1
|
Khalili-Tanha G, Khalili-Tanha N, Rouzbahani AK, Mahdieh R, Jasemi K, Ghaderi R, Leylakoohi FK, Ghorbani E, Khazaei M, Hassanian SM, Gataa IS, Ferns GA, Nazari E, Avan A. Diagnostic, prognostic, and predictive biomarkers in gastric cancer: from conventional to novel biomarkers. Transl Res 2024; 274:35-48. [PMID: 39260559 DOI: 10.1016/j.trsl.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Gastric cancer is a major health concern worldwide. The survival rate of Gastric cancer greatly depends on the stage at which it is diagnosed. Early diagnosis is critical for improving survival outcomes. To improve the chances of early diagnosis, regular screening tests, such as an upper endoscopy or barium swallow, are recommended for individuals at a higher risk due to factors like family history or a previous diagnosis of gastric conditions. Biomarkers can be detected and measured using non-invasive methods such as blood tests, urine tests, breath analysis, or imaging techniques. These non-invasive approaches offer many advantages, including convenience, safety, and cost-effectiveness, making them valuable tools for disease diagnosis, monitoring, and research. Biomarker-based tests have emerged as a useful tool for identifying gastric cancer early, monitoring treatment response, assessing the recurrence risk, and personalizing treatment plans. In this current review, we have explored both classical and novel biomarkers for gastric cancer. We have centralized their potential clinical application and discussed the challenges in Gastric cancer research.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Khalili-Tanha
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | | | - Ramisa Mahdieh
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kimia Jasemi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rosa Ghaderi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Elham Nazari
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
2
|
Wei WJ, Hong YL, Deng Y, Wang GL, Qiu JT, Pan F. Research progress on the development of hepatocyte growth factor/c-Met signaling pathway in gastric cancer: A review. World J Gastrointest Oncol 2024; 16:3397-3409. [PMID: 39171189 PMCID: PMC11334049 DOI: 10.4251/wjgo.v16.i8.3397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 08/07/2024] Open
Abstract
Hepatocyte growth factor (HGF) and its receptor, c-Met, play important roles in the occurrence, development, and treatment of gastric cancer (GC). This review explored the function of the HGF/c-Met signaling pathway in GC and its potential targeted therapeutic mechanisms. As one of the most common malignant tumors worldwide, GC has a complex pathogenesis and limited therapeutic options. Therefore, a thorough understanding of the molecular mechanism of GC is very important for the development of new therapeutic methods. The HGF/c-Met signaling pathway plays an important role in the proliferation, migration, and invasion of GC cells and has become a new therapeutic target. This review summarizes the current research progress on the role of HGF/c-Met in GC and discusses targeted therapeutic strategies targeting this signaling pathway, providing new ideas and directions for the treatment of GC.
Collapse
Affiliation(s)
- Wu-Jie Wei
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Ya-Li Hong
- Department of Cardiovascular, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Yi Deng
- Intensive Care Unit, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Guan-Liang Wang
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Jiang-Tao Qiu
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, Beijing 100084, China
| | - Fang Pan
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| |
Collapse
|
3
|
Wang LM, Zhang WW, Qiu YY, Wang F. Ferroptosis regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer. World J Gastrointest Oncol 2024; 16:2781-2792. [PMID: 38994139 PMCID: PMC11236228 DOI: 10.4251/wjgo.v16.i6.2781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumors in the world, and its occurrence and development involve complex biological processes. Iron death, as a new cell death mode, has attracted wide attention in recent years. However, the regulatory mechanism of iron death in gastric cancer and its effect on lipid peroxidation metabolism remain unclear. AIM To explore the role of iron death in the development of gastric cancer, reveal its relationship with lipid peroxidation, and provide a new theoretical basis for revealing the molecular mechanism of the occurrence and development of gastric cancer. METHODS The process of iron death in gastric cancer cells was simulated by cell culture model, and the occurrence of iron death was detected by fluorescence microscopy and flow cytometry. The changes of gene expression related to iron death and lipid peroxidation metabolism were analyzed by high-throughput sequencing technology. In addition, a mouse model of gastric cancer was established, and the role of iron death in vivo was studied by histology and immunohistochemistry, and the level of lipid peroxidation was detected. These methods comprehensively and deeply reveal the regulatory mechanism of iron death on lipid peroxidation metabolism in the occurrence and development of gastric cancer. RESULTS Iron death was significantly activated in gastric cancer cells, and at the same time, associated lipid peroxidation levels increased significantly. Through high-throughput sequencing analysis, it was found that iron death regulated the expression of several genes related to lipid metabolism. In vivo experiments demonstrated that increased iron death in gastric cancer mice was accompanied by a significant increase in lipid peroxidation. CONCLUSION This study confirmed the important role of iron death in regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer. The activation of iron death significantly increased lipid peroxidation levels, revealing its regulatory mechanism inside the cell.
Collapse
Affiliation(s)
- Lan-Mei Wang
- Department of Clinical Laboratory, Anqiu People's Hospital, Weifang 262123, Shandong Province, China
| | - Wei-Wei Zhang
- Department of Gastroenterology, Feicheng People's Hospital, Tai’an 271600, Shandong Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Fang Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| |
Collapse
|
4
|
Kim JS, Kim MY, Hong S. Characterization of MET Alterations in 37 Gastroesophageal Cancer Cell Lines for MET-Targeted Therapy. Int J Mol Sci 2024; 25:5975. [PMID: 38892160 PMCID: PMC11173193 DOI: 10.3390/ijms25115975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Capmatinib and savolitinib, selective MET inhibitors, are widely used to treat various MET-positive cancers. In this study, we aimed to determine the effects of these inhibitors on MET-amplified gastric cancer (GC) cells. Methods: After screening 37 GC cell lines, the following cell lines were found to be MET-positive with copy number variation >10: SNU-620, ESO51, MKN-45, SNU-5, and OE33 cell lines. Next, we assessed the cytotoxic response of these cell lines to capmatinib or savolitinib alone using cell counting kit-8 and clonogenic cell survival assays. Western blotting was performed to assess the effects of capmatinib and savolitinib on the MET signaling pathway. Xenograft studies were performed to evaluate the in vivo therapeutic efficacy of savolitinib in MKN-45 cells. Savolitinib and capmatinib exerted anti-proliferative effects on MET-amplified GC cell lines in a dose-dependent manner. Savolitinib inhibited the phosphorylation of MET and downstream signaling pathways, such as the protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) pathways, in MET-amplified GC cells. Additionally, savolitinib significantly decreased the number of colonies formed on the soft agar and exerted dose-dependent anti-tumor effects in an MKN-45 GC cell xenograft model. Furthermore, a combination of trastuzumab and capmatinib exhibited enhanced inhibition of AKT and ERK activation in human epidermal growth factor receptor-2 (HER2)- and MET-positive OE33 cells. Targeting MET with savolitinib and capmatinib efficiently suppressed the growth of MET-amplified GC cells. Moreover, these MET inhibitors exerted synergistic effects with trastuzumab on HER2- and MET-amplified GC cells.
Collapse
Affiliation(s)
- Jin-Soo Kim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea;
| | - Mi Young Kim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea;
| | - Sungyoul Hong
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea;
| |
Collapse
|
5
|
Zhang Y, Shen L, Peng Z. Advances in MET tyrosine kinase inhibitors in gastric cancer. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0044. [PMID: 38727001 PMCID: PMC11208904 DOI: 10.20892/j.issn.2095-3941.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/11/2024] [Indexed: 06/29/2024] Open
Abstract
Gastric cancer is among the most frequently occurring cancers and a leading cause of cancer-related deaths globally. Because gastric cancer is highly heterogenous and comprised of different subtypes with distinct molecular and clinical characteristics, the management of gastric cancer calls for better-defined, biomarker-guided, molecular-based treatment strategies. MET is a receptor tyrosine kinase mediating important physiologic processes, such as embryogenesis, tissue regeneration, and wound healing. However, mounting evidence suggests that aberrant MET pathway activation contributes to tumour proliferation and metastasis in multiple cancer types, including gastric cancer, and is associated with poor patient outcomes. As such, MET-targeting therapies are being actively developed and promising progress has been demonstrated, especially with MET tyrosine kinase inhibitors. This review aims to briefly introduce the role of MET alterations in gastric cancer and summarize in detail the current progress of MET tyrosine kinase inhibitors in this disease area with a focus on savolitinib, tepotinib, capmatinib, and crizotinib. Building on current knowledge, this review further discusses existing challenges in MET alterations testing, possible resistance mechanisms to MET inhibitors, and future directions of MET-targeting therapies.
Collapse
Affiliation(s)
- Yifan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
6
|
Hyung S, Ko J, Heo YJ, Blum SM, Kim ST, Park SH, Park JO, Kang WK, Lim HY, Klempner SJ, Lee J. Patient-derived exosomes facilitate therapeutic targeting of oncogenic MET in advanced gastric cancer. SCIENCE ADVANCES 2023; 9:eadk1098. [PMID: 38000030 PMCID: PMC10672184 DOI: 10.1126/sciadv.adk1098] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
Gastric cancer (GC) with peritoneal metastases and malignant ascites continues to have poor prognosis. Exosomes mediate intercellular communication during cancer progression and promote therapeutic resistance. Here, we report the significance of exosomes derived from malignant ascites (EXOAscites) in cancer progression and use modified exosomes as resources for cancer therapy. EXOAscites from patients with GC stimulated invasiveness and angiogenesis in an ex vivo three-dimensional autologous tumor spheroid microfluidic system. EXOAscites concentration increased invasiveness, and blockade of their secretion suppressed tumor progression. In MET-amplified GC, EXOAscites contain abundant MET; their selective delivery to tumor cells enhanced angiogenesis and invasiveness. Exosomal MET depletion substantially reduced invasiveness; an additive therapeutic effect was induced when combined with MET and/or VEGFR2 inhibition in a patient-derived MET-amplified GC model. Allogeneic MET-harboring exosome delivery induced invasion and angiogenesis in a MET non-amplified GC model. MET-amplified patient tissues showed higher exosome concentration than their adjacent normal tissues. Manipulating exosome content and production may be a promising complementary strategy against GC.
Collapse
Affiliation(s)
- Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihoon Ko
- Department of BioNano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| | | | - Steven M. Blum
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Samuel J. Klempner
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Afshar S, Abbasinazari M, Amin G, Farrokhian A, Sistanizad M, Afshar F, Khalili S. Endocannabinoids and related compounds as modulators of angiogenesis: Concepts and clinical significance. Cell Biochem Funct 2022; 40:826-837. [PMID: 36317321 DOI: 10.1002/cbf.3754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022]
Abstract
Vasculogenesis (the process of differentiation of angioblasts toward endothelial cells and de novo formation of crude vascular networks) and angiogenesis (the process of harmonized sprouting and dispersal of new capillaries from previously existing ones) are two fundamentally complementary processes, obligatory for maintaining physiological functioning of vascular system. In clinical practice, however, the later one is of more importance as it guarantees correct embryonic nourishment, accelerates wound healing processes, prevents uncontrolled cell growth and tumorigenesis, contributes in supplying nutritional demand following occlusion of coronary vessels and is in direct relation with development of diabetic retinopathy. Hence, discovery of novel molecules capable of modulating angiogenic events are of great clinical importance. Recent studies have demonstrated multiple angio-regulatory activities for endocannabinoid system modulators and endocannabinoid-like molecules, as well as their metabolizing enzymes. Hence, in present article, we reviewed the regulatory roles of these molecules on angiogenesis and described molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Shima Afshar
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasinazari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Amin
- Department of Pharmacognosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Farrokhian
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sistanizad
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Afshar
- Department of internal medicine, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shayesteh Khalili
- Department of Internal Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Zhang Z, Li D, Yun H, Tong J, Liu W, Chai K, Zeng T, Gao Z, Xie Y. Opportunities and challenges of targeting c-Met in the treatment of digestive tumors. Front Oncol 2022; 12:923260. [PMID: 35978812 PMCID: PMC9376446 DOI: 10.3389/fonc.2022.923260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
At present, a large number of studies have demonstrated that c-Met generally exerts a crucial function of promoting tumor cells proliferation and differentiation in digestive system tumors. c-Met also mediates tumor progression and drug resistance by signaling interactions with other oncogenic molecules and then activating downstream pathways. Therefore, c-Met is a promising target for the treatment of digestive system tumors. Many anti-tumor therapies targeting c-Met (tyrosine kinase inhibitors, monoclonal antibodies, and adoptive immunotherapy) have been developed in treating digestive system tumors. Some drugs have been successfully applied to clinic, but most of them are defective due to their efficacy and complications. In order to promote the clinical application of targeting c-Met drugs in digestive system tumors, it is necessary to further explore the mechanism of c-Met action in digestive system tumors and optimize the anti-tumor treatment of targeting c-Met drugs. Through reading a large number of literatures, the author systematically reviewed the biological functions and molecular mechanisms of c-Met associated with tumor and summarized the current status of targeting c-Met in the treatment of digestive system tumors so as to provide new ideas for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Zhengchao Zhang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Dong Li
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jie Tong
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Wei Liu
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Tongwei Zeng
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenghua Gao
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| | - Yongqiang Xie
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
- *Correspondence: Yongqiang Xie, ; Zhenghua Gao,
| |
Collapse
|
9
|
Therapeutic Strategies for Ovarian Cancer in Point of HGF/c-MET Targeting. Medicina (B Aires) 2022; 58:medicina58050649. [PMID: 35630066 PMCID: PMC9147666 DOI: 10.3390/medicina58050649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer deaths in women and is regarded as one of the most difficult cancers to treat. Currently, studies are being conducted to develop therapeutic agents for effective treatment of ovarian cancer. In this review, we explain the properties of the hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (c-MET) and how the signaling pathway of HGF/c-MET is activated in different cancers and involved in tumorigenesis and metastasis of ovarian cancer. We present the findings of clinical studies using small chemicals or antibodies targeting HGF/c-MET signaling in various cancer types, particularly in ovarian cancer. We also discuss that HGF/c-MET-targeted therapy, when combined with chemo drugs, could be an effective strategy for ovarian cancer therapeutics.
Collapse
|
10
|
Hudson R, Yao HP, Suthe SR, Patel D, Wang MH. Antibody-Drug Conjugate PCMC1D3-Duocarmycin SA as a Novel Therapeutic Entity for Targeted Treatment of Cancers Aberrantly Expressing MET Receptor Tyrosine Kinase. Curr Cancer Drug Targets 2021; 22:312-327. [PMID: 34951367 DOI: 10.2174/1568009621666211222154129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/11/2021] [Accepted: 11/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aberrant expression of the MET receptor tyrosine kinase is an oncogenic determinant and a drug target for cancer therapy. Currently, antibody-based biotherapeutics targeting MET are under clinical trials. OBJECTIVE Here we report the preclinical and therapeutic evaluation of a novel anti-MET antibody-drug conjugate PCMC1D3-duocarmycin SA (PCMC1D3-DCM) for targeted cancer therapy. METHODS The monoclonal antibody PCMC1D3 (IgG1a/κ), generated by a hybridoma technique and specific to one of the MET extracellular domains, was selected based on its high specificity to human MET with a binding affinity of 1.60 nM. PCMC1D3 was conjugated to DCM via a cleavable valine-citrulline dipeptide linker to form an antibody-drug conjugate with a drug-to-antibody ratio of 3.6:1. PCMC1D3-DCM in vitro rapidly induced MET internalization with an internalization efficacy ranging from 6.5 to 17.2h dependent on individual cell lines. RESULTS Studies using different types of cancer cell lines showed that PCMC1D3-DCM disrupted cell cycle, reduced cell viability, and caused massive cell death within 96h after treatment initiation. The calculated IC50 values for cell viability reduction were 1.5 to 15.3 nM. Results from mouse xenograft tumor models demonstrated that PCMC1D3-DCM in a single dose injection at 10 mg/kg body weight effectively delayed xenograft tumor growth up to two weeks without signs of tumor regrowth. The calculated tumoristatic concentration, a minimal dose required to balance tumor growth and inhibition, was around 2 mg/kg bodyweight. Taken together, PCMC1D3-DCM was effective in targeting inhibition of tumor growth in xenograft models. CONCLUSION This work provides the basis for the development of humanized PCMC1D3-DCM for MET-targeted cancer therapy in the future.
Collapse
Affiliation(s)
- Rachel Hudson
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou . United States
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou . United States
| | - Sreedhar Reddy Suthe
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX. United States
| | - Dhavalkumar Patel
- Pharmaceutical Research Core, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX. United States
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou . United States
| |
Collapse
|
11
|
Gu ML, Zhou XX, Ren MT, Shi KD, Yu MS, Jiao WR, Wang YM, Zhong WX, Ji F. Blockage of ETS homologous factor inhibits the proliferation and invasion of gastric cancer cells through the c-Met pathway. World J Gastroenterol 2020; 26:7497-7512. [PMID: 33384550 PMCID: PMC7754554 DOI: 10.3748/wjg.v26.i47.7497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common and deadliest types of cancer worldwide due to its delayed diagnosis and high metastatic frequency, but its exact pathogenesis has not been fully elucidated. ETS homologous factor (EHF) is an important member of the ETS family and contributes to the pathogenesis of multiple malignant tumors. To date, whether EHF participates in the development of GC via the c-Met signaling pathway remains unclear.
AIM To investigate the role and mechanism of EHF in the occurrence and development of GC.
METHODS The expression of EHF mRNA in GC tissues and cell lines was measured by quantitative PCR. Western blotting was performed to determine the protein expression of EHF, c-Met, and its downstream signal molecules. The EHF expression in GC tissues was further detected by immunohistochemical staining. To investigate the role of EHF in GC oncogenesis, small interfering RNA (siRNA) against EHF was transfected into GC cells. The cell proliferation of GC cells was determined by Cell Counting Kit-8 and colony formation assays. Flow cytometry was performed following Annexin V/propidium iodide (PI) to identify apoptotic cells and PI staining to analyze the cell cycle. Cell migration and invasion were assessed by transwell assays.
RESULTS The data showed that EHF was upregulated in GC tissues and cell lines in which increased expression of c-Met was also observed. Silencing of EHF by siRNA reduced the proliferation of GC cells. Inhibition of EHF induced significant apoptosis and cell cycle arrest in GC cells. Cell migration and invasion were significantly inhibited. EHF silencing led to c-Met downregulation and further blocked the Ras/c-Raf/extracellular signal-related kinase 1/2 (Erk1/2) pathway. Additionally, phosphatase and tensin homolog was upregulated and glycogen synthase kinase 3 beta was deactivated. Moreover, inactivation of signal transducer and activator of transcription 3 was detected following EHF inhibition, leading to inhibition of the epithelial-to-mesenchymal transition (EMT).
CONCLUSION These results suggest that EHF plays a key role in cell proliferation, invasion, apoptosis, the cell cycle and EMT via the c-Met pathway. Therefore, EHF may serve as an antineoplastic target for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Meng-Li Gu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xin-Xin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Meng-Ting Ren
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ke-Da Shi
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Mo-Sang Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Wen-Rui Jiao
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ya-Mei Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu 322000, Zhejiang Province, China
| | - Wei-Xiang Zhong
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
12
|
El Darsa H, El Sayed R, Abdel-Rahman O. MET Inhibitors for the Treatment of Gastric Cancer: What's Their Potential? J Exp Pharmacol 2020; 12:349-361. [PMID: 33116950 PMCID: PMC7547764 DOI: 10.2147/jep.s242958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer remains a disease with a dismal prognosis. Extensive efforts to find targetable disease drivers in gastric cancer were implemented to improve patient outcomes. Beyond anti-HER2 therapy, MET pathway seems to be culprit of cancer invasiveness with MET-overexpressing tumors having poorer prognosis. Tyrosine kinase inhibitors targeting the HGF/MET pathway were studied in MET-positive gastric cancer, but no substantial benefit was proven. Some patients responded in early phase trials but later developed resistance. Others failed to show any benefit at all. Etiologies of resistance may entail inappropriate patient selection with a lack of MET detection standardization, tumor alternative pathways, variable MET amplification, and genetic variation. Optimizing MET detection techniques and better understanding the MET pathway, as well as tumor bypass mechanisms, are an absolute need to devise means to overcome resistance using targeted therapy alone, or in combination with other synergistic agents to improve outcomes of patients with MET-positive GC.
Collapse
Affiliation(s)
- Haidar El Darsa
- Division of Medical Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rola El Sayed
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Omar Abdel-Rahman
- Division of Medical Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Shirvani P, Fassihi A. Molecular modelling study on pyrrolo[2,3-b]pyridine derivatives as c-Met kinase inhibitors: a combined approach using molecular docking, 3D-QSAR modelling and molecular dynamics simulation. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1810853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Pouria Shirvani
- Department of medicinal Chemistry, Isfahan University of Medical Science, Isfahan, Iran
| | - Afshin Fassihi
- Department of medicinal Chemistry, Isfahan University of Medical Science, Isfahan, Iran
- Bioinformatic Research Centre, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
14
|
Koustas E, Karamouzis MV, Sarantis P, Schizas D, Papavassiliou AG. Inhibition of c-MET increases the antitumour activity of PARP inhibitors in gastric cancer models. J Cell Mol Med 2020; 24:10420-10431. [PMID: 32686903 PMCID: PMC7521333 DOI: 10.1111/jcmm.15655] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is the fifth most common malignancy and the third leading cause of cancer-related death worldwide. Activation of c-MET increases tumour cell survival through the initiation of the DNA damage repair pathway. PARP is an essential key in the DNA damage repair pathway. The primary role of PARP is to detect and initiate an immediate cellular response to single-strand DNA breaks. Tumours suppressor genes such as BRCA1/2 are closely associated with the DNA repair pathway. In BRCA1/2 mutations or deficiency status, cells are more likely to develop additional genetic alterations and chromosomal instability and can lead to cancer. In this study, we investigate the role of c-MET and PARP inhibition in a gastric cancer model. We exploited functional in vitro and in vivo experiments to assess the antitumour potential of co-inhibition of c-MET (SU11274) and PARP (NU1025). This leads to a reduction of gastric cancer cells viability, especially after knockdown of BRCA1/2 through apoptosis and induction of γ-Η2ΑΧ. Moreover, in AGS xenograft models, the combinatorial treatment of NU1025 plus SU11274 reduced tumour growth and triggers apoptosis. Collectively, our data may represent a new therapeutic approach for GC thought co-inhibition of c-MET and PARP, especially for patients with BRCA1/2 deficiency tumours.
Collapse
Affiliation(s)
- Evangelos Koustas
- Molecular Oncology UnitDepartment of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Michalis V. Karamouzis
- Molecular Oncology UnitDepartment of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
- First Department of Internal Medicine, 'Laiko' General HospitalMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Panagiotis Sarantis
- Molecular Oncology UnitDepartment of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Dimitrios Schizas
- First Department of SurgeryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Athanasios G. Papavassiliou
- Molecular Oncology UnitDepartment of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
15
|
Yuan X, Sun Z, Yuan Q, Hou W, Liang Q, Wang Y, Mo W, Wang H, Yu M. Dual-function chimeric antigen receptor T cells targeting c-Met and PD-1 exhibit potent anti-tumor efficacy in solid tumors. Invest New Drugs 2020; 39:34-51. [PMID: 32772342 DOI: 10.1007/s10637-020-00978-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022]
Abstract
Purpose Programmed cell death 1 (PD-1), which is upregulated under the continuous induction of the tumor microenvironment, causes chimeric antigen receptor (CAR)-T cell hypofunction via interaction with programmed death ligand 1 (PD-L1). This study aimed to construct CAR-T cells that are resistant to PD-1 inhibition to improve the effect of CAR-T cells in solid tumors. Methods We constructed a type of dual-function CAR-T cell that targets tumor-associated antigen c-Met and blocks the binding of PD-1 with PD-L1. The expression of c-Met, PD-L1, and inhibitory receptors was measured using flow cytometry. The cytotoxicity, cytokine release, and differentiation level of CAR-T cells were determined using lactate dehydrogenase release assay, enzyme-linked immunosorbent assay, and flow cytometry, respectively. The levels of p-Akt, p-MAPK, caspase-3, and Bcl2 were detected by western blot. The in vivo anti-tumor effect was evaluated using tumor xenograft models. Results Dual-function CAR-T cells could mediate enhanced active signals upon encountering target antigens and had targeted cytotoxicity to target cells. However, the cytotoxicity of c-Met-CAR-PD-1+ T cells was impaired due to the interaction of PD-1 with PD-L1. By blocking the binding of PD-1 and PD-L1, the novel dual-function CAR-PD-1+ T cells could maintain cytotoxicity to PD-L1+ tumor cells. In tumor tissue, the dual-function CAR-T cells showed lower inhibitory receptor expression and lower differentiation characteristics, which resulted in potent anti-tumor effects and prolonged survival in PD-L1+ tumor xenograft models compared to single-target CAR-T cells. Conclusion These results confirm that the novel dual-function CAR-T cells exhibit stronger anti-tumor activity against solid tumors than traditional single-target CAR-T cells and present a new approach that enhance the activity of CAR-T cells in solid tumors.
Collapse
Affiliation(s)
- Xingxing Yuan
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education and the Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, P.O. Box #238, No. 138 Yi Xue Yuan Road, Shanghai, China
| | - Zujun Sun
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education and the Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, P.O. Box #238, No. 138 Yi Xue Yuan Road, Shanghai, China.,Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Qingyun Yuan
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education and the Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, P.O. Box #238, No. 138 Yi Xue Yuan Road, Shanghai, China
| | - Weihua Hou
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education and the Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, P.O. Box #238, No. 138 Yi Xue Yuan Road, Shanghai, China
| | - Qiaoyan Liang
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education and the Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, P.O. Box #238, No. 138 Yi Xue Yuan Road, Shanghai, China
| | - Yuxiong Wang
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education and the Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, P.O. Box #238, No. 138 Yi Xue Yuan Road, Shanghai, China
| | - Wei Mo
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education and the Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, P.O. Box #238, No. 138 Yi Xue Yuan Road, Shanghai, China
| | - Huijie Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong An Road, Shanghai, China.
| | - Min Yu
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education and the Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, P.O. Box #238, No. 138 Yi Xue Yuan Road, Shanghai, China.
| |
Collapse
|
16
|
Therapeutic Efficacy of ABN401, a Highly Potent and Selective MET Inhibitor, Based on Diagnostic Biomarker Test in MET-Addicted Cancer. Cancers (Basel) 2020; 12:cancers12061575. [PMID: 32549194 PMCID: PMC7352216 DOI: 10.3390/cancers12061575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022] Open
Abstract
The receptor tyrosine kinase c-MET regulates processes essential for tissue remodeling and mammalian development. The dysregulation of c-MET signaling plays a role in tumorigenesis. The aberrant activation of c-MET, such as that caused by gene amplification or mutations, is associated with many cancers. c-MET is therefore an attractive therapeutic target, and inhibitors are being tested in clinical trials. However, inappropriate patient selection criteria, such as low amplification or expression level cut-off values, have led to the failure of clinical trials. To include patients who respond to MET inhibitors, the selection criteria must include MET oncogenic addiction. Here, the efficacy of ABN401, a MET inhibitor, was investigated using histopathologic and genetic analyses in MET-addicted cancer cell lines and xenograft models. ABN401 was highly selective for 571 kinases, and it inhibited c-MET activity and its downstream signaling pathway. We performed pharmacokinetic profiling of ABN401 and defined the dose and treatment duration of ABN401 required to inhibit c-MET phosphorylation in xenograft models. The results show that the efficacy of ABN401 is associated with MET status and they highlight the importance of determining the cut-off values. The results suggest that clinical trials need to establish the characteristics of each sample and their correlations with the efficacy of MET inhibitors.
Collapse
|
17
|
Raimúndez E, Keller S, Zwingenberger G, Ebert K, Hug S, Theis FJ, Maier D, Luber B, Hasenauer J. Model-based analysis of response and resistance factors of cetuximab treatment in gastric cancer cell lines. PLoS Comput Biol 2020; 16:e1007147. [PMID: 32119655 PMCID: PMC7067490 DOI: 10.1371/journal.pcbi.1007147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 03/12/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
Targeted cancer therapies are powerful alternatives to chemotherapies or can be used complementary to these. Yet, the response to targeted treatments depends on a variety of factors, including mutations and expression levels, and therefore their outcome is difficult to predict. Here, we develop a mechanistic model of gastric cancer to study response and resistance factors for cetuximab treatment. The model captures the EGFR, ERK and AKT signaling pathways in two gastric cancer cell lines with different mutation patterns. We train the model using a comprehensive selection of time and dose response measurements, and provide an assessment of parameter and prediction uncertainties. We demonstrate that the proposed model facilitates the identification of causal differences between the cell lines. Furthermore, our study shows that the model provides predictions for the responses to different perturbations, such as knockdown and knockout experiments. Among other results, the model predicted the effect of MET mutations on cetuximab sensitivity. These predictive capabilities render the model a basis for the assessment of gastric cancer signaling and possibly for the development and discovery of predictive biomarkers. Unraveling the causal differences between drug responders and non-responders is an important challenge. The information can help to understand molecular mechanisms and to guide the selection and design of targeted therapies. Here, we approach this problem for cetuximab treatment for gastric cancer using mechanistic mathematical modeling. The proposed model describes responder and non-responder gastric cancer cell lines and can predict the response in several validation experiments. Our analysis provides a differentiated view on mutations and explains, for instance, the relevance of MET mutations and the insignificance of PIK3CA mutation in the considered cell lines. The model might potentially provide the basis for understanding the recent failure of several clinical studies.
Collapse
Affiliation(s)
- Elba Raimúndez
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
- Center for Mathematics, Technische Universität München, Garching, Germany
| | - Simone Keller
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Institute of Pathology, Munich, Germany
| | - Gwen Zwingenberger
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Institute of Pathology, Munich, Germany
| | - Karolin Ebert
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Institute of Pathology, Munich, Germany
| | - Sabine Hug
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
- Center for Mathematics, Technische Universität München, Garching, Germany
| | - Fabian J. Theis
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
- Center for Mathematics, Technische Universität München, Garching, Germany
| | | | - Birgit Luber
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Institute of Pathology, Munich, Germany
| | - Jan Hasenauer
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
- Center for Mathematics, Technische Universität München, Garching, Germany
- Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
18
|
Li J, Li J, Zhang J, Shi J, Ding S, Liu Y, Chen Y, Liu J. Design, Synthesis and Biological Evaluation of Novel 4-phenoxypyridine Derivatives Containing Semicarbazones Moiety as Potential c-Met Kinase Inhibitors. Anticancer Agents Med Chem 2020; 20:559-570. [PMID: 31893997 DOI: 10.2174/1871520620666200101143307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Hepatocyte Growth Factor Receptor (HGFR) c-Met is over-expressed and/or mutated in various human tumor types. Dysregulation of c-Met/HGF signaling pathway affects cell proliferation, survival and motility, leading to tumor growth, angiogenesis, and metastasis. Therefore, c-Met has become an attractive target for cancer therapy. OBJECTIVE This study is aimed to evaluate a new series of 4-phenoxypyridine derivatives containing semicarbazones moiety for its cytotoxicity. METHODS A series of novel 4-phenoxypyridines containing semicarbazone moieties were synthesized and evaluated for their in vitro cytotoxic activities against MKN45 and A549 cancer cell lines and some selected compounds were further examined for their inhibitory activity against c-Met kinase. In order to evaluate the mechanism of cytotoxic activity of compound 24, cell cycle analysis, Annexin V/PI staining assay, AO/EB assay, wound-healing assay and docking analysis with c-Met were performed. RESULTS The results indicated that most of the compounds showed moderate to good antitumor activity. The compound 28 showed well cytotoxic activity against MKN45 and A549 cell lines with IC50 values of 0.25μM and 0.67μM, respectively. Compound 24 showed good activity on c-Met and its IC50 value was 0.093μM. CONCLUSION Their preliminary Structure-Activity Relationships (SARs) studies indicated that electronwithdrawing groups on the terminal phenyl rings are beneficial for improving the antitumor activity. Treatments of MKN45 cells with compound 24 resulted in cell cycle arrest in G2/M phase and induced apoptosis in a dose-dependent manner. In addition, AO/EB assays indicated 24 induced dose-dependent apoptosis of A549 and MKN45 cells. Wound-healing assay results indicated that compound 24 strongly inhibited A549 cell motility.
Collapse
Affiliation(s)
- Jun Li
- College of Pharmacy, Key Laboratory of New Drug Research and Development of Liaoning Province, Liaoning University, Shenyang 110036, China
| | - Jie Li
- College of Pharmacy, Key Laboratory of New Drug Research and Development of Liaoning Province, Liaoning University, Shenyang 110036, China
| | - Jiaojiao Zhang
- College of Pharmacy, Key Laboratory of New Drug Research and Development of Liaoning Province, Liaoning University, Shenyang 110036, China
| | - Jiantao Shi
- College of Pharmacy, Key Laboratory of New Drug Research and Development of Liaoning Province, Liaoning University, Shenyang 110036, China
| | - Shi Ding
- College of Pharmacy, Key Laboratory of New Drug Research and Development of Liaoning Province, Liaoning University, Shenyang 110036, China
| | - Yajing Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ye Chen
- College of Pharmacy, Key Laboratory of New Drug Research and Development of Liaoning Province, Liaoning University, Shenyang 110036, China.,API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang 110036, China
| | - Ju Liu
- College of Pharmacy, Key Laboratory of New Drug Research and Development of Liaoning Province, Liaoning University, Shenyang 110036, China.,API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang 110036, China
| |
Collapse
|
19
|
Ebert K, Mattes J, Kunzke T, Zwingenberger G, Luber B. MET as resistance factor for afatinib therapy and motility driver in gastric cancer cells. PLoS One 2019; 14:e0223225. [PMID: 31557260 PMCID: PMC6763200 DOI: 10.1371/journal.pone.0223225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/15/2019] [Indexed: 12/24/2022] Open
Abstract
The therapeutic options for advanced gastric cancer are still limited. Several drugs targeting the epidermal growth factor receptor family have been developed. So far, the HER2 antibody trastuzumab is the only drug targeting the HER-family that is available to gastric cancer patients. The pan-HER inhibitor afatinib is currently investigated in clinical trials and shows promising results in cell culture experiments and patient-derived xenograft (PDX) models. However, some cell lines do not respond to afatinib treatment. The determination of resistance factors in these cell lines can help to find the best treatment option for gastric cancer patients. In this study, we analyzed the role of MET as a resistance factor for afatinib therapy in a gastric cancer cell line. MET expression in afatinib-resistant MET-amplified Hs746T cells was reduced by means of siRNA transfection. The effects of MET knockdown on signal transduction, cell proliferation and motility were examined. In addition to the manual assessment of cell motility, a computational motility analysis involving parameters such as (approximate) average speed, displacement entropy or radial effectiveness was realized. Moreover, the impact of afatinib was compared between MET knockdown cells and control cells. MET knockdown in Hs746T cells resulted in impaired signal transduction and reduced cell proliferation and motility. Moreover, the afatinib resistance of Hs746T cells was reversed after MET knockdown. Therefore, the amplification of MET is confirmed as a resistance factor in gastric cancer cells. Whether MET is a useful resistance marker for afatinib therapy or other HER-targeting drugs in patients should be investigated in clinical trials.
Collapse
Affiliation(s)
- Karolin Ebert
- Technische Universität München, Fakultät für Medizin, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, Trogerstr, München, Germany
| | - Julian Mattes
- MATTES Medical Imaging GmbH, Softwarepark, Hagenberg, Austria
| | - Thomas Kunzke
- Technische Universität München, Fakultät für Medizin, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, Trogerstr, München, Germany
| | - Gwen Zwingenberger
- Technische Universität München, Fakultät für Medizin, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, Trogerstr, München, Germany
| | - Birgit Luber
- Technische Universität München, Fakultät für Medizin, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, Trogerstr, München, Germany
| |
Collapse
|
20
|
Lv PC, Yang YS, Wang ZC. Recent Progress in the Development of Small Molecule c-Met Inhibitors. Curr Top Med Chem 2019; 19:1276-1288. [PMID: 31526339 DOI: 10.2174/1568026619666190712205353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 02/08/2023]
Abstract
C-Met, also referred to as Hepatocyte Growth Factor Receptor (HGFR), is a heterodimeric
receptor tyrosine kinase. It has been determined that c-Met gene mutations, overexpression, and amplification
also occur in a variety of human tumor types, and these events are closely related to the aberrant
activation of the HGF/c-Met signaling pathway. Meanwhile, high c-Met expression is closely associated
with poor prognosis in cancer patients. The c-Met kinase has emerged as an attractive target for developing
antitumor agents. In this review, we cover the recent advances on the small molecule c-Met inhibitors
discovered from 2018 until now, with a main focus on the rational design, synthesis and structureactivity
relationship analysis.
Collapse
Affiliation(s)
- Peng-Cheng Lv
- Department of Chemistry, Purdue University, West Lafayette, Indiana, IN 47907, United States
| | - Yu-Shun Yang
- Department of Chemistry, Purdue University, West Lafayette, Indiana, IN 47907, United States
| | - Zhong-Chang Wang
- Department of Chemistry, Purdue University, West Lafayette, Indiana, IN 47907, United States
| |
Collapse
|
21
|
Li K, Chen Y, Li A, Tan C, Liu X. Exosomes play roles in sequential processes of tumor metastasis. Int J Cancer 2019; 144:1486-1495. [PMID: 30155891 DOI: 10.1002/ijc.31774] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/22/2018] [Accepted: 07/17/2018] [Indexed: 02/05/2023]
Abstract
Overwhelming evidence demonstrates that exosomes, a series of biologically functional small vesicles of endocytic origin carrying a variety of active constituents, especially tumor-derived exosomes, contribute to tumor progression and metastasis. This review focuses on the specific multifaceted roles of exosomes in affecting sequenced four crucial processes of metastasis, through which cancer cells spread from primary to secondary organs and finally form macroscopic metastatic lesions. First, exosomes modulate the primary tumor sites to assist cancer growth and dissemination. In this part, five main biological events are reviewed, including the transfer of oncogenic constituents, the recruitment and activation of fibroblasts, the induction of angiogenesis, immunosuppression and epithelial-mesenchymal transition (EMT) promotion. In Step 2, we list two recently disclosed mechanisms during the organ-specific homing process: the exosomal integrin model and exosomal epidermal growth factor receptor (EGFR)/miR-26/hepatocyte growth factor (HGF) model. Subsequently, Step 3 focuses on the interactions between exosomes and pre-metastatic niche, in which we highlight the specific functions of exosomes in angiogenesis, lymphangiogenesis, immune modulation and metabolic, epigenetic and stromal reprogramming of pre-metastatic niche. Finally, we summarize the mechanisms of exosomes in helping the metastatic circulating tumor cells escape from immunologic surveillance, survive in the blood circulation and proliferate in host organs.
Collapse
Affiliation(s)
- Keyu Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghua Chen
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ang Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chunlu Tan
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xubao Liu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Sun ZG, Yang YA, Zhang ZG, Zhu HL. Optimization techniques for novel c-Met kinase inhibitors. Expert Opin Drug Discov 2018; 14:59-69. [PMID: 30518273 DOI: 10.1080/17460441.2019.1551355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, Linyi, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yong-An Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhi-Gang Zhang
- Department of Cardiology, Linyi Central Hospital, Linyi, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
23
|
Bahcall M, Awad MM, Sholl LM, Wilson FH, Xu M, Wang S, Palakurthi S, Choi J, Ivanova EV, Leonardi GC, Ulrich BC, Paweletz CP, Kirschmeier PT, Watanabe M, Baba H, Nishino M, Nagy RJ, Lanman RB, Capelletti M, Chambers ES, Redig AJ, VanderLaan PA, Costa DB, Imamura Y, Jänne PA. Amplification of Wild-type KRAS Imparts Resistance to Crizotinib in MET Exon 14 Mutant Non-Small Cell Lung Cancer. Clin Cancer Res 2018; 24:5963-5976. [PMID: 30072474 PMCID: PMC6279568 DOI: 10.1158/1078-0432.ccr-18-0876] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/19/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE MET inhibitors can be effective therapies in patients with MET exon 14 (METex14) mutant non-small cell lung cancer (NSCLC). However, long-term efficacy is limited by the development of drug resistance. In this study, we characterize acquired amplification of wild-type (WT) KRAS as a molecular mechanism behind crizotinib resistance in three cases of METex14-mutant NSCLC and propose a combination therapy to target it. EXPERIMENTAL DESIGN The patient-derived cell line and xenograft (PDX) DFCI358 were established from a crizotinib-resistant METex14-mutant patient tumor with massive focal amplification of WT KRAS. To characterize the mechanism of KRAS-mediated resistance, molecular signaling was analyzed in the parental cell line and its KRAS siRNA-transfected derivative. Sensitivity of the cell line to ligand stimulation was assessed and KRAS-dependent expression of EGFR ligands was quantified. Drug combinations were screened for efficacy in vivo and in vitro using viability and apoptotic assays. RESULTS KRAS amplification is a recurrent genetic event in crizotinib-resistant METex14-mutant NSCLC. The key characteristics of this genetic signature include uncoupling MET from downstream effectors, relative insensitivity to dual MET/MEK inhibition due to compensatory induction of PI3K signaling, KRAS-induced expression of EGFR ligands and hypersensitivity to ligand-dependent and independent activation, and reliance on PI3K signaling upon MET inhibition. CONCLUSIONS Using patient-derived cell line and xenografts, we characterize the mechanism of crizotinib resistance mediated by KRAS amplification in METex14-mutant NSCLC and demonstrate the superior efficacy of the dual MET/PI3K inhibition as a therapeutic strategy addressing this resistance mechanism.
Collapse
Affiliation(s)
- Magda Bahcall
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Frederick H Wilson
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Man Xu
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stephen Wang
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sangeetha Palakurthi
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jihyun Choi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Elena V Ivanova
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Giulia C Leonardi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Bryan C Ulrich
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cloud P Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Paul T Kirschmeier
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mizuki Nishino
- Department of Radiology, Brigham And Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | | | - Marzia Capelletti
- Center for Hematologic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Emily S Chambers
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Amanda J Redig
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Paul A VanderLaan
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Daniel B Costa
- Thoracic Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Yu Imamura
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Rauf A, Patel S, Imran M, Maalik A, Arshad MU, Saeed F, Mabkhot YN, Al-Showiman SS, Ahmad N, Elsharkawy E. Honokiol: An anticancer lignan. Biomed Pharmacother 2018; 107:555-562. [DOI: 10.1016/j.biopha.2018.08.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023] Open
|
25
|
Balasubramanian PK, Balupuri A, Bhujbal SP, Cho SJ. 3D-QSAR-aided design of potent c-Met inhibitors using molecular dynamics simulation and binding free energy calculation. J Biomol Struct Dyn 2018; 37:2165-2178. [PMID: 30044205 DOI: 10.1080/07391102.2018.1479309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Mesenchymal-epithelial transition factor (c-Met) is a member of receptor tyrosine kinase. It involves in various cellular signaling pathways which includes proliferation, motility, migration, and invasion. Over-expression of c-Met has been reported in various cancers. Hence, it is an ideal therapeutic target for cancer. The main objective of the study is to identify crucial residues involved in the inhibition of c-Met kinase and to design a series of potent imidazo [4,5-b] pyrazine derivatives as c-Met inhibitors. Docking was used to identify important active site residues involved in the inhibition of c-Met kinase which was further validated by 100 ns of molecular dynamics simulation and free energy calculation using molecular mechanics generalized born surface area. Furthermore, binding energy decomposition identified that residues Tyr1230, Met1211, Asp1222, Tyr1159, Met1160, Val1092, Ala1108, and Leu1157 contributed favorably to the binding stability of compound 32. Receptor-guided Comparative Molecular Field Analysis (CoMFA) (q2 = 0.751, NOC = 6, r2 = 0.933) and Comparative Molecular Similarity Indices Analysis (COMSIA) (q2 = 0.744, NOC = 6, r2 = 0.950) models were generated based on the docked conformation of the most active compound 32. The robustness of these models was tested using various validation techniques and found to be predictive. The results of CoMFA and CoMSIA contour maps exposed the regions favorable to enhance the activity. Based on this information, 27 novel c-Met inhibitors were designed. These designed compounds exhibited potent activity than the most active compound of the existing dataset. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pavithra K Balasubramanian
- a Department of Biomedical Sciences, College of Medicine , Chosun University , Gwangju 501-759 , Republic of Korea
| | - Anand Balupuri
- a Department of Biomedical Sciences, College of Medicine , Chosun University , Gwangju 501-759 , Republic of Korea
| | - Swapnil P Bhujbal
- a Department of Biomedical Sciences, College of Medicine , Chosun University , Gwangju 501-759 , Republic of Korea
| | - Seung Joo Cho
- a Department of Biomedical Sciences, College of Medicine , Chosun University , Gwangju 501-759 , Republic of Korea.,b Department of Cellular·Molecular Medicine, College of Medicine , Chosun University , Gwangju 501-759 , Republic of Korea
| |
Collapse
|
26
|
Noriega-Guerra H, Freitas VM. Extracellular Matrix Influencing HGF/c-MET Signaling Pathway: Impact on Cancer Progression. Int J Mol Sci 2018; 19:ijms19113300. [PMID: 30352967 PMCID: PMC6274944 DOI: 10.3390/ijms19113300] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022] Open
Abstract
The extracellular matrix (ECM) is a crucial component of the tumor microenvironment involved in numerous cellular processes that contribute to cancer progression. It is acknowledged that tumor–stromal cell communication is driven by a complex and dynamic network of cytokines, growth factors and proteases. Thus, the ECM works as a reservoir for bioactive molecules that modulate tumor cell behavior. The hepatocyte growth factor (HGF) produced by tumor and stromal cells acts as a multifunctional cytokine and activates the c-MET receptor, which is expressed in different tumor cell types. The HGF/c-MET signaling pathway is associated with several cellular processes, such as proliferation, survival, motility, angiogenesis, invasion and metastasis. Moreover, c-MET activation can be promoted by several ECM components, including proteoglycans and glycoproteins that act as bridging molecules and/or signal co-receptors. In contrast, c-MET activation can be inhibited by proteoglycans, matricellular proteins and/or proteases that bind and sequester HGF away from the cell surface. Therefore, understanding the effects of ECM components on HGF and c-MET may provide opportunities for novel therapeutic strategies. Here, we give a short overview of how certain ECM components regulate the distribution and activation of HGF and c-MET.
Collapse
Affiliation(s)
- Heydi Noriega-Guerra
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Prédio I, sala 428, 05508-000, São Paulo, SP, Brazil.
| | - Vanessa Morais Freitas
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Prédio I, sala 428, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
27
|
HGF/c-MET: A Promising Therapeutic Target in the Digestive System Cancers. Int J Mol Sci 2018; 19:ijms19113295. [PMID: 30360560 PMCID: PMC6274736 DOI: 10.3390/ijms19113295] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023] Open
Abstract
The HGF/c-MET pathway is active in the development of digestive system cancers, indicating that inhibition of HGF/c-MET signaling may have therapeutic potential. Various HGF/c-MET signaling inhibitors, mainly c-MET inhibitors, have been tested in clinical trials. The observed efficacy and adverse events of some c-MET inhibitors were not very suitable for treating digestive system cancers. The development of new HGF/c-MET inhibitors in preclinical studies may bring promising treatments and synergistic combination (traditional anticancer drugs and c-MET inhibitors) strategies provided anacceptable safety and tolerability. Insights into miRNA biology and miRNA therapeutics have made miRNAs attractive tools to inhibit HGF/c-MET signaling. Recent reports show that several microRNAs participate in inhibiting HGF/c-MET signaling networks through antagonizing c-MET or HGF in digestive system cancers, and the miRNAs-HGF/c-MET axis plays crucial and novel roles for cancer treatment. In the current review, we will discuss recent findings about inhibitors of HGF/c-MET signaling in treating digestive system cancers, and how miRNAs regulate digestive system cancers via mediating HGF/c-MET pathway.
Collapse
|
28
|
Razban V, Khajeh S, Alaee S, Mostafavi-Pour Z, Soleimani M. Tube Formation Potential of BMSCs and USSCs in Response to HIF-1α Overexpression under Hypoxia. CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718030064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Design, synthesis and molecular modeling study for some new 2-substituted benzimidazoles as dual inhibitors for VEGFR-2 and c-Met. Future Med Chem 2018; 10:493-509. [DOI: 10.4155/fmc-2017-0174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: Computer-aided drug design techniques were adopted to design three series of 2-substituted-5-nitrobenzimidazole derivatives hybridized with piperzine 5a,b, oxadiazole 7a,b, 9, 14a–c and triazolo-thiadiazole moieties 12a–d, as VEGFR-2/c-Met kinase inhibitors. Materials & methods: The designed compounds were synthesized adopting the chemical pathways outlined in schemes 1 and 2 to afford the desired three series followed by evaluating their inhibitory activities against VEGFR-2 and c-Met and in vitro anticancer activities. Result: Analogs bearing substituted phenyl ring attached to oxadiazole ring 14a showed the greatest inhibitory activities against non-small-cell lung cancer NCI-H522 and melanoma SK-MEL-2 with inhibition percent of 48.70 and 42.62, respectively. Moreover, unsubstituted phenoxymethyl derivative 12d exhibited promising inhibitory activity against VEGFR-2 and c-Met (35.88 and 88.48%), respectively. Conclusion: The above results revealed that 2-substituted-5-nitrobenzimidazole hybridized with various heterocyclic scaffolds could be a potential anticancer agent.
Collapse
|
30
|
Mihailidou C, Karamouzis MV, Schizas D, Papavassiliou AG. Co-targeting c-Met and DNA double-strand breaks (DSBs): Therapeutic strategies in BRCA-mutated gastric carcinomas. Biochimie 2017; 142:135-143. [PMID: 28890386 DOI: 10.1016/j.biochi.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023]
|
31
|
Bahrami A, Shahidsales S, Khazaei M, Ghayour-Mobarhan M, Maftouh M, Hassanian SM, Avan A. C-Met as a potential target for the treatment of gastrointestinal cancer: Current status and future perspectives. J Cell Physiol 2017; 232:2657-2673. [PMID: 28075018 DOI: 10.1002/jcp.25794] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 01/05/2025]
Abstract
Aberrant activation of the HGF/c-Met signalling pathways is shown to be related with cell proliferation, progression, metastasis, and worse prognosis in several tumor types, including gastrointestinal cancers, suggesting its value as a stimulating-target for cancer-therapy. Several approaches have been developed for targeting HGF and/or c-Met, and one of them, crizotinib (dual c-Met/ALK inhibitor), is recently been approved by FDA for lung-cancers with ALK-rearrangement. The main aim of current review is to give an overview on the role of c-Met/HGF pathway in gastrointestinal cancer, in preclinical and clinical trials. Although several important matters is still remained to be elucidated on the molecular pathways underlying the antitumor effects of this therapy in gastrointestinal-cancers. Further investigations are warranted to recognize the main determinants of the activity of c-Met inhibitors, for parallel targeting signalling pathway associated/activated via MET/HGF pathway or in response to the cell resistance to anti-c-Met agents. Additionally, identification of patients that might benefit from therapy could help to increase the selectivity and efficacy of the therapy.
Collapse
Affiliation(s)
- Afsane Bahrami
- Molecular Medicine Group, Department of Modern Sciences and Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soodabeh Shahidsales
- Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Neurogenic Inflammatory Research Center and Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftouh
- Metabolic syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Identification of 3-substituted-6-(1-(1 H -[1,2,3]triazolo[4,5- b ]pyrazin-1-yl)ethyl)quinoline derivatives as highly potent and selective mesenchymal-epithelial transition factor (c-Met) inhibitors via metabolite profiling-based structural optimization. Eur J Med Chem 2017; 134:147-158. [DOI: 10.1016/j.ejmech.2017.03.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 01/24/2023]
|
33
|
Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat Commun 2017; 8:15016. [PMID: 28393839 PMCID: PMC5394240 DOI: 10.1038/ncomms15016] [Citation(s) in RCA: 412] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
The metastatic organotropism has been one of the cancer's greatest mysteries since the 'seed and soil' hypothesis. Although the role of EGFR in cancer cells is well studied, the effects of secreted EGFR transported by exosomes are less understood. Here we show that EGFR in exosomes secreted from gastric cancer cells can be delivered into the liver and is integrated on the plasma membrane of liver stromal cells. The translocated EGFR is proved to effectively activate hepatocyte growth factor (HGF) by suppressing miR-26a/b expression. Moreover, the upregulated paracrine HGF, which binds the c-MET receptor on the migrated cancer cells, provides fertile 'soil' for the 'seed', facilitating the landing and proliferation of metastatic cancer cells. Thus, we propose that EGFR-containing exosomes derived from cancer cells could favour the development of a liver-like microenvironment promoting liver-specific metastasis.
Collapse
|