1
|
Yoshimaru K, Matsuura T, Uchida Y, Sonoda S, Maeda S, Kajihara K, Kawano Y, Shirai T, Toriigahara Y, Kalim AS, Zhang XY, Takahashi Y, Kawakubo N, Nagata K, Yamaza H, Yamaza T, Taguchi T, Tajiri T. Cutting-edge regenerative therapy for Hirschsprung disease and its allied disorders. Surg Today 2024; 54:977-994. [PMID: 37668735 DOI: 10.1007/s00595-023-02741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
Hirschsprung disease (HSCR) and its associated disorders (AD-HSCR) often result in severe hypoperistalsis caused by enteric neuropathy, mesenchymopathy, and myopathy. Notably, HSCR involving the small intestine, isolated hypoganglionosis, chronic idiopathic intestinal pseudo-obstruction, and megacystis-microcolon-intestinal hypoperistalsis syndrome carry a poor prognosis. Ultimately, small-bowel transplantation (SBTx) is necessary for refractory cases, but it is highly invasive and outcomes are less than optimal, despite advances in surgical techniques and management. Thus, regenerative therapy has come to light as a potential form of treatment involving regeneration of the enteric nervous system, mesenchyme, and smooth muscle in affected areas. We review the cutting-edge regenerative therapeutic approaches for managing HSCR and AD-HSCR, including the use of enteric nervous system progenitor cells, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells as cell sources, the recipient intestine's microenvironment, and transplantation methods. Perspectives on the future of these treatments are also discussed.
Collapse
Affiliation(s)
- Koichiro Yoshimaru
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiharu Matsuura
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yasuyuki Uchida
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shohei Maeda
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keisuke Kajihara
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Kawano
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Shirai
- Department of Pediatric Surgery, Miyazaki Prefectural Miyazaki Hospital, 5-30 Kitatakamatsu-cho, Miyazaki, Miyazaki, 880-8510, Japan
| | - Yukihiro Toriigahara
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Alvin Santoso Kalim
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Xiu-Ying Zhang
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiaki Takahashi
- Department of Pediatric Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Naonori Kawakubo
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kouji Nagata
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoaki Taguchi
- Fukuoka College of Health Sciences, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
2
|
Toholova J, Hornak S, Kuricova M. Non-surgical pain management for hip joint disease in veterinary medicine. VET MED-CZECH 2024; 69:261-272. [PMID: 39296629 PMCID: PMC11406501 DOI: 10.17221/19/2024-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/24/2024] [Indexed: 09/21/2024] Open
Abstract
The most common orthopaedic developmental disease in dogs is hip dysplasia. This condition results in coxofemoral laxity due to incongruity and lack of stabilisation of the joint by the soft tissues. Currently, there is no therapeutic plan to correct hip dysplasia without surgical intervention at a very early age. The goal of the non-surgical treatment is to relieve pain and stiffness and to increase the muscle strength, usually through hydrotherapy and the beneficial physical properties of water. Recently, there has been growing interest in regenerative medicine, which involves the use of mesenchymal stem cells (MSCs) and their products to alleviate the characteristic clinical symptoms of osteoarthritis (OA). In vivo studies with canine MSCs have shown that an intra-articular injection of MSCs into cartilage lesions leads to the excellent regeneration of the hyaline cartilage. Regenerative medicine has undergone rapid development in recent years thanks to new therapies based on the application and combination of innovative biomaterials. One of the first known regenerative methods to be used in clinical practice was platelet-rich plasma (PRP). This review summarises the use and potential of MSCs and PRP, including their in vitro properties, their therapeutic effects in the treatment of cartilage lesions in preclinical in vivo studies, their clinical efficacy in the treatment of naturally occurring OA in dogs, and the current limitations of the studies.
Collapse
Affiliation(s)
- Jana Toholova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Slavomir Hornak
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Maria Kuricova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| |
Collapse
|
3
|
Wang Y, Alexander M, Scott T, Cox DCT, Wellington A, Chan MKS, Wong MBF, Adalsteinsson O, Lakey JRT. Stem Cell Therapy for Aging Related Diseases and Joint Diseases in Companion Animals. Animals (Basel) 2023; 13:2457. [PMID: 37570266 PMCID: PMC10417747 DOI: 10.3390/ani13152457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Stem cell therapy is an attractive treatment for diseases in companion animals that cannot be treated by conventional veterinary medicine practices. The unique properties of stem cells, particularly the ability to differentiate into specific cell types, makes them a focal point in regenerative medicine treatments. Stem cell transplantation, especially using mesenchymal stem cells, has been proposed as a means to treat a wide range of injuries and ailments, resulting in tissue regeneration or repair. This review aims to summarize the veterinary use of stem cells for treating age-related and joint diseases, which are common conditions in pets. While additional research is necessary and certain limitations exist, the potential of stem cell therapy for companion animals is immense.
Collapse
Affiliation(s)
- Yanmin Wang
- California Medical Innovations Institute, 11107 Roselle Street, San Diego, CA 92121, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92868, USA
| | - Todd Scott
- Crestwood Veterinary Clinic, Edmonton, AB T5P 1J9, Canada
| | - Desiree C. T. Cox
- European Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany
- Graduate Faculty, School of Graduate Studies, Rutgers University, New Brunswick, NJ 07013, USA
| | | | - Mike K. S. Chan
- European Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany
| | | | - Orn Adalsteinsson
- European Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany
| | - Jonathan R. T. Lakey
- California Medical Innovations Institute, 11107 Roselle Street, San Diego, CA 92121, USA
- Department of Surgery, University of California Irvine, Irvine, CA 92868, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Sivanarayanan TB, Bhat IA, Sharun K, Palakkara S, Singh R, Remya, Parmar MS, Bhardwaj R, Chandra V, Munuswamy P, Kinjavdekar P, Pawde AM, Amarpal, Sharma GT. Allogenic bone marrow-derived mesenchymal stem cells and its conditioned media for repairing acute and sub-acute peripheral nerve injuries in a rabbit model. Tissue Cell 2023; 82:102053. [PMID: 36907044 DOI: 10.1016/j.tice.2023.102053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The present study evaluated healing potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and BM-MSCs-conditioned medium (BM-MSCs-CM) for acute and subacute injuries in the rabbit peripheral nerve injury model. The regenerative capacity of MSCs was evaluated in 40 rabbits divided into eight groups, four groups each for acute and subacute injury models. BM-MSCs and BM-MSCS-CM were prepared by isolating allogenic bone marrow from the iliac crest. After inducing sciatic nerve crush injury, different treatments consisting of PBS, Laminin, BM-MSCs + laminin, and BM-MSCS-CM + laminin were used on the day of injury in the acute injury model and after ten days of crush injury in the subacute groups. The parameters studied included: pain, total neurological score, gastrocnemius muscle weight and volume ratio, histopathology of the sciatic nerve and gastrocnemius muscle, and scanning electron microscopy (SEM). Findings indicate that BM-MSCs and BM-MSCS-CM have augmented the regenerative capacity in acute and subacute injury groups with a slightly better improvement in the subacute groups than the animals in acute injury groups. Histopathology data revealed different levels of regenerative process undergoing in the nerve. Neurological observations, gastrocnemius muscle evaluation, muscle histopathology, and the SEM results depicted better healing in animals treated with BM-MSCs and BM-MSCS-CM. With this data, it could be concluded that BM-MSCs support the healing of injured peripheral nerves, and the BM-MSCS-CM does accelerate the healing of acute and subacute peripheral nerve injuries in rabbits. However, stem cell therapy may be indicated during the subacute phase for better results.
Collapse
Affiliation(s)
- T B Sivanarayanan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Irfan Ahmad Bhat
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sangeetha Palakkara
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rashmi Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Remya
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mehtab Singh Parmar
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rahul Bhardwaj
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Prakash Kinjavdekar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - G Taru Sharma
- National Institute of Animal Biotechnology, Hyderabad 500032, India.
| |
Collapse
|
5
|
Sharun K, Muthu S, Mankuzhy PD, Pawde AM, Chandra V, Lorenzo JM, Dhama K, Sharma GT. Cell-free therapy for canine osteoarthritis: Current evidence and prospects. Vet Q 2022; 42:224-230. [PMID: 36336651 DOI: 10.1080/01652176.2022.2145620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Orthopaedic Research Group Coimbatore 641045, Tamil Nadu, India
- Department of Orthopedics, Government Medical College and Hospital, Dindigul, Tamil Nadu, 624304, India
| | - Pratheesh D. Mankuzhy
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Abhijit M. Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain
| | - Kuldeep Dhama
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - G. Taru Sharma
- National Institute of Animal Biotechnology, Hyderabad-500032, India
| |
Collapse
|
6
|
Kang MH, Park HM. Challenges of stem cell therapies in companion animal practice. J Vet Sci 2020; 21:e42. [PMID: 32476316 PMCID: PMC7263915 DOI: 10.4142/jvs.2020.21.e42] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine using stem cells from various sources are emerging treatment modality in several refractory diseases in veterinary medicine. It is well-known that stem cells can differentiate into specific cell types, self-renew, and regenerate. In addition, the unique immunomodulatory effects of stem cells have made stem cell transplantation a promising option for treating a wide range of disease and injuries. Recently, the medical demands for companion animals have been rapidly increasing, and certain disease conditions require alternative treatment options. In this review, we focused on stem cell application research in companion animals including experimental models, case reports and clinical trials in dogs and cats. The clinical studies and therapeutic protocols were categorized, evaluated and summarized according to the organ systems involved. The results indicate that evidence for the effectiveness of cell-based treatment in specific diseases or organ systems is not yet conclusive. Nonetheless, stem cell therapy may be a realistic treatment option in the near future, therefore, considerable efforts are needed to find optimized cell sources, cell numbers and delivery methods in order to standardize treatment methods and evaluation processes.
Collapse
Affiliation(s)
- Min Hee Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hee Myung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
7
|
Sato K, Miyamae J, Sakai M, Okano M, Katakura F, Shibuya H, Nakayama T, Moritomo T. The utility of DLA typing for transplantation medicine in canine models. J Vet Med Sci 2020; 82:1138-1145. [PMID: 32624549 PMCID: PMC7468067 DOI: 10.1292/jvms.20-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transplantation medicine is used for the treatment of severe canine diseases, and the dog
leukocyte antigen (DLA) is considered to be important in graft rejection. However, the
utility of direct sequencing of both DLA classes I and II has not been assessed
thoroughly. Eight healthy beagles with identified DLA genes were divided into two sets of
four dogs, each including one donor and three recipients for skin transplantation. The
following recipients were selected: one dog with a complete match, one with a
haploidentical match, and one with a complete mismatch of the DLA gene with the donor.
Full-thickness skin segments were obtained from each donor and transplanted to the
recipients. A mixed lymphocyte reaction (MLR) assay was performed and analyzed by flow
cytometry. Skin grafts of DLA haploidentical and mismatched pairs were grossly rejected
within 14 days, whereas in fully matched DLA pairs, survival was as long as 21 days.
Histopathological evaluation also showed moderate to severe lymphocytic infiltration and
necrosis in DLA mismatched pairs. As seen in the MLR assay, the stimulation index of DLA
mismatched pairs was significantly higher than that of fully matched DLA pairs in both
sets (P<0.001). The allogeneic transplantation results suggested that
it is possible to prolong transplant engraftment by completely matching the DLA genotype
between the donor and recipient. Additionally, the MLR assay may be used as a simplified
in vitro method to select donors.
Collapse
Affiliation(s)
- Keita Sato
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Jiro Miyamae
- Faculty of Veterinary Science, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Manabu Sakai
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Masaharu Okano
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Hisashi Shibuya
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Tomohiro Nakayama
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
8
|
Homing and Engraftment of Intravenously Administered Equine Cord Blood-Derived Multipotent Mesenchymal Stromal Cells to Surgically Created Cutaneous Wound in Horses: A Pilot Project. Cells 2020; 9:cells9051162. [PMID: 32397125 PMCID: PMC7290349 DOI: 10.3390/cells9051162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Limb wounds on horses are often slow to heal and are prone to developing exuberant granulation tissue (EGT) and close primarily through epithelialization, which results in a cosmetically inferior and non-durable repair. In contrast, wounds on the body heal rapidly and primarily through contraction and rarely develop EGT. Intravenous (IV) multipotent mesenchymal stromal cells (MSCs) are promising. They home and engraft to cutaneous wounds and promote healing in laboratory animals, but this has not been demonstrated in horses. Furthermore, the clinical safety of administering >1.00 × 108 allogeneic MSCs IV to a horse has not been determined. A proof-of-principle pilot project was performed with two horses that were administered 1.02 × 108 fluorescently labeled allogeneic cord blood-derived MSCs (CB-MSCs) following wound creation on the forelimb and thorax. Wounds and contralateral non-wounded skin were sequentially biopsied on days 0, 1, 2, 7, 14, and 33 and evaluated with confocal microscopy to determine presence of homing and engraftment. Results confirmed preferential homing and engraftment to wounds with persistence of CB-MSCs at 33 days following wound creation, without clinically adverse reactions to the infusion. The absence of overt adverse reactions allows further studies to determine effects of IV CB-MSCs on equine wound healing.
Collapse
|
9
|
Sasaki A, Mizuno M, Mochizuki M, Sekiya I. Mesenchymal stem cells for cartilage regeneration in dogs. World J Stem Cells 2019; 11:254-269. [PMID: 31171954 PMCID: PMC6545524 DOI: 10.4252/wjsc.v11.i5.254] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Articular cartilage damage and osteoarthritis (OA) are common orthopedic diseases in both humans and dogs. Once damaged, the articular cartilage seldom undergoes spontaneous repair because of its avascular, aneural, and alymphatic state, and the damage progresses to a chronic and painful situation. Dogs have distinctive characteristics compared to other laboratory animal species in that they share an OA pathology with humans. Dogs can also require treatment for naturally developed OA; therefore, effective treatment methods for OA are desired in veterinary medicine as well as in human medicine. Recently, interest has grown in regenerative medicine that includes the use of mesenchymal stem cells (MSCs). In cartilage repair, MSCs are a promising therapeutic tool due to their self-renewal capacity, ability to differentiate into cartilage, potential for trophic factor production, and capacity for immunomodulation. The MSCs from dogs (canine MSCs; cMSCs) share various characteristics with MSCs from other animal species, but they show some deviations, particularly in their differentiation ability and surface epitope expression. In vivo studies of cMSCs have demonstrated that intraarticular cMSC injection into cartilage lesions results in excellent hyaline cartilage regeneration. In clinical situations, cMSCs have shown great therapeutic effects, including amelioration of pain and lameness in dogs suffering from OA. However, some issues remain, such as a lack of regulations or guidelines and a need for unified methods for the use of cMSCs. This review summarizes what is known about cMSCs, including their in vitro characteristics, their therapeutic effects in cartilage lesion treatment in preclinical in vivo studies, their clinical efficacy for treatment of naturally developed OA in dogs, and the current limitations of cMSC studies.
Collapse
Affiliation(s)
- Akari Sasaki
- Laboratory of Veterinary Emergency Medicine, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Manabu Mochizuki
- Laboratory of Veterinary Emergency Medicine, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
10
|
Lee SH, Ra JC, Oh HJ, Kim MJ, Setyawan EMN, Choi YB, Yang JW, Kang SK, Han SH, Kim GA, Lee BC. Clinical Assessment of Intravenous Endothelial Progenitor Cell Transplantation in Dogs. Cell Transplant 2019; 28:943-954. [PMID: 31018670 PMCID: PMC6719494 DOI: 10.1177/0963689718821686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Endothelial progenitor cells (EPCs) have been applied for cell therapy because of their roles in angiogenesis and neovascularization in ischemic tissue. However, adverse responses caused by EPC therapy have not been fully investigated. In this study, a human peripheral blood sample was collected from a healthy donor and peripheral blood mononuclear cells were separated using Ficoll-Hypaque. There were four experimental groups: 10 ml saline infusion group (injection rate; 3 ml/min), 10 ml saline bolus group (injection rate; 60 ml/min), 10 ml EPCs infusion group (2 x 105 cells/ml, injection rate; 3 ml/min), 10 ml EPCs bolus group (2 × 105 cells/ml, injection rate; 60 ml/min). Clinical assessment included physical examination and laboratory examination for intravenous human EPC transplantation in dogs. The results revealed no remarkable findings in vital signs among the dogs used. In blood analysis, platelet counts in saline infusion groups were significantly higher than in the EPC groups within normal ranges, and no significant differences were observed except K+, Cl- and blood urea nitrogen/urea. In ELISA assay, no significant difference was observed in serum tumor necrosis factor alpha. The serum concentration of vascular endothelial growth factor was significantly higher in EPC groups than in saline groups, and interleukin 10 was significantly up-regulated in the EPC infusion group compared with other groups. In conclusion, we demonstrated that no clinical abnormalities were detected after intravenous transplantation of human EPCs in dogs. The transplanted xenogenic EPCs might be involved in anti-inflammatory and angiogenic functions in dogs.
Collapse
Affiliation(s)
- Seok Hee Lee
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Republic of Korea
| | - Jeong Chan Ra
- 2 Biostar Stem Cell Research Institute, R Bio Co., Seoul, Republic of Korea
| | - Hyun Ju Oh
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Republic of Korea
| | - Min Jung Kim
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Republic of Korea
| | - Erif Maha Nugraha Setyawan
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Republic of Korea
| | - Yoo Bin Choi
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Republic of Korea
| | - Jung Won Yang
- 2 Biostar Stem Cell Research Institute, R Bio Co., Seoul, Republic of Korea
| | - Sung Keun Kang
- 2 Biostar Stem Cell Research Institute, R Bio Co., Seoul, Republic of Korea
| | - Seung Hyup Han
- 2 Biostar Stem Cell Research Institute, R Bio Co., Seoul, Republic of Korea
| | - Geon A Kim
- 2 Biostar Stem Cell Research Institute, R Bio Co., Seoul, Republic of Korea
| | - Byeong Chun Lee
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Republic of Korea
| |
Collapse
|
11
|
Gugjoo MB, Amarpal A, Sharma GT. Mesenchymal stem cell basic research and applications in dog medicine. J Cell Physiol 2019; 234:16779-16811. [PMID: 30790282 DOI: 10.1002/jcp.28348] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
The stem cells, owing to their special characteristics like self-renewal, multiplication, homing, immunomodulation, anti-inflammatory, and dedifferentiation are considered to carry an "all-in-one-solution" for diverse clinical problems. However, the limited understanding of cellular physiology currently limits their definitive therapeutic use. Among various stem cell types, currently mesenchymal stem cells are extensively studied for dog clinical applications owing to their readily available sources, easy harvesting, and ability to differentiate both into mesodermal, as well as extramesodermal tissues. The isolated, culture expanded, and characterized cells have been applied both at preclinical as well as clinical settings in dogs with variable but mostly positive results. The results, though positive, are currently inconclusive and demands further intensive research on the properties and their dependence on the applications. Further, numerous clinical conditions of dog resemble to that of human counterparts and thus, if proved rewarding in the former may act as basis of therapy for the latter. The current review throws some light on dog mesenchymal stem cell properties and their potential therapeutic applications.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Jammu and Kashmir, India
| | - Amarpal Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
12
|
Villatoro AJ, Hermida-Prieto M, Fernández V, Fariñas F, Alcoholado C, Rodríguez-García MI, Mariñas-Pardo L, Becerra J. Allogeneic adipose-derived mesenchymal stem cell therapy in dogs with refractory atopic dermatitis: clinical efficacy and safety. Vet Rec 2018; 183:654. [DOI: 10.1136/vr.104867] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/18/2018] [Accepted: 08/05/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Antonio José Villatoro
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences; University of Málaga, IBIMA; Málaga Spain
- Cellular Therapy Unit; Instituto de Inmunología Clínica y Terapia Celular (IMMUNESTEM); Málaga Spain
| | | | - Viviana Fernández
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences; University of Málaga, IBIMA; Málaga Spain
- Cellular Therapy Unit; Instituto de Inmunología Clínica y Terapia Celular (IMMUNESTEM); Málaga Spain
| | - Fernando Fariñas
- Cellular Therapy Unit; Instituto de Inmunología Clínica y Terapia Celular (IMMUNESTEM); Málaga Spain
| | - Cristina Alcoholado
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences; University of Málaga, IBIMA; Málaga Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Madrid Spain
| | | | | | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences; University of Málaga, IBIMA; Málaga Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Madrid Spain
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND; Málaga Spain
| |
Collapse
|
13
|
Lee SH, Setyawan EMN, Choi YB, Ra JC, Kang SK, Lee BC, Kim GA. Clinical assessment after human adipose stem cell transplantation into dogs. J Vet Sci 2018; 19:452-461. [PMID: 29284215 PMCID: PMC5974527 DOI: 10.4142/jvs.2018.19.3.452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 01/01/2023] Open
Abstract
Adipose tissue-derived stem cell (ASCs) are an attractive source of stem cells with therapeutic applicability in various fields for regenerating damaged tissues because of their stemness characteristics. However, little has reported on evaluating adverse responses caused by human ASC therapy. Therefore, in the present study, a clinical assessment after human ASC transplantation into dogs was undertaken. A total of 12 healthy male dogs were selected and divided into four groups: saline infusion, saline bolus, ASC infusion, and ASC bolus groups. Physical assessment and blood analysis were performed following ASC transplantation, and the concentrations of angiogenic factors, and pro- and anti-inflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA). There were no adverse vital sign responses among the dogs. Blood analyses revealed no remarkable complete blood count or serum chemistry results. ELISA results for angiogenic and anti-inflammatory factors including matrix metalloproteinase 9 (MMP9), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and interleukin-10 (IL-10) were significantly higher in the two ASCs groups than in the controls. In conclusion, this study demonstrated that transplantation of human ASCs produced no adverse effects and could be used safely in dogs. In addition, human ASCs could be involved in modulating secretions of angiogenic factors including MMP9, VEGF, bFGF, and HGF and anti-inflammatory factor IL-10.
Collapse
Affiliation(s)
- Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Erif M N Setyawan
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Yoo Bin Choi
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jeong Chan Ra
- Biostar Stem Cell Research Institute, R Bio Co., Ltd., Seoul 08506, Korea
| | - Sung Keun Kang
- Biostar Stem Cell Research Institute, R Bio Co., Ltd., Seoul 08506, Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
14
|
Bērziņš U, Matise-VanHoutana I, Pētersone I, Dūrītis I, Ņikuļšins S, Bogdanova-Jātniece A, Kālis M, Svirskis Š, Skrastiņa D, Ezerta A, Kozlovska T. Characterisation and In Vivo Safety of Canine Adipose-Derived Stem Cells. PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. SECTION B. NATURAL, EXACT, AND APPLIED SCIENCES. 2018; 72:160-171. [DOI: 10.2478/prolas-2018-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
The study characterises canine adipose-derived stem cells (cASCs) in comparison to human ASCs (hASCs) and tests their safety in a canine model after intravenous administration. cASCs from two dogs were cultured under hypoxic conditions in a medium supplemented with autologous serum. They were plastic adherent, spindle-shaped cells that expressed CD73, CD90, and CD44 but lacked CD45, CD14, HLA-DR, and CD34. cASCs differentiated toward adipogenic, osteogenic, and chondrogenic lineages, although adipogenic differentiation capacity was low. Blast transformation reaction demonstrated that these cells significantly suppress T-cell proliferation, and this ability is dose-dependent. Intravenous administration of a cell freezing medium, therapeutic dose of cASCs (2 × 106 live cells/kg), and five times higher dose of cASCs showed no significant side effects in two dogs. Microscopic tissue lesions were limited to only mild, non-specific changes. There were no signs of malignancy. The results of the study indicate that cASCs are similar to hASCs and are safe for therapeutic applications in a canine model. The proposed methodology for ASC preparation on a non-routine basis, which includes individually optimised cell culture conditions and offers risk-adapted treatment, could be used for future personalised off-the-shelf therapies, for example, in myocardial infarction or stroke.
Collapse
Affiliation(s)
- Uldis Bērziņš
- Latvian Biomedical Research and Study Centre , 1 Rātsupītes Str., Rīga , LV-1067 , Latvia
- Stem Cells Technologies Ltd. , Rīga , Latvia
| | - Ilze Matise-VanHoutana
- Faculty of Veterinary Medicine , Latvia University of Agriculture , 2 Lielā Str., Jelgava , LV-3001 , Latvia
| | - Ilze Pētersone
- Faculty of Veterinary Medicine , Latvia University of Agriculture , 2 Lielā Str., Jelgava , LV-3001 , Latvia
| | - Ilmārs Dūrītis
- Faculty of Veterinary Medicine , Latvia University of Agriculture , 2 Lielā Str., Jelgava , LV-3001 , Latvia
| | - Sergejs Ņikuļšins
- Children’s Clinical University Hospital , 45 Vienības gatve, Rīga , LV-1004 , Latvia
| | | | - Mārtiņš Kālis
- Augusts Kirhenšteins Institute of Microbiology and Virology , Rīga Stradiņš University , 5 Rātsupītes Str., Rīga , LV-1067 , Latvia
| | - Šimons Svirskis
- Augusts Kirhenšteins Institute of Microbiology and Virology , Rīga Stradiņš University , 5 Rātsupītes Str., Rīga , LV-1067 , Latvia
| | - Dace Skrastiņa
- Latvian Biomedical Research and Study Centre , 1 Rātsupītes Str., Rīga , LV-1067 , Latvia
| | - Agnese Ezerta
- Latvian Biomedical Research and Study Centre , 1 Rātsupītes Str., Rīga , LV-1067 , Latvia
| | - Tatjana Kozlovska
- Latvian Biomedical Research and Study Centre , 1 Rātsupītes Str., Rīga , LV-1067 , Latvia
| |
Collapse
|
15
|
Arzi B, Clark KC, Sundaram A, Spriet M, Verstraete FJM, Walker NJ, Loscar MR, Fazel N, Murphy WJ, Vapniarsky N, Borjesson DL. Therapeutic Efficacy of Fresh, Allogeneic Mesenchymal Stem Cells for Severe Refractory Feline Chronic Gingivostomatitis. Stem Cells Transl Med 2017; 6:1710-1722. [PMID: 28618186 PMCID: PMC5689767 DOI: 10.1002/sctm.17-0035] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have potent immunomodulatory functions and are a promising therapy for immune‐mediated inflammatory disorders. We previously demonstrated the efficacy of fresh, autologous, adipose‐derived MSCs (ASCs) to treat feline chronic gingivostomatitis (FCGS), a chronic oral mucosal inflammatory disease similar to human oral lichen planus. Here, we investigate the use of fresh allogeneic ASCs for treatment of FCGS in seven cats. Radiolabeled ASCs were also tracked systemically. Each cat received two intravenous injections of 20 million ASCs, 1 month apart. Oral inflammation, blood lymphocyte subsets, anti‐fetal bovine serum antibody levels, ASC crossmatching and serum proteins and cytokine concentrations were determined. Four of the 7 cats (57%) responded to treatment [complete clinical remission (n = 2) or substantial clinical improvement (n = 2)]. Three cats were nonresponders. Prior to therapy, most cats had increased circulating CD8+ T cells, decreased CD8lo cells, and a decreased CD4/CD8 ratio, however clinical resolution was not associated with normalization of these parameters. Nonresponders showed more severe systemic inflammation (neutrophilia, hyperglobulinemia and increased interferon gamma and tumor necrosis factor alpha concentration) prior to ASC therapy. Clinical remission took up to 20 months and no clinical relapse has occurred. A higher fraction of radiolabeled ASCs were identified in the oral cavity of FCGS affected cats than the control cat. The administration of fresh, allogenic ASCs appeared to have lower clinical efficacy with a delayed response as compared to the fresh, autologous ASCs. In addition, the mechanism(s) of action for autologous and allogenic ASCs may differ in this model of oral inflammation. Stem Cells Translational Medicine2017;6:1710–1722
Collapse
Affiliation(s)
- Boaz Arzi
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Kaitlin C Clark
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Ayswarya Sundaram
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Mathieu Spriet
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Frank J M Verstraete
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Naomi J Walker
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Megan R Loscar
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, California, USA
| | - Nasim Fazel
- Department of Dermatology, School of Medicine, University of California, Davis, California, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, California, USA
| | - Natalia Vapniarsky
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Dori L Borjesson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
16
|
Kazemi D, Shams Asenjan K, Dehdilani N, Parsa H. Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: Macroscopic and histological assessments. Bone Joint Res 2017; 6:98-107. [PMID: 28235767 PMCID: PMC5331179 DOI: 10.1302/2046-3758.62.bjr-2016-0188.r1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives Mesenchymal stem cells have the ability to differentiate into various cell types, and thus have emerged as promising alternatives to chondrocytes in cell-based cartilage repair methods. The aim of this experimental study was to investigate the effect of bone marrow derived mesenchymal stem cells combined with platelet rich fibrin on osteochondral defect repair and articular cartilage regeneration in a canine model. Methods Osteochondral defects were created on the medial femoral condyles of 12 adult male mixed breed dogs. They were either treated with stem cells seeded on platelet rich fibrin or left empty. Macroscopic and histological evaluation of the repair tissue was conducted after four, 16 and 24 weeks using the International Cartilage Repair Society macroscopic and the O’Driscoll histological grading systems. Results were reported as mean and standard deviation (sd) and compared at different time points between the two groups using the Mann-Whitney U test, with a value < 0.05 considered statistically significant. Results Higher cumulative macroscopic and histological scores were observed in stem cell treated defects throughout the study period with significant differences noted at four and 24 weeks (9.25, sd 0.5 vs 7.25, sd 0.95, and 10, sd 0.81 vs 7.5, sd 0.57; p < 0.05) and 16 weeks (16.5, sd 4.04 vs 11, sd 1.15; p < 0.05), respectively. Superior gross and histological characteristics were also observed in stem cell treated defects. Conclusion The use of autologous culture expanded bone marrow derived mesenchymal stem cells on platelet rich fibrin is a novel method for articular cartilage regeneration. It is postulated that platelet rich fibrin creates a suitable environment for proliferation and differentiation of stem cells by releasing endogenous growth factors resulting in creation of a hyaline-like reparative tissue. Cite this article: D. Kazemi, K. Shams Asenjan, N. Dehdilani, H. Parsa. Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: Macroscopic and histological assessments. Bone Joint Res 2017;6:98–107. DOI: 10.1302/2046-3758.62.BJR-2016-0188.R1.
Collapse
Affiliation(s)
- D Kazemi
- Department of Veterinary Clinical Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - K Shams Asenjan
- Tabriz University of Medical Sciences, Haematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - N Dehdilani
- Tabriz University of Medical Sciences, Haematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Parsa
- Tabriz University of Medical Sciences, Haematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Lim CY, Han JI, Kim SG, Lee CM, Park HM. Evaluation of autologous bone marrow-derived mesenchymal stem cells on renal regeneration after experimentally induced acute kidney injury in dogs. Am J Vet Res 2016; 77:208-17. [PMID: 27027716 DOI: 10.2460/ajvr.77.2.208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the usefulness of autologous bone marrow-derived mesenchymal stem cell (BM-MSC) therapy for the treatment of dogs with experimentally induced acute kidney injury. ANIMALS 6 healthy dogs. PROCEDURES After induction of kidney injury (day 0) with cisplatin (5 mg/kg, IV), dogs immediately received saline (0.9% NaCl) solution (10 mL; n = 3) or BM-MSCs (1 × 10(6) cells/kg in 10 mL of saline solution; 3) IV. A CBC, serum biochemical analysis, and urinalysis were performed for each dog before administration of cisplatin and on days 1 through 4. Glomerular filtration rate was determined for all dogs on days -7 and 2; BM-MSC tracking by MRI was performed on BM-MSC-treated dogs on days -14 and 4. After sample collection and BM-MSC tracking on day 4, all dogs were euthanized; kidney tissue samples underwent histologic evaluation, immunohistochemical analysis, and cytokine profiling via reverse transcriptase PCR assays. RESULTS Kidney tissue from both groups had mononuclear inflammatory cell infiltration, tubular necrosis, dilated tubules, and glomerular damage. However, there was less fibrotic change and increased proliferation of renal tubular epithelial cells in the BM-MSC-treated dogs, compared with findings for the control dogs. Expressions of tumor necrosis factor-α and transforming growth factor-β were lower in the BM-MSC-treated group, compared with findings for the control group. Laboratory data revealed no improvement in the renal function in BM-MSC-treated dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results of this study suggested that autologous BM-MSCs may accelerate renal regeneration after experimentally induced acute kidney injury in dogs.
Collapse
|
18
|
Dothel G, Raschi E, Rimondini R, De Ponti F. Mesenchymal stromal cell-based therapy: Regulatory and translational aspects in gastroenterology. World J Gastroenterol 2016; 22:9057-9068. [PMID: 27895395 PMCID: PMC5107589 DOI: 10.3748/wjg.v22.i41.9057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
The past decade has witnessed an outstanding scientific production focused towards the possible clinical applications of mesenchymal stromal cells (MSCs) in autoimmune and chronic inflammatory diseases. This raised the need of novel standards to adequately address quality, efficacy and safety issues of this advanced therapy. The development of a streamlined regulation is currently hampered by the complexity of analyzing dynamic biological entities rather than chemicals. Although numerous pieces of evidence show efficacy in reducing intestinal inflammation, some inconsistencies between the mechanisms of action of rodent vs human MSCs suggest caution before assigning translational value to preclinical studies. Preliminary evidence from clinical trials showed efficacy of MSCs in the treatment of fistulizing Crohn’s disease (CD), and preparations of heterologous MSCs for CD treatment are currently tested in ongoing clinical trials. However, safety issues, especially in long-term treatment, still require solid clinical data. In this regard, standardized guidelines for appropriate dosing and methods of infusion could enhance the likelihood to predict more accurately the number of responders and the duration of remission periods. In addition, elucidating MSC mechanisms of action could lead to novel and more reliable formulations such as those derived from the MSCs themselves (e.g., supernatants).
Collapse
|
19
|
Mortazavi Y, Sheikhsaran F, Khamisipour GK, Soleimani M, Teimuri A, Shokri S. The Evaluation of Nerve Growth Factor Over Expression on Neural Lineage Specific Genes in Human Mesenchymal Stem Cells. CELL JOURNAL 2016; 18:189-96. [PMID: 27540523 PMCID: PMC4988417 DOI: 10.22074/cellj.2016.4313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/27/2015] [Indexed: 12/12/2022]
Abstract
Objective Treatment and repair of neurodegenerative diseases such as brain tumors,
spinal cord injuries, and functional disorders, including Alzheimer’s disease, are challenging problems. A common treatment approach for such disorders involves the use of
mesenchymal stem cells (MSCs) as an alternative cell source to replace injured cells.
However, use of these cells in hosts may potentially cause adverse outcomes such as tumorigenesis and uncontrolled differentiation. In attempt to generate mesenchymal derived
neural cells, we have infected MSCs with recombinant lentiviruses that expressed nerve
growth factor (NGF) and assessed their neural lineage genes.
Materials and Methods In this experimental study, we cloned the NGF gene sequence
into a helper dependent lentiviral vector that contained the green fluorescent protein (GFP)
gene. The recombinant vector was amplified in DH5 bacterial cells. Recombinant viruses
were generated in the human embryonic kidney 293 (HEK-293) packaging cell line with
the helper vectors and analyzed under fluorescent microscopy. Bone marrow mesenchymal cells were infected by recombinant viruses for three days followed by assessment of
neural differentiation. We evaluated expression of NGF through measurement of the NGF
protein in culture medium by ELISA; neural specific genes were quantified by real-time
polymerase chain reaction (PCR).
Results We observed neural morphological changes after three days. Quantitative PCR
showed that expressions of NESTIN, glial derived neurotrophic factor (GDNF), glial fibrillary acidic protein (GFAP) and Microtubule-associated protein 2 (MAP2) genes increased
following induction of NGF overexpression, whereas expressions of endogenous NGF
and brain derived neural growth factor (BDNF) genes reduced.
Conclusion Ectopic expression of NGF can induce neurogenesis in MSCs. Direct injection of MSCs may cause tumorigenesis and an undesirable outcome. Therefore an
alternative choice to overcome this obstacle may be the utilization of differentiated neural
stem cells.
Collapse
Affiliation(s)
- Yousef Mortazavi
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Sheikhsaran
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Teimuri
- Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Shokri
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
20
|
Arzi B, Mills-Ko E, Verstraete FJM, Kol A, Walker NJ, Badgley MR, Fazel N, Murphy WJ, Vapniarsky N, Borjesson DL. Therapeutic Efficacy of Fresh, Autologous Mesenchymal Stem Cells for Severe Refractory Gingivostomatitis in Cats. Stem Cells Transl Med 2015; 5:75-86. [PMID: 26582907 PMCID: PMC4704876 DOI: 10.5966/sctm.2015-0127] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/28/2015] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Mesenchymal stem cells (MSCs) are a promising therapy for immune-mediated and inflammatory disorders, because of their potent immunomodulatory properties. In this study, we investigated the use of fresh, autologous, adipose-derived MSCs (ASCs) for feline chronic gingivostomatitis (FCGS), a chronic, debilitating, idiopathic, oral mucosal inflammatory disease. Nine cats with refractory FCGS were enrolled in this pilot study. Each cat received 2 intravenous injections of 20 million autologous ASCs, 1 month apart. Oral biopsies were taken before and at 6 months after the first ASC injection. Blood immune cell subsets, serum protein, and cytokine levels were measured at 0, 1, 3, and 6 months after treatment to assess immunomodulatory effects. Seven of the 9 cats completed the study. Five cats responded to treatment by either complete clinical remission (n=3) or substantial clinical improvement (n=2). Two cats were nonresponders. Cats that responded to treatment also exhibited systemic immunomodulation demonstrated by decreased numbers of circulating CD8+ T cells, a normalization of the CD4/CD8 ratio, decreased neutrophil counts, and interferon-γ and interleukin (IL)-1β concentration, and a temporary increase in serum IL-6 and tumor necrosis factor-α concentration. No clinical recurrence has occurred following complete clinical remission (follow-up of 6-24 months). In this study, cats with <15% cytotoxic CD8 T cells with low expression of CD8 (CD8lo) cells were 100% responsive to ASC therapy, whereas cats with >15% CD8lo cells were nonresponders. The relative absence of CD8lo cells may be a biomarker to predict response to ASC therapy, and may shed light on pathogenesis of FCGS and mechanisms by which ASCs decrease oral inflammation and affect T-cell phenotype. SIGNIFICANCE This study is the first to demonstrate the safety and efficacy of fresh, autologous, adipose-derived stem cell systemic therapy for a naturally occurring, chronic inflammatory disease in cats. The findings demonstrate that this therapy resulted in complete clinical and histological resolution or reduction in clinical disease severity and immune modulation in most cats. This study also identified a potentially useful biomarker that could dictate patient enrollment and shed light on immune modulation mechanism. As a naturally occurring animal model, FCGS also provides a strategic platform for potentially translatable therapy for the treatment of human oral inflammatory disease.
Collapse
Affiliation(s)
- Boaz Arzi
- Department of Surgical and Radiological Sciences, University of California, Davis, Davis, California, USA
| | - Emily Mills-Ko
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Frank J M Verstraete
- Department of Surgical and Radiological Sciences, University of California, Davis, Davis, California, USA
| | - Amir Kol
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Naomi J Walker
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Megan R Badgley
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, Davis, California, USA
| | - Nasim Fazel
- Department of Dermatology, School of Medicine, University of California, Davis, Davis, California, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Natalia Vapniarsky
- Department of Biomedical Engineering, University of California, Davis, Davis, California, USA
| | - Dori L Borjesson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|