1
|
Qiu L, Ma Z, Sun J, Wu Z, Wang M, Wang S, Zhao Y, Liang S, Hu M, Li Y. Establishment of a Spontaneous Liver Fibrosis Model in NOD/SCID Mice Induced by Natural Aging. BIOLOGY 2023; 12:1493. [PMID: 38132319 PMCID: PMC10740877 DOI: 10.3390/biology12121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Liver fibrosis, a critical pathological feature of chronic liver diseases, arises from a multitude of pathogenic factors. Consequently, establishing an appropriate animal model to simulate liver fibrosis holds immense significance for comprehending its underlying pathogenesis. Despite the numerous methodologies available for generating liver fibrosis models, they often deviate substantially from the spontaneous age-related liver fibrosis process. In this study, compared with young (12 weeks) and middle-aged NOD/SCID mice (32 weeks), there were a large number of fibrous septum and collagen in the liver tissue of old NOD/SCID mice (43 weeks, 43 W). Immunohistochemical analysis unequivocally indicated heightened α-SMA content within the liver tissue of the 43 W mice, thereby underscoring aging's role in triggering the epithelial-to-mesenchymal transition. In addition, SA-β-gal staining as well as P21 expression were increased, and SIRT1 and SIRT3 expression were decreased in 43 W mice. A comprehensive evaluation encompassing transmission electron microscopy and fluorescence quantitative analysis elucidated compromised mitochondrial function and reduced antioxidant capacity in hepatocytes of the 43 W mice. Furthermore, the aging process activated the pro-fibrotic TGF-β-SMAD pathway, concurrently inducing hepatocellular inflammation. The results of the present study not only validate the successful construction of a spontaneous liver fibrosis mouse model through natural aging induction but also provide initial insights into the mechanisms underpinning age-induced liver fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming 650214, China; (L.Q.); (Z.M.); (J.S.); (Z.W.); (M.W.); (S.W.); (Y.Z.); (S.L.)
| | - Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming 650214, China; (L.Q.); (Z.M.); (J.S.); (Z.W.); (M.W.); (S.W.); (Y.Z.); (S.L.)
| |
Collapse
|
2
|
Suda T, Yokoo T, Kanefuji T, Kamimura K, Zhang G, Liu D. Hydrodynamic Delivery: Characteristics, Applications, and Technological Advances. Pharmaceutics 2023; 15:1111. [PMID: 37111597 PMCID: PMC10141091 DOI: 10.3390/pharmaceutics15041111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
The principle of hydrodynamic delivery was initially used to develop a method for the delivery of plasmids into mouse hepatocytes through tail vein injection and has been expanded for use in the delivery of various biologically active materials to cells in various organs in a variety of animal species through systemic or local injection, resulting in significant advances in new applications and technological development. The development of regional hydrodynamic delivery directly supports successful gene delivery in large animals, including humans. This review summarizes the fundamentals of hydrodynamic delivery and the progress that has been made in its application. Recent progress in this field offers tantalizing prospects for the development of a new generation of technologies for broader application of hydrodynamic delivery.
Collapse
Affiliation(s)
- Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiuonuma 949-7302, Niigata, Japan
| | - Takeshi Yokoo
- Department of Preemptive Medicine for Digestive Diseases and Healthy Active Life, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Tsutomu Kanefuji
- Department of Gastroenterology and Hepatology, Tsubame Rosai Hospital, Tsubame 959-1228, Niigata, Japan
| | - Kenya Kamimura
- Department of General Medicine, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Yasser M, Ribback S, Evert K, Utpatel K, Annweiler K, Evert M, Dombrowski F, Calvisi DF. Early Subcellular Hepatocellular Alterations in Mice Post Hydrodynamic Transfection: An Explorative Study. Cancers (Basel) 2023; 15:cancers15020328. [PMID: 36672277 PMCID: PMC9857294 DOI: 10.3390/cancers15020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Hydrodynamic transfection (HT) or hydrodynamic tail vein injection (HTVi) is among the leading technique that is used to deliver plasmid genes mainly into the liver of live mice or rats. The DNA constructs are composed of coupled plasmids, while one contains the gene of interest that stably integrate into the hepatocyte genome with help of the other consisting sleeping beauty transposase system. The rapid injection of a large volume of DNA-solution through the tail vein induces an acute cardiac congestion that refluxed into the liver, mainly in acinus zone 3, also found through our EM study. Although, HT mediated hydrodynamic force can permeabilizes the fenestrated sinusoidal endothelium of liver, but the mechanism of plasmid incorporation into the hepatocytes remains unclear. Therefore, in the present study, we have hydrodynamically injected 2 mL volume of empty plasmid (transposon vector) or saline solution (control) into the tail vein of anesthetized C57BL/6J/129Sv mice. Liver tissue was resected at different time points from two animal group conditions, i.e., one time point per animal (1, 5, 10-20, 60 min or 24 and 48 hrs after HT) or multiple time points per animal (0, 1, 2, 5, 10, 20 min) and quickly fixed with buffered 4% osmium tetroxide. The tissues fed with only saline solution was also resected and fixed in the similar way. EM evaluation from the liver ultrathin sections reveals that swiftly after 1 min, the hepatocytes near to the central venule in the acinus zone 3 shows cytoplasmic membrane-bound vesicles. Such vesicles increased in both numbers and size to vacuoles and precisely often found in the proximity to the nucleus. Further, EM affirm these vacuoles are also optically empty and do not contain any electron dense material. Although, some of the other hepatocytes reveals sign of cell damage including swollen mitochondria, dilated endoplasmic reticulum, Golgi apparatus and disrupted plasma membrane, but most of the hepatocytes appeared normal. The ultrastructural findings in the mice injected with empty vector or saline injected control mice were similar. Therefore, we have interpreted the vacuole formation as nonspecific endocytosis without specific interactions at the plasma membrane.
Collapse
Affiliation(s)
- Mohd Yasser
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
| | - Silvia Ribback
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
- Correspondence:
| | - Katja Evert
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| | - Kirsten Utpatel
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| | - Katharina Annweiler
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
| | - Matthias Evert
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| | - Frank Dombrowski
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany
| | - Diego F. Calvisi
- Institut fuer Pathologie, Universitaetsklinikum Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Yan Y, Zhang A, Dong H, Yan G, Sun H, Wu X, Han Y, Wang X. Toxicity and Detoxification Effects of Herbal Caowu via Ultra Performance Liquid Chromatography/Mass Spectrometry Metabolomics Analyzed using Pattern Recognition Method. Pharmacogn Mag 2017; 13:683-692. [PMID: 29200734 PMCID: PMC5701412 DOI: 10.4103/pm.pm_475_16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
Background: Caowu (Radix Aconiti kusnezoffii, CW), the root of Aconitum kusnezoffii Reichb., has widely used clinically in rheumatic arthritis, painful joints, and tumors for thousands of years. However, the toxicity of heart and central nervous system induced by CW still limited the application. Materials and Methods: Metabolomics was performed to identify the sensitive and reliable biomarkers and to characterize the phenotypically biochemical perturbations and potential mechanisms of CW-induced toxicity, and the detoxification by combinatorial intervention of CW with Gancao (Radix Glycyrrhizae) (CG), Baishao (Radix Paeoniae Alba) (CB), and Renshen (Radix Ginseng) (CR) was also analyzed by pattern recognition methods. Results: As a result, the metabolites were characterized and responsible for pentose and glucuronate interconversions, tryptophan metabolism, amino sugar and nucleotide sugar metabolism, taurine and hypotaurine metabolism, fructose and mannose metabolism, and starch and sucrose metabolism, six networks of which were the same to the metabolic pathways of Chuanwu (Radix Aconiti, CHW) group. The ascorbate and aldarate metabolism was also characterized by CW group. The urinary metabolomics also revealed CW-induced serious toxicity to heart and liver. Thirteen significant metabolites were identified and had validated as phenotypic toxicity biomarkers of CW, five biomarkers of which were commonly owned in Aconitum. The changes of toxicity metabolites obtained from combinatorial intervention of CG, CB, and CR also were analyzed to investigate the regulation degree of toxicity biomarkers adjusted by different combinatorial interventions at 6th month. Conclusion: Metabolomics analyses coupled with pattern recognition methods in the evaluation of drug toxicity and finding detoxification methods were highlighted in this work. SUMMARY
Metabolomics was performed to characterize the biochemical potential mechanisms of Caowu toxicity Thirteen significant metabolites were identified and validated as phenotypic toxicity biomarkers of Caowu Metabolite changes of toxicity obtained can be adjusted by different combinatorial interventions. Pattern recognition plot reflects the toxicity effects tendency of the urine metabolic fluctuations according to time after treatment of herbal Caowu.
Abbreviations used: CW: Caowu (Radix Aconiti kusnezoffii); CHW: Chuanwu (Radix Aconiti); TCM: Traditional Chinese Medicine; CG: Caowu and Gancao; CB: Caowu and Baishao; CR: Caowu and Renshen; QC: Quality control; UPLC: Ultra performance liquid chromatography; MS: Mass spectrometry; PCA: Principal component analysis; PLS-DA: Partial least squares-discriminant analysis; OPLS: Orthogonal projection to latent structures analysis.
Collapse
Affiliation(s)
- Yan Yan
- Sino-US Chinmedomics Technology Cooperation Center, National TCM Key Laboratory of Serum Pharmacochemistry, Research Center of Chinmedomics (State Administration of TCM), Laboratory of Metabolomics, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Aihua Zhang
- Sino-US Chinmedomics Technology Cooperation Center, National TCM Key Laboratory of Serum Pharmacochemistry, Research Center of Chinmedomics (State Administration of TCM), Laboratory of Metabolomics, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hui Dong
- Sino-US Chinmedomics Technology Cooperation Center, National TCM Key Laboratory of Serum Pharmacochemistry, Research Center of Chinmedomics (State Administration of TCM), Laboratory of Metabolomics, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Guangli Yan
- Sino-US Chinmedomics Technology Cooperation Center, National TCM Key Laboratory of Serum Pharmacochemistry, Research Center of Chinmedomics (State Administration of TCM), Laboratory of Metabolomics, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hui Sun
- Sino-US Chinmedomics Technology Cooperation Center, National TCM Key Laboratory of Serum Pharmacochemistry, Research Center of Chinmedomics (State Administration of TCM), Laboratory of Metabolomics, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiuhong Wu
- Sino-US Chinmedomics Technology Cooperation Center, National TCM Key Laboratory of Serum Pharmacochemistry, Research Center of Chinmedomics (State Administration of TCM), Laboratory of Metabolomics, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ying Han
- Sino-US Chinmedomics Technology Cooperation Center, National TCM Key Laboratory of Serum Pharmacochemistry, Research Center of Chinmedomics (State Administration of TCM), Laboratory of Metabolomics, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xijun Wang
- Sino-US Chinmedomics Technology Cooperation Center, National TCM Key Laboratory of Serum Pharmacochemistry, Research Center of Chinmedomics (State Administration of TCM), Laboratory of Metabolomics, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
5
|
El-Mezayen NS, El-Hadidy WF, El-Refaie WM, Shalaby T, Khattab MM, El-Khatib AS. Hepatic stellate cell-targeted imatinib nanomedicine versus conventional imatinib: A novel strategy with potent efficacy in experimental liver fibrosis. J Control Release 2017; 266:226-237. [DOI: 10.1016/j.jconrel.2017.09.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
|
6
|
Prevention of TGF-β-induced early liver fibrosis by a maleic acid derivative anti-oxidant through suppression of ROS, inflammation and hepatic stellate cells activation. PLoS One 2017; 12:e0174008. [PMID: 28384213 PMCID: PMC5383026 DOI: 10.1371/journal.pone.0174008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/01/2017] [Indexed: 11/19/2022] Open
Abstract
Current anti-fibrotic effect of antioxidants in vivo is disappointing due probably to the fact that once liver fibrogenesis is established it is too advanced to be reversed by anti-oxidation mechanism. We consider antioxidant may only act on the early phase of fibrogenesis. Thus, we had previously established an early liver fibrosis animal model using an inducible expression vector (pPK9a), which contains TGF-β gene and was hydro-dynamically transferred into mice to induce a transient liver fibrosis. TGF-β1 has been well documented to up-regulate the expression of α2(1) collagen (Col 1A2) gene in the liver via the reactive oxygen species (ROS); the process triggers inflammation, leading to hepatic stellate cells (HSC) activation and liver fibrogenesis. Using our animal model and ROS, cyclooxygenase-2 (Cox-2) and Col 1A2 promoter assays as screening targets, we report here that a maleic acid derivative isolated from the Antrodia camphorata mycelium strongly decreases ROS production, promoter activity of Cox-2 and Col 1A2, intracellular calcium, expression of alpha-smooth muscle actin (α-SMA), Smad4-p-Smad2/3 co-localization in cell nucleus and the DNA binding activity of Sp1. Our results suggest that the maleic acid derivative prevents liver fibrosis at an early phase both in vitro and in vivo through the inhibition of ROS, inflammation and the activation of HSC.
Collapse
|
7
|
Kamimura K, Suda T, Kanefuji T, Yokoo T, Abe H, Kobayashi Y, Aoyagi Y, Liu D. Image-Guided Hydrodynamic Gene Delivery to the Liver: Toward Clinical Applications. GENE THERAPY AND CELL THERAPY THROUGH THE LIVER 2016:85-92. [DOI: 10.1007/978-4-431-55666-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Plumbagin Ameliorates CCl 4 -Induced Hepatic Fibrosis in Rats via the Epidermal Growth Factor Receptor Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:645727. [PMID: 26550019 PMCID: PMC4624924 DOI: 10.1155/2015/645727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor (EGF) and its signaling molecules, EGFreceptor (EGFR) and signal transducer and activator of transcription factor 3 (STAT3), have been considered to play a role in liver fibrosis and cirrhosis. Plumbagin (PL) is an extracted component from the plant and has been used to treat different kinds of cancer. However, its role in regulation of EGFR and STAT3 during liver fibrosis has not been investigated. In this study, the effects of PL on the regulation of EGFR and STAT3 were investigated in carbon tetrachloride (CCl4) induced liver fibrosis and hepatic stellate cells (HSC-T6). PL significantly attenuated liver injury and fibrosis in CCl4 treated rats. At concentrations of 2 to 6 μM, PL did not induce significant cytotoxicity of HSC-T6 cells. Moreover, PL reduced phosphorylation of EGFR and STAT3 in both fibrotic liver and heparin-binding EGF-like growth factor (HB-EGF) treated HSC-T6 cells. Furthermore, PL reduced the expression of α-SMA, EGFR, and STAT3 in both fibrotic liver and HB-EGF treated HSC-T6 cells. In conclusion, plumbagin could ameliorate the development of hepatic fibrosis through its downregulation of EGFR and STAT3 in the liver, especially in hepatic stellate cells.
Collapse
|
9
|
Dong H, Yan GL, Han Y, Sun H, Zhang AH, Li XN, Wang XJ. UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang. Chin J Nat Med 2015; 13:687-98. [PMID: 26412429 DOI: 10.1016/s1875-5364(15)30067-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Indexed: 01/11/2023]
Abstract
Chuanwu (CW), a famous traditional Chinese medicine (TCM) from the mother roots of Aconitum carmichaelii Debx.. (Ranunculaceae), has been used for the treatment of various diseases. Unfortunately, its toxicity is frequently reported because of its narrow therapeutic window. In the present study, a metabolomic method was performed to characterize the phenotypically biochemical perturbations and potential mechanisms of CW-induced toxicity. Meanwhile, the expression level of toxicity biomarkers in the urine were analyzed to evaluate the detoxification by combination with Gancao (Radix Glyeyrrhizae, CG), Baishao (Radix Paeoniae Alba, CS) and Ganjiang (Rhizoma Zingiberis, CJ), which were screened from classical TCM prescriptions. Urinary metabolomics was performed by UPLC-Q-TOF-HDMS, and the mass spectra signals of the detected metabolites were systematically analyzed using pattern recognition methods. As a result, seventeen biomarkers associated with CW toxicity were identified, which were associated with pentose and glucuronate interconversions, alanine, aspartate, and glutamate metabolism, among others. The expression levels of most toxicity biomarkers were effectively modulated towards the normal range by the compatibility drugs. It indicated that the three compatibility drugs could effectively detoxify CW. In summary, our work demonstrated that metabolomics was vitally significant to evaluation of toxicity and finding detoxification methods for TCM.
Collapse
Affiliation(s)
- Hui Dong
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics and Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Guang-Li Yan
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics and Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ying Han
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics and Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hui Sun
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics and Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Ai-Hua Zhang
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics and Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xian-Na Li
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics and Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xi-Jun Wang
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics and Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
10
|
Kamimura K, Yokoo T, Abe H, Kobayashi Y, Ogawa K, Shinagawa Y, Inoue R, Terai S. Image-Guided Hydrodynamic Gene Delivery: Current Status and Future Directions. Pharmaceutics 2015; 7:213-223. [PMID: 26308044 PMCID: PMC4588196 DOI: 10.3390/pharmaceutics7030213] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022] Open
Abstract
Hydrodynamics-based delivery has been used as an experimental tool to express transgene in small animals. This in vivo gene transfer method is useful for functional analysis of genetic elements, therapeutic effect of oligonucleotides, and cancer cells to establish the metastatic cancer animal model for experimental research. Recent progress in the development of image-guided procedure for hydrodynamics-based gene delivery in large animals directly supports the clinical applicability of this technique. This review summarizes the current status and recent progress in the development of hydrodynamics-based gene delivery and discusses the future directions for its clinical application.
Collapse
Affiliation(s)
- Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Yuji Kobayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Kohei Ogawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Yoko Shinagawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Ryosuke Inoue
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| |
Collapse
|
11
|
Abstract
Hydrodynamic delivery (HD) is a broadly used procedure for DNA and RNA delivery in rodents, serving as a powerful tool for gene/protein drug discovery, gene function analysis, target validation, and identification of elements in regulating gene expression in vivo. HD involves a pressurized injection of a large volume of solution into a vasculature. New procedures are being developed to satisfy the need for a safe and efficient gene delivery in clinic. Here, we summarize the fundamentals of HD, its applications, and future perspectives for clinical use.
Collapse
Affiliation(s)
- Takeshi Suda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, School of Pharmacy, Athens, GA, USA
| |
Collapse
|
12
|
Nazeer SS, Sandhyamani S, Jayasree RS. Optical diagnosis of the progression and reversal of CCl4-induced liver injury in rodent model using minimally invasive autofluorescence spectroscopy. Analyst 2015; 140:3773-80. [DOI: 10.1039/c4an01507j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic representation of the degree of intoxicant-induced liver injury and regeneration and the minimally invasive analysis using autofluorescence spectral features.
Collapse
Affiliation(s)
- Shaiju S. Nazeer
- Biophotonics and Imaging Lab
- Biomedical Technology Wing
- Sree Chitra Tirunal Institute for Medical Sciences & Technology
- Thiruvananthapuram - 695 012
- India
| | - S. Sandhyamani
- Department of Pathology
- Sree Chitra Tirunal Institute for Medical Sciences & Technology
- Thiruvananthapuram - 695 011
- India
| | - Ramapurath S. Jayasree
- Biophotonics and Imaging Lab
- Biomedical Technology Wing
- Sree Chitra Tirunal Institute for Medical Sciences & Technology
- Thiruvananthapuram - 695 012
- India
| |
Collapse
|
13
|
Wai KK, Liang Y, Zhou L, Cai L, Liang C, Liu L, Lin X, Wu H, Lin J. The protective effects ofAcanthus ilicifoliusalkaloid A and its derivatives on pro- and anti-inflammatory cytokines in rats with hepatic fibrosis. Biotechnol Appl Biochem 2014; 62:537-46. [DOI: 10.1002/bab.1292] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/05/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Kyi Kyi Wai
- Department of Pharmacology; Guangxi Medical University; Nanning People's Republic of China
| | - Yinge Liang
- Department of Pharmacology; Guangxi Medical University; Nanning People's Republic of China
| | - Lijuan Zhou
- Department of Pharmacology; Guangxi Medical University; Nanning People's Republic of China
| | - Liping Cai
- Department of Pharmacology; Guangxi Medical University; Nanning People's Republic of China
| | - Chunhong Liang
- Department of Pharmacology; Guangxi Medical University; Nanning People's Republic of China
| | - Lin Liu
- Department of Pharmacology; Guangxi Medical University; Nanning People's Republic of China
| | - Xing Lin
- Department of Pharmacology; Guangxi Medical University; Nanning People's Republic of China
| | - Huahui Wu
- Department of Inorganic Chemistry and Physical Chemistry; Guangxi Medical University; Nanning People's Republic of China
| | - Jun Lin
- Department of Pharmacology; Guangxi Medical University; Nanning People's Republic of China
| |
Collapse
|
14
|
Zhou WC, Zhang QB, Qiao L. Pathogenesis of liver cirrhosis. World J Gastroenterol 2014; 20:7312-7324. [PMID: 24966602 PMCID: PMC4064077 DOI: 10.3748/wjg.v20.i23.7312] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/16/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Liver cirrhosis is the final pathological result of various chronic liver diseases, and fibrosis is the precursor of cirrhosis. Many types of cells, cytokines and miRNAs are involved in the initiation and progression of liver fibrosis and cirrhosis. Activation of hepatic stellate cells (HSCs) is a pivotal event in fibrosis. Defenestration and capillarization of liver sinusoidal endothelial cells are major contributing factors to hepatic dysfunction in liver cirrhosis. Activated Kupffer cells destroy hepatocytes and stimulate the activation of HSCs. Repeated cycles of apoptosis and regeneration of hepatocytes contribute to pathogenesis of cirrhosis. At the molecular level, many cytokines are involved in mediation of signaling pathways that regulate activation of HSCs and fibrogenesis. Recently, miRNAs as a post-transcriptional regulator have been found to play a key role in fibrosis and cirrhosis. Robust animal models of liver fibrosis and cirrhosis, as well as the recently identified critical cellular and molecular factors involved in the development of liver fibrosis and cirrhosis will facilitate the development of more effective therapeutic approaches for these conditions.
Collapse
|
15
|
Katsounas A, Trippler M, Wang B, Polis M, Lempicki RA, Kottilil S, Gerken G, Schlaak JF. CCL5 mRNA is a marker for early fibrosis in chronic hepatitis C and is regulated by interferon-α therapy and toll-like receptor 3 signalling. J Viral Hepat 2012; 19:128-37. [PMID: 22239502 DOI: 10.1111/j.1365-2893.2011.01503.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanisms causing liver fibrosis during chronic hepatitis C virus infection (cHCV) are not sufficiently understood. This study was aimed to identify biomarkers for early fibrosis (EF) and to investigate their potential role in cHCV-related fibrogenesis. To this end, peripheral whole blood (PB) samples from 36 patients with cHCV recruited from two independent cohorts were subjected to microarray analysis 12 h before initiation of peginterferon-alpha (Peg-IFN-α) and ribavirin therapy. Liver biopsies were evaluated using the Batts-Ludwig staging (BL-S) classification system for fibrosis. We showed that gene expression profiles (N = 8) distinguished between EF (BL-S: 0,1) and late fibrosis (LF; BL-S: 2,3,4) with 88.9% accuracy. Fibrosis-related functional annotations for chemokine-'C-C-motif'' ligand 5 (CCL5) provided foundation for focused investigation, and qRT-PCR confirmed that CCL5 mRNA levels (PB) reliably discriminate EF from LF (accuracy: 86.7%). Positive correlations (P < 0.05) with CCL5 mRNA levels and EF discovered gene expression profiles (PB) reflecting stable expression of IFN-α receptor 1, negative regulation of the MyD88-dependent toll-like receptor (TLR) pathway and decreased expression of TLR3 in vivo. Remarkably, Peg-IFN-α suppressed CCL5 mRNA levels (PB) in EF in vivo. These findings along with results from parallel in vitro investigation into the effect of IFN-α or poly I:C (TLR3-agonist) on CCL5 gene expression in hepatic stellate cells (HSC) attest to the multi-site involvement of these pathways in regulating fibrogenesis. In conclusion, we identified novel, reliable biomarkers for EF and exposed functional properties of the molecular network regulating CCL5 biosynthesis in peripheral or hepatic cell types with key roles in cHCV-related liver and/or immune pathogenesis.
Collapse
Affiliation(s)
- A Katsounas
- Dept. of Gastroenterology and Hepatology, University Hospital of Essen, Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yang KL, Chang WT, Hung KC, Li EIC, Chuang CC. Inhibition of transforming growth factor-beta-induced liver fibrosis by a retinoic acid derivative via the suppression of Col 1A2 promoter activity. Biochem Biophys Res Commun 2008; 373:219-23. [PMID: 18558083 DOI: 10.1016/j.bbrc.2008.05.192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 05/02/2008] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) mediates expression of collagen 1A2 (Col 1A2) gene via a synergistic cooperation between Smad2/Smad3 and Sp1, both act on the Col 1A2 gene promoter. In our previous study, we reported that a retinoic acid derivative obtained from Phellinus linteus (designated PL) antagonizes TGF-beta-induced liver fibrosis through regulation of ROS and calcium influx. In this continuing study we seek further the effect of PL on the Smad signaling pathway. We used a Col 1A2 promoter-luciferase construct to study the action of PL on Smad through TGF-beta. We found that PL decreases the promoter activity of Col 1A2, hinders the translocalization of phosphorylated Smad2/3-Smad 4 complex from cytosol into nucleus and inhibits Sp1 binding activity. These results suggest that PL inhibits TGF-beta1-induced Col 1A2 promoter activity through blocking ROS and calcium influx as well as impeding Sp1 binding and translocalization of pSmad 2/3-Smad4 complex into nucleus.
Collapse
Affiliation(s)
- Kun-Lin Yang
- Institute of Basic Medical Sciences, Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Yang KL, Chang WT, Chuang CC, Hung KC, Li EIC. Antagonizing TGF-beta induced liver fibrosis by a retinoic acid derivative through regulation of ROS and calcium influx. Biochem Biophys Res Commun 2007; 365:484-9. [PMID: 17997979 DOI: 10.1016/j.bbrc.2007.10.203] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 10/31/2007] [Indexed: 01/19/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) mediates the regulation of extracellular matrix via reactive oxygen species (ROS) and calcium influx, both are activators of hepatic stellate cells (HSC) which play a critical role in hepatic fibrogenesis. Hence one can use ROS assay as the main screening tool for molecules that might antagonize the process of liver fibrosis. A retinoic acid derivative isolated from the mycelium of Phellinus linteus that down-regulates ROS generation and calcium influx in HSC-T6 cells was thus obtained in our screening process. The retinoic acid derivative also reverses an early liver fibrosis, as assayed by liver contents of hydroxyproline, alpha-smooth muscle actin (alpha-SMA), and collagen 1A2, in an early liver fibrosis model we established previously where an inducible expression vector containing a TGF-beta gene was hydrodynamically transferred into a testing animal. Retinoic acid derivative thus acts both in vitro and in vivo to prevent liver fibrosis at an early phase.
Collapse
Affiliation(s)
- Kun-Lin Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | |
Collapse
|