1
|
Furriel F, Ferreira H, Sampaio-Ribeiro G, Pereira M, Eloy C, Neves B, Paiva A, Parada B, Gomes C. Co-targeting the CD73-adenosinergic axis enhances the anti-tumor efficacy of anti-PD-L1 immunotherapy in bladder cancer. Biomed Pharmacother 2025; 188:118188. [PMID: 40424822 DOI: 10.1016/j.biopha.2025.118188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/07/2025] [Accepted: 05/21/2025] [Indexed: 05/29/2025] Open
Abstract
Immune checkpoint inhibitors have significantly improved advanced bladder cancer care, but resistance remains a significant challenge. Adenosinergic signaling is an immunosuppressive mechanism hindered by tumor cells to escape from immune surveillance and suppress antitumor immune responses. Herein, we investigate whether co-targeting the adenosine pathway can modulate tumor immunity and enhance the efficacy of anti-PD-L1 therapy in an orthotopic murine bladder cancer model. We observed higher expression of the ectonucleotidases CD39 and CD73 in tumor cells and CD4+ and CD8+ T cells within the tumor microenvironment and peripheral circulation and upregulation of the adenosine receptors A2A and A2B in tumor cells, further confirming the activation of the adenosinergic pathway in this murine model. CD39 inhibition demonstrated no therapeutic benefits nor synergistic effect with anti-PD-L1 immunotherapy in tumor-bearing mice. On the contrary, CD73 inhibition reduced tumor progression and synergized with anti-PD-L1, leading to complete remission in 38 % of cases and a significant reduction in tumor mass in the remainder compared to anti-PD-L1 monotherapy. This combination resulted in favorable systemic immune modulation, including increased circulating CD4+ and CD8+ T cells and a decreased neutrophil-to-lymphocyte ratio. These findings suggest that the adenosinergic pathway limits the efficacy of anti-PD-L1 immunotherapy in invasive bladder cancer. Targeting the CD73 adenosinergic axis may enhance its effectiveness, offering a promising strategy to overcome resistance.
Collapse
Affiliation(s)
- Frederico Furriel
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Faculty of Medicine, Coimbra 3000-548, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Department of Urology, Unidade Local de Saúde da Região de Leiria, Leiria 2410-197, Portugal
| | - Hugo Ferreira
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Faculty of Medicine, Coimbra 3000-548, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Gabriela Sampaio-Ribeiro
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Faculty of Medicine, Coimbra 3000-548, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Margarida Pereira
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Faculty of Medicine, Coimbra 3000-548, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Catarina Eloy
- Pathology Department, Medical Faculty of University of Porto, Porto 4200-319, Portugal; Pathology Laboratory, Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), Porto 4200-135, Portugal
| | - Beatriz Neves
- Pathology Laboratory, Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), Porto 4200-135, Portugal
| | - Artur Paiva
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Faculty of Medicine, Coimbra 3000-548, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Flow Cytometry Unit, Clinical Pathology Department, Unidade Local de Saúde de Coimbra, Coimbra 3000-075, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Coimbra 3046-854, Portugal
| | - Belmiro Parada
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Faculty of Medicine, Coimbra 3000-548, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Department of Urology and Renal Transplantation, Unidade Local de Saúde de Coimbra, Coimbra 3000-075, Portugal
| | - Célia Gomes
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Faculty of Medicine, Coimbra 3000-548, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
2
|
Shi Y, Zhao X, Zhou Y, Zhang X. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio as predictive biomarkers for treatment response in primary advanced hypopharyngeal squamous cell carcinoma treated with chemoimmunotherapy. Clin Exp Med 2025; 25:172. [PMID: 40411692 PMCID: PMC12103357 DOI: 10.1007/s10238-025-01675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/07/2025] [Indexed: 05/26/2025]
Abstract
To evaluate the predictive value of the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in peripheral blood for assessing the treatment response to chemoimmunotherapy in primary advanced hypopharyngeal squamous cell carcinoma (HPSCC), we retrospectively reviewed the medical records of patients treated with neoadjuvant taxane-platinum (TP) chemotherapy plus an anti-programmed cell death-1 (PD-1) inhibitor at Wuhan Union Hospital from Jan 2020 to Dec 2022. We collected data on absolute neutrophil, lymphocyte, and platelet counts from routine blood tested at baseline and within a week after the first treatment. A total of 35 patients were included in this study. Post-treatment NLR (rs = - 0.445, p = 0.007) and PLR (rs = - 0.475, p = 0.004) demonstrated negative correlations with treatment response assessed by the Response Evaluation Criteria in Solid Tumors 1.1 (RECIST 1.1). NLR and PLR were significantly lower in patients achieving a complete response than those not achieving it (with p values of 0.04 and 0.02 for NLR and PLR, respectively). Among the 27 patients who underwent radical surgery following three cycles of chemoimmunotherapy, a high PLR after the first treatment was negatively correlated with attaining a pathological complete response (pCR) (rs = - 0.424, p = 0.028). For predicting pCR, the receiver operating characteristic (ROC) curve of PLR after the first treatment yielded an area under the curve (AUC) of 0.759 (95% confidence interval [CI]: 0.572-0.946, p = 0.031), with a sensitivity of 77.8% and a specificity of 72.2%. This research underscores the predictive value of the NLR and PLR in appraising not only the treatment response, as gauged by the RECIST 1.1, but also the pathological response to chemoimmunotherapy in patients with HPSCC.
Collapse
Affiliation(s)
- Yueyue Shi
- Department of Otolaryngology and Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueyan Zhao
- Department of Otolaryngology and Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zhou
- Department of Otolaryngology and Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomeng Zhang
- Department of Otolaryngology and Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Yang L, Li H, Xia M, Pu X. Novel Composite Scoring System for Predicting Prognosis in Stage IV Gastric Cancer Patients Treated with Immune Checkpoint Inhibitors. J Inflamm Res 2025; 18:6491-6504. [PMID: 40421267 PMCID: PMC12105669 DOI: 10.2147/jir.s519724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/25/2025] [Indexed: 05/28/2025] Open
Abstract
Background Gastric cancer (GC) with distant metastases has a poor prognosis, and immune checkpoint inhibitors (ICIs) effectively improve the survival time of patients with this disease. This study aimed to identify effective prognostic markers that can predict the treatment effect of ICIs in patients with stage IV GC. Methods This study included 256 patients with GC with distant metastases who had received treatment with ICIs. A receiver operating characteristic (ROC) curve was used to analyze the predictive ability and optimal cutoff values of immune-inflammatory markers. Kaplan‒Meier survival curves were used to analyze the differences in progression-free survival (PFS) and overall survival (OS) among patients. Cox proportional hazard regression analysis was used to identify independent prognostic factors for PFS and OS. Results By comparing the area under the ROC curve (AUC) of immune-inflammatory markers, we selected the preoperative platelet count/(lymphocyte count × prealbumin count) ratio and fibrinogen/albumin ratio to form a combined score (PLPR-FAR score). The ROC curve revealed that when the PLPR-FAR score was used to predict patient PFS and OS, the AUC were 0.614 and 0.672, respectively. The Kaplan‒Meier survival curve revealed that patients with higher PLPR-FAR scores had significantly shorter PFS and OS than those with lower PLPR-FAR scores. Cox proportional hazard regression analysis revealed that the PLPR-FAR score was an independent risk factor for PFS and OS in stage IV GC patients. Conclusion The PLPR-FAR score may help identify which patients are more likely to benefit from ICIs treatment, and could serve as a novel and promising prognostic biomarker.
Collapse
Affiliation(s)
- Lingbing Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Hongwei Li
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Mingyu Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Xiaomeng Pu
- School of Stomatology, Gansu Health Vocational College, Lanzhou, People’s Republic of China
| |
Collapse
|
4
|
Zhao YF, Lv JH, Chen DF, Wang ZH, Teng Y, Ntim M, Xia M, Li S, Wang B. Triglyceride-glucose index in predicting gastric cancer prognosis: A need for caution. World J Gastroenterol 2025; 31:104525. [DOI: 10.3748/wjg.v31.i18.104525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/02/2025] [Accepted: 03/27/2025] [Indexed: 05/13/2025] Open
Abstract
Gastric cancer (GC) remains one of the leading causes of cancer-related mortality worldwide. Accurate prognostic assessment, which is essential for enhancing overall survival (OS), currently depends on pathologic and clinical staging. This underscores the urgent need for reliable and real-time prognostic biomarkers. The triglyceride-glucose (TyG) index, a readily available marker of insulin resistance, has recently emerged as a potential prognostic tool in GC. Numerous studies have consistently shown a significant association between elevated TyG levels and inferior OS as well as progression-free survival. Despite these promising findings, several challenges must be addressed before the TyG index can be widely adopted in clinical practice. Firstly, the TyG index lacks cancer-specificity, reflecting broader metabolic disturbances commonly observed in conditions such as obesity, diabetes, and cardiovascular disease. This lack of specificity complicates its interpretation in oncological settings. Additionally, the cutoff values for TyG index vary across studies, hindering the establishment of a standardized threshold for clinical application. While the TyG index provides valuable insights into a patient's metabolic health, its limited cancer specificity necessitates cautious use when evaluating the prognosis of GC treatment.
Collapse
Affiliation(s)
- Yi-Fan Zhao
- Liaoning Provincial Key Laboratory of Cerebral Diseases, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Jia-Hui Lv
- Liaoning Provincial Key Laboratory of Cerebral Diseases, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - De-Fang Chen
- Department of Emergency Medicine, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Zhi-Hui Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Yun Teng
- Liaoning Provincial Key Laboratory of Cerebral Diseases, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Michael Ntim
- Liaoning Provincial Key Laboratory of Cerebral Diseases, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research, Dalian Medical University, Dalian 116000, Liaoning Province, China
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ashanti, Ghana
| | - Min Xia
- Liaoning Provincial Key Laboratory of Cerebral Diseases, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research, Dalian Medical University, Dalian 116000, Liaoning Province, China
| |
Collapse
|
5
|
Aden D, Zaheer S, Sureka N, Trisal M, Chaurasia JK, Zaheer S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol Res Pract 2025; 269:155864. [PMID: 40068282 DOI: 10.1016/j.prp.2025.155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy emerges as a promising approach, marked by recent substantial progress in elucidating how the host immune response impacts tumor development and its sensitivity to various treatments. Immune checkpoint inhibitors have revolutionized cancer therapy by unleashing the power of the immune system to recognize and eradicate tumor cells. Among these, inhibitors targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have garnered significant attention due to their remarkable clinical efficacy across various malignancies. This review delves into the mechanisms of action, clinical applications, and emerging therapeutic strategies surrounding PD-1/PD-L1 blockade. We explore the intricate interactions between PD-1/PD-L1 and other immune checkpoints, shedding light on combinatorial approaches to enhance treatment outcomes and overcome resistance mechanisms. Furthermore, we discuss the expanding landscape of immune checkpoint inhibitors beyond PD-1/PD-L1, including novel targets such as CTLA-4, LAG-3, TIM-3, and TIGIT. Through a comprehensive analysis of preclinical and clinical studies, we highlight the promise and challenges of immune checkpoint blockade in cancer immunotherapy, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India.
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Monal Trisal
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
6
|
Yu B, Qi C, Li B, Liu Z, Li Z, Li C. Prognosis of Robot-Assisted Esophagectomy with Thoracic Duct Resection in Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2025:10.1245/s10434-025-17318-5. [PMID: 40307517 DOI: 10.1245/s10434-025-17318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/30/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND The authors' previous study found no significant difference in short-term clinical outcomes between patients undergoing robot-assisted esophagectomy (RAE) with or without thoracic duct resection (TDR). However, the impact of RAE-TDR on long-term prognosis remains unclear. METHODS From January 2019 to July 2020, the study prospectively and consecutively enrolled 127 thoracic duct (TD)-preserved and 73 TD-resected patients who underwent standard McKeown RAE surgery. The overall survival (OS) and recurrence-free survival (RFS) were compared between these two groups. RESULTS During a median follow-up period of 48.6 months, the 3-year OS rates were 70.6% and 70.9% in the TD-preserved and TD-resected group, and the 3-year RFS rates were 61.9% and 55.5%, respectively. The TD-preserved and TD-resected groups did not differ significantly in local-regional (12.6% vs. 15.1%; p = 0.623), distant (23.6% vs. 28.8%; p = 0.422), or mixed (2.4% vs. 4.1%; p = 0.670) recurrence. However, among the eight (11%) patients with TD lymph node (LN) metastasis in the TD-resected group, six patients experienced recurrences (1 local-regional and 5 distant). The patients who had thoracic duct lymph node (TDLN) metastasis experienced significantly worse RFS than those who did not (p = 0.04). Additionally, TDLN metastasis was significantly associated with advanced nodal stage (cN2-3, 6/8; p = 0.001) and bulky tumors (pT3, 7/8; p = 0.028). CONCLUSION In ESCC, RAE-TDR does not improve recurrence or survival outcomes. However, identification of TDLN metastasis through TDR carries significant prognostic implications considering its strong association with aggressive tumor biology and inferior oncologic outcomes. Therefore, TDR should not be routinely performed, but its selective application for patients with advanced tumors may provide critical staging information to guide tailored postoperative strategies.
Collapse
Affiliation(s)
- Boyao Yu
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Qi
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhichao Liu
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhigang Li
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chunguang Li
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Dawalibi A, Bakir M, Mohammad KS. The genetic architecture of bone metastases: unveiling the role of epigenetic and genetic modifications in drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:19. [PMID: 40342734 PMCID: PMC12059479 DOI: 10.20517/cdr.2025.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/26/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Bone metastases represent frequent and severe complications in various cancers, notably impacting prognosis and quality of life. This review article delves into the genetic and epigenetic mechanisms underpinning drug resistance in bone metastases, a key challenge in effective cancer treatment. The development of drug resistance in cancer can manifest as either intrinsic or acquired, with genetic heterogeneity playing a pivotal role. Intrinsic resistance is often due to pre-existing mutations, while acquired resistance evolves through genetic and epigenetic alterations during treatment. These alterations include mutations in driver genes like TP53 and RB1, epigenetic modifications such as DNA methylation and histone changes, and pathway alterations, notably involving RANK-RANKL signaling and the PI3K/AKT/mTOR cascade. Recent studies underline the significance of the tumor microenvironment in fostering drug resistance, with components such as cancer-associated fibroblasts and hypoxia playing crucial roles. The interactions between metastatic cancer cells and the bone microenvironment facilitate survival and the proliferation of drug-resistant clones. This review highlights the necessity of understanding these complex interactions to develop targeted therapies that can overcome resistance and improve treatment outcomes. Current therapeutic strategies and future directions are discussed, emphasizing the integration of genomic profiling and targeted interventions in managing bone metastases. The evolving landscape of genetic research, including the application of next-generation sequencing and CRISPR technology, offers promising avenues for novel and more effective therapeutic strategies. This comprehensive exploration aims to provide insights into the molecular intricacies of drug resistance in bone metastases, paving the way for improved clinical management and patient care.
Collapse
Affiliation(s)
- Ahmad Dawalibi
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mohamad Bakir
- Department of Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
8
|
Wawrzyniak P, Hartman ML. Dual role of interferon-gamma in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors. Mol Cancer 2025; 24:89. [PMID: 40108693 PMCID: PMC11924818 DOI: 10.1186/s12943-025-02294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Interferon-gamma (IFN-γ) is a cytokine produced mainly by immune cells and can affect cancer cells by modulating the activity of multiple signaling pathways, including the canonical Janus-activated kinase/signal transducer and activator of transcription (JAK/STAT) cascade. In melanoma, IFN-γ can exert both anticancer effects associated with cell-cycle arrest and cell death induction and protumorigenic activity related to immune evasion leading to melanoma progression. Notably, IFN-γ plays a crucial role in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors (ICIs), which are currently used in the clinic. As these agents target programmed death-1 (PD-1) and its ligand (PD-L1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and lymphocyte-activation gene 3 (LAG-3), they are designed to restore the antimelanoma immune response. In this respect, IFN-γ produced by cells in the tumor microenvironment in response to ICIs has a beneficial influence on both immune and melanoma cells by increasing antigen presentation, recruiting additional T-cells to the tumor site, and inducing direct antiproliferative effects and apoptosis in melanoma cells. Therefore, IFN-γ itself and IFN-γ-related gene signatures during the response to ICIs can constitute biomarkers or predictors of the clinical outcome of melanoma patients treated with ICIs. However, owing to its multifaceted roles, IFN-γ can also contribute to developing mechanisms associated with the acquisition of resistance to ICIs. These mechanisms can be associated with either decreased IFN-γ levels in the tumor microenvironment or diminished responsiveness to IFN-γ due to changes in the melanoma phenotypes associated with affected activity of other signaling pathways or genetic alterations e.g., in JAK, which restricts the ability of melanoma cells to respond to IFN-γ. In this respect, the influence of IFN-γ on melanoma-specific regulators of the dynamic plasticity of the cell phenotype, including microphthalmia-associated transcription factor (MITF) and nerve growth factor receptor (NGFR)/CD271 can affect the clinical efficacy of ICIs. This review comprehensively discusses the role of IFN-γ in the response of melanoma patients to ICIs with respect to its positive influence and role in IFN-γ-related mechanisms of resistance to ICIs as well as the potential use of predictive markers on the basis of IFN-γ levels and signatures of IFN-γ-dependent genes.
Collapse
Affiliation(s)
- Piotr Wawrzyniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
9
|
Cheng SL, Wu CH, Tsai YJ, Song JS, Chen HM, Yeh TK, Shen CT, Chiang JC, Lee HM, Huang KW, Chen Y, Qiu JT, Yen YT, Shia KS, Chen Y. CXCR4 antagonist-loaded nanoparticles reprogram the tumor microenvironment and enhance immunotherapy in hepatocellular carcinoma. J Control Release 2025; 379:967-981. [PMID: 39863023 DOI: 10.1016/j.jconrel.2025.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death that has limited treatment options for advanced stages. Although PD-1 inhibitors such as nivolumab and pembrolizumab have been approved for advanced HCC treatment, their effectiveness is often hampered by the immunosuppressive tumor microenvironment (TME), which is due to hypoxia-driven CXCL12/CXCR4 axis activation. In this study, we developed 807-NPs, lipid-coated tannic acid (TA) nanoparticles that encapsulate BPRCX807, a potent CXCR4 antagonist to target HCC. 807-NPs enhance the pharmacokinetics and improve the tumor availability of BPRCX807 without causing systemic toxicity. Our findings show that 807-NPs block the CXCR4/CXCL12 pathway, inhibiting Akt and mTOR activation in HCC cells and M2 macrophages and promoting their repolarization toward the antitumor M1 phenotype. In orthotopic murine HCC models, systemic administration of 807-NPs significantly remodeled the immunosuppressive TME by reprogramming tumor-associated macrophages (TAMs) toward an immunostimulatory phenotype and promoting cytotoxic T-cell infiltration into tumors. This led to suppressed primary tumor growth and metastasis, while enhancing the efficacy of cancer immunotherapies, including PD-1 blockade and whole-cancer cell vaccines, by promoting T-cell activation. Our work demonstrates the potential of using nanotechnology to deliver CXCR4 antagonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Sheng-Liang Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Yun-Jen Tsai
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Hsin-Min Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Chia-Tung Shen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jou-Chien Chiang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Mei Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Wei Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yuling Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - J Timothy Qiu
- International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yu-Ting Yen
- Institute of Translational Medicine and New Drug Development, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan.
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
10
|
Xue F, Liu YK, Chen XY, Chen SS, Yu XR, Li HW, Lu LG, Chen MH. Targeting cGAS-STING: modulating the immune landscape of hepatic diseases. Front Immunol 2025; 16:1498323. [PMID: 40098962 PMCID: PMC11911377 DOI: 10.3389/fimmu.2025.1498323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Liver diseases, including viral hepatitis, alcoholic liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and hepatocellular carcinoma (HCC), represent a significant threat to global health due to their high mortality rates. The cGAS-STING pathway, a critical part of the innate immune system, plays a crucial role in detecting cytoplasmic DNA and initiating immune responses, including autoimmune inflammation and antitumor immunity. Genomic instability during cancer progression can trigger this pathway by releasing DNA into the cytoplasm. Emerging research indicates that cGAS-STING signaling is intricately involved in maintaining liver homeostasis and contributes to the pathogenesis of various liver diseases. This review outlines the cGAS-STING pathway, with a particular focus on its activation mechanism and its roles in several notable liver conditions. Specifically, we explore the complex interplay of cGAS-STING signaling in viral hepatitis, ALD, MASLD, and HCC, and discuss its potential as a therapeutic target. For example, in HCC, strategies targeting cGAS-STING include using nanomaterials to deliver STING agonists, combining radiofrequency ablation (RFA) with cGAS-STING activation, and leveraging radiotherapy to enhance pathway activation. Furthermore, modulating cGAS-STING activity may offer therapeutic avenues for viral hepatitis and chronic liver diseases like MASLD and ALD, either by boosting antiviral responses or mitigating inflammation. This review highlights the complex role of cGAS-STING signaling in these specific liver diseases and underscores the need for further research to fully realize its therapeutic potential.
Collapse
Affiliation(s)
- Feng Xue
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai, Guangdong, China
| | - Yong-Kang Liu
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiao-Ying Chen
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Shan-Shan Chen
- Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Xiang-Rong Yu
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Hua-Wen Li
- Department of Gynecology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Li-Gong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai, Guangdong, China
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mu-He Chen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai, Guangdong, China
- Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| |
Collapse
|
11
|
Chen W, Qiu J, Li P, Zhang Q, Li D, Li G, Shan G. Simultaneous Induction of Immunogenic Pyroptosis and PD-L1 Downregulation by One Single Photosensitizer for Synergistic Cancer Photoimmunotherapy. J Med Chem 2025; 68:3612-3625. [PMID: 39847528 DOI: 10.1021/acs.jmedchem.4c02747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Pyroptosis, an excellent form of immunogenic cell death that can effectively activate antitumor immune responses, is attracting considerable interest as a promising approach for cancer immunotherapy. Immunogenic pyroptosis can recruit and stimulate dendritic cells to provoke further activation and tumor infiltration of T cells by releasing danger-associated molecular patterns, thus improving the tumor response to PD-1/PD-L1 checkpoint blockade immunotherapy. Here, we report the discovery of a bifunctional photosensitizer Nile Violet that can simultaneously trigger caspase-3/GSDME-mediated immunogenic pyroptosis and PD-L1 downregulation for cancer photoimmunotherapy. It was shown that this synergistic therapeutic strategy significantly inhibited tumor growth by triggering a systemic antitumor immune response. This work highlights the potential of inducing immunogenic pyroptosis and PD-L1 downregulation for synergistic tumor ablation via a single agent.
Collapse
Affiliation(s)
- Weijia Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Jingru Qiu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Peixia Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Qianqian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Donghai Li
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Guiling Li
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Gang Shan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
12
|
Naei VY, Tubelleza R, Monkman J, Sadeghirad H, Donovan ML, Blick T, Wicher A, Bodbin S, Viratham A, Stad R, Basu S, Cooper C, Barnett C, O'Byrne K, Ladwa R, Warkiani ME, Hughes BGM, Kulasinghe A. Spatial interaction mapping of PD-1/PD-L1 in head and neck cancer reveals the role of macrophage-tumour barriers associated with immunotherapy response. J Transl Med 2025; 23:177. [PMID: 39939997 PMCID: PMC11818323 DOI: 10.1186/s12967-025-06186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Mucosal head and neck squamous cell carcinoma (HNSCC) is often diagnosed at an advanced stage, where the prognosis is poor due to the high rates of recurrence and metastasis. With approximately one million new cases projected in 2024, worldwide mortality of HNSCC is estimated to reach 50% of detected cases the same year. Patients with early-stage tumours showed a 50-60% five-year survival rate in the US. Immune checkpoint inhibitors (ICIs) have shown promising results in prolonging survival in a subset of patients with recurrent or metastatic disease. However, challenges remain, particularly the limited efficacy of PD-1/PD-L1 blockade therapies. PD-L1 protein expression has been shown to be limited in its predictive power for ICI therapies. Emerging evidence shows that intricate characterisation of the tumour microenvironment (TME) is fundamental to understand interacting cells. This study aims to bridge the gap in understanding the tumor microenvironment by identifying distinct spatial patterns of PD-1/PD-L1 interactions and their association with immunotherapy responses in head and neck squamous cell carcinoma (HNSCC). METHODS In this study, we sought to apply a more nuanced approach to understanding cellular interactions by mapping PD-1/PD-L1 interactions across whole-slide HNSCC tissue samples collected prior to ICI therapy. We used a combination of spatial proteomics (Akoya Biosciences) and an in situ proximity ligation assay (isPLA, Navinci Diagnostics) to visualise PD-1/PD-L1 interactions across cell types and cellular neighbourhoods within the tumour TME. RESULTS Our findings indicate the existence of isPLA+ PD-1/PD-L1 interactions between macrophages/CD3 T cell-enriched neighbourhoods and tumour cells at the tumour-stroma boundaries in ICI-resistant tumours. The presence of these dense macrophage-tumour layers, which are either absent or dispersed in responders, indicates a barrier that may restrict immune cell infiltration and promote immune escape mechanisms. In contrast, responders had abundant B and T cell aggregates, predominantly around the tumour edges linked to enhanced immune responses to ICI therapy and better clinical outcomes. CONCLUSION This study highlights the utility of isPLA in detecting distinct tumour-immune interactions within the TME, offering new cellular interaction metrics for stratifying and optimising immunotherapy strategies.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Rafael Tubelleza
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Brisbane, Australia
| | - James Monkman
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Brisbane, Australia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Meg L Donovan
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Brisbane, Australia
| | - Tony Blick
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | | | | | | | | | | | | | | | - Ken O'Byrne
- The Princess Alexandra Hospital, Brisbane, Australia
| | - Rahul Ladwa
- The Princess Alexandra Hospital, Brisbane, Australia
| | | | - Brett G M Hughes
- The Royal Brisbane and Women's Hospital, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Brisbane, Australia.
| |
Collapse
|
13
|
Zhang X, Sun K, Zhong B, Yan L, Cheng P, Wang Q. PMN-MDSCs are responsible for immune suppression in anti-PD-1 treated TAP1 defective melanoma. Clin Transl Oncol 2025:10.1007/s12094-024-03840-7. [PMID: 39825997 DOI: 10.1007/s12094-024-03840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/24/2024] [Indexed: 01/20/2025]
Abstract
INTRODUCTION The transporter associated with antigen processing (TAP) is a key component of the classical HLA I antigen presentation pathway. Our previous studies have demonstrated that the downregulation of TAP1 contributes to tumor progression and is associated with an increased presence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. However, it remains unclear whether the elevation of MDSCs leads to immune cell exhaustion in tumors lacking TAP1. In this study, we established mouse models of tumors with TAP1 deficiency, and we employed PMN-MDSC depletion to investigate their impact on the immune microenvironment within the tumors. We found that MDSC depletion significantly altered the immune-suppressive effects of TAP1-deficient tumor when anti-PD-1 treatment was administered. Targeting PMN-MDSC may be a promising therapeutic strategy for the treatment of tumors with TAP1 deficiency during ICB treatment. METHODS Immunohistochemistry (IHC) was conducted to assess TAP1 expression in mouse melanoma tissues. Ly6G, F4/80, and NKp46 markers were detected in B16 parental and TAP1 knockout tissues, respectively. To enhance anti-tumor immunity, hyperthermia-treated B16F10 WT cell suspension was injected prior to tumor cell introduction. Subsequently, we established B16F10 TAP1 knockout and WT melanoma mouse models. Tumors were collected, and the immune microenvironment was monitored accordingly. Anti-Ly6G antibody was administered to deplete polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Finally, flow cytometry analysis for immune infiltration, quantitative PCR for cytokine levels, and immunofluorescence assays were performed to analyze the immune response. RESULTS The level of Ly6G+ cell infiltration was significantly higher in samples exhibiting low TAP1 expression, while no differences were observed in the infiltration of F4/80+ cells or NKp46+ cells. Furthermore, the immune-suppressive effects associated with PMN-MDSCs were reversed following their elimination; this resulted in an increase in CD8+ T cells and a higher ratio of CD8+ T cells to Tregs, while the infiltration of innate immune cells remained unaffected. Functional markers of these immune cells indicated an active anti-tumoral immune response following the removal of PMN-MDSCs. Quantitative PCR analysis indicated elevated levels of TNF-α and IL-6, accompanied by decreased levels of TGF-β in the tumor microenvironment of TAP1. CONCLUSIONS Our data indicate that myeloid-derived suppressor cells (PMN-MDSCs) play an essential role in creating a tumorigenic immune microenvironment in TAP1 knockout tumors. Therefore, targeting PMN-MDSCs may become a promising therapeutic strategy for the treatment of tumors with TAP1 deficiency during ICB treatment.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China
| | - Kaijun Sun
- Weifang People's Hospital, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, Shandong, China
| | - Bingzheng Zhong
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China
| | - Likun Yan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Pengrui Cheng
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China
| | - Qiang Wang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China.
| |
Collapse
|
14
|
Chen Y, Liu S, Yin X. Progress and prospects of the combination of BMI1-targeted therapy and immunotherapy in cervical cancer. Am J Cancer Res 2025; 15:217-232. [PMID: 39949922 PMCID: PMC11815372 DOI: 10.62347/qtwj8918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Cervical cancer is one of the most prevalent gynecologic malignancies, posing a significant threat to women's health and survival. Despite advancements in early screening and diagnosis, which have led to cervical cancer being termed a "preventable" cancer, treatment options for advanced and recurrent cervical cancer remain limited. Consequently, identifying new therapeutic targets and treatments is crucial for advancing the research and management of cervical cancer. In recent years, targeted therapy and immunotherapy have become focal points in oncology research, offering new avenues and directions for the treatment of cancer. Preclinical studies have demonstrated that targeting BMI1 can inhibit cervical cancer progression, while immunotherapy has advanced to phase III clinical trials, showing promising results. To date, there have been no reports on the combination of BMI1-targeted therapy and immunotherapy in cervical cancer. This review, therefore, elucidates the current state of research and explores the potential and perspectives of combining targeted therapy with immunotherapy for cervical cancer.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan UniversityChengdu, Sichuan, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan UniversityChengdu, Sichuan, P. R. China
| | - Shiyu Liu
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan UniversityChengdu, Sichuan, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan UniversityChengdu, Sichuan, P. R. China
| | - Xia Yin
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan UniversityChengdu, Sichuan, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan UniversityChengdu, Sichuan, P. R. China
| |
Collapse
|
15
|
Bortolot M, Torresan S, De Carlo E, Bertoli E, Stanzione B, Del Conte A, Spina M, Bearz A. Navigating Therapeutic Challenges in BRAF-Mutated NSCLC: Non-V600 Mutations, Immunotherapy, and Overcoming Resistance. Int J Mol Sci 2024; 25:12972. [PMID: 39684685 DOI: 10.3390/ijms252312972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Although rare in non-small cell lung cancer (NSCLC), BRAF mutations present considerable therapeutic challenges. While the use of BRAF and MEK inhibitor combinations has significantly improved survival outcomes in patients with BRAF V600E mutations, no targeted therapies are currently available for class II and III mutations, leaving the optimal treatment strategy and prognosis for these patients uncertain. Additionally, despite immunotherapy typically showing limited benefit in patients with other activating genomic alterations, it appears to deliver comparable efficacy in BRAF-mutated NSCLC, emerging as a potentially viable treatment option, particularly in patients with a history of smoking. However, resistance to BRAF pathway inhibitors is inevitable, leading to disease progression, and a well-defined strategy to overcome these resistance mechanisms is lacking. This review aims to explore the critical challenges in the management of BRAF-mutated NSCLC, providing a comprehensive summary of the current evidence and highlighting ongoing clinical trials that aim to address these critical gaps.
Collapse
Affiliation(s)
- Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Medicine (DME), University of Udine, 33100 Udine, Italy
| | - Sara Torresan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Medicine (DME), University of Udine, 33100 Udine, Italy
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
16
|
Liu Y, Yang Z, Wang S, Miao R, Chang CWM, Zhang J, Zhang X, Hung MC, Hou J. Nuclear PD-L1 compartmentalization suppresses tumorigenesis and overcomes immunocheckpoint therapy resistance in mice via histone macroH2A1. J Clin Invest 2024; 134:e181314. [PMID: 39545415 PMCID: PMC11563670 DOI: 10.1172/jci181314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/18/2024] [Indexed: 11/17/2024] Open
Abstract
Canonically PD-L1 functions as the inhibitory immune checkpoint on cell surface. Recent studies have observed PD-L1 expression in the nucleus of cancer cells. But the biological function of nuclear PD-L1 (nPD-L1) in tumor growth and antitumor immunity is unclear. Here we enforced nPD-L1 expression and established stable cells. nPD-L1 suppressed tumorigenesis and aggressiveness in vitro and in vivo. Compared with PD-L1 deletion, nPD-L1 expression repressed tumor growth and improved survival more markedly in immunocompetent mice. Phosphorylated AMPKα (p-AMPKα) facilitated nuclear PD-L1 compartmentalization and then cooperated with it to directly phosphorylate S146 of histone variant macroH2A1 (mH2A1) to epigenetically activate expression of genes of cellular senescence, JAK/STAT, and Hippo signaling pathways. Lipoic acid (LA) that induced nuclear PD-L1 translocation suppressed tumorigenesis and boosted antitumor immunity. Importantly, LA treatment synergized with PD-1 antibody and overcame immune checkpoint blockade (ICB) resistance, which likely resulted from nPD-L1-increased MHC-I expression and sensitivity of tumor cells to interferon-γ. These findings offer a conceptual advance for PD-L1 function and suggest LA as a promising therapeutic option for overcoming ICB resistance.
Collapse
Affiliation(s)
- Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders
| | - Zhi Yang
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
- Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuanglian Wang
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
- Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Miao
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
- Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | | | - Jingyu Zhang
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
- Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
| | - Mien-Chie Hung
- Institute of Biochemistry and Molecular Biology and
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Junwei Hou
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders
- Xiangya Cancer Center, and
- Center for Molecular Oncology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Zeng Z, Yang Z, Li C, Liu S, Wei W, Zhou Y, Wang S, Sui M, Li M, Lin S, Cheng Y, Hou P. Advancing Cancer Immunotherapy through Engineering New PD-L1 Degraders: A Comprehensive Study from Small Molecules to PD-L1-Specific Peptide-Drug Conjugates. J Med Chem 2024; 67:19216-19233. [PMID: 39420825 PMCID: PMC11571110 DOI: 10.1021/acs.jmedchem.4c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Despite the considerable achievements of antibodies targeting PD-1/PD-L1 in cancer immunotherapy, limitations in antitumor immune response and pharmacokinetics hinder their clinical adoption. Small molecules toward PD-L1 degradation signifies an innovative avenue to modulate PD-1/PD-L1 axis. Herein, we unveil a comprehensive engineering involving the development of new PD-L1 degraders based on the berberine (BBR) and palmatine (PMT) bioactive frameworks and explore their translational potential for cancer immunotherapy using a peptide-drug conjugate strategy. Chemical modifications at the O-9 position of PMT dramatically enhance the PD-L1 degradation capacity. Further conjugation of PMT degraders with an anti-PD-L1 peptide featuring disulfide linkers enables efficient GSH-specific prodrug activation, yielding synergistic immunotherapeutic benefits through both external PD-L1 blockade and internal PD-L1 degradation mechanisms. This work elucidates the compelling charm of the discovery and application of PD-L1 degraders, offering solutions to the challenges in advancing cancer immunotherapy in widespread clinics.
Collapse
Affiliation(s)
- Zekun Zeng
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Zhiwei Yang
- MOE
Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed
Matter, School of Physics, Xi’an
Jiaotong University, Xi’an 710049, P. R. China
| | - Chenghao Li
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Shujing Liu
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Wei Wei
- Department
of Ultrasound Medicine, The First Affiliated
Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P. R. China
| | - Ye Zhou
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Simeng Wang
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Mengjun Sui
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Mengdan Li
- Department
of Cardiology, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Shumei Lin
- Department
of Infectious Disease Medicine, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Yangyang Cheng
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Peng Hou
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| |
Collapse
|
18
|
Li Y, Li Z, Tang Y, Zhuang X, Feng W, Boor PPC, Buschow S, Sprengers D, Zhou G. Unlocking the therapeutic potential of the NKG2A-HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e009934. [PMID: 39486805 PMCID: PMC11529472 DOI: 10.1136/jitc-2024-009934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/29/2024] [Indexed: 11/04/2024] Open
Abstract
Immune checkpoint blockade, which enhances the reactivity of T cells to eliminate cancer cells, has emerged as a potent strategy in cancer therapy. Besides T cells, natural killer (NK) cells also play an indispensable role in tumor surveillance and destruction. NK Group 2 family of receptor A (NKG2A), an emerging co-inhibitory immune checkpoint expressed on both NK cells and T cells, mediates inhibitory signal via interaction with its ligand human leukocyte antigen-E (HLA-E), thereby attenuating the effector and cytotoxic functions of NK cells and T cells. Developing antibodies to block NKG2A, holds promise in restoring the antitumor cytotoxicity of NK cells and T cells. In this review, we delve into the expression and functional significance of NKG2A and HLA-E, elucidating how the NKG2A-HLA-E axis contributes to tumor immune escape via signal transduction mechanisms. Furthermore, we provide an overview of clinical trials investigating NKG2A blockade, either as monotherapy or in combination with other therapeutic antibodies, highlighting the responses of the immune system and the clinical benefits for patients. We pay special attention to additional immune co-signaling molecules that serve as potential targets on both NK cells and T cells, aiming to evoke more robust immune responses against cancer. This review offers an in-depth exploration of the NKG2A-HLA-E pathway as a pivotal checkpoint in the anti-tumor responses, paving the way for new immunotherapeutic strategies to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhu Li
- Department of Dermatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yisen Tang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaomei Zhuang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanhua Feng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonja Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
19
|
Cao XC, Mao XL, Lu SS, Zhu W, Huang W, Yi H, Yuan L, Zhou JH, Xiao ZQ. A PD-L1-Targeted Probe Cy5.5-A11 for In Vivo Imaging of Multiple Tumors. ACS OMEGA 2024; 9:43826-43833. [PMID: 39494025 PMCID: PMC11525735 DOI: 10.1021/acsomega.4c06761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
PD-L1 is an immune checkpoint molecule mediating cancer immune escape, and its expression level in the tumor has been used as a biomarker to predict response to immune checkpoint inhibitor (ICI) therapy. Our previous study reveals that an 11 amino acid-long ANXA1-derived peptide (named A11) binds and degrades the PD-L1 protein in multiple cancers and is a potential peptide for cancer diagnosis and treatment. Near-infrared fluorescence (NIF) optical imaging of tumors offers a noninvasive method for detecting cancer and monitoring therapeutic responses. In this study, an NIF dye Cy5.5 was conjugated with A11 peptide to develop a novel PD-L1-targeted probe for molecular imaging of tumors and monitor the dynamic changes in PD-L1 expression in tumors. In vitro imaging studies showed that intense fluorescence was observed in triple-negative breast cancer MDA-MB-231, nonsmall cell lung cancer H460, and melanoma A375 cells incubated with Cy5.5-A11, and the cellular uptake of Cy5.5-A11 was efficiently inhibited by coincubation with unlabeled A11 or knockdown of cellular PD-L1 by shRNA. In vivo imaging studies showed accumulation of Cy5.5-A11 in the MDA-MB-231, H460, and A375 xenografts with good contrast from 0.5 to 24 h after intravenous injection, indicating that Cy5.5-A11 possesses the strong ability for in vivo tumor imaging. Moreover, the fluorescent signal of A11-Cy5.5 in the xenografts was successfully blocked by coinjection of unlabeled A11 peptide or knockdown of cellular PD-L1 by shRNA, indicating the specificity of Cy5.5-A11 targeting PD-L1 in tumor imaging. Our data demonstrate that Cy5.5-A11 is a novel tool for tumor imaging of PD-L1, which has the potential for detecting cancer and predicting ICI therapeutic responses.
Collapse
Affiliation(s)
- Xiao-Cheng Cao
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xue-Li Mao
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shan-Shan Lu
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Zhu
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Wei Huang
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hong Yi
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Li Yuan
- Department
of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jian-Hua Zhou
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhi-Qiang Xiao
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
20
|
Li HW, Zhu ZY, Sun YF, Yuan CY, Wang MH, Wang N, Xue YW. Machine learning algorithms able to predict the prognosis of gastric cancer patients treated with immune checkpoint inhibitors. World J Gastroenterol 2024; 30:4354-4366. [PMID: 39494097 PMCID: PMC11525865 DOI: 10.3748/wjg.v30.i40.4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/16/2024] Open
Abstract
BACKGROUND Although immune checkpoint inhibitors (ICIs) have demonstrated significant survival benefits in some patients diagnosed with gastric cancer (GC), existing prognostic markers are not universally applicable to all patients with advanced GC. AIM To investigate biomarkers that predict prognosis in GC patients treated with ICIs and develop accurate predictive models. METHODS Data from 273 patients diagnosed with GC and distant metastasis, who un-derwent ≥ 1 cycle(s) of ICIs therapy were included in this study. Patients were randomly divided into training and test sets at a ratio of 7:3. Training set data were used to develop the machine learning models, and the test set was used to validate their predictive ability. Shapley additive explanations were used to provide insights into the best model. RESULTS Among the 273 patients with GC treated with ICIs in this study, 112 died within 1 year, and 129 progressed within the same timeframe. Five features related to overall survival and 4 related to progression-free survival were identified and used to construct eXtreme Gradient Boosting (XGBoost), logistic regression, and decision tree. After comprehensive evaluation, XGBoost demonstrated good accuracy in predicting overall survival and progression-free survival. CONCLUSION The XGBoost model aided in identifying patients with GC who were more likely to benefit from ICIs therapy. Patient nutritional status may, to some extent, reflect prognosis.
Collapse
Affiliation(s)
- Hong-Wei Li
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Zi-Yu Zhu
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Yu-Fei Sun
- Department of Anesthesia, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Chao-Yu Yuan
- Department of Computer Science and Technology, Heilongjiang University, Harbin 150000, Heilongjiang Province, China
| | - Mo-Han Wang
- Department of Computer Science and Technology, Heilongjiang University, Harbin 150000, Heilongjiang Province, China
| | - Nan Wang
- Department of Computer Science and Technology, Heilongjiang University, Harbin 150000, Heilongjiang Province, China
| | - Ying-Wei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| |
Collapse
|
21
|
Gu Y, Taifour T, Bui T, Zuo D, Pacis A, Poirier A, Attalla S, Fortier AM, Sanguin-Gendreau V, Pan TC, Papavasiliou V, Lin NU, Hughes ME, Smith K, Park M, Tremblay ML, Chodosh LA, Jeselsohn R, Muller WJ. Osteopontin is a therapeutic target that drives breast cancer recurrence. Nat Commun 2024; 15:9174. [PMID: 39448577 PMCID: PMC11502809 DOI: 10.1038/s41467-024-53023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
Recurrent breast cancers often develop resistance to standard-of-care therapies. Identifying targetable factors contributing to cancer recurrence remains the rate-limiting step in improving long-term outcomes. In this study, we identify tumor cell-derived osteopontin as an autocrine and paracrine driver of tumor recurrence. Osteopontin promotes tumor cell proliferation, recruits macrophages, and synergizes with IL-4 to further polarize them into a pro-tumorigenic state. Macrophage depletion and osteopontin inhibition decrease recurrent tumor growth. Furthermore, targeting osteopontin in primary tumor-bearing female mice prevents metastasis, permits T cell infiltration and activation, and improves anti-PD-1 immunotherapy response. Clinically, osteopontin expression is higher in recurrent metastatic tumors versus female patient-matched primary breast tumors. Osteopontin positively correlates with macrophage infiltration, increases with higher tumor grade, and its elevated pathway activity is associated with poor prognosis and long-term recurrence. Our findings suggest clinical implications and an alternative therapeutic strategy based on osteopontin's multiaxial role in breast cancer progression and recurrence.
Collapse
Affiliation(s)
- Yu Gu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Tarek Taifour
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Tung Bui
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Dongmei Zuo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Alain Pacis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Canadian Centre for Computational Genomics, McGill University Genome Center, Montreal, QC, Canada
| | - Alexandre Poirier
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Sherif Attalla
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Anne-Marie Fortier
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | | | - Tien-Chi Pan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vasilios Papavasiliou
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Melissa E Hughes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kalie Smith
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Michel L Tremblay
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Lewis A Chodosh
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William J Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
- Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Wang X, Han T, Wang Y, Yang R, Yang Q, Li J. Integrative analysis of the immunological significances of guanylate binding protein family genes in microsatellite stability colorectal cancer. Heliyon 2024; 10:e37741. [PMID: 39315131 PMCID: PMC11417218 DOI: 10.1016/j.heliyon.2024.e37741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Background Microsatellite stability (MSS) colorectal cancer (CRC) has poor sensitivity to immunotherapy and its underlying mechanisms are still unclear. Guanylate binding proteins (GBPs) are a family of GTPase involving innate immune responses by providing defense against invading microbes and pathogens. However, the immunological significances of GBPs in MSS CRC remain unknown. Methods We utilized bioinformatic tools to comprehensively analysis the expression pattern, clinical relevance, prognostic value, biological function, and immunoregulation effect of distinct GBP members in MSS CRC. Results The expression of all seven GBPs in MSS samples are remarkably decreased compared to microsatellite instability-high (MSI-H) samples. Among them, GBP1/2/4/5 are obviously correlated with distant metastasis status. High expression of GBP1/4/5/6 was remarkably related to favorable overall survival (OS) and progression-free survival (PFS) in CRC patients with MSS tumor. Subsequent enrichment analysis revealed that Interferon-gamma (IFN-γ) and NOD-like receptor signaling are the most relevant functions. Besides, the expression patterns of GBPs are remarkably associated with several tumor infiltrated immune cells (e.g. regulatory T cells, CD4+ T cells, and macrophages) and diverse immunoregulatory molecules (e.g. immune checkpoint biomarkers (ICBs) and major histocompatibility complex (MHC) molecules). Moreover, high GBP1/2/4/5 expression predicted better immunotherapy responsiveness in immunotherapy cohorts. Conclusion These findings might provide novel insights for the identification of therapeutic targets and potential prognostic biomarkers of GBP family in CRC with MSS samples.
Collapse
Affiliation(s)
| | | | - Yinchun Wang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Rui Yang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Qingqiang Yang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Jianxin Li
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| |
Collapse
|
23
|
Jifu C, Lu L, Ding J, Lv M, Xia J, Wang J, Wang P. USP18 Is Associated with PD-L1 Antitumor Immunity and Improved Prognosis in Colorectal Cancer. Biomolecules 2024; 14:1191. [PMID: 39334957 PMCID: PMC11430364 DOI: 10.3390/biom14091191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Compared with conventional chemotherapy and targeted therapy, immunotherapy has improved the treatment outlook for a variety of solid tumors, including lung cancer, colorectal cancer (CRC), and melanoma. However, it is effective only in certain patients, necessitating the search for alternative strategies to targeted immunotherapy. The deubiquitinating enzyme USP18 is known to play an important role in various aspects of the immune response, but its role in tumor immunity in CRC remains unclear. METHODS In this study, multiple online datasets were used to systematically analyze the expression, prognosis, and immunomodulatory role of USP18 in CRC. The effect of USP18 on CRC was assessed via shRNA-mediated knockdown of USP18 expression in combination with CCK-8 and colony formation assays. Finally, molecular docking analysis of USP18/ISG15 and programmed death-ligand 1 (PD-L1) was performed via HDOCK, and an ELISA was used to verify the potential of USP18 to regulate PD-L1. RESULTS Our study revealed that USP18 expression was significantly elevated in CRC patients and closely related to clinicopathological characteristics. The experimental data indicated that silencing USP18 significantly promoted the proliferation and population-dependent growth of CRC cells. In addition, high USP18 expression was positively correlated with the CRC survival rate and closely associated with tumor-infiltrating CD8+ T cells and natural killer (NK) cells. Interestingly, USP18 was correlated with the expression of various chemokines and immune checkpoint genes. The results of molecular docking simulations suggest that USP18 may act as a novel regulator of PD-L1 and that its deficiency may potentiate the antitumor immune response to PD-L1 blockade immunotherapy in CRC. CONCLUSIONS In summary, USP18 shows great promise for research and clinical application as a potential target for CRC immunotherapy.
Collapse
Affiliation(s)
- Cili Jifu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China; (C.J.); (L.L.)
| | - Linxia Lu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China; (C.J.); (L.L.)
| | - Jiaxin Ding
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China; (C.J.); (L.L.)
| | - Mengjun Lv
- College of Public Health, Jiamusi University, Jiamusi 154007, China
| | - Jun Xia
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China; (C.J.); (L.L.)
| | - Jingtao Wang
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China; (C.J.); (L.L.)
| | - Peijun Wang
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China; (C.J.); (L.L.)
| |
Collapse
|
24
|
Shao Y, Han S, Hou Z, Yang C, Zhao Y. Tumor-associated macrophages within the immunological milieu: An emerging focal point for therapeutic intervention. Heliyon 2024; 10:e36839. [PMID: 39281573 PMCID: PMC11401039 DOI: 10.1016/j.heliyon.2024.e36839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Tumor-associated macrophages play an important role in the tumor immune microenvironment, and regulating the function of tumor-associated macrophages has important therapeutic potential in tumor therapy. Mature macrophages could migrate to the tumor microenvironment, influencing multiple factors such as tumor cell proliferation, invasion, metastasis, extracellular matrix remodeling, immune suppression, and drug resistance. As a major component of the tumor microenvironment, tumor-associated macrophages crosstalk with other immune cells. Currently, tumor-associated macrophages have garnered considerable attention in tumor therapy, broadening the spectrum of drug selection to some extent, thereby aiding in mitigating the prevailing clinical drug resistance dilemma. This article summarizes the recent advances in tumor-associated macrophages concerning immunology, drug targeting mechanisms for tumor-associated macrophages treatment, new developments, and existing challenges, offering insights for future therapeutic approaches. In addition, this paper summarized the impact of tumor-associated macrophages on current clinical therapies, discussed the advantages and disadvantages of targeted tumor-associated macrophages therapy compared with existing tumor therapies, and predicted and discussed the future role of targeted tumor-associated macrophages therapy and the issues that need to be focused on.
Collapse
Affiliation(s)
- Yanchi Shao
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Song Han
- The First Hospital of Jilin University, Changchun, China
| | - Zhenxin Hou
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chen Yang
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yanbin Zhao
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
25
|
Li P, Zhong Y, Zhang M, Zheng Y, Peng W. The expression of programmed cell death ligand 1 (PD-L1) involves in the clinicopathologic characteristics and prognostic implications of testicular germ cell tumor (TGCT): a systematic review and meta-analysis. Transl Cancer Res 2024; 13:3944-3959. [PMID: 39262473 PMCID: PMC11385796 DOI: 10.21037/tcr-23-2302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/09/2024] [Indexed: 09/13/2024]
Abstract
Background Testicular germ cell tumor (TGCT) is a type of tumor with relatively lower incidence but being more prevalent in young men. The expression of programmed cell death ligand 1 (PD-L1) serves as a potential biomarker for predicting the survival outcomes of other tumors. Some studies discovered higher prevalence of PD-L1 in TGCT patients who achieved favorable treatment outcomes, while other studies showed lower or absent expression of PD-L1 in TGCT with the better prognosis as well. Therefore, in order to address this controversy and clarify the association between the expression of PD-L1 and pathological features and prognosis of TGCT, this meta-analysis was conducted. Methods A comprehensive literature search was performed using following search terms: "testis", "testicle", "testicular", "cancer", "carcinoma", "tumor", "neoplasm", "programmed cell death ligand 1", "programmed death ligand 1", "PD-L1", "PDL1", "B7 homolog 1", "B7-H1", "B7H1" and "CD274". Relevant studies were retrieved according to the inclusion criteria from reputable databases including PubMed, Embase, Web of Science, Cochrane Library and China National Knowledge Infrastructure (CNKI). These studies investigated the expression of PD-L1 in both tumor cells and tumor infiltrating immune cells (TIICs) in TGCT. The overall proportion of PD-L1 positivity was assessed using R programming. Pooled hazard ratio (HR) and odds ratio (OR) with corresponding 95% confidence interval (CI) were calculated using Revman software to evaluate the involvement of PD-L1 expression in TGCT. The Newcastle-Ottawa Scale (NOS) was used to evaluate the quality assessment of included studies. Sensitivity analysis and publication bias evaluation were subsequently performed. Results A total of eight eligible studies compromising 1,589 patients diagnosed with TGCT were finally included in this study. PD-L1 positivity was detected in 31% and 41% of TGCT patients' tumor cells and TIICs, respectively. The pooled data demonstrated a significant association between elevated PD-L1 expression levels in TIICs and a favorable prognosis characterized by the reduced disease progression and relapse events (HR =0.21, 95% CI: 0.13-0.33). Furthermore, PD-L1+ TIICs exhibited higher prevalence rates in seminoma (OR =2.11, 95% CI: 1.57-2.84) and embryonal carcinoma (OR =6.23, 95% CI: 2.42-16.02) patients. Notably, PD-L1 expression in TIICs displayed a tendency to increase in TGCT patients with lower stages or without lymph node metastasis. Conclusions PD-L1 expression was observed in choriocarcinoma tumor cells, while yolk sac tumor and teratoma tumor cells exhibited lower or absent expression of PD-L1. Conversely, PD-L1 expression in TIICs was associated with seminoma and embryonal carcinoma, which was more commonly observed in TGCT patients with lower stages and better prognosis, thereby providing a theoretical foundation for the application of immunotherapy in relapsed/refractory TGCT patients.
Collapse
Affiliation(s)
- Peifeng Li
- Department of Urology, The Sixth People's Hospital of Huizhou, Huizhou, China
- Department of Urology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Yuwei Zhong
- Department of Urology, The Sixth People's Hospital of Huizhou, Huizhou, China
- Department of Urology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Miaotao Zhang
- Department of Urology, The Sixth People's Hospital of Huizhou, Huizhou, China
- Department of Urology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Yonghong Zheng
- Department of Urology, The Sixth People's Hospital of Huizhou, Huizhou, China
- Department of Urology, Affiliated Huiyang Hospital of Southern Medical University, Huizhou, China
| | - Wei Peng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, China
| |
Collapse
|
26
|
Chen C, Zhao F, Peng J, Zhao D, Xu L, Li H, Ma S, Peng X, Sheng X, Sun Y, Wang T, Dong H, Ding Y, Wu Z, Liang X, Gao L, Wang H, Ma C, Li C. Soluble Tim-3 serves as a tumor prognostic marker and therapeutic target for CD8 + T cell exhaustion and anti-PD-1 resistance. Cell Rep Med 2024; 5:101686. [PMID: 39168104 PMCID: PMC11384939 DOI: 10.1016/j.xcrm.2024.101686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/14/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Resistance to PD-1 blockade in onco-immunotherapy greatly limits its clinical application. T cell immunoglobulin and mucin domain containing-3 (Tim-3), a promising immune checkpoint target, is cleaved by ADAM10/17 to produce its soluble form (sTim-3) in humans, potentially becoming involved in anti-PD-1 resistance. Herein, serum sTim-3 upregulation was observed in non-small cell lung cancer (NSCLC) and various digestive tumors. Notably, serum sTim-3 is further upregulated in non-responding patients undergoing anti-PD-1 therapy for NSCLC and anti-PD-1-resistant cholangiocarcinoma patients. Furthermore, sTim-3 overexpression facilitates tumor progression and confers anti-PD-1 resistance in multiple tumor mouse models. Mechanistically, sTim-3 induces terminal T cell exhaustion and attenuates CD8+ T cell response to PD-1 blockade through carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1). Moreover, the ADAM10 inhibitor GI254023X, which blocks sTim-3 production, reduces tumor progression in Tim-3 humanized mice and reverses anti-PD-1 resistance in human tumor-infiltrating lymphocytes (TILs). Overall, human sTim-3 holds great predictive and therapeutic potential in onco-immunotherapy.
Collapse
Affiliation(s)
- Chaojia Chen
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China; The Jackson Laboratory, Bar Harbor, ME, USA
| | - Fangcheng Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jiali Peng
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China; Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Di Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liyun Xu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, Zhejiang 316004, China
| | - Huayu Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuaiya Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xueqi Peng
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xue Sheng
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yang Sun
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haoqing Dong
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuming Ding
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and Embryology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
27
|
Niebora J, Woźniak S, Domagała D, Data K, Farzaneh M, Zehtabi M, Dari MAG, Pour FK, Bryja A, Kulus M, Mozdziak P, Dzięgiel P, Kempisty B. The role of ncRNAs and exosomes in the development and progression of endometrial cancer. Front Oncol 2024; 14:1418005. [PMID: 39188680 PMCID: PMC11345653 DOI: 10.3389/fonc.2024.1418005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 08/28/2024] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecologic cancers. In recent years, research has focused on the genetic characteristics of the tumors to detail their prognosis and tailor therapy. In the case of EC, genetic mutations have been shown to underlie their formation. It is very important to know the mechanisms of EC formation related to mutations induced by estrogen, among other things. Noncoding RNAs (ncRNAs), composed of nucleotide transcripts with very low protein-coding capacity, are proving to be important. Their expression patterns in many malignancies can inhibit tumor formation and progression. They also regulate protein coding at the epigenetic, transcriptional, and posttranscriptional levels. MicroRNAs (miRNAs), several varieties of which are associated with normal endometrium as well as its tumor, also play a particularly important role in gene expression. MiRNAs and long noncoding RNAs (lncRNAs) affect many pathways in EC tissues and play important roles in cancer development, invasion, and metastasis, as well as resistance to anticancer drugs through mechanisms such as suppression of apoptosis and progression of cancer stem cells. It is also worth noting that miRNAs are highly precise, sensitive, and robust, making them potential markers for diagnosing gynecologic cancers and their progression. Unfortunately, as the incidence of EC increases, treatment becomes challenging and is limited to invasive tools. The prospect of using microRNAs as potential candidates for diagnostic and therapeutic use in EC seems promising. Exosomes are extracellular vesicles that are released from many types of cells, including cancer cells. They contain proteins, DNA, and various types of RNA, such as miRNAs. The noncoding RNA components of exosomes vary widely, depending on the physiology of the tumor tissue and the cells from which they originate. Exosomes contain both DNA and RNA and have communication functions between cells. Exosomal miRNAs mediate communication between EC cells, tumor-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) and play a key role in tumor cell proliferation and tumor microenvironment formation. Oncogenes carried by tumor exosomes induce malignant transformation of target cells. During the synthesis of exosomes, various factors, such as genetic and proteomic data are upregulated. Thus, they are considered an interesting therapeutic target for the diagnosis and prognosis of endometrial cancer by analyzing biomarkers contained in exosomes. Expression of miRNAs, particularly miR-15a-5p, was elevated in exosomes derived from the plasma of EC patients. This may suggest the important utility of this biomarker in the diagnosis of EC. In recent years, researchers have become interested in the topic of prognostic markers for EC, as there are still too few identified markers to support the limited treatment of endometrial cancer. Further research into the effects of ncRNAs and exosomes on EC may allow for cancer treatment breakthroughs.
Collapse
Affiliation(s)
- Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Clinical Research Development Unit, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, United States
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, United States
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czechia
| |
Collapse
|
28
|
Zhao C, Pan Y, Liu L, Zhang J, Wu X, Liu Y, Zhao XZ, Rao L. Hybrid Cellular Nanovesicles Block PD-L1 Signal and Repolarize M2 Macrophages for Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311702. [PMID: 38456371 DOI: 10.1002/smll.202311702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 03/09/2024]
Abstract
The PD1/PD-L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor-associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage-derived nanovesicles (M1-NVs) and PD1-overexpressed tumor cell-derived nanovesicles (PD1-NVs) to improve cancer immunotherapy. The M1-NVs promote the transformation of M2-like TAMs to M1-like phenotype and further increase the release of pro-inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1-NVs block PD1/PD-L1 pathway, which boosts cancer immunotherapy when combined with M1-NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD-L1 blockade for cancer immunotherapy.
Collapse
Affiliation(s)
- Chenchen Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Lujie Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jing Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xianjia Wu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yu Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
29
|
Zhang Y, Zhang C, He J, Lai G, Li W, Zeng H, Zhong X, Xie B. Comprehensive analysis of single cell and bulk RNA sequencing reveals the heterogeneity of melanoma tumor microenvironment and predicts the response of immunotherapy. Inflamm Res 2024; 73:1393-1409. [PMID: 38896289 DOI: 10.1007/s00011-024-01905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Tumor microenvironment (TME) heterogeneity is an important factor affecting the treatment response of immune checkpoint inhibitors (ICI). However, the TME heterogeneity of melanoma is still widely characterized. METHODS We downloaded the single-cell sequencing data sets of two melanoma patients from the GEO database, and used the "Scissor" algorithm and the "BayesPrism" algorithm to comprehensively analyze the characteristics of microenvironment cells based on single-cell and bulk RNA-seq data. The prediction model of immunotherapy response was constructed by machine learning and verified in three cohorts of GEO database. RESULTS We identified seven cell types. In the Scissor+ subtype cell population, the top three were T cells, B cells and melanoma cells. In the Scissor- subtype, there are more macrophages. By quantifying the characteristics of TME, significant differences in B cells between responders and non-responders were observed. The higher the proportion of B cells, the better the prognosis. At the same time, macrophages in the non-responsive group increased significantly. Finally, nine gene features for predicting ICI response were constructed, and their predictive performance was superior in three external validation groups. CONCLUSION Our study revealed the heterogeneity of melanoma TME and found a new predictive biomarker, which provided theoretical support and new insights for precise immunotherapy of melanoma patients.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Cong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Jing He
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Wenlong Li
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Haijiao Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Xiaoni Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China.
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China.
| | - Biao Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing, 400016, China.
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
30
|
Wei S, Tan J, Huang X, Zhuang K, Qiu W, Chen M, Ye X, Wu M. Metastasis and basement membrane-related signature enhances hepatocellular carcinoma prognosis and diagnosis by integrating single-cell RNA sequencing analysis and immune microenvironment assessment. J Transl Med 2024; 22:711. [PMID: 39085893 PMCID: PMC11293133 DOI: 10.1186/s12967-024-05493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and second leading cause of cancer-related deaths worldwide. The heightened mortality associated with HCC is largely attributed to its propensity for metastasis, which cannot be achieved without remodeling or loss of the basement membrane (BM). Despite advancements in targeted therapies and immunotherapies, resistance and limited efficacy in late-stage HCC underscore the urgent need for better therapeutic options and early diagnostic biomarkers. Our study aimed to address these gaps by investigating and evaluating potential biomarkers to improve survival outcomes and treatment efficacy in patients with HCC. METHOD In this study, we collected the transcriptome sequencing, clinical, and mutation data of 424 patients with HCC from The Cancer Genome Atlas (TCGA) and 240 from the International Cancer Genome Consortium (ICGC) databases. We then constructed and validated a prognostic model based on metastasis and basement membrane-related genes (MBRGs) using univariate and multivariate Cox regression analyses. Five immune-related algorithms (CIBERSORT, QUANTISEQ, MCP counter, ssGSEA, and TIMER) were then utilized to examine the immune landscape and activity across high- and low-risk groups. We also analyzed Tumor Mutation Burden (TMB) values, Tumor Immune Dysfunction and Exclusion (TIDE) scores, mutation frequency, and immune checkpoint gene expression to evaluate immune treatment sensitivity. We analyzed integrin subunit alpha 3 (ITGA3) expression in HCC by performing single-cell RNA sequencing (scRNA-seq) analysis using the TISCH 2.0 database. Lastly, wound healing and transwell assays were conducted to elucidate the role of ITGA3 in tumor metastasis. RESULTS Patients with HCC were categorized into high- and low-risk groups based on the median values, with higher risk scores indicating worse overall survival. Five immune-related algorithms revealed that the abundance of immune cells, particularly T cells, was greater in the high-risk group than in the low-risk group. The high-risk group also exhibited a higher TMB value, mutation frequency, and immune checkpoint gene expression and a lower tumor TIDE score, suggesting the potential for better immunotherapy outcomes. Additionally, scRNA-seq analysis revealed higher ITGA3 expression in tumor cells compared with normal hepatocytes. Wound healing scratch and transwell cell migration assays revealed that overexpression of the MBRG ITGA3 enhanced migration of HCC HepG2 cells. CONCLUSION This study established a direct molecular correlation between metastasis and BM, encompassing clinical features, tumor microenvironment, and immune response, thereby offering valuable insights for predicting clinical outcomes and immunotherapy responses in HCC.
Collapse
Affiliation(s)
- Shijia Wei
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Jingyi Tan
- School of Pharmacy, Guangdong Medical University, Zhanjiang, 524000, China
- School of Basic Medicine, Guangdong Medical University, Zhanjiang, 524000, China
| | - Xueshan Huang
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Kai Zhuang
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Weijian Qiu
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Mei Chen
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Xiaoxia Ye
- School of Basic Medicine, Guangdong Medical University, Zhanjiang, 524000, China
| | - Minhua Wu
- School of Basic Medicine, Guangdong Medical University, Zhanjiang, 524000, China.
| |
Collapse
|
31
|
Carlisle J, Liu Y, Leal T. Back to the Drawing Board: Overcoming Resistance to PD-1 Blockade. J Clin Oncol 2024; 42:2367-2371. [PMID: 38833649 DOI: 10.1200/jco.24.00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 06/06/2024] Open
Affiliation(s)
- Jennifer Carlisle
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| | - Yuan Liu
- Department of Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Ticiana Leal
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
32
|
Chen L, Yin G, Wang Z, Liu Z, Sui C, Chen K, Song T, Xu W, Qi L, Li X. A predictive radiotranscriptomics model based on DCE-MRI for tumor immune landscape and immunotherapy in cholangiocarcinoma. Biosci Trends 2024; 18:263-276. [PMID: 38853000 DOI: 10.5582/bst.2024.01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
This study aims to determine the predictive role of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) derived radiomic model in tumor immune profiling and immunotherapy for cholangiocarcinoma. To perform radiomic analysis, immune related subgroup clustering was first performed by single sample gene set enrichment analysis (ssGSEA). Second, a total of 806 radiomic features for each phase of DCE-MRI were extracted by utilizing the Python package Pyradiomics. Then, a predictive radiomic signature model was constructed after a three-step features reduction and selection, and receiver operating characteristic (ROC) curve was employed to evaluate the performance of this model. In the end, an independent testing cohort involving cholangiocarcinoma patients with anti-PD-1 Sintilimab treatment after surgery was used to verify the potential application of the established radiomic model in immunotherapy for cholangiocarcinoma. Two distinct immune related subgroups were classified using ssGSEA based on transcriptome sequencing. For radiomic analysis, a total of 10 predictive radiomic features were finally identified to establish a radiomic signature model for immune landscape classification. Regarding to the predictive performance, the mean AUC of ROC curves was 0.80 in the training/validation cohort. For the independent testing cohort, the individual predictive probability by radiomic model and the corresponding immune score derived from ssGSEA was significantly correlated. In conclusion, radiomic signature model based on DCE-MRI was capable of predicting the immune landscape of chalangiocarcinoma. Consequently, a potentially clinical application of this developed radiomic model to guide immunotherapy for cholangiocarcinoma was suggested.
Collapse
Affiliation(s)
- Lu Chen
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Guotao Yin
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ziyang Wang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Nuclear Medicine, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zifan Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Kun Chen
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tianqiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
33
|
Chen Y, Zhang W, Xu X, Xu B, Yang Y, Yu H, Li K, Liu M, Qi L, Jiao X. Gene signatures of copper metabolism related genes may predict prognosis and immunity status in Ewing's sarcoma. Front Oncol 2024; 14:1388868. [PMID: 39050579 PMCID: PMC11267503 DOI: 10.3389/fonc.2024.1388868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Background Cuproptosis is copper-induced cell death. Copper metabolism related genes (CMRGs) were demonstrated that used to assess the prognosis out of tumors. In the study, CMRGs were tested for their effect on TME cell infiltration in Ewing's sarcoma (ES). Methods The GEO and ICGC databases provided the mRNA expression profiles and clinical features for downloading. In the GSE17674 dataset, 22prognostic-related copper metabolism related genes (PR-CMRGs) was identified by using univariate regression analysis. Subsequently, in order to compare the survival rates of groups with high and low expression of these PR-CMRGs,Kaplan-Meier analysis was implemented. Additionally, correlations among them were examined. The study employed functional enrichment analysis to investigate probable underlying pathways, while GSVA was applied to evaluate enriched pathways in the ES (Expression Set). Through an unsupervised clustering algorithm, samples were classified into two clusters, revealing significant differences in survival rates and levels of immune infiltration. Results Using Lasso and step regression methods, five genes (TFRC, SORD, SLC11A2, FKBP4, and AANAT) were selected as risk signatures. According to the Kaplan-Meier survival analysis, the high-risk group had considerably lower survival rates than the low-risk group(p=6.013e-09). The area under the curve (AUC) values for the receiver operating characteristic (ROC) curve were 0.876, 0.883, and 0.979 for 1, 3, and 5 years, respectively. The risk model was further validated in additional datasets, namely GSE63155, GSE63156, and the ICGC datasets. To aid in outcome prediction, a nomogram was developed that incorporated risk levels and clinical features. This nomogram's performance was effectively validated through calibration curves.Additionally, the study evaluated the variations in immune infiltration across different risk groups, as well as high-expression and low-expression groups. Importantly, several drugs were identified that displayed sensitivity, offering potential therapeutic options for ES. Conclusion The findings above strongly indicate that CMRGs play crucial roles in predicting prognosis and immune status in ES.
Collapse
Affiliation(s)
- Yongqin Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wencan Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao Xu
- Sterile Supply Department, The First People Hospital of Jinan, Jinan, Shandong, China
| | - Biteng Xu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuxuan Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Haozhi Yu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ke Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mingshan Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Qi
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiejia Jiao
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
34
|
Iuliani M, Simonetti S, Cristofani L, Cavaliere S, Cortellini A, Russano M, Vincenzi B, Tonini G, Santini D, Pantano F. Circulating receptor activator of nuclear factor kappa-B ligand (RANKL) levels predict response to immune checkpoint inhibitors in advanced non-small cell lung cancer (NSCLC). J Immunother Cancer 2024; 12:e009432. [PMID: 38908859 PMCID: PMC11328619 DOI: 10.1136/jitc-2024-009432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Receptor activator of nuclear factor kappa-B ligand (RANKL) can directly promote tumor growth and indirectly support tumor immune evasion by altering the tumor microenvironment and immune cell responses. This study aimed to assess the prognostic significance of soluble RANKL in patients with advanced non-small cell lung cancer (NSCLC) receiving programmed cell death 1 (PD1)/programmed death-ligand 1 (PDL1) checkpoint inhibitor therapy. METHODS Plasma RANKL levels were measured in 100 patients with advanced NSCLC without bone metastases undergoing monotherapy with PD1/PDL1 checkpoint inhibitors. To establish the optimal cut-off value, we used the Cutoff Finder package in R. Survival curves for four distinct patient groups, according to their RANKL and PDL1 levels (high or low), were generated using the Kaplan-Meier method and compared with the log-rank test. The Cox regression model calculated HRs and 95% CIs for overall survival (OS) and progression-free survival (PFS). RESULTS The optimal RANKL cut-off was established at 280.4 pg/mL, categorizing patients into groups with high or low RANKL levels. A significant association was observed between increased RANKL concentrations and decreased survival rates at 24 months, only within the subgroup expressing high levels of PDL1 (p=0.002). Additionally, low RANKL levels in conjunction with elevated PDL1 expression correlated with improved PFS (median 22 months, 95% CI 6.70 to 50 vs median 4 months, 95% CI 3.0 to 7.30, p=0.009) and OS (median 26 months, 95% CI 20 to not reached vs median 7 months, 95% CI 6 to 13, p=0.003), indicating RANKL's potential as an indicator of adverse prognosis in these patients. Multivariate analysis identified RANKL as an independent negative prognostic factor for both PFS and OS, regardless of other clinicopathological features. CONCLUSION These results highlight the prognostic and predictive value of RANKL specifically in patients with high PDL1 expression.
Collapse
Affiliation(s)
- Michele Iuliani
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Sonia Simonetti
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | | | - Silvia Cavaliere
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Alessio Cortellini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Marco Russano
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Bruno Vincenzi
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Giuseppe Tonini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Daniele Santini
- UOC Oncologia Medica A, Policlinico Umberto 1, Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Francesco Pantano
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
35
|
Su P, Li O, Ke K, Jiang Z, Wu J, Wang Y, Mou Y, Jin W. Targeting tumor‑associated macrophages: Critical players in tumor progression and therapeutic strategies (Review). Int J Oncol 2024; 64:60. [PMID: 38695252 PMCID: PMC11087038 DOI: 10.3892/ijo.2024.5648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Tumor‑associated macrophages (TAMs) are essential components of the tumor microenvironment (TME) and display phenotypic heterogeneity and plasticity associated with the stimulation of bioactive molecules within the TME. TAMs predominantly exhibit tumor‑promoting phenotypes involved in tumor progression, such as tumor angiogenesis, metastasis, immunosuppression and resistance to therapies. In addition, TAMs have the potential to regulate the cytotoxic elimination and phagocytosis of cancer cells and interact with other immune cells to engage in the innate and adaptive immune systems. In this context, targeting TAMs has been a popular area of research in cancer therapy, and a comprehensive understanding of the complex role of TAMs in tumor progression and exploration of macrophage‑based therapeutic approaches are essential for future therapeutics against cancers. The present review provided a comprehensive and updated overview of the function of TAMs in tumor progression, summarized recent advances in TAM‑targeting therapeutic strategies and discussed the obstacles and perspectives of TAM‑targeting therapies for cancers.
Collapse
Affiliation(s)
- Pengfei Su
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Ou Li
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Kun Ke
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Zhichen Jiang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Jianzhang Wu
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Yuanyu Wang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Yiping Mou
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Weiwei Jin
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
36
|
Ma Y, Wang T, Zhang X, Wang P, Long F. The role of circular RNAs in regulating resistance to cancer immunotherapy: mechanisms and implications. Cell Death Dis 2024; 15:312. [PMID: 38697964 PMCID: PMC11066075 DOI: 10.1038/s41419-024-06698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Cancer immunotherapy has rapidly transformed cancer treatment, yet resistance remains a significant hurdle, limiting its efficacy in many patients. Circular RNAs (circRNAs), a novel class of non-coding RNAs, have emerged as pivotal regulators of gene expression and cellular processes. Increasing evidence indicates their involvement in modulating resistance to cancer immunotherapy. Notably, certain circRNAs function as miRNA sponges or interact with proteins, influencing the expression of immune-related genes, including crucial immune checkpoint molecules. This, in turn, shapes the tumor microenvironment and significantly impacts the response to immunotherapy. In this comprehensive review, we explore the evolving role of circRNAs in orchestrating resistance to cancer immunotherapy, with a specific focus on their mechanisms in influencing immune checkpoint gene expression. Additionally, we underscore the potential of circRNAs as promising therapeutic targets to augment the effectiveness of cancer immunotherapy. Understanding the role of circRNAs in cancer immunotherapy resistance could contribute to the development of new therapeutic strategies to overcome resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yu Ma
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China.
| |
Collapse
|
37
|
Yang X, Li Q, Zeng T. Peripheral CD4 + T cells correlate with response and survival in patients with advanced non-small cell lung cancer receiving chemo-immunotherapy. Front Immunol 2024; 15:1364507. [PMID: 38650951 PMCID: PMC11033411 DOI: 10.3389/fimmu.2024.1364507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Background The aim of the present study was to explore the potential of peripheral immune cells in predicting the response and prognosis of patients with advanced non-small cell lung cancer (NSCLC) receiving anti-PD-1 immunotherapy and platinum-based chemotherapy. Participants and Methods We utilized flow cytometry to examine the levels and dynamics of blood immune cells in 79 advanced NSCLC patients treated with the chemoimmunotherapy between December 2019 and January 2022. The pre- and post-treatment blood samples were collected within 3 days prior to the initiation of the first and third cycle of combination treatment, respectively. Progression-free survival (PFS) and overall survival (OS) analyses were conducted using Kaplan-Meier method and Cox regression models. Results The pre-treatment CD4+/Total T cells ratio was significantly higher in responders than non-responders (P < 0.05). The levels of pre-treatment total lymphocytes (P = 0.012), total B lymphocytes (P = 0.025), and NK cells (P = 0.022), and post-treatment NK cells (P = 0.011) and NKT cells (P = 0.035) were significantly associated with OS. Post-treatment CD8+/Total T cells ratio was positively correlated with OS (P = 0.038). In multivariate analysis, post-treatment NK cells and post-treatment CD4+CD8+/Total T cells ratio were negatively associated with OS (hazard ratio [HR] = 10.30, P = 0.038) and PFS (HR = 1.95, P = 0.022), respectively. Notably, significantly positive correlations were observed between CD4+/Total T cells ratio and prognosis both before and after treatment (P < 0.05). Conclusion To summarize, our finding reveals that high CD4+/total T cells ratio was associated with favorable response and prognosis, highlighting its potential as a predictive biomarker to guide the selection of likely responders to platinum and anti-PD-1 combination therapy.
Collapse
Affiliation(s)
- Xin Yang
- Department of Cardio-Thoracic Surgery, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Qiao Li
- Department of Pathology, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Tianyang Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
38
|
Shao C, Yan X, Pang S, Nian D, Ren L, Li H, Sun J. Bifunctional molecular probe targeting tumor PD-L1 enhances anti-tumor efficacy by promoting ferroptosis in lung cancer mouse model. Int Immunopharmacol 2024; 130:111781. [PMID: 38442580 DOI: 10.1016/j.intimp.2024.111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) targeting tumor-specific PD-1/PD-L1 significantly improve the overall survival rate of patients with advanced cancer by reactivating the immune system to attack cancer cells. To explore their tumor killing effect, we used the radionuclide iodine-131 (131I) to label the anti-PD-L1 antibody Atezolizumab (131I-PD-L1 mAb). METHOD We prepared the radioimmunoassay molecular probe 131I-PD-L1 mAb by the chloramine-T method and evaluated its affinity using Lewis lung cancer (LLC) cells. The uptake of 131I-PD-L1 mAb by transplanted tumors was examined through SPECT and its in vivo distribution. We then compared the in vitro and in vivo anti-tumor efficacy of groups treated with control, PD-L1 mAb, 131I-PD-L1 mAb, and 131I-PD-L1 mAb + PD-L1 mAb combined treatment. We performed H&E staining to examine the changes in tumor, as well as the damage in major tissues and organs caused by potential side effects. The anti-tumor mechanism of 131I-PD-L1 mAb was analyzed by Western blot, RT-qPCR and immunohistochemistry (IHC). RESULT 131I-PD-L1 mAb was highly stable and specific, and easily penetrated into tumor. 131I-PD-L1 mAb suppressed cancer cell proliferation in vitro, and inhibited tumor growth in vivo by inducing ferroptosis, thus prolonging the survival of experimental animals while demonstrating biological safety. CONCLUSION Therefore, our study suggested that 131I-PD-L1 mAb affected the expression of tumor-related factors through β-rays and thus promoted ferroptosis in tumor. Combined treatment showed better anti-tumor effect compared to single ICI treatment.
Collapse
Affiliation(s)
- Chenxu Shao
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Anhui Province, Bengbu 233000, PR China
| | - Xiaoping Yan
- Department of Radiology, The People's Hospital of Jiangyou, Jiangyou 621700, PR China
| | - Shangjie Pang
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Anhui Province, Bengbu 233000, PR China
| | - Di Nian
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Anhui Province, Bengbu 233000, PR China
| | - Li Ren
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Anhui Province, Bengbu 233000, PR China
| | - Hui Li
- Department of Nuclear Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, PR China
| | - Junjie Sun
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Anhui Province, Bengbu 233000, PR China.
| |
Collapse
|
39
|
Liang X, Guan Y, Wang B, Liu X, Wang J. Histological sarcomatoid transformation in a lung adenocarcinoma patient following immune checkpoint blockade. Ther Adv Med Oncol 2024; 16:17588359241236450. [PMID: 38455710 PMCID: PMC10919128 DOI: 10.1177/17588359241236450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
Histological transformation is a phenomenon that is well described as one of the causes of tyrosine kinase inhibitor resistance in oncogene-driven non-small-cell lung cancer (NSCLC). The use of immune checkpoint inhibitors (ICIs) as a potential mechanism of acquired resistance to immunotherapy in NSCLC to small-cell lung cancer was also recently found. Here, we report the histological transformation of sarcomatoid carcinoma and metastasis in a lung adenocarcinoma patient without targetable genetic alterations who experienced long-term disease remission after nivolumab therapy. The patient subsequently developed rapid progression in the mediastinal and retroperitoneal lymph nodes, bones, and small intestine. Surgical resection of the small intestine lesion due to acute small intestine bleeding revealed the transformation of NSCLC to sarcomatoid carcinoma. The patient died 3 months after sarcomatoid carcinoma transformation and extensive disease progression, although he was rechallenged with immunotherapy. Genomic and immunohistochemical analyses revealed a comparable abundance of gene mutations and a limited number of immune cells in the tumor microenvironment, with low infiltration of CD8+ T cells, CD4+ T cells, regulatory T cells, and PD-L1+ macrophages in metastatic tumors, revealing a noninflamed immune microenvironment for ICI-resistant tumors.
Collapse
Affiliation(s)
- Xiuju Liang
- Department of Oncology, 960th Hospital of the People’s Liberation Army, Jinan, China
| | - Yaping Guan
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Baocheng Wang
- Department of Oncology, 960th Hospital of the People’s Liberation Army, Jinan, China
| | - Xiaohong Liu
- Department of Pathology, 960th Hospital of the People’s Liberation Army, No. 25, Shifan Road, Jinan 250031, China
| | - Jun Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan 250014, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| |
Collapse
|
40
|
Li H, Zheng N, Guo A, Tang W, Li M, Cao Y, Ma X, Cao H, Ma Y, Wang H, Zhao S. FSTL3 promotes tumor immune evasion and attenuates response to anti-PD1 therapy by stabilizing c-Myc in colorectal cancer. Cell Death Dis 2024; 15:107. [PMID: 38302412 PMCID: PMC10834545 DOI: 10.1038/s41419-024-06469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Programmed cell death 1 ligand 1 (PDL1)/programmed cell death 1 (PD1) blockade immunotherapy provides a prospective strategy for the treatment of colorectal cancer (CRC), but various constraints on the effectiveness of the treatment are still remaining. As reported in previous studies, follistatin-like 3 (FSTL3) could mediate inflammatory response in macrophages by induction lipid accumulation. Herein, we revealed that FSTL3 were overexpressed in malignant cells in the CRC microenvironment, notably, the expression level of FSTL3 was related to tumor immune evasion and the clinical efficacy of anti-PD1 therapy. Further studies determined that hypoxic tumor microenvironment induced the FSTL3 expression via HIF1α in CRC cells, FSTL3 could bind to the transcription factor c-Myc (354-406 amino acids) to suppress the latter's ubiquitination and increase its stability, thereby to up-regulated the expression of PDL1 and indoleamine 2,3-dioxygenase 1 (IDO1). The results in the immunocompetent tumor models verified that FSLT3 knockout in tumor cells increased the proportion of CD8+ T cells in the tumor microenvironment, reduced the proportion of regulatory T cells (CD25+ Foxp3+) and exhausted T cells (PD1+ CD8+), and synergistically improved the anti-PD1 therapy efficacy. To sum up, FSTL3 enhanced c-Myc-mediated transcriptional regulation to promote immune evasion and attenuates response to anti-PD1 therapy in CRC, suggesting the potential of FSTL3 as a biomarker of immunotherapeutic efficacy as well as a novel immunotherapeutic target in CRC.
Collapse
Affiliation(s)
- Haiyang Li
- Department of general surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Na Zheng
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Anning Guo
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Muxin Li
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanyuan Cao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhua Ma
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of general surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yong Ma
- Department of general surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Hanjin Wang
- Department of general surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
41
|
Shi M, Li Z, Wang T, Wang M, Liu Z, Zhao F, Ren D, Zhao J. Third-line Treatment for Metastatic Triple-negative Breast Cancer: A Systematic Review and Network Meta-analysis. Am J Clin Oncol 2024; 47:91-98. [PMID: 38108387 DOI: 10.1097/coc.0000000000001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
OBJECTIVE Metastatic triple-negative breast cancer (mTNBC) is an invasive histologic subtype with a poor prognosis and rapid progression. Currently, there is no standard therapy for the third-line treatment of mTNBC. In this study, we conducted a network meta-analysis to compare regimens and determine treatment outcomes. METHODS We performed a systematic search of PubMed, EMBASE, the Cochrane Central Register of Controlled Bases, and the minutes of major conferences. Progression-free survival, overall survival, and objective response rate were analyzed through network meta-analysis using the R software (R Core Team). The efficacy of the treatment regimens was compared using hazard ratios, odds ratios, and 95% CIs. RESULTS We evaluated 15 randomized controlled trials involving 6,010 patients. Compared with the physician's choice treatment, sacituzumab govitecan showed significant advantages in progression-free survival and overall survival, with hazard ratio values of 0.41 (95% CI: 0.32-0.52) and 0.48 (95% CI, 0.39-0.60). In terms of objective response rate, sacituzumab govitecan is the best-performing therapy (odds ratio: 10.82; 95% CI: 5.58-20.97). Adverse events among grades 3 to 5 adverse reactions, the incidence of neutropenia and leukopenia in each regimen was higher, whereas the incidence of fever, headache, hypertension, and rash was lower. CONCLUSION Compared with the treatment of the physician's choice, sacituzumab govitecan appears more efficacious and is the preferred third-line treatment for mTNBC.
Collapse
Affiliation(s)
- Mingqiang Shi
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen X, Chen LJ, Peng XF, Deng L, Wang Y, Li JJ, Guo DL, Niu XH. Anti-PD-1/PD-L1 therapy for colorectal cancer: Clinical implications and future considerations. Transl Oncol 2024; 40:101851. [PMID: 38042137 PMCID: PMC10701436 DOI: 10.1016/j.tranon.2023.101851] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer in the world. The PD-1/PD-L1 pathway plays a crucial role in modulating immune response to cancer, and PD-L1 expression has been observed in tumor and immune cells within the tumor microenvironment of CRC. Thus, immunotherapy drugs, specifically checkpoint inhibitors, have been developed to target the PD-1/PD-L1 signaling pathway, thereby inhibiting the interaction between PD-1 and PD-L1 and restoring T-cell function in cancer cells. However, the emergence of resistance mechanisms can reduce the efficacy of these treatments. To counter this, monoclonal antibodies (mAbs) have been used to improve the efficacy of CRC treatments. mAbs such as nivolumab and pembrolizumab are currently approved for CRC treatment. These antibodies impede immune checkpoint receptors, including PD-1/PD-L1, and their combination therapy shows promise in the treatment of advanced CRC. This review presents a concise overview of the use of the PD-1/PD-L1 blockade as a therapeutic strategy for CRC using monoclonal antibodies and combination therapies. Additionally, this article outlines the function of PD-1/PD-L1 as an immune response suppressor in the CRC microenvironment as well as the potential advantages of administering inflammatory agents for CRC treatment. Finally, this review analyzes the outcomes of clinical trials to examine the challenges of anti-PD-1/PD-L1 therapeutic resistance.
Collapse
Affiliation(s)
- Xiang Chen
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Ling Deng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Yan Wang
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Jiu-Jiang Li
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Dong-Li Guo
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China
| | - Xiao-Hua Niu
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China.
| |
Collapse
|
43
|
Wang H, Zhou Z, Zhang J, Hao T, Wang P, Wu P, Su R, Yang H, Deng G, Chen S, Gu L, He Y, Zeng L, Zhang C, Yin S. Pumilio1 regulates NPM3/NPM1 axis to promote PD-L1-mediated immune escape in gastric cancer. Cancer Lett 2024; 581:216498. [PMID: 38029539 DOI: 10.1016/j.canlet.2023.216498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Abnormal regulation of RNA binding proteins (RBPs) plays an essential role in tumorigenesis and progression, but their functions and mechanisms remain largely elusive. Previously, we reported that Pumilio 1 (PUM1), a RBP, could regulate glycolysis metabolism and promote the progression of gastric cancer (GC). However, the role of PUM1 in tumor immune regulation remains largely elusive. In this study, we report that PUM1 induces immune escape through posttranscriptional regulation of PD-L1 in GC. We used multiplexed immunohistochemistry to analyze the correlation between PUM1 expression and immune microenvironment in GC. The effect of PUM1 deficiency on tumor killing of T cells was examined in vitro and in vivo. The molecular mechanism of PUM1 was evaluated via RNA immunoprecipitation, chromatin immunoprecipitation, Western blot, co-immunoprecipitation, and RNA stability assays. Clinically, elevated PUM1 expression is associated with high-expression of PD-L1, lack of CD8+ T cell infiltration and poor prognosis in GC patients. PUM1 positively regulates PD-L1 expression and PUM1 reduction enhances T cell killing of tumors. Mechanistically, PUM1 directly binds to nucleophosmin/nucleoplasmin 3 (NPM3) mRNA and stabilizes NPM3. NPM3 interacts with NPM1 to promote NPM1 translocation into the nucleus and increase the transcription of PD-L1. PUM1 inhibits the anti-tumor activity of T cells through the PUM1/NPM3/PD-L1 axis. In summary, this study reveals the critical post-transcriptional effect of PUM1 in the modulation of PD-L1-dependent GC immune escape, thus provides a novel indicator and potential therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Han Wang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Gastrointestinal Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Junchang Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Tengfei Hao
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Pengliang Wang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pei Wu
- Department of Gastrointestinal Surgery, Yongchuan Hospital of Chongqing Medical university, Chongqing, China
| | - Rishun Su
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Huan Yang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Guofei Deng
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Songyao Chen
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Liang Gu
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Leli Zeng
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Changhua Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Songcheng Yin
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
44
|
Hua Y, Yang S, Zhang Y, Li J, Wang M, Yeerkenbieke P, Liao Q, Liu Q. Modulating ferroptosis sensitivity: environmental and cellular targets within the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:19. [PMID: 38217037 PMCID: PMC10787430 DOI: 10.1186/s13046-023-02925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024] Open
Abstract
Ferroptosis, a novel form of cell death triggered by iron-dependent phospholipid peroxidation, presents significant therapeutic potential across diverse cancer types. Central to cellular metabolism, the metabolic pathways associated with ferroptosis are discernible in both cancerous and immune cells. This review begins by delving into the intricate reciprocal regulation of ferroptosis between cancer and immune cells. It subsequently details how factors within the tumor microenvironment (TME) such as nutrient scarcity, hypoxia, and cellular density modulate ferroptosis sensitivity. We conclude by offering a comprehensive examination of distinct immunophenotypes and environmental and metabolic targets geared towards enhancing ferroptosis responsiveness within the TME. In sum, tailoring precise ferroptosis interventions and combination strategies to suit the unique TME of specific cancers may herald improved patient outcomes.
Collapse
Affiliation(s)
- Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Anhui Provincial Hospital, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Palashate Yeerkenbieke
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Xinjiang Yili Kazak Autonomous Prefecture Friendship Hospital, Xinjiang, 835099, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
45
|
Zuo Z, Zhou Z, Chang Y, Liu Y, Shen Y, Li Q, Zhang L. Ribonucleotide reductase M2 (RRM2): Regulation, function and targeting strategy in human cancer. Genes Dis 2024; 11:218-233. [PMID: 37588202 PMCID: PMC10425756 DOI: 10.1016/j.gendis.2022.11.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Ribonucleotide reductase M2 (RRM2) is a small subunit in ribonucleotide reductases, which participate in nucleotide metabolism and catalyze the conversion of nucleotides to deoxynucleotides, maintaining the dNTP pools for DNA biosynthesis, repair, and replication. RRM2 performs a critical role in the malignant biological behaviors of cancers. The structure, regulation, and function of RRM2 and its inhibitors were discussed. RRM2 gene can produce two transcripts encoding the same ORF. RRM2 expression is regulated at multiple levels during the processes from transcription to translation. Moreover, this gene is associated with resistance, regulated cell death, and tumor immunity. In order to develop and design inhibitors of RRM2, appropriate strategies can be adopted based on different mechanisms. Thus, a greater appreciation of the characteristics of RRM2 is a benefit for understanding tumorigenesis, resistance in cancer, and tumor microenvironment. Moreover, RRM2-targeted therapy will be more attention in future therapeutic approaches for enhancement of treatment effects and amelioration of the dismal prognosis.
Collapse
Affiliation(s)
- Zanwen Zuo
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zerong Zhou
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yuzhou Chang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Shen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China
| | - Qizhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lei Zhang
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
46
|
Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K, Li W. Nanomedicine Combats Drug Resistance in Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308977. [PMID: 37968865 DOI: 10.1002/adma.202308977] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer.
Collapse
Affiliation(s)
- Xiuli Zheng
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiaohai Song
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Guonian Zhu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Haonan Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Jiankun Hu
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kai Xiao
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Weimin Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
47
|
Taifour T, Attalla SS, Zuo D, Gu Y, Sanguin-Gendreau V, Proud H, Solymoss E, Bui T, Kuasne H, Papavasiliou V, Lee CG, Kamle S, Siegel PM, Elias JA, Park M, Muller WJ. The tumor-derived cytokine Chi3l1 induces neutrophil extracellular traps that promote T cell exclusion in triple-negative breast cancer. Immunity 2023; 56:2755-2772.e8. [PMID: 38039967 DOI: 10.1016/j.immuni.2023.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/22/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023]
Abstract
In triple-negative breast cancer (TNBC), stromal restriction of CD8+ T cells associates with poor clinical outcomes and lack of responsiveness to immune-checkpoint blockade (ICB). To identify mediators of T cell stromal restriction, we profiled murine breast tumors lacking the transcription factor Stat3, which is commonly hyperactive in breast cancers and promotes an immunosuppressive tumor microenvironment. Expression of the cytokine Chi3l1 was decreased in Stat3-/- tumors. CHI3L1 expression was elevated in human TNBCs and other solid tumors exhibiting T cell stromal restriction. Chi3l1 ablation in the polyoma virus middle T (PyMT) breast cancer model generated an anti-tumor immune response and delayed mammary tumor onset. These effects were associated with increased T cell tumor infiltration and improved response to ICB. Mechanistically, Chi3l1 promoted neutrophil recruitment and neutrophil extracellular trap formation, which blocked T cell infiltration. Our findings provide insight into the mechanism underlying stromal restriction of CD8+ T cells and suggest that targeting Chi3l1 may promote anti-tumor immunity in various tumor types.
Collapse
Affiliation(s)
- Tarek Taifour
- McGill University, Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Montreal, QC H4A 3J1, Canada; Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Sherif Samer Attalla
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada
| | - Dongmei Zuo
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Yu Gu
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada
| | | | - Hailey Proud
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada
| | - Emilie Solymoss
- McGill University, Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Montreal, QC H4A 3J1, Canada; Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Tung Bui
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | - Hellen Kuasne
- Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| | | | - Chun Geun Lee
- Brown University, Molecular Biology and Immunology, Faculty of Medicine, Providence, RI 02903, USA
| | - Suchitra Kamle
- Brown University, Molecular Biology and Immunology, Faculty of Medicine, Providence, RI 02903, USA
| | - Peter M Siegel
- McGill University, Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Montreal, QC H4A 3J1, Canada; Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada
| | - Jack A Elias
- Brown University, Molecular Biology and Immunology, Faculty of Medicine, Providence, RI 02903, USA
| | - Morag Park
- McGill University, Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Montreal, QC H4A 3J1, Canada; Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada
| | - William J Muller
- McGill University, Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Montreal, QC H4A 3J1, Canada; Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada; McGill University, Department of Biochemistry, Faculty of Medicine, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
48
|
Wang Y, Ni Q. Prognostic and clinicopathological significance of Systemic Immune-Inflammation Index in cancer patients receiving immune checkpoint inhibitors: a meta-analysis. Ann Med 2023; 55:808-819. [PMID: 36892953 PMCID: PMC10795596 DOI: 10.1080/07853890.2023.2181983] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Among malignant neoplasm patients taking immune checkpoint inhibitors (ICIs), it remains unknown how the systemic immune-inflammation index (SII) affects their clinical prognosis. We therefore performed the present meta-analysis by collecting the most recent data, so that SII's prognostic value among ICI-receiving carcinoma patients could be fully clarified. METHODS For the prognostic significance evaluation of SII in ICI-receiving carcinoma patients, the combined hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated. RESULTS The number of studies enrolled in the present meta-analysis totaled 17, where 1,990 patients were involved. Among the ICI-treated carcinoma patients, a high SII was linked significantly to inferior overall survival (OS) (HR = 2.62, 95% CI = 1.76-3.90), as well as progression-free survival (PFS) (HR = 2.09, 95% CI = 1.48-2.95) (p both <.001). Contrastively, SII was linked insignificantly to the age (OR = 1.08, 95% CI = 0.39-2.98, p = .881), gender (OR = 1.01, 95% CI = 0.59-1.73, p = .959), lymph node (LN) metastasis (OR = 1.41, 95% CI = 0.92-2.17, p = .117), or metastatic site quantity (OR = 1.49, 95% CI = 0.90-2.46, p = .119). CONCLUSION There are prominent associations of elevated SII with the poor survival outcomes (both short- and long-terms) among the ICIreceiving carcinoma patients. SII has potential as a reliable and cheap prognostic biomarker in the clinic for carcinoma patients receiving ICIs.
Collapse
Affiliation(s)
- Yan Wang
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Qunqin Ni
- Clinical Laboratory, Traditional Chinese Medical Hospital of Huzhou Affiliated to Zhejiang Chinese Medical University, Huzhou, Zhejiang, China
| |
Collapse
|
49
|
Kodous AS, Balaiah M, Ramanathan P. Single cell RNA sequencing – a valuable tool for cancer immunotherapy: a mini review. ONCOLOGIE 2023; 25:635-639. [DOI: 10.1515/oncologie-2023-0244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Abstract
Single-cell RNA sequencing (scRNA-seq) technology has made great strides in research over the last decade. Data analysis has been aided by developments in bioinformatics tools and artificial intelligence, allowing biological and clinical researchers to get a deeper understanding of the different cell clusters and their dynamics within tumours. Combining conventional treatment modalities like chemotherapy and radiation with immunotherapy is a growing trend in cancer treatment. Hence, knowledge of the tumour microenvironment and the effect of each treatment modality on the TME, at a single cell level can provide treating clinicians with better clues for patient stratification and prognostication. With this knowledge, immunotherapy could become successful in treating a wide range of cancers, opening the path for the creation of even more effective treatment strategies. Despite the widespread availability of scRNA-seq technology, computational analysis and data interpretation are still challenges. Worldwide, such challenges are being addressed by various researchers, strengthening the contribution of this technology towards cancer elimination. In this mini-review, we primarily focus on the technique, its workflow, and the computational aspects of scRNA technology, along with an overview of the current challenges in the analysis and interpretation of the data generated.
Collapse
Affiliation(s)
- Ahmad S. Kodous
- Department of Molecular Oncology , Cancer Institute (WIA) , Chennai , Tamil Nadu , India
- Radiation Biology Department , National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt
| | - Meenakumari Balaiah
- Department of Molecular Oncology , Cancer Institute (WIA) , Chennai , Tamil Nadu , India
| | - Priya Ramanathan
- Department of Molecular Oncology , Cancer Institute (WIA) , Chennai , Tamil Nadu , India
| |
Collapse
|
50
|
Zhao M, Yan CY, Wei YN, Zhao XH. Breaking the mold: Overcoming resistance to immune checkpoint inhibitors. Antiviral Res 2023; 219:105720. [PMID: 37748652 DOI: 10.1016/j.antiviral.2023.105720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Immune checkpoint blockade-based therapies are effective against a sorts of cancers. However, drug resistance is a problem that cannot be ignored. This review intends to elucidate the mechanisms underlying drug tolerance induced by PD-1/PD-L1 inhibitors, as well as to outline proposed mechanism-based combination therapies and small molecule drugs that target intrinsic immunity and immune checkpoints. According to the differences of patients and types of cancer, the optimization of individualized combination therapy will help to enhance PD-1/PD-L1-mediated immunoregulation, reduce chemotherapy resistance, and provide new ideas for chemotherapy-resistant cancer.
Collapse
Affiliation(s)
- Menglu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China.
| |
Collapse
|