1
|
Džidić Krivić A, Begagić E, Hadžić S, Bećirović A, Bećirović E, Hibić H, Tandir Lihić L, Kadić Vukas S, Bečulić H, Kasapović T, Pojskić M. Unveiling the Important Role of Gut Microbiota and Diet in Multiple Sclerosis. Brain Sci 2025; 15:253. [PMID: 40149775 PMCID: PMC11939953 DOI: 10.3390/brainsci15030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), characterized by neurodegeneration, axonal damage, demyelination, and inflammation. Recently, gut dysbiosis has been linked to MS and other autoimmune conditions. Namely, gut microbiota has a vital role in regulating immune function by influencing immune cell development, cytokine production, and intestinal barrier integrity. While balanced microbiota fosters immune tolerance, dysbiosis disrupts immune regulation, damages intestinal permeability, and heightens the risk of autoimmune diseases. The critical factor in shaping the gut microbiota and modulating immune response is diet. Research shows that high-fat diets rich in saturated fats are associated with disease progression. Conversely, diets rich in fruits, yogurt, and legumes may lower the risk of MS onset and progression. Specific dietary interventions, such as the Mediterranean diet (MD) and ketogenic diet, have shown potential to reduce inflammation, support neuroprotection, and promote CNS repair. Probiotics, by restoring microbial balance, may also help mitigate immune dysfunction noted in MS. Personalized dietary strategies targeting the gut microbiota hold promise for managing MS by modulating immune responses and slowing disease progression. Optimizing nutrient intake and adopting anti-inflammatory diets could improve disease control and quality of life. Understanding gut-immune interactions is essential for developing tailored nutritional therapies for MS patients.
Collapse
Affiliation(s)
- Amina Džidić Krivić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (A.D.K.); (L.T.L.)
- Department of Physiology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Emir Begagić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
- Department of Doctoral Studies, School of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Semir Hadžić
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
- Department of Physiology, School of Medicine, University of Tuzla, Univerzitetska 1, 75000 Tuzla, Bosnia and Herzegovina
| | - Amir Bećirović
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
| | - Emir Bećirović
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
| | - Harisa Hibić
- Department of Maxillofacial Surgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Lejla Tandir Lihić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (A.D.K.); (L.T.L.)
- Department of Neurology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (A.D.K.); (L.T.L.)
- Department of Neurology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Tarik Kasapović
- Internal Medicine Clinic, University Clinical Center of Tuzla, Ulica prof. dr. Ibre Pašića, 75000 Tuzla, Bosnia and Herzegovina (E.B.)
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany
| |
Collapse
|
2
|
Profir M, Enache RM, Roşu OA, Pavelescu LA, Creţoiu SM, Gaspar BS. Malnutrition and Its Influence on Gut sIgA-Microbiota Dynamics. Biomedicines 2025; 13:179. [PMID: 39857762 PMCID: PMC11762760 DOI: 10.3390/biomedicines13010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
In the current era, malnutrition is seen as both undernutrition and overweight and obesity; both conditions are caused by nutrient deficiency or excess and improper use or imbalance in the intake of macro and micronutrients. Recent evidence suggests that malnutrition alters the intestinal microbiota, known as dysbiosis. Secretory immunoglobulin A (sIgA) plays an important role in maintaining and increasing beneficial intestinal microbiota populations and protecting against pathogenic species. Depletion of beneficial bacterial populations throughout life is also conditioned by malnutrition. This review aims to synthesize the evidence that establishes an interrelationship between diet, malnutrition, changes in the intestinal flora, and sIgA levels. Targeted nutritional therapies combined with prebiotic, probiotic, and postbiotic administration can restore the immune response in the intestine and the host's homeostasis.
Collapse
Affiliation(s)
- Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
3
|
Mac Cann R, Newman E, Devane D, Sabin C, Cotter AG, Landay A, O’Toole PW, Mallon PW. HIV, the gut microbiome and clinical outcomes, a systematic review. PLoS One 2024; 19:e0308859. [PMID: 39652612 PMCID: PMC11627425 DOI: 10.1371/journal.pone.0308859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/01/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Effective antiretroviral therapy (ART) has improved the life expectancy of people with HIV (PWH). However, this population is now experiencing accelerated age-related comorbidities, contributed to by chronic immune activation and inflammation, with dysbiosis of the gut microbiome also implicated. METHOD We conducted a systematic literature search of PubMed, Embase, Scopus, Cochrane reviews and international conference abstracts for articles that examined for the following non-communicable diseases (NCDs); cardiovascular disease, cancer, frailty, metabolic, bone, renal and neurocognitive disease, in PWH aged >18 years. Studies were included that measured gut microbiome diversity and composition, microbial translocation markers or microbial metabolite markers. RESULTS In all, 567 articles were identified and screened of which 87 full-text articles were assessed for eligibility and 56 were included in the final review. The data suggest a high burden NCD, in particular cardiovascular and metabolic disease in PWH. Alterations in bacterial diversity and structure varied by NCD type, but a general trend in reduced diversity was seen together with alterations in bacterial abundances between different NCD. Lipopolysaccharide was the most commonly investigated marker of microbial translocation across NCD followed by soluble CD14. Short-chain fatty acids, tryptophan and choline metabolites were associated with cardiovascular outcomes and also associated with chronic liver disease (CLD). CONCLUSIONS This systematic review is the first to summarise the evidence for the association between gut microbiome dysbiosis and NCDs in PWH. Understanding this interaction will provide insights into the pathogenesis of many NCD and help develop novel diagnostic and therapeutic strategies for PWH.
Collapse
Affiliation(s)
- Rachel Mac Cann
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| | - Ellen Newman
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
| | - Declan Devane
- School of Nursing and Midwifery, National University of Galway, Galway, Ireland
| | - Caroline Sabin
- Institute for Global Health, Universitay College London, London, United Kingdom
| | - Aoife G. Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Alan Landay
- Department of Internal Medicine, Rush University, Chicago, Illinois, United States of America
| | - Paul W. O’Toole
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Patrick W. Mallon
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| |
Collapse
|
4
|
Dolo O, Coulibaly F, Somboro AM, Fofana DB, Togo J, Balde A, Diallo D, Maiga A, Diarra B, Murphy RL, Balam S, Holl J, Sylla M, Maiga M, Maiga AI. The impact of HIV antiretroviral therapy on gut microbiota: the need for well-designed longitudinal studies. J Infect Dev Ctries 2024; 18:1461-1473. [PMID: 39616473 PMCID: PMC12022512 DOI: 10.3855/jidc.18878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/24/2024] [Indexed: 12/18/2024] Open
Abstract
INTRODUCTION Human immunodeficiency virus (HIV) infection remains a major public health concern despite a significant decline in HIV-related mortality and morbidity. These significant advances are linked mostly to effective antiretroviral therapy (ART). However, these treatments are not without consequences on other microorganisms in our body, especially when they must be used for life. Balanced gut microbiota is essential for maintaining human health through symbiotic relationship with the host cells. AIMS AND METHODOLOGY This review focuses on ART and its potential impact on the intestinal microbial population of HIV-infected individuals. Therefore, we retrieved studies focusing on the impact of HIV ART on the gut microbiota, that were published from 2010 to 2021. RESULTS It was observed that most studies on HIV ART and associated gut microbiota have been cross-sectional, and the findings, in general, showed significant damages caused by the ART to the gut microbial community (dysbiosis), with the impact varying in different studies. These changes also revealed dysfunction in microbial translocation and some immune markers, including T lymphocyte rates and the overall inflammation balance. CONCLUSIONS There are significant gaps in our understanding of the impact of HIV ART on gut microbiota. Thus, a longitudinal study is likely needed with a considerable sample size from different settings and classes of ART to better understand the impact of HIV ART on the gut microbiota, and develop remedial (restorative) and adjunctive host-directed strategies during HIV ART.
Collapse
Affiliation(s)
- Oumar Dolo
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Fousseini Coulibaly
- Medical Biology Laboratory of the Point G University Hospital Center, Bamako, Mali
| | - Anou M Somboro
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Djeneba B Fofana
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Josue Togo
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Aliou Balde
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Dramane Diallo
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Aminata Maiga
- Medical Biology Laboratory of the Point G University Hospital Center, Bamako, Mali
| | - Bassirou Diarra
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Robert L Murphy
- Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Saidou Balam
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Jane Holl
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | | | - Mamoudou Maiga
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
- Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Almoustapha I Maiga
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| |
Collapse
|
5
|
Ebrahimi R, Masouri MM, Salehi Amniyeh Khozani AA, Ramadhan Hussein D, Nejadghaderi SA. Safety and efficacy of fecal microbiota transplantation for viral diseases: A systematic review of clinical trials. PLoS One 2024; 19:e0311731. [PMID: 39432486 PMCID: PMC11493255 DOI: 10.1371/journal.pone.0311731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Gut microbiota play important roles in several diseases like viral infections. In this systematic review, our objective was to assess the efficacy and safety of fecal microbiota transplantation (FMT) in treating various viral diseases. METHODS We conducted searches on databases including PubMed, Web of Science, Scopus, and Google Scholar until November 2023. Clinical trials reported outcomes related to safety of FMT or its efficacy in patients with viral diseases were included. We excluded other types of studies that enrolled healthy individuals or patients with other disorders and did not use FMT. The assessment of bias risk was conducted using the National Institutes of Health (NIH) study quality evaluation tool. RESULTS Eight studies with total 196 participants were included. Viral diseases were human immunodeficiency virus (HIV), hepatitis B, COVID-19 and Clostridioides difficile coinfection, and cytomegalovirus colitis. In hepatitis B cases, HBeAg clearance was significant in those received FMT (p<0.01), while it was not significant in another one (p = 0.19). A clinical response was noted in 37.5% of patients with cytomegalovirus colitis, with an equal percentage achieving clinical remission post-FMT. There was a significant reduction in Clostridioides difficile relapse rate in FMT group than controls in coinfection of Clostridioides difficile and COVID-19 (2.17% vs. 42.5%, p<0.05). In patients with HIV, partial engraftment of the donor microbiome and increases in alpha diversity were observed after FMT. No severe adverse events were reported. Most studies had fair or good qualities. CONCLUSIONS Our findings revealed FMT as a promising, safe treatment for some viral diseases. It improved viral clearance, clinical outcomes, and inflammation. However, the varying responses and small sample sizes call for more trials on FMT in viral diseases.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | - Seyed Aria Nejadghaderi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
6
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
7
|
Chen X, Wei J, Zhang Y, Zhang Y, Zhang T. Crosstalk between gut microbiome and neuroinflammation in pathogenesis of HIV-associated neurocognitive disorder. J Neurol Sci 2024; 457:122889. [PMID: 38262196 DOI: 10.1016/j.jns.2024.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
HIV-associated neurocognitive disorder (HAND) has become a chronic neurodegenerative disease affecting the quality of life in people living with HIV (PLWH). Despite an established association between HAND and neuroinflammation induced by HIV proteins (gp120, Tat, Rev., Nef, and Vpr), the pathogenesis of HAND remains to be fully elucidated. Accumulating evidence demonstrated that the gut microbiome is emerging as a critical regulator of various neurodegenerative diseases (e.g., Parkinson's disease, Alzheimer's disease), suggesting that the crosstalk between the gut microbiome and neuroinflammation may contribute to the development of these diseases, for example, gut dysbiosis and microbiota-derived metabolites can trigger inflammation in the brain. However, the potential role of the gut microbiome in the pathogenesis of HAND remains largely unexplored. In this review, we aim to discuss and elucidate the HAND pathogenesis correlated with gut microbiome and neuroinflammation, and intend to explore the probable intervention strategies for HAND.
Collapse
Affiliation(s)
- Xue Chen
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jiaqi Wei
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yulin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
8
|
Meng P, Zhang G, Ma X, Ding X, Song X, Dang S, Yang R, Xu L. Characterization of intestinal fungal community diversity in people living with HIV/AIDS (PLWHA). AIDS Res Ther 2024; 21:10. [PMID: 38350942 PMCID: PMC10863270 DOI: 10.1186/s12981-023-00589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 02/15/2024] Open
Abstract
Acquired Immune Deficiency Syndrome (AIDS) is a highly dangerous infectious disease caused by the Human Immunodeficiency Virus (HIV), a virus that attacks the human immune system. To explore the correlation between intestinal fungal community and immune function (Immune cells and inflammatory factors) in people living with HIV/AIDS (PLWHA). The feces and blood samples were collected from two groups of subjects: PLWHA and healthy controls. High-throughput sequencing of the internal transcribed spacer 1, flow cytometry, and ELISA were performed to analyze the differences and correlations between fungal microbiota, cellular immune status and serum inflammatory factors in the two groups. There were significant differences in the composition of fungal microbiota between the two groups. The relative abundance of Candida, Bjerkandera, and Xeromyces in PLWHA was significantly higher than that of healthy volunteers (P < 0.01), while the relative abundance of Mycospaerella, Xeroxysium, Penicillium, and Glomerella in PLWHA was significantly lower than that of healthy volunteers. The correlation analysis results show that Mycospaerella and Xeromyces are significantly positively correlated with CD4+/CD8+ T cells and the anti-inflammatory cytokine IL-4. On the other hand, Candida was positively correlated with pro-inflammatory factors negatively correlated with CD4+/CD8+ T cells and the anti-inflammatory cytokine IL-4, while it is positively correlated with pro-inflammatory cytokines. The significant increase in the relative abundance of Candida may be one of the important causes of intestinal damage in PLWHA. The results of this study contribute to the understanding of the relationship between fungal microbiota structure and immune function in the gut ecology of PLWHA.
Collapse
Affiliation(s)
- Pengfei Meng
- Henan University of Chinese Medicine, Zhengzhou, 450000, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Guichun Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Xiuxia Ma
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Xue Ding
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Xiyuan Song
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Shuyuan Dang
- Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Ruihan Yang
- Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Liran Xu
- Henan University of Chinese Medicine, Zhengzhou, 450000, China.
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| |
Collapse
|
9
|
Yang Q, Zaongo SD, Zhu L, Yan J, Yang J, Ouyang J. The Potential of Clostridium butyricum to Preserve Gut Health, and to Mitigate Non-AIDS Comorbidities in People Living with HIV. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10227-1. [PMID: 38336953 DOI: 10.1007/s12602-024-10227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
A dramatic reduction in mortality among people living with HIV (PLWH) has been achieved during the modern antiretroviral therapy (ART) era. However, ART does not restore gut barrier function even after long-term viral suppression, allowing microbial products to enter the systemic blood circulation and induce chronic immune activation. In PLWH, a chronic state of systemic inflammation exists and persists, which increases the risk of development of inflammation-associated non-AIDS comorbidities such as metabolic disorders, cardiovascular diseases, and cancer. Clostridium butyricum is a human butyrate-producing symbiont present in the gut microbiome. Convergent evidence has demonstrated favorable effects of C. butyricum for gastrointestinal health, including maintenance of the structural and functional integrity of the gut barrier, inhibition of pathogenic bacteria within the intestine, and reduction of microbial translocation. Moreover, C. butyricum supplementation has been observed to have a positive effect on various inflammation-related diseases such as diabetes, ulcerative colitis, and cancer, which are also recognized as non-AIDS comorbidities associated with epithelial gut damage. There is currently scant published research in the literature, focusing on the influence of C. butyricum in the gut of PLWH. In this hypothesis review, we speculate the use of C. butyricum as a probiotic oral supplementation may well emerge as a potential future synergistic adjunctive strategy in PLWH, in tandem with ART, to restore and consolidate intestinal barrier integrity, repair the leaky gut, prevent microbial translocation from the gut, and reduce both gut and systemic inflammation, with the ultimate objective of decreasing the risk for development of non-AIDS comorbidities in PLWH.
Collapse
Affiliation(s)
- Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Lijiao Zhu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiangyu Yan
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
10
|
Dwivedi AK, Gornalusse GG, Siegel DA, Barbehenn A, Thanh C, Hoh R, Hobbs KS, Pan T, Gibson EA, Martin J, Hecht F, Pilcher C, Milush J, Busch MP, Stone M, Huang ML, Reppetti J, Vo PM, Levy CN, Roychoudhury P, Jerome KR, Hladik F, Henrich TJ, Deeks SG, Lee SA. A cohort-based study of host gene expression: tumor suppressor and innate immune/inflammatory pathways associated with the HIV reservoir size. PLoS Pathog 2023; 19:e1011114. [PMID: 38019897 PMCID: PMC10712869 DOI: 10.1371/journal.ppat.1011114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/11/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
The major barrier to an HIV cure is the HIV reservoir: latently-infected cells that persist despite effective antiretroviral therapy (ART). There have been few cohort-based studies evaluating host genomic or transcriptomic predictors of the HIV reservoir. We performed host RNA sequencing and HIV reservoir quantification (total DNA [tDNA], unspliced RNA [usRNA], intact DNA) from peripheral CD4+ T cells from 191 ART-suppressed people with HIV (PWH). After adjusting for nadir CD4+ count, timing of ART initiation, and genetic ancestry, we identified two host genes for which higher expression was significantly associated with smaller total DNA viral reservoir size, P3H3 and NBL1, both known tumor suppressor genes. We then identified 17 host genes for which lower expression was associated with higher residual transcription (HIV usRNA). These included novel associations with membrane channel (KCNJ2, GJB2), inflammasome (IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9, CXCL3, CXCL10), and innate immunity (TLR7) genes (FDR-adjusted q<0.05). Gene set enrichment analyses further identified significant associations of HIV usRNA with TLR4/microbial translocation (q = 0.006), IL-1/NRLP3 inflammasome (q = 0.008), and IL-10 (q = 0.037) signaling. Protein validation assays using ELISA and multiplex cytokine assays supported these observed inverse host gene correlations, with P3H3, IL-10, and TNF-α protein associations achieving statistical significance (p<0.05). Plasma IL-10 was also significantly inversely associated with HIV DNA (p = 0.016). HIV intact DNA was not associated with differential host gene expression, although this may have been due to a large number of undetectable values in our study. To our knowledge, this is the largest host transcriptomic study of the HIV reservoir. Our findings suggest that host gene expression may vary in response to the transcriptionally active reservoir and that changes in cellular proliferation genes may influence the size of the HIV reservoir. These findings add important data to the limited host genetic HIV reservoir studies to date.
Collapse
Affiliation(s)
- Ashok K. Dwivedi
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Germán G. Gornalusse
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - David A. Siegel
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Alton Barbehenn
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Cassandra Thanh
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Rebecca Hoh
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Kristen S. Hobbs
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Tony Pan
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Erica A. Gibson
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Jeffrey Martin
- Department of Biostatistics & Epidemiology, University of California San Francisco, California, United States of America
| | - Frederick Hecht
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Christopher Pilcher
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Jeffrey Milush
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, California, United States of America
| | - Michael P. Busch
- Vitalant Blood Bank, San Francisco, California, United States of America
| | - Mars Stone
- Vitalant Blood Bank, San Francisco, California, United States of America
| | - Meei-Li Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Julieta Reppetti
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO- Houssay), Buenos Aires, Argentina
| | - Phuong M. Vo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Claire N. Levy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Florian Hladik
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Timothy J. Henrich
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Steven G. Deeks
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| | - Sulggi A. Lee
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California, San Francisco, California, United States of America
| |
Collapse
|
11
|
Upadhyay V, Suryawanshi RK, Tasoff P, McCavitt-Malvido M, Kumar RG, Murray VW, Noecker C, Bisanz JE, Hswen Y, Ha CWY, Sreekumar B, Chen IP, Lynch SV, Ott M, Lee S, Turnbaugh PJ. Mild SARS-CoV-2 infection results in long-lasting microbiota instability. mBio 2023; 14:e0088923. [PMID: 37294090 PMCID: PMC10470529 DOI: 10.1128/mbio.00889-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 06/10/2023] Open
Abstract
Viruses targeting mammalian cells can indirectly alter the gut microbiota, potentially compounding their phenotypic effects. Multiple studies have observed a disrupted gut microbiota in severe cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that require hospitalization. Yet, despite demographic shifts in disease severity resulting in a large and continuing burden of non-hospitalized infections, we still know very little about the impact of mild SARS-CoV-2 infection on the gut microbiota in the outpatient setting. To address this knowledge gap, we longitudinally sampled 14 SARS-CoV-2-positive subjects who remained outpatient and 4 household controls. SARS-CoV-2 cases exhibited a significantly less stable gut microbiota relative to controls. These results were confirmed and extended in the K18-humanized angiotensin-converting enzyme 2 mouse model, which is susceptible to SARS-CoV-2 infection. All of the tested SARS-CoV-2 variants significantly disrupted the mouse gut microbiota, including USA-WA1/2020 (the original variant detected in the USA), Delta, and Omicron. Surprisingly, despite the fact that the Omicron variant caused the least severe symptoms in mice, it destabilized the gut microbiota and led to a significant depletion in Akkermansia muciniphila. Furthermore, exposure of wild-type C57BL/6J mice to SARS-CoV-2 disrupted the gut microbiota in the absence of severe lung pathology. IMPORTANCE Taken together, our results demonstrate that even mild cases of SARS-CoV-2 can disrupt gut microbial ecology. Our findings in non-hospitalized individuals are consistent with studies of hospitalized patients, in that reproducible shifts in gut microbial taxonomic abundance in response to SARS-CoV-2 have been difficult to identify. Instead, we report a long-lasting instability in the gut microbiota. Surprisingly, our mouse experiments revealed an impact of the Omicron variant, despite producing the least severe symptoms in genetically susceptible mice, suggesting that despite the continued evolution of SARS-CoV-2, it has retained its ability to perturb the intestinal mucosa. These results will hopefully renew efforts to study the mechanisms through which Omicron and future SARS-CoV-2 variants alter gastrointestinal physiology, while also considering the potentially broad consequences of SARS-CoV-2-induced microbiota instability for host health and disease.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Department of Microbiology and Immunology, G.W. Hooper Research Foundation, University of California, San Francisco, California, USA
- Department of Medicine, University of California San Francisco, University of California, San Francisco, California, USA
- Department of Medicine, Benioff Center for Microbiome Medicine, University of California, San Francisco, California, USA
| | | | - Preston Tasoff
- Department of Medicine, Benioff Center for Microbiome Medicine, University of California, San Francisco, California, USA
| | | | | | - Victoria Wong Murray
- Department of Medicine, University of California San Francisco, University of California, San Francisco, California, USA
| | - Cecilia Noecker
- Department of Microbiology and Immunology, G.W. Hooper Research Foundation, University of California, San Francisco, California, USA
- Department of Medicine, Benioff Center for Microbiome Medicine, University of California, San Francisco, California, USA
| | - Jordan E. Bisanz
- Department of Microbiology and Immunology, G.W. Hooper Research Foundation, University of California, San Francisco, California, USA
| | - Yulin Hswen
- Department of Epidemiology and Biostatistics and the Bakar Computational Health Institute, University of California San Francisco, San Francisco, California, USA
| | - Connie W. Y. Ha
- Department of Medicine, Benioff Center for Microbiome Medicine, University of California, San Francisco, California, USA
| | | | - Irene P. Chen
- Gladstone Institutes, San Francisco, California, USA
| | - Susan V. Lynch
- Department of Medicine, University of California San Francisco, University of California, San Francisco, California, USA
- Department of Medicine, Benioff Center for Microbiome Medicine, University of California, San Francisco, California, USA
- Department of Pediatrics, University of California San Francisco, University of California, San Francisco, California, USA
| | - Melanie Ott
- Department of Medicine, University of California San Francisco, University of California, San Francisco, California, USA
- Gladstone Institutes, San Francisco, California, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, California, USA
| | - Sulggi Lee
- Department of Medicine, University of California San Francisco, University of California, San Francisco, California, USA
| | - Peter J. Turnbaugh
- Department of Microbiology and Immunology, G.W. Hooper Research Foundation, University of California, San Francisco, California, USA
- Department of Medicine, Benioff Center for Microbiome Medicine, University of California, San Francisco, California, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Malkani N, Rashid MU. Systemic Diseases and Gastrointestinal Cancer Risk. JOURNAL OF CANCER & ALLIED SPECIALTIES 2023; 9:473. [PMID: 37575213 PMCID: PMC10405983 DOI: 10.37029/jcas.v9i2.473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/15/2023] [Indexed: 08/15/2023]
Abstract
Importance Gastrointestinal (GI) cancers are the second leading cause of cancer-related deaths worldwide. Observations The global challenges GI cancers pose are high, especially in middle- and low-income countries. Patients with these cancers present with symptoms of poor appetite, weight loss, heartburn, abdominal pain, fatigue and anaemia. Several risk factors contribute to GI cancers, including age, gender, obesity, pathogenic infections, smoking cigarettes, alcohol consumption and dietary habits. Most of these cancers are sporadic. However, some patients are at high risk due to a family history of GI cancers. Systemic diseases affect multiple organs, and their chronic occurrence elicits inflammatory responses at various sites. These diseases also contribute to GI cancers. Conclusion and Relevance In this review, we discuss that untreated systemic diseases, including diabetes, hepatitis, acquired immune deficiency syndrome, ulcers and hypertension, can potentially lead to GI cancers if they remain untreated for a longer period. Systemic diseases initiate oxidative stress, inflammatory pathways and genetic manipulations, which altogether confer risks to GI cancers. Here, we describe the association between systemic diseases and their underlying mechanisms leading to GI cancers.
Collapse
Affiliation(s)
- Naila Malkani
- Department of Zoology, Government College University, Lahore, Punjab, Pakistan
| | - Muhammad Usman Rashid
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| |
Collapse
|
13
|
Zhang Y, Andreu-Sánchez S, Vadaq N, Wang D, Matzaraki V, van der Heijden WA, Gacesa R, Weersma RK, Zhernakova A, Vandekerckhove L, de Mast Q, Joosten LAB, Netea MG, van der Ven AJAM, Fu J. Gut dysbiosis associates with cytokine production capacity in viral-suppressed people living with HIV. Front Cell Infect Microbiol 2023; 13:1202035. [PMID: 37583444 PMCID: PMC10425223 DOI: 10.3389/fcimb.2023.1202035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023] Open
Abstract
Background People living with human immunodeficiency virus (PLHIV) are exposed to chronic immune dysregulation, even when virus replication is suppressed by antiretroviral therapy (ART). Given the emerging role of the gut microbiome in immunity, we hypothesized that the gut microbiome may be related to the cytokine production capacity of PLHIV. Methods To test this hypothesis, we collected metagenomic data from 143 ART-treated PLHIV and assessed the ex vivo production capacity of eight different cytokines [interleukin-1β (IL-1β), IL-6, IL-1Ra, IL-10, IL-17, IL-22, tumor necrosis factor, and interferon-γ] in response to different stimuli. We also characterized CD4+ T-cell counts, HIV reservoir, and other clinical parameters. Results Compared with 190 age- and sex-matched controls and a second independent control cohort, PLHIV showed microbial dysbiosis that was correlated with viral reservoir levels (CD4+ T-cell-associated HIV-1 DNA), cytokine production capacity, and sexual behavior. Notably, we identified two genetically different P. copri strains that were enriched in either PLHIV or healthy controls. The control-related strain showed a stronger negative association with cytokine production capacity than the PLHIV-related strain, particularly for Pam3Cys-incuded IL-6 and IL-10 production. The control-related strain is also positively associated with CD4+ T-cell level. Conclusions Our findings suggest that modulating the gut microbiome may be a strategy to modulate immune response in PLHIV.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daoming Wang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wouter A. van der Heijden
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - André J. A. M. van der Ven
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
14
|
Moretti S, Schietroma I, Sberna G, Maggiorella MT, Sernicola L, Farcomeni S, Giovanetti M, Ciccozzi M, Borsetti A. HIV-1-Host Interaction in Gut-Associated Lymphoid Tissue (GALT): Effects on Local Environment and Comorbidities. Int J Mol Sci 2023; 24:12193. [PMID: 37569570 PMCID: PMC10418605 DOI: 10.3390/ijms241512193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
HIV-1 replication in the gastrointestinal (GI) tract causes severe CD4+ T-cell depletion and disruption of the protective epithelial barrier in the intestinal mucosa, causing microbial translocation, the main driver of inflammation and immune activation, even in people living with HIV (PLWH) taking antiretroviral drug therapy. The higher levels of HIV DNA in the gut compared to the blood highlight the importance of the gut as a viral reservoir. CD4+ T-cell subsets in the gut differ in phenotypic characteristics and differentiation status from the ones in other tissues or in peripheral blood, and little is still known about the mechanisms by which the persistence of HIV is maintained at this anatomical site. This review aims to describe the interaction with key subsets of CD4+ T cells in the intestinal mucosa targeted by HIV-1 and the role of gut microbiome and its metabolites in HIV-associated systemic inflammation and immune activation that are crucial in the pathogenesis of HIV infection and related comorbidities.
Collapse
Affiliation(s)
- Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Ivan Schietroma
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Giuseppe Sberna
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Maria Teresa Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Leonardo Sernicola
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Stefania Farcomeni
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Marta Giovanetti
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, Minas Gerais, Brazil;
- Sciences and Technologies for Sustainable Development and One Health, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| |
Collapse
|
15
|
Mpaka-Mbatha MN, Naidoo P, Bhengu KN, Islam MM, Singh R, Nembe-Mafa N, Mkhize-Kwitshana ZL. Cytokine Gene Expression Profiles during HIV and Helminth Coinfection in Underprivileged Peri-Urban South African Adults. Diagnostics (Basel) 2023; 13:2475. [PMID: 37568838 PMCID: PMC10417227 DOI: 10.3390/diagnostics13152475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Intestinal helminth parasites are potent stimulators of T helper type 2 (Th2) and regulatory Th3 anti-inflammatory immune responses, while human immunodeficiency virus (HIV) infections are activators of predominantly T helper type 1(Th1) pro-inflammatory responses. Studies investigating the immune profiles of individuals coinfected with helminths and HIV are scarce. Although it is well known that helminths cause a type 2 immune response during the chronic stage of infection that is characterised by Th2 cell differentiation, eosinophil recruitment, and alternative macrophage activation, the immune mechanisms that regulate tissue damage at the time of parasite invasion are poorly understood. AIM The aim of the study was to determine the cytokine gene expression profiles during HIV and helminth coinfection in underprivileged South African adults living in a peri-urban area with poor sanitary conditions and a lack of clean water supply. METHOD Study participants (n = 164) were subdivided into uninfected controls, HIV-infected, helminth-infected, and HIV and helminth-coinfected groups. The Kato-Katz and Mini Parasep techniques and Ascaris lumbricoides-specific Immunoglobulin E (IgE) and Immunoglobulin G4 (IgG4) levels were used to detect helminth infections. Participants' HIV status was determined using two HIV1/2 antibody test kits. RNA was isolated from white blood cells for cytokine (Th1-, Th2-, and Th17-related) and transcription factor gene expression profiling using real-time PCR. RESULTS Multivariate regression data were adjusted for age, gender, BMI, antiretroviral treatment (ART), and nutritional supplement intake. The HIV and helminth-coinfected group had significantly higher tumour necrosis factor alpha (TNF-α) (adjusted β = 0.53, p = 0.036), interleukin 2 (IL-2) (adjusted β = 6.48, p = 0.008), and interleukin 17 (IL-17) (adjusted β = 1.16, p = 0.001) levels and lower GATA binding protein 3 (GATA3) levels (adjusted β = -0.77, p = 0.018) compared to the uninfected controls. No statistical significance was noted for Th2-related cytokines. CONCLUSION The coinfected group had higher proinflammatory Th1- and Th17-related cytokine gene expression profiles compared to the uninfected controls. The findings suggest that pro-inflammatory responses are elevated during coinfection, which supports the hypothesis that helminths have a deleterious effect on HIV immune responses.
Collapse
Affiliation(s)
- Miranda N. Mpaka-Mbatha
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa; (P.N.); (K.N.B.); (N.N.-M.); (Z.L.M.-K.)
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa; (P.N.); (K.N.B.); (N.N.-M.); (Z.L.M.-K.)
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Khethiwe N. Bhengu
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa; (P.N.); (K.N.B.); (N.N.-M.); (Z.L.M.-K.)
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
| | - Md. Mazharul Islam
- Department of Animal Resources, Ministry of Municipality, Doha P.O. Box 3508, Qatar;
| | - Ravesh Singh
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Nomzamo Nembe-Mafa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa; (P.N.); (K.N.B.); (N.N.-M.); (Z.L.M.-K.)
| | - Zilungile L. Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa; (P.N.); (K.N.B.); (N.N.-M.); (Z.L.M.-K.)
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
16
|
Fakharian F, Thirugnanam S, Welsh DA, Kim WK, Rappaport J, Bittinger K, Rout N. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms 2023; 11:1849. [PMID: 37513022 PMCID: PMC10384393 DOI: 10.3390/microorganisms11071849] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome plays a critical role in maintaining overall health and immune function. However, dysbiosis, an imbalance in microbiome composition, can have profound effects on various aspects of human health, including susceptibility to viral infections. Despite numerous studies investigating the influence of viral infections on gut microbiome, the impact of gut dysbiosis on viral infection and pathogenesis remains relatively understudied. The clinical variability observed in SARS-CoV-2 and seasonal influenza infections, and the presence of natural HIV suppressors, suggests that host-intrinsic factors, including the gut microbiome, may contribute to viral pathogenesis. The gut microbiome has been shown to influence the host immune system by regulating intestinal homeostasis through interactions with immune cells. This review aims to enhance our understanding of how viral infections perturb the gut microbiome and mucosal immune cells, affecting host susceptibility and response to viral infections. Specifically, we focus on exploring the interactions between gamma delta (γδ) T cells and gut microbes in the context of inflammatory viral pathogenesis and examine studies highlighting the role of the gut microbiome in viral disease outcomes. Furthermore, we discuss emerging evidence and potential future directions for microbiome modulation therapy in the context of viral pathogenesis.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Siva Thirugnanam
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - David A. Welsh
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70806, USA
| | - Woong-Ki Kim
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Namita Rout
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
17
|
Dwivedi AK, Siegel DA, Thanh C, Hoh R, Hobbs KS, Pan T, Gibson EA, Martin J, Hecht F, Pilcher C, Milush J, Busch MP, Stone M, Huang ML, Levy CN, Roychoudhury P, Hladik F, Jerome KR, Henrich TJ, Deeks SG, Lee SA. Differences in expression of tumor suppressor, innate immune, inflammasome, and potassium/gap junction channel host genes significantly predict viral reservoir size during treated HIV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523535. [PMID: 36712077 PMCID: PMC9882059 DOI: 10.1101/2023.01.10.523535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The major barrier to an HIV cure is the persistence of infected cells that evade host immune surveillance despite effective antiretroviral therapy (ART). Most prior host genetic HIV studies have focused on identifying DNA polymorphisms (e.g., CCR5Δ32 , MHC class I alleles) associated with viral load among untreated "elite controllers" (~1% of HIV+ individuals who are able to control virus without ART). However, there have been few studies evaluating host genetic predictors of viral control for the majority of people living with HIV (PLWH) on ART. We performed host RNA sequencing and HIV reservoir quantification (total DNA, unspliced RNA, intact DNA) from peripheral CD4+ T cells from 191 HIV+ ART-suppressed non-controllers. Multivariate models included covariates for timing of ART initiation, nadir CD4+ count, age, sex, and ancestry. Lower HIV total DNA (an estimate of the total reservoir) was associated with upregulation of tumor suppressor genes NBL1 (q=0.012) and P3H3 (q=0.012). Higher HIV unspliced RNA (an estimate of residual HIV transcription) was associated with downregulation of several host genes involving inflammasome ( IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9 , CXCL3, CXCL10 ) and innate immune ( TLR7 ) signaling, as well as novel associations with potassium ( KCNJ2 ) and gap junction ( GJB2 ) channels, all q<0.05. Gene set enrichment analyses identified significant associations with TLR4/microbial translocation (q=0.006), IL-1β/NRLP3 inflammasome (q=0.008), and IL-10 (q=0.037) signaling. HIV intact DNA (an estimate of the "replication-competent" reservoir) demonstrated trends with thrombin degradation ( PLGLB1 ) and glucose metabolism ( AGL ) genes, but data were (HIV intact DNA detected in only 42% of participants). Our findings demonstrate that among treated PLWH, that inflammation, innate immune responses, bacterial translocation, and tumor suppression/cell proliferation host signaling play a key role in the maintenance of the HIV reservoir during ART. Further data are needed to validate these findings, including functional genomic studies, and expanded epidemiologic studies in female, non-European cohorts. Author Summary Although lifelong HIV antiretroviral therapy (ART) suppresses virus, the major barrier to an HIV cure is the persistence of infected cells that evade host immune surveillance despite effective ART, "the HIV reservoir." HIV eradication strategies have focused on eliminating residual virus to allow for HIV remission, but HIV cure trials to date have thus far failed to show a clinically meaningful reduction in the HIV reservoir. There is an urgent need for a better understanding of the host-viral dynamics during ART suppression to identify potential novel therapeutic targets for HIV cure. This is the first epidemiologic host gene expression study to demonstrate a significant link between HIV reservoir size and several well-known immunologic pathways (e.g., IL-1β, TLR7, TNF-α signaling pathways), as well as novel associations with potassium and gap junction channels (Kir2.1, connexin 26). Further data are needed to validate these findings, including functional genomic studies and expanded epidemiologic studies in female, non-European cohorts.
Collapse
|
18
|
Chandiwana P, Munjoma PT, Mazhandu AJ, Li J, Baertschi I, Wyss J, Jordi SBU, Mazengera LR, Yilmaz B, Misselwitz B, Duri K. Antenatal gut microbiome profiles and effect on pregnancy outcome in HIV infected and HIV uninfected women in a resource limited setting. BMC Microbiol 2023; 23:4. [PMID: 36604616 PMCID: PMC9817306 DOI: 10.1186/s12866-022-02747-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) severely damages the epithelial cells of the gut lining leading to an inflamed leaky gut, translocation of microbial products, and dysbiosis resulting in systemic immune activation. Also, microbiota composition and maternal gut function can be altered in pregnancy through changes in the immune system and intestinal physiology. The aim of this study was to investigate the gut microbiota in HIV-infected and HIV-uninfected pregnant women and to compare and identify the association between gut microbial composition and adverse birth outcomes. RESULTS A total of 94 pregnant women (35 HIV-infected and 59 HIV-uninfected controls) were recruited in Harare from 4 polyclinics serving populations with relatively poor socioeconomic status. Women were of a median age of 28 years (interquartile range, IQR: 22.3-32.0) and 55% of women were 35 weeks gestational age at enrolment (median 35.0 weeks, IQR: 32.5-37.2). Microbiota profiling in these participants showed that species richness was significantly lower in the HIV-infected pregnant women compared to their HIV-uninfected peers and significant differences in β-diversity using Bray-Curtis dissimilarity were observed. In contrast, there was no significant difference in α-diversity between immune-compromised (CD4+ < 350 cells/µL) and immune-competent HIV-infected women (CD4+ ≥ 350 cells/µL) even after stratification by viral load suppression. HIV infection was significantly associated with a reduced abundance of Clostridium, Turicibacter, Ruminococcus, Parabacteroides, Bacteroides, Bifidobacterium, Treponema, Oscillospira, and Faecalibacterium and a higher abundance of Actinomyces, and Succinivibrio. Low infant birth weight (< 2500 g) was significantly associated with high abundances of the phylum Spirochaetes, the families Spirochaeteceae, Veillonellaceae, and the genus Treponema. CONCLUSION The results reported here show that the species richness and taxonomy composition of the gut microbiota is altered in HIV-infected pregnant women, possibly reflecting intestinal dysbiosis. Some of these taxa were also associated with low infant birth weight.
Collapse
Affiliation(s)
- Panashe Chandiwana
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Privilege Tendai Munjoma
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Arthur John Mazhandu
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Jiaqi Li
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Isabel Baertschi
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jacqueline Wyss
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland
| | - Sebastian Bruno Ulrich Jordi
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lovemore Ronald Mazengera
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Bahtiyar Yilmaz
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland
| | - Benjamin Misselwitz
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland
| | - Kerina Duri
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| |
Collapse
|
19
|
Upadhyay V, Suryawanshi R, Tasoff P, McCavitt-Malvido M, Kumar GR, Murray VW, Noecker C, Bisanz JE, Hswen Y, Ha C, Sreekumar B, Chen IP, Lynch SV, Ott M, Lee S, Turnbaugh PJ. Mild SARS-CoV-2 infection results in long-lasting microbiota instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.07.519508. [PMID: 36523400 PMCID: PMC9753784 DOI: 10.1101/2022.12.07.519508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viruses targeting mammalian cells can indirectly alter the gut microbiota, potentially compounding their phenotypic effects. Multiple studies have observed a disrupted gut microbiota in severe cases of SARS-CoV-2 infection that require hospitalization. Yet, despite demographic shifts in disease severity resulting in a large and continuing burden of non-hospitalized infections, we still know very little about the impact of mild SARS-CoV-2 infection on the gut microbiota in the outpatient setting. To address this knowledge gap, we longitudinally sampled 14 SARS-CoV-2 positive subjects who remained outpatient and 4 household controls. SARS-CoV-2 cases exhibited a significantly less stable gut microbiota relative to controls, as long as 154 days after their positive test. These results were confirmed and extended in the K18-hACE2 mouse model, which is susceptible to SARS-CoV-2 infection. All of the tested SARS-CoV-2 variants significantly disrupted the mouse gut microbiota, including USA-WA1/2020 (the original variant detected in the United States), Delta, and Omicron. Surprisingly, despite the fact that the Omicron variant caused the least severe symptoms in mice, it destabilized the gut microbiota and led to a significant depletion in Akkermansia muciniphila . Furthermore, exposure of wild-type C57BL/6J mice to SARS-CoV-2 disrupted the gut microbiota in the absence of severe lung pathology. IMPORTANCE Taken together, our results demonstrate that even mild cases of SARS-CoV-2 can disrupt gut microbial ecology. Our findings in non-hospitalized individuals are consistent with studies of hospitalized patients, in that reproducible shifts in gut microbial taxonomic abundance in response to SARS-CoV-2 have been difficult to identify. Instead, we report a long-lasting instability in the gut microbiota. Surprisingly, our mouse experiments revealed an impact of the Omicron variant, despite producing the least severe symptoms in genetically susceptible mice, suggesting that despite the continued evolution of SARS-CoV-2 it has retained its ability to perturb the intestinal mucosa. These results will hopefully renew efforts to study the mechanisms through which Omicron and future SARS-CoV-2 variants alter gastrointestinal physiology, while also considering the potentially broad consequences of SARS-CoV-2-induced microbiota instability for host health and disease.
Collapse
|
20
|
Caira-Chuquineyra B, Fernandez-Guzman D, Soriano-Moreno DR, Fernandez-Morales J, Flores-Lovon K, Medina-Ramírez SA, Gonzales-Uribe AG, Pelayo-Luis IP, Gonzales-Zamora JA, Huaringa-Marcelo J. Fecal Microbiota Transplantation for People Living with Human Immunodeficiency Virus: A Scoping Review. AIDS Res Hum Retroviruses 2022; 38:700-708. [PMID: 35451337 DOI: 10.1089/aid.2022.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The aim of this scoping review was to determine the characteristics of studies evaluating fecal microbiota transplantation (FMT), as well as its effects and safety as a therapeutic intervention for people living with human immunodeficiency virus (HIV). We conducted a scoping review following the methodology of the Joanna Briggs Institute. We searched the following databases: PubMed, Web of Science, Scopus, Embase, Cochrane Library, and Medline until September 19, 2021. Studies that used FMT in people living with HIV and explored its effects on the health of these people were included. Two randomized and 2 uncontrolled clinical trials with a total of 55 participants were included. Participants were well-controlled HIV-infected people. Regarding microbiota changes, three studies found significant post-FMT increases in Fusobacterium, Prevotella, α-diversity, Chao index, and/or Shannon index, and/or decreases in Bacteroides. Regarding markers of intestinal damage, one study found a decrease in intestinal fatty acid binding protein post-FMT, and another study found an increase in zonulin. Other outcomes evaluated by the studies were as follows: markers of immune and inflammatory activation, markers of immunocompetence (CD4+, and CD8+ T lymphocytes), and HIV viral load; however, none showed significant changes. Clinical outcomes were not evaluated by these studies. Regarding the safety of FMT, only mild adverse events were appreciated. No serious adverse event was reported. The clinical evidence for FMT in people living with HIV is sparse. FMT appears to have good tolerability and, no serious adverse event has been reported so far. Further clinical trials and evaluation of clinically important biomedical outcomes for FMT in people living with HIV are needed.
Collapse
Affiliation(s)
- Brenda Caira-Chuquineyra
- Peruvian Epidemiological Research Group, Unit for the Generation and Synthesis of Health Evidence, San Ignacio de Loyola University, Lima, Peru
- Faculty of Medicine, National University of San Agustín, Arequipa, Peru
| | - Daniel Fernandez-Guzman
- Peruvian Epidemiological Research Group, Unit for the Generation and Synthesis of Health Evidence, San Ignacio de Loyola University, Lima, Peru
- Professional School of Human Medicine, National University of San Antonio Abad del Cusco, Cusco, Peru
| | - David R Soriano-Moreno
- Clinical and Epidemiological Research Unit, School of Medicine, Peruvian Union University, Lima, Peru
| | - Jared Fernandez-Morales
- Clinical and Epidemiological Research Unit, School of Medicine, Peruvian Union University, Lima, Peru
| | | | | | - Antony G Gonzales-Uribe
- Clinical and Epidemiological Research Unit, School of Medicine, Peruvian Union University, Lima, Peru
| | - Isabel P Pelayo-Luis
- Clinical and Epidemiological Research Unit, School of Medicine, Peruvian Union University, Lima, Peru
| | - Jose A Gonzales-Zamora
- Division of Infectious Diseases, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Peruvian American Medical Society, Albuquerque, New Mexico, USA
| | - Jorge Huaringa-Marcelo
- Faculty of Human Medicine, Scientific University of the South, Lima, Peru
- Archbishop Loayza National Hospital, Lima, Peru
| |
Collapse
|
21
|
Huang KZ, Ye H, Fang YY, Li T, Pei SJ, Wu LP, Su FF, Zheng XQ. Plasma Phage Load is Positively Related to the Immune Checkpoints in Patients Living with Human Immunodeficiency Virus. Curr HIV Res 2022; 20:301-308. [PMID: 35786189 DOI: 10.2174/1570162x20666220630141926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/30/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Microbial Translocation (MT) and altered gut microbiota are involved in immune activation and inflammation, whereas immune checkpoint proteins play an important role in maintaining immune self-tolerance and preventing excessive immune activation. OBJECTIVE This study aims to investigate the relationship between plasma phage load and immune homeostasis in people living with HIV(PLWH). METHODS We recruited 15 antiretroviral therapy (ART)-naive patients, 23 ART-treated (AT) patients, and 34 Healthy Participants (HP) to explore the relationship between the plasma phage load and immune checkpoint proteins. The Deoxyribonucleic Acid (DNA) load of the lambda (λ) phage was detected using fluorescence quantitative Polymerase Chain Reaction (PCR). The Immune Checkpoints (ICPs) were detected using multiplex immunoassay. RESULTS Our study demonstrated that the plasma phage load was increased in people living with HIV (PLWH) (P<0.05), but not in the ART-naive and AT groups (P>0.05). Plasma ICPs, including cluster of differentiation 27 (CD27), soluble glucocorticoid-induced Tumor Necrosis Factor (TNF) receptor (sGITR), soluble cluster of differentiation 80 (sCD80), sCD86, soluble glucocorticoidinduced TNF receptor-related ligand (sGITRL), soluble induced T-cell Costimulatory (sICOS), sCD40, soluble toll-like receptor 2 (sTLR2), and sCD28, were markedly decreased among the ARTnaive group (P<0.05) but not in the AT and HP groups (P>0.05). The plasma phage load was positively correlated with ICP and C-reactive protein (CRP) levels in PLWH (P<0.05). CONCLUSION Our study indicated that the plasma phage load in PLWH was positively related to the expression of ICPs and inflammation, which may be used as a promising marker for the immune level of PLWH.
Collapse
Affiliation(s)
- Kai-Zhao Huang
- Blood Transfusion Department, The Second Affiliated Hospital and Yuying Children\'s Hospital of Wenzhou Medical University, Wenzhou 325027, China.,School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China.,The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou 325035, China
| | - Hui Ye
- Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Yang-Yang Fang
- Blood Transfusion Department, The Second Affiliated Hospital and Yuying Children\'s Hospital of Wenzhou Medical University, Wenzhou 325027, China.,School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China.,The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou 325035, China
| | - Tao Li
- Blood Transfusion Department, The Second Affiliated Hospital and Yuying Children\'s Hospital of Wenzhou Medical University, Wenzhou 325027, China.,School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China.,The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou 325035, China
| | - Shun-Jie Pei
- Blood Transfusion Department, The Second Affiliated Hospital and Yuying Children\'s Hospital of Wenzhou Medical University, Wenzhou 325027, China.,School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China.,The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou 325035, China
| | - Lian-Peng Wu
- Department of Clinical Laboratory, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Fei-Fei Su
- Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Xiao-Qun Zheng
- Blood Transfusion Department, The Second Affiliated Hospital and Yuying Children\'s Hospital of Wenzhou Medical University, Wenzhou 325027, China.,School of Laboratory Medical and Life Science, Wenzhou Medical University, Wenzhou 325035, China.,The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou 325035, China
| |
Collapse
|
22
|
Brauckmann V, Nambiar S, Potthoff A, Höxtermann S, Wach J, Kayser A, Tiemann C, Schuppe AK, Brockmeyer NH, Skaletz-Rorowski A. Influence of dietary supplementation of short-chain fatty acid sodium propionate in people living with HIV (PLHIV). J Eur Acad Dermatol Venereol 2022; 36:881-889. [PMID: 35176190 DOI: 10.1111/jdv.18006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Non-AIDS-associated chronic diseases in HIV+ patients have been on the rise since the advent of antiretroviral therapy. Especially cardiovascular diseases and disruption in the gastrointestinal tract have limited health-related quality of life (QoL). Several of those complications have been associated with chronic systemic inflammation. Short-chain fatty acids (SCFA), with propionate as one of the major compounds, have been described as an important link between gut microbiota and the immune system, defining the pro- and the anti-inflammatory milieu through direct and indirect regulation of T-cell homeostasis. The effects of dietary supplementation of sodium propionate (SP) in people living with HIV (PLHIV) have not yet been investigated prior to this study. OBJECTIVES To investigate the impact of SP uptake among PLHIV and its relevance to improve QoL, the study aimed to investigate metabolic, immunological, microbiome and patient-reported QoL-related changes post-SP supplementation with follow-up. METHODS A prospective, non-randomized, controlled, monocentric interventional study was conducted in WIR, Center for Sexual Health and Medicine, in Bochum, Germany. 32 HIV+ patients with unaltered ART-regimen in the last three months were included. Participants were given SP for a duration of 12 weeks in the form of daily oral supplementation and were additionally followed-up for another 12 weeks. RESULTS The supplementation of SP was well tolerated. We found an improvement in lipid profiles and long-term blood glucose levels. A decrease in pro-inflammatory cytokines and a depletion of effector T cells was observed. Regulatory T cells and IL-10 decreased. Furthermore, changes in taxonomic composition of the microbiome during follow-up were observed and improvement of items of self-reported life-quality assessment. CONCLUSION Taken together, the beneficial impact of SP in PLHIV reflects its potential in improving metabolic parameters and modulating pro-inflammatory immune responses. Thus, possibly reducing the risk of cardiovascular disorders and facilitating long-term improvement of the gut flora.
Collapse
Affiliation(s)
- V Brauckmann
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany
- Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - S Nambiar
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany
- Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - A Potthoff
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany
- Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - S Höxtermann
- Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - J Wach
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany
- Public Health Department Bochum, Bochum, Germany
| | - A Kayser
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany
- Aidshilfe Bochum (Aids Service Organization Bochum) e.V., Bochum, Germany
| | - C Tiemann
- MVZ Laboratory Krone, Molecular Diagnostics, Bad Salzuflen, Germany
| | - A K Schuppe
- MVZ Laboratory Krone, Molecular Diagnostics, Bad Salzuflen, Germany
| | - N H Brockmeyer
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany
- Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| | - A Skaletz-Rorowski
- WIR-Walk In Ruhr (WIR), Center for Sexual Health and Medicine, Bochum, Germany
- Interdisciplinary Immunological Outpatient Clinic, Center for Sexual Health and Medicine, Department of Dermatology, Venereology and Allergology, Ruhr Universität Bochum, Bochum, Germany
| |
Collapse
|
23
|
Zhufeng Y, Xu J, Miao M, Wang Y, Li Y, Huang B, Guo Y, Tian J, Sun X, Li J, Lu D, Li Z, Li Y, He J. Modification of Intestinal Microbiota Dysbiosis by Low-Dose Interleukin-2 in Dermatomyositis: A Post Hoc Analysis From a Clinical Trial Study. Front Cell Infect Microbiol 2022; 12:757099. [PMID: 35360108 PMCID: PMC8964112 DOI: 10.3389/fcimb.2022.757099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
The microbiota has been observed altered in autoimmune diseases, including idiopathic inflammatory myopathies (IIMs), and associated with different treatments. Low-dose IL-2 treatment emerges as a new option for active IIMs. This study aims to explore the role of low-dose IL-2 in regulating intestinal dysbiosis involved in the IIMs. In this study, 13 patients with active IIMs were enrolled and received 1 ×106 IU of IL-2 subcutaneously every other day for 12 weeks plus standard care. The clinical response and immune response were assessed. Stool samples were obtained to explore the structural and functional alterations of the fecal microbiota targeting the V3–V4 region of the 16S rRNA gene and analyze their associations with clinical and immunological characteristics. Our study demonstrated that diversity of microbiota decreased remarkably in patients with IIMs, compared to healthy controls. The inflammatory-related bacteria, such as Prevotellaceae increased, while some butyrate-producing bacteria, such as Pseudobutyrivibrio, Lachnospiraceae, Roseburia, and Blautia, decreased significantly. The alteration associated with disease activities in patients with IIMs. After low-dose IL-2 treatment, 92.31% (12/13) of patients achieved IMACS DOI at week 12. Proportion of Treg cells significantly increased at week 12 compared with that in baseline (15.9% [7.73, 19.4%] vs. 9.89% [6.02, 11.8%], P = 0.015). Interestingly, certain butyrate-producing bacteria increase significantly after IL-2 treatment, like Lachnospiraceae, Pseudobutyrivibrio, etc., and are associated with a rise in L-Asparagine and L-Leucine. The effects of low-dose IL-2 on gut microbiota were more apparent in NOD mice. Together, the data presented demonstrated that low-dose IL-2 was effective in active IIMs and highlighted the potential for modifying the intestinal microbiomes of dysbiosis to treat IIMs.
Collapse
Affiliation(s)
- Yunzhi Zhufeng
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Miao Miao
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Yifan Wang
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Yimin Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Bo Huang
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Yixue Guo
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Jiayi Tian
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Jing Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| | - Dan Lu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yuhui Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- *Correspondence: Yuhui Li, ; Jing He,
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- *Correspondence: Yuhui Li, ; Jing He,
| |
Collapse
|
24
|
Su B, Kong D, Yang X, Zhang T, Kuang YQ. Mucosal-associated invariant T cells: a cryptic coordinator in HIV-infected immune reconstitution. J Med Virol 2022; 94:3043-3053. [PMID: 35243649 DOI: 10.1002/jmv.27696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection causes considerable morbidity and mortality worldwide. Although antiretroviral therapy (ART) has largely transformed HIV infection from a fatal disease to a chronic condition, approximately 10%~40% of HIV-infected individuals who receive effective ART and sustain long-term viral suppression still cannot achieve optimal immune reconstitution. These patients are called immunological non-responders, a state associated with poor clinical prognosis. Mucosal-associated invariant T (MAIT) cells are an evolutionarily conserved unconventional T cell subset defined by expression of semi-invariant αβ T cell receptor (TCR), which recognizes metabolites derived from the riboflavin biosynthetic pathway presented on major histocompatibility complex (MHC)-related protein-1 (MR1). MAIT cells, which are considered to act as a bridge between innate and adaptive immunity, produce a wide range of cytokines and cytotoxic molecules upon activation through TCR-dependent and TCR-independent mechanisms, which is of major importance in defense against a variety of pathogens. In addition, MAIT cells are involved in autoimmune and immune-mediated diseases. The number of MAIT cells is dramatically and irreversibly decreased in the early stage of HIV infection and is not fully restored even after long-term suppressive ART. In light of the important role of MAIT cells in mucosal immunity and because microbial translocation is inversely associated with CD4+ T cell counts, we propose that MAIT cells participate in the maintenance of intestinal barrier integrity and microbial homeostasis, thus further affecting immune reconstitution in HIV-infected individuals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.,Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Deshenyue Kong
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.,Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.,Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
25
|
Wells J, Bai J, Tsementzi D, Jhaney CI, Foster A, Watkins Bruner D, Gillespie T, Li Y, Hu YJ. Exploring the Anal Microbiome in HIV Positive and High-Risk HIV Negative Women. AIDS Res Hum Retroviruses 2022; 38:228-236. [PMID: 35044233 PMCID: PMC8968844 DOI: 10.1089/aid.2020.0245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This exploratory study sought to characterize the anal microbiome and explore associations among the anal microbiome, risk factors for anal cancer, and clinical factors. A pilot sample of 50 HIV infected and high-risk HIV negative women were recruited from the former Women's Interagency HIV Study. Microbiome characterization by 16S rRNA gene sequencing and datasets were analyzed using QIIME 2™. Composition of the anal microbiome and its associations with anal cancer risk factors and clinical factors were analyzed using linear decomposition model and permutational multivariate analysis of variance. Composition of the anal microbiome among HIV positive and high-risk negative women was dominated by Bacteroides, Prevotella, and Campylobacter. The overall taxonomic composition and microbial diversity of the anal microbiome did not significantly differ by HIV status. However, the abundance of Ruminococcus 1 belonging to the Rumincoccaceae family was associated with HIV status (q = .05). No anal cancer risk factors were associated with the anal microbiome composition. Clinical factors marginally associated with the anal microbiome composition included body mass index (BMI; p = .05) and hepatitis C virus (HCV; p = .05). Although HIV and risk factors for anal cancer were not associated with the composition of the anal microbiome in this pilot sample, other clinical factors such as BMI and HCV, may be worth further investigation in a larger study. Future research can build on these findings to explore the role of the microbiome and HIV comorbidities in women.
Collapse
Affiliation(s)
- Jessica Wells
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA.,Address correspondence to: Jessica Wells, Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Room 230, Atlanta, GA 30322-1007, USA
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Despina Tsementzi
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Camber Ileen Jhaney
- Department of Surgery and Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Antonina Foster
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deborah Watkins Bruner
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA.,Department of Surgery and Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Theresa Gillespie
- Department of Surgery and Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Yunxiao Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Russo E, Nannini G, Sterrantino G, Kiros ST, Di Pilato V, Coppi M, Baldi S, Niccolai E, Ricci F, Ramazzotti M, Pallecchi M, Lagi F, Rossolini GM, Bartoloni A, Bartolucci G, Amedei A. Effects of viremia and CD4 recovery on gut "microbiome-immunity" axis in treatment-naïve HIV-1-infected patients undergoing antiretroviral therapy. World J Gastroenterol 2022; 28:635-652. [PMID: 35317423 PMCID: PMC8900548 DOI: 10.3748/wjg.v28.i6.635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) infection is characterized by persistent systemic inflammation and immune activation, even in patients receiving effective antiretroviral therapy (ART). Converging data from many cross-sectional studies suggest that gut microbiota (GM) changes can occur throughout including human immunodeficiency virus (HIV) infection, treated by ART; however, the results are contrasting. For the first time, we compared the fecal microbial composition, serum and fecal microbial metabolites, and serum cytokine profile of treatment-naïve patients before starting ART and after reaching virological suppression, after 24 wk of ART therapy. In addition, we compared the microbiota composition, microbial metabolites, and cytokine profile of patients with CD4/CD8 ratio < 1 (immunological non-responders [INRs]) and CD4/CD8 > 1 (immunological responders [IRs]), after 24 wk of ART therapy. AIM To compare for the first time the fecal microbial composition, serum and fecal microbial metabolites, and serum cytokine profile of treatment-naïve patients before starting ART and after reaching virological suppression (HIV RNA < 50 copies/mL) after 24 wk of ART. METHODS We enrolled 12 treatment-naïve HIV-infected patients receiving ART (mainly based on integrase inhibitors). Fecal microbiota composition was assessed through next generation sequencing. In addition, a comprehensive analysis of a blood broad-spectrum cytokine panel was performed through a multiplex approach. At the same time, serum free fatty acid (FFA) and fecal short chain fatty acid levels were obtained through gas chromatography-mass spectrometry. RESULTS We first compared microbiota signatures, FFA levels, and cytokine profile before starting ART and after reaching virological suppression. Modest alterations were observed in microbiota composition, in particular in the viral suppression condition, we detected an increase of Ruminococcus and Succinivibrio and a decrease of Intestinibacter. Moreover, in the same condition, we also observed augmented levels of serum propionic and butyric acids. Contemporarily, a reduction of serum IP-10 and an increase of IL-8 levels were detected in the viral suppression condition. In addition, the same components were compared between IRs and INRs. Concerning the microflora population, we detected a reduction of Faecalibacterium and an increase of Alistipes in INRs. Simultaneously, fecal isobutyric, isovaleric, and 2-methylbutyric acids were also increased in INRs. CONCLUSION Our results provided an additional perspective about the impact of HIV infection, ART, and immune recovery on the "microbiome-immunity axis" at the metabolism level. These factors can act as indicators of the active processes occurring in the gastrointestinal tract. Individuals with HIV-1 infection, before ART and after reaching virological suppression with 24 wk of ART, displayed a microbiota with unchanged overall bacterial diversity; moreover, their systemic inflammatory status seems not to be completely restored. In addition, we confirmed the role of the GM metabolites in immune reconstitution.
Collapse
Affiliation(s)
- Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Gaetana Sterrantino
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Seble Tekle Kiros
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa 16126, Italy
| | - Marco Coppi
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Federica Ricci
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical "Mario Serio", University of Florence, Florence 50134, Italy
| | - Marco Pallecchi
- Department of Biomedical, Experimental and Clinical "Mario Serio", University of Florence, Florence 50134, Italy
| | - Filippo Lagi
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Gian Maria Rossolini
- Microbiology and Virology Unit, Florence Careggi University Hospital, University of Florence, Florence 50134, Italy
| | - Alessandro Bartoloni
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence 50019, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence 50134, Italy
| |
Collapse
|
27
|
Zhu M, Liu S, Zhao C, Shi J, Li C, Ling S, Cheng J, Dong W, Xu J. Alterations in the gut microbiota of AIDS patients with pneumocystis pneumonia and correlations with the lung microbiota. Front Cell Infect Microbiol 2022; 12:1033427. [PMID: 36339339 PMCID: PMC9634167 DOI: 10.3389/fcimb.2022.1033427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Due to the inability to be cultured in vitro, the biological characteristics and pathogenicity of Pneumocystis jirovecii remain unclear. Intestinal microflora disorder is related to the occurrence and development of various pulmonary diseases. This work explores the pathogenesis of pneumocystis pneumonia (PCP) in acquired immune deficiency syndrome (AIDS) patients from a microbiome perspective, to provide better strategies for the diagnosis, treatment, and prevention of PCP. METHODS Subjects were divided into three groups: human immunodeficiency virus (HIV)-infected patients combined with PCP, HIV-infected patients without PCP, and HIV-negative. Stool and bronchoalveolar lavage fluid (BALF) samples were collected, total DNA was extracted, and 16S rRNA high-throughput sequencing was performed using an Illumina MiSeq platform. PICRUSt and BugBase were used to predict microflora functions, and correlation analysis of intestinal and lung bacterial flora was conducted. RESULTS Compared with the HIV- group, prevotella and another 21 genera in the intestinal microbiome were statistically different in the HIV+ group; 25 genera including Escherichia-Shigella from HIV+PCP+ group were statistically different from HIV+PCP- group. The abundance of Genera such as Porphyromonas was positively or negatively correlated with CD16/CD56+ (μL). Compared with the HIV- group, identification efficiency based on area under the curve (AUC) >0.7 for the HIV+ group identified seven genera in the gut microbiota, including Enterococcus (total AUC = 0.9519). Compared with the HIV+PCP- group, there were no bacteria with AUC >0.7 in the lung or intestine of the HIV+PCP+ group. The number of shared bacteria between BALF and fecal samples was eight species in the HIV- group, 109 species in PCP- patients, and 228 species in PCP+ patients, according to Venn diagram analysis. Changes in various clinical indicators and blood parameters were also closely related to the increase or decrease in the abundance of intestinal and pulmonary bacteria, respectively. CONCLUSIONS HIV infection and PCP significantly altered the species composition of lung and intestinal microbiomes, HIV infection also significantly affected intestinal microbiome gene functions, and PCP exacerbated the changes. The classification model can be used to distinguish HIV+ from HIV- patients, but the efficiency of bacterial classification was poor between PCP+ and PCP- groups. The microbiomes in the lung and gut were correlated to some extent, providing evidence for the existence of a lung-gut axis, revealing a potential therapeutic target in patients with HIV and PCP.
Collapse
Affiliation(s)
- Mingli Zhu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Sai Liu
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenfei Zhao
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Laboratory, The First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinchuan Shi
- Department of Infectious Diseases, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chaodan Li
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shisheng Ling
- Research and Development Department, Assure Tech Institute of Medical Device, Hangzhou, China
| | - Jianghao Cheng
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenkun Dong
- Research and Development Department, Assure Tech Institute of Medical Device, Hangzhou, China
- *Correspondence: Wenkun Dong, ; Jiru Xu,
| | - Jiru Xu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenkun Dong, ; Jiru Xu,
| |
Collapse
|
28
|
Liu Q, Xu ZY, Wang XL, Huang XM, Zheng WL, Li MJ, Xiao F, Ouyang PW, Yang XH, Cui YH, Pan HW. Changes in Conjunctival Microbiota Associated With HIV Infection and Antiretroviral Therapy. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 34473190 PMCID: PMC8419876 DOI: 10.1167/iovs.62.12.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose HIV infection is associated with a variety of ocular surface diseases. Understanding the difference of the ocular microbiota between HIV-infected and healthy individuals as well as the influence of antiretroviral therapy will help to investigate the pathogenesis of these conditions. Methods A cross-sectional study was conducted on subjects including HIV-negative individuals, untreated HIV-infected individuals, and HIV-infected individuals with antiretroviral therapy. Conjunctival microbiota was assessed by bacterial 16S rRNA sequencing of the samples obtained from the conjunctival swab. Results The microbial richness in ocular surface was similar in HIV-negative, untreated HIV-positive, and highly active antiretroviral therapy (HAART) subjects. The bacterial compositions were similar in the two HIV infection groups but were significantly different from the HIV-negative group. HAART changed the beta diversity of bacterial community as determined by Shannon index. CD4+ T cell count had no significant influence on the diversity of ocular microbiota in HIV-infected individuals. Conclusions The data revealed the compositional and structural difference in conjunctival microbial community in subjects with and without HIV infection, indicating that HIV infection or its treatment, may contribute to ocular surface dysbiosis.
Collapse
Affiliation(s)
- Qun Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhi-Yi Xu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Ophthalmology, Dongguan People's Hospital, Dongguan, China
| | - Xiao-Li Wang
- Department of Ophthalmology, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Xiao-Mei Huang
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wen-Lin Zheng
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Mei-Jun Li
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Fan Xiao
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Pei-Wen Ouyang
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiao-Hua Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yu-Hong Cui
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hong-Wei Pan
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Lu D, Zhang JB, Wang YX, Geng ST, Zhang Z, Xu Y, Li SY, Wang KH, Kuang YQ. Association between CD4 + T cell counts and gut microbiota and serum cytokines levels in HIV-infected immunological non-responders. BMC Infect Dis 2021; 21:742. [PMID: 34344350 PMCID: PMC8336095 DOI: 10.1186/s12879-021-06491-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023] Open
Abstract
Background CD4+ T cell counts in certain human immunodeficiency virus (HIV)-infected patients called immunological non-responders (INRs) could not return to a normal level even with sustained antiretroviral therapy (ART) because of persistent immune activation, which is associated with pro-inflammatory cytokines production and an altered intestinal microbiome profile. Changes in gut bacterial composition have been linked to low CD4+ T cell counts in HIV-infected individuals. However, the association between CD4+ T cell counts and gut microbiota community composition and cytokines levels in INRs (CD4+ T cell counts < 500 cells/μL) from Yunnan Province, China, has not been previously investigated.
Methods To address this issue, we carried out a cross-sectional study of 34 HIV-infected INRs. The patients were divided into CD4 count > 200 cells/μL group and CD4 count < 200 cells/μL group. The gut microbiota composition of each subject was analyzed by 16S rRNA gene sequencing. We also compared CD8+ T cell counts, pro-inflammatory cytokines levels, and nutritional status between the two groups. Results Compared to INRs with CD4 count > 200 cells/μL, those with CD4 count < 200 cells/μL had a lower CD4/CD8 ratio, lower nutritional status and higher serum levels of tumor necrosis factor (TNF)-α, interferon-γ-inducible protein (IP)-10 and interleukin (IL)-1α. Ruminococcaceae was less abundant in the CD4 count < 200 cells/μL group than in the CD4 count > 200 cells/μL group, and difference in alpha diversity was observed between the two groups. Moreover, CD4+ T cell counts were negatively associated with TNF-α and IL-1α levels and positively associated with the relative abundance of Ruminococcaceae. Conclusions Our study demonstrated that lower CD4+ T cell counts in INRs are associated with a reduced abundance of Ruminococcaceae in the gut and elevated serum pro-inflammatory cytokines levels. Thus, interventions targeting gut microbiota to increase CD4+ T cell counts are a potential strategy for promoting immune reconstitution in HIV-infected INRs. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06491-z.
Collapse
Affiliation(s)
- Danfeng Lu
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian-Bo Zhang
- Department of Dermatology, Second People's Hospital of Dali City, Dali, China
| | - Yue-Xin Wang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shi-Tao Geng
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zunyue Zhang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu Xu
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shao-You Li
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun-Hua Wang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, China. .,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, 295 Xichang Road, Kunming, Yunnan, China. .,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
30
|
Townsend EM, Kelly L, Muscatt G, Box JD, Hargraves N, Lilley D, Jameson E. The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome. Front Cell Infect Microbiol 2021; 11:643214. [PMID: 34150671 PMCID: PMC8213399 DOI: 10.3389/fcimb.2021.643214] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
The investigation of the microbial populations of the human body, known as the microbiome, has led to a revolutionary field of science, and understanding of its impacts on human development and health. The majority of microbiome research to date has focussed on bacteria and other kingdoms of life, such as fungi. Trailing behind these is the interrogation of the gut viruses, specifically the phageome. Bacteriophages, viruses that infect bacterial hosts, are known to dictate the dynamics and diversity of bacterial populations in a number of ecosystems. However, the phageome of the human gut, while of apparent importance, remains an area of many unknowns. In this paper we discuss the role of bacteriophages within the human gut microbiome. We examine the methods used to study bacteriophage populations, how this evolved over time and what we now understand about the phageome. We review the phageome development in infancy, and factors that may influence phage populations in adult life. The role and action of the phageome is then discussed at both a biological-level, and in the broader context of human health and disease.
Collapse
Affiliation(s)
- Eleanor M Townsend
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Lucy Kelly
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - George Muscatt
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Joshua D Box
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Nicole Hargraves
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Daniel Lilley
- Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
31
|
Narayanan AP, Latika A, Nair AS, Ajeesh P, Kumar NS, Babu M. Role of Gut Microbiota in Human Health and Diseases. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200930130101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Every human body has a gut microbiome, which is a complex collection of microorganisms
that live in the digestive tracts. The composition of the gut flora changes over time, when
diet changes, overall health changes. Intestinal flora hosts more amounts of the microbes when
compared to stomach flora as it is less vulnerable to the acidity of the gastric mucosa. Intestinal flora
plays a major role in balancing the immune function as well as metabolic homeostasis, regulating
inflammation, increasing mineral bioavailability, synthesizing neurotransmitters, regulating
appetite and blood sugar and protecting against pathogens. Dysbiosis in the gut leads to various gastrointestinal
disorders like inflammatory bowel disease, irritable bowel syndrome, peptic ulcer,
metabolic syndromes like obesity, diabetes and various neurological disorders like autism, multiple
sclerosis. Therefore, the complete wellness of our body is dependent on the microbial composition
of the gut. Probiotics and prebiotic foods can add as a key element supplementing the wellness of
our body.
Collapse
Affiliation(s)
- Athira P. Narayanan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Ankitha Latika
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Anjali S. Nair
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Pooja Ajeesh
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Nirdesh S. Kumar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Merin Babu
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| |
Collapse
|
32
|
Alteration of the gut fecal microbiome in children living with HIV on antiretroviral therapy in Yaounde, Cameroon. Sci Rep 2021; 11:7666. [PMID: 33828220 PMCID: PMC8027858 DOI: 10.1038/s41598-021-87368-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple factors, such as immune disruption, prophylactic co-trimoxazole, and antiretroviral therapy, may influence the structure and function of the gut microbiome of children infected with HIV from birth. In order to understand whether HIV infection altered gut microbiome and to relate changes in microbiome structure and function to immune status, virological response and pediatric ART regimens, we characterized the gut microbiome of 87 HIV-infected and 82 non-exposed HIV-negative children from Yaounde, a cosmopolitan city in Cameroon. We found that children living with HIV had significantly lower alpha diversity in their gut microbiome and altered beta diversity that may not be related to CD4+ T cell count or viral load. There was an increased level of Akkermansia and Faecalibacterium genera and decreased level of Escherichia and other Gamma proteobacteria in children infected with HIV, among other differences. We noted an effect of ethnicity/geography on observed gut microbiome composition and that children on ritonavir-boosted protease inhibitor (PI/r)-based ART had gut microbiome composition that diverged more from HIV-negative controls compared to those on non-nucleoside reverse-transcriptase inhibitors-based ART. Further studies investigating the role of this altered gut microbiome in increased disease susceptibility are warranted for individuals who acquired HIV via mother-to-child transmission.
Collapse
|
33
|
Abeynaike S, Paust S. Humanized Mice for the Evaluation of Novel HIV-1 Therapies. Front Immunol 2021; 12:636775. [PMID: 33868262 PMCID: PMC8047330 DOI: 10.3389/fimmu.2021.636775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
With the discovery of antiretroviral therapy, HIV-1 infection has transitioned into a manageable but chronic illness, which requires lifelong treatment. Nevertheless, complete eradication of the virus has still eluded us. This is partly due to the virus’s ability to remain in a dormant state in tissue reservoirs, ‘hidden’ from the host’s immune system. Also, the high mutation rate of HIV-1 results in escape mutations in response to many therapeutics. Regardless, the development of novel cures for HIV-1 continues to move forward with a range of approaches from immunotherapy to gene editing. However, to evaluate in vivo pathogenesis and the efficacy and safety of therapeutic approaches, a suitable animal model is necessary. To this end, the humanized mouse was developed by McCune in 1988 and has continued to be improved on over the past 30 years. Here, we review the variety of humanized mouse models that have been utilized through the years and describe their specific contribution in translating HIV-1 cure strategies to the clinic.
Collapse
Affiliation(s)
- Shawn Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
34
|
Xu H, Ou Z, Zhou Y, Li Y, Huang H, Zhao H, Xu J, Luo M, Zhou Y, Nie Y. Intestinal mucosal microbiota composition of patients with acquired immune deficiency syndrome in Guangzhou, China. Exp Ther Med 2021; 21:391. [PMID: 33680113 PMCID: PMC7918403 DOI: 10.3892/etm.2021.9822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Acquired immune deficiency syndrome, caused by the human immunodeficiency virus (HIV), has been associated with intestinal dysbiosis, which includes an increase in the number of mucosa-associated pathobionts. In the present study, the intestinal mucosal microbiota patterns of HIV-infected patients were compared with those of healthy individuals in a population from Guangzhou, China. The gut microbiota of intestinal mucosal samples from 12 patients with HIV (transmission routes included sex and intravenous drug abuse) was compared with that of 12 healthy age- and sex-matched controls. Gut microbial communities were profiled via sequencing of the bacterial 16S ribosomal RNA genes. Dysbiosis in HIV-infected individuals was characterized by decreased α-diversity, decreased levels of Firmicutes and increased levels of Proteobacteria. Furthermore, low mean counts of Lachnoclostridium, Roseburia, Thauera, Dorea and Roseburia inulinivorans, and high mean counts of Halomonas and Shewanella bacteria, were indicated to be HIV-associated mucosal bacterial alterations. The relative abundance of Fusobacterium and Lachnoclostridium was significantly decreased, while that of Halomonas and Shewanella was significantly increased in patients with sexually transmitted HIV-infection compared with healthy controls. Alterations of the gut microbiota during HIV infection were also indicated to be associated with the route of HIV transmission. Certain bacteria may be potential biomarkers for HIV infection in patients from Guangzhou, China.
Collapse
Affiliation(s)
- Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Zhitao Ou
- Department of Internal Medicine, Guangzhou No. 8 People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Yingfei Li
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Hailan Zhao
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Meijuan Luo
- Department of Pediatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
35
|
Ancona G, Merlini E, Tincati C, Barassi A, Calcagno A, Augello M, Bono V, Bai F, Cannizzo ES, d'Arminio Monforte A, Marchetti G. Long-Term Suppressive cART Is Not Sufficient to Restore Intestinal Permeability and Gut Microbiota Compositional Changes. Front Immunol 2021; 12:639291. [PMID: 33717191 PMCID: PMC7952451 DOI: 10.3389/fimmu.2021.639291] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background: We explored the long-term effects of cART on markers of gut damage, microbial translocation, and paired gut/blood microbiota composition, with a focus on the role exerted by different drug classes. Methods: We enrolled 41 cART naïve HIV-infected subjects, undergoing blood and fecal sampling prior to cART (T0) and after 12 (T12) and 24 (T24) months of therapy. Fifteen HIV-uninfected individuals were enrolled as controls. We analyzed: (i) T-cell homeostasis (flow cytometry); (ii) microbial translocation (sCD14, EndoCab, 16S rDNA); (iii) intestinal permeability and damage markers (LAC/MAN, I-FABP, fecal calprotectin); (iv) plasma and fecal microbiota composition (alpha- and beta-diversity, relative abundance); (v) functional metagenome predictions (PICRUSt). Results: Twelve and twenty four-month successful cART resulted in a rise in EndoCAb (p = 0.0001) and I-FABP (p = 0.039) vis-à-vis stable 16S rDNA, sCD14, calprotectin and LAC/MAN, along with reduced immune activation in the periphery. Furthermore, cART did not lead to substantial modifications of microbial composition in both plasma and feces and metabolic metagenome predictions. The stratification according to cART regimens revealed a feeble effect on microbiota composition in patients on NNRTI-based or INSTI-based regimens, but not PI-based regimens. Conclusions: We hereby show that 24 months of viro-immunological effective cART, while containing peripheral hyperactivation, exerts only minor effects on the gastrointestinal tract. Persistent alteration of plasma markers indicative of gut structural and functional impairment seemingly parallels enduring fecal dysbiosis, irrespective of drug classes, with no effect on metabolic metagenome predictions.
Collapse
Affiliation(s)
- Giuseppe Ancona
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Esther Merlini
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Alessandra Barassi
- Biochemistry Laboratory, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Matteo Augello
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Francesca Bai
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Elvira S Cannizzo
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
36
|
Imahashi M, Ode H, Kobayashi A, Nemoto M, Matsuda M, Hashiba C, Hamano A, Nakata Y, Mori M, Seko K, Nakahata M, Kogure A, Tanaka Y, Sugiura W, Yokomaku Y, Iwatani Y. Impact of long-term antiretroviral therapy on gut and oral microbiotas in HIV-1-infected patients. Sci Rep 2021; 11:960. [PMID: 33441754 PMCID: PMC7806981 DOI: 10.1038/s41598-020-80247-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
In HIV-1-infected patients, antiretroviral therapy (ART) is a key factor that may impact commensal microbiota and cause the emergence of side effects. However, it is not fully understood how long-term ART regimens have diverse impacts on the microbial compositions over time. Here, we performed 16S ribosomal RNA gene sequencing of the fecal and salivary microbiomes in patients under different long-term ART. We found that ART, especially conventional nucleotide/nucleoside reverse transcriptase inhibitor (NRTI)-based ART, has remarkable impacts on fecal microbial diversity: decreased α-diversity and increased ß-diversity over time. In contrast, dynamic diversity changes in the salivary microbiome were not observed. Comparative analysis of bacterial genus compositions showed a propensity for Prevotella-enriched and Bacteroides-poor gut microbiotas in patients with ART over time. In addition, we observed a gradual reduction in Bacteroides but drastic increases in Succinivibrio and/or Megasphaera under conventional ART. These results suggest that ART, especially NRTI-based ART, has more suppressive impacts on microbiota composition and diversity in the gut than in the mouth, which potentially causes intestinal dysbiosis in patients. Therefore, NRTI-sparing ART, especially integrase strand transfer inhibitor (INSTI)- and/or non-nucleotide reverse transcriptase inhibitor (NNRTI)-containing regimens, might alleviate the burden of intestinal dysbiosis in HIV-1-infected patients under long-term ART.
Collapse
Affiliation(s)
- Mayumi Imahashi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
- Department of HIV Clinic, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Ayumi Kobayashi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Michiko Nemoto
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Masakazu Matsuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Chieko Hashiba
- Department of HIV Clinic, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Akiko Hamano
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Yoshihiro Nakata
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mikiko Mori
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
- Department of HIV Clinic, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kento Seko
- Department of Virology, Nagoya City University, Nagoya, Aichi, Japan
| | - Masashi Nakahata
- Department of HIV Clinic, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Ayumi Kogure
- Department of HIV Clinic, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Yasuhito Tanaka
- Department of Virology, Nagoya City University, Nagoya, Aichi, Japan
- Department of Gastroenterology and Hepatology, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Wataru Sugiura
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Yoshiyuki Yokomaku
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
- Department of HIV Clinic, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan.
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
37
|
Abstract
As human populations spread across the world, they adapted genetically to local conditions. So too did the resident microorganism communities that everyone carries with them. However, the collective influence of the diverse and dynamic community of resident microbes on host evolution is poorly understood. The taxonomic composition of the microbiota varies among individuals and displays a range of sometimes redundant functions that modify the physicochemical environment of the host and may alter selection pressures. Here we review known human traits and genes for which the microbiota may have contributed or responded to changes in host diet, climate, or pathogen exposure. Integrating host–microbiota interactions in human adaptation could offer new approaches to improve our understanding of human health and evolution.
Collapse
Affiliation(s)
- Taichi A. Suzuki
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
38
|
Soto Chervin C, Gajewski T. Microbiome-based interventions: therapeutic strategies in cancer immunotherapy. IMMUNO-ONCOLOGY TECHNOLOGY 2020; 8:12-20. [PMID: 35757563 PMCID: PMC9216398 DOI: 10.1016/j.iotech.2020.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The composition of the commensal microbiota has recently emerged as a key element influencing the efficacy of cancer treatments. It has become apparent that the interplay between the microbiome and immune system within the host influences the response to immunotherapy, particularly immune checkpoint inhibitor therapy. Identifying the key components of the gut microbiota that influence this response is paramount for designing therapeutic interventions to enhance the response to cancer therapy. This review will discuss strategies being considered to modulate the gut microbiota, including fecal microbiota transplantation, administration of defined bacterial isolates as well as bacterial consortia, supplementation with probiotics, and lifestyle modifications such as dietary changes. Understanding the influence of the complex variables of the human microbiota on the effectiveness of cancer therapy will help drive the clinical design of microbial-based interventions in the field of oncology.
Collapse
Affiliation(s)
- C. Soto Chervin
- Department of Pathology and Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, USA
| | - T.F. Gajewski
- Department of Pathology and Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, USA
| |
Collapse
|
39
|
van den Brink DA, de Meij T, Brals D, Bandsma RHJ, Thitiri J, Ngari M, Mwalekwa L, de Boer NKH, Wicaksono A, Covington JA, van Rheenen PF, Voskuijl WP. Prediction of mortality in severe acute malnutrition in hospitalized children by faecal volatile organic compound analysis: proof of concept. Sci Rep 2020; 10:18785. [PMID: 33154417 PMCID: PMC7645771 DOI: 10.1038/s41598-020-75515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 09/08/2020] [Indexed: 11/08/2022] Open
Abstract
Children with severe acute malnutrition (SAM) display immature, altered gut microbiota and have a high mortality risk. Faecal volatile organic compounds (VOCs) reflect the microbiota composition and may provide insight into metabolic dysfunction that occurs in SAM. Here we determine whether analysis of faecal VOCs could identify children with SAM with increased risk of mortality. VOC profiles from children who died within six days following admission were compared to those who were discharged alive using machine learning algorithms. VOC profiles of children who died could be separated from those who were discharged with fair accuracy (AUC) = 0.71; 95% CI 0.59-0.87; P = 0.004). We present the first study showing differences in faecal VOC profiles between children with SAM who survived and those who died. VOC analysis holds potential to help discover metabolic pathways within the intestinal microbiome with causal association with mortality and target treatments in children with SAM.Trial Registration: The F75 study is registered at clinicaltrials.gov/ct2/show/NCT02246296.
Collapse
Affiliation(s)
- Deborah A van den Brink
- Department of Paediatrics, Centre for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
- Amsterdam Centre for Global Child Health, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
| | - Tim de Meij
- Department of Paediatric Gastroenterology, Emma, Children's Hospital, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Daniella Brals
- Amsterdam Centre for Global Child Health, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, The Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Robert H J Bandsma
- Department of Paediatrics, Centre for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Division of Gastroenterology, Hepatology and Nutrition and Translational Medicine Program, Hospital for Sick Children, Toronto, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Department of Biomedical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Johnstone Thitiri
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- KEMRI/Welcome Trust Research Programme, Kilifi, Kenya
| | - Moses Ngari
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- KEMRI/Welcome Trust Research Programme, Kilifi, Kenya
| | | | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | | | | | - Patrick F van Rheenen
- Department of Paediatrics, Centre for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Wieger P Voskuijl
- Amsterdam Centre for Global Child Health, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya.
- Department of Paediatrics, College of Medicine, University of Malawi, Blantyre, Malawi.
| |
Collapse
|
40
|
Geng ST, Zhang ZY, Wang YX, Lu D, Yu J, Zhang JB, Kuang YQ, Wang KH. Regulation of Gut Microbiota on Immune Reconstitution in Patients With Acquired Immunodeficiency Syndrome. Front Microbiol 2020; 11:594820. [PMID: 33193273 PMCID: PMC7652894 DOI: 10.3389/fmicb.2020.594820] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of CD4+ T cells in the gut plays an insidious role in acquired immunodeficiency syndrome (AIDS) pathogenesis. Host immune function is closely related to gut microbiota. Changes in the gut microbiota cause a different immune response. Previous studies revealed that HIV-1 infection caused changes in gut microbiota, which induced immune deficiency. HIV-1 infection results in an abnormal composition and function of the gut microbiota, which may disrupt the intestinal epithelial barrier and microbial translocation, leading to long-term immune activation, including inflammation and metabolic disorders. At the same time, an abnormal gut microbiota also hinders the effect of antiviral therapy and affects the immune reconstruction of patients. However, studies on the impact of the gut microbiota on immune reconstitution in patients with HIV/AIDS are still limited. In this review, we focus on changes in the gut microbiota caused by HIV infection, as well as the impact and regulation of the gut microbiota on immune function and immune reconstitution, while we also discuss the potential impact of probiotics/prebiotics and fecal microbiota transplantation (FMT) on immune reconstitution.
Collapse
Affiliation(s)
- Shi-Tao Geng
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zun-Yue Zhang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yue-Xin Wang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Danfeng Lu
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian-Bo Zhang
- Department of Dermatology, Second People's Hospital of Dali City, Dali, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun-Hua Wang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
41
|
Taylor BC, Weldon KC, Ellis RJ, Franklin D, Groth T, Gentry EC, Tripathi A, McDonald D, Humphrey G, Bryant M, Toronczak J, Schwartz T, Oliveira MF, Heaton R, Grant I, Gianella S, Letendre S, Swafford A, Dorrestein PC, Knight R. Depression in Individuals Coinfected with HIV and HCV Is Associated with Systematic Differences in the Gut Microbiome and Metabolome. mSystems 2020; 5:e00465-20. [PMID: 32994287 PMCID: PMC7527136 DOI: 10.1128/msystems.00465-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Depression is influenced by the structure, diversity, and composition of the gut microbiome. Although depression has been described previously in human immunodeficiency virus (HIV) and hepatitis C virus (HCV) monoinfections, and to a lesser extent in HIV-HCV coinfection, research on the interplay between depression and the gut microbiome in these disease states is limited. Here, we characterized the gut microbiome using 16S rRNA amplicon sequencing of fecal samples from 373 participants who underwent a comprehensive neuropsychiatric assessment and the gut metabolome on a subset of these participants using untargeted metabolomics with liquid chromatography-mass spectrometry. We observed that the gut microbiome and metabolome were distinct between HIV-positive and -negative individuals. HCV infection had a large association with the microbiome that was not confounded by drug use. Therefore, we classified the participants by HIV and HCV infection status (HIV-monoinfected, HIV-HCV coinfected, or uninfected). The three groups significantly differed in their gut microbiome (unweighted UniFrac distances) and metabolome (Bray-Curtis distances). Coinfected individuals also had lower alpha diversity. Within each of the three groups, we evaluated lifetime major depressive disorder (MDD) and current Beck Depression Inventory-II. We found that the gut microbiome differed between depression states only in coinfected individuals. Coinfected individuals with a lifetime history of MDD were enriched in primary and secondary bile acids, as well as taxa previously identified in people with MDD. Collectively, we observe persistent signatures associated with depression only in coinfected individuals, suggesting that HCV itself, or interactions between HCV and HIV, may drive HIV-related neuropsychiatric differences.IMPORTANCE The human gut microbiome influences depression. Differences between the microbiomes of HIV-infected and uninfected individuals have been described, but it is not known whether these are due to HIV itself, or to common HIV comorbidities such as HCV coinfection. Limited research has explored the influence of the microbiome on depression within these groups. Here, we characterized the microbial community and metabolome in the stools from 373 people, noting the presence of current or lifetime depression as well as their HIV and HCV infection status. Our findings provide additional evidence that individuals with HIV have different microbiomes which are further altered by HCV coinfection. In individuals coinfected with both HIV and HCV, we identified microbes and molecules that were associated with depression. These results suggest that the interplay of HIV and HCV and the gut microbiome may contribute to the HIV-associated neuropsychiatric problems.
Collapse
Affiliation(s)
- Bryn C Taylor
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Kelly C Weldon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Ronald J Ellis
- Department of Neuroscience, HIV Neurobehavioral Research Center, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, HIV Neurobehavioral Research Center, University of California San Diego, La Jolla, California, USA
| | - Donald Franklin
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tobin Groth
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Anupriya Tripathi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gregory Humphrey
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - MacKenzie Bryant
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Julia Toronczak
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tara Schwartz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Michelli F Oliveira
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert Heaton
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Igor Grant
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, California, USA
| | - Scott Letendre
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Austin Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
42
|
Delpino MV, Quarleri J. Influence of HIV Infection and Antiretroviral Therapy on Bone Homeostasis. Front Endocrinol (Lausanne) 2020; 11:502. [PMID: 32982960 PMCID: PMC7493215 DOI: 10.3389/fendo.2020.00502] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV)/AIDS pandemic represents the most significant global health challenge in modern history. This infection leads toward an inflammatory state associated with chronic immune dysregulation activation that tilts the immune-skeletal interface and its deep integration between cell types and cytokines with a strong influence on skeletal renewal and exacerbated bone loss. Hence, reduced bone mineral density is a complication among HIV-infected individuals that may progress to osteoporosis, thus increasing their prevalence of fractures. Highly active antiretroviral therapy (HAART) can effectively control HIV replication but the regimens, that include tenofovir disoproxil fumarate (TDF), may accelerate bone mass density loss. Molecular mechanisms of HIV-associated bone disease include the OPG/RANKL/RANK system dysregulation. Thereby, osteoclastogenesis and osteolytic activity are promoted after the osteoclast precursor infection, accompanied by a deleterious effect on osteoblast and its precursor cells, with exacerbated senescence of mesenchymal stem cells (MSCs). This review summarizes recent basic research data on HIV pathogenesis and its relation to bone quality. It also sheds light on HAART-related detrimental effects on bone metabolism, providing a better understanding of the molecular mechanisms involved in bone dysfunction and damage as well as how the HIV-associated imbalance on the gut microbiome may contribute to bone disease.
Collapse
Affiliation(s)
- María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
43
|
Cook RR, Fulcher JA, Tobin NH, Li F, Lee D, Woodward C, Javanbakht M, Brookmeyer R, Shoptaw S, Bolan R, Aldrovandi GM, Gorbach PM. Combined effects of HIV and obesity on the gastrointestinal microbiome of young men who have sex with men. HIV Med 2020; 21:365-377. [PMID: 31883184 PMCID: PMC7299823 DOI: 10.1111/hiv.12838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The prevalence of obesity is rising among people living with HIV, which may synergistically increase inflammation and the risk of associated diseases. Disruption of gut bacterial communities may be one of the key drivers of this inflammation; however, the combined effects of HIV and obesity on the microbiome have not been explored. METHODS This study included 381 men who have sex with men. Thirty-nine were HIV-positive and obese (H+O+), 143 were HIV-positive and nonobese, 64 were HIV-negative and obese, and 135 were HIV-negative and nonobese. Microbiome composition was assessed by targeted sequencing of the V4 region of the 16S ribosomal RNA (rRNA) gene using rectal swab samples. Inverse probability of treatment-weighted marginal structural models were used to investigate differences in microbial composition between groups while controlling for numerous clinical and behavioural confounders. RESULTS Significant variability in microbial composition was explained by the combination of HIV and obesity, over and above each condition alone (R2 for the marginal contribution of the H+/O+ group = 0.008; P = 0.001). H+O+ participants had the highest ratios of Prevotella to Bacteroides, a pro-inflammatory enterotype that has been described in HIV infection and obesity independently. H+O+ participants had lower levels of Bacteroides and Veillonella than all other groups, suggesting a synergistic effect of HIV and obesity on these genera. CONCLUSIONS Our findings support the hypothesis that HIV and obesity act together to disrupt gut microbial communities, which may help explain higher levels of generalized inflammation among people living with both HIV and obesity.
Collapse
Affiliation(s)
- Ryan R. Cook
- Department of Epidemiology, Fielding School of Public Health at the University of California, Los Angeles, USA
| | - Jennifer A. Fulcher
- Divison of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, USA
| | - Nicole H. Tobin
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, USA
| | - Fan Li
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, USA
| | - David Lee
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, USA
| | - Cora Woodward
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, USA
| | - Marjan Javanbakht
- Department of Epidemiology, Fielding School of Public Health at the University of California, Los Angeles, USA
| | - Ron Brookmeyer
- Department of Biostatistics, Fielding School of Public Health at the University of California, Los Angeles, USA
| | - Steve Shoptaw
- Department of Family Medicine, David Geffen School of Medicine at the University of California, Los Angeles, USA
- Department of Psychiatry and Biobehavioral Science, David Geffen School of Medicine at the University of California, Los Angeles, USA
| | - Robert Bolan
- Los Angeles LGBT Center, Los Angeles, USA
- Department of Family Medicine, Keck School of Medicine at the University of Southern California, USA
| | - Grace M. Aldrovandi
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, USA
| | - Pamina M. Gorbach
- Department of Epidemiology, Fielding School of Public Health at the University of California, Los Angeles, USA
| |
Collapse
|
44
|
Ashuro AA, Lobie TA, Ye DQ, Leng RX, Li BZ, Pan HF, Fan YG. Review on the Alteration of Gut Microbiota: The Role of HIV Infection and Old Age. AIDS Res Hum Retroviruses 2020; 36:556-565. [PMID: 32323556 PMCID: PMC7398441 DOI: 10.1089/aid.2019.0282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection results in gut microbiota alteration and this is associated with immune activation and chronic inflammation. The gastrointestinal tract is a primary site of viral replication and thus HIV-induced loss of T-helper (Th) cells in the gut causes impairments in intestinal barriers, resulting in disruptions in intestinal immunity and precipitating into gut dysbiosis. Here, we show that late HIV diagnosis can negatively affect the immunological, virological, and clinical prognosis of the patients with its higher implication at an older age. Further, the review indicates that antiretroviral therapy affects the gut microbiota. We discussed the use of probiotics and prebiotics that have been indicated to play a promising role in reversing gut microbiota alteration in HIV patients. Though there are several studies reported with regard to such alterations in gut microbiota regarding HIV infection, there is a need to provide comprehensive updates. It is, therefore, the objective of this review to present most recently available evidence on the alteration of gut microbiota among HIV patients.
Collapse
Affiliation(s)
- Akililu Alemu Ashuro
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Tekle Airgecho Lobie
- Department of Microbiology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
45
|
Fecal Gram stain morphotype and their distribution patterns in a Cameroonian cohort with and without HIV infection. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
46
|
The Urinary Microbiome and Anticancer Immunotherapy: The Potentially Hidden Role of Unculturable Microbes. Target Oncol 2020; 14:247-252. [PMID: 31073691 DOI: 10.1007/s11523-019-00643-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several urinary disorders, including overactive bladder, urinary incontinence, and interstitial cystitis, are often characterized by negative urine cultures. The application of metagenomics (i.e., 16S rRNA microbial profiling or whole-genome shotgun sequencing) to urine samples has enabled the identification of previously undetected bacteria, contributing to the discovery and characterization of the urinary microbiome. The most frequent species isolated are Lactobacillus (15%), Corynebacterium (14.2%), Streptococcus (11.9%), Actinomyces (6.9%), and Staphylococcus (6.9%). Although several studies are emerging in this context, the role of urinary microbiota in the pathogenesis of infections and in tumor carcinogenesis remains unclear. Furthermore, data on the activity of gut microbiota in modulating sensitivity to immune checkpoint inhibitors in advanced cancer patients suggest that the influence of urinary microbiota on tumor response to anticancer therapy should also be investigated. Moreover, its possible relationship with tumor mutational burden, which is in turn correlated with response to immunotherapy, should be the focus of future studies. Of note, the effect of antibiotics on this complex scenario seems to deserve careful consideration.
Collapse
|
47
|
16S rRNA gene sequencing reveals an altered composition of the gut microbiota in chickens infected with a nephropathogenic infectious bronchitis virus. Sci Rep 2020; 10:3556. [PMID: 32103130 PMCID: PMC7044311 DOI: 10.1038/s41598-020-60564-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious bronchitis virus (IBV), a member of the Coronaviridae family, causes serious losses to the poultry industry. Intestinal microbiota play an important role in chicken health and contribute to the defence against colonization by invading pathogens. The aim of this study was to investigate the link between the intestinal microbiome and nephropathogenic IBV (NIBV) infection. Initially, chickens were randomly distributed into 2 groups: the normal group (INC) and the infected group (IIBV). The ilea were collected for morphological assessment, and the ileal contents were collected for 16S rRNA gene sequencing analysis. The results of the IIBV group analyses showed a significant decrease in the ratio of villus height to crypt depth (P < 0.05), while the goblet cells increased compared to those in the INC group. Furthermore, the microbial diversity in the ilea decreased and overrepresentation of Enterobacteriaceae and underrepresentation of Chloroplast and Clostridia was found in the NIBV-infected chickens. In conclusion, these results showed that the significant separation of the two groups and the characterization of the gut microbiome profiles of the chickens with NIBV infection may provide valuable information and promising biomarkers for the diagnosis of this disease.
Collapse
|
48
|
Webale MK, Wanjala C, Guyah B, Shaviya N, Munyekenye GO, Nyanga PL, Marwa IN, Kagoiyo S, Wangai LN, Webale SK, Kamau K, Kitungulu N. Epidemiological patterns and antimicrobial resistance of bacterial diarrhea among children in Nairobi City, Kenya. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2020; 13:238-246. [PMID: 32821354 PMCID: PMC7417493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM Determine the prevalence of enteric bacterial pathogens and their antimicrobial resistance among diarrheic children in Nairobi City, Kenya. BACKGROUND Regardless of enteric bacterial pathogens being a major cause of gastroenteritis in children, their occurrence and antimicrobial resistance patterns reveals regional spatial and temporal variation. METHODS In a cross-sectional study, a total of 374 children below five years presenting with diarrhea at Mbagathi County Hospital were recruited. Stool microbiology test was used to detect enteric bacterial infection. Antimicrobial resistance was determined using the disk diffusion method. RESULTS Diarrheagenic E. coli (36.4%) was the leading species followed by Shigella (3.2%), Salmonella (2.4%), Campylobacter (1.6%), Yersinia (1.3%) and Aeromonas (1.1%) species. Escherichia coli pathotyping revealed that 20.9%, 4.0%, 10.2% and 0.5% of the study participants were infected with enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC) and enteroinvasive E. coli (EIEC) pure isolates while the prevalence of mixed pathotype infections was 0.3% for EAEC/EPEC/ETEC and 0.5% for EAEC/ETEC. Shigella sero-grouping revealed that 0.5%, 0.3%, 1.9%, and 0.5% were infected with Shigella boydii, Shigella dysentriae, Shigella flexneri and Shigella sonnei pure isolates. Shigella species and E. coli co-infection was detected in 2.4% of the children, specifically, 1.1% for EAEC/Shigella boydii, 0.5% for EAEC/Shigella dysentriae and 0.3% in each case of EAEC/Shigella sonnei, EPEC/Shigella flexneri and ETEC/Shigella flexneri co-infections. Most of the isolates were resistant to commonly prescribed antibiotics. CONCLUSION There was a high prevalence of enteric bacterial pathogens and co-infection alters epidemiological dynamics of bacterial diarrhea in children. Continuous antibiotic resistance surveillance is justified because the pathogens were highly resistant to commonly prescribed antimicrobials.
Collapse
Affiliation(s)
| | - Christine Wanjala
- School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Bernard Guyah
- School of Public Health, Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Nathan Shaviya
- School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | | | | | | | - Sammy Kagoiyo
- School of Health Sciences, Kirinyaga University, Kutus, Kenya
| | | | - Sella K. Webale
- School of Public Health, Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Kenny Kamau
- School of Health Sciences, Kirinyaga University, Kutus, Kenya
| | - Nicholas Kitungulu
- School of Biological Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| |
Collapse
|
49
|
Kehrmann J, Menzel J, Saeedghalati M, Obeid R, Schulze C, Holzendorf V, Farahpour F, Reinsch N, Klein-Hitpass L, Streeck H, Hoffmann D, Buer J, Esser S. Gut Microbiota in Human Immunodeficiency Virus-Infected Individuals Linked to Coronary Heart Disease. J Infect Dis 2019; 219:497-508. [PMID: 30202890 DOI: 10.1093/infdis/jiy524] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Background Human immunodeficiency virus (HIV) infection is an independent risk factor for coronary heart disease (CHD) and is associated with perturbation of the gut microbiota. Methods We analyzed gut microbiota in 30 HIV-infected individuals with CHD (CHD+) and 30 without CHD (CHD-) of the HIV-HEART study group. Results Gut microbiota linked to CHD was associated with lower α-diversity. Despite insignificant differences in β-diversity, co-occurrence networks of bacterial genera clearly diverged between CHD+ and CHD- individuals. Multidimensional scaling separated HIV-infected individuals into 2 microbiome clusters, dominated by the genus Prevotella or Bacteroides. The relative abundance of 49 other genera was significantly different between both clusters. The Prevotella-rich cluster was largely composed of men who have sex with men (MSM) (97%), whereas the Bacteroides-rich cluster comprised both MSM (45%) and heterosexual individuals (55%). MSM of the Bacteroides-rich cluster were characterized by reduced α-diversity, advanced immunological HIV stage, longer antiretroviral therapy with more ART regimens, and longer use of protease inhibitors, compared with Prevotella-rich MSM. Conclusions Community structures of gut microbiota rather than individual species might facilitate risk assessment of CHD in HIV-infected individuals. Sexual behavior appears to be an important factor affecting gut microbiota β-diversity and should be considered in future studies.
Collapse
Affiliation(s)
- Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen
| | - Jannis Menzel
- Institute of Medical Microbiology, University Hospital Essen
| | | | - Rima Obeid
- Department of Clinical Chemistry and Laboratory, Saarland University Hospital, Homburg/Saar
| | | | | | | | - Nico Reinsch
- Department of Internal Medicine I and Cardiology, Division of Electrophysiology, Alfried Krupp von Bohlen and Halbach Hospital, Essen.,Department of Cardiology, Witten/Herdecke University, Witten
| | | | - Handrik Streeck
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Centre for Medical Biotechnology, University of Duisburg-Essen, Essen
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen
| | - Stefan Esser
- Clinic for Dermatology and Venerology, University of Duisburg-Essen
| | | |
Collapse
|
50
|
Pellicano C, Leodori G, Innocenti GP, Gigante A, Rosato E. Microbiome, Autoimmune Diseases and HIV Infection: Friends or Foes? Nutrients 2019; 11:E2629. [PMID: 31684052 PMCID: PMC6893726 DOI: 10.3390/nu11112629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Several studies highlighted the importance of the interaction between microbiota and the immune system in the development and maintenance of the homeostasis of the human organism. Dysbiosis is associated with proinflammatory and pathological state-like metabolic diseases, autoimmune diseases and HIV infection. In this review, we discuss the current understanding of the possible role of dysbiosis in triggering and/or exacerbating symptoms of autoimmune diseases and HIV infection. There are no data about the influence of the microbiome on the development of autoimmune diseases during HIV infection. We can hypothesize that untreated patients may be more susceptible to the development of autoimmune diseases, due to the presence of dysbiosis. Eubiosis, re-established by probiotic administration, can be used to reduce triggers for autoimmune diseases in untreated HIV patients, although clinical studies are needed to evaluate the role of the microbiome in autoimmune diseases in HIV patients.
Collapse
Affiliation(s)
- Chiara Pellicano
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| | - Giorgia Leodori
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Antonietta Gigante
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| | - Edoardo Rosato
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|