1
|
Pirolli NH, Raufman JP, Jay SM. Therapeutic Potential and Translational Challenges for Bacterial Extracellular Vesicles in Inflammatory Bowel Disease. Inflamm Bowel Dis 2025:izaf107. [PMID: 40357729 DOI: 10.1093/ibd/izaf107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Indexed: 05/15/2025]
Abstract
Despite the availability of numerous new immune-directed therapeutics, the major constituents of inflammatory bowel disease (IBD)-ulcerative colitis (UC) and Crohn's disease (CD)-continue to afflict millions worldwide, resulting in significant morbidity and long-term health risks. IBD results from a triad of immune, environmental (eg, gut microbiome), and genetic (including epigenetic) mechanisms, and therefore has been subject to a wide variety of therapeutic strategies. Among these, the administration of probiotics, particularly Gram-positive lactic acid bacteria (LAB), targeting both immune and environmental factors, has shown promising potential for efficacy in selected populations in early clinical trials. However, knowledge gaps and inconsistent efficacy currently prevent recommendations for the use of probiotics in larger IBD patient populations. The inconsistent efficacy of probiotics is likely due to variable cell viability and potency after administration, further exacerbated by IBD patient heterogeneity. Thus, an alternative to live probiotics for IBD has emerged in the form of bacterial extracellular vesicles (BEVs)-cell-secreted nanovesicles containing abundant bioactive cargo that, like live probiotics, can regulate immune and environmental factors but with fewer viability limitations and safety concerns. In this review, we summarize the work done to date establishing the potential of BEVs to provide the therapeutic benefits in IBD and discuss the hurdles BEVs must overcome to achieve clinical translation. We also consider future directions for BEV therapeutics, especially treatment potential for necrotizing enterocolitis (NEC), which shares similarities in pathophysiology with IBD.
Collapse
Affiliation(s)
- Nicholas H Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Biomedical Laboratory Research and Development Service, Veterans Affairs Maryland Healthcare System, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
2
|
Afzal H, Murtaza A, Cheng LT. Structural engineering of flagellin as vaccine adjuvant: quest for the minimal domain of flagellin for TLR5 activation. Mol Biol Rep 2025; 52:104. [PMID: 39775323 PMCID: PMC11706886 DOI: 10.1007/s11033-024-10146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Flagellin stimulates Toll-like receptor 5 (TLR5), triggering both innate and adaptive immune responses, making it a potential vaccine adjuvant. On mucosal surfaces, flagellin induces a strong release of cytokines, chemokines, and immunoglobulins. When used in its free monomeric form, flagellin has been shown to enhance immune responses when combined with vaccine antigens. Further research demonstrated that genetically linking flagellin to the antigen provides a more consistent immune boost. However, the bulky structure of flagellin presents challenges in designing the antigen-adjuvant construct, leading to ongoing research to determine the minimal flagellin domain necessary for its adjuvant effect. Early findings suggest that only the D0 and D1 domains are required for immune enhancement. Functional analysis revealed that the TLR5-binding region is located in the D1 domain, while TLR5 dimerization and signaling require the presence of D0. Further reductions in the size of the D0 and D1 domains may be possible as deeper studies aim to identify the key residues responsible for TLR5 activation and immune enhancement. Additionally, flagellin is being tested as a hapten carrier alongside its established adjuvant role. Recently, significant advancements in flagellin application have been observed as it progresses through clinical studies as an adjuvant, anti-radiation, and anti-cancer agent.
Collapse
Affiliation(s)
- Haroon Afzal
- International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan
| | - Asad Murtaza
- International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Li-Ting Cheng
- International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
| |
Collapse
|
3
|
Kokkinias K, Sabag-Daigle A, Kim Y, Leleiwi I, Shaffer M, Kevorkian R, Daly RA, Wysocki VH, Borton MA, Ahmer BMM, Wrighton KC. Time-resolved multi-omics reveals diverse metabolic strategies of Salmonella during diet-induced inflammation. mSphere 2024; 9:e0053424. [PMID: 39254340 PMCID: PMC11520297 DOI: 10.1128/msphere.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 09/11/2024] Open
Abstract
With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. In this study, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation in high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity in samples based on Salmonella ribosomal activity, which is separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expressions descriptive of each phase. Surprisingly, we identified genes associated with host cell entry expressed throughout infection, suggesting subpopulations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection.IMPORTANCEIdentifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts toward Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella. We observed differential gene expression across infection phases in mice over time on a high-fat diet. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, which explores the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.
Collapse
Affiliation(s)
- Katherine Kokkinias
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Yongseok Kim
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Ikaia Leleiwi
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Richard Kevorkian
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Rebecca A. Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Mikayla A. Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Brian M. M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Kelly C. Wrighton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Mishra R, Sharma S, Arora N. Flagellin conjugated Per a 10 and its T cell peptides attenuate airway inflammation and restore cellular function. Immunol Res 2024; 72:1051-1060. [PMID: 38879717 DOI: 10.1007/s12026-024-09507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/07/2024] [Indexed: 11/15/2024]
Abstract
Adjuvants were used to modulate response towards relevant immune cells. The present study aims to investigate FlaA-conjugated Per a 10 and T cell peptides in amelioration of allergic airway disease in mice. Mice given Per a 10 showed allergic features with higher cellular infiltration, IgE, Th-2 cytokines and alarmins. Fusion protein treatment reduced lung inflammation (p < 0.0001) and cellular infiltrates (p < 0.001) with higher IgG2a/IgE indicating resolution of disease. Immunotherapy with FPT1 and FPT3 reduces IL-4, IL-5 and IL-13 levels (p < 0.0001) with a fourfold increase in IFN-γ secretion in BALF. FPT1- and FPT3-treated mice have increased IL-10 and TGF-β levels (p < 0.001) with CD4+Foxp3+ T cells (p < 0.01) indicating Treg response. There was enhanced expression of claudin-1 (1.7-fold) and occludin (fourfold) in lungs of FPT1- and FPT3-treated mice with reduced TSLP (p < 0.01) and IL-33 (p < 0.0001) secretion in BALF indicating recovery of epithelial function. Peptide-conjugated FlaA proteins showed protective immunity in mice and have potential for immunotherapy with restoration of cellular function.
Collapse
Affiliation(s)
- Richa Mishra
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Mall Road Campus, New Delhi, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Swati Sharma
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Mall Road Campus, New Delhi, Delhi, 110007, India
| | - Naveen Arora
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Mall Road Campus, New Delhi, Delhi, 110007, India.
| |
Collapse
|
5
|
Chung YC, Cheng LT, Chu CY, Afzal H, Doan TD. Flagellin Enhances the Immunogenicity of Pasteurella multocida Lipoprotein E Subunit Vaccine. Avian Dis 2024; 68:183-191. [PMID: 39400212 DOI: 10.1637/aviandiseases-d-24-00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 10/15/2024]
Abstract
Fowl cholera, caused by Pasteurella multocida infection, poses challenges for prevention because of its many serotypes. Bacterins are currently widely used for vaccination against fowl cholera, but protection is limited to homologous strains. Live attenuated vaccines of P. multocida provide some heterologous protection, but side effects are considerable. More recently, protein-based antigens are promising subunit vaccines when their low immunogenicity has been addressed with effective adjuvants. Bacterial flagellin has been widely considered a promising adjuvant for vaccines. In this study, we tested the adjutancy of flagellin in a subunit vaccine against P. multocida in a mice and chicken models. For vaccine formulation, the antigen fPlpE (P. multocida liporotein E) was combined with fFliC (Salmonella Typhimurium flagellin). The recombinant proteins of fPlpE and fFliC were successfully expressed using the Escherichia coli system as the expected sizes of 55 kDa and 70 kDa, respectively. The fFliC elicited strong expression levels of proinflammatory cytokine (IL-1β, IL-8, and IL-6) when stimulated in native chicken peripheral blood mononuclear cells. Immunization of mice and chickens with the subunit vaccines containing fFliC accelerated the antibody response. In the challenge tests, fFliC increased vaccine protective efficacy against the heterologous strain P. multocida A1 and highly virulent strain Chu01 in mice and chickens, respectively. These data indicated potential possibilities of using fFliC as an immunostimulant adjuvant in developing a subunit vaccine against fowl cholera.
Collapse
Affiliation(s)
- Yao-Chi Chung
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chun-Yen Chu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Haroon Afzal
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Thu-Dung Doan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan,
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
6
|
Li Z, He H, Chen M, Ni M, Guo C, Wan Z, Zhou J, Wang Z, Wang Y, Cai H, Li M, Sun H, Xu H. Novel mechanism of Clostridium butyricum alleviated coprophagy prevention-induced intestinal inflammation in rabbit. Int Immunopharmacol 2024; 130:111773. [PMID: 38430808 DOI: 10.1016/j.intimp.2024.111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
As bacteria synthesize nutrients primarily in the cecum, coprophagy is indispensable for supplying rabbits with essential nutrients. Recent research has demonstrated its pivotal role in maintaining intestinal microbiota homeostasis and immune regulation in rabbits, although the specific mechanism remains unknown. Here, we used coprophagy prevention (CP) to investigate the effects of coprophagy on the cecum homeostasis and microbiota in New Zealand white rabbits. Furthermore, whether supplementation of Clostridium butyricum (C. butyricum) may alleviate the cecum inflammation and apoptosis caused by CP was also explored. Four groups were randomly assigned: control (Con), sham-coprophagy prevention (SCP), coprophagy prevention (CP), and CP and C. butyricum addition (CPCB). Compared to Con and SCP, CP augmented cecum inflammation and apoptosis, as well as bacterial adhesion to the cecal epithelial mucosa, while decreasing the expression of tight junction proteins (ZO-1, occluding, and claudin-1). The relative abundance of short-chain fatty acids (SCFAs)-producing bacteria was significantly decreased in the CP group. Inversely, there was an increase in the Firmicutes/Bacteroidetes ratio and the relative abundance of Christensenellaceae_R-7_group. Additionally, CP increased the levels of Flagellin, IFN-γ, TNF-a, and IL-1β in cecum contents and promoted the expression of TLR5/MyD88/NF-κB pathway in cecum tissues. However, the CPCB group showed significant improvements in all parameters compared to the CP group. Dietary C. butyricum supplementation significantly increased the production of SCFAs, particularly butyric acid, triggering anti-inflammatory, tissue repairing, and barrier-protective responses. Notably, CPCB effectively mitigated CP-induced apoptosis and inflammation. In summary, CP disrupts the cecum epithelial barrier and induces inflammation in New Zealand white rabbits, but these effects can be alleviated by C. butyricum supplementation. This process appears to be largely associated with the TLR5/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhichao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Hui He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Mengke Ni
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Chaohui Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Zhiyi Wan
- College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing 100193, PR China
| | - Jianshe Zhou
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, PR China
| | - Zhitong Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Yaling Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China.
| | - HuiZeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
7
|
Pearson JA, Hu Y, Peng J, Wong FS, Wen L. TLR5-deficiency controls dendritic cell subset development in an autoimmune diabetes-susceptible model. Front Immunol 2024; 15:1333967. [PMID: 38482010 PMCID: PMC10935730 DOI: 10.3389/fimmu.2024.1333967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction The incidence of the autoimmune disease, type 1 diabetes (T1D), has been increasing worldwide and recent studies have shown that the gut microbiota are associated with modulating susceptibility to T1D. Toll-like receptor 5 (TLR5) recognizes bacterial flagellin and is widely expressed on many cells, including dendritic cells (DCs), which are potent antigen-presenting cells (APCs). TLR5 modulates susceptibility to obesity and alters metabolism through gut microbiota; however, little is known about the role TLR5 plays in autoimmunity, especially in T1D. Methods To fill this knowledge gap, we generated a TLR5-deficient non-obese diabetic (NOD) mouse, an animal model of human T1D, for study. Results We found that TLR5-deficiency led to a reduction in CD11c+ DC development in utero, prior to microbial colonization, which was maintained into adulthood. This was associated with a bias in the DC populations expressing CD103, with or without CD8α co-expression, and hyper-secretion of different cytokines, both in vitro (after stimulation) and directly ex vivo. We also found that TLR5-deficient DCs were able to promote polyclonal and islet antigen-specific CD4+ T cell proliferation and proinflammatory cytokine secretion. Interestingly, only older TLR5-deficient NOD mice had a greater risk of developing spontaneous T1D compared to wild-type mice. Discussion In summary, our data show that TLR5 modulates DC development and enhances cytokine secretion and diabetogenic CD4+ T cell responses. Further investigation into the role of TLR5 in DC development and autoimmune diabetes may give additional insights into the pathogenesis of Type 1 diabetes.
Collapse
Affiliation(s)
- James Alexander Pearson
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, United States
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Youjia Hu
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, United States
| | - Jian Peng
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, United States
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
8
|
Kokkinias K, Sabag-Daigle A, Kim Y, Leleiwi I, Shaffer M, Kevorkian R, Daly RA, Wysocki VH, Borton MA, Ahmer BMM, Wrighton KC. Time resolved multi-omics reveals diverse metabolic strategies of Salmonella during diet-induced inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578763. [PMID: 38352409 PMCID: PMC10862859 DOI: 10.1101/2024.02.03.578763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. Here, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation of the high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity of samples based on Salmonella ribosomal activity, which separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expression descriptive of each phase. Surprisingly, we identified genes associated with host-cell entry expressed throughout infection, suggesting sub-populations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection. Importance Identifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts towards Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella . Over time on a high-fat diet, we observed differential gene expression across infection phases. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, exploring the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.
Collapse
|
9
|
Liu Q, Dai Y, Wu X, Zhang Q, An X, Lai F. Lawsonia intracellularis flagellin protein LfliC stimulates NF-κB and MAPK signaling pathways independently of TLR5 interaction. Vet Microbiol 2024; 289:109960. [PMID: 38176089 DOI: 10.1016/j.vetmic.2023.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Lawsonia intracellularis, a Gram-negative obligate intracellular bacterium and etiologic agent of porcine proliferative enteropathy, was observed to have a long, single, and unipolar flagellum. Bacterial flagellar filament comprises thousands of copies of the protein flagellin (FliC), and has been reported to be recognized by Toll-like receptor (TLR5) to activate the NF-κB and MAPK signaling pathways, thereby inducing the expression of proinflammatory genes. Recently, two L. intracellularis flagellin proteins, LfliC and LFliC, were reported to be involved in bacterial-host interaction and immune response. Here, to further explore the role of LfliC in proinflammatory response, we purified LfliC, and found that its exposure could activate NF-κB signaling pathway in both HEK293T and IPI-FX cells, as well as activate MAPK p38 and ERK1/2 in HEK293T cells but not in IPI-FX cells. However, our yeast two-hybrid and co-immunoprecipitation assay results revealed that LfliC has no interaction with the porcine TLR5 ECD domain though it harbors the conserved D1-like motif required for the interaction. Moreover, LfliC was identified as a substrate of the virulence-associated type III secretion system (T3SS) by using the heterologous Y. enterocolitica system. Transient expression of LfliC also activated the NF-κB and MAPK signaling pathway in HEK293T cells. Collectively, our results suggest that both the exposure and expression of L. intracellularis LfliC can induce the NF-κB and MAPK signaling pathway in mammalian cells. Our findings may provide important implications and resources for the development of diagnostic tools or vaccines and dissection of the pathogenesis of L. intracellularis.
Collapse
Affiliation(s)
- Qianru Liu
- School of Bioscience and Bioengineering, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yimin Dai
- School of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyu Wu
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, Jiangxi, China
| | - Qinghua Zhang
- School of Bioscience and Bioengineering, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuejiao An
- School of Bioscience and Bioengineering, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fenju Lai
- School of Bioscience and Bioengineering, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
10
|
Pirolli NH, Reus LSC, Jay SM. Separation of Bacterial Extracellular Vesicles via High-Performance Anion Exchange Chromatography. Methods Mol Biol 2024; 2843:155-162. [PMID: 39141299 DOI: 10.1007/978-1-0716-4055-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Bacterial extracellular vesicles (BEVs) have extraordinary biotechnological potential, but traditional purification methods lack desirable scalability and commonly co-isolate protein impurities, limiting clinical translation. Anion exchange chromatography (AEC) separates molecules based on differences in net charge and is widely used for industrial biomanufacturing of protein therapeutics. Recently, AEC has recently been applied for purification of EVs from both mammalian and bacterial sources. Since most bacteria produce BEVs with a negative surface membrane change, AEC can potentially be widely used for BEV purification. Here, we describe a method utilizing high-performance AEC (HPAEC) in tandem with size-based tangential flow filtration for improved BEV purification. We have previously found this method can reduce co-isolated protein impurities and potentiate anti-inflammatory bioactivity of probiotic BEVs. Thus, this method holds promise as a scalable alternative for improved BEV purification.
Collapse
Affiliation(s)
- Nicholas H Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Laura Samantha C Reus
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
11
|
Pirolli NH, Reus LSC, Mamczarz Z, Khan S, Bentley WE, Jay SM. High performance anion exchange chromatography purification of probiotic bacterial extracellular vesicles enhances purity and anti-inflammatory efficacy. Biotechnol Bioeng 2023; 120:3368-3380. [PMID: 37555379 PMCID: PMC10592193 DOI: 10.1002/bit.28522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Bacterial extracellular vesicles (BEVs), including outer membrane vesicles, have emerged as a promising new class of vaccines and therapeutics to treat cancer and inflammatory diseases, among other applications. However, clinical translation of BEVs is hindered by a current lack of scalable and efficient purification methods. Here, we address downstream BEV biomanufacturing limitations by developing a method for orthogonal size- and charge-based BEV enrichment using tangential flow filtration (TFF) in tandem with high performance anion exchange chromatography (HPAEC). The data show that size-based separation coisolated protein contaminants, whereas size-based TFF with charged-based HPAEC dramatically improved purity of BEVs produced by probiotic Gram-negative Escherichia coli and Gram-positive lactic acid bacteria (LAB). Escherichia coli BEV purity was quantified using established biochemical markers while improved LAB BEV purity was assessed via observed potentiation of anti-inflammatory bioactivity. Overall, this work establishes orthogonal TFF + HPAEC as a scalable and efficient method for BEV purification that holds promise for future large-scale biomanufacturing of therapeutic BEV products.
Collapse
Affiliation(s)
- Nicholas H. Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Laura Samantha C. Reus
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Zuzanna Mamczarz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Sulayman Khan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
12
|
Raman V, Deshpande CP, Khanduja S, Howell LM, Van Dessel N, Forbes NS. Build-a-bug workshop: Using microbial-host interactions and synthetic biology tools to create cancer therapies. Cell Host Microbe 2023; 31:1574-1592. [PMID: 37827116 DOI: 10.1016/j.chom.2023.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Many systemically administered cancer therapies exhibit dose-limiting toxicities that reduce their effectiveness. To increase efficacy, bacterial delivery platforms have been developed that improve safety and prolong treatment. Bacteria are a unique class of therapy that selectively colonizes most solid tumors. As delivery vehicles, bacteria have been genetically modified to express a range of therapies that match multiple cancer indications. In this review, we describe a modular "build-a-bug" method that focuses on five design characteristics: bacterial strain (chassis), therapeutic compound, delivery method, immune-modulating features, and genetic control circuits. We emphasize how fundamental research into gut microbe pathogenesis has created safe bacterial therapies, some of which have entered clinical trials. The genomes of gut microbes are fertile grounds for discovery of components to improve delivery and modulate host immune responses. Future work coupling these delivery vehicles with insights from gut microbes could lead to the next generation of microbial cancer therapy.
Collapse
Affiliation(s)
- Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA; Ernest Pharmaceuticals, LLC, Hadley, MA, USA
| | - Chinmay P Deshpande
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Shradha Khanduja
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Lars M Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | | | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, Amherst, MA, USA; Institute for Applied Life Science, University of Massachusetts, Amherst, Amherst, MA, USA.
| |
Collapse
|
13
|
Wenbo D, Yifu H, Li K. SPI1 Regulates the Progression of Ankylosing Spondylitis by Modulating TLR5 via NF-κB Signaling. Inflammation 2023; 46:1697-1708. [PMID: 37277671 DOI: 10.1007/s10753-023-01834-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 06/07/2023]
Abstract
Ankylosing spondylitis (AS) is an autoimmune disease which associated with inflammation of the spinal joints. Enhanced osteogenic differentiation was observed in AS; however, the underlying mechanism remains undefined. A cohort of AS (n = 15) and patients with traumatic fracture (n = 15) were recruited to this study. Fibroblasts were isolated, and characterized by H&E and immunocytochemistry (ICC) analysis. The expression and secretion of key molecules were detected by qRT-PCR, western blot, immunofluorescence (IF), and ELISA. Calcium deposition and alkaline phosphatase (ALP) activity were monitored by Alizarin Red S and ALP staining. The direct association between Spi-1 proto-oncogene (SPI1) and toll-like receptor 5 (TLR5) promoter was assessed by ChIP assay. AS fibroblasts was successfully isolated and exhibited osteogenic differentiation potentials. SPI1 was elevated in AS fibroblasts, and silencing of SPI1 inhibited osteogenic differentiation of AS fibroblasts. Mechanistic study showed that SPI1 acted as a transcriptional activator of TLR5. Knockdown of TLR5 suppressed osteogenic differentiation of AS fibroblasts via nuclear factor kappa B (NF-κB) signaling. Rescue experiments revealed that overexpression of TLR5 reversed SPI1 knockdown-suppressed osteogenic differentiation via NF-κB signaling. SPI1 regulated the progression of AS by modulating TLR5 via NF-κB signaling.
Collapse
Affiliation(s)
- Dai Wenbo
- Department of Spine Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541000, China
| | - He Yifu
- Surgical Department, Affiliated Hospital of Youjiang Medical University for Nationality, Baise, 533000, China
| | - Kai Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guilin Medical University, Guilin, 541000, China.
| |
Collapse
|
14
|
Wang X, Qiu W, Liu H, He M, He W, Li Z, Wu Z, Xu X, Chen P. The inducible secreting TLR5 agonist, CBLB502, enhances the anti-tumor activity of CAR133-NK92 cells in colorectal cancer. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0033. [PMID: 37731205 PMCID: PMC10546094 DOI: 10.20892/j.issn.2095-3941.2023.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023] Open
Abstract
OBJECTIVE CAR-T/NK cells have had limited success in the treatment of solid tumors, such as colorectal cancer (CRC), in part because of the heterogeneous nature of tumor-associated antigens that lead to antigen-negative relapse after the initial response. This barrier might be overcome by enhancing the recruitment and durability of endogenous immune cells. METHODS Immunohistochemistry and flow cytometry were used to assess the expression of CD133 antigen in tissue microarrays and cell lines, respectively. Retroviral vector transduction was used to generate CBLB502-secreting CAR133-NK92 cells (CAR133-i502-NK92). The tumor killing capacity of CAR133-NK92 cells in vitro and in vivo were quantified via LDH release, the RTCA assay, and the degranulation test, as well as measuring tumor bioluminescence signal intensity in mice xenografts. RESULTS We engineered CAR133-i502-NK92 cells and demonstrated that those cells displayed enhanced proliferation (9.0 × 104 cells vs. 7.0 × 104 cells) and specific anti-tumor activities in vitro and in a xenogeneic mouse model, and were well-tolerated. Notably, CBLB502 secreted by CAR133-i502-NK92 cells effectively activated endogenous immune cells. Furthermore, in hCD133+/hCD133- mixed cancer xenograft models, CAR133-i502-NK92 cells suppressed cancer growth better than the counterparts (n = 5, P = 0.0297). Greater T-cell infiltration was associated with greater anti-tumor potency (P < 0.0001). CONCLUSIONS Armed with a CBLB502 TLR5 agonist, CAR133-NK92 cells were shown to be capable of specifically eliminating CD133-positive colon cancer cells in a CAR133-dependent manner and indirectly eradicating CD133-negative colon cancer cells in a CBLB502-specific endogenous immune response manner. This study describes a novel technique for optimizing CAR-T/NK cells for the treatment of antigenically-diverse solid tumors.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Biotechnology, Southwest University, Chongqing 400715, China
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Qiu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Haoyu Liu
- College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Min He
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei He
- College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Zhan Li
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhiqiang Wu
- Department of Biotherapeutics, The First Medical Center, Chinese PLA General Hospital, Beijing 100038, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ping Chen
- College of Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Nandi I, Aroeti B. Mitogen-Activated Protein Kinases (MAPKs) and Enteric Bacterial Pathogens: A Complex Interplay. Int J Mol Sci 2023; 24:11905. [PMID: 37569283 PMCID: PMC10419152 DOI: 10.3390/ijms241511905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Diverse extracellular and intracellular cues activate mammalian mitogen-activated protein kinases (MAPKs). Canonically, the activation starts at cell surface receptors and continues via intracellular MAPK components, acting in the host cell nucleus as activators of transcriptional programs to regulate various cellular activities, including proinflammatory responses against bacterial pathogens. For instance, binding host pattern recognition receptors (PRRs) on the surface of intestinal epithelial cells to bacterial pathogen external components trigger the MAPK/NF-κB signaling cascade, eliciting cytokine production. This results in an innate immune response that can eliminate the bacterial pathogen. However, enteric bacterial pathogens evolved sophisticated mechanisms that interfere with such a response by delivering virulent proteins, termed effectors, and toxins into the host cells. These proteins act in numerous ways to inactivate or activate critical components of the MAPK signaling cascades and innate immunity. The consequence of such activities could lead to successful bacterial colonization, dissemination, and pathogenicity. This article will review enteric bacterial pathogens' strategies to modulate MAPKs and host responses. It will also discuss findings attempting to develop anti-microbial treatments by targeting MAPKs.
Collapse
Affiliation(s)
| | - Benjamin Aroeti
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190410, Israel;
| |
Collapse
|
16
|
Hewawaduge C, Senevirathne A, Sivasankar C, Lee JH. The impact of lipid A modification on biofilm and related pathophysiological phenotypes, endotoxicity, immunogenicity, and protection of Salmonella Typhimurium. Vet Microbiol 2023; 282:109759. [PMID: 37104940 DOI: 10.1016/j.vetmic.2023.109759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023]
Abstract
This study presents the engineering of a less endotoxic Salmonella Typhimurium strain by manipulating the lipid-A structure of the lipopolysaccharide (LPS) component. Salmonella lipid A was dephosphorylated by using lpxE from Francisella tularensis. The 1-phosphate group from lipid-A was removed selectively, resulting in a close analog of monophosphoryl lipid A. We observed a significant impact of ∆pagL on major virulence factors such as biofilm formation, motility, persistency, and immune evasion. In correlation with biofilm and motility retardation, adhesion and invasion were elevated but with reduced intracellular survival, a favorable phenotype prospect of a vaccine strain. Western blotting and silver staining confirmed the absence of the O-antigen and truncated lipid-A core in the detoxified Salmonella mutant. In vitro and in vivo studies demonstrated that the dephosphorylated Salmonella mutant mediated lower pro-inflammatory cytokine secretion than the wild-type strain. The vaccine strains were present in the spleen and liver for five days and were cleared from the organs by day seven. However, the wild-type strain persisted in the spleen, liver, and brain, leading to sepsis-induced death. Histological evaluations of tissue samples further confirmed the reduced endotoxic activity of the detoxified Salmonella mutant. The detoxification strategy did not compromise the level of protective immunity, as the vaccine strain could enhance humoral and cellular immune responses and protect against the wild-type challenge in immunized mice.
Collapse
Affiliation(s)
- Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea
| | - Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea.
| |
Collapse
|
17
|
Piroli NH, Reus LSC, Mamczarz Z, Khan S, Bentley WE, Jay SM. High performance anion exchange chromatography purification of probiotic bacterial extracellular vesicles enhances purity and anti-inflammatory efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538917. [PMID: 37205369 PMCID: PMC10187247 DOI: 10.1101/2023.05.01.538917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bacterial extracellular vesicles (BEVs), including outer membrane vesicles (OMVs), have emerged as a promising new class of vaccines and therapeutics to treat cancer and inflammatory diseases, among other applications. However, clinical translation of BEVs is hindered by a current lack of scalable and efficient purification methods. Here, we address downstream BEV biomanufacturing limitations by developing a method for orthogonal size- and charge-based BEV enrichment using tangential flow filtration (TFF) in tandem with high performance anion exchange chromatography (HPAEC). The data show that size-based separation co-isolated protein contaminants, whereas size-based TFF with charged-based HPAEC dramatically improved purity of BEVs produced by probiotic Gram-negative Escherichia coli and Gram-positive lactic acid bacteria (LAB). E. coli BEV purity was quantified using established biochemical markers while improved LAB BEV purity was assessed via observed potentiation of anti-inflammatory bioactivity. Overall, this work establishes orthogonal TFF + HPAEC as a scalable and efficient method for BEV purification that holds promise for future large-scale biomanufacturing of therapeutic BEV products.
Collapse
Affiliation(s)
- Nicholas H. Piroli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Laura Samantha C. Reus
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Zuzanna Mamczarz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Sulayman Khan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
18
|
Heng YC, Menon N, Chen B, Loo BZL, Wong GWJ, Lim ACH, Silvaraju S, Kittelmann S. Ligilactobacillus ubinensis sp. nov., a novel species isolated from the wild ferment of a durian fruit ( Durio zibethinus). Int J Syst Evol Microbiol 2023; 73. [PMID: 36920986 DOI: 10.1099/ijsem.0.005733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
A Gram-stain-positive, rod-shaped, non-spore-forming, catalase-negative, urease-negative, homofermentative and facultatively anaerobic strain, named WILCCON 0076T, was isolated from a wild ferment of pieces of a 'Kampung' durian fruit collected on the island of Ubin (Pulau Ubin), Singapore. The durian had fallen to the ground from a durian tree (Durio zibethinus), on which a group of long-tailed macaques had been observed picking and eating the fruits. Comparative analyses of 16S rRNA gene sequences indicated that WILCCON 0076T potentially represented a novel species within the genus Ligilactobacillus, with the most closely related type strain being Ligilactobacillus agilis DSM 20509T (16S rRNA gene sequence similarity of 97.2 %). Average nucleotide identity and digital DNA-DNA hybridization prediction values were only 86.0% and 18.9 %, respectively. On the basis of the results of a polyphasic approach that included phylogenomic, chemotaxonomic and morphological analyses, we propose a novel species with the name Ligilactobacillus ubinensis sp. nov. (type strain WILCCON 0076T=DSM 114293T=LMG 32698T).
Collapse
Affiliation(s)
- Yu Chyuan Heng
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Nandita Menon
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Binbin Chen
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan Zong Lin Loo
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Garrett Wei Jie Wong
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Amber Ching Han Lim
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Shaktheeshwari Silvaraju
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Sandra Kittelmann
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Baik H, Cho J. Effect of sweet potato purple acid phosphatase on Pseudomonas aeruginosa flagellin-mediated inflammatory response in A549 cells. Anim Biosci 2023; 36:315-321. [PMID: 35798038 PMCID: PMC9834725 DOI: 10.5713/ab.22.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/13/2022] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE The study was conducted to investigate the dephosphorylation of Pseudomonas aeruginosa flagellin (PA FLA) by sweet potato purple acid phosphatase (PAP) and the effect of the enzyme on the flagellin-mediated inflammatory response in the A549 lung epithelial cell line. METHODS The activity of sweet potato PAP on PA FLA was assayed at different pH (4, 5.5, 7, and 7.5) and temperature (25°C, 37°C, and 55°C) conditions. The release of interleukin-8 (IL-8) and the activation of nuclear factor kappa- light-chain-enhancer of activated B cells (NF-κB) in A549 cells exposed to PA FLA treated with or without sweet potato PAP was measured using IL-8 and NF-κB ELISA kits, respectively. The activation of toll-like receptor 5 (TLR5) in TLR5-overexpressing HEK-293 cells exposed to PA FLA treated with or without sweet potato PAP was determined by the secreted alkaline phosphatase-based assay. RESULTS The dephosphorylation of PA FLA by sweet potato PAP was favorable at pH 4 and 5.5 and highest at 55°C. PA-FLA treated with the enzyme decreased IL-8 release from A549 cells to about 3.5-fold compared to intact PA FLA at 1,000 ng/mL of substrate. Moreover, PA-FLA dephosphorylated by the enzyme repressed the activation of NF-κB in the cells compared to intact PA FLA. The activation of TLR5 by PA-FLA was highest in TLR-overexpressing HEK293 cells at a substrate concentration of 5,000 ng/mL, whereas PA FLA treated with the enzyme strongly repressed the activation of TLR5. CONCLUSION Sweet potato PAP has the potential to be a new alternative agent against the increased antibiotic resistance of P. aeruginosa and may be a new conceptual feed additive to control unwanted inflammatory responses caused by bacterial infections in animal husbandry.
Collapse
Affiliation(s)
- Heyeon Baik
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea
| | - Jaiesoon Cho
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea,Corresponding Author: Jaiesoon Cho, Tel: +82-2-450-3375, Fax:+82-2-455-1044, E-mail:
| |
Collapse
|
20
|
Wang W, Wang Y, Lu Y, Zhu J, Tian X, Wu B, Du J, Cai W, Xiao Y. Reg4 protects against Salmonella infection-associated intestinal inflammation via adopting a calcium-dependent lectin-like domain. Int Immunopharmacol 2022; 113:109310. [DOI: 10.1016/j.intimp.2022.109310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
21
|
Ciaston I, Dobosz E, Potempa J, Koziel J. The subversion of toll-like receptor signaling by bacterial and viral proteases during the development of infectious diseases. Mol Aspects Med 2022; 88:101143. [PMID: 36152458 PMCID: PMC9924004 DOI: 10.1016/j.mam.2022.101143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 02/05/2023]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that respond to pathogen-associated molecular patterns (PAMPs). The recognition of specific microbial ligands by TLRs triggers an innate immune response and also promotes adaptive immunity, which is necessary for the efficient elimination of invading pathogens. Successful pathogens have therefore evolved strategies to subvert and/or manipulate TLR signaling. Both the impairment and uncontrolled activation of TLR signaling can harm the host, causing tissue destruction and allowing pathogens to proliferate, thus favoring disease progression. In this context, microbial proteases are key virulence factors that modify components of the TLR signaling pathway. In this review, we discuss the role of bacterial and viral proteases in the manipulation of TLR signaling, highlighting the importance of these enzymes during the development of infectious diseases.
Collapse
Affiliation(s)
- Izabela Ciaston
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Joanna Koziel
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
22
|
Emam M, Eslamloo K, Caballero-Solares A, Lorenz EK, Xue X, Umasuthan N, Gnanagobal H, Santander J, Taylor RG, Balder R, Parrish CC, Rise ML. Nutritional immunomodulation of Atlantic salmon response to Renibacterium salmoninarum bacterin. Front Mol Biosci 2022; 9:931548. [PMID: 36213116 PMCID: PMC9532746 DOI: 10.3389/fmolb.2022.931548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
We investigated the immunomodulatory effect of varying levels of dietary ω6/ω3 fatty acids (FA) on Atlantic salmon (Salmo salar) antibacterial response. Two groups were fed either high-18:3ω3 or high-18:2ω6 FA diets for 8 weeks, and a third group was fed for 4 weeks on the high-18:2ω6 diet followed by 4 weeks on the high-18:3ω3 diet and termed "switched-diet". Following the second 4 weeks of feeding (i.e., at 8 weeks), head kidney tissues from all groups were sampled for FA analysis. Fish were then intraperitoneally injected with either a formalin-killed Renibacterium salmoninarum bacterin (5 × 107 cells mL-1) or phosphate-buffered saline (PBS control), and head kidney tissues for gene expression analysis were sampled at 24 h post-injection. FA analysis showed that the head kidney profile reflected the dietary FA, especially for C18 FAs. The qPCR analyses of twenty-three genes showed that both the high-ω6 and high-ω3 groups had significant bacterin-dependent induction of some transcripts involved in lipid metabolism (ch25ha and lipe), pathogen recognition (clec12b and tlr5), and immune effectors (znrf1 and cish). In contrast, these transcripts did not significantly respond to the bacterin in the "switched-diet" group. Concurrently, biomarkers encoding proteins with putative roles in biotic inflammatory response (tnfrsf6b) and dendritic cell maturation (ccl13) were upregulated, and a chemokine receptor (cxcr1) was downregulated with the bacterin injection regardless of the experimental diets. On the other hand, an inflammatory regulator biomarker, bcl3, was only significantly upregulated in the high-ω3 fed group, and a C-type lectin family member (clec3a) was only significantly downregulated in the switched-diet group with the bacterin injection (compared with diet-matched PBS-injected controls). Transcript fold-change (FC: bacterin/PBS) showed that tlr5 was significantly over 2-fold higher in the high-18:2ω6 diet group compared with other diet groups. FC and FA associations highlighted the role of DGLA (20:3ω6; anti-inflammatory) and/or EPA (20:5ω3; anti-inflammatory) vs. ARA (20:4ω6; pro-inflammatory) as representative of the anti-inflammatory/pro-inflammatory balance between eicosanoid precursors. Also, the correlations revealed associations of FA proportions (% total FA) and FA ratios with several eicosanoid and immune receptor biomarkers (e.g., DGLA/ARA significant positive correlation with pgds, 5loxa, 5loxb, tlr5, and cxcr1). In summary, dietary FA profiles and/or regimens modulated the expression of some immune-relevant genes in Atlantic salmon injected with R. salmoninarum bacterin. The modulation of Atlantic salmon responses to bacterial pathogens and their associated antigens using high-ω6/high-ω3 diets warrants further investigation.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Evandro Kleber Lorenz
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Minneapolis, MN, United States
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
23
|
Self-assembled flagella protein nanofibers induce enhanced mucosal immunity. Biomaterials 2022; 288:121733. [PMID: 36038418 DOI: 10.1016/j.biomaterials.2022.121733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/28/2022]
Abstract
Nanofibers are potential vaccines or adjuvants for vaccination at the mucosal interface. However, how their lengths affect the mucosal immunity is not well understood. Using length-tunable flagella (self-assembled from a protein termed flagellin) as model protein nanofibers, we studied the mechanisms of their interaction with mucosal interface to induce immune responses length-dependently. Briefly, through tuning flagellin assembly, length-controlled protein nanofibers were prepared. The shorter nanofibers exhibited more pronounced toll-like receptor 5 (TLR5) and inflammasomes activation accompanied by pyroptosis, as a result of cellular uptake, lysosomal damage, and mitochondrial reactive oxygen species generation. Accordingly, the shorter nanofibers elevated the IgA level in mucosal secretions and enhanced the serum IgG level in ovalbumin-based intranasal vaccinations. These mucosal and systematic antibody responses were correlated with the mucus penetration capacity of the nanofibers. Intranasal administration of vaccines (human papillomavirus type 16 peptides) adjuvanted with shorter nanofibers significantly elicited cytotoxic T lymphocyte responses, strongly inhibiting tumor growth and improving survival rates in a TC-1 cervical cancer model. This work suggests that length-dependent immune responses of nanofibers can be elucidated for designing nanofibrous vaccines and adjuvants for both infectious diseases and cancer.
Collapse
|
24
|
Pang S, Wu W, Liu Q, Zhu G, Duan Q. Different serotypes of Escherichia coli flagellin exert identical adjuvant effects. BMC Vet Res 2022; 18:308. [PMID: 35953794 PMCID: PMC9373361 DOI: 10.1186/s12917-022-03412-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Bacterial flagellin is a potent powerful adjuvant, which exerts its adjuvant activity by activating the Toll-like receptor 5 (TLR5) signaling pathway to induce host pro-inflammatory responses. Flagellin of Salmonella typhimurium (S. typhimurium) has shown strong adjuvant effects for a variety of vaccine candidates, however, the adjuvanticity of different serotypes of Escherichia coli (E. coli) flagellin (FliC) is unclear. To explore the adjuvant activity of different serotypes of E. coli flagellin, FliCH1, FliCH7, and FliCH19 recombinant flagellins were prokaryotically-expressed and purified. The adjuvanticity of three recombinant flagellins was evaluated by analyzing their abilities to induce the IL-8 production in human colorectal adenocarcinoma (Caco-2) cells and the immune responses to co-administrated FaeG antigen in mice. Sequence analysis showed that the N-and C-terminal regions are highly conserved, whereas the central region is hypervariable. The TLR5 recognized site is identical among these three serotypes of flagellins. Coomassie blue staining SDS-PAGE showed the molecular mass of FliCH1, FliCH7, and FliCH19 recombinant flagellin are 66 kDa, 64 kDa, and 68 kDa, which can be recognized by anti-FliCH1, FliCH7, and FliCH19 serum, respectively. Moreover, the flagellin serotypes induced similar levels of IL-8 and TNF-α production in Caco-2 cells, anti-FaeG specific IgG antibodies in mice, and IL-4 production in mice spleen cells. Our results indicated that E. coli flagellins can be an adjuvant for vaccine candidates and that different serotypes of E. coli flagellins possess identical adjuvant effects.
Collapse
Affiliation(s)
- Shengmei Pang
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, China
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Wenwen Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, China
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Qinfang Liu
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, USA
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, China.
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Qiangde Duan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, China.
- Jiangsu Joint Laboratory for International Cooperation in Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
25
|
Sun B, van Dissel D, Mo I, Boysen P, Haslene-Hox H, Lund H. Identification of novel biomarkers of inflammation in Atlantic salmon (Salmo salar L.) by a plasma proteomic approach. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104268. [PMID: 34571096 DOI: 10.1016/j.dci.2021.104268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Monitoring fish welfare has become a central issue for the fast-growing aquaculture industry, and finding proper biomarkers of stress, inflammation and infection is necessary for surveillance and documentation of fish health. In this study, a proteomic approach using mass spectrometry was applied to identify indicators of the acute response in Atlantic salmon blood plasma by comparing Aeromonas salmonicida subsp. salmonicida infected fish and non-infected controls. The antimicrobial proteins cathelicidin (CATH), L-plastin (Plastin-2, LCP1) and soluble toll-like receptor 5 (sTLR5) were uniquely or mainly identified in the plasma of infected fish. In addition, five immune-related proteins showed significantly increased expression in plasma of infected fish: haptoglobin, high affinity immunoglobulin Fc gamma receptor I (FcγR1, CD64), leucine-rich alpha 2 glycoprotein (LRG1), complement C4 (C4) and phospholipase A2 inhibitor 31 kDa subunit-like protein. However, various fibrinogen components, CD209 and CD44 antigen-like molecules decreased in infected fish. Selected biomarkers were further verified by Western blot analysis of plasma and real time PCR of spleen and liver, including CATH1, CATH2 and L-plastin. A significant increase of L-plastin occurred as early as 24 h after infection, and a CATH2 increase was observed from 72 h in plasma of infected fish. Real time PCR of selected genes confirmed increased transcription of CATH1 and CATH2. In addition, serum amyloid A mRNA significantly increased in liver and spleen after bacterial infection. However, transcription of L-plastin was not consistently induced in liver and spleen. The results of the present study reveal novel and promising biomarkers of the acute phase response and inflammation in Atlantic salmon.
Collapse
Affiliation(s)
- Baojian Sun
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Dino van Dissel
- SINTEF AS, Department of Biotechnology and Nanomedicine, Trondheim, Norway
| | - Ingrid Mo
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Preben Boysen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Hanne Haslene-Hox
- SINTEF AS, Department of Biotechnology and Nanomedicine, Trondheim, Norway
| | - Hege Lund
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
26
|
|
27
|
Lin YJ, Flaczyk A, Wolfheimer S, Goretzki A, Jamin A, Wangorsch A, Vieths S, Scheurer S, Schülke S. The Fusion Protein rFlaA:Betv1 Modulates DC Responses by a p38-MAPK and COX2-Dependent Secretion of PGE 2 from Epithelial Cells. Cells 2021; 10:3415. [PMID: 34943923 PMCID: PMC8700022 DOI: 10.3390/cells10123415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Developing new adjuvants/vaccines and better understanding their mode-of-action is an important task. To specifically improve birch pollen allergy treatment, we designed a fusion protein consisting of major birch pollen allergen Betv1 conjugated to the TLR5-ligand flagellin (rFlaA:Betv1). This study investigates the immune-modulatory effects of rFlaA:Betv1 on airway epithelial cells. LA-4 mouse lung epithelial cells were stimulated with rFlaA:Betv1 in the presence/absence of various inhibitors with cytokine- and chemokine secretion quantified by ELISA and activation of intracellular signaling cascades demonstrated by Western blot (WB). Either LA-4 cells or LA-4-derived supernatants were co-cultured with BALB/c bone marrow-derived myeloid dendritic cells (mDCs). Compared to equimolar amounts of flagellin and Betv1 provided as a mixture, rFlaA:Betv1 induced higher secretion of IL-6 and the chemokines CCL2 and CCL20 from LA-4 cells and a pronounced MAPK- and NFκB-activation. Mechanistically, rFlaA:Betv1 was taken up more strongly and the induced cytokine production was inhibited by NFκB-inhibitors, while ERK- and p38-MAPK-inhibitors only suppressed IL-6 and CCL2 secretion. In co-cultures of LA-4 cells with mDCs, rFlaA:Betv1-stimulated LA-4 cells p38-MAPK- and COX2-dependently secreted PGE2, which modulated DC responses by suppressing pro-inflammatory IL-12 and TNF-α secretion. Taken together, these results contribute to our understanding of the mechanisms underlying the strong immune-modulatory effects of flagellin-containing fusion proteins.
Collapse
Affiliation(s)
- Yen-Ju Lin
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| | - Adam Flaczyk
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sonja Wolfheimer
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| | - Alexandra Goretzki
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| | - Annette Jamin
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| | - Andrea Wangorsch
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| | - Stefan Vieths
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| | - Stephan Scheurer
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| | - Stefan Schülke
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany; (Y.-J.L.); (A.F.); (S.W.); (A.G.); (A.J.); (A.W.); (S.V.); (S.S.)
| |
Collapse
|
28
|
Neag MA, Mitre AO, Catinean A, Buzoianu AD. Overview of the microbiota in the gut-liver axis in viral B and C hepatitis. World J Gastroenterol 2021; 27:7446-7461. [PMID: 34887642 PMCID: PMC8613744 DOI: 10.3748/wjg.v27.i43.7446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/13/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Viral B and C hepatitis are a major current health issue, both diseases having a chronic damaging effect on the liver and its functions. Chronic liver disease can lead to even more severe and life-threatening conditions, such as liver cirrhosis and hepatocellular carcinoma. Recent years have uncovered an important interplay between the liver and the gut microbiome: the gut-liver axis. Hepatitis B and C infections often cause alterations in the gut microbiota by lowering the levels of ‘protective’ gut microorganisms and, by doing so, hinder the microbiota ability to boost the immune response. Treatments aimed at restoring the gut microbiota balance may provide a valuable addition to current practice therapies and may help limit the chronic changes observed in the liver of hepatitis B and C patients. This review aims to summarize the current knowledge on the anato-functional axis between the gut and liver and to highlight the influence that hepatitis B and C viruses have on the microbiota balance, as well as the influence of treatments aimed at restoring the gut microbiota on infected livers and disease progression.
Collapse
Affiliation(s)
- Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400337, Romania
| | - Andrei Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400012, Romania
| | - Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400006, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400337, Romania
| |
Collapse
|
29
|
Song H, Won JE, Lee J, Han HD, Lee Y. Korean red ginseng attenuates Di-(2-ethylhexyl) phthalate-induced inflammatory response in endometrial cancer cells and an endometriosis mouse model. J Ginseng Res 2021; 46:592-600. [PMID: 35818422 PMCID: PMC9270657 DOI: 10.1016/j.jgr.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/10/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Background Di-(2-ethylhexyl) phthalate (DEHP) is the most common endocrine disrupting chemical used as a plasticizer. DEHP is associated with the development of endometrium-related diseases through the induction of inflammation. The major therapeutic approaches against endometrial cancer and endometriosis involve the suppression of inflammatory response. Korean Red Ginseng (KRG) is a natural product with anti-inflammatory and anti-carcinogenic properties. Thus, the purpose of this study is to investigate the effects of KRG on DEHP-induced inflammatory response in endometrial cancer Ishikawa cells and a mouse model of endometriosis. Methods RNA-sequencing was performed and analyzed on DEHP-treated Ishikawa cells in the presence and absence of KRG. The effects of KRG on DEHP-induced cyclooxygenase-2 (COX-2) mRNA levels in Ishikawa cells were determined by RT-qPCR. Furthermore, the effects of KRG on the extracellular signal-regulated kinases (ERKs) pathway, COX-2, and nuclear factor-kappa B (NF-κB) p65 after DEHP treatment of Ishikawa cells were evaluated by western blotting. In the mouse model, the severity of endometriosis induced by DEHP and changes in immunohistochemistry were used to assess the protective effect of KRG. Results According to the RNA-sequencing data, DEHP-induced inflammatory response-related gene expression was downregulated by KRG. Moreover, KRG significantly inhibited DEHP-induced ERK1/2/NF-κB/COX-2 levels in Ishikawa cells. In the mouse model, KRG administration significantly inhibited ectopic endometriosis growth after DEHP-induced endometriosis. Conclusions Overall, these results suggest that KRG may be a promising lead for the treatment of endometrial cancer and endometriosis via suppression of the inflammatory response.
Collapse
Affiliation(s)
- Heewon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Ji Eun Won
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Jeonggeun Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Republic of Korea
- Corresponding author. Department of Immunology, School of Medicine, Konkuk University, Chungwondae-Ro, Chungju, Republic of Korea.
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
- Corresponding author. Department of Integrative Bioscience and Biotechnology, Sejong University, Kwang-Jin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Xun Y, Yang H, Kaminska B, You H. Toll-like receptors and toll-like receptor-targeted immunotherapy against glioma. J Hematol Oncol 2021; 14:176. [PMID: 34715891 PMCID: PMC8555307 DOI: 10.1186/s13045-021-01191-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
Glioma represents a fast proliferating and highly invasive brain tumor which is resistant to current therapies and invariably recurs. Despite some advancements in anti-glioma therapies, patients’ prognosis remains poor. Toll-like receptors (TLRs) act as the first line of defense in the immune system being the detectors of those associated with bacteria, viruses, and danger signals. In the glioma microenvironment, TLRs are expressed on both immune and tumor cells, playing dual roles eliciting antitumoral (innate and adaptive immunity) and protumoral (cell proliferation, migration, invasion, and glioma stem cell maintenance) responses. Up to date, several TLR-targeting therapies have been developed aiming at glioma bulk and stem cells, infiltrating immune cells, the immune checkpoint axis, among others. While some TLR agonists exhibited survival benefit in clinical trials, it attracts more attention when they are involved in combinatorial treatment with radiation, chemotherapy, immune vaccination, and immune checkpoint inhibition in glioma treatment. TLR agonists can be used as immune modulators to enhance the efficacy of other treatment, to avoid dose accumulation, and what brings more interests is that they can potentiate immune checkpoint delayed resistance to PD-1/PD-L1 blockade by upregulating PD-1/PD-L1 overexpression, thus unleash powerful antitumor responses when combined with immune checkpoint inhibitors. Herein, we focus on recent developments and clinical trials exploring TLR-based treatment to provide a picture of the relationship between TLR and glioma and their implications for immunotherapy.
Collapse
Affiliation(s)
- Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, Guangdong Province, China
| | - Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, Guangdong Province, China
| | - Bozena Kaminska
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78 Heng-Zhi-Gang Road, Yue Xiu District, Guangzhou, 510095, China.,Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Hua You
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78 Heng-Zhi-Gang Road, Yue Xiu District, Guangzhou, 510095, China.
| |
Collapse
|
31
|
Immune Response and Apoptosis-Related Pathways Induced by Aeromonas schubertii Infection of Hybrid Snakehead ( Channa maculata♀ × Channa argus♂). Pathogens 2021; 10:pathogens10080997. [PMID: 34451461 PMCID: PMC8401259 DOI: 10.3390/pathogens10080997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Aeromonas schubertii is the etiological pathogen of internal organ nodules in snakehead fish. Infections with A. schubertii produce a significant economic loss in aquaculture. Therefore, it is important to examine the immune mechanisms by which snakeheads defend against A. schubertii infection. In this study, we established a hybrid snakehead infection model by intraperitoneal injection of A. schubertii that produced internal organ nodules. The splenic immune response of infected fish was examined at the transcriptome level by Illumina-seq analysis. Results showed 14,796 differentially expressed genes (DEGs) following A. schubertii infection, including 4441 up-regulated unigenes and 10,355 down-regulated unigenes. KEGG analysis showed 2084 DEGs to be involved in 192 pathways, 14 of which were immune-related. Twelve DEGs were used to validate quantitative real-time PCR results with RNA-seq data. Time-course expression analysis of six genes demonstrated modulation of the snakehead immune response by A. schubertii. Furthermore, transcriptome analysis identified a substantial number of DEGs that were involved in the apoptosis signaling pathway. TUNEL analysis of infected spleens confirmed the presence of apoptotic cells. This study provided new information for a further understanding of the pathogenesis of A. schubertii in snakeheads, which can be used to prevent and possibly treat A. schubertii infections.
Collapse
|
32
|
Melin N, Sánchez-Taltavull D, Fahrner R, Keogh A, Dosch M, Büchi I, Zimmer Y, Medová M, Beldi G, Aebersold DM, Candinas D, Stroka D. Synergistic effect of the TLR5 agonist CBLB502 and its downstream effector IL-22 against liver injury. Cell Death Dis 2021; 12:366. [PMID: 33824326 PMCID: PMC8024273 DOI: 10.1038/s41419-021-03654-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/07/2023]
Abstract
The toll-like receptor 5 (TLR5) agonist, CBLB502/Entolimod, is a peptide derived from bacterial flagellin and has been shown to protect against radiation-induced tissue damage in animal models. Here we investigated the protective mechanism of CBLB502 in the liver using models of ischemia-reperfusion injury and concanavalin A (ConA) induced immuno-hepatitis. We report that pretreatment of mice with CBLB502 provoked a concomitant activation of NF-κB and STAT3 signaling in the liver and reduced hepatic damage in both models. To understand the underlying mechanism, we screened for cytokines in the serum of CBLB502 treated animals and detected high levels of IL-22. There was no transcriptional upregulation of IL-22 in the liver, rather it was found in extrahepatic tissues, mainly the colon, mesenteric lymph nodes (MLN), and spleen. RNA-seq analysis on isolated hepatocytes demonstrated that the concomitant activation of NF-κB signaling by CBLB502 and STAT3 signaling by IL-22 produced a synergistic cytoprotective transcriptional signature. In IL-22 knockout mice, the loss of IL-22 resulted in a decrease of hepatic STAT3 activation, a reduction in the cytoprotective signature, and a loss of hepatoprotection following ischemia-reperfusion-induced liver injury. Taken together, these findings suggest that CBLB502 protects the liver by increasing hepatocyte resistance to acute liver injury through the cooperation of TLR5-NF-κB and IL-22-STAT3 signaling pathways.
Collapse
Affiliation(s)
- Nicolas Melin
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Daniel Sánchez-Taltavull
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - René Fahrner
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Department of General, Visceral and Vascular Surgery, Bürgerspital Solothurn, 4500, Solothurn, Switzerland
| | - Adrian Keogh
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Michel Dosch
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Isabel Büchi
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Yitzhak Zimmer
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Michaela Medová
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Guido Beldi
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Daniel M Aebersold
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Daniel Candinas
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Deborah Stroka
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland.
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland.
| |
Collapse
|
33
|
Zhou Z, Qi J, Yang D, Yang MS, Jeong H, Lim CW, Kim JW, Kim B. Exogenous activation of toll-like receptor 5 signaling mitigates acetaminophen-induced hepatotoxicity in mice. Toxicol Lett 2021; 342:58-72. [PMID: 33571619 DOI: 10.1016/j.toxlet.2021.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/06/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) poisoning is the most common cause of drug-induced acute liver injury (ALI). Our results showed that toll-like receptor 5 (TLR5) was abundantly expressed in hepatocytes and dramatically downregulated in the toxic mouse livers. Hence, we herein investigated the role of TLR5 signaling after APAP overdose. Mice were intraperitoneally (i.p.) injected with APAP to induce ALI, and then injected with flagellin at one hour after APAP administration. Flagellin attenuated APAP-induced ALI based on decreased histopathologic lesions, serum biochemical, oxidative stress, and inflammation. Furthermore, the protective effects of flagellin were abolished by TH1020 (a TLR5 antagonist) treatment. These results suggest that flagellin exerted protective effects on ALI via TLR5 activation. Mechanistically, flagellin injection promoted the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus in hepatocytes. Consistent with the in vivo results, flagellin increased the activation of Nrf2 in hepatocytes, resulting in decreased APAP toxicity. ML385, a selective inhibitor of Nrf2, abolished the flagellin-mediated hepatoprotective effects in damaged livers and hepatocytes. Additionally, the flagellin-induced Nrf2 translocation was dependent upon the activation of TLR5-JNK/p38 pathways. These findings suggest that TLR5 signaling-induced Nrf2 activation, at least partially, contributed to the protection against APAP-induced ALI by flagellin treatment.
Collapse
Affiliation(s)
- Zixiong Zhou
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, University Town, Fuzhou, 350122, Fujian, China
| | - Jing Qi
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, University Town, Fuzhou, 350122, Fujian, China
| | - Daram Yang
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Myeon-Sik Yang
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Hyuneui Jeong
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Jong-Won Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea.
| |
Collapse
|
34
|
Sahoo BR. Structure of fish Toll-like receptors (TLR) and NOD-like receptors (NLR). Int J Biol Macromol 2020; 161:1602-1617. [PMID: 32755705 PMCID: PMC7396143 DOI: 10.1016/j.ijbiomac.2020.07.293] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022]
Abstract
Innate immunity driven by pattern recognition receptor (PRR) protects the host from invading pathogens. Aquatic animals like fish where the adaptive immunity is poorly developed majorly rely on their innate immunity modulated by PRRs like toll-like receptors (TLR) and NOD-like receptors (NLR). However, current development to improve the fish immunity via TLR/NLR signaling is affected by a poor understanding of its mechanistic and structural features. This review discusses the structure of fish TLRs/NLRs and its interaction with pathogen associated molecular patterns (PAMPs) and downstream signaling molecules. Over the past one decade, significant progress has been done in studying the structure of TLRs/NLRs in higher eukaryotes; however, structural studies on fish innate immune receptors are undermined. Several novel TLR genes are identified in fish that are absent in higher eukaryotes, but the function is still poorly understood. Unlike the fundamental progress achieved in developing antagonist/agonist to modulate human innate immunity, analogous studies in fish are nearly lacking due to structural inadequacy. This underlies the importance of exploring the structural and mechanistic details of fish TLRs/NLRs at an atomic and molecular level. This review outlined the mechanistic and structural basis of fish TLR and NLR activation.
Collapse
|
35
|
Bertelsen A, Elborn SJ, Schock BC. Toll like Receptor signalling by Prevotella histicola activates alternative NF-κB signalling in Cystic Fibrosis bronchial epithelial cells compared to P. aeruginosa. PLoS One 2020; 15:e0235803. [PMID: 33031374 PMCID: PMC7544055 DOI: 10.1371/journal.pone.0235803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF), caused by mutations affecting the CFTR gene, is characterised by viscid secretions in multiple organ systems. CF airways contain thick mucus, creating a gradient of hypoxia, which promotes the establishment of polymicrobial infection. Such inflammation predisposes to further infection, a self-perpetuating cycle in mediated by NF-κB. Anaerobic Gram-negative Prevotella spp. are found in sputum from healthy volunteers and CF patients and in CF lungs correlate with reduced levels of inflammation. Prevotella histicola (P. histicola) can suppress murine lung inflammation, however, no studies have examined the role of P. histicola in modulating infection and inflammation in the CF airways. We investigated innate immune signalling and NF-kB activation in CF epithelial cells CFBE41o- in response to clinical stains of P. histicola and Pseudomonas aeruginosa (P. aeruginosa). Toll-Like Receptor (TLR) expressing HEK-293 cells and siRNA assays for TLRs and IKKα were used to confirm signalling pathways. We show that P. histicola infection activated the alternative NF-kB signalling pathway in CF bronchial epithelial cells inducing HIF-1α protein. TLR5 signalling was responsible for the induction of the alternative NF-kB pathway through phosphorylation of IKKα. The induction of transcription factor HIF-1α was inversely associated with the induction of the alternative NF-kB pathway and knockdown of IKKα partially restored canonical NF-kB activation in response to P. histicola. This study demonstrates that different bacterial species in the respiratory microbiome can contribute differently to inflammation, either by activating inflammatory cascades (P. aeruginosa) or by muting the inflammatory response by modulating similar or related pathways (P. histicola). Further work is required to assess the complex interactions of the lung microbiome in response to mixed bacterial infections and their effects in people with CF.
Collapse
Affiliation(s)
- Anne Bertelsen
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Stuart J. Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
- Imperial College London, London, United Kingdom
| | - Bettina C. Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Wu W, Wu H, He M, Zhang L, Huang Y, Geng Y, Liu J, Wang Q, Fan Z, Hou R, Yue B, Zhang X. Transcriptome analyses provide insights into maternal immune changes at several critical phases of giant panda reproduction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103699. [PMID: 32344048 DOI: 10.1016/j.dci.2020.103699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Giant pandas (Ailuropoda melanoleuca) possess highly specialized reproductive characteristics, but the maternal immune changes during reproduction are largely unclear. Here, 20 blood transcriptomes were used to determine immune changes at four key phases of giant panda reproduction, and a total of 4640 differential expression genes were identified. During estrus, six immune-related genes (TLR4, IL1B, SYK, SPI1, CD80, and ITK) were identified as hub genes. The up-regulation of the TLR family genes (TLR4, TLR5, TLR6, and TLR8) and inflammatory response related genes (IL1B) may reflect innate immune enhancement and local tissue remodeling events, while the up-regulation of SYK and SPI1, and the down-regulation of CD80 and ITK suggested that the enhanced humoral immunity and inhibited cellular immunity of female giant pandas during estrus. During early pregnancy, antigen presentation related genes and proinflammatory cytokine (IL1B) were down-regulated. This may indicate that partial immune functions were suppressed in early pregnancy to achieve immune tolerance, including reducing inflammatory to protect embryos. By the late pregnancy, the antiviral related genes were up-regulated to strengthen defenses against external pathogen infection. KLRK1, which acts as a primary activation receptor for NK cells, was down regulated in estrus and pregnancy, suggesting that the activities of NK cells were inhibited, and KLRK1 may play a key role in the regulation the activities of pbNK cells during reproduction of giant pandas. Our results showed that there was no significant immune change in lactating females (post-natal 2 months) compared to anestrus females. This is the first time to observe the immune changes of giant panda during the breeding period and our data is expected to provide valuable resources for further studies on reproductive immunology of giant pandas.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China.
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Wolong, 623006, Sichuan, PR China
| | - Ming He
- China Conservation and Research Center for the Giant Panda, Wolong, 623006, Sichuan, PR China
| | - Liang Zhang
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, PR China
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Wolong, 623006, Sichuan, PR China
| | - Yang Geng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Jinhua Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Qian Wang
- China Conservation and Research Center for the Giant Panda, Wolong, 623006, Sichuan, PR China
| | - Zhenxin Fan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, PR China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
37
|
Zhang Y, Zhang J, Bao J, Tang C, Zhang Z. Selenium deficiency induced necroptosis, Th1/Th2 imbalance, and inflammatory responses in swine ileum. J Cell Physiol 2020; 236:222-234. [PMID: 32488864 DOI: 10.1002/jcp.29836] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Selenium (Se) deficiency has a significant impact on the swine breeding industry by inducing digestive system damage and diarrhea. However, the molecular mechanism remains unclear. Our objectives were to investigate if different amounts of necroptosis, inflammatory responses, and T helper cell 1/T helper cell 2 (Th1/Th2) imbalances were induced by Se deficiency in intestinal porcine jejunal epithelial cells (IPEC-J2) and swine ileum tissue. Therefore, Se-deficient models were successfully established both in vitro and in vivo. In the current study, the cell morphological observation results showed that Se deficiency seriously affected the growth and differentiation of IPEC-J2 cells. Moreover, the necroptosis staining and histomorphology observation results showed that the number of necroptotic cells increased significantly, and the ileal tissue exhibited abnormal structures, including necroptotic features and inflammatory cell infiltration, in the Se-deficient group. Furthermore, Se deficiency resulted in accelerated cell necroptosis by increasing (p < .05) the expression of genes related to the tumor necrosis factor-α pathway at both the protein and messenger RNA (mRNA) levels compared to the control group. Moreover, the relative mRNA and protein expression of the inflammatory genes and their responses to dietary Se deficiency were consistent with the resultant Th1/Th2 imbalances in vitro and in vivo. Taken together, the results suggested that Se deficiency caused necroptosis, inflammatory responses, and abnormal expression of cytokines in swine ileum tissue. These findings might help us to explain the damage induced by Se deficiency to the digestive system of swine.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiuli Zhang
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jun Bao
- College of Animal Science, Northeast Agricultural University, Harbin, China
| | - Chaohua Tang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
38
|
Verma S, Prescott RA, Ingano L, Nickerson KP, Hill E, Faherty CS, Fasano A, Senger S, Cherayil BJ. The YrbE phospholipid transporter of Salmonella enterica serovar Typhi regulates the expression of flagellin and influences motility, adhesion and induction of epithelial inflammatory responses. Gut Microbes 2020; 11:526-538. [PMID: 31829769 PMCID: PMC7527071 DOI: 10.1080/19490976.2019.1697593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
serovar Typhi is the etiologic agent of typhoid fever, a major public health problem in the developing world. Moving toward and adhering to the intestinal epithelium represents key initial steps of infection by S. Typhi. We examined the role of the S. Typhi yrbE gene, which encodes an inner membrane phospholipid transporter, in these interactions with epithelial cells. Disruption of yrbE resulted in elevated expression of flagellin and a hypermotile phenotype. It also significantly reduced the ability of S. Typhi to adhere to the HeLa epithelial cell line and to polarized primary epithelial cells derived from human ileal organoids. Interestingly, the yrbE-deficient strain of S. Typhi induced higher production of interleukin-8 from the primary human ileal epithelial cell monolayers compared to the wild-type bacteria. Deletion of the flagellin gene (fliC) in the yrbE-deficient S. Typhi inhibited motility and attenuated interleukin-8 production, but it did not correct the defect in adhesion. We also disrupted yrbE in S. Typhimurium. In contrast to the results in S. Typhi, the deficiency of yrbE in S. Typhimurium had no significant effect on flagellin expression, motility or adhesion to HeLa cells. Correspondingly, the lack of yrbE also had no effect on association with the intestine or the severity of intestinal inflammation in the mouse model of S. Typhimurium infection. Thus, our results point to an important and serovar-specific role played by yrbE in the early stages of intestinal infection by S. Typhi.
Collapse
Affiliation(s)
- Smriti Verma
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Rachel A. Prescott
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Laura Ingano
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kourtney P. Nickerson
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Emily Hill
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christina S. Faherty
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stefania Senger
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Bobby J. Cherayil
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, USA,CONTACT Bobby J. Cherayil Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
39
|
Kylmä AK, Tolvanen TA, Carpén T, Haglund C, Mäkitie A, Mattila PS, Grenman R, Jouhi L, Sorsa T, Lehtonen S, Hagström J. Elevated TLR5 expression in vivo and loss of NF-κΒ activation via TLR5 in vitro detected in HPV-negative oropharyngeal squamous cell carcinoma. Exp Mol Pathol 2020; 114:104435. [PMID: 32240617 DOI: 10.1016/j.yexmp.2020.104435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 12/26/2022]
Abstract
In oropharyngeal squamous cell carcinoma (OPSCC), the expression pattern of toll-like receptors (TLRs), in comparison between human papillomavirus (HPV)-positive and -negative tumors differs. TLRs control innate immune responses by activating, among others, the nuclear factor-κΒ (NF-κΒ) signaling pathway. Elevated NF-κΒ activity is detectable in several cancers and regulates cancer development and progression. We studied TLR5 expression in 143 unselected consecutive OPSCC tumors, and its relation to HPV-DNA and p16 status, clinicopathological parameters, and patient outcome, and studied TLR5 stimulation and consecutive NF-κB cascade activation in vitro in two human OPSCC cell lines and immortalized human keratinocytes (HaCat). Clinicopathological data came from hospital registries, and TLR5 immunoexpression was evaluated by immunohistochemistry. Flagellin served to stimulate TLR5 in cultured cells, followed by analysis of the activity of the NF-κB signaling cascade with In-Cell Western for IκΒ and p-IκΒ. High TLR5 expression was associated with poor disease-specific survival in HPV-positive OPSCC, which typically shows low TLR5 immunoexpression. High TLR5 immunoexpression was more common in HPV-negative OPSCC, known for its less-favorable prognosis. In vitro, we detected NF-κΒ cascade activation in the HPV-positive OPSCC cell line and in HaCat cells, but not in the HPV-negative OPSCC cell line. Our results suggest that elevated TLR5 immunoexpression may be related to reduced NF-κΒ activity in HPV-negative OPSCC. The possible prognosis-worsening mechanisms among these high-risk OPSCC patients however, require further evaluation.
Collapse
Affiliation(s)
- Anna Kaisa Kylmä
- Department of Pathology, University of Helsinki, HUSLAB and Helsinki University Hospital, P. O. Box 21, 00014 Helsinki, Finland.
| | - Tuomas Aleksi Tolvanen
- Department of Pathology, University of Helsinki, Research Program for Clinical and Molecular Metabolism, P. O. Box 21, 00014 Helsinki, Finland
| | - Timo Carpén
- Department of Pathology, University of Helsinki, HUSLAB and Helsinki University Hospital, P. O. Box 21, 00014 Helsinki, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, P. O. Box 263, 00029 Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P. O. Box 20, FI-00014, Helsinki, Finland; Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, P. O. Box 63, 00014 Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, P. O. Box 263, 00029 Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden; Research Programme in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Petri S Mattila
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, P. O. Box 263, 00029 Helsinki, Finland
| | - Reidar Grenman
- Department of Otorhinolaryngology - Head and Neck Surgery, Department of Medical Biochemistry, Turku University Hospital, University of Turku, Kiinanmyllynkatu 4-8, P. O. Box 52, FI-20521 Turku, Finland
| | - Lauri Jouhi
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, P. O. Box 263, 00029 Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Central Hospital, P. O. Box 41, 00014 Helsinki, Finland; Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Research Program for Clinical and Molecular Metabolism, P. O. Box 21, 00014 Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, University of Helsinki, HUSLAB and Helsinki University Hospital, P. O. Box 21, 00014 Helsinki, Finland; Department of Surgery, University of Helsinki and Helsinki University Hospital, P. O. Box 20, FI-00014, Helsinki, Finland; Department of Oral Pathology and Radiology, Institute of Dentistry, Faculty of Medicine, University of Turku, Turku, Finland
| |
Collapse
|
40
|
Ivanov K, Garanina E, Rizvanov A, Khaiboullina S. Inflammasomes as Targets for Adjuvants. Pathogens 2020; 9:E252. [PMID: 32235526 PMCID: PMC7238254 DOI: 10.3390/pathogens9040252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 11/16/2022] Open
Abstract
Inflammasomes are an essential part of the innate immune system. They are necessary for the development of a healthy immune response against infectious diseases. Inflammasome activation leads to the secretion of pro-inflammatory cytokines such as IL-1β and IL-18, which stimulate the adaptive immune system. Inflammasomes activators can be used as adjuvants to provide and maintain the strength of the immune response. This review is focused on the mechanisms of action and the effects of adjuvants on inflammasomes. The therapeutic and prophylaxis significance of inflammasomes in infectious diseases is also discussed.
Collapse
Affiliation(s)
- Konstantin Ivanov
- Kazan Federal University, 420008 Kazan, Russia; (K.I.); (E.G.); (A.R.)
| | - Ekaterina Garanina
- Kazan Federal University, 420008 Kazan, Russia; (K.I.); (E.G.); (A.R.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Albert Rizvanov
- Kazan Federal University, 420008 Kazan, Russia; (K.I.); (E.G.); (A.R.)
| | - Svetlana Khaiboullina
- Kazan Federal University, 420008 Kazan, Russia; (K.I.); (E.G.); (A.R.)
- University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
41
|
Gut bacteria characteristic of the infant microbiota down-regulate inflammatory transcriptional responses in HT-29 cells. Anaerobe 2020; 61:102112. [DOI: 10.1016/j.anaerobe.2019.102112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022]
|
42
|
Naberhaus SA, Krull AC, Arruda BL, Arruda P, Sahin O, Schwartz KJ, Burrough ER, Magstadt DR, Matias Ferreyra F, Gatto IRH, Meiroz de Souza Almeida H, Wang C, Kreuder AJ. Pathogenicity and Competitive Fitness of Salmonella enterica Serovar 4,[5],12:i:- Compared to Salmonella Typhimurium and Salmonella Derby in Swine. Front Vet Sci 2020; 6:502. [PMID: 32083096 PMCID: PMC7002397 DOI: 10.3389/fvets.2019.00502] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Since 2014, Salmonella 4,[5],12:i:- has emerged as the most common serovar of Salmonella enterica identified from swine samples submitted to veterinary diagnostic laboratories in the United States. To compare the pathogenicity of S. 4,[5],12:i:- in swine to the known pathogenic Salmonella Typhimurium and lesser pathogenic Salmonella Derby, 72 pigs (20 per Salmonella serovar treatment and 12 controls) were inoculated with either S. Typhimurium, S. 4,[5],12:i:-, S. Derby, or sham-inoculated and followed for up to 28 days thereafter via rectal temperature, fecal scoring, and fecal culture. Animals were euthanized on days 2, 4, or 28 to determine the gross and histopathologic signs of disease and tissue colonization. The results clearly demonstrate that for the isolates selected, serovar 4,[5],12:i:- possesses similar ability as serovar Typhimurium to cause clinical disease, colonize the tonsils and ileocecal lymph nodes, and be shed in the feces of infected swine past resolution of clinical disease. To compare the competitive fitness of S. 4,[5],12:i:- to S. Typhimurium in swine when co-infected, 12 pigs were co-inoculated with equal concentrations of both S. Typhimurium and S. 4,[5],12:i and followed for up to 10 days thereafter. When co-inoculated, serovar 4,[5],12:i:- was consistently detected in the feces of a higher percentage of pigs and at higher concentrations than serovar Typhimurium, suggesting an increased competitive fitness of 4,[5],12:i:- relative to serovar Typhimurium when inoculated simultaneously into naïve pigs. Whole genome sequencing analysis of the isolates used in these studies revealed similar virulence factor presence in all S. 4,[5],12:i:- and S. Typhimurium isolates, but not S. Derby, providing additional evidence for similar pathogenicity potential between serovars 4,[5],12:i:- and Typhimurium. Altogether, this data strongly supports the hypothesis that S. 4,[5],12:i:- is a pathogen of swine and suggests a mechanism through increased competitive fitness for the increasing identification of Salmonella 4,[5],12:i:- in swine diagnostic samples over the past several years.
Collapse
Affiliation(s)
- Samantha A Naberhaus
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Adam C Krull
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Bailey L Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Paulo Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Kent J Schwartz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Drew R Magstadt
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Franco Matias Ferreyra
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Igor R H Gatto
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Henrique Meiroz de Souza Almeida
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, United States
| | - Amanda J Kreuder
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
43
|
Ponterio E, Mariotti S, Tabolacci C, Ruggeri FM, Nisini R. Virus like particles of GII.4 norovirus bind Toll Like Receptors 2 and 5. Immunol Lett 2019; 215:40-44. [DOI: 10.1016/j.imlet.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/12/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
|
44
|
Dai C, Yang L, Jin J, Wang H, Wu S, Bao W. Regulation and Molecular Mechanism of TLR5 on Resistance to Escherichia coli F18 in Weaned Piglets. Animals (Basel) 2019; 9:ani9100735. [PMID: 31569693 PMCID: PMC6827021 DOI: 10.3390/ani9100735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptor 5 (TLR5) plays an important role in immune system. In this study, we performed transcriptome analysis of the duodenum in E. coli F18-resistant and -sensitive Sutai weaned piglets and analyzed the differential expression of TLR5. The cellular localization of TLR5 was investigated, and the effect of TLR5 expression on E. coli invasion was evaluated after pig small intestinal epithelial cell lines (IPEC-J2) were stimulated by E. coli. The results showed that TLR5 expression level in duodenum and jejunum were significantly higher in E. coli F18-sensitive than in E. coli F18-resistant piglets. TLR5 protein was mainly expressed in the cytoplasm and cell membrane. The expression of genes associated with the TLR5 signaling pathway were significantly higher in TLR5-overexpressed cells than in control cells. Bacterial adhesion was higher in TLR5-overexpressed cells than in blank cells and lower in TLR5 interference than in blank cells. The core promoter region of TLR5 included two CpG islands and 16 acting elements. The methylation of the mC-6 site in the second CpG island of the promoter region had a regulatory effect on TLR5 expression. Therefore, TLR5 plays an important regulatory role on E. coli invasion. Low expression of TLR5 inhibited the immune response and decreased cell damage, which was conducive to the resistance to E. coli stimulation. In conclusion, this study preliminarily revealed the molecular mechanism of TLR5 gene regulating the resistance of piglets to Escherichia coli, and provided a new candidate gene for screening Escherichia coli resistance markers in pigs.
Collapse
Affiliation(s)
- Chaohui Dai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Li Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Jian Jin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
45
|
Nakamoto K, Watanabe M, Sada M, Inui T, Nakamura M, Honda K, Wada H, Ishii H, Takizawa H. Pseudomonas aeruginosa-derived flagellin stimulates IL-6 and IL-8 production in human bronchial epithelial cells: A potential mechanism for progression and exacerbation of COPD. Exp Lung Res 2019; 45:255-266. [PMID: 31517562 DOI: 10.1080/01902148.2019.1665147] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background and purpose of the study: Pseudomonas aeruginosa commonly colonizes the airway of patients with chronic obstructive pulmonary disease (COPD) and exacerbates their symptoms. P. aeruginosa carries flagellin that stimulates toll-like receptor (TLR)-5; however, the role of flagellin in the pathogenesis of COPD remains unclear. The aim of the study was to evaluate the mechanisms of the flagellin-induced innate immune response in bronchial epithelial cells, and to assess the effects of anti-inflammatory agents for treatment. Materials and methods: We stimulated BEAS-2B cells with P. aeruginosa-derived flagellin, and assessed mRNA expression and protein secretion of interleukin (IL)-6 and IL-8. We also used mitogen-activated protein kinases (MAPK) inhibitors to assess the signaling pathways involved in flagellin stimulation, and investigated the effect of clinically available anti-inflammatory agents against flagellin-induced inflammation. Results: Flagellin promoted protein and mRNA expression of IL-6 and IL-8 in BEAS-2B cells and induced phosphorylation of p38, ERK, and JNK; p38 phosphorylation-induced IL-6 production, while IL-8 production resulted from p38 and ERK phosphorylation. Fluticasone propionate (FP) and dexamethasone (DEX) suppressed IL-6 and IL-8 production in BEAS-2B cells, but clarithromycin (CAM) failed to do so. Conclusions: P. aeruginosa-derived flagellin-induced IL-6 and IL-8 production in bronchial epithelial cells, which partially explains the mechanisms of progression and exacerbation of COPD. Corticosteroids are the most effective treatment for the suppression of flagellin-induced IL-6 and IL-8 production in the bronchial epithelial cells.
Collapse
Affiliation(s)
- Keitaro Nakamoto
- Department of Respiratory Medicine, Kyorin University School of Medicine , Tokyo , Japan
| | - Masato Watanabe
- Department of Respiratory Medicine, Kyorin University School of Medicine , Tokyo , Japan
| | - Mitsuru Sada
- Department of Respiratory Medicine, Kyorin University School of Medicine , Tokyo , Japan
| | - Toshiya Inui
- Department of Respiratory Medicine, Kyorin University School of Medicine , Tokyo , Japan
| | - Masuo Nakamura
- Department of Respiratory Medicine, Kyorin University School of Medicine , Tokyo , Japan
| | - Kojiro Honda
- Department of Respiratory Medicine, Kyorin University School of Medicine , Tokyo , Japan
| | - Hiroo Wada
- Department of Respiratory Medicine, Kyorin University School of Medicine , Tokyo , Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine , Tokyo , Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, Kyorin University School of Medicine , Tokyo , Japan
| |
Collapse
|
46
|
Abdallah F, Lecellier G, Raharivelomanana P, Pichon C. R. nukuhivensis acts by reinforcing skin barrier function, boosting skin immunity and by inhibiting IL-22 induced keratinocyte hyperproliferation. Sci Rep 2019; 9:4132. [PMID: 30858525 PMCID: PMC6411885 DOI: 10.1038/s41598-019-39831-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/31/2019] [Indexed: 12/27/2022] Open
Abstract
Rauvolfia nukuhivensis is a well-known plant used for its wide range of beneficial effects in Marquesas islands. It is made up of diverse indole alkaloids and is used as traditional medicine for skin application. The actual mechanism behind the virtue of this plant is still unknown. Hence, in this study we aimed at deciphering the impact of R. nukuhivensis on skin immune system in context of (1) homeostasis, (2) pathogen infection and (3) inflammation. Here we show that R. nukuhivensis enhances cellular metabolic activity and wound healing without inducing cellular stress or disturbing cellular homeostasis. It reinforces the epithelial barrier by up-regulating hBD-1. Nevertheless, in pathogenic stress, R. nukuhivensis acts by preparing the immune system to be reactive and effective directly. Indeed, it enhances the innate immune response by increasing pathogens sensors such as TLR5. Finally, R. nukuhivensis blocks IL-22 induced hyperproliferation via PTEN and Filaggrin up-regulation as well as BCL-2 downregulation. In conclusion, this study provides evidence on the several cutaneous application potentials of R. nukuhivensis such as boosting the immune response or in restoring the integrity of the epithelial barrier.
Collapse
Affiliation(s)
- Florence Abdallah
- Centre de Biophysique Moléculaire, CNRS-UPR4301, 45071, Orléans, France
| | - Gaël Lecellier
- Université de Paris-Saclay UVSQ, 55 Avenue de Paris, 78000, Versailles, France
| | - Phila Raharivelomanana
- Université de la Polynésie Française, UMR 241 EIO, 6570 - 98702, Faa'a, Tahiti, Polynésie Française
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS-UPR4301, 45071, Orléans, France.
- Université d'Orléans, Collegium Sciences et Techniques, 45100, Orléans, France.
| |
Collapse
|
47
|
Gaudino SJ, Kumar P. Cross-Talk Between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front Immunol 2019; 10:360. [PMID: 30894857 PMCID: PMC6414782 DOI: 10.3389/fimmu.2019.00360] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/12/2019] [Indexed: 11/21/2022] Open
Abstract
Innate immunity is maintained in part by antigen presenting cells (APCs) including dendritic cells, macrophages, and B cells. APCs interact with T cells to link innate and adaptive immune responses. By displaying bacterial and tumorigenic antigens on their surface via major histocompatibility complexes, APCs can directly influence the differentiation of T cells. Likewise, T cell activation, differentiation, and effector functions are modulated by APCs utilizing multiple mechanisms. The objective of this review is to describe how APCs interact with and influence the activation of T cells to maintain innate immunity during exposure to microbial infection and malignant cells. How bacteria and cancer cells take advantage of some of these interactions for their own benefit will also be discussed. While this review will cover a broad range of topics, a general focus will be held around pathogens, cancers, and interactions that typically occur within the gastrointestinal tract.
Collapse
Affiliation(s)
- Stephen J Gaudino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - Pawan Kumar
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
48
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Wen ZS, Tang Z, Gu LX, Xiang XW, Qu YL. Immunomodulatory effect of low molecular-weight seleno-aminopolysaccharide on immunosuppressive mice. Int J Biol Macromol 2019; 123:1278-1288. [DOI: 10.1016/j.ijbiomac.2018.10.099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/29/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022]
|
50
|
Lauté-Caly DL, Raftis EJ, Cowie P, Hennessy E, Holt A, Panzica DA, Sparre C, Minter B, Stroobach E, Mulder IE. The flagellin of candidate live biotherapeutic Enterococcus gallinarum MRx0518 is a potent immunostimulant. Sci Rep 2019; 9:801. [PMID: 30692549 PMCID: PMC6349862 DOI: 10.1038/s41598-018-36926-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Many links between gut microbiota and disease development have been established in recent years, with particular bacterial strains emerging as potential therapeutics rather than causative agents. In this study we describe the immunostimulatory properties of Enterococcus gallinarum MRx0518, a candidate live biotherapeutic with proven anti-tumorigenic efficacy. Here we demonstrate that strain MRx0518 elicits a strong pro-inflammatory response in key components of the innate immune system but also in intestinal epithelial cells. Using a flagellin knock-out derivative and purified recombinant protein, MRx0518 flagellin was shown to be a TLR5 and NF-κB activator in reporter cells and an inducer of IL-8 production by HT29-MTX cells. E. gallinarum flagellin proteins display a high level of sequence diversity and the flagellin produced by MRx0518 was shown to be more potent than flagellin from E. gallinarum DSM100110. Collectively, these data infer that flagellin may play a role in the therapeutic properties of E. gallinarum MRx0518.
Collapse
Affiliation(s)
- Delphine L Lauté-Caly
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Emma J Raftis
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom.
| | - Philip Cowie
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Emma Hennessy
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Amy Holt
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - D Alessio Panzica
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Christina Sparre
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Beverley Minter
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Eline Stroobach
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Imke E Mulder
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| |
Collapse
|