3 ± 5.1 and 32.0 ± 3.9 %, respectively. Drug release rate measurements showed that 90 % of VST was liberated within 1 h. Cytotoxicity assessments of VST-NN-S65 in HeLa and MCF7 cells indicated significant improvement in the effectiveness of VST, compared to the VST suspension. For VST-NN-S65, IC50 values of 26.3 and 6.6 μg mL-1 were obtained for HeLa and MCF7 cell lines, respectively. In situ apoptosis detection by the TUNEL assay revealed that apoptosis mainly occurred in the cell lines.
Collapse
Affiliation(s)
- R Nazari-Vanani
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Z Kayani
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - K Karimian
- Arasto Pharmaceutical Chemicals Inc., Yousefabad, Jahanarar Avenue, Tehran, Iran
| | - M R Ajdari
- Arasto Pharmaceutical Chemicals Inc., Yousefabad, Jahanarar Avenue, Tehran, Iran
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
El Omari N, Khalid A, Makeen HA, Alhazmi HA, Albratty M, Mohan S, Tan CS, Ming LC, Chook JB, Bouyahya A. Stochasticity of anticancer mechanisms underlying clinical effectiveness of vorinostat. Heliyon 2024; 10:e33052. [PMID: 39021957 PMCID: PMC11253278 DOI: 10.1016/j.heliyon.2024.e33052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
The Food and Drug Administration (FDA) has approved vorinostat, also called Zolinza®, for its effectiveness in fighting cancer. This drug is a suberoyl-anilide hydroxamic acid belonging to the class of histone deacetylase inhibitors (HDACis). Its HDAC inhibitory potential allows it to accumulate acetylated histones. This, in turn, can restore normal gene expression in cancer cells and activate multiple signaling pathways. Experiments have proven that vorinostat induces histone acetylation and cytotoxicity in many cancer cell lines, increases the level of p21 cell cycle proteins, and enhances pro-apoptotic factors while decreasing anti-apoptotic factors. Additionally, it regulates the immune response by up-regulating programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression, and can impact proteasome and/or aggresome degradation, endoplasmic reticulum function, cell cycle arrest, apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this study, we sought to elucidate the precise molecular mechanism by which Vorinostat inhibits HDACs. A deeper understanding of these mechanisms could improve our understanding of cancer cell abnormalities and provide new therapeutic possibilities for cancer treatment.
Collapse
Affiliation(s)
- Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum, 11111, Sudan
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University, Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Jack Bee Chook
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
6
|
Liu C, Wu K, Li J, Mu X, Gao H, Xu X. Nanoparticle-mediated therapeutic management in cholangiocarcinoma drug targeting: Current progress and future prospects. Biomed Pharmacother 2023; 158:114135. [PMID: 36535198 DOI: 10.1016/j.biopha.2022.114135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Patients with cholangiocarcinoma (CCA) often have an unfavorable prognosis because of its insidious nature, low resectability rate, and poor response to anticancer drugs and radiotherapy, which makes early detection and treatment difficult. At present, CCA has a five-year overall survival rate (OS) of only 5%, despite advances in therapies. New an increasing number of evidence suggests that nanoplatforms may play a crucial role in enhancing the pharmacological effects and in reducing both short- and long-term side effects of cancer treatment. This document reviews the advantages and shortcomings of nanoparticles such as liposomes, polymeric nanoparticle,inorganic nanoparticle, nano-metals and nano-alloys, carbon dots, nano-micelles, dendrimer, nano-capsule, bio-Nanomaterials in the diagnosis and treatment of CCA and discuss the current challenges in of nanoplatforms for CCA.
Collapse
Affiliation(s)
- Chunkang Liu
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jianyang Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xupeng Mu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huan Gao
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaohua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
7
|
Yang JI, Lee HL, Yun JJ, Kim J, So KH, Jeong YIL, Kang DH. pH and Redox-Dual Sensitive Chitosan Nanoparticles Having Methyl Ester and Disulfide Linkages for Drug Targeting against Cholangiocarcinoma Cells. MATERIALS 2022; 15:ma15113795. [PMID: 35683095 PMCID: PMC9181436 DOI: 10.3390/ma15113795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
The aim of this study is to prepare pH- and redox-sensitive nanoparticles for doxorubicin (DOX) delivery against DOX-resistant HuCC-T1 human cholangiocarcinoma (CCA) cells. For this purpose, L-histidine methyl ester (HIS) was attached to chitosan oligosaccharide (COS) via dithiodipropionic acid (abbreviated as ChitoHISss). DOX-incorporated nanoparticles of ChitoHISss conjugates were fabricated by a dialysis procedure. DOX-resistant HuCC-T1 cells were prepared by repetitive exposure of HuCC-T1 cells to DOX. ChitoHISss nanoparticles showed spherical morphology with a small diameter of less than 200 nm. The acid pH and glutathione (GSH) addition induced changes in the size distribution pattern of ChitoHISss nanoparticles from a narrow/monomodal distribution pattern to a wide/multimodal pattern and increased the fluorescence intensity of the nanoparticle solution. These results indicate that a physicochemical transition of nanoparticles can occur in an acidic pH or redox state. The more acidic the pH or the higher the GSH concentration the higher the drug release rate was, indicating that an acidic environment or higher redox states accelerated drug release from ChitoHISss nanoparticles. Whereas free DOX showed decreased anticancer activity at DOX-resistant HuCC-T1 cells, DOX-incorporated ChitoHISss nanoparticles showed dose-dependent anticancer activity. Intracellular delivery of DOX-incorporated ChitoHISss nanoparticles was relatively increased at an acidic pH and in the presence of GSH, indicating that DOX-incorporated ChitoHISss nanoparticles have superior acidic pH- and redox-sensitive behavior. In an in vivo tumor xenograft model, DOX-incorporated ChitoHISss nanoparticles were specifically delivered to tumor tissues and then efficiently inhibited tumor growth. We suggest that ChitoHISss nanoparticles are a promising candidate for treatment of CCA.
Collapse
Affiliation(s)
- Ju-Il Yang
- Department of Medical Science, School of Medicine, Pusan National University, Busan 50612, Korea;
- Department of Internal Medicine, Yangsan Hospital, Pusan National University, Busan 50612, Korea
| | - Hye Lim Lee
- Research Institute of Convergence of Biomedical Science and Technology, Yangsan Hospital, Pusan National University, Busan 50612, Korea; (H.L.L.); (J.K.)
| | - Je-Jung Yun
- Research Center for Environmentally Friendly Agricultural Life Science, Jeonnam Bioindustry Foundation, Gokseong-gun 57509, Korea;
| | - Jungsoo Kim
- Research Institute of Convergence of Biomedical Science and Technology, Yangsan Hospital, Pusan National University, Busan 50612, Korea; (H.L.L.); (J.K.)
| | - Kyoung-Ha So
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
- Correspondence: (K.-H.S.); (Y.-I.J.); (D.-H.K.)
| | - Young-IL Jeong
- Research Institute of Convergence of Biomedical Science and Technology, Yangsan Hospital, Pusan National University, Busan 50612, Korea; (H.L.L.); (J.K.)
- Correspondence: (K.-H.S.); (Y.-I.J.); (D.-H.K.)
| | - Dae-Hwan Kang
- Department of Medical Science, School of Medicine, Pusan National University, Busan 50612, Korea;
- Department of Internal Medicine, Yangsan Hospital, Pusan National University, Busan 50612, Korea
- Research Institute of Convergence of Biomedical Science and Technology, Yangsan Hospital, Pusan National University, Busan 50612, Korea; (H.L.L.); (J.K.)
- Correspondence: (K.-H.S.); (Y.-I.J.); (D.-H.K.)
| |
Collapse
|
8
|
Pylypchuk IV, Suo H, Chucheepchuenkamol C, Jedicke N, Lindén PA, Lindström ME, Manns MP, Sevastyanova O, Yevsa T. High-Molecular-Weight Fractions of Spruce and Eucalyptus Lignin as a Perspective Nanoparticle-Based Platform for a Therapy Delivery in Liver Cancer. Front Bioeng Biotechnol 2022; 9:817768. [PMID: 35198551 PMCID: PMC8860172 DOI: 10.3389/fbioe.2021.817768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
The natural polymer, lignin, possesses unique biodegradable and biocompatible properties, making it highly attractive for the generation of nanoparticles for targeted cancer therapy. In this study, we investigated spruce and eucalyptus lignin nanoparticles (designated as S-and E-LNPs, respectively). Both LNP types were generated from high-molecular-weight (Mw) kraft lignin obtained as insoluble residues after a five-step solvent fractionation approach, which included ethyl acetate, ethanol, methanol, and acetone. The resulting S-and E-LNPs ranged in size from 16 to 60 nm with uniform spherical shape regardless of the type of lignin. The preparation of LNPs from an acetone-insoluble lignin fraction is attractive because of the use of high-Mw lignin that is otherwise not suitable for most polymeric applications, its potential scalability, and the consistent size of the LNPs, which was independent of increased lignin concentrations. Due to the potential of LNPs to serve as delivery platforms in liver cancer treatment, we tested, for the first time, the efficacy of newly generated E-LNPs and S-LNPs in two types of primary liver cancer, hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), in vitro. Both S-LNPs and E-LNPs inhibited the proliferation of HCC cells in a dose-dependent manner and did not affect CCA cell line growth. The inhibitory effect toward HCC was more pronounced in the E-LNP-treated group and was comparable to the standard therapy, sorafenib. Also, E-LNPs induced late apoptosis and necroptosis while inhibiting the HCC cell line. This study demonstrated that an elevated number of carbohydrates on the surface of the LNPs, as shown by NMR, seem to play an important role in mediating the interaction between LNPs and eukaryotic cells. The latter effect was most pronounced in E-LNPs. The novel S- and E-LNPs generated in this work are promising materials for biomedicine with advantageous properties such as small particle size and tailored surface functionality, making them an attractive and potentially biodegradable delivery tool for combination therapy in liver cancer, which still has to be verified in vivo using HCC and CCA models.
Collapse
Affiliation(s)
- Ievgen V Pylypchuk
- Division of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Chanakarn Chucheepchuenkamol
- Division of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Science Service, Ministry of Higher Education, Science, Research and Innovation, Ratchathewi, Thailand
| | - Nils Jedicke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Pär A Lindén
- Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael E Lindström
- Division of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Olena Sevastyanova
- Division of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Kankeu Fonkoua LA, Serrano Uson Junior PL, Mody K, Mahipal A, Borad MJ, Roberts LR. Novel and emerging targets for cholangiocarcinoma progression: therapeutic implications. Expert Opin Ther Targets 2022; 26:79-92. [PMID: 35034558 DOI: 10.1080/14728222.2022.2029412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is a heterogeneous group of aggressive biliary malignancies. While surgery and liver transplantation are the only potentially curative modalities for early-stage disease, limited options are available for most patients with incurable-stage disease. Survival outcomes remain dismal. Recent molecular profiling efforts have led to improved understanding of the genomic landscape of CCA and to the identification of subgroups with distinct diagnostic, prognostic, and therapeutic implications. AREAS COVERED : We provide an updated review and future perspectives on features of cholangiocarcinogenesis that can be translated into therapeutic biomarkers and targets. We highlight the critical studies that have established current systemic chemotherapy and targeted therapeutics, while elaborating on novel targeted and immunotherapeutic approaches in development. Relevant literature and clinical studies were identified by searching PubMed and www.ClinicalTrials.gov. EXPERT OPINION : While therapies targeting the various molecular subgroups of CCA are rapidly emerging and changing treatment paradigms, their success has been limited by the genetic heterogeneity of CCA and the plasticity of the targets. Novel strategies aiming to combine immunotherapy, chemotherapy, and molecularly-targeted therapeutics will be required to offer durable clinical benefit and maximize survival.
Collapse
Affiliation(s)
| | | | - Kabir Mody
- Rochester, MN, and Oncology in Jacksonville, FL, Mayo Clinic, USA
| | | | | | | |
Collapse
|
10
|
Yoon HM, Kang MS, Choi GE, Kim YJ, Bae CH, Yu YB, Jeong YIL. Stimuli-Responsive Drug Delivery of Doxorubicin Using Magnetic Nanoparticle Conjugated Poly(ethylene glycol)- g-Chitosan Copolymer. Int J Mol Sci 2021; 22:ijms222313169. [PMID: 34884973 PMCID: PMC8658650 DOI: 10.3390/ijms222313169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022] Open
Abstract
Stimuli-responsive nanoparticles are regarded as an ideal candidate for anticancer drug targeting. We synthesized glutathione (GSH) and magnetic-sensitive nanocomposites for a dual-targeting strategy. To achieve this goal, methoxy poly (ethylene glycol) (MePEG) was grafted to water-soluble chitosan (abbreviated as ChitoPEG). Then doxorubicin (DOX) was conjugated to the backbone of chitosan via disulfide linkage. Iron oxide (IO) magnetic nanoparticles were also conjugated to the backbone of chitosan to provide magnetic sensitivity. In morphological observation, images from a transmission electron microscope (TEM) showed that IO nanoparticles were embedded in the ChitoPEG/DOX/IO nanocomposites. In a drug release study, GSH addition accelerated DOX release rate from nanocomposites, indicating that nanocomposites have redox-responsiveness. Furthermore, external magnetic stimulus concentrated nanocomposites in the magnetic field and then provided efficient internalization of nanocomposites into cancer cells in cell culture experiments. In an animal study with CT26 cell-bearing mice, nanocomposites showed superior magnetic sensitivity and then preferentially targeted tumor tissues in the field of external magnetic stimulus. Nanocomposites composed of ChitoPEG/DOX/IO nanoparticle conjugates have excellent anticancer drug targeting properties.
Collapse
Affiliation(s)
- Hyun-Min Yoon
- Department of Industrial and Management Engineering, POSTECH, Gyeongbuk, Pohang 37673, Korea;
| | - Min-Su Kang
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea;
| | - Go-Eun Choi
- College of Medicine, Hanyang University, Seoul 04763, Korea;
| | | | - Chang-Hyu Bae
- Department of Well-being Bioresources, Sunchon National University, Suncheon 57922, Korea;
| | - Young-Bob Yu
- Department of Emergency Medical Rescue & Department of Herbal Pharmaceutical Development, Nambu University, Gwangju 62271, Korea
- Correspondence: (Y.-B.Y.); (Y.-I.J.); Tel.: +82-62-970-0163 (Y.-B.Y.), +82-62-230-7567 (Y-.I.J)
| | - Young-IL Jeong
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
- Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam, Yangsan 50612, Korea
- Correspondence: (Y.-B.Y.); (Y.-I.J.); Tel.: +82-62-970-0163 (Y.-B.Y.), +82-62-230-7567 (Y-.I.J)
| |
Collapse
|
11
|
Hyaluronic Acid-Functionalized Nanomicelles Enhance SAHA Efficacy in 3D Endometrial Cancer Models. Cancers (Basel) 2021; 13:cancers13164032. [PMID: 34439185 PMCID: PMC8394402 DOI: 10.3390/cancers13164032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary One of the major limitations to cancer therapies are the side effects caused by the drug interacting with any tissue in the body. There is often a balance between patient health and effectively treating the disease. To by-pass this balancing act nanoparticles are being used to deliver therapeutics straight to the tumors, acting as “Trojan Horses”. Endometrial cancers are known to have more of the cell surface protein CD44 than healthy tissues. Here, to efficiently target endometrial cancer, hyaluronic acid, which naturally binds to the CD44 protein was attached to the surface of nanoparticles and tested on microtissues or spheroids to better model a tumor and understand drug delivery performance. We show that our hyaluronic acid-nanoparticle formulations improve drug effects and interact with the cancer cells more than without this targeting agent. Abstract Histone Deacetylase (HDAC) enzymes are upregulated in cancer leading to the development of HDAC inhibiting compounds, several of which are currently in clinical trials. Side effects associated with toxicity and non-specific targeting indicate the need for efficient drug delivery approaches and tumor specific targeting to enhance HDAC efficacy in solid tumor cancers. SAHA encapsulation within F127 micelles functionalized with a surface hyaluronic acid moiety, was developed to target endometrial cancer cells expressing elevated levels of CD44. In vitro viability and morphology analyses was conducted in both 2D and 3D models to assess the translational potential of this approach. Encapsulation enhanced SAHA delivery and activity, demonstrating increased cytotoxic efficacy in 2D and 3D endometrial cancer models. High-content imaging showed improved nanoparticle internalization in 2D and CD44 enhanced penetration in 3D models. In addition, the nano-delivery system enhanced spheroid penetration resulting in cell growth suppression, p21 associated cell cycle arrest, as well as overcoming the formation of an EMT associated phenotype observed in free drug treated type II endometrial cancer cells. This study demonstrates that targeted nanoparticle delivery of SAHA could provide the basis for improving its efficacy in endometrial cancer. Using 3D models for endometrial cancer allows the elucidation of nanoparticle performance and CD44 targeting, likely through penetration and retention within the tumor model.
Collapse
|
12
|
Song J, Kook MS, Kim BH, Jeong YIL, Oh KJ. Ciprofloxacin-Releasing ROS-Sensitive Nanoparticles Composed of Poly(Ethylene Glycol)/Poly(D,L-lactide-co-glycolide) for Antibacterial Treatment. MATERIALS 2021; 14:ma14154125. [PMID: 34361319 PMCID: PMC8348395 DOI: 10.3390/ma14154125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
Since urinary tract infections (UTIs) are closely associated with oxidative stress, we developed ROS-sensitive nanoparticles for ciprofloxacin (CIP) delivery for inhibition of UTI. Poly(D,L-lactide-co-glycolide) (PLGA)- selenocystamine (PLGA-selenocystamine) conjugates were attached to methoxypoly(ethylene glycol) (PEG) tetraacid (TA) (TA-PEG) conjugates to produce a copolymer (abbreviated as LGseseTAPEG). Selenocystamine linkages were introduced between PLGA and TA to endow reactive oxygen species (ROS) sensitivity to nanoparticles. CIP-incorporated nanoparticles of LGseseTAPEG copolymer were fabricated by W/O/W/W emulsion method. CIP-incorporated nanoparticles responded to H2O2 and then their morphologies were disintegrated by incubation with H2O2. Furthermore, particle size distribution of nanoparticles was changed from mono-modal distribution pattern to multi-modal distribution pattern by addition of H2O2. CIP release from nanoparticles of LGseseTAPEG copolymer was faster in the presence of H2O2 than in the absence of it. In antibacterial study using Escherichia coli (E. coli), free CIP and free CIP plus empty nanoparticles showed dose-dependent inhibitory effect against growth of bacteria while CIP-incorporated nanoparticles have less antibacterial activity compared to free CIP. These results were due to that CIP-incorporated nanoparticles have sustained release properties. When free CIP or CIP-incorporated nanoparticles were introduced into dialysis membrane to mimic in vivo situation, CIP-incorporated nanoparticles showed superior antibacterial activity compared to free CIP. At cell viability assay, nanoparticles of LGseseTAPEG copolymer have no acute cytotoxicity against L929 mouse fibroblast cells and CCD986sk human skin fibroblast cells. We suggest LGseseTAPEG nanoparticles are a promising candidate for CIP delivery.
Collapse
Affiliation(s)
- Jaeik Song
- Department of Urology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju 61469, Korea;
| | - Min-Suk Kook
- Department of Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Byung-Hoon Kim
- Department of Dental Materials, School of Dentistry, Chosun University, Gwangju 61452, Korea; (B.-H.K.); (Y.-I.J.)
| | - Young-IL Jeong
- Department of Dental Materials, School of Dentistry, Chosun University, Gwangju 61452, Korea; (B.-H.K.); (Y.-I.J.)
| | - Kyung-Jin Oh
- Department of Urology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju 61469, Korea;
- Correspondence: ; Tel.: +82-62-220-6704
| |
Collapse
|
13
|
Kaur J, Jakhmola S, Singh RR, Joshi B, Jha HC, Joshi A. Ultrasonic Atomizer-Driven Development of Biocompatible and Biodegradable Poly(d,l-lactide- co-glycolide) Nanocarrier-Encapsulated Suberoylanilide Hydroxamic Acid to Combat Brain Cancer. ACS APPLIED BIO MATERIALS 2021; 4:5627-5637. [PMID: 35006730 DOI: 10.1021/acsabm.1c00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The path to the discovery of anticancer drugs and investigating their potential activity has remained a quest for several decades. Suberoylanilide hydroxamic acid (SAHA), also known as "Vorinostat", is a well-known histone deacetylase inhibitor (HDACi) and has the potential to act as a therapeutic agent against tumorigenesis. Herein, we have fabricated SAHA incorporated into biocompatible and biodegradable poly(d,l-lactide-co-glycolide) PLGA nanoparticles (NPs) using a facile method of ultrasonic atomization and evaluated their anticancer property. We have explored their characteristics using dynamic light scattering (DLS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), encapsulation efficiency, and in vitro drug release and have investigated their efficacy on U87 glioblastoma (GBM) cells. SAHA-PLGA NPs synthesized were of average mean size of 80 ± 23 and 105 ± 6.0 nm observed through cryo-field-emission gun SEM and HR-TEM with a polydispersity index of 0.068 and a ζ-potential value of -13.26 mV. The encapsulation efficiency was 53%, with a sustained in vitro release up to 48 h. The in vitro assessment of SAHA-PLGA NPs for their anticancer activity on U87 GBM cells showed cellular cytotoxicity with an IC50 of 19.91 μM. SAHA-PLGA NP-treated cells also showed suppression in migration with 8.77 μM concentration, and cell growth inhibition was observed in the wound scratch assay for up to 24 h. The cellular uptake studies have been utilized by time-dependent experiments, revealing their cellular internalization. Taking this into account, our present experimental findings indicate that SAHA-PLGA NPs could play a significant role in enhancing the effectiveness and bioavailability and reducing adverse effects of cancer chemotherapy. It also highlights the inherent potential of these biocompatible entities for chemotherapeutic applications in biomedical and pharmaceutics.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552 Madhya Pradesh, India
| | - Shweta Jakhmola
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552 Madhya Pradesh, India
| | - Ravi Raj Singh
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552 Madhya Pradesh, India
| | - Bhavana Joshi
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552 Madhya Pradesh, India
| | - Hem Chandra Jha
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552 Madhya Pradesh, India
| | - Abhijeet Joshi
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552 Madhya Pradesh, India
| |
Collapse
|
14
|
Programmed cell death, redox imbalance, and cancer therapeutics. Apoptosis 2021; 26:385-414. [PMID: 34236569 DOI: 10.1007/s10495-021-01682-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
Cancer cells are disordered by nature and thus featured by higher internal redox level than healthy cells. Redox imbalance could trigger programmed cell death if exceeded a certain threshold, rendering therapeutic strategies relying on redox control a possible cancer management solution. Yet, various programmed cell death events have been consecutively discovered, complicating our understandings on their associations with redox imbalance and clinical implications especially therapeutic design. Thus, it is imperative to understand differences and similarities among programmed cell death events regarding their associations with redox imbalance for improved control over these events in malignant cells as well as appropriate design on therapeutic approaches relying on redox control. This review addresses these issues and concludes by bringing affront cold atmospheric plasma as an emerging redox controller with translational potential in clinics.
Collapse
|
15
|
|
16
|
Nanotechnology-based drug delivery systems for the improved sensitization of tamoxifen. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Buocikova V, Rios-Mondragon I, Pilalis E, Chatziioannou A, Miklikova S, Mego M, Pajuste K, Rucins M, Yamani NE, Longhin EM, Sobolev A, Freixanet M, Puntes V, Plotniece A, Dusinska M, Cimpan MR, Gabelova A, Smolkova B. Epigenetics in Breast Cancer Therapy-New Strategies and Future Nanomedicine Perspectives. Cancers (Basel) 2020; 12:E3622. [PMID: 33287297 PMCID: PMC7761669 DOI: 10.3390/cancers12123622] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic dysregulation has been recognized as a critical factor contributing to the development of resistance against standard chemotherapy and to breast cancer progression via epithelial-to-mesenchymal transition. Although the efficacy of the first-generation epigenetic drugs (epi-drugs) in solid tumor management has been disappointing, there is an increasing body of evidence showing that epigenome modulation, in synergy with other therapeutic approaches, could play an important role in cancer treatment, reversing acquired therapy resistance. However, the epigenetic therapy of solid malignancies is not straightforward. The emergence of nanotechnologies applied to medicine has brought new opportunities to advance the targeted delivery of epi-drugs while improving their stability and solubility, and minimizing off-target effects. Furthermore, the omics technologies, as powerful molecular epidemiology screening tools, enable new diagnostic and prognostic epigenetic biomarker identification, allowing for patient stratification and tailored management. In combination with new-generation epi-drugs, nanomedicine can help to overcome low therapeutic efficacy in treatment-resistant tumors. This review provides an overview of ongoing clinical trials focusing on combination therapies employing epi-drugs for breast cancer treatment and summarizes the latest nano-based targeted delivery approaches for epi-drugs. Moreover, it highlights the current limitations and obstacles associated with applying these experimental strategies in the clinics.
Collapse
Affiliation(s)
- Verona Buocikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.B.); (S.M.); (A.G.)
| | - Ivan Rios-Mondragon
- Department of Clinical Dentistry, University of Bergen, Aarstadveien 19, 5009 Bergen, Norway; (I.R.-M.); (M.R.C.)
| | - Eleftherios Pilalis
- e-NIOS Applications Private Company, Alexandrou Pantou 25, 17671 Kallithea, Greece; (E.P.); (A.C.)
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Aristotelis Chatziioannou
- e-NIOS Applications Private Company, Alexandrou Pantou 25, 17671 Kallithea, Greece; (E.P.); (A.C.)
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Svetlana Miklikova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.B.); (S.M.); (A.G.)
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, Aizkraukles str. 21, LV-1006 Riga, Latvia; (K.P.); (M.R.); (A.S.); (A.P.)
| | - Martins Rucins
- Latvian Institute of Organic Synthesis, Aizkraukles str. 21, LV-1006 Riga, Latvia; (K.P.); (M.R.); (A.S.); (A.P.)
| | - Naouale El Yamani
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (N.E.Y.); (E.M.L.); (M.D.)
| | - Eleonora Marta Longhin
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (N.E.Y.); (E.M.L.); (M.D.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, Aizkraukles str. 21, LV-1006 Riga, Latvia; (K.P.); (M.R.); (A.S.); (A.P.)
| | - Muriel Freixanet
- Vall d Hebron, Institut de Recerca (VHIR), 08035 Barcelona, Spain; (M.F.); (V.P.)
| | - Victor Puntes
- Vall d Hebron, Institut de Recerca (VHIR), 08035 Barcelona, Spain; (M.F.); (V.P.)
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Aiva Plotniece
- Latvian Institute of Organic Synthesis, Aizkraukles str. 21, LV-1006 Riga, Latvia; (K.P.); (M.R.); (A.S.); (A.P.)
| | - Maria Dusinska
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (N.E.Y.); (E.M.L.); (M.D.)
| | - Mihaela Roxana Cimpan
- Department of Clinical Dentistry, University of Bergen, Aarstadveien 19, 5009 Bergen, Norway; (I.R.-M.); (M.R.C.)
| | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.B.); (S.M.); (A.G.)
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (V.B.); (S.M.); (A.G.)
| |
Collapse
|
18
|
Pisano S, Wang X, Garcia-Parra J, Gazze A, Edwards K, Feltracco V, Hu Y, He L, Gonzalez D, Francis LW, Conlan RS, Li C. Nanomicelles potentiate histone deacetylase inhibitor efficacy in vitro. Cancer Nanotechnol 2020. [DOI: 10.1186/s12645-020-00070-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Amphiphilic block copolymers used as nanomicelle drug carriers can effectively overcome poor drug solubility and specificity issues. Hence, these platforms have a broad applicability in cancer treatment. In this study, Pluronic F127 was used to fabricate nanomicelles containing the histone deacetylase inhibitor SAHA, which has an epigenetic-driven anti-cancer effect in several tumor types. SAHA-loaded nanomicelles were prepared using a thin-film drying method and characterized for size, surface charge, drug content, and drug release properties. Loaded particles were tested for in vitro activity and their effect on cell cycle and markers of cancer progression.
Results
Following detailed particle characterization, cell proliferation experiments demonstrated that SAHA-loaded nanomicelles more effectively inhibited the growth of HeLa and MCF-7 cell lines compared with free drug formulations. The 30 nm SAHA containing nanoparticles were able to release up to 100% of the encapsulated drug over a 72 h time window. Moreover, gene and protein expression analyses suggested that their cytoreductive effect was achieved through the regulation of p21 and p53 expression. SAHA was also shown to up-regulate E-cadherin expression, potentially influencing tumor migration.
Conclusions
This study highlights the opportunity to exploit pluronic-based nanomicelles for the delivery of compounds that regulate epigenetic processes, thus inhibiting cancer development and progression.
Collapse
|
19
|
Omics-Based Platforms: Current Status and Potential Use for Cholangiocarcinoma. Biomolecules 2020; 10:biom10101377. [PMID: 32998289 PMCID: PMC7600697 DOI: 10.3390/biom10101377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) has been identified as a highly malignant cancer that can be transformed from epithelial cells of the bile duct, including intrahepatic, perihilar and extrahepatic. High-resolution imaging tools (abdominal ultrasound, computed tomography and percutaneous transhepatic cholangial drainage) are recruited for diagnosis. However, the lack of early diagnostic biomarkers and treatment evaluation can lead to serious outcomes and poor prognosis (i.e., CA19-9, MUC5AC). In recent years, scientists have established a large number of omics profiles to reveal underlying mechanisms and networks (i.e., IL-6/STAT3, NOTCH). With these results, we achieved several genomic alteration events (i.e., TP53mut, KRASmut) and epigenetic modifications (i.e., DNA methylation, histone modification) in CCA cells and clinical patients. Moreover, we reviewed candidate gene (such as NF-kB, YAP1) that drive gene transcription factors and canonical pathways through transcriptomics profiles (including microarrays and next-generation sequencing). In addition, the proteomics database also indicates which molecules and their directly binding status could trigger dysfunction signatures in tumorigenesis (carbohydrate antigen 19-9, mucins). Most importantly, we collected metabolomics datasets and pivotal metabolites. These results reflect the pharmacotherapeutic options and evaluate pharmacokinetic/pharmacodynamics in vitro and in vivo. We reversed the panels and selected many potentially small compounds from the connectivity map and L1000CDS2 system. In this paper, we summarize the prognostic value of each candidate gene and correlate this information with clinical events in CCA. This review can serve as a reference for further research to clearly investigate the complex characteristics of CCA, which may lead to better prognosis, drug repurposing and treatment strategies.
Collapse
|
20
|
Xiao JB, Weng JY, Hu YY, Deng GL, Wan XJ. Feasibility and efficacy evaluation of metallic biliary stents eluting gemcitabine and cisplatin for extrahepatic cholangiocarcinoma. World J Gastroenterol 2020; 26:4589-4606. [PMID: 32884219 PMCID: PMC7445865 DOI: 10.3748/wjg.v26.i31.4589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Effective endoscopic management is fundamental for the treatment of extrahepatic cholangiocarcinoma (ECC). However, current biliary stents that are widely used in clinical practice showed no antitumor effect. Drug-eluting stents (DESs) may achieve a combination of local chemotherapy and biliary drainage to prolong stent patency and improve prognosis.
AIM To develop novel DESs coated with gemcitabine (GEM) and cisplatin (CIS)-coloaded nanofilms that can maintain the continuous and long-term release of antitumor agents in the bile duct to inhibit tumor growth and reduce systemic toxicity.
METHODS Stents coated with different drug-eluting components were prepared by the mixed electrospinning method, with poly-L-lactide-caprolactone (PLCL) as the drug-loaded nanofiber membrane and GEM and/or CIS as the antitumor agents. Four different DESs were manufactured with four drug-loading ratios (5%, 10%, 15%, and 20%), including bare-loaded (PLCL-0), single-drug-loaded (PLCL-GEM and PLCL-CIS), and dual-drug-loaded (PLCL-GC) stents. The drug release property, antitumor activity, and biocompatibility were evaluated in vitro and in vivo to confirm the feasibility and efficacy of this novel DES for ECC.
RESULTS The in vitro drug release study showed the stable, continuous release of both GEM and CIS, which was sustained for over 30 d without an obvious initial burst, and a higher drug-loaded content induced a lower release rate. The drug-loading ratio of 10% was used for further experiments due to its ideal inhibitory efficiency and relatively low toxicity. All drug-loaded nanofilms effectively inhibited the growth of EGI-1 cells in vitro and the tumor xenografts of nude mice in vivo; in addition, the dual-loaded nanofilm (PLCL-GC) had a significantly better effect than the single-drug-loaded nanofilms (P < 0.05). No significant differences in the serological analysis (P > 0.05) or histopathological changes were observed between the single-loaded and drug-loaded nanofilms after stent placement in the normal porcine biliary tract.
CONCLUSION This novel PLCL-GEM and CIS-eluting stent maintains continuous, stable drug release locally and inhibits tumor growth effectively in vitro and in vivo. It can also be used safely in normal porcine bile ducts. We anticipate that it might be considered an alternative strategy for the palliative therapy of ECC patients.
Collapse
Affiliation(s)
- Jing-Bo Xiao
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, China
- Hospitalist and Internal Medicine Inpatient Department, Shanghai Jiahui International Hospital, Shanghai 200233, China
| | - Jun-Yong Weng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, China
| | - Yang-Yang Hu
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, China
| | - Gui-Long Deng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, China
| | - Xin-Jian Wan
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, China
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
21
|
Tu B, Zhang M, Liu T, Huang Y. Nanotechnology-Based Histone Deacetylase Inhibitors for Cancer Therapy. Front Cell Dev Biol 2020; 8:400. [PMID: 32582697 PMCID: PMC7284110 DOI: 10.3389/fcell.2020.00400] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) have been approved and achieved success in hematologic malignancies. But its application in solid tumors still confronts big challenges and is hampered by low treatment efficacy. Nanotechnology has been widely applied in cancer therapy, and nanomedicine could improve drug stability, prolong the circulation half-life, and increase intratumoral drug accumulation. Therefore, nanomedicine is a promising strategy to enhance HDACi therapy efficacy. The review provides a summary of the advances of HDACi nanomedicines with a focus on the design principles of the targeting delivery systems for HDACi.
Collapse
Affiliation(s)
- Bin Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tuanbing Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Beijing, China
| |
Collapse
|
22
|
Mastoraki A, Schizas D, Charalampakis N, Naar L, Ioannidi M, Tsilimigras D, Sotiropoulou M, Moris D, Vassiliu P, Felekouras E. Contribution of Histone Deacetylases in Prognosis and Therapeutic Management of Cholangiocarcinoma. Mol Diagn Ther 2020; 24:175-184. [PMID: 32125662 DOI: 10.1007/s40291-020-00454-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cholangiocarcinoma (CCA), a malignant tumor that occurs in the epithelium of the biliary tract, has a very poor prognosis because affected patients are frequently diagnosed at an advanced stage and recurrence after resection is common. Over the last two decades, our understanding of the molecular biology of this malignancy has expanded, and various studies have explored targeted therapy for CCA in order to improve patient survival. The histone acetylation/deacetylation equilibrium is affected in carcinogenesis, leading to altered chromatin structure and therefore changes in gene expression. Understanding the molecular identity of histone deacetylases (HDACs), their cellular interactions and potential role as anticancer agents will help us develop new therapeutic strategies for CCA-affected patients. Furthermore, HDAC inhibitors act on cellular stress response pathways and decrease cancer angiogenesis. Downregulation of pro-angiogenic genes such as vascular endothelial growth factor (VEGF), hypoxia inducible factor-1 (HIF-1), and endothelial nitric oxide synthase (eNOS) inhibit formation of new vessels and can negatively affect the metastatic process. Finally, recent clinical trials prove that administration of both HDAC inhibitors and DNA-targeting chemotherapeutic agents, such as topoisomerase inhibitors, DNA intercalating agents, inhibitors of DNA synthesis, covalently modifying DNA agents, and ionizing radiation, maximizes the anticancer effect by increasing the cytotoxic efficiency of a variety of DNA-damaging anticancer drugs. Therefore, combination therapy of classic chemotherapeutic drugs with HDAC inhibitors can act synergistically for the patients' benefit.
Collapse
Affiliation(s)
- Aikaterini Mastoraki
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Str, 12462, Athens, Greece.
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Leon Naar
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Ioannidi
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Str, 12462, Athens, Greece
| | - Diamantis Tsilimigras
- Division of Surgical Oncology, Department of Surgery, James Cancer Hospital, Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Dimitrios Moris
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Pantelis Vassiliu
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Str, 12462, Athens, Greece
| | - Evangelos Felekouras
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
23
|
Perez-Montoyo H. Therapeutic Potential of Autophagy Modulation in Cholangiocarcinoma. Cells 2020; 9:E614. [PMID: 32143356 PMCID: PMC7140412 DOI: 10.3390/cells9030614] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a multistep catabolic process through which misfolded, aggregated or mutated proteins and damaged organelles are internalized in membrane vesicles called autophagosomes and ultimately fused to lysosomes for degradation of sequestered components. The multistep nature of the process offers multiple regulation points prone to be deregulated and cause different human diseases but also offers multiple targetable points for designing therapeutic strategies. Cancer cells have evolved to use autophagy as an adaptive mechanism to survive under extremely stressful conditions within the tumor microenvironment, but also to increase invasiveness and resistance to anticancer drugs such as chemotherapy. This review collects clinical evidence of autophagy deregulation during cholangiocarcinogenesis together with preclinical reports evaluating compounds that modulate autophagy to induce cholangiocarcinoma (CCA) cell death. Altogether, experimental data suggest an impairment of autophagy during initial steps of CCA development and increased expression of autophagy markers on established tumors and in invasive phenotypes. Preclinical efficacy of autophagy modulators promoting CCA cell death, reducing invasiveness capacity and resensitizing CCA cells to chemotherapy open novel therapeutic avenues to design more specific and efficient strategies to treat this aggressive cancer.
Collapse
|
24
|
Ma W, Sun J, Xu J, Luo Z, Diao D, Zhang Z, Oberly PJ, Minnigh MB, Xie W, Poloyac SM, Huang Y, Li S. Sensitizing Triple Negative Breast Cancer to Tamoxifen Chemotherapy via a Redox-Responsive Vorinostat-containing Polymeric Prodrug Nanocarrier. Am J Cancer Res 2020; 10:2463-2478. [PMID: 32194813 PMCID: PMC7052901 DOI: 10.7150/thno.38973] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/15/2019] [Indexed: 01/07/2023] Open
Abstract
There is an urgent and unmet need to develop effective therapies for triple negative breast cancers (TNBCs) which are much more aggressive and have poor prognosis due to lack of receptor targets for Her2-targeted and endocrine therapy. In this study we systematically evaluated the effect of Vorinostat (SAHA, a pan-HDAC inhibitor) in reactivating the expression of functional estrogen receptor α (ERα) and synergizing with tamoxifen (TAM, a selective estrogen-receptor modulator) in antitumor activity. In addition, a SAHA prodrug-based dual functional nanocarrier was developed for codelivery of SAHA and TAM for effective combination therapy. Methods: A SAHA-containing polymeric nanocarrier, POEG-co-PVDSAHA was developed via reversible addition-fragmentation transfer (RAFT) polymerization with SAHA incorporated into the polymer through a redox-responsive disulfide linkage. The effect of both free SAHA and POEG-co-PVDSAHA on reactivating the expression of functional ERα was investigated in several human and murine TNBC cell lines via examining the mRNA and protein expression of ERα target genes. The cytotoxicity of free SAHA and TAM combination and TAM-loaded POEG-co-PVDSAHA micelles was examined via MTT assay. The in vivo antitumor activity of TAM-loaded POEG-co-PVDSAHA was investigated in a murine breast cancer model (4T1.2). Results: Both free SAHA and POEG-co-PVDSAHA were effective in inducing the reexpression of functional estrogen receptor α (ERα), which may have helped to sensitize TNBCs to TAM. More importantly, POEG-co-PVDSAHA self-assembled to form small-sized micellar carrier that is effective in formulating and codelivery of TAM. TAM-loaded POEG-co-PVDSAHA micelles exhibited enhanced and synergistic cytotoxicity against TNBC cell lines compared with free SAHA, free TAM and TAM loaded into a pharmacologically inert control carrier (POEG-co-PVMA). In addition, codelivery of TAM via POEG-co-PVDSAHA micelles led to significantly improved antitumor efficacy in 4T1.2 tumor model compared with other groups such as combination of free SAHA and TAM and TAM-loaded POEG-co-PVMA micelles. Conclusion: Our prodrug-based co-delivery system may provide an effective and simple strategy to re-sensitize TNBCs to TAM-based hormone therapy.
Collapse
|
25
|
The ROMP: A Powerful Approach to Synthesize Novel pH-Sensitive Nanoparticles for Tumor Therapy. Biomolecules 2019; 9:biom9020060. [PMID: 30759891 PMCID: PMC6406258 DOI: 10.3390/biom9020060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/19/2018] [Accepted: 02/11/2019] [Indexed: 01/07/2023] Open
Abstract
Fast clearance, metabolism, and systemic toxicity are major limits for the clinical use of anti-cancer drugs. Histone deacetylase inhibitors (HDACi) present these defects, despite displaying promising anti-tumor properties on tumor cells in vitro and in in vivo models of cancer. The specific delivery of anti-cancer drugs into the tumor should improve their clinical benefit by limiting systemic toxicity and by increasing the anti-tumor effect. This paper deals with the synthesis of the polymeric nanoparticle platform, which was produced by Ring-Opening Metathesis Polymerization (ROMP), able to release anti-cancer drugs in dispersion, such as histone deacetylase inhibitors, into mesothelioma tumors. The core-shell nanoparticles (NPs) have stealth properties due to their poly(ethylene oxide) shell and can be viewed as universal nano-carriers on which any alkyne-modified anti-cancer molecule can be grafted by click chemistry. A cleavage reaction of the chemical bond between NPs and drugs through the contact of NPs with a medium presenting an acidic pH, which is typically a cancer tumor environment or an acidic intracellular compartment, induces a controlled release of the bioactive molecule in its native form. In our in vivo syngeneic model of mesothelioma, a highly selective accumulation of the particles in the tumor was obtained. The release of the drugs led to an 80% reduction of tumor weight for the best compound without toxicity. Our work demonstrates that the use of theranostic nanovectors leads to an optimized delivery of epigenetic inhibitors in tumors, which improves their anti-tumor properties in vivo.
Collapse
|
26
|
Nazari-Vanani R, Karimian K, Azarpira N, Heli H. Capecitabine-loaded nanoniosomes and evaluation of anticancer efficacy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:420-426. [DOI: 10.1080/21691401.2018.1559179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- R. Nazari-Vanani
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - K. Karimian
- Arasto Pharmaceutical Chemicals Inc, Yousefabad, Tehran, Iran
| | - N. Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - H. Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Sun K, Ding T, Xing Y, Mo D, Zhang J, Rosenholm JM. Hybrid mesoporous nanorods with deeply grooved lateral faces toward cytosolic drug delivery. Biomater Sci 2019; 7:5301-5311. [DOI: 10.1039/c9bm01251f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hybrid mesoporous nanorods with six twisted sharp edges can induce effective penetration of intracellular barriers and cytosolic delivery of membrane-impermeable drugs through curvature effects.
Collapse
Affiliation(s)
- Kaiyao Sun
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Tao Ding
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Dong Mo
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory
- Faculty of Science and Engineering
- Åbo Akademi University
- Turku 20520
- Finland
| |
Collapse
|
28
|
Influence of pravastatin chitosan nanoparticles on erythrocytes cholesterol and redox homeostasis: An in vitro study. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2015.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
29
|
Lee HL, Hwang SC, Nah JW, Kim J, Cha B, Kang DH, Jeong YI. Redox- and pH-Responsive Nanoparticles Release Piperlongumine in a Stimuli-Sensitive Manner to Inhibit Pulmonary Metastasis of Colorectal Carcinoma Cells. J Pharm Sci 2018; 107:2702-2712. [PMID: 29936202 DOI: 10.1016/j.xphs.2018.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/02/2018] [Accepted: 06/12/2018] [Indexed: 01/10/2023]
Abstract
Redox-responsive nanoparticles having a diselenide linkage were synthesized to target pulmonary metastasis of cancer cells. Methoxy poly(ethylene glycol)-grafted chitosan (ChitoPEG) was crosslinked using selenocystine-acetyl histidine (Ac-histidine) conjugates (ChitoPEGse) for stimuli-responsive delivery of piperlongumine (PL). ChitoPEGse nanoparticles swelled in an acidic environment and became partially disintegrated in the presence of H2O2, resulting in an increase of particle size and in a size distribution having multimodal pattern. PL release increased under acidic conditions and in the presence of H2O2. Uptake of ChitoPEGse nanoparticles by CT26 cells significantly increased in acidic and redox state. PL-incorporated ChitoPEGse nanoparticles (PL NPs) showed similar anticancer activity in vitro against A549 and CT26 cells compared to PL itself. PL NP showed superior anticancer and antimetastatic activity in an in vivo CT26 cell pulmonary metastasis mouse model. Furthermore, an immunofluorescence imaging study demonstrated that PL NP conjugates were specifically delivered to the tumor mass in the lung. Conclusively, ChitoPEGse nanoparticles were able to be delivered to cancer cells with an acidic- or redox state-sensitive manner and then efficiently targeted pulmonary metastasis of cancer cells since ChitoPEGse nanoparticles have dual pH- and redox-responsiveness.
Collapse
Affiliation(s)
- Hye Lim Lee
- Ajou University, School of Medicine, Suwon 61005, Republic of Korea; Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Gyeongnam 50612, Korea
| | - Sung Chul Hwang
- Ajou University, School of Medicine, Suwon 61005, Republic of Korea
| | - Jae Woon Nah
- Department of Polymer Science and Engineering, Sunchon National University, Jeonnam 57922, Republic of Korea
| | - Jungsoo Kim
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Gyeongnam 50612, Korea
| | | | - Dae Hwan Kang
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Gyeongnam 50612, Korea.
| | - Young-Il Jeong
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Gyeongnam 50612, Korea; Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 49241, Republic of Korea.
| |
Collapse
|
30
|
Pellino A, Loupakis F, Cadamuro M, Dadduzio V, Fassan M, Guido M, Cillo U, Indraccolo S, Fabris L. Precision medicine in cholangiocarcinoma. Transl Gastroenterol Hepatol 2018; 3:40. [PMID: 30148225 PMCID: PMC6087799 DOI: 10.21037/tgh.2018.07.02] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022] Open
Abstract
Cholangiocarcinoma is one of the epithelial cancers with the poorest prognosis and the narrowest therapeutic choice in humans. Compared with other cancer types, cholangiocarcinoma has been often neglected by oncology and liver research studies, thereby leaving many issues unsolved. Apart from the early and marked aggressiveness, one of the main reasons of the still unsatisfying clinical management of cholangiocarcinoma is its wide tumor heterogeneity needing more than other diseases a 'precision medicine' approach. In this regard, in the last few years there has been an awakening of interest aimed at dissecting the complex molecular and genomic profile of cholangiocarcinoma. Thus, a range of molecular players have been recently identified as putative mechanistic determinants of cholangiocarcinoma invasiveness, encompassing tyrosine kinase receptors, metabolic enzymes, transcription factors, small GTPases, ubiquitin ligases, and chromatin-remodelling proteins, whose aberrant expression may derive from stochastic mutations as well as from pro-oncogenic paracrine signals released by the stromal microenvironment, which is particularly exuberant in cholangiocarcinoma. Herein, we sought to overview the most relevant observations unravelling the genomic landscape of cholangiocarcinoma, and the prognostic and predictive biomarkers that consequently have been emerging. Then, we will discuss innovative treatment approaches derived from conventional chemotherapy, targeted therapies, antiangiogenic therapies and immunotherapy, and how they are opening new avenues towards a precision medicine in cholangiocarcinoma.
Collapse
Affiliation(s)
- Antonio Pellino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Fotios Loupakis
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Vincenzo Dadduzio
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Maria Guido
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
- Department of Internal Medicine, Yale Liver Center (YLC), School of Medicine, Yale University New Haven, CT, USA
| |
Collapse
|
31
|
O'Rourke CJ, Munoz-Garrido P, Aguayo EL, Andersen JB. Epigenome dysregulation in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2018. [DOI: 10.1016/j.bbadis.2017.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Ilyas SI, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 2018; 15:95-111. [PMID: 28994423 PMCID: PMC5819599 DOI: 10.1038/nrclinonc.2017.157] [Citation(s) in RCA: 1120] [Impact Index Per Article: 160.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholangiocarcinoma is a disease entity comprising diverse epithelial tumours with features of cholangiocyte differentiation: cholangiocarcinomas are categorized according to anatomical location as intrahepatic (iCCA), perihilar (pCCA), or distal (dCCA). Each subtype has a distinct epidemiology, biology, prognosis, and strategy for clinical management. The incidence of cholangiocarcinoma, particularly iCCA, has increased globally over the past few decades. Surgical resection remains the mainstay of potentially curative treatment for all three disease subtypes, whereas liver transplantation after neoadjuvant chemoradiation is restricted to a subset of patients with early stage pCCA. For patients with advanced-stage or unresectable disease, locoregional and systemic chemotherapeutics are the primary treatment options. Improvements in external-beam radiation therapy have facilitated the treatment of cholangiocarcinoma. Moreover, advances in comprehensive whole-exome and transcriptome sequencing have defined the genetic landscape of each cholangiocarcinoma subtype. Accordingly, promising molecular targets for precision medicine have been identified, and are being evaluated in clinical trials, including those exploring immunotherapy. Biomarker-driven trials, in which patients are stratified according to anatomical cholangiocarcinoma subtype and genetic aberrations, will be essential in the development of targeted therapies. Targeting the rich tumour stroma of cholangiocarcinoma in conjunction with targeted therapies might also be useful. Herein, we review the evolving developments in the epidemiology, pathogenesis, and management of cholangiocarcinoma.
Collapse
Affiliation(s)
- Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905, USA
| | - Shahid A Khan
- Department of Hepatology, St Mary's Hospital, Imperial College London, Praed Street, London W2 1NY, UK
- Department of Hepatology, Hammersmith Hospital, Imperial College London, Ducane Road, London W12 0HS, UK
| | - Christopher L Hallemeier
- Department of Radiation Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905, USA
| | - Robin K Kelley
- The University of California, San Francisco Medical Center, 505 Parnassus Avenue, San Francisco, California 94143, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905, USA
| |
Collapse
|
33
|
Kwak TW, Lee HL, Song YH, Kim C, Kim J, Seo SJ, Jeong YI, Kang DH. Vorinostat-eluting poly(DL-lactide-co-glycolide) nanofiber-coated stent for inhibition of cholangiocarcinoma cells. Int J Nanomedicine 2017; 12:7669-7680. [PMID: 29089762 PMCID: PMC5655133 DOI: 10.2147/ijn.s141920] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of this study was to fabricate a vorinostat (Zolinza™)-eluting nanofiber membrane-coated gastrointestinal (GI) stent and to study its antitumor activity against cholangiocarcinoma (CCA) cells in vitro and in vivo. Methods Vorinostat and poly(DL-lactide-co-glycolide) dissolved in an organic solvent was sprayed onto a GI stent to make a nanofiber-coated stent using an electro-spinning machine. Intact vorinostat and vorinostat released from nanofibers was used to assess anticancer activity in vitro against various CCA cells. The antitumor activity of the vorinostat-eluting nanofiber membrane-coated stent was evaluated using HuCC-T1 bearing mice. Results A vorinostat-incorporated polymer nanofiber membrane was formed on the surface of the GI stent. Vorinostat was continuously released from the nanofiber membrane over 10 days, and its release rate was higher in cell culture media than in phosphate-buffered saline. Released vorinostat showed similar anticancer activity against various CCA cells in vitro compared to that of vorinostat. Like vorinostat, vorinostat released from nanofibers induced acetylation of histone H4 and inhibited histone deacetylases 1⋅3⋅4/5/7 expression in vitro and in vivo. Furthermore, vorinostat nanofibers showed a higher tumor growth inhibition rate in HuCC-T1 bearing mice than vorinostat injections. Conclusion Vorinostat-eluting nanofiber membranes showed significant antitumor activity against CCA cells in vitro and in vivo. We suggest the vorinostat nanofiber-coated stent may be a promising candidate for CCA treatment.
Collapse
Affiliation(s)
- Tae Won Kwak
- Medical Convergence Textile Center, Gyeongbuk, Republic of Korea
| | - Hye Lim Lee
- Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea
| | - Yeon Hui Song
- Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea
| | - Chan Kim
- Amogreentech Co. Ltd. Gyeonggi-do, Republic of Korea
| | - Jungsoo Kim
- Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea
| | - Sol-Ji Seo
- Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea
| | - Young-Il Jeong
- Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea
| | - Dae Hwan Kang
- Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam, Republic of Korea
| |
Collapse
|
34
|
Kayhanian H, Smyth EC, Braconi C. Emerging molecular targets and therapy for cholangiocarcinoma. World J Gastrointest Oncol 2017; 9:268-280. [PMID: 28808500 PMCID: PMC5534395 DOI: 10.4251/wjgo.v9.i7.268] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/05/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare cancer arising from the biliary tree with a poor prognosis and limited therapeutic options. Recent large scale molecular characterisation studies have identified recurrent genetic alterations in CCA which may be amenable to therapeutic targeting. In this review we explore the genomic landscape of CCA and examine results from trials of molecularly targeted agents and immunotherapy in this disease. Challenges in CCA diagnosis, treatment and trial design are discussed and we reflect on future directions which may lead to improved outcomes for CCA patients.
Collapse
|
35
|
Janicka M, Gubernator J. Use of nanotechnology for improved pharmacokinetics and activity of immunogenic cell death inducers used in cancer chemotherapy. Expert Opin Drug Deliv 2016; 14:1059-1075. [DOI: 10.1080/17425247.2017.1266333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Martyna Janicka
- Faculty of Biotechnology, Department of Lipids and Liposomes, University of Wroclaw, Wroclaw, Poland
| | - Jerzy Gubernator
- Faculty of Biotechnology, Department of Lipids and Liposomes, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
36
|
Kiran Rompicharla SV, Trivedi P, Kumari P, Ghanta P, Ghosh B, Biswas S. Polymeric micelles of suberoylanilide hydroxamic acid to enhance the anticancer potential in vitro and in vivo. Nanomedicine (Lond) 2016; 12:43-58. [PMID: 27879153 DOI: 10.2217/nnm-2016-0321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To improve the bioavailability and anticancer potential of suberoylanilide hydroxamic acid (SAHA) by developing a drug-loaded polymeric nanomicellar system. METHODS SAHA-loaded Poly(ethylene glycol)-block-poly(caprolactone) (PEG-PCL) micelles were developed, and physico-chemically characterized. In vitro cellular uptake, viability and apoptosis-inducing ability of the SAHA-PEG-PCL micelles were investigated. In vivo anticancer activity was evaluated in C57BL/6 mice-bearing tumor. RESULTS The SAHA-PEG-PCL micelles had optimum size (∼130 nm) with an entrapment efficiency of approximately 67%. The SAHA-PEG-PCL induced stronger cell cycle arrest in G2/M phase leading to higher rate of apoptosis compared to free SAHA. SAHA-PEG-PCL demonstrated significant tumor suppression compared to free SAHA in vivo. CONCLUSION The physicochemical properties and the antitumor efficacy of SAHA were improved by encapsulating in polymeric micelles.
Collapse
Affiliation(s)
- Sri Vishnu Kiran Rompicharla
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Prakruti Trivedi
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Preeti Kumari
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Pratyusha Ghanta
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| |
Collapse
|
37
|
Jain A, Javle M. Molecular profiling of biliary tract cancer: a target rich disease. J Gastrointest Oncol 2016; 7:797-803. [PMID: 27747093 DOI: 10.21037/jgo.2016.09.01] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Biliary tract cancers (BTCs) are relatively uncommon orphan tumors that have an aggressive disease course and a poor clinical outcome. Surgery is the only curative treatment, but most patients present with advanced disease and therefore have a limited survival. Gemcitabine and cisplatin based chemotherapy has been the only widely accepted standard systemic therapy regimen in these patients but these tumors can be chemoresistant, further complicating their management. In recent times, there has been considerable research in the genetics of BTC and with the advent of new, advanced technologies like next-generation sequencing (NGS) we are achieving a greater understanding of its disease biology. With the help of NGS, we have now been able to identify actionable mutations such as in the isocitrate dehydrogenase 1 (IDH1), FGFR2, BRAF and HER2/neu genes for targeted therapeutics and correlate the genetic variations with distinct clinical prognoses. This recent genetic information has the potential to make precision medicine a part of routine clinical practice for the management of BTC patients.
Collapse
Affiliation(s)
- Apurva Jain
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|