1
|
Feng CZ, Gou XY, Liu YQ, Xin YW, Zhang YL, Zhao HM, Wei SC, Hong N, Wang Y, Cheng J. Extramural venous invasion in gastric cancer: 9.4T magnetic resonance imaging assessment and circular RNA functional analysis. World J Gastroenterol 2025; 31:99897. [PMID: 40248379 PMCID: PMC12001196 DOI: 10.3748/wjg.v31.i14.99897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/19/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Extramural venous invasion (EMVI) is a critical prognostic factor in gastric cancer (GC); however, its detection and underlying molecular mechanisms remain underexplored. AIM To investigate the relationship between EMVI and expression of the circular RNA hsa_circ_0097977 in orthotopic GC mouse models. METHODS A retrospective analysis was conducted in addition to a preclinical animal study, involving 13 GC patients and 24 orthotopic GC mouse models, respectively. EMVI was assessed using axial T2-weighted fat suppression sequences on a 9.4T magnetic resonance imaging (MRI) with histopathological confirmation as the gold standard for EMVI. The impact of hsa_circ_0097977 on EMVI and GC cell function was evaluated. Statistical analyses comprised consistency, area under the curve analysis, correlation, χ 2/Fisher exact, and Mann-Whitney U/t-tests, with significance set at P < 0.05. RESULTS EMVI was accurately detected using 9.4T MRI in orthotopic mouse models with an area under the curve of 0.843 (sensitivity 78.6%, specificity 90.0%). MRI detected EMVI was the only imaging factor associated with distant metastasis (P = 0.04). Furthermore, knockdown of hsa_circ_0097977 was the only factor associated with EMVI (P = 0.043, 0.038) and led to reduced invasion and increased apoptosis in GC cells. CONCLUSION EMVI, a risk factor for distant metastasis in GC, is detectable by 9.4T MRI and regulated by hsa_circ_0097977, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Cai-Zhen Feng
- Department of Radiology, Peking University People’s Hospital, Beijing 100044, China
| | - Xin-Yi Gou
- Department of Radiology, Peking University People’s Hospital, Beijing 100044, China
| | - Yi-Qun Liu
- Department of Ultrasound, Peking University People’s Hospital, Beijing 100044, China
| | - Yu-Wei Xin
- Department of Ultrasound, Peking University People’s Hospital, Beijing 100044, China
| | - Yin-Li Zhang
- Department of Pathology, Peking University People’s Hospital, Beijing 100044, China
| | - Hui-Min Zhao
- Department of Pathology, Peking University People’s Hospital, Beijing 100044, China
| | - Sheng-Cai Wei
- Department of Radiology, Peking University People’s Hospital, Beijing 100044, China
| | - Nan Hong
- Department of Radiology, Peking University People’s Hospital, Beijing 100044, China
| | - Yi Wang
- Department of Radiology, Peking University People’s Hospital, Beijing 100044, China
| | - Jin Cheng
- Department of Radiology, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
2
|
Wang J, Zhang C, Zhang Y, Guo J, Xie C, Liu Y, Chen L, Ma L. Circular RNA in liver cancer research: biogenesis, functions, and roles. Front Oncol 2025; 15:1523061. [PMID: 40224186 PMCID: PMC11985449 DOI: 10.3389/fonc.2025.1523061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
Liver cancer, characterized by its insidious nature, aggressive invasiveness, and propensity for metastasis, has witnessed a sustained increase in both incidence and mortality rates in recent years, underscoring the urgent need for innovative diagnostic and therapeutic approaches. Emerging research indicates that CircRNAs (circular RNAs) are abundantly and stably present within cells, with their expression levels closely associated with the progression of various malignancies, including hepatocellular carcinoma. In the context of liver cancer progression, circRNAs exhibit promising potential as highly sensitive diagnostic biomarkers, offering novel avenues for early detection, and also function as pivotal regulatory factors within the carcinogenic process. This study endeavors to elucidate the biogenesis, functional roles, and underlying mechanisms of circRNAs in hepatocellular carcinoma, thereby providing a fresh perspective on the pathogenesis of liver cancer and laying a robust foundation for the development of more precise and effective early diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Jiayi Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Congcong Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yinghui Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiaojiao Guo
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Chenyu Xie
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yulu Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lidian Chen
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Ma
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Liu W, Liu L, Kuang T, Deng W. Cholesterol metabolism-related genes predict immune infiltration and prognosis in gastric cancer patients. J Cancer 2025; 16:2087-2102. [PMID: 40302802 PMCID: PMC12036097 DOI: 10.7150/jca.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/27/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Gastric cancer (GC) is one of the most prevalent malignant diseases worldwide. Abnormal metabolic reprogramming, particularly cholesterol metabolism, influences tumor development and treatment outcomes. This study investigates the predictive and functional significance of cholesterol metabolism-related genes in gastric cancer patients. Methods: Clinical and gene expression data related to cholesterol metabolism in gastric cancer were analyzed using datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). A predictive signature was developed and validated using LASSO, Cox regression, and the GSE26889 cohort, followed by evaluation with Kaplan-Meier analysis. A nomogram was constructed by integrating the signature with clinical factors and ssGSEA for immunological analysis. The role of NPC2 was investigated using western blot, qPCR, and cellular assays. Results: We conducted a bioinformatics analysis of 50 genes associated with cholesterol metabolism in gastric cancer. Using the GEO and TCGA datasets, we identified 28 genes with differential expression in gastric cancer patients. Subsequent COX univariate and LASSO regression analyses of these 28 DEGs identified five genes (APOA1, APOC3, NPC2, CD36, and ABCA1) as independent prognostic risk factors. We then constructed a risk model for cholesterol metabolism genes, revealing that survival was worse in the high-risk group compared to the low-risk group, with more severe case staging outcomes. We conducted a comparative analysis of immune cells between the high-risk and low-risk groups, revealing distinct variations in immune cell type expression. We then developed a model using a correlation nomogram to illustrate these conclusions. We further examined the biological characteristics of NPC2. Immunohistochemistry and qPCR results showed that NPC2 exhibited significant protein and mRNA expression in gastric cancer tissues. We used siRNA technology to suppress NPC2, resulting in reduced viability, proliferation, and invasion capacity of gastric cancer cells, as determined by CCK-8, colony formation, wound healing, and Transwell assays. Conclusion: A risk signature comprising five cholesterol metabolism-related genes was constructed using bioinformatics to estimate outcomes and therapeutic responses in gastric cancer patients. The results suggest that NPC2 may serve as a novel biomarker for gastric cancer patients.
Collapse
Affiliation(s)
- Wenxuan Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | | | | | | |
Collapse
|
4
|
Li S, Hu W, Qian L, Sun D. Insights into non-coding RNAS: biogenesis, function and their potential regulatory roles in acute kidney disease and chronic kidney disease. Mol Cell Biochem 2025; 480:1287-1304. [PMID: 39110280 PMCID: PMC11842482 DOI: 10.1007/s11010-024-05083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/29/2024] [Indexed: 01/03/2025]
Abstract
Noncoding RNAs (ncRNAs) have emerged as pivotal regulators of gene expression, and have attracted significant attention because of their various roles in biological processes. These molecules have transcriptional activity despite their inability to encode proteins. Moreover, research has revealed that ncRNAs, especially microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are linked to pervasive regulators of kidney disease, including anti-inflammatory, antiapoptotic, antifibrotic, and proangiogenic actions in acute and chronic kidney disease. Although the exact therapeutic mechanism of ncRNAs remains uncertain, their value in treatment has been studied in clinical trials. The numerous renal diseases and the beneficial or harmful effects of NcRNAs on the kidney will be discussed in this article. Afterward, exploring the biological characteristics of ncRNAs, as well as their purpose and potential contributions to acute and chronic renal disease, were explored. This may offer guidance for treating both acute and long-term kidney illnesses, as well as insights into the potential use of these indicators as kidney disease biomarkers.
Collapse
Affiliation(s)
- Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wanru Hu
- Central Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Luoxiang Qian
- Central Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
5
|
Hashemi M, Mohandesi Khosroshahi E, Asadi S, Tanha M, Ghatei Mohseni F, Abdolmohammad Sagha R, Taheri E, Vazayefi P, Shekarriz H, Habibi F, Mortazi S, Khorrami R, Nabavi N, Rashidi M, Taheriazam A, Rahimzadeh P, Entezari M. Emerging roles of non-coding RNAs in modulating the PI3K/Akt pathway in cancer. Noncoding RNA Res 2025; 10:1-15. [PMID: 39296640 PMCID: PMC11406677 DOI: 10.1016/j.ncrna.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Forough Ghatei Mohseni
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramina Abdolmohammad Sagha
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Paria Vazayefi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helya Shekarriz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Habibi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Mortazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Independent Researchers, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Xu L, Shen Y, Zhang C, Shi T, Sheng X. Exploring the Link Between Noncoding RNAs and Glycolysis in Colorectal Cancer. J Cell Mol Med 2025; 29:e70443. [PMID: 39993964 PMCID: PMC11850098 DOI: 10.1111/jcmm.70443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Glycolysis is implicated in the onset and progression of colorectal cancer (CRC) through its influence on the proliferation, invasiveness, chemoresistance and immune system evasion of neoplasm cells. Increasing evidence has shown that the abnormal expression of noncoding RNAs (ncRNAs), especially microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), in CRC is closely related to glycolysis. In this review, we present a synthesis of the latest research insights into the modulatory roles and distinct pathways of ncRNAs in the glycolytic process in CRC. This knowledge may pave the way for identifying novel therapeutic targets, as well as novel prognostic and diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
- Liang Xu
- Neonatal Department, Suzhou Ninth People's HospitalSuzhou Ninth Hospital Affiliated to Soochow UniversitySuzhouJiangsuChina
| | - Yu Shen
- Department of General Surgery, Suzhou Ninth People's HospitalSuzhou Ninth Hospital Affiliated to Soochow UniversitySuzhouJiangsuChina
| | - Chuanqiang Zhang
- Department of General SurgeryThe Affiliated Jiangsu Shengze Hospital of Nanjing Medical UniversitySuzhouChina
- Shengze Clinical Medical CollegeKangda College of Nanjing Medical UniversityNanjingChina
| | - Tongguo Shi
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xuejuan Sheng
- Health Management Center, Suzhou Ninth People's HospitalSuzhou Ninth Hospital Affiliated to Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
7
|
Jiang Y, Qi S, Zhang R, Zhao R, Fu Y, Fang Y, Shao M. Diagnosis of hepatocellular carcinoma using liquid biopsy-based biomarkers: a systematic review and network meta-analysis. Front Oncol 2025; 14:1483521. [PMID: 39935848 PMCID: PMC11810725 DOI: 10.3389/fonc.2024.1483521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction The diagnostic performance of liquid biopsy-based biomarkers for HCC was comprehensively compared in this network meta-analysis (NMA). Methods A thorough literature search was conducted to identify all comparative studies from January 1, 2000, to January 11, 2024. The QUADAS-2 tool was utilized to appraise the quality of studies involving diagnostic performance. R (v4.3.3) and an ANOVA model-based NMA were used to assess the diagnostic accuracy of each biomarker. Results This study included 82 studies comprising a total of 15,024 patients.CircRNA demonstrated significantly superior performance in distinguishing HCC from healthy populations (superiority index: 3.550 (95% CI [0.143-3])) compared to other diagnostic biomarkers for HCC. "mRNA exhibited significantly superior performance in distinguishing HCC from liver disease patients (superiority index:10.621 (95% CI [7-11])) compared to other diagnostic biomarkers for HCC. Further subgroup analysis of the top-ranking liquid biopsy-based diagnostic biomarkers revealed that hsa_circ_000224 (superiority index: 3.091 (95% CI[0.143-9]) ranked remarkably higher in distinguishing HCC from both healthy populations and liver disease patients. Subgroup analysis of mRNA demonstrated that KIAA0101 mRNA (superiority index: 2.434 (95% CI [0.2-5]) ranked remarkably higher in distinguishing HCC from healthy populations and liver disease patients, respectively. Discussion The results of this meta-analysis show that circRNA and mRNA are the first choice for HCC diagnosis. Subsequent analysis of circRNA and mRNA highlighted hsa_circ_000224, hsa_circ_0003998, KIAA0101 mRNA and GPC-3mRNA as the optimal diagnostic biomarkers for distinguishing HCC from healthy populations and liver disease patients, respectively. Well-structured prospective studies are crucial to comprehensively validate these findings. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/,identifier CRD42024521299.
Collapse
Affiliation(s)
- Yutong Jiang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Shangwen Qi
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Rongrong Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruixia Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yu Fu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuxuan Fang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingyi Shao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Khalili-Tanha G, Khalili-Tanha N, Rouzbahani AK, Mahdieh R, Jasemi K, Ghaderi R, Leylakoohi FK, Ghorbani E, Khazaei M, Hassanian SM, Gataa IS, Ferns GA, Nazari E, Avan A. Diagnostic, prognostic, and predictive biomarkers in gastric cancer: from conventional to novel biomarkers. Transl Res 2024; 274:35-48. [PMID: 39260559 DOI: 10.1016/j.trsl.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Gastric cancer is a major health concern worldwide. The survival rate of Gastric cancer greatly depends on the stage at which it is diagnosed. Early diagnosis is critical for improving survival outcomes. To improve the chances of early diagnosis, regular screening tests, such as an upper endoscopy or barium swallow, are recommended for individuals at a higher risk due to factors like family history or a previous diagnosis of gastric conditions. Biomarkers can be detected and measured using non-invasive methods such as blood tests, urine tests, breath analysis, or imaging techniques. These non-invasive approaches offer many advantages, including convenience, safety, and cost-effectiveness, making them valuable tools for disease diagnosis, monitoring, and research. Biomarker-based tests have emerged as a useful tool for identifying gastric cancer early, monitoring treatment response, assessing the recurrence risk, and personalizing treatment plans. In this current review, we have explored both classical and novel biomarkers for gastric cancer. We have centralized their potential clinical application and discussed the challenges in Gastric cancer research.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Khalili-Tanha
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | | | - Ramisa Mahdieh
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kimia Jasemi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rosa Ghaderi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Elham Nazari
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
9
|
Christodoulidis G, Agko SE, Kouliou MN, Koumarelas KE. Unveiling the clinicopathological enigma of crawling-type gastric adenocarcinoma. World J Gastrointest Oncol 2024; 16:4321-4325. [PMID: 39554752 PMCID: PMC11551646 DOI: 10.4251/wjgo.v16.i11.4321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 10/25/2024] Open
Abstract
In this editorial we comment on the article by Xu et al. Gastric adenocarcinoma (GA) is a malignancy which arises from the gastric mucosa and encompasses heterogenous tumors with varying characteristics. There are two main classifications: Lauren's and the World Health Organization distinguishing the diverse types of GA depending on clinical, genetic, morphological and epidemiological features. "Crawling-type" adenocarcinoma (CRA) is a subtype characterized by irregularly fused glands with low-grade cellular atypia. Moreover, CRA represents differentiated tumor cells resembling intestinal metaplasia which results in misdiagnosis. The diagnosis is of utmost importance, as well as the subclassification and thorough pathological assessment. With regard to the symptoms of GA, these depend on the stage of the disease. Diagnostic methods play a crucial role in assessing the extent of the tumor and the stage of the disease. Nevertheless, early detection of CRA remains challenging due to its histological features. In summary, CRA is a distinct type of GA with particular clinicopathological and histological characteristics. Despite its significance, it not distinguished as a subtype, resulting in diagnostic challenges. Diagnosis is based on careful observation and thorough biopsy analysis, indicating the importance of comprehensive pathological assessment.
Collapse
Affiliation(s)
- Grigorios Christodoulidis
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, Larissa 41110, Greece
| | - Sara E Agko
- Department of Orthopedic, University Hospital of Larissa, Larissa 41110, Greece
| | - Marina N Kouliou
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, Larissa 41110, Greece
| | - Konstantinos E Koumarelas
- Department of General Surgery, University Hospital of Larissa, University of Thessaly, Biopolis Campus, Larissa 41110, Greece
| |
Collapse
|
10
|
Wang J, Ye J, Liu R, Chen C, Wang W. TRIM47 drives gastric cancer cell proliferation and invasion by regulating CYLD protein stability. Biol Direct 2024; 19:106. [PMID: 39516831 PMCID: PMC11546413 DOI: 10.1186/s13062-024-00555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The expression of TRIM47, a member of the TRIM protein and E3 ubiquitin ligase families, is elevated in various cancers, such as non-small cell lung cancer and colorectal cancer, and is linked to poor prognosis. This study aimed to investigate the role of TRIM47 in gastric cancer development. Using The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset and analysis of 20 patient samples from our center, TRIM47 was found to be significantly up-regulated in gastric cancer tissues and associated with advanced N-stage and poor prognosis. We constructed stable TRIM47 knockdown and overexpressing gastric cancer cell lines. CCK8, EDU, colony formation, wound healing, and Transwell tests were used to evaluate the effects on cell proliferation, invasion, and migration. The results showed that TRIM47 knockdown inhibited the proliferation, migration and invasion of gastric cancer cells, while TRIM47 overexpression promoted these behaviors. These results were further confirmed in vivo. In the mechanism part, we found that TRIM47 interacts with CYLD protein. Moreover, TRIM47 promotes K48-linked ubiquitination, leading to the degradation of CYLD by the proteasome, thereby activating the NF-κB pathway and regulating the biological behavior of gastric cancer cells. Taken together, our study demonstrated that TRIM47 is involved in the proliferation and metastasis of gastric cancer through the CYLD/NF-κB pathway.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jing Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
| | - Rongqiang Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
| |
Collapse
|
11
|
Tian H, Liang G, Qin Q, Yu C, He J. Circ_0023990 Promotes the Proliferation, Invasion, and Glycolysis of Esophageal Squamous Cell Carcinoma Cells Via Targeting miR-6884-5p/PAK1 Axis. Biochem Genet 2024; 62:3876-3892. [PMID: 38243004 DOI: 10.1007/s10528-024-10674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Circular RNAs are emerging players in human cancers, including esophageal squamous cell carcinoma (ESCC). Herein, we assessed the expression level of circ_0023990 and explored the molecular mechanisms of circ_0023990 in ESCC. circ_0023990, miR-6884-5p, and PAK1 expressions in ESCC tissues and cells were detected by quantitative real-time polymerase chain reaction and western blot. ESCC cells were transfected with different constructs to alter the expression of circ_0023990, miR-6884-5p, and PAK1. The effect of circ_0023990 on the proliferation, invasion, and glycolysis of ESCC cells was observed. The interaction between circ_0023990 and miR-6884-5p and between miR-6884-5p and PAK1 were explored. A mouse model of ESCC was established to study the in vivo effect of circ_0023990 knockdown on tumor formation.The expression levels of circ_0023990 was upregulated in ESCC tissues and cells. Inhibiting circ_0023990 suppressed the proliferation, invasion, and glycolysis of ESCC cells. circ_0023990 might target miR-6884-5p and consequently modulate the expression and activity of PAK1. Knockdown of circ_0023990 led to significantly reduced tumor volume and weight in mice with ESCC.These findings overall suggest an oncogenic role of circ_0023990 in ESCC. Future research is warranted to confirm the expression pattern and clinical significance of circ_0023990 in ESCC.
Collapse
Affiliation(s)
- Hui Tian
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning Road, Yinzhou District, Ningbo City, Zhejiang Province, 315040, China
| | - Gaofeng Liang
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning Road, Yinzhou District, Ningbo City, Zhejiang Province, 315040, China
| | - Qi Qin
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning Road, Yinzhou District, Ningbo City, Zhejiang Province, 315040, China
| | - Chaoqun Yu
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning Road, Yinzhou District, Ningbo City, Zhejiang Province, 315040, China
| | - Jinxian He
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning Road, Yinzhou District, Ningbo City, Zhejiang Province, 315040, China.
| |
Collapse
|
12
|
Chen Y, Bian W, Chen S. Circ_0008035 Promotes Gastric Cancer Development via the miR-429/SMAD2 Cascade. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:795-804. [PMID: 39412408 PMCID: PMC11465158 DOI: 10.5152/tjg.2024.23341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/18/2024] [Indexed: 10/20/2024]
Abstract
The vital roles of circular RNAs (circRNAs) in human tumorigenesis have attracted more attention. Circ_0008035 is one of the most up-regulated circRNAs in gastric cancer (GC). Herein, we explored the associated mechanism of circ_0008035 in GC. EdU incorporation experiments were performed to monitor cell proliferation ability. Cell cycle progression, apoptosis, angiogenesis, migration, and invasion were analyzed using flow cytometry, Tube formation, and Transwell assays respectively. Protein expression was detected by Western blot. Dual-luciferase reporter experiments were applied to demonstrate the relationship between circ_0008035 or SMAD family member 2 (SMAD2) and microRNA-429 (miR-429). Mouse xenograft assays were conducted for evaluation of the role of circ_0008035 in vivo. Circ_0008035 content was elevated in GC tissues (P < .0001) and cell lines (P < .001), and its deficiency hindered GC cell proliferation (P < .01), HUVEC angiogenesis (P < .05), and GC cell metastasis (P < .01) and triggered apoptosis (P < .01). Circ_0008035 could sponge miR-429 to up-regulate SMAD2 expression (P < .0001). Circ_0008035 absence restrained tumor growth in vivo (P < .01). MiR429 was a mediator of circ_0008035 function, and miR-429 hindered GC cell malignant phenotypes by SMAD2. Circ_0008035 aggravates GC cell malignant progression partially by targeting the miR-429/SMAD2 axis. Considering the inhibitory effect of circ_0008035 deficiency on GC progression, targeting circ_0008035 may be a potential approach to prevent or treat GC.
Collapse
Affiliation(s)
- Yan Chen
- Department of Medical Oncology, Yancheng First People’s Hospital, Yancheng, Jiangsu, China
| | - Weigang Bian
- Department of Medical Oncology, Yancheng First People’s Hospital, Yancheng, Jiangsu, China
| | - Surong Chen
- Department of Medical Oncology, Yancheng First People’s Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
13
|
Yi Q, Feng J, Lan W, Shi H, Sun W, Sun W. CircRNA and lncRNA-encoded peptide in diseases, an update review. Mol Cancer 2024; 23:214. [PMID: 39343883 PMCID: PMC11441268 DOI: 10.1186/s12943-024-02131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Non-coding RNAs (ncRNAs), including circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), are unique RNA molecules widely identified in the eukaryotic genome. Their dysregulation has been discovered and played key roles in the pathogenesis of numerous diseases, including various cancers. Previously considered devoid of protein-coding ability, recent research has revealed that a small number of open reading frames (ORFs) within these ncRNAs endow them with the potential for protein coding. These ncRNAs-derived peptides or proteins have been proven to regulate various physiological and pathological processes through diverse mechanisms. Their emerging roles in disease diagnosis and targeted therapy underscore their potential utility in clinical settings. This comprehensive review aims to provide a systematic overview of proteins or peptides encoded by lncRNAs and circRNAs, elucidate their production and functional mechanisms, and explore their promising applications in cancer diagnosis, disease prediction, and targeted therapy.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Weiwu Lan
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| |
Collapse
|
14
|
Khan DA, Adhikary T, Sultana MT, Toukir IA. A comprehensive identification of potential molecular targets and small drugs candidate for melanoma cancer using bioinformatics and network-based screening approach. J Biomol Struct Dyn 2024; 42:7349-7369. [PMID: 37534476 DOI: 10.1080/07391102.2023.2240409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Melanoma is the third most common malignant skin tumor and has increased in morbidity and mortality over the previous decade due to its rapid spread into the bloodstream or lymphatic system. This study used integrated bioinformatics and network-based methodologies to reliably identify molecular targets and small molecular medicines that may be more successful for Melanoma diagnosis, prognosis and treatment. The statistical LIMMA approach utilized for bioinformatics analysis in this study found 246 common differentially expressed genes (cDEGs) between case and control samples from two microarray gene-expression datasets (GSE130244 and GSE15605). Protein-protein interaction network study revealed 15 cDEGs (PTK2, STAT1, PNO1, CXCR4, WASL, FN1, RUNX2, SOCS3, ITGA4, GNG2, CDK6, BRAF, AGO2, GTF2H1 and AR) to be critical in the development of melanoma (KGs). According to regulatory network analysis, the most important transcriptional and post-transcriptional regulators of DEGs and hub-DEGs are ten transcription factors and three miRNAs. We discovered the pathogenetic mechanisms of MC by studying DEGs' biological processes, molecular function, cellular components and KEGG pathways. We used molecular docking and dynamics modeling to select the four most expressed genes responsible for melanoma malignancy to identify therapeutic candidates. Then, utilizing the Connectivity Map (CMap) database, we analyzed the top 4-hub-DEGs-guided repurposable drugs. We validated four melanoma cancer drugs (Fisetin, Epicatechin Gallate, 1237586-97-8 and PF 431396) using molecular dynamics simulation with their target proteins. As a result, the results of this study may provide resources to researchers and medical professionals for the wet-lab validation of MC diagnosis, prognosis and treatments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhrubo Ahmed Khan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Tonmoy Adhikary
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mst Tania Sultana
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Imran Ahamed Toukir
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
15
|
Zhang J, Xu X, Deng H, Liu L, Xiang Y, Feng J. Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing. Pharmacol Ther 2024; 261:108697. [PMID: 39025436 DOI: 10.1016/j.pharmthera.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative cis-splicing (ACS), alternative trans-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through cis-acting regulatory elements and trans-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on cis-acting regulatory elements, trans-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xinyu Xu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hongwei Deng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou city, Sichuan 646000, China.
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
16
|
Luongo M, Laurenziello P, Cesta G, Bochicchio AM, Omer LC, Falco G, Milone MR, Cibarelli F, Russi S, Laurino S. The molecular conversations of sarcomas: exosomal non-coding RNAs in tumor's biology and their translational prospects. Mol Cancer 2024; 23:172. [PMID: 39174949 PMCID: PMC11340101 DOI: 10.1186/s12943-024-02083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Exosomes mediate cell-to-cell crosstalk involving a variety of biomolecules through an intricate signaling network. In recent years, the pivotal role of exosomes and their non-coding RNAs cargo in the development and progression of several cancer types clearly emerged. In particular, tumor bulk and its microenvironment co-evolve through cellular communications where these nanosized extracellular vesicles are among the most relevant actors. Knowledge about the cellular, and molecular mechanisms involved in these communications will pave the way for novel exosome-based delivery of therapeutic RNAs as well as innovative prognostic/diagnostic tools. Despite the valuable therapeutic potential and clinical relevance of exosomes, their role on sarcoma has been vaguely reported because the rarity and high heterogeneity of this type of cancer. Here, we dissected the scientific literature to unravel the multifaceted role of exosomal non-coding RNAs as mediator of cell-to-cell communications in the sarcoma subtypes.
Collapse
Affiliation(s)
- Margherita Luongo
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Pasqualina Laurenziello
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Giuseppe Cesta
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Anna Maria Bochicchio
- Experimental Oncology Unit, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Ludmila Carmen Omer
- Experimental Oncology Unit, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | | | | | - Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy.
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| |
Collapse
|
17
|
Dai Q, Liu Y, Ding F, Guo R, Cheng G, Wang H. CircRNAs: A promising target for intervention regarding glycolysis in gastric cancer. Heliyon 2024; 10:e34658. [PMID: 39816354 PMCID: PMC11734058 DOI: 10.1016/j.heliyon.2024.e34658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 01/18/2025] Open
Abstract
Gastric cancer is characterized by a high incidence and mortality rate, with therapeutic efficacy currently constrained by substantial limitations. Aerobic glycolysis in cancer constitutes a pivotal aspect of the reprogramming of energy metabolism in tumor cells and profoundly influences the malignant progression of cancer. CircRNAs, serving as stable endogenous RNA, have been shown to regulate downstream targets by sponging miRNAs, which in turn are involved in the regulation of multiple malignant behaviors in a variety of cancers through the CircRNA-miRNA axis, suggesting that CircRNAs could be used as potential therapeutic targets for cancer. In recent years, it has been shown that some CircRNAs can be involved in the regulation of GC glycolysis, therefore, this paper summarizes the notable roles of some important CircRNAs in the regulation of GC glycolysis in recent years, which may be useful for our understanding of GC progression and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Qian Dai
- The First Hospital of Lanzhou University, Lanzhou, China, 730000
| | - Yulin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China, 730000
| | - Fanghui Ding
- The First Hospital of Lanzhou University, Lanzhou, China, 730000
| | - Rong Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China, 730000
| | - Gang Cheng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China, 730000
| | - Hua Wang
- The First Hospital of Lanzhou University, Lanzhou, China, 730000
| |
Collapse
|
18
|
Lin Y, Zhao W, Lv Z, Xie H, Li Y, Zhang Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front Oncol 2024; 14:1419972. [PMID: 39026978 PMCID: PMC11254705 DOI: 10.3389/fonc.2024.1419972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
CRC poses a significant challenge in the global health domain, with a high number of deaths attributed to this disease annually. If CRC is detected only in its advanced stages, the difficulty of treatment increases significantly. Therefore, biomarkers for the early detection of CRC play a crucial role in improving patient outcomes and increasing survival rates. The development of a reliable biomarker for early detection of CRC is particularly important for timely diagnosis and treatment. However, current methods for CRC detection, such as endoscopic examination, blood, and stool tests, have certain limitations and often only detect cases in the late stages. To overcome these constraints, researchers have turned their attention to molecular biomarkers, which are considered a promising approach to improving CRC detection. Non-invasive methods using biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and proteins can provide more reliable diagnostic information. These biomarkers can be found in blood, tissue, stool, and volatile organic compounds. Identifying molecular biomarkers with high sensitivity and specificity for the early and safe, economic, and easily measurable detection of CRC remains a significant challenge for researchers.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| |
Collapse
|
19
|
Ma S, Xu Y, Qin X, Tao M, Gu X, Shen L, Chen Y, Zheng M, Qin S, Wu G, Ju S. RUNX1, FUS, and ELAVL1-induced circPTPN22 promote gastric cancer cell proliferation, migration, and invasion through miR-6788-5p/PAK1 axis-mediated autophagy. Cell Mol Biol Lett 2024; 29:95. [PMID: 38956466 PMCID: PMC11218243 DOI: 10.1186/s11658-024-00610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND An increasing number of studies have demonstrated the association of circular RNAs (circRNAs) with the pathological processes of various diseases and their involvement in the onset and progression of multiple cancers. Nevertheless, the functional roles and underlying mechanisms of circRNAs in the autophagy regulation of gastric cancer (GC) have not been fully elucidated. METHODS We used transmission electron microscopy and the mRFP-GFP-LC3 dual fluorescent autophagy indicator to investigate autophagy regulation. The cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and Western blot assay were conducted to confirm circPTPN22's influence on GC progression. Dual luciferase reporter assays validated the binding between circPTPN22 and miR-6788-5p, as well as miR-6788-5p and p21-activated kinase-1 (PAK1). Functional rescue experiments assessed whether circPTPN22 modulates PAK1 expression by competitively binding miR-6788-5p, affecting autophagy and other biological processes in GC cells. We investigated the impact of circPTPN22 on in vivo GC tumors using a nude mouse xenograft model. Bioinformatics tools predicted upstream regulatory transcription factors and binding proteins of circPTPN22, while chromatin immunoprecipitation and ribonucleoprotein immunoprecipitation assays confirmed the binding status. RESULTS Upregulation of circPTPN22 in GC has been shown to inhibit autophagy and promote cell proliferation, migration, and invasion. Mechanistically, circPTPN22 directly binds to miR-6788-5p, subsequently regulating the expression of PAK1, which activates protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) phosphorylation. This modulation ultimately affects autophagy levels in GC cells. Additionally, runt-related transcription factor 1 (RUNX1) negatively regulates circPTPN22 expression, while RNA-binding proteins such as FUS (fused in sarcoma) and ELAVL1 (recombinant ELAV-like protein 1) positively regulate its expression. Inhibition of the autophagy pathway can increase FUS expression, further upregulating circPTPN22 in GC cells, thereby exacerbating the progression of GC. CONCLUSION Under the regulation of the transcription factor RUNX1 and RNA-binding proteins FUS and ELAVL1, circPTPN22 activates the phosphorylation of Akt and Erk through the miR-6788-5p/PAK1 axis, thereby modulating autophagy in GC cells. Inhibition of autophagy increases FUS, which in turn upregulates circPTPN22, forming a positive feedback loop that ultimately accelerates the progression of GC.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
- Diagnostics Department, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yanhua Xu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Xinyue Qin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Mei Tao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Xinliang Gu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Lei Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Yinhao Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Ming Zheng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Shiyi Qin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China.
- Diagnostics Department, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
20
|
Chen XY, Yang YL, Yu Y, Chen ZY, Fan HN, Zhang J, Zhu JS. CircUGGT2 downregulation by METTL14-dependent m 6A modification suppresses gastric cancer progression and cisplatin resistance through interaction with miR-186-3p/MAP3K9 axis. Pharmacol Res 2024; 204:107206. [PMID: 38729588 DOI: 10.1016/j.phrs.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Chemoresistance is a major therapeutic challenge in advanced gastric cancer (GC). N6-methyladenosine (m6A) RNA modification has been shown to play fundamental roles in cancer progression. However, the underlying mechanisms by which m6A modification of circRNAs contributes to GC and chemoresistance remain unknown. We found that hsa_circ_0030632 (circUGGT2) was a predominant m6A target of METTL14, and METTL14 knockdown (KD) reduced circUGGT2 m6A levels but increased its mRNA levels. The expression of circUGGT2 was markedly increased in cisplatin (DDP)-resistant GC cells. CircUGGT2 KD impaired cell growth, metastasis and DDP-resistance in vitro and in vivo, but circUGGT2 overexpression prompted these effects. Furthermore, circUGGT2 was validated to sponge miR-186-3p and upregulate MAP3K9 and could abolish METTL14-caused miR-186-3p upregulation and MAP3K9 downregulation in GC cells. circUGGT2 negatively correlated with miR-186-3p expression and harbored a poor prognosis in patients with GC. Our findings unveil that METTL14-dependent m6A modification of circUGGT2 inhibits GC progression and DDP resistance by regulating miR-186-3p/MAP3K9 axis.
Collapse
Affiliation(s)
- Xiao-Yu Chen
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Yan-Ling Yang
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Yi Yu
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Zhao-Yu Chen
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Hui-Ning Fan
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
21
|
Zhou Z, Lin T, Chen S, Zhang G, Xu Y, Zou H, Zhou A, Zhang Y, Weng S, Han X, Liu Z. Omics-based molecular classifications empowering in precision oncology. Cell Oncol (Dordr) 2024; 47:759-777. [PMID: 38294647 DOI: 10.1007/s13402-023-00912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND In the past decades, cancer enigmatical heterogeneity at distinct expression levels could interpret disparities in therapeutic response and prognosis. It built hindrances to precision medicine, a tactic to tailor customized treatment informed by the tumors' molecular profile. Single-omics analysis dissected the biological features associated with carcinogenesis to some extent but still failed to revolutionize cancer treatment as expected. Integrated omics analysis incorporated tumor biological networks from diverse layers and deciphered a holistic overview of cancer behaviors, yielding precise molecular classification to facilitate the evolution and refinement of precision medicine. CONCLUSION This review outlined the biomarkers at multiple expression layers to tutor molecular classification and pinpoint tumor diagnosis, and explored the paradigm shift in precision therapy: from single- to multi-omics-based subtyping to optimize therapeutic regimens. Ultimately, we firmly believe that by parsing molecular characteristics, omics-based typing will be a powerful assistant for precision oncology.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ting Lin
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Haijiao Zou
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Aoyang Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
22
|
Zhang Y, Zhang H, Wang C, Cao S, Cheng X, Jin L, Ren R, Zhou F. circRNA6448-14/miR-455-3p/OTUB2 axis stimulates glycolysis and stemness of esophageal squamous cell carcinoma. Aging (Albany NY) 2024; 16:9485-9497. [PMID: 38819228 PMCID: PMC11210236 DOI: 10.18632/aging.205879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/28/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a gastrointestinal malignancy with high incidence. This study aimed to reveal the complete circRNA-miRNA-mRNA regulatory network in ESCC and validate its function mechanism. METHOD Expression of OTU Domain-Containing Ubiquitin Aldehyde-Binding Protein 2 (OTUB2) in ESCC was analyzed by bioinformatics to find the binding sites between circRNA6448-14 and miR-455-3p, as well as miR-455-3p and OTUB2. The binding relationships were verified by RNA Immunoprecipitation (RIP) and dual-luciferase assay. The expressions of circRNA6448-14, miR-455-3p, and OTUB2 were detected by quantitative real-time polymerase chain reaction (qRT-PCR). MTT assay measured cell viability, and the spheroid formation assay assessed the ability of stem cell sphere formation. Western blot (WB) determined the expression of marker proteins of stem cell surface and rate-limiting enzyme of glycolysis. The Seahorse XFe96 extracellular flux analyzer measured the rate of extracellular acidification rate and cellular oxygen consumption. Corresponding assay kits assessed cellular glucose consumption, lactate production, and adenosine triphosphate (ATP) generation. RESULTS In ESCC, circRNA6448-14 and OTUB2 were highly expressed in contrast to miR-455-3p. Knocking down circRNA6448-14 could prevent the glycolysis and stemness of ESCC cells. Additionally, circRNA6448-14 enhanced the expression of OTUB2 by sponging miR-455-3p. Overexpression of OTUB2 or silencing miR-455-3p reversed the inhibitory effect of knockdown of circRNA6448-14 on ESCC glycolysis and stemness. CONCLUSION This research demonstrated that the circRNA6448-14/miR-455-3p/OTUB2 axis induced the glycolysis and stemness of ESCC cells. Our study revealed a novel function of circRNA6448-14, which may serve as a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Yaowen Zhang
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Heming Zhang
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Chenyu Wang
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Shasha Cao
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Xinyu Cheng
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Linzhi Jin
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Runchuan Ren
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Fuyou Zhou
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| |
Collapse
|
23
|
Shao Y, Yu X, Hu M, Yan J, Miao M, Ye G, Guo J. Acting mechanism and clinical significance of hsa_circ_0005927 in the invasion and metastasis of gastric cancer. J Cancer 2024; 15:4081-4094. [PMID: 38947400 PMCID: PMC11212095 DOI: 10.7150/jca.96749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background: An increasing number of studies have demonstrated that differentially expressed circular RNAs (circRNAs) play critical roles in carcinogenesis. However, the biological function and clinical significance of hsa_circ_0005927 during gastric carcinogenesis remain unclear. The aim of this study was to investigate the acting mechanism and clinical significance of hsa_circ_0005927 in the invasion and metastasis of gastric cancer (GC). Methods: Hsa_circ_0005927 was detected in GC tissues, plasma and gastric juice from patients with GC, and its correlations with clinicopathological parameters were investigated. Receiver operating characteristic curves, Kaplan-Meier survival curves and a prognostic nomogram model were generated to analyze the diagnostic and prognostic value. Real-time cell analyzer, plate colony formation, and Transwell migration and invasion assays were utilized to assess GC cell proliferation, migration and invasion, respectively. Nucleoplasmic separation was applied to determine the distribution of hsa_circ_0005927 in cells. TargetScan and miRanda software were used for target microRNA (miRNA) prediction. Transcriptome sequencing and bioinformatics analysis were performed to annotate the functions of hsa_circ_0005927 in gastric carcinogenesis and metastasis from an RNomic perspective. Key target genes and immune cell infiltrations were analysed. Results: Hsa_circ_0005927 was found downregulated in high-grade intraepithelial neoplasia (HGIEN) tissues and GC tissues. Hsa_circ_0005927 levels in GC tissues were negatively correlated not only with lymphatic metastasis and distal metastasis but also with overall survival and disease-free survival. As a screening biomarker for GC, plasma hsa_circ_0005927 levels significantly increased in the early stages of GC, with a sensitivity and specificity of 52.38% and 76.19%, respectively. Hsa_circ_0005927 was mainly distributed in the cytoplasm, and structurally, it possesses multiple miRNA response elements (MREs) that interact with five miRNAs. A total of 421 downstream target genes of hsa_circ_0005927 were identified by transcriptome sequencing; and bioinformatics analysis suggested that these genes were involved mainly in the negative regulation of the T-cell apoptotic process, the interleukin-27-mediated signaling pathway, growth factor activity, guanylate cyclase activity, transcriptional misregulation in cancer, the cGMP-PKG signaling pathway, and the GnRH signaling pathway during gastric carcinogenesis and metastasis. GUCY1A2 and STK32A are key target genes significantly associated with immune infiltration. Conclusion: Our study revealed that hsa_circ_0005927 is a new player related to the invasion and metastasis of GC and is a potential indicator for early GC screening.
Collapse
Affiliation(s)
- Yongfu Shao
- Health Science Center, Ningbo University, Ningbo 315211, China
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Xuan Yu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Meng Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jianing Yan
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Min Miao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Guoliang Ye
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo 315020, China
- Institute of Digestive Disease of Ningbo University, Ningbo 315020, China
| | - Junming Guo
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
24
|
Wang S, Zhu X, Hao Y, Su TT, Shi W. ALKBH5-mediated m6A modification of circFOXP1 promotes gastric cancer progression by regulating SOX4 expression and sponging miR-338-3p. Commun Biol 2024; 7:565. [PMID: 38745044 PMCID: PMC11094028 DOI: 10.1038/s42003-024-06274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
Circular RNAs (circRNAs) have recently been suggested as potential functional modulators of cellular physiology processes in gastric cancer (GC). In this study, we demonstrated that circFOXP1 was more highly expressed in GC tissues. High circFOXP1 expression was positively associated with tumor size, lymph node metastasis, TNM stage, and poor prognosis in patients with GC. Cox multivariate analysis revealed that higher circFOXP1 expression was an independent risk factor for disease-free survival (DFS) and overall survival (OS) in GC patients. Functional studies showed that increased circFOXP1 expression promoted cell proliferation, cell invasion, and cell cycle progression in GC in vitro. In vivo, the knockdown of circFOXP1 inhibited tumor growth. Mechanistically, we observed ALKBH5-mediated m6A modification of circFOXP1 and circFOXP1 promoted GC progression by regulating SOX4 expression and sponging miR-338-3p in GC cells. Thus, our findings highlight that circFOXP1 could serve as a novel diagnostic and prognostic biomarker and potential therapeutic target for GC.
Collapse
Affiliation(s)
- Shouhua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.
| | - Xiang Zhu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
| | - Yuan Hao
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
| | - Ting Ting Su
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
| | - Weibin Shi
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.
| |
Collapse
|
25
|
Li Z, Xing J. Potential therapeutic applications of circular RNA in acute kidney injury. Biomed Pharmacother 2024; 174:116502. [PMID: 38569273 DOI: 10.1016/j.biopha.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome characterized by a rapid deterioration in renal function, manifested by a significant increase in creatinine and a sharp decrease in urine output. The incidence of morbidity and mortality associated with AKI is on the rise, with most patients progressing to chronic kidney disease or end-stage renal disease. Treatment options for patients with AKI remain limited. Circular RNA (circRNA) is a wide and diverse class of non-coding RNAs that are present in a variety of organisms and are involved in gene expression regulation. Studies have shown that circRNA acts as a competing RNA, is involved in disease occurrence and development, and has potential as a disease diagnostic and prognostic marker. CircRNA is involved in the regulation of important biological processes, including apoptosis, oxidative stress, and inflammation. This study reviews the current status and progress of circRNA research in the context of AKI.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
26
|
Lu C, Wu J, Li X, Huang W, Fang Y, Huang Y. Hsa_circ_0003356 suppresses gastric cancer progression via miR-556-5p/FKBP5 axis. Toxicol In Vitro 2024; 97:105787. [PMID: 38401744 DOI: 10.1016/j.tiv.2024.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/23/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND CircRNAs are implicated in the tumorigenesis of various human cancers. This study aims to explore how circ_0003356 contributes to the development of gastric cancer (GC). METHODS Circ_0003356 expression was analyzed in GSE184882 dataset and validated in our cohort of GC patients and human GC cell lines. The correlations between circ_0003356 levels and prognostic parameters were analyzed. The contribution of circ_0003356 in GC cell malignant behaviors such as cell survival, apoptosis and invasion were investigated by circ_0003356 overexpression in GC cell lines. The downstream targets of circ_0003356 were predicted and verified in vitro and in vivo. The in vivo function of circ_0003356 was studied as well in a xenograft mouse model. RESULTS Circ_0003356 expressed at a low level in human GC tissues and cells, which was closely associated with poor outcome of GC patients. Circ_0003356 overexpression induced GC cell apoptosis while depressed the growing, migration and invasive abilities through miR-556-5p/FKBP5 axis. In vivo model showed retarded tumor growth when circ_0003356-overexpressed cells were inoculated. CONCLUSION Circ_0003356 is identified as a potential biomarker of the prognosis of human gastric cancer, and circ_0003356/miR-556-5p/FKBP5 axis could be a promising target in gastric cancer treatment.
Collapse
Affiliation(s)
- Chuanhui Lu
- Department of Colorectal Cancer Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine. The School of Clinical Medicine,Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jing Wu
- Department of the Oncology, The Fifth Hospital of Wuhan, Wuhan, HuBei 430050, China
| | - Xiaoguang Li
- Department of the Oncology, The Fifth Hospital of Wuhan, Wuhan, HuBei 430050, China
| | - Wei Huang
- Department of General Surgery, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, China
| | - Yongmu Fang
- Department of General Surgery, The Third Hospital of Xiamen(The Third Hospital of Xiamen Affiliated with Fujian University of Traditional Chinese Medicine), Xiamen, Fujian 361000, China.
| | - Ying Huang
- Department of the Oncology, The Fifth Hospital of Wuhan, Wuhan, HuBei 430050, China.
| |
Collapse
|
27
|
Liu SS, Wan QS, Lv C, Wang JK, Jiang S, Cai D, Liu MS, Wang T, Zhang KH. Integrating trans-omics, cellular experiments and clinical validation to identify ILF2 as a diagnostic serum biomarker and therapeutic target in gastric cancer. BMC Cancer 2024; 24:465. [PMID: 38622522 PMCID: PMC11017608 DOI: 10.1186/s12885-024-12175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) lacks serum biomarkers with clinical diagnostic value. Multi-omics analysis is an important approach to discovering cancer biomarkers. This study aimed to identify and validate serum biomarkers for GC diagnosis by cross-analysis of proteomics and transcriptomics datasets. METHODS A cross-omics analysis was performed to identify overlapping differentially expressed genes (DEGs) between our previous aptamer-based GC serum proteomics dataset and the GC tissue RNA-Seq dataset in The Cancer Genome Atlas (TCGA) database, followed by lasso regression and random forest analysis to select key overlapping DEGs as candidate biomarkers for GC. The mRNA levels and diagnostic performance of these candidate biomarkers were analyzed in the original and independent GC datasets to select valuable candidate biomarkers. The valuable candidate biomarkers were subjected to bioinformatics analysis to select those closely associated with the biological behaviors of GC as potential biomarkers. The clinical diagnostic value of the potential biomarkers was validated using serum samples, and their expression levels and functions in GC cells were validated using in vitro cell experiments. RESULTS Four candidate biomarkers (ILF2, PGM2L1, CHD7, and JCHAIN) were selected. Their mRNA levels differed significantly between tumor and normal tissues and showed different diagnostic performances for GC, with areas under the receiver operating characteristic curve (AUROCs) of 0.629-0.950 in the TCGA dataset and 0.736-0.840 in the Gene Expression Omnibus (GEO) dataset. In the bioinformatics analysis, only ILF2 (interleukin enhancer-binding factor 2) gene levels were associated with immune cell infiltration, some checkpoint gene expression, chemotherapy sensitivity, and immunotherapy response. Serum levels of ILF2 were higher in GC patients than in controls, with an AUROC of 0.944 for the diagnosis of GC, and it was also detected in the supernatants of GC cells. Knockdown of ILF2 by siRNA significantly reduced the proliferation and colony formation of GC cells. Overexpression of ILF2 significantly promotes the proliferation and colony formation of gastric cancer cells. CONCLUSIONS Trans-omics analysis of proteomics and transcriptomics is an efficient approach for discovering serum biomarkers, and ILF2 is a potential diagnostic biomarker and therapeutic target of gastric cancer.
Collapse
Affiliation(s)
- Shao-Song Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Qin-Si Wan
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Cong Lv
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Jin-Ke Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Song Jiang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Dan Cai
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Mao-Sheng Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Ting Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University; Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China, No 17, Yongwai Zheng Street, 330006, Nanchang, China.
| |
Collapse
|
28
|
Wu X, Cao C, Li Z, Xie Y, Zhang S, Sun W, Guo J. Circular RNA CircSLC22A23 Promotes Gastric Cancer Progression by Activating HNRNPU Expression. Dig Dis Sci 2024; 69:1200-1213. [PMID: 38400886 DOI: 10.1007/s10620-024-08291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Circular RNAs (CircRNAs) play essential roles in cancer occurrence as regulatory RNAs. However, circRNA-mediated regulation of gastric cancer (GC) remains poorly understood. AIM The purpose of this study was to investigate the molecular mechanism of circSLC22A23 (hsa_circ_0075504) underlying GC occurrence. METHODS CircSLC22A23 levels were first quantified by quantitative real-time reverse transcription-polymerase chain reaction in GC cell lines, 80 paired GC tissues and adjacent normal tissues, and 27 pairs of plasma samples from preoperative and postoperative patients with GC. Then circSLC22A23 was knocked-down with short hairpin RNA to analyze its oncogenic effects on the proliferation, migration, and invasion of GC cells. Finally, circRNA-binding proteins and their downstream target genes were identified by RNA pulldown, mass spectrometry, RNA immunoprecipitation, quantitative real-time reverse transcription-polymerase chain reaction, and Western blot assays. RESULTS CircSLC22A23 was found to be highly expressed in GC cells, GC tissues, and plasma from GC patients. Knockdown of circSLC22A23 inhibited GC cell proliferation, migration and invasion. RNA pulldown and RNA immunoprecipitation assays verified the interaction between circSLC22A23 and heterogeneous nuclear ribonucleoprotein U (HNRNPU). Knockdown of circSLC22A23 decreased HNRNPU protein levels. Moreover, rescue assays showed that the tumor suppressive effect of circSLC22A23 knockdown was reversed by HNRNPU overexpression. Finally, epidermal growth factor receptor (EGFR) was found to be one of the downstream target genes of HNRNPU that was up regulated by circSLC22A23. CONCLUSION CircSLC22A23 regulated the transcription of EGFR through activation of HNRNPU in GC cells, suggesting that circSLC22A23 may serve as a potential therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Xinxin Wu
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, 315211, China
| | - Chunli Cao
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated People's Hospital, Ningbo University, Ningbo, 315040, China
| | - Zhe Li
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, 315211, China
| | - Shuangshuang Zhang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, 315211, China
| | - Weiliang Sun
- The Affiliated People's Hospital, Ningbo University, Ningbo, 315040, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China.
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, 315211, China.
- Institute of Digestive Diseases of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
29
|
Wang Y, Zou R, Li D, Gao X, Lu X. Exosomal circSTRBP from cancer cells facilitates gastric cancer progression via regulating miR-1294/miR-593-3p/E2F2 axis. J Cell Mol Med 2024; 28:e18217. [PMID: 38520208 PMCID: PMC10960172 DOI: 10.1111/jcmm.18217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/27/2023] [Accepted: 01/09/2024] [Indexed: 03/25/2024] Open
Abstract
CircRNAs represent a new class of non-coding RNAs which show aberrant expression in diverse cancers, such as gastric cancer (GC). circSTRBP, for instance, is suggested to be overexpressed in GC cells and tissues. However, the biological role of circSTRBP in the progression of GC and the potential mechanisms have not been investigated. circSTRBP levels within GC cells and tissues were measured by RT-qPCR. The stability of circSTRBP was assessed by actinomycin D and Ribonuclease R treatment. Cell proliferation, migration, invasion and in vitro angiogenic abilities after circSTRBP knockdown were analysed through CCK-8 assay, transwell culture system and the tube formation assay. The interaction of circSTRBP with the predicted target microRNA (miRNA) was examined by RNA immunoprecipitation and luciferase reporter assays. Xenograft tumour model was established to evaluate the role of exosomal circSTRBP in the tumour formation of GC cells. circSTRBP was upregulated in GC cells and tissues, and there was an increased level of circSTRBP in GC-derived exosomes. circSTRBP in the exosomes enhanced GC cell growth and migration in vitro, which modulates E2F Transcription Factor 2 (E2F2) expression through targeting miR-1294 and miR-593-3p. Additionally, exosomal circSTRBP promoted the tumour growth of GC cells in the xenograft model. Exosomal circSTRBP is implicated in the progression of GC by modulating the activity of miR-1294/miR-593-3p/E2F2 axis.
Collapse
Affiliation(s)
- Yin Wang
- Department of GastroenterologyBozhou Hospital affiliated to Anhui Medical UniversityBozhouChina
| | - Rong Zou
- Department of Gastroenterology, Wuhan Puren HospitalWuhan University of Science and TechnologyWuhanChina
| | - Deke Li
- Department of AnesthesiologyThe Fifth Hospital of WuhanChina
| | - Xiankui Gao
- Department of GastroenterologyBozhou Hospital affiliated to Anhui Medical UniversityBozhouChina
| | - Xingjun Lu
- Department of GastroenterologyBozhou Hospital affiliated to Anhui Medical UniversityBozhouChina
| |
Collapse
|
30
|
Liu D, Li B, Yang M, Xing Y, Liu Y, Yuan M, Liu F, Wu Y, Ma X, Jia Y, Wang Y, Ji M, Zhu J. A Novel Signature Based on m 6A Regulator-Mediated Genes Along Glycolytic Pathway Predicts Prognosis and Immunotherapy Responses of Gastric Cancer Patients. Adv Biol (Weinh) 2024; 8:e2300534. [PMID: 38314942 DOI: 10.1002/adbi.202300534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/03/2023] [Indexed: 02/07/2024]
Abstract
N6-methyladenosine (m6A) modification is involved in many aspects of gastric cancer (GC). Moreover, m6A and glycolysis-related genes (GRGs) play important roles in immunotherapeutic and prognostic implication of GC. However, GRGs involved in m6A regulation have never been analyzed comprehensively in GC. Herein, the study aims to identify and validate a novel signature based on m6A-related GRGs in GC patients. Therefore, a m6A-related GRGs signature is established, which can predict the survival of patients with GC and remain an independent prognostic factor in multivariate analyses. Clinical significance of the model is well validated in internal cohort and independent validation cohort. In addition, the expression levels of risk model-related GRGs in clinical samples are validated. Consistent with the database results, all model genes are up-regulated in expression except DCN. After regrouping the patients based on this risk model, the study can effectively distinguish between them in respect to immune-cell infiltration microenvironment and immunotherapeutic response. Additionally, candidate drugs targeting risk model-related GRGs are confirmed. Finally, a nomogram combining risk scores and clinical parameters is created, and calibration plots show that the nomogram can accurately predict survival. This risk model can serve as a reliable assessment tool for predicting prognosis and immunotherapeutic responses in GC patients.
Collapse
Affiliation(s)
- Duanrui Liu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, P. R. China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, P. R. China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, P. R. China
| | - Binbin Li
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, P. R. China
- Department of Clinical Laboratory, Weihai Municipal Hospital, Weihai, 264299, P. R. China
| | - Mingyue Yang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, P. R. China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, P. R. China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, P. R. China
| | - Yunyun Liu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, P. R. China
| | - Mingjie Yuan
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, P. R. China
| | - Fen Liu
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi, 276400, P. R. China
| | - Yufei Wu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, P. R. China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, P. R. China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, P. R. China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, P. R. China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, P. R. China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, P. R. China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, P. R. China
| | - Mingyu Ji
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, P. R. China
| | - Jingyu Zhu
- Department of Gastroenterology, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, P. R. China
| |
Collapse
|
31
|
Zhang Q, Du Z, Wang X, Li F, Liu Y, Sun J, Zhang L, Xiao Y, Lu X, Yu H, Liu T. Cell-free Nucleic Acid as Promising Diagnostic Biomarkers for Gastric Cancer: a Systematic Review. J Cancer 2024; 15:2900-2912. [PMID: 38706900 PMCID: PMC11064260 DOI: 10.7150/jca.92704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/09/2024] [Indexed: 05/07/2024] Open
Abstract
Background: Gastric cancer (GC) is a common malignancy with early detection being crucial for survival. Liquid biopsy analysis using cell-free nucleic acid is a preferred method for detection. Hence, we conducted a systematic review to assess the diagnostic efficacy of cell-free nucleic acid markers for GC. Methods: We searched PubMed and ISI Web of Science databases for articles that conformed to our inclusion and exclusion criteria from 2012 to 2022. The following information was abstracted: first author, year of publication, country/region, age, male proportion, tumor stage for cases, specimen type, measurement method, targeted markers and diagnostic related indicators (including sensitivity, specificity, AUC, P-value). Results: Fifty-eight studies examined cell-free RNAs (cfRNAs) with a total of 62 individual circulating markers and 7 panels in serum or plasma, while 21 studies evaluated cell-free DNAs (cfDNAs) with 29 individual circulating markers and 7 panels. For individual cfRNAs, the median (range) sensitivity and specificity were 80% (21% - 98%) and 80% (54% - 99%), respectively. The median (range) sensitivity and specificity for cfRNA panels were 86% (83% - 90%) and 75% (60% - 98%), respectively. In comparison, the median (range) sensitivity and specificity reported for individual cfDNAs were 50% (18% - 96%) and 93% (57% - 100%), respectively, while cfDNA panels had a median (range) sensitivity and specificity of 85% (41% - 92%) and 73.5% (38% - 90%), respectively. The meta results indicate that cfRNA markers exhibit high sensitivity (80%) and low specificity (80%) for detecting GC, while cfDNA markers have lower sensitivity (59%) but higher specificity (92%). Conclusions: This review has demonstrated that cell-free nucleic acids have the potential to serve as useful diagnostic markers for GC. Given that both cfRNA and cfDNA markers have shown promising diagnostic performance for GC, the combination of the two may potentially enhance diagnostic efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Haixin Yu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Liu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
32
|
Lan ZZ, Sun FH, Chen C, Niu L, Shi JD, Zhang WY. CircPRDM5 inhibits the proliferation, migration, invasion, and glucose metabolism of gastric cancer cells by reducing GCNT4 expression in a miR-485-3p-dependent manner. Kaohsiung J Med Sci 2024; 40:231-243. [PMID: 38180297 DOI: 10.1002/kjm2.12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/16/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
Circular RNA (circRNA) plays a key part in the pathological process of gastric cancer (GC). The study is organized to analyze the function of circPRDM5 in GC cell tumor properties. Expression levels of circPRDM5, miR-485-3p, glucosaminyl (N-acetyl) transferase 4 (GCNT4), ki67, E-cadherin, N-cadherin, and hexokinase 2 (HK2) were analyzed by quantitative real-time polymerase chain reaction (PCR), Western blotting or immunohistochemistry assay. Cell proliferation was assessed by cell colony formation assay and 5-ethynyl-2'-deoxyuridine assay. Cell migration and invasion were investigated by transwell assay. Glycolysis was evaluated by the Seahorse XF Glycolysis Stress Test Kit. Dual-luciferase reporter assay and RNA pull-down assay were performed to identify the associations among circPRDM5, miR-485-3p, and GCNT4. Xenograft mouse model assay was conducted to determine the effects of circPRDM5 on tumor formation in vivo. CircPRDM5 and GCNT4 expression were downregulated, while miR-485-3p expression was upregulated in GC tissues and cells when compared with paracancerous tissues or human gastric epithelial cells. CircPRDM5 overexpression inhibited proliferation, migration, invasion, and glucose metabolism of GC cells; however, circPRDM5 depletion had the opposite effects. CircPRDM5 repressed tumor properties of GC cells in vivo. MiR-485-3p restoration relieved circPRDM5-induced effects in GC cells. GCNT4 overexpression remitted the promoting effects of miR-485-3p mimics on GC cell malignancy. CircPRDM5 acted as a sponge for miR-485-3p, and GCNT4 was identified as a target gene of miR-485-3p. Moreover, circPRDM5 regulated GCNT4 expression by interacting with miR-485-3p.CircPRDM5 acted as a miR-485-3p sponge to inhibit GC progression by increasing GCNT4 expression, proving a potential target for GC therapy.
Collapse
Affiliation(s)
- Zhang-Zhang Lan
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Feng-Hua Sun
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chuan Chen
- Department of Research and Development, Shenzhen Cheerland Biotechnology Co., Ltd, Shenzhen, China
| | - Li Niu
- Department of Research and Development, CheerLand Clinical Laboratory Co., Ltd, Shenzhen, China
| | - Jing-Dong Shi
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-Yong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
33
|
Zhang Y, Xie W, Zheng W, Qian X, Deng C. Exosome-mediated circGMPS facilitates the development of gastric cancer cells through miR-144-3p/PUM1. Cytotechnology 2024; 76:53-68. [PMID: 38304630 PMCID: PMC10828494 DOI: 10.1007/s10616-023-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/07/2023] [Indexed: 02/03/2024] Open
Abstract
In recent years, gastric cancer (GC) is still one of the major public health burdens in the world. It is reported that exosome circular RNA (circRNA) is involved in the GC progression. However, the function and potential mechanism of circGMPS in GC remains unclear and needs further exploration. In this study, we isolated and identified exosomes from serum by TEM, NTA analysis and Western blot. RNA expression was evaluated by qRT-PCR. Western blot was employed to examine protein expression. Cell proliferation was measured using CCK-8. Transwell assay was adopted to analyze cell migration and invasion. The relationship between genes was explored through bioinformatics analysis, dual-luciferase reporter gene assay and spearman correlation coefficient. We found that circGMPS was elevated in GC exosomes, tissues and cells. Poor prognosis of GC patients was related to high circGMPS expression. Both exosome co-culture with cells and insertion of circGMPS clearly promoted cell progression. Mechanically, circGMPS sponged miR-144-3p to regulate PUM1. Inhibition of PUM1 or miR-144-3p overexpression inhibited the malignant GC cell progression. Our data confirmed that exosome-derived circGMPS boosted malignant progression by miR-144-3p/PUM1 axis in GC cells, providing strong evidences for circGMPS as a clinical biomarker of GC treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00597-9.
Collapse
Affiliation(s)
- Yuexin Zhang
- Department of Medical Oncology, Dan Zhou People’s Hospital, No. 21-1, Da Tong Road, Nada Town, Danzhou, 571700 Hainan China
| | - Wenrui Xie
- Department of Medical Oncology, Dan Zhou People’s Hospital, No. 21-1, Da Tong Road, Nada Town, Danzhou, 571700 Hainan China
| | - Wenhong Zheng
- Department of Medical Oncology, Dan Zhou People’s Hospital, No. 21-1, Da Tong Road, Nada Town, Danzhou, 571700 Hainan China
| | - Xiaoying Qian
- Department of Medical Oncology, The Second Affiliated Hospital of Hainan Medical College, Haikou, 570100 Hainan China
| | - Chengwei Deng
- Department of Medical Oncology, Dan Zhou People’s Hospital, No. 21-1, Da Tong Road, Nada Town, Danzhou, 571700 Hainan China
| |
Collapse
|
34
|
Ding J, Gao W, Yang H, Duan L, Sun D, Liu L, Qu X, Yu H, Xu B, Zhao S, Wang L, Chai J. KBTBD2 promotes proliferation and migration of gastric cancer via activating EGFR signaling pathway. Pathol Res Pract 2024; 254:155095. [PMID: 38237399 DOI: 10.1016/j.prp.2024.155095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/22/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND To explore the role of Kelch repeat and BTB (POZ) domain containing 2 (KBTBD2) in Gastric cancer(GC) via studying the level of KBTBD2 and its impact on GC cells and mice model. METHODS Expression of KBTBD2 in GC was analyzed by analysis of TCGA data, Western blotting and Real-time quantitative polymerasechain reaction (RT-qPCR). The role of KBTBD2 on GC cells proliferation, viability, invasion, migration and apoptosis in vitro were assessed by using western blotting,RT-qPCR,CCK-8, EDU, Colony Formation Assay, Wound healing assay, Transwell, JC-1 mitochondrial membrane potential and flow cytometry assay, respectively. And levels of Bcl-2, BAX, PARP, E-cadherin, Vimentin, N-cadherin, EGFR, SOS1, NROS, BRAF,ERK1/2 and GAPDH were tested by western blotting. Relation of KBTBD2 and epidermal growth factor receptor (EGFR) was predicted by KEGG analysis. KBTBD2 gene GSEA enrichment was analyzed by using R language. Moreover, CCK-8, western blotting, and wound healing assays were used to verify the correlation of KBTBD2 and EGFR pathway. Finally, tumor growth in mice was also investigated. Cells proliferation, migration and apoptosis were detected by Ki67 staining, Tunnel staining and mouse lung metastasis model. RESULTS KBTBD2 was highly expressed in GC, and was related to poor prognosis. Moreover, silencing KBTBD2 suppressed GC cell proliferation, migration and invasion, while also inhibited the EMT, but promoted apoptosis. At the same time, KBTBD2 overexpression showed opposite results. In addition, KBTBD2 regulated the EGFR pathway. Further, silencing KBTBD2 inhibited tumor growth, cell proliferation and migration but promoted apoptosis in vivo, and KBTBD2 overexpression showed opposite results. CONCLUSIONS KBTBD2 was highly expressed in GC. KBTBD2 promotes the progress of GC by activating EGFR signal pathway. KBTBD2 may thus be a novel target for treating GC.
Collapse
Affiliation(s)
- Jishuang Ding
- Department of Gastroenterological Surgery, Shanxian Central Hospital, Heze, Shandong, China; Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Gao
- Department of Science and Technology Report Center, Shandong Institute of Scientific and Technical Information, China
| | - Haiying Yang
- Department of Orthopedics, Binzhou People's Hospital Affiliated to Shandong First Medical University,Binzhou, Shandong, China
| | - Lei Duan
- Department of Pediatrics, Boxing County People's Hospital, Binzhou, Shandong, China
| | - Dong Sun
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Luguang Liu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xianlin Qu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hang Yu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Botao Xu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Siwei Zhao
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Longgang Wang
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Jie Chai
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
35
|
Ma S, Yao Y, Xu Y, Zou M, Zhou M, Abudushalamu G, Chen Y, Cai S, Zhang C, Wu G. Comprehensive evaluation of serum circHAS2 as a novel diagnostic and prognostic biomarker for gastric cancer. Mol Carcinog 2024; 63:94-105. [PMID: 37750590 DOI: 10.1002/mc.23638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
The diagnosis and screening indicators for gastric cancer (GC) are not satisfactory, resulting in a large number of GC patients being missed and missing the best treatment time. Due to the special structure of circular RNAs (circRNAs), they have a more accurate and powerful ability to detect tumor occurrence. In addition, circHAS2 has been found to promote the proliferation, migration, and invasion of GC cells. Therefore, this study explored the potential of circHAS2 as a biomarker for GC. The expression level of circHAS2 in the specimens was detected by real-time fluorescent quantitative PCR. The molecular characteristics of circHAS2 were verified by agarose gel electrophoresis and Sanger sequencing. The feasibility of the circHAS2 detection method was verified by room temperature placement and repeated freezing and thawing. The diagnostic effect of circHAS2 on GC was evaluated by receiver-operating curve analysis. The correlation between circHAS2 expression level and clinical pathological parameters was analyzed using the χ2 -test. Kaplan-Meier survival curve analysis was used to analyze the survival situation of the circHAS2 high- and low-expression group. Univariate and multivariate Cox regression analysis was used to evaluate the influencing factors of prognosis in GC patients. CircHAS2 in cells can be secreted into the blood, and its expression level is significantly upregulated in the serum of patients with GC. The expression level of circHAS2 is correlated with the tissue differentiation, tumor node metastasis staging, classification, and lymph node metastasis of GC patients. CircHAS2 can effectively identify GC and even early GC. In addition, the expression levels of circHAS2 in postoperative GC patients significantly decreased and returned to normal after the second stage of chemotherapy. Finally, the circHAS2 low-expression group had better survival. The upregulated expression of circHAS2 in the serum of GC patients can effectively identify GC and early GC and can be used for effective monitoring of the prognosis of GC patients. In summary, circHAS2 can be used as an effective diagnostic and prognostic marker for GC.
Collapse
Affiliation(s)
- Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yanhua Xu
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Mingyuan Zou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Meiling Zhou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Gulinaizhaer Abudushalamu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yaya Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Shijie Cai
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Chen Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Shan H, Zhang X, Zhang X, Wei Y, Meng L, Li J, Zhang Z, Ma L, Xiao Y. CircSCUBE3 Reduces the Anti-gastric Cancer Activity of Anti-PD-L1. Mol Biotechnol 2024; 66:123-137. [PMID: 37052807 DOI: 10.1007/s12033-023-00696-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 04/14/2023]
Abstract
The progression of gastric cancer (GC) is closely related to tumor immune escape. The research, therefore, studied the impact of possible circRNAs on the immune escape of GC tumors and the underlying mechanisms. Here, to explore circRNAs that may affect GC, the differential circRNAs in six normal gastric mucosal tissues and six GC samples (GSM2005868-GSM2005879) were analyzed through the bioinformatics website circmine, and hsa_circ_0076092 (circSCUBE3) was identified as the research object. In vitro assays revealed the functions of circSCUBE3 and its downstream miRNA/mRNA axis in GC cells. The effect of circSCUBE3 against PD-1 anti-tumor activity was evaluated in vivo. The relationship between circSCUBE3 and miR-744-5p, miR-744-5p, and SLC7A5 was identified by RNA immunoprecipitation and dual-luciferase reporter experiments. The effect of SLC7A5 on GC immune escape by regulating PD-L1 expression was assessed by co-culture system and flow cytometry. CircSCUBE3 was up-regulated in human GC tissues and GC cell lines. circSCUBE3 was associated with poor prognosis in GC patients. Functional experiments reported that circSCUBE3 knockdown could suppress GC immune escape. Mechanistically, circSCUBE3 bound to miR-744-5p, which further targeted SLC7A5, and SLC7A5 can affect GC immune escape by regulating PD-L1. Furthermore, in vivo assay manifested that circSCUBE3 attenuated the anti-tumor effect of PD-L1. Our study revealed the importance of the circSCUBE3/miR-744-5p/SLC7A5 axis in GC immune escape and anti-PD-1 resistance.
Collapse
Affiliation(s)
- HuSheng Shan
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- Huai'an Medical District of the Eastern Theater General Hospital, Huai'an, 223001, China
| | - XiaoBo Zhang
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiao Zhang
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - YingTian Wei
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - LiangLiang Meng
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jing Li
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - ZhongLiang Zhang
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Li Ma
- Department of Anesthesia, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - YueYong Xiao
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
37
|
Hong Y, Chen B, Wang C, Gui R, Zhai X, Qian Q, Ren X, Xie X, Jiang C. circPPP2R4 promotes colorectal cancer progression and reduces ROS production through the miR-646/FOXK1 axis. Mol Carcinog 2024; 63:106-119. [PMID: 37750597 DOI: 10.1002/mc.23639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Circular RNAs (circRNAs) play important roles in colorectal cancer (CRC) development and progression. This study aimed to investigate the function and molecular mechanism of circPPP2R4 in CRC. Based on bioinformatic analyses and validation by qRT-PCR, we identified a novel circRNA, circPPP2R4, which was upregulated in CRC tissues. Receiver operating characteristic curve analysis implied a high diagnostic value of circPPP2R4 for CRC. Additionally, high circPPP2R4 levels were positively correlated with advanced clinical stage and lymph node metastasis. Functionally, circPPP2R4 overexpression facilitated CRC cells proliferation, migration and invasion, whereas circPPP2R4 knockdown attenuated the malignant behaviors. In mouse models, circPPP2R4 overexpression remarkably promoted tumor growth and lung metastasis. Mechanistically, a series of experiments containing RIP, RNA pull-down, and dual-luciferase reporter assays revealed the circPPP2R4/miR-646/FOXK1 axis in CRC. Further experiments were conducted to verify that circPPP2R4 reduced reactive oxygen species generation to exert its oncogenic function by sponging miR-646 to upregulate FOXK1 expression. For the first time, we identified the regulatory role of circPPP2R4 in CRC pathogenesis, providing a potential diagnostic biomarker and therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Yuntian Hong
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Baoxiang Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Chun Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Gui
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiang Zhai
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Qun Qian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Xianghai Ren
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Xiaoyu Xie
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| |
Collapse
|
38
|
Chen Y, Wang J, Wang C, Zou Q. AutoEdge-CCP: A novel approach for predicting cancer-associated circRNAs and drugs based on automated edge embedding. PLoS Comput Biol 2024; 20:e1011851. [PMID: 38289973 PMCID: PMC10857569 DOI: 10.1371/journal.pcbi.1011851] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/09/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
The unique expression patterns of circRNAs linked to the advancement and prognosis of cancer underscore their considerable potential as valuable biomarkers. Repurposing existing drugs for new indications can significantly reduce the cost of cancer treatment. Computational prediction of circRNA-cancer and drug-cancer relationships is crucial for precise cancer therapy. However, prior computational methods fail to analyze the interaction between circRNAs, drugs, and cancer at the systematic level. It is essential to propose a method that uncover more valuable information for achieving cancer-centered multi-association prediction. In this paper, we present a novel computational method, AutoEdge-CCP, to unveil cancer-associated circRNAs and drugs. We abstract the complex relationships between circRNAs, drugs, and cancer into a multi-source heterogeneous network. In this network, each molecule is represented by two types information, one is the intrinsic attribute information of molecular features, and the other is the link information explicitly modeled by autoGNN, which searches information from both intra-layer and inter-layer of message passing neural network. The significant performance on multi-scenario applications and case studies establishes AutoEdge-CCP as a potent and promising association prediction tool.
Collapse
Affiliation(s)
- Yaojia Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Jiacheng Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Chunyu Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
39
|
Wu M, Yuan S, Liu K, Wang C, Wen F. Gastric Cancer Signaling Pathways and Therapeutic Applications. Technol Cancer Res Treat 2024; 23:15330338241271935. [PMID: 39376170 PMCID: PMC11468335 DOI: 10.1177/15330338241271935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 10/09/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignant tumor and ranks as the second leading cause of death among cancer patients worldwide. Due to its hidden nature and difficulty in detection, GC has a high incidence and poor prognosis. Traditional treatment methods such as systemic chemotherapy, radiotherapy, and surgical resection are commonly used, but they often fail to achieve satisfactory curative effects, resulting in a very low 5-year survival rate for GC patients. Currently, targeted therapy and immunotherapy are prominent areas of research both domestically and internationally. These methods hold promise for the treatment of GC. This article focuses on the signaling pathways associated with the development of GC, as well as the recent advancements and applications of targeted therapy and immunotherapy. The aim is to provide fresh insights for the clinical treatment of GC.
Collapse
Affiliation(s)
- Mingfang Wu
- The Second Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Shiman Yuan
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Kai Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
40
|
Bao H, Li J, Dong Q, Liang Z, Yang C, Xu Y. Circular RNAs in pancreatic cancer progression. Clin Chim Acta 2024; 552:117633. [PMID: 37949391 DOI: 10.1016/j.cca.2023.117633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Pancreatic cancer (PC), typically diagnosed at relatively advanced stages with poor prognosis, is a dominant cause of cancer-related deaths worldwide. Accumulating evidence demonstrates that circular RNAs (circRNAs) are abnormally expressed in diverse tumors and affect tumorigenesis and progression. In this article, we examine the roles of circRNAs in regulation of PC progression. Additionally, circRNAs enriched in exosomes could be transferred among PC cells to modulate malignancy. Characterization of regulatory mechanisms involving circRNAs in general and PC specifically will enable earlier detection and potential development of therapeutic strategies.
Collapse
Affiliation(s)
- Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zixin Liang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China; Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361000, China; Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, China; Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu 224007, China; Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang 310000, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China; Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou and Department of Pharmacy, Changxing People's Hospital, Changxing, Zhejiang 313000, China.
| |
Collapse
|
41
|
Zhu G, Cai H, Xiao Q, Zeng S, Jiang X, Liu D. GRB7 plays a promoting role in the progression of gastric cancer. BMC Cancer 2023; 23:1262. [PMID: 38129809 PMCID: PMC10734061 DOI: 10.1186/s12885-023-11694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Gastric cancer is a clinically common tumor, showing an upward trend of both incidence and mortality. GRB7 has been identified as a vital regulator in tumor progression. This study aims to uncover the biological function of GRB7 in gastric cancer process. METHODS immunohistochemical (IHC) staining using a tissue microarray (TMA), quantitative reverse transcription PCR (qRT-PCR) and Western blotting were performed to detect the expression of genes. Furthermore, gastric cancer cell lines AGS and MGC-803 were transfected with short hairpin RNAs against GRB7. The biological function of GRB7 in gastric cancer cells were examined by CCK-8, flow cytometry, wound healing and Transwell assays. Then, in vivo tumor formation assay was conducted to explore the effects of GRB7 on tumor growth. Finally, expression levels of proteins related to cell functions were determined by Western blotting. Coimmunoprecipitation (CoIP) assay was performed to assess the protein-protein interaction. RESULTS GRB7 was up-regulated in gastric cancer tissues and cell lines, and its expression was inversely proportional to survival of gastric cancer patients. Moreover, GRB7 knockdown inhibited proliferative, migratory abilities, as well as promoted cell apoptosis in gastric cancer cells. Further study suggested that GRB7 silencing could suppress gastric cancer tumor growth in vivo. Furthermore, our study uncovered an important interaction between GRB7 and MyD88. Silencing MyD88 was observed to alleviate the malignant phenotypes promoted by GRB7 in gastric cancer cells. CONCLUSIONS Together, this study provided evidence that GRB7 may be an effective molecular targets for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Guomin Zhu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Hu Cai
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qiang Xiao
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Shukun Zeng
- Department of General Surgery, The Affiliated Hospital of JiangXi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaohua Jiang
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Donglan Liu
- Department of Gastroenterology, Cancer Hospital of Jiangxi Province, Jiangxi, 330029, China.
| |
Collapse
|
42
|
Ren A, Gong F, Liu G, Fan W. NR1H4-mediated circRHOBTB3 modulates the proliferation, metastasis, and Warburg effects of cervical cancer through interacting with IGF2BP3. Mol Cell Biochem 2023; 478:2671-2681. [PMID: 36939994 DOI: 10.1007/s11010-023-04692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 02/25/2023] [Indexed: 03/21/2023]
Abstract
Globally, cervical cancer (CC) ranks as the fourth most common cancer and the most lethal malignancy among females of reproductive age. The incidence of CC is increasing in low-income countries, with unsatisfactory outcomes and long-term survival for CC patients. Circular RNAs (CircRNAs) are promising therapeutics that target multiple cancers. In this study, we investigated the tumorigenic role of circRHOBTB3 in CC, showing that circRHOBTB3 is highly expressed in CC cells and circRHOBTB3 knockdown also repressed CC proliferation, migration, invasion, and the Warburg effects. CircRHOBTB3 interacted with the RNA-binding protein, IGF2BP3, to stabilize its expression in CC cells and is putatively transcriptionally regulated by NR1H4. In conclusion, this novel NR1H4/circRHOBTB3/IGF2BP3 axis may provide new insights into CC pathogenesis.
Collapse
Affiliation(s)
- Ailing Ren
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, China
| | - Fan Gong
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, China
| | - Guokun Liu
- Outpatient Department, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Wenli Fan
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
43
|
Wang S, Yang X, Liu C, Hu J, Yan M, Ding C, Fu Y. Identification of key genes associated with poor prognosis and neoplasm staging in gastric cancer. Medicine (Baltimore) 2023; 102:e35111. [PMID: 37800754 PMCID: PMC10553055 DOI: 10.1097/md.0000000000035111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is highly biologically and genetically heterogeneous disease with poor prognosis. Increasing evidence indicates that biomarkers can serve as prediction and clinical intervention. Therefore, it is vital to identify core molecules and pathways participating in the development of GC. METHODS In this study, GSE54129, GSE56807, GSE63089, and GSE118916 were used for identified overlapped 75 DEGs. GO and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed DEGs mainly enriched in biological process about collagen-containing extracellular matrix and collagen metabolic. Next, protein-protein interaction network was built and the hub gene was excavated. Clinicopathological features and prognostic value were also evaluated. RESULTS Hub genes were shown as below, FN1, COL1A2, COL1A1, COL3A1, COL4A1, COL6A3, COL5A2, SPARC, PDGFRB, COL12A1. Those genes were upregulation in GC and related to the poor prognosis (except COL5A2, P = .73). What is more, high expression indicated worse T stage and tumor, node, metastasis stage in GC patients. Later, the results of 25 GC tumor specimens and 34 normal tissues showed that FN1, COL3A1, COL4A1, SPARC, COL5A2, and COL12A1 were significantly upregulated in cancer samples. CONCLUSION Our study systematically explored the core genes and crucial pathways in GC, providing insights into clinical management and individual treatment.
Collapse
Affiliation(s)
- Shuoshan Wang
- Department of General Medicine, The First People’s Hospital of Foshan, The Affiliated Foshan Hospital of Sun Yat-Sen University, Guangdong, China
| | - Xiansheng Yang
- Second Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, GuangZhou, China
| | - Chang Liu
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, China
| | - Jinlun Hu
- Department of General Medicine, The First People’s Hospital of Foshan, The Affiliated Foshan Hospital of Sun Yat-Sen University, Guangdong, China
| | - Mei Yan
- Department of General Medicine, The First People’s Hospital of Foshan, The Affiliated Foshan Hospital of Sun Yat-Sen University, Guangdong, China
| | - Chan Ding
- Department of General Medicine, The First People’s Hospital of Foshan, The Affiliated Foshan Hospital of Sun Yat-Sen University, Guangdong, China
| | - Yue Fu
- Department of General Medicine, The First People’s Hospital of Foshan, The Affiliated Foshan Hospital of Sun Yat-Sen University, Guangdong, China
| |
Collapse
|
44
|
Wu T, Wu S, Jiao H, Feng J, Zeng X. Overexpression of hsa_circ_0001861 inhibits pulmonary fibrosis through targeting miR-296-5p/BCL-2 binding component 3 axis. Eur J Histochem 2023; 67:3839. [PMID: 37781863 PMCID: PMC10614724 DOI: 10.4081/ejh.2023.3839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Pulmonary fibrosis is a progressive lung disorder. Evidence has shown that hsa_circular (circ)RNA_0001861 is dysregulated in pulmonary fibrosis. However, the detailed function of hsa_circRNA_0001861 in pulmonary fibrosis remains unexplored. To investigate the function of hsa_circRNA_0001861 in pulmonary fibrosis, human pulmonary fibroblasts in vitro were used, and cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) staining were performed to assess cell viability and proliferation, respectively. Western blot analysis and reverse transcription-quantitative PCR (RT-qPCR) were used to evaluate protein and mRNA levels. Meanwhile, the relationship among hsa_circRNA_0001861, miR-296-5p and BCL-2 binding component 3 (BBC3) was investigated by RNA pull-down assays. Furthermore, an in vivo model of lung fibrosis was constructed to assess the function of hsa_circRNA_0001861 in lung fibrosis. The data revealed that TGF‑β1 significantly increased the proliferation of pulmonary fibroblasts, while this phenomenon was markedly abolished by hsa_circRNA_0001861 overexpression. hsa_circRNA_0001861 overexpression markedly inhibited TGF‑β1‑induced fibrosis in pulmonary fibroblasts through the mediation of α-smooth muscle actin, E-cadherin, collagen III and fibronectin 1. Meanwhile, hsa_circRNA_0001861 could bind with miR-296-5p, and BBC3 was identified to be the downstream mRNA of miR-296-5p. In addition, the upregulation of hsa_circRNA_0001861 clearly reversed TGF‑β1‑induced fibrosis and proliferation in pulmonary fibroblasts through the upregulation of BBC3. Furthermore, hsa_circRNA_0001861 upregulation markedly alleviated pulmonary fibrosis in vivo. Hsa_circRNA_0001861 upregulation attenuated pulmonary fibrosis by modulating the miR-296-5p/BBC3 axis. Hence, the present study may provide some insights for the discovery of new methods against pulmonary fibrosis.
Collapse
Affiliation(s)
- Tao Wu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine, Zhuzhou, Hunan.
| | - Shikui Wu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine, Zhuzhou, Hunan.
| | - Hailu Jiao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine, Zhuzhou, Hunan.
| | - Jun Feng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine, Zhuzhou, Hunan.
| | - Xiang Zeng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hunan Provincial College of Traditional Chinese Medicine, Zhuzhou, Hunan.
| |
Collapse
|
45
|
Shan C, Liang Y, Wang K, Li P. Noncoding RNAs in cancer ferroptosis: From biology to clinical opportunity. Biomed Pharmacother 2023; 165:115053. [PMID: 37379641 DOI: 10.1016/j.biopha.2023.115053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Ferroptosis is a recently discovered pattern of programmed cell death that is nonapoptotic and irondependent. It is involved in lipid peroxidation dependent on reactive oxygen species. Ferroptosis has been verified to play a crucial regulatory role in a variety of pathological courses of disease, in particularly cancer. Emerging research has highlighted the potential of ferroptosis in tumorigenesis, cancer development and resistance to chemotherapy. However, the regulatory mechanism of ferroptosis remains unclear, which limits the application of ferroptosis in cancer treatment. Noncoding RNAs (ncRNAs) are noncoding transcripts that regulate gene expression in various ways to affect the malignant phenotypes of cancer cells. At present, the biological function and underlying regulatory mechanism of ncRNAs in cancer ferroptosis have been partially elucidated. Herein, we summarize the current knowledge of the central regulatory network of ferroptosis, with a focus on the regulatory functions of ncRNAs in cancer ferroptosis. The clinical application and prospects of ferroptosis-related ncRNAs in cancer diagnosis, prognosis and anticancer therapies are also discussed. Elucidating the function and mechanism of ncRNAs in ferroptosis, along with assessing the clinical significance of ferroptosis-related ncRNAs, provides new perspectives for understanding cancer biology and treatment approaches, which may benefit numerous cancer patients in the future.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
46
|
Zhou Z, Chen C, Han B, Wang Y, Liu Y, Liu Q, Xu X, Yin Y, Sun B. Circular RNA in cholangiocarcinoma: A systematic review and bibliometric analysis. Pathol Res Pract 2023; 249:154755. [PMID: 37651837 DOI: 10.1016/j.prp.2023.154755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a common primary liver malignancy with a poor prognosis. Many studies have demonstrated the involvement of circular RNAs (circRNAs) in tumorigenesis and progression. METHODS Four online databases (PubMed, Web of Science, Embase, and Scopus) were searched on May 04, 2023, for original papers regarding CCA and circRNAs. Bibliometric analysis of included studies was performed on R Studio and GraphPad Prism. RESULTS Thirty studies were included in the systematic review and bibliometric analysis. The systematic review showed that circRNAs were involved in CCA proliferation, invasion, metastasis, chemotherapy resistance, and other biological processes and were related to the prognosis of patients and many clinicopathological features. Exosomal circRNAs provide a new idea for the early diagnosis of CCA. The bibliometric analysis showed a significant upward trend in the number of studies on CCA and circRNAs. The 30 included papers had 201 authors and were published in 22 English journals. The first paper was published in 2018, and the second paper was the most cited (148 citations). CONCLUSION This systematic review and bibliometric analysis demonstrates that circRNAs in CCA have not been studied enough. CircRNAs play an important role in the occurrence and progression of CCA. They may become new targets for the diagnosis, treatment, and prognostic monitoring of CCA.
Collapse
Affiliation(s)
- Zheyu Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing 210008, China
| | - Chaobo Chen
- Department of General Surgery, Xishan People's Hospital of Wuxi City, Wuxi 214105, China; Department of Hepatobiliary and Transplantation Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Bing Han
- Department of Hepatobiliary and Transplantation Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yinyu Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yang Liu
- Department of Hepatobiliary and Transplantation Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qiaoyu Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiaoliang Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Yin Yin
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Beicheng Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing 210008, China; Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
47
|
Chen Y, Zhang J, Zhang Y, Zhu L. Effect of statin use on risk and mortality of gastric cancer: a meta-analysis. Anticancer Drugs 2023; 34:901-909. [PMID: 37227032 DOI: 10.1097/cad.0000000000001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The effect of statins on gastric cancer risk is still controversial. And studies on the association between statins and gastric cancer mortality are very limited. Therefore, we conducted this systemic review and meta-analysis to evaluate the association between the use of statin and gastric cancer. Searched studies were published before November 2022. Odds ratios (ORs)/relative risks (RRs) or hazard ratios (HRs) and their 95% confidence intervals (CIs) were computed using STATA 12.0 software. The study showed that the statin use group showed a significantly lower risk of gastric cancer, compared to no statin use group (OR/RR, 0.74; 95% CI: 0.67-0.80, P < 0.001). The study showed that the statin use group showed significantly lower all-cause mortality and cancer-specific mortality of gastric cancer, compared to no statin use group (all-cause mortality: HR, 0.70; 95% CI: 0.52-0.95, P = 0.021; cancer-specific mortality: HR, 0.70; 95% CI: 0.58-0.84, P < 0.001). Overall, results from this meta-analysis showed the protective effect of statins exposure on the risk and prognosis of gastric cancer; however, we still need more well designed, large-scale studies and randomized clinical trials to pinpoint the effect of statins on gastric cancer in future clinical practice.
Collapse
Affiliation(s)
- Yi Chen
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | | | | | | |
Collapse
|
48
|
Li Y, Kong Y, An M, Luo Y, Zheng H, Lin Y, Chen J, Yang J, Liu L, Luo B, Huang J, Lin T, Chen C. ZEB1-mediated biogenesis of circNIPBL sustains the metastasis of bladder cancer via Wnt/β-catenin pathway. J Exp Clin Cancer Res 2023; 42:191. [PMID: 37528489 PMCID: PMC10394821 DOI: 10.1186/s13046-023-02757-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) circularized by back-splicing of pre-mRNA are widely expressed and affected the proliferation, invasion and metastasis of bladder cancer (BCa). However, the mechanism underlying circRNA biogenesis in mediating the distant metastasis of BCa still unexplored. METHODS RNA sequencing data between BCa and normal adjacent tissues was applied to identify the differentially expressed circRNAs. The functions of circNIPBL in BCa were investigated via a series of biochemical experiments. The Clinical significance of circNIPBL was examined in a cohort of larger BCa tissues. RESULTS In the present study, we identified a novel circRNA (hsa_circ_0001472), circNIPBL, which was significantly upregulated and had great influence on the poor prognosis of patients with BCa. Functionally, circNIPBL promotes BCa metastasis in vitro and in vivo. Mechanistically, circNIPBL upregulate the expression of Wnt5a and activated the Wnt/β-catenin signaling pathway via directly sponged miR-16-2-3p, leading to the upregulation of ZEB1, which triggers the EMT of BCa. Moreover, we revealed that ZEB1 interacted with the flanking introns of exons 2-9 on NIPBL pre-mRNA to trigger circNIPBL biogenesis, thus forming a positive feedback loop. Importantly, circNIPBL overexpression significantly facilitated the distant metastasis of BCa in the orthotopic bladder cancer model, while silencing ZEB1 remarkably blocked the effects of metastasis induced by circNIPBL overexpression. CONCLUSIONS Our study highlights that circNIPBL-induced Wnt signaling pathway activation triggers ZEB1-mediated circNIPBL biogenesis, which forms a positive feedback loop via the circNIPBL/miR-16-2-3p/Wnt5a/ZEB1 axis, supporting circNIPBL as a novel therapeutic target and potential biomarker for BCa patients.
Collapse
Affiliation(s)
- Yuanlong Li
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Yao Kong
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Yuming Luo
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Jiancheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Jin Yang
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, P. R. China
| | - Libo Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Baoming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China.
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, 510120, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
49
|
Shi M, Zhang MJ, Yu Y, Ou R, Wang Y, Li H, Ge RS. Curcumin derivative NL01 induces ferroptosis in ovarian cancer cells via HCAR1/MCT1 signaling. Cell Signal 2023:110791. [PMID: 37406786 DOI: 10.1016/j.cellsig.2023.110791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/24/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVE Curcumin has been shown to have anti-tumor proliferative properties, but its clinical application is limited by its low bioavailability, etc. Derivatives of curcumin have been developed and tested to improve its therapeutic efficacy. Derivative NL01 could induce ferroptosis through the HCAR1/MCT1 pathway. METHOD CCK-8 was used to detect curcumin and derivative IC50, crystalline violet staining was used to detect the proliferation inhibition effect of NL01 in ovarian cancer, western blot and qPCR were used to detect downstream related molecular expression changes, Transwell and survival curve assays were used to detect malignant phenotypic. RESULTS NL01 inhibited cell growth of Anglne and HO8910PM ovarian cancer cells by 13 times more potent than curcumin and induced ferroptosis of these two cells. we found that NL01 was able to reduce the expression of HCAR1/MCT1 and activate the AMPK signaling pathway, which in turn induced cellular ferroptosis via SREBP1 pathway. Knock-down HCAR1 expression revealed similar phenotype and pathway alterations to NL01 treatment. HCAR1 overexpression promoted a malignant phenotype and resistance to cisplatin in both cancer cells, whereas knockdown of HCAR1 showed the opposite phenotype. Subcutaneous transplantation tumor experiments in nude mice also showed that NL01 induced iron death and inhibited ovarian cancer proliferation. Further study showed that NL01 promoted the downregulation of GPX4 expression, which is related to ferroptosis, and that addition of ferrostatin-1 partially reversed NL01-mediated inhibition of the growth of two cell lines. CONCLUSION NL01 exhibits better anti-tumor growth properties than curcumin, and NL01 induces ferroptosis in ovarian cancer cells.
Collapse
Affiliation(s)
- Mengna Shi
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Min-Jie Zhang
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Zhejiang 325000, China
| | - Yang Yu
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Rongying Ou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
50
|
Li X, Lin YL, Shao JK, Wu XJ, Li X, Yao H, Shi FL, Li LS, Zhang WG, Chang ZY, Chai NL, Wang YL, Linghu EQ. Plasma exosomal hsa_circ_0079439 as a novel biomarker for early detection of gastric cancer. World J Gastroenterol 2023; 29:3482-3496. [PMID: 37389236 PMCID: PMC10303519 DOI: 10.3748/wjg.v29.i22.3482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Due to the poor prognosis of gastric cancer (GC), early detection methods are urgently needed. Plasma exosomal circular RNAs (circRNAs) have been suggested as novel biomarkers for GC. AIM To identify a novel biomarker for early detection of GC. METHODS Healthy donors (HDs) and GC patients diagnosed by pathology were recruited. Nine GC patients and three HDs were selected for exosomal whole-transcriptome RNA sequencing. The expression profiles of circRNAs were analyzed by bioinformatics methods and validated by droplet digital polymerase chain reaction. The expression levels and area under receiver operating characteristic curve values of plasma exosomal circRNAs and standard serum biomarkers were used to compare their diagnostic efficiency. RESULTS There were 303 participants, including 240 GC patients and 63 HDs, involved in the study. The expression levels of exosomal hsa_circ_0079439 were significantly higher in GC patients than in HDs (P < 0.0001). However, the levels of standard serum biomarkers were similar between the two groups. The area under the curve value of exosomal hsa_circ_0079439 was higher than those of standard biomarkers, including carcinoembryonic antigen, carbohydrate antigen (CA)19-9, CA72-4, alpha-fetoprotein, and CA125 (0.8595 vs 0.5862, 0.5660, 0.5360, 0.5082, and 0.5018, respectively). The expression levels of exosomal hsa_circ_0079439 were significantly decreased after treatment (P < 0.05). Moreover, the expression levels of exosomal hsa_circ_0079439 were obviously higher in early GC (EGC) patients than in HDs (P < 0.0001). CONCLUSION Our results suggest that plasma exosomal hsa_circ_0079439 is upregulated in GC patients. Moreover, the levels of exosomal hsa_circ_0079439 could distinguish EGC and advanced GC patients from HDs. Therefore, plasma exosomal hsa_circ_0079439 might be a potential biomarker for the diagnosis of GC during both the early and late stages.
Collapse
Affiliation(s)
- Xiao Li
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yan-Li Lin
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jia-Kang Shao
- Medical School of Chinese PLA, Beijing 100853, China
| | - Xiao-Jie Wu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xiang Li
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - He Yao
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Fa-Liang Shi
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Long-Song Li
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| | - Wen-Gang Zhang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Beijing 100853, China
| | | | - Ning-Li Chai
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - You-Liang Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - En-Qiang Linghu
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|