1
|
Yu J, Li Q, Zhang C, Wang Q, Luo S, Wang X, Hu R, Cheng Q. Targeted LNPs deliver IL-15 superagonists mRNA for precision cancer therapy. Biomaterials 2025; 317:123047. [PMID: 39742840 DOI: 10.1016/j.biomaterials.2024.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Interleukin-15 (IL-15) emerges as a promising immunotherapeutic candidate, but the therapeutic utility remains concern due to the unexpected systematic stress. Here, we propose that the mRNA lipid nanoparticle (mRNA-LNP) system can balance the issue through targeted delivery to increase IL-15 concentration in the tumor area and reduce leakage into the circulation. In the established Structure-driven TARgeting (STAR) platform, the LNPLocal and LNPLung can effectively and selectively deliver optimized IL-15 superagonists mRNAs to local and lungs, respectively, in relevant tumor models. As a result, such superagonists exhibited well-balanced efficacy and side-effects, demonstrating the better anti-tumor activity, less systematic exposure, and less cytokine related risks. We finally verified the selective delivery and well tolerability of LNPLung in non-human primates (NHPs), confirming the potential for clinical application. This finding provides new potentials for cancers treatment on lung cancers or lung metastasis cancers.
Collapse
Affiliation(s)
- Juntao Yu
- Starna Therapeutics Co., Ltd., Suzhou, 215123, China
| | - Qian Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Chaoting Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Qiu Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Shenggen Luo
- Starna Therapeutics Co., Ltd., Suzhou, 215123, China
| | - Xiaona Wang
- Starna Therapeutics Co., Ltd., Suzhou, 215123, China
| | - Rongkuan Hu
- Starna Therapeutics Co., Ltd., Suzhou, 215123, China.
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Zhang M, Liu C, Tu J, Tang M, Ashrafizadeh M, Nabavi N, Sethi G, Zhao P, Liu S. Advances in cancer immunotherapy: historical perspectives, current developments, and future directions. Mol Cancer 2025; 24:136. [PMID: 40336045 PMCID: PMC12057291 DOI: 10.1186/s12943-025-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/15/2025] [Indexed: 05/09/2025] Open
Abstract
Cancer immunotherapy, encompassing both experimental and standard-of-care therapies, has emerged as a promising approach to harnessing the immune system for tumor suppression. Experimental strategies, including novel immunotherapies and preclinical models, are actively being explored, while established treatments, such as immune checkpoint inhibitors (ICIs), are widely implemented in clinical settings. This comprehensive review examines the historical evolution, underlying mechanisms, and diverse strategies of cancer immunotherapy, highlighting both its clinical applications and ongoing preclinical advancements. The review delves into the essential components of anticancer immunity, including dendritic cell activation, T cell priming, and immune surveillance, while addressing the challenges posed by immune evasion mechanisms. Key immunotherapeutic strategies, such as cancer vaccines, oncolytic viruses, adoptive cell transfer, and ICIs, are discussed in detail. Additionally, the role of nanotechnology, cytokines, chemokines, and adjuvants in enhancing the precision and efficacy of immunotherapies were explored. Combination therapies, particularly those integrating immunotherapy with radiotherapy or chemotherapy, exhibit synergistic potential but necessitate careful management to reduce side effects. Emerging factors influencing immunotherapy outcomes, including tumor heterogeneity, gut microbiota composition, and genomic and epigenetic modifications, are also examined. Furthermore, the molecular mechanisms underlying immune evasion and therapeutic resistance are analyzed, with a focus on the contributions of noncoding RNAs and epigenetic alterations, along with innovative intervention strategies. This review emphasizes recent preclinical and clinical advancements, with particular attention to biomarker-driven approaches aimed at optimizing patient prognosis. Challenges such as immunotherapy-related toxicity, limited efficacy in solid tumors, and production constraints are highlighted as critical areas for future research. Advancements in personalized therapies and novel delivery systems are proposed as avenues to enhance treatment effectiveness and accessibility. By incorporating insights from multiple disciplines, this review aims to deepen the understanding and application of cancer immunotherapy, ultimately fostering more effective and widely accessible therapeutic solutions.
Collapse
Affiliation(s)
- Meiyin Zhang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chaojun Liu
- Department of Breast Surgery, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Jing Tu
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8 V 1P7, Canada
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR) Yong Loo Lin, School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Peiqing Zhao
- Translational Medicine Center, Zibo Central Hospital Affiliated to Binzhou Medical University, No. 54 Communist Youth League Road, Zibo, China.
| | - Shijian Liu
- Department of General Medicine, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, 150081, China.
| |
Collapse
|
3
|
Lim YJ, Lim MS, Lee JJ, Bae H, Baek YJ, Kim GS, An Y, Kim SK, Yu D. Evaluation of clinical and immunological responses to recombinant canine interleukin-15 therapy in dogs with cancer: A pilot study. Vet Immunol Immunopathol 2025; 283:110923. [PMID: 40203669 DOI: 10.1016/j.vetimm.2025.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Interleukin-15 (IL-15) is a pleiotropic cytokine that plays a pivotal role in innate and adaptive immunity. Therefore, it is a promising therapeutic agent for cancer treatment. Despite growing interest in the use of IL-15 as an immunotherapeutic agent, there have been very few reports on its immunological and clinical effects in canine cancers. In this study, we generated recombinant canine IL-15 (rcIL-15) and evaluated its clinical and immunomodulatory effects in combination with metronomic cyclophosphamide in 15 canines with various tumor types. The treatment outcomes were assessed in a prospective clinical trial. Low-dose cyclophosphamide (12.5 mg/m2, PO, SID) was continuously administered for 8 weeks. Starting on day 14, after administering cyclophosphamide, rcIL-15 (20 μg/kg daily) was injected intravenously for 8 days. The disease control rate for combination therapy was 66.6 %, with the most notable partial response accounting for 33.3 % of hematological malignancies. The adverse events were minimal and primarily of grade 1 severity. Moreover, rcIL-15 administration led to significant elevations in anticancer lymphocyte subsets, such as natural killer and cytotoxic T cells, along with increased Ki-67 expression, indicating cellular proliferation. These changes were correlated with improved clinical outcomes. Our findings underscore the therapeutic potential and safety of combining rcIL-15 and metronomic cyclophosphamide for the treatment of various canine cancers.
Collapse
Affiliation(s)
- Y J Lim
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.
| | - M S Lim
- Vaxcell-Bio Therapeutics Co., Ltd., Hwasun, Jeollanamdo, Republic of Korea.
| | - J J Lee
- Vaxcell-Bio Therapeutics Co., Ltd., Hwasun, Jeollanamdo, Republic of Korea; Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.
| | - H Bae
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.
| | - Y J Baek
- Department of Applied, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.
| | - G S Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.
| | - Y An
- Department of Applied, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.
| | - S K Kim
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Vaxcell-Bio Therapeutics Co., Ltd., Hwasun, Jeollanamdo, Republic of Korea; Department of Applied, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.
| | - D Yu
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
4
|
Safaei S, Yari A, Pourbagherian O, Maleki LA. The role of cytokines in shaping the future of Cancer immunotherapy. Cytokine 2025; 189:156888. [PMID: 40010034 DOI: 10.1016/j.cyto.2025.156888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
As essential immune system regulators, cytokines are essential for modulating both innate and adaptive immunological responses. They have become important tools in cancer immunotherapy, improving the immune system's capacity to identify and destroy tumor cells. This article examines the background, workings, and therapeutic uses of cytokines, such as interleukins, interferons, and granulocyte-macropHage colony-stimulating factors, in the management of cancer. It examines the many ways that cytokines affect immune cell activation, signaling pathways, tumor development, metastasis, and prognosis by modifying the tumor microenvironment. Despite the limited effectiveness of cytokine-based monotherapy, recent developments have concentrated on new fusion molecules such as immunocytokines, cytokine delivery improvements, and combination techniques to maximize treatment efficacy while reducing adverse effects. Current FDA-approved cytokine therapeutics and clinical trial results are also included in this study, which offers insights into how cytokines might be used with other therapies including checkpoint inhibitors, chemotherapy, and radiation therapy to address cancer treatment obstacles. This study addresses the intricacies of cytokine interactions in the tumor microenvironment, highlighting the possibility for innovative treatment methods and suggesting fresh techniques for enhancing cytokine-based immunotherapies. PEGylation, viral vector-mediated cytokine gene transfer, antibody-cytokine fusion proteins (immunocytokines), and other innovative cytokine delivery techniques are among the novelties of this work, which focuses on the most recent developments in cytokine-based immunotherapy. Additionally, the study offers a thorough examination of the little-reviewed topic of cytokine usage in conjunction with other treatment techniques. It also discusses the most recent clinical studies and FDA-approved therapies, providing a modern perspective on the developing field of cancer immunotherapy and suggesting creative ways to improve treatment effectiveness while lowering toxicity. BACKGROUND: Cytokines are crucial in cancer immunotherapy for regulating immune responses and modifying the tumor microenvironment (TME). However, challenges with efficacy and safety have driven research into advanced delivery methods and combination therapies to enhance their therapeutic potential.
Collapse
Affiliation(s)
- Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AmirHossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Pourbagherian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Matsuoka M, Soria SA, Pires JR, Sant'Ana ACP, Freire M. Natural and induced immune responses in oral cavity and saliva. BMC Immunol 2025; 26:34. [PMID: 40251519 PMCID: PMC12007159 DOI: 10.1186/s12865-025-00713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/07/2025] [Indexed: 04/20/2025] Open
Abstract
This review comprehensively explores the intricate immune responses within the oral cavity, emphasizing the pivotal role of saliva in maintaining both oral and systemic health. Saliva, a complex biofluid, functions as a dynamic barrier against pathogens, housing diverse cellular components including epithelial cells, neutrophils, monocytes, dendritic cells, and lymphocytes, which collectively contribute to robust innate and adaptive immune responses. It acts as a physical and immunological barrier, providing the first line of defense against pathogens. The multifaceted protective mechanisms of salivary proteins, cytokines, and immunoglobulins, particularly secretory IgA (SIgA), are elucidated. We explore the natural and induced immune responses in saliva, focusing on its cellular and molecular composition. In addition to saliva, we highlight the significance of a serum-like fluid, the gingival crevicular fluid (GCF), in periodontal health and disease, and its potential as a diagnostic tool. Additionally, the review delves into the impact of diseases such as periodontitis, oral cancer, type 2 diabetes, and lupus on salivary immune responses, highlighting the potential of saliva as a non-invasive diagnostic tool for both oral and systemic conditions. We describe how oral tissue and the biofluid responds to diseases, including considerations to periodontal tissue health and in disease periodontitis. By examining the interplay between oral and systemic health through the oral-systemic axis, this review underscores the significance of salivary immune mechanisms in overall well-being and disease pathogenesis, emphasizing the importance of salivary mechanisms across the body.
Collapse
Affiliation(s)
- Michele Matsuoka
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Salim Abraham Soria
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Julien Rodrigues Pires
- Department of Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, 17012-901, Brazil
| | | | - Marcelo Freire
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Palladini M, Mazza MG, Bravi B, Bessi M, Lorenzi MC, Spadini S, De Lorenzo R, Rovere-Querini P, Furlan R, Benedetti F. Sex-Specific Inflammatory Profiles Affect Neuropsychiatric Issues in COVID-19 Survivors. Biomolecules 2025; 15:600. [PMID: 40305313 PMCID: PMC12025053 DOI: 10.3390/biom15040600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Post-COVID syndrome has unveiled intricate connections between inflammation, depressive psychopathology, and cognitive impairment. This study investigates these relationships in 101 COVID-19 survivors, focusing on sex-specific variations. Utilizing path modelling techniques, we analyzed the interplay of a one-month 48-biomarker inflammatory panel, with three-months of depressive symptoms and cognitive performance. The findings indicate that cognitive impairment is influenced by both inflammation and depression in the overall cohort. However, prominent sex-specific differences emerged. In females, a lingering imbalance between pro- and anti-inflammatory responses-likely reflecting the long-lasting immune alterations triggered by COVID-19-significantly affects cognitive functioning and shows a marginal, though not statistically significant, association with depressive symptoms. This suggests that a mixed inflammatory profile may contribute to these outcomes. Conversely, in males, inflammation was inversely associated with depression severity, with protective effects from regulatory mediators (IL-2, IL-4, IL-6, IL-15, LIF, TNF-α, β-NGF) against depression. In males, cognitive impairment appeared to be driven mainly by depressive symptoms, with minimal influence from inflammatory markers. These results highlight distinct sex-specific pathways in immune and inflammatory responses post-COVID-19, potentially shaped by endocrine mechanisms. The findings suggest that persistent inflammation may foster long-term neuropsychiatric sequelae, possibly through its effects on the brain, and underscore the need for sex-tailored therapeutic strategies to address the lasting impact of COVID-19.
Collapse
Affiliation(s)
- Mariagrazia Palladini
- Vita-Salute San Raffaele University, 20132 Milano, Italy; (R.D.L.); (P.R.-Q.); (R.F.); (F.B.)
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; (M.G.M.); (B.B.); (M.B.); (M.C.L.); (S.S.)
| | - Mario Gennaro Mazza
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; (M.G.M.); (B.B.); (M.B.); (M.C.L.); (S.S.)
| | - Beatrice Bravi
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; (M.G.M.); (B.B.); (M.B.); (M.C.L.); (S.S.)
| | - Margherita Bessi
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; (M.G.M.); (B.B.); (M.B.); (M.C.L.); (S.S.)
| | - Maria Cristina Lorenzi
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; (M.G.M.); (B.B.); (M.B.); (M.C.L.); (S.S.)
| | - Sara Spadini
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; (M.G.M.); (B.B.); (M.B.); (M.C.L.); (S.S.)
| | - Rebecca De Lorenzo
- Vita-Salute San Raffaele University, 20132 Milano, Italy; (R.D.L.); (P.R.-Q.); (R.F.); (F.B.)
- Unit of Innate Immunity and Tissue Remodelling, Department of Internal Medicine, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, 20132 Milano, Italy; (R.D.L.); (P.R.-Q.); (R.F.); (F.B.)
- Unit of Innate Immunity and Tissue Remodelling, Department of Internal Medicine, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Roberto Furlan
- Vita-Salute San Raffaele University, 20132 Milano, Italy; (R.D.L.); (P.R.-Q.); (R.F.); (F.B.)
- Clinical Neuroimmunology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, 20132 Milano, Italy
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, 20132 Milano, Italy; (R.D.L.); (P.R.-Q.); (R.F.); (F.B.)
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milano, Italy; (M.G.M.); (B.B.); (M.B.); (M.C.L.); (S.S.)
| |
Collapse
|
7
|
Chen W, Hong L, Lin S, Xian N, Yan C, Zhao N, Xiao Y, Liao W, Huang Y, Chen M. Enhanced anti-tumor efficacy of "IL-15 and CCL19" -secreting CAR-T cells in human glioblastoma orthotopic xenograft model. Front Oncol 2025; 15:1539055. [PMID: 40177238 PMCID: PMC11962218 DOI: 10.3389/fonc.2025.1539055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Despite the remarkable success of CAR-T cell therapy in hematologic malignancies, its progress in solid tumors has been slow. Overcoming challenges such as the recruitment and infiltration of CAR-T cells into the tumor site and the survival issues in the harsh tumor microenvironment are crucial for successful application in solid tumors. In this study, CAR-T cells were engineered to secrete both IL-15 and CCL19, and their efficacy was evaluated in a human glioblastoma orthotopic xenograft model. The results reveal that 15 × 19 CAR-T cells exhibit superior proliferation, chemotaxis, and phenotypic characteristics compared to conventional CAR-T cells in vitro. In vivo, 15 × 19 CAR-T cells exhibit superior control over tumors compared to conventional counterparts. Mechanistically, the improved efficacy can be attributed, in part, to IL-15 and CCL19 enhancing T-cell infiltration at the tumor site and fortifying resistance to exhaustion within the tumor microenvironment. In conclusion, the incorporation of IL-15 and CCL19 into CAR-T cells emerges as a promising strategy to elevate the anti-tumor efficacy of CAR-T cell therapy, positioning 15 × 19 CAR-T cells as a potential breakthrough for enhancing the application of CAR-T therapy in solid tumors.
Collapse
Affiliation(s)
- Wanqiong Chen
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Limian Hong
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Shaomei Lin
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Na Xian
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
- Tcelltech Biological Science and Technology Inc., Fuzhou, Fujian, China
| | - Cailing Yan
- Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Ningning Zhao
- Laboratory Animal Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Yonglei Xiao
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
| | - Wanting Liao
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Yuxiang Huang
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Mingzhu Chen
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| |
Collapse
|
8
|
Beneat A, Rueda V, Patel H, Brune Z, Sherry B, Shih A, Kaplan S, Rao A, Lee A, Varghese A, Oropallo A, Barnes BJ. Elevation of Plasma IL-15 and RANTES as Potential Biomarkers of Healing in Chronic Venous Ulcerations: A Pilot Study. Biomolecules 2025; 15:395. [PMID: 40149931 PMCID: PMC11940644 DOI: 10.3390/biom15030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic wounds present a large burden to our healthcare system and are typically marked by a failure to transition out of the inflammatory phase of wound healing. Venous leg ulcers (VLUs) represent the largest portion of chronic wounds. A pilot study of eleven (11) patients with VLUs seen over a 12-week period was undertaken utilizing RNA sequencing of wound biopsies and plasma cytokine levels to determine if biomarkers could be identified that would distinguish between wounds which heal versus those that do not. Chronic wounds were found to have increased expression of genes relating to epithelial-to-mesenchymal transition (EMT), cartilage and bone formation, and regulation of apical junction. Plasma cytokine levels showed predictive potential for IL-15 and RANTES, which were found to increase over time in patients with healed wounds. Further research is needed to validate these biomarkers as well as additional study of other chronic wound models, such as diabetic foot ulcers (DFUs).
Collapse
Affiliation(s)
- Amanda Beneat
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
| | - Vikki Rueda
- Drexel University College of Medicine, Philadelphia, PA 19104, USA;
| | - Hardik Patel
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
| | - Zarina Brune
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Barbara Sherry
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Andrew Shih
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
| | - Sally Kaplan
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
| | - Amit Rao
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
| | - Annette Lee
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
| | - Asha Varghese
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Alisha Oropallo
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Northwell Health Comprehensive Wound Care Healing Center, New Hyde Park, NY 11042, USA; (S.K.); (A.R.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Betsy J. Barnes
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (A.B.); (H.P.); (Z.B.); (B.S.); (A.S.); (A.L.); (A.V.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
9
|
Porreca S, Mennella A, Frasca L. The Role of CXCL4 in Systemic Sclerosis: DAMP, Auto-Antigen and Biomarker. Int J Mol Sci 2025; 26:2421. [PMID: 40141068 PMCID: PMC11942444 DOI: 10.3390/ijms26062421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by specific autoantibodies, vasculopathy and fibrosis of the skin and internal organs. In SSc, chronic activation of the immune system is largely sustained by endogenous inflammatory mediators that act as damage-associated molecular patterns (DAMPs), which activate Toll-like receptors (TLRs). Major autoantigens are nucleic acids or molecules that are able to bind nucleic acids. It is important to identify solid and predictive biomarkers of both disease activity and disease subtype. CXCL4 has been regarded as a new biomarker for early SSc in recent years, and here, we discuss its modulation over the course of a disease and after pharmacological interventions. Moreover, we provide evidence that CXCL4, in addition to being a biomarker of SSc subtypes and a prognostic marker of disease severity, has a dual pathogenic role in SSc: on the one hand, in complex with self-nucleic acids, CXCL4 acts as a DAMP for IFN-I and pro-inflammatory cytokines' release by innate immune cells (such as dendritic cells); on the other hand, CXCL4 is a target of both antibodies and T cells, functioning as an autoantigen. CXCL4 is certainly an interesting molecule in inflammation and autoimmunity, not only in SSc, and it may also be considered as a therapy target.
Collapse
Affiliation(s)
| | | | - Loredana Frasca
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.P.); (A.M.)
| |
Collapse
|
10
|
Naing A, McKean M, Rosen LS, Sommerhalder D, Shaik NM, Wang IM, Le Corre C, Kern KA, Mishra NH, Pal SK. First-in-human phase I study to evaluate safety, tolerability, pharmacokinetics, pharmacodynamics, immunogenicity, and antitumor activity of PF-07209960 in patients with advanced or metastatic solid tumors. ESMO Open 2025; 10:104291. [PMID: 39965362 PMCID: PMC11876874 DOI: 10.1016/j.esmoop.2025.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND PF-07209960 is an antibody-cytokine fusion molecule that consists of a single potency-reduced interleukin-15 (IL-15) mutein and a bivalent high-affinity anti-programmed cell death protein 1 (PD-1) full-length IgG. This phase I study (NCT04628780) evaluated the safety, tolerability, pharmacokinetics (PK), pharmacodynamics, and potential clinical benefits of PF-07209960 in patients with selected locally advanced or metastatic solid tumors for whom no standard therapy was available. MATERIALS AND METHODS Escalating doses (1-30 mg) of PF-07209960 were administered subcutaneously once every 2 weeks in 28-day cycles. The primary endpoints included dose-limiting toxicities (DLTs), adverse events (AEs), and laboratory abnormalities. The secondary endpoints included PK, anti-drug antibodies (ADA) and neutralizing antibodies (NAb) against PF-07209960, and tumor response assessed using RECIST version 1.1. RESULTS Thirty-seven patients received treatment with PF-07209960 (1-, 3-, and 10-mg groups, n = 4 each; 15 mg, n = 3; 20 mg, n = 16; 30 mg, n = 6). The median age was 59.0 years (range 31-88 years). Six (22.2%) patients had DLTs. The most frequently reported treatment-related AEs (TRAEs) (≥50%) were general disorders and administration site condition [21 (56.8%)] and skin and subcutaneous tissue disorders [20 (54.1%)]. The most frequently reported grade ≥3 TRAE was anemia [5 (13.5%)]. Two patients with microsatellite-stable colorectal cancer had confirmed partial response, one each from the PF-07209960 20-mg and 30-mg cohorts, with a duration of response of 9.5 and 3 months, respectively. The rate of ADA was 93.9% (31/33), of which 63.6% (21/33) was treatment induced and 30.3% (10/33) was treatment boosted. CONCLUSION PF-07209960 was generally manageable, with potential antitumor activity in some patients.
Collapse
Affiliation(s)
- A Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA.
| | - M McKean
- Sarah Cannon Research Institute (SCRI), Nashville, USA
| | - L S Rosen
- UCLA Santa Monica Hematology-Oncology, Santa Monica, USA
| | | | - N M Shaik
- Clinical Pharmacology and Translational Sciences, Pfizer Inc., La Jolla, USA
| | - I-M Wang
- Clinical Pharmacology and Translational Sciences, Pfizer Inc., La Jolla, USA
| | | | | | | | - S K Pal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, USA
| |
Collapse
|
11
|
Arakawa Y, Tamagawa-Mineoka R, Ueta M, Nakanishi M, Nishigaki H, Katoh N. IKZF1 and Ikaros Overexpression Results in Alopecia Areata-Like Phenotype in Mice. Exp Dermatol 2025; 34:e70074. [PMID: 40066904 DOI: 10.1111/exd.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
Ikaros, which is encoded by the Ikaros family zinc finger 1 (IKZF1) gene, is a zinc finger transcription factor. We have previously generated K5-Ikzf1-EGFP transgenic mice (Ikzf1 Tg) by introducing the IKZF1 isoform into epithelial cells expressing keratin 5, which develop patchy alopecia. However, there has been no detailed in vivo investigation of the function of IKZF1 in alopecia or of Ikaros expression in hair follicles of alopecia patients. Our aim was to investigate whether IKZF1 overexpression is involved in the pathogenesis of alopecia areata (AA) using Ikzf1 Tg and to examine Ikaros expression in human scalp skin. We grossly and histologically examined the alopecic lesions of Ikzf1 Tg and the skin of wild-type (WT) mice and the associated mRNA expression of inflammatory mediators. We also examined Ikaros' expression in human scalp skin. Grossly and histologically, we found that the Ikzf1 Tg developed AA-like lesions. Immunohistochemically, the hair follicles of the Ikzf1 Tg expressed high levels of the NKG2D ligand H60 and contained infiltrating CD8+NKG2D+ T cells. Interleukin 15, tumour necrosis factor-α, CXC chemokine ligand (Cxcl)1, Cxcl10, Cxcl11, signal transducer and activator of transcription (STAT)1, STAT3, Janus kinase (JAK)1 and JAK3 mRNA expression were significantly higher in the alopecic lesions of the Ikzf1 Tg than in the WT mice. Ikzf1 Tg given corticosteroid injections exhibited hair regrowth. Immunohistochemical analysis of scalp hair follicles showed that Ikaros was more highly expressed in AA patients than in non-AA controls. Our study suggests that IKZF1 and Ikaros are involved in the pathogenesis of AA.
Collapse
Affiliation(s)
- Yukiyasu Arakawa
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Risa Tamagawa-Mineoka
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mayumi Ueta
- Department of Ophthalmology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mari Nakanishi
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiromi Nishigaki
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norito Katoh
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
12
|
Li Z, Wrangle J, He K, Sprent J, Rubinstein MP. IL-15: from discovery to FDA approval. J Hematol Oncol 2025; 18:19. [PMID: 39966991 PMCID: PMC11837486 DOI: 10.1186/s13045-025-01664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Affiliation(s)
- Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, 43210, USA
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - John Wrangle
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kai He
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, 43210, USA
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, 2010, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, 1466, Australia
| | - Mark P Rubinstein
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, 43210, USA.
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
13
|
Sung HY, Lim JM, Park SW, Hwang JS. IL-15 secreted by keratinocytes induces melanogenesis through STAT3/5 signaling pathway in melan-a melanocytes. Arch Dermatol Res 2025; 317:415. [PMID: 39951112 DOI: 10.1007/s00403-025-03946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 05/09/2025]
Abstract
Chronic UV irradiation of keratinocytes can cause harmful skin diseases. UVB can cause DNA damage and induce various skin diseases. UVB increases melanin production in mammalian skin. In addition, keratinocytes have been shown to increase the secretion of various cytokines when exposed to UVB. These cytokines are known to affect not only immune cells but also non-immune cells. These inflammatory cytokines are closely related to melanin pigmentation. In this study, we investigated the direct effect of IL-15, a cytokine expressed in keratinocytes, on melanin production in melanocytes. IL-15 belongs to the common γ chain family, which is known as a pro-inflammatory cytokine. UVB exposure has been demonstrated to upregulate the expression of IL-15 in keratinocytes, and IL-15 secretion has also been confirmed. IL-2Rβ (IL-15Rβ) and the common γ chain have been identified as IL-15 receptors in melanocytes. IL-15 treatment promoted the upregulation of melanogenesis-related factors such as MITF, tyrosinase, TRP1, and TRP2 in melanocytes. Phosphorylation activation of STAT3 and STAT5 was activated in a time-dependent manner after IL-15 treatment. When siSTAT3 and siSTAT5b were co-administered with IL-15, the melanin content was significantly reduced compared to when IL-15 was administered alone. These results demonstrate that IL-15 directly affects melanocytes and specifically targets the STAT3/STAT5 signaling pathway to induce melanogenesis. Therefore, targeting the IL-15-mediated pathway may provide an effective strategy for the prevention and treatment of UVB-induced hyperpigmentation disorders.
Collapse
Affiliation(s)
- Hye-Youn Sung
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Hye-youn Sung, 17104, Republic of Korea
| | - Ji-Min Lim
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Hye-youn Sung, 17104, Republic of Korea
| | - Seong-Won Park
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Hye-youn Sung, 17104, Republic of Korea
| | - Jae Sung Hwang
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Hye-youn Sung, 17104, Republic of Korea.
| |
Collapse
|
14
|
Kar S, Verma D, Mehrotra S, Prajapati VK. Reconfiguring the immune system to target cancer: Therapies based on T cells, cytokines, and vaccines. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:77-150. [PMID: 39978976 DOI: 10.1016/bs.apcsb.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Over the years, extensive research has been dedicated to performing in-depth analysis of cancer to uncover the intricate details of its nature - including the types of cancer, causative agents, stimulators of disease progression, factors contributing to poor prognosis, and efficient therapies to restrict the metastatic aggressiveness. This chapter highlights the mechanisms through which different arms of the host immune system - namely cytokines, lymphocytes, antigen-presenting cells (APCs) -can be mobilized to eradicate cancer. Most malignant tumors are either poorly immunogenic, or are harbored in a highly immuno-suppressive microenvironment. This is why reinforcing the host's anti-tumor defenses, through infusion of pro-inflammatory cytokines, tumor antigen-loaded APCs, and anti-tumor cytotoxic cells has emerged as a viable treatment option against cancer. The chapter also highlights the ongoing preclinical and clinical studies in different malignancies and the outcome of various therapies. Although these methods are not foolproof, and antigen escape variants can still evade or develop resistance to customized therapies, they achieve disease stabilization in several cases when conventional treatments fail. In many instances, combination therapies involving cytokines, T cells, and vaccinations prove more effective than monotherapies. The limitations of the current therapies are also discussed, along with ongoing modifications aimed at improving efficacy.
Collapse
Affiliation(s)
- Sramona Kar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Divya Verma
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
15
|
Shahbaz S, Rezaeifar M, Syed H, Redmond D, Terveart JWC, Osman M, Elahi S. Upregulation of olfactory receptors and neuronal-associated genes highlights complex immune and neuronal dysregulation in Long COVID patients. Brain Behav Immun 2025; 124:97-114. [PMID: 39615603 DOI: 10.1016/j.bbi.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 01/20/2025] Open
Abstract
A substantial portion of patients infected with SARS-CoV-2 experience prolonged complications, known as Long COVID (LC). A subset of these patients exhibits the most debilitating symptoms, similar to those defined in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We performed bulk RNA sequencing (RNAseq) on the whole blood of LC with ME/CFS, at least 12 months post-onset of the acute disease, and compared them with controls. We found that LC patients had a distinct transcriptional profile compared to controls. Key findings include the upregulation of genes involved in immune dysregulation and neuronal development, such as Fezf2, BRINP2, HOXC12, MEIS2, ZFHX3, and RELN. These genes are linked to neuroinflammatory responses, cognitive impairments, and hematopoietic disturbances, suggesting ongoing neurological and immune disturbances in LC patients. RELN, encoding the Reelin protein, was notably elevated in LC patients, potentially serving as a biomarker for LC pathogenesis due to its role in inflammation and neuronal function. Immune cell analysis showed altered profiles in LC patients, with increased activated memory CD4 + T cells and neutrophils, and decreased regulatory T cells and NK cells, reflecting immune dysregulation. Changes in cytokine and chemokine expression further underscore the chronic inflammatory state in LC patients. Notably, a unique upregulation of olfactory receptors (ORs) suggest alternative roles for ORs in non-olfactory tissues. Pathway analysis revealed upregulation in ribosomal RNA processing, amino acid metabolism, protein synthesis, cell proliferation, DNA repair, and mitochondrial pathways, indicating heightened metabolic and immune demands. Conversely, downregulated pathways, such as VEGF signaling and TP53 activity, point to impaired tissue repair and cellular stress responses. Overall, our study underscores the complex interplay between immune and neuronal dysfunction in LC patients, providing insights into potential diagnostic biomarkers and therapeutic targets. Future research is needed to fully understand the roles and interactions of these genes in LC pathophysiology.
Collapse
Affiliation(s)
- Shima Shahbaz
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Maryam Rezaeifar
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Hussein Syed
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Desiree Redmond
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Jan Willem Cohen Terveart
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Shokrollah Elahi
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2E1, AB, Canada; Glycomics Institute of Alberta, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| |
Collapse
|
16
|
Zhu Y, Lu Z, Wang Z, Liu J, Ning K. Based on the immune system: the role of the IL-2 family in pancreatic disease. Front Immunol 2025; 16:1480496. [PMID: 39958351 PMCID: PMC11825815 DOI: 10.3389/fimmu.2025.1480496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
The IL-2 family, consisting of IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21, is a key regulator of the immune response. As an important endocrine and digestive organ, the function of the pancreas is regulated by the immune system. Studies have shown that each cytokine of the IL-2 family influences the occurrence and development of pancreatic diseases by participating in the regulation of the immune system. In this paper, we review the structural and functional characteristics of IL-2 family members, focus on their molecular mechanisms in pancreatic diseases including acute pancreatitis, chronic pancreatitis and pancreatic cancer, and highlight the importance of the related proteins in the regulation of immune response and disease progression, which will provide valuable insights for new biomarkers in pancreatic diseases, early diagnosis of the diseases, assessment of the disease severity, and development of new therapeutic regimens. The insights of the study are summarized in the following sections.
Collapse
Affiliation(s)
| | | | | | | | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
17
|
Yang X, Zhen C, Huang H, Jiao Y, Fan X, Zhang C, Song J, Wang S, Zhou C, Yang X, Yuan J, Zhang J, Xu R, Wang FS. Implications of accumulation of clonally expanded and senescent CD4 +GNLY + T cells in immunological non-responders of HIV-1 infection. Emerg Microbes Infect 2024; 13:2396868. [PMID: 39239709 PMCID: PMC11441045 DOI: 10.1080/22221751.2024.2396868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Increased CD4+GNLY+ T cells have been confirmed to be inversely associated with CD4+ T cell count in immunological non-responders (INRs), however, the underlying mechanisms are unknown. This study aimed to elucidate the characteristics of CD4+GNLY+ T cells and their relationship with immune restoration. Single-cell RNA sequencing, single-cell TCR sequencing, and flow cytometry were used to analyze the frequency, phenotypes, and function of CD4+GNLY+ T cells. Moreover, Enzyme linked immunosorbent assay was performed to detect plasma cytokines production in patients. CD4+GNLY+ T cells were found to be highly clonally expanded, characterized by higher levels of cytotoxicity, senescence, P24, and HIV-1 DNA than CD4+GNLY- T cells. Additionally, the frequency of CD4+GNLY+ T cells increased after ART, and further increased in INRs, and were positively associated with the antiretroviral therapy duration in INR. Furthermore, increased IL-15 levels in INRs positively correlated with the frequency and senescence of CD4+GNLY+ T cells, suggesting that CD4+GNLY+ T cells may provide new insights for understanding the poor immune reconstitution of INRs. In conclusion, increased, highly clonally expanded, and senescent CD4+GNLY+ T cells may contribute to poor immune reconstitution in HIV-1 infection.
Collapse
Affiliation(s)
- Xiuhan Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Cheng Zhen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Huihuang Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Yanmei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Jinwen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Songshan Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Chunbao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - XinXin Yang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Jinhong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Jiyuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Ruonan Xu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Fu-Sheng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Jiang X, Wang X, Gao M, Li X, Ding Y, Song Y, Xiao H, Kong X. Molecular cloning, expression analysis, and functional characterization of an interleukin-15 like gene in common carp ( Cyprinus carpio L.). Front Immunol 2024; 15:1502847. [PMID: 39628491 PMCID: PMC11611867 DOI: 10.3389/fimmu.2024.1502847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Interleukin-15 (IL-15) is a crucial cytokine involved in immune system regulation, which is produced by various cell types, including dendritic cells, monocytes, and macrophages. IL-15 plays a key role in the proliferation and activation of natural killer (NK) cells, CD8+ T cells, and memory CD8+ T cells, supporting their survival and enhancing their effector functions. Although IL-15 homologues in fish have been identified, their functions remain poorly understood. In this study, we cloned and investigated the bioactivities of an IL-15 homologue, referred to as IL-15 like (CcIL-15L), in common carp (Cyprinus carpio L.). An expression pattern analysis revealed that CcIL-15L was constitutively expressed in all examined tissues of healthy common carp, with the highest expression level observed in the intestine. Additionally, CcIL-15L expression was significantly up-regulated in the head kidney, spleen, gills, and intestine following Aeromonas hydrophila infection. In vitro, the recombinant protein CcIL-15L can significantly up-regulated the gene expression levels of pro-inflammatory cytokines (IL-1β, IL-6, IFN-γ, and TNF-α) and NK cell activation (perforin and Eomesa). We constructed a 3×FLAG eukaryotic expression vector and successfully expressed it in common carp by intramuscular injection. Additionally, the heterologous CcIL-15L protein was successfully overexpressed in vivo, and immune-related genes including CD4-1, CD8β2, TNF-α, and IgM showed significant induction in the head kidney and spleen. Furthermore, CcIL-15L overexpression reduced the bacterial loads after 24 h post-A. hydrophila infection in the liver, spleen, and kidney. Phagocytic and chemotaxis assays showed that rCcIL-15L could promoted the phagocytosis and chemotactic abilities of common carp HKLs. Our study provides a new perspective on the role for CcIL-15L in immunological functions in common carp.
Collapse
Affiliation(s)
- Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
- Hangzhou Xiaoshan Donghai Aquaculture Co., Ltd, Hangzhou, Zhejiang, China
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Xiaoyu Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Mengjie Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Xudong Li
- Fishery Technology Extension Station of Henan Province, Zhengzhou, Henan, China
| | - Yi Ding
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Yunjie Song
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Hehe Xiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
19
|
Ehx G, Ritacco C, Baron F. Pathophysiology and preclinical relevance of experimental graft-versus-host disease in humanized mice. Biomark Res 2024; 12:139. [PMID: 39543777 PMCID: PMC11566168 DOI: 10.1186/s40364-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantations (allo-HCT) used for the treatment of hematological malignancies and other blood-related disorders. Until recently, the discovery of actionable molecular targets to treat GVHD and their preclinical testing was almost exclusively based on modeling allo-HCT in mice by transplanting bone marrow and splenocytes from donor mice into MHC-mismatched recipient animals. However, due to fundamental differences between human and mouse immunology, the translation of these molecular targets into the clinic can be limited. Therefore, humanized mouse models of GVHD were developed to circumvent this limitation. In these models, following the transplantation of human peripheral blood mononuclear cells (PBMCs) into immunodeficient mice, T cells recognize and attack mouse organs, inducing GVHD. Thereby, humanized mice provide a platform for the evaluation of the effects of candidate therapies on GVHD mediated by human immune cells in vivo. Understanding the pathophysiology of this xenogeneic GVHD is therefore crucial for the design and interpretation of experiments performed with this model. In this article, we comprehensively review the cellular and molecular mechanisms governing GVHD in the most commonly used model of xenogeneic GVHD: PBMC-engrafted NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice. By re-analyzing public sequencing data, we also show that the clonal expansion and the transcriptional program of T cells in humanized mice closely reflect those in humans. Finally, we highlight the strengths and limitations of this model, as well as arguments in favor of its biological relevance for studying T-cell reactions against healthy tissues or cancer cells.
Collapse
Affiliation(s)
- Grégory Ehx
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium.
| | - Caroline Ritacco
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
- Department of Medicine, Division of Hematology, CHU of Liege, University of Liege, Liege, Belgium
| |
Collapse
|
20
|
Duan Z, Yang Y, Qin M, Yi X. Interleukin 15: A new intermediary in the effects of exercise and training on skeletal muscle and bone function. J Cell Mol Med 2024; 28:e70136. [PMID: 39601091 PMCID: PMC11599876 DOI: 10.1111/jcmm.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024] Open
Abstract
Interleukin-15 (IL-15), a pro-inflammatory cytokine, is produced mainly by skeletal muscle cells, macrophages and epithelial cells. Recent research has demonstrated that IL-15 is closely related to the functions of bone and skeletal muscle in the locomotor system. There is growing evidence that exercise, an important means to regulate the immune and locomotor systems, influences IL-15 content in various tissues, thereby indirectly affecting the function of bones and muscles. Furthermore, the form, intensity, and duration of exercise determine the degree of change in IL-15 and downstream effects. This paper reviews the structure, synthesis and secretion of IL-15, the role of IL-15 in regulating the metabolism of bone tissue cells and myofibers through binding to the IL-15 receptor-α (IL-15Rα), and the response of IL-15 to different types of exercise. This review provides a reference for further analyses of the role and mechanism of action of IL-15 in the regulation of metabolism during exercise.
Collapse
Affiliation(s)
- Ziqiang Duan
- School of Sports HealthShenyang Sport UniversityShenyangChina
| | - Yang Yang
- School of KinesiologyShanghai University of SportShanghaiChina
| | - Mianhong Qin
- School of Sports HealthShenyang Sport UniversityShenyangChina
| | - Xuejie Yi
- Social Science Research CenterShenyang Sport UniversityShenyangChina
| |
Collapse
|
21
|
Farley MJ, Boytar AN, Adlard KN, Salisbury CE, Hart NH, Schaumberg MA, Jenkins DG, Skinner TL. Interleukin-15 and high-intensity exercise: relationship with inflammation, body composition and fitness in cancer survivors. J Physiol 2024; 602:5203-5215. [PMID: 39303144 DOI: 10.1113/jp286043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Pre-clinical murine and in vitro models have demonstrated that exercise suppresses tumour and cancer cell growth. These anti-oncogenic effects of exercise were associated with the exercise-mediated release of myokines such as interleukin (IL)-15. However, no study has quantified the acute IL-15 response in human cancer survivors, and whether physiological adaptations to exercise training (i.e. body composition and cardiorespiratory fitness) influence this response. In the present study breast, prostate and colorectal cancer survivors (n = 14) completed a single bout of high-intensity interval exercise (HIIE) [4×4 min at 85-95% heart rate (HR) peak, 3 min at 50-70% HR peak] before and after 7 months of three times weekly high-intensity interval training (HIIT) on a cycle ergometer. At each time point venous blood was sampled before and immediately after HIIE to assess the acute myokine (IL-15, IL-6, IL-10, IL-1ra) responses. Markers of inflammation, cardiorespiratory fitness and measures of body composition were obtained at baseline and 7 months. An acute bout of HIIE resulted in a significant increase in IL-15 concentrations (pre-intervention: 113%; P = 0.013, post-intervention: 102%; P = 0.005). Post-exercise IL-15 concentrations were associated with all other post-exercise myokine concentrations, lean mass (P = 0.031), visceral adipose tissue (P = 0.039) and absoluteV ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ peak (P = 0.032). There was no significant effect of 7 months of HIIT on pre- or post-HIIE IL-15 concentrations (P > 0.05). This study demonstrates HIIE is a sufficient stimulus to increase circulating IL-15 and other myokines including IL-6, IL-10 and IL-1ra which may be clinically relevant in the anti-oncogenic effect of exercise and repetitive exposure to these effects may contribute to the positive relationship between exercise and cancer recurrence. KEY POINTS: Exercise has been demonstrated to reduce the risk of cancer recurrence. Pre-clinical murine and in vitro models have demonstrated that exercise suppresses tumour and cancer cell growth, mediated by exercise-induced myokines (IL-6 and IL-15). High-intensity interval exercise significantly increased myokines associated with the anti-oncogenic effect of exercise and the magnitude of response was associated with lean mass, but training did not appear to influence this response. Given IL-15 has been implicated in the anti-oncogenic effect of exercise and is being explored as an immunotherapy agent, high-intensity interval exercise may improve outcomes for people living beyond cancer through IL-15-mediated pathways. Interventions that increase lean mass may also enhance this response.
Collapse
Affiliation(s)
- Morgan J Farley
- Human Performance Research Centre, INSIGHT Research Institute, Faculty of Health, University of Technology Sydney (UTS), Sydney, New South Wales, Australia
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Cancer and Palliative Care Outcomes Centre, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Alexander N Boytar
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kirsten N Adlard
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Chloe E Salisbury
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicolas H Hart
- Human Performance Research Centre, INSIGHT Research Institute, Faculty of Health, University of Technology Sydney (UTS), Sydney, New South Wales, Australia
- Cancer and Palliative Care Outcomes Centre, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
- Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Institute for Health Research, University of Notre Dame Australia, Perth, Western Australia, Australia
| | - Mia A Schaumberg
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Health, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Queensland, Australia
- Manna Institute, University of New England, Armidale, New South Wales, Australia
| | - David G Jenkins
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Health, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Queensland, Australia
- Applied Sports Science Technology and Medicine Research Centre, Swansea University, Swansea, UK
| | - Tina L Skinner
- Human Performance Research Centre, INSIGHT Research Institute, Faculty of Health, University of Technology Sydney (UTS), Sydney, New South Wales, Australia
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Health, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
- School of Health Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
22
|
Ge HJ, Chen XL. Advances in understanding and managing celiac disease: Pathophysiology and treatment strategies. World J Gastroenterol 2024; 30:3932-3941. [PMID: 39351055 PMCID: PMC11438662 DOI: 10.3748/wjg.v30.i35.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
In this editorial, we comment on an article published in the recent issue of the World Journal of Gastroenterology. Celiac disease (CeD) is a disease occurring in genetically susceptible individuals, which is mainly characterized by gluten intolerance in the small intestine and clinical symptoms such as abdominal pain, diarrhea, and malnutrition. Therefore, patients often need a lifelong gluten-free diet, which greatly affects the quality of life and expenses of patients. The gold standard for diagnosis is intestinal mucosal biopsy, combined with serological and genetic tests. At present, the lack of safe, effective, and satisfactory drugs for CeD is mainly due to the complexity of its pathogenesis, and it is difficult to find a perfect target to solve the multi-level needs of patients. In this editorial, we mainly review the pathological mechanism of CeD and describe the current experimental and improved drugs for various pathological aspects.
Collapse
Affiliation(s)
- Hao-Jie Ge
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
23
|
Wang K, Wang L, Wang Y, Xiao L, Wei J, Hu Y, Wang D, Huang H. Reprogramming natural killer cells for cancer therapy. Mol Ther 2024; 32:2835-2855. [PMID: 38273655 PMCID: PMC11403237 DOI: 10.1016/j.ymthe.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The last decade has seen rapid development in the field of cellular immunotherapy, particularly in regard to chimeric antigen receptor (CAR)-modified T cells. However, challenges, such as severe treatment-related toxicities and inconsistent quality of autologous products, have hindered the broader use of CAR-T cell therapy, highlighting the need to explore alternative immune cells for cancer targeting. In this regard, natural killer (NK) cells have been extensively studied in cellular immunotherapy and were found to exert cytotoxic effects without being restricted by human leukocyte antigen and have a lower risk of causing graft-versus-host disease; making them favorable for the development of readily available "off-the-shelf" products. Clinical trials utilizing unedited NK cells or reprogrammed NK cells have shown early signs of their effectiveness against tumors. However, limitations, including limited in vivo persistence and expansion potential, remained. To enhance the antitumor function of NK cells, advanced gene-editing technologies and combination approaches have been explored. In this review, we summarize current clinical trials of antitumor NK cell therapy, provide an overview of innovative strategies for reprogramming NK cells, which include improvements in persistence, cytotoxicity, trafficking and the ability to counteract the immunosuppressive tumor microenvironment, and also discuss some potential combination therapies.
Collapse
Affiliation(s)
- Kexin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Linqin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yiyun Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Lu Xiao
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jieping Wei
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - Dongrui Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
24
|
Li J, Clark R, Slaga D, Avery K, Liu K, Schubbert S, Varma R, Chiang E, Totpal K, Bernett MJ, Holder PG, Junttila TT. IL-15/IL-15Rα-Fc-Fusion Protein XmAb24306 Potentiates Activity of CD3 Bispecific Antibodies through Enhancing T-Cell Expansion. Mol Cancer Ther 2024; 23:1305-1316. [PMID: 38739434 DOI: 10.1158/1535-7163.mct-23-0910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
An insufficient quantity of functional T cells is a likely factor limiting the clinical activity of T-cell bispecific antibodies, especially in solid tumor indications. We hypothesized that XmAb24306 (efbalropendekin alfa), a lymphoproliferative interleukin (IL)-15/IL-15 receptor α (IL-15Rα) Fc-fusion protein, may potentiate the activity of T-cell dependent (TDB) antibodies. The activation of human peripheral T cells by cevostamab, an anti-FcRH5/CD3 TDB, or anti-HER2/CD3 TDB resulted in the upregulation of the IL-2/15Rβ (CD122) receptor subunit in nearly all CD8+ and majority of CD4+ T cells, suggesting that TDB treatment may sensitize T cells to IL-15. XmAb24306 enhanced T-cell bispecific antibody-induced CD8+ and CD4+ T-cell proliferation and expansion. In vitro combination of XmAb24306 with cevostamab or anti-HER2/CD3 TDB resulted in significant enhancement of tumor cell killing, which was reversed when T-cell numbers were normalized, suggesting that T-cell expansion is the main mechanism of the observed benefit. Pretreatment of immunocompetent mice with a mouse-reactive surrogate of XmAb24306 (mIL-15-Fc) resulted in a significant increase of T cells in the blood, spleen, and tumors and converted transient anti-HER2/CD3 TDB responses to complete durable responses. In summary, our results support the hypothesis that the number of tumor-infiltrating T cells is rate limiting for the activity of solid tumor-targeting TDBs. Upregulation of CD122 by TDB treatment and the observed synergy with XmAb24306 and T-cell bispecific antibodies support clinical evaluation of this novel immunotherapy combination.
Collapse
Affiliation(s)
- Ji Li
- Genentech Inc., South San Francisco, California
| | - Robyn Clark
- Genentech Inc., South San Francisco, California
| | | | | | - Ke Liu
- Xencor Inc., Pasadena, California
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mertelsmann AM, Bowers SF, Wright D, Maganga JK, Mazigo HD, Ndhlovu LC, Changalucha JM, Downs JA. Effects of Schistosoma haematobium infection and treatment on the systemic and mucosal immune phenotype, gene expression and microbiome: A systematic review. PLoS Negl Trop Dis 2024; 18:e0012456. [PMID: 39250522 PMCID: PMC11412685 DOI: 10.1371/journal.pntd.0012456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/19/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Urogenital schistosomiasis caused by Schistosoma haematobium affects approximately 110 million people globally, with the majority of cases in low- and middle-income countries. Schistosome infections have been shown to impact the host immune system, gene expression, and microbiome composition. Studies have demonstrated variations in pathology between schistosome subspecies. In the case of S. haematobium, infection has been associated with HIV acquisition and bladder cancer. However, the underlying pathophysiology has been understudied compared to other schistosome species. This systematic review comprehensively investigates and assimilates the effects of S. haematobium infection on systemic and local host mucosal immunity, cellular gene expression and microbiome. METHODS We conducted a systematic review assessing the reported effects of S. haematobium infections and anthelmintic treatment on the immune system, gene expression and microbiome in humans and animal models. This review followed PRISMA guidelines and was registered prospectively in PROSPERO (CRD42022372607). Randomized clinical trials, cohort, cross-sectional, case-control, experimental ex vivo, and animal studies were included. Two reviewers performed screening independently. RESULTS We screened 3,177 studies and included 94. S. haematobium was reported to lead to: (i) a mixed immune response with a predominant type 2 immune phenotype, increased T and B regulatory cells, and select pro-inflammatory cytokines; (ii) distinct molecular alterations that would compromise epithelial integrity, such as increased metalloproteinase expression, and promote immunological changes and cellular transformation, specifically upregulation of genes p53 and Bcl-2; and (iii) microbiome dysbiosis in the urinary, intestinal, and genital tracts. CONCLUSION S. haematobium induces distinct alterations in the host's immune system, molecular profile, and microbiome. This leads to a diverse range of inflammatory and anti-inflammatory responses and impaired integrity of the local mucosal epithelial barrier, elevating the risks of secondary infections. Further, S. haematobium promotes cellular transformation with oncogenic potential and disrupts the microbiome, further influencing the immune system and genetic makeup. Understanding the pathophysiology of these interactions can improve outcomes for the sequelae of this devastating parasitic infection.
Collapse
Affiliation(s)
- Anna M Mertelsmann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Sheridan F Bowers
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Drew Wright
- Samuel J. Wood Library & C.V. Starr Biomedical Information Center, Weill Cornell Medical College, New York, New York, United States of America
| | - Jane K Maganga
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Humphrey D Mazigo
- Department of Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - John M Changalucha
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Jennifer A Downs
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
- Weill Bugando School of Medicine, Mwanza, Tanzania
| |
Collapse
|
26
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
27
|
Brown JC, Spielmann G, Yang S, Compton SLE, Jones LW, Irwin ML, Ligibel JA, Meyerhardt JA. Effects of exercise or metformin on myokine concentrations in patients with breast and colorectal cancer: A phase II multi-centre factorial randomized trial. J Cachexia Sarcopenia Muscle 2024; 15:1520-1527. [PMID: 38887915 PMCID: PMC11294014 DOI: 10.1002/jcsm.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Physical activity and metformin pharmacotherapy are associated with improved clinical outcomes in breast and colorectal cancer survivors. Myokines are cytokines secreted from skeletal muscle that may mediate these associations. METHODS This hypothesis-generating analysis used biospecimens collected from a multi-centre 2 × 2 factorial randomized design of 116 patients with stage I-III breast and colorectal cancer who were randomized to 12 weeks of (1) aerobic exercise (moderate intensity titrated to 220 min/week); (2) metformin (850 mg daily for 2 weeks and then titrated to 850 mg twice per day); (3) aerobic exercise and metformin; or (4) control. Fourteen myokines were quantified using a multiplex panel. Myokine concentrations were log-transformed, and main effects analyses were conducted using linear mixed-effects regression models. The type I error rate was controlled with the Holm sequential testing procedure. RESULTS Randomization to exercise increased leukaemia inhibitory factor (1.26 pg/mL, 95% confidence interval [CI]: 0.69, 1.84; adjusted P = 0.001) and interleukin-15 (2.23 pg/mL, 95% CI: 0.87, 3.60; adjusted P = 0.013) compared with randomization to no exercise. Randomization to metformin decreased apelin (-2.69 pg/mL, 95% CI: -4.31, -1.07; adjusted P = 0.014) and interleukin-15 (-1.74 pg/mL, 95% CI: -2.79, -0.69; adjusted P = 0.013) compared with randomization to no metformin. Metformin decreased myostatin, irisin, oncostatin M, fibroblast growth factor 21 and osteocrin; however, these changes were not statistically significant after correction for multiple comparisons. CONCLUSIONS This pilot study demonstrates that randomization to exercise and metformin elicit unique effects on myokine concentrations in cancer patients. This hypothesis-generating observation warrants further basic, translational and clinical investigation and replication.
Collapse
Affiliation(s)
- Justin C. Brown
- Pennington Biomedical Research CenterBaton RougeLAUSA
- LSU Health Sciences Center New Orleans School of MedicineNew OrleansLAUSA
- Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | | | | | | | - Lee W. Jones
- Memorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | | | | | | |
Collapse
|
28
|
Shaffer Z, Romero R, Tarca AL, Galaz J, Arenas-Hernandez M, Gudicha DW, Chaiworapongsa T, Jung E, Suksai M, Theis KR, Gomez-Lopez N. The vaginal immunoproteome for the prediction of spontaneous preterm birth: A retrospective longitudinal study. eLife 2024; 13:e90943. [PMID: 38913421 PMCID: PMC11196114 DOI: 10.7554/elife.90943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB. Methods Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations. Results Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB. Conclusions The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes. Funding This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.
Collapse
Affiliation(s)
- Zachary Shaffer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, University of MichiganAnn ArborUnited States
- Department of Epidemiology and Biostatistics, Michigan State UniversityEast LansingUnited States
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Computer Science, Wayne State University College of EngineeringDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiagoChile
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| |
Collapse
|
29
|
Zhang XX, Zhang ZC, Liu YS, Zhou L, Hu YQ, Zhang CH, Song WH, Wu XH. Bioinformatic Analysis of the Significance of the KIR2DL4 Gene in Recurrent Implantation Failure. Biochem Genet 2024:10.1007/s10528-024-10857-8. [PMID: 38858283 DOI: 10.1007/s10528-024-10857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Related studies have pointed out that Killer immunoglobulin-like receptor 2DL4 (KIR2DL4) was associated with vascular remodeling in early pregnancy, and it might play an important role in immunity. In this study, recurrent implantation failure (RIF)-related GSE58144 dataset was extracted from the Gene Expression Omnibus (GEO) database. Firstly, the immune micro-environment analyses were conducted to analyze the pathogenesis of KIR2DL4 in RIF. Then, the gene set enrichment analysis (GSEA) was performed to investigate the function of KIR2DL4. Moreover, the TF-mRNA-miRNA and the co-expression networks were constructed to reveal the potential regulation of KIR2DL4. Furthermore, the genes that were associated with KIR2DL4 and differentially expressed in RIF were obtained and defined as key genes, and the functions of these genes were further explored. KIR2DL4 could be used for clinical diagnosis of RIF, and it was correlated with the changes in the immune micro-environment in RIF. From the perspective of function, KIR2DL4 was associated with complement and coagulation cascades, natural killer cell-mediated cytotoxicity, etc. Moreover, the TF-mRNA-miRNA regulatory network was constructed with KIR2DL4, 9 TFs, and 29 miRNAs. Furthermore, KIR2DL4, ACSM1, IL2RB, and PTPN11 were screened as key genes, which were associated with immune-related functions. This study deeply analyzed the function of KIR2DL4 and its role in RIF, and we found that STAT1 might up-regulate KIR2DL4 by INF-γ/JAK2/STAT1 signaling pathway. Besides, over-expressed KIR2DL4 in the mid-luteal endometrium might influence embryo implantation by affecting the embryo implantation microenvironment, which might help deepen the understanding of the molecular mechanism of RIF.
Collapse
Affiliation(s)
- Xin-Xian Zhang
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 206 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
| | - Zhi-Chao Zhang
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
| | - Yu-Shan Liu
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
| | - Li Zhou
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 206 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
| | - Yu-Qin Hu
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 206 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
| | - Cai-Hong Zhang
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 206 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
| | - Wen-Hui Song
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 206 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China
| | - Xiao-Hua Wu
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 206 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China.
- Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
30
|
Cubitt CC, Wong P, Dorando HK, Foltz JA, Tran J, Marsala L, Marin ND, Foster M, Schappe T, Fatima H, Becker-Hapak M, Zhou AY, Hwang K, Jacobs MT, Russler-Germain DA, Mace EM, Berrien-Elliott MM, Payton JE, Fehniger TA. Induced CD8α identifies human NK cells with enhanced proliferative fitness and modulates NK cell activation. J Clin Invest 2024; 134:e173602. [PMID: 38805302 PMCID: PMC11291271 DOI: 10.1172/jci173602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
The surface receptor CD8α is present on 20%-80% of human (but not mouse) NK cells, yet its function on NK cells remains poorly understood. CD8α expression on donor NK cells was associated with a lack of therapeutic responses in patients with leukemia in prior studies, thus, we hypothesized that CD8α may affect critical NK cell functions. Here, we discovered that CD8α- NK cells had improved control of leukemia in xenograft models compared with CD8α+ NK cells, likely due to an enhanced capacity for proliferation. Unexpectedly, we found that CD8α expression was induced on approximately 30% of previously CD8α- NK cells following IL-15 stimulation. These induced CD8α+ (iCD8α+) NK cells had the greatest proliferation, responses to IL-15 signaling, and metabolic activity compared with those that sustained existing CD8α expression (sustained CD8α+) or those that remained CD8α- (persistent CD8α-). These iCD8α+ cells originated from an IL-15Rβhi NK cell population, with CD8α expression dependent on the transcription factor RUNX3. Moreover, CD8A CRISPR/Cas9 deletion resulted in enhanced responses through the activating receptor NKp30, possibly by modulating KIR inhibitory function. Thus, CD8α status identified human NK cell capacity for IL-15-induced proliferation and metabolism in a time-dependent fashion, and its presence had a suppressive effect on NK cell-activating receptors.
Collapse
Affiliation(s)
| | - Pamela Wong
- Division of Oncology, Siteman Cancer Center, and
| | - Hannah K. Dorando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | - Mark Foster
- Division of Oncology, Siteman Cancer Center, and
| | | | - Hijab Fatima
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | - Emily M. Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | - Jacqueline E. Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
31
|
Niasse A, Louis K, Lenoir O, Schwarz C, Xu X, Couturier A, Dobosziewicz H, Corchia A, Placier S, Vandermeersch S, Hennighausen L, Frère P, Galichon P, Surin B, Ouchelouche S, Louedec L, Migeon T, Verpont MC, Yousfi N, Buob D, Xu-Dubois YC, François H, Rondeau E, Mesnard L, Hadchouel J, Luque Y. Protective Role of the Podocyte IL-15 / STAT5 Pathway in Focal Segmental Glomerulosclerosis. Kidney Int Rep 2024; 9:1093-1106. [PMID: 38765560 PMCID: PMC11101713 DOI: 10.1016/j.ekir.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction During glomerular diseases, podocyte-specific pathways can modulate the intensity of histological disease and prognosis. The therapeutic targeting of these pathways could thus improve the management and prognosis of kidney diseases. The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway, classically described in immune cells, has been recently described in detail in intrinsic kidney cells. Methods We describe STAT5 expression in human kidney biopsies from patients with focal segmental glomerulosclerosis (FSGS) and studied mice with a podocyte-specific Stat5 deletion in experimental glomerular diseases. Results Here, we show, for the first time, that STAT5 is activated in human podocytes in FSGS. In addition, podocyte-specific Stat5 inactivation aggravates the structural and functional alterations in a mouse model of FSGS. This could be due, at least in part, to an inhibition of autophagic flux. Finally, interleukin 15 (IL-15), a classical activator of STAT5 in immune cells, increases STAT5 phosphorylation in human podocytes, and its administration alleviates glomerular injury in vivo by maintaining autophagic flux in podocytes. Conclusion Activating podocyte STAT5 with commercially available IL-15 represents a potential new therapeutic avenue for FSGS.
Collapse
Affiliation(s)
- Aïssata Niasse
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Kevin Louis
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Olivia Lenoir
- Université Paris-Cité, INSERM, PARIS - Centre de recherche cardiovasculaire, Paris, France
| | - Chloé Schwarz
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Xiaoli Xu
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Aymeric Couturier
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Hélène Dobosziewicz
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Anthony Corchia
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Sandrine Placier
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Sophie Vandermeersch
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, USA
| | - Perrine Frère
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Pierre Galichon
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
- Service Médico-Chirurgical de Transplantation Rénale, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Brigitte Surin
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Souhila Ouchelouche
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Liliane Louedec
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Tiffany Migeon
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Marie-Christine Verpont
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Nadir Yousfi
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - David Buob
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
- Anatomie et Cytologie Pathologiques, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Yi-Chun Xu-Dubois
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Hélène François
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
- Soins Intensifs Néphrologiques et Rein Aigu, Département de Néphrologie, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Eric Rondeau
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
- Soins Intensifs Néphrologiques et Rein Aigu, Département de Néphrologie, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Laurent Mesnard
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
- Soins Intensifs Néphrologiques et Rein Aigu, Département de Néphrologie, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Juliette Hadchouel
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
| | - Yosu Luque
- Sorbonne Université, INSERM, Maladies rénales fréquentes et rares: des mécanismes moléculaires à la médecine personnalisée, Paris, France
- Soins Intensifs Néphrologiques et Rein Aigu, Département de Néphrologie, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| |
Collapse
|
32
|
Hall G. Interleukin-15 in kidney disease and therapeutics. Curr Opin Nephrol Hypertens 2024; 33:174-180. [PMID: 38164877 PMCID: PMC10893218 DOI: 10.1097/mnh.0000000000000964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Interleukin 15 (IL-15) is a member of the IL-2 family of common gamma chain receptor cytokines with well described anti-inflammatory, pro-survival and pro-proliferative signaling properties. The cytoprotective role of IL-15 in the kidney is now coming into focus with recent reports of its beneficial actions in various forms of kidney disease. This review will summarize what is currently known about IL-15 signaling in the kidney and highlight recent evidence of its beneficial effects on kidney physiology. RECENT FINDINGS IL-15 and its heterotrimeric receptor are expressed throughout the kidney. Like all IL-2 family cytokines, IL-15 can activate signaling through the Janus Kinase (JAK)/Signal transducer of activated T-cells (STAT), phosphoinositol-3 kinase (PI-3K)/AKT and mitogen activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways and recent evidence suggests that STAT5B is an essential transcriptional mediator of prosurvival signaling in glomerular visceral epithelial cells (i.e. podocytes). IL-15 has also been shown to suppress pro-apoptotic signaling in models of acute kidney injury and pro-fibrotic signaling in models of chronic kidney disease. SUMMARY The cytoprotective properties of IL-15 suggest that it may have potential as a nonimmunosuppresive therapeutic for kidney disease. A novel class of IL-15 immunotherapies has emerged for the treatment cancer and some have demonstrated efficacy in clinical trials. These well tolerated IL-15 agonists could possibly be repurposed for the treatment of kidney disease and warrant further exploration.
Collapse
Affiliation(s)
- Gentzon Hall
- Division of Nephrology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
33
|
Kim S, Chung H, Kwak JE, Kim YR, Park CH, Kim Y, Cheong JW, Wu J, Shin EC, Cho H, Kim JS. Clearing soluble MIC reverses the impaired function of natural killer cells from patients with multiple myeloma. J Immunother Cancer 2024; 12:e007886. [PMID: 38191242 PMCID: PMC10806558 DOI: 10.1136/jitc-2023-007886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Major histocompatibility complex (MHC) class I chain-related protein (MIC) is a stress-induced ligand released from multiple myeloma (MM) cells during progression, and soluble MIC impairs natural killer group 2D (NKG2D) activating receptor-mediated recognition and function of natural killer (NK) cells. However, whether clearing soluble MIC with a monoclonal antibody (mAb) can restore NK cell activity of MM patients remains undetermined. METHODS We analyzed The Cancer Genome Atlas (TCGA) Multiple Myeloma Research Foundation (MMRF) CoMMpass data set to examine the prognostic significance of MIC expression in MM. We examined the level of soluble MIC in paired peripheral blood (PB) and bone marrow (BM) plasma of patients with MM at diagnosis by ELISA. We evaluated the correlation between the level of soluble MIC and immunophenotype of NK cells from MM patients by multicolor flow cytometry. We also generated MIC-overexpressing MM cell line and characterized the cytotoxic function of patient NK cells in the presence of soluble MIC, and examined the impact of clearing soluble MIC with a humanized mAb (huB10G5). RESULTS We characterize the importance of MICA in MM by revealing the significantly better overall survival of patients with high MICA expression from TCGA MMRF CoMMpass data set. The level of soluble MICA is more highly elevated in MM than in precursor stages, and the concentration of soluble MICA is higher in BM plasma than in PB. The concentration of soluble MICA in BM was correlated with myeloma burden, while it was negatively correlated with the frequency of NKG2D+ NK cells in diagnostic BM aspirates of MM patients. Soluble MICA downregulated NKG2D expression and decreased cytotoxicity of MM patient NK cells ex vivo, which were reversed by a humanized soluble MIC-clearing mAb (huB10G5) with enhanced degranulation of NK cells. CONCLUSIONS Our findings indicate targeting soluble MIC with huB10G5 might be a viable therapeutic approach to promote NKG2D-dependent cellular immunotherapy outcome in MM.
Collapse
Affiliation(s)
- Sojeong Kim
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Haerim Chung
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Jeong-Eun Kwak
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Yu Ri Kim
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Chung Hyun Park
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Yeonhee Kim
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - June-Won Cheong
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Jennifer Wu
- Department of Urology and Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea (the Republic of)
| | - Hyunsoo Cho
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Jin Seok Kim
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| |
Collapse
|
34
|
Di Castro MA, Garofalo S, Mormino A, Carbonari L, Di Pietro E, De Felice E, Catalano M, Maggi L, Limatola C. Interleukin-15 alters hippocampal synaptic transmission and impairs episodic memory formation in mice. Brain Behav Immun 2024; 115:652-666. [PMID: 37992787 DOI: 10.1016/j.bbi.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
Cytokines are potent immunomodulators exerting pleiotropic effects in the central nervous system (CNS). They influence neuronal functions and circuit activities with effects on memory processes and behaviors. Here, we unravel a neuromodulatory activity of interleukin-15 (IL-15) in mouse brain. Acute exposure of hippocampal slices to IL-15 enhances gamma-aminobutyricacid (GABA) release and reduces glutamatergic currents, while chronic treatment with IL-15 increases the frequency of hippocampal miniature inhibitory synaptic transmission and impairs memory formation in the novel object recognition (NOR) test. Moreover, we describe that serotonin is involved in mediating the hippocampal effects of IL-15, because a selective 5-HT3A receptor antagonist prevents the effects on inhibitory neurotransmission and ameliorates mice performance in the NOR test. These findings provide new insights into the modulatory activities of cytokines in the CNS, with implications on behavior.
Collapse
Affiliation(s)
- Maria Amalia Di Castro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Alessandro Mormino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Laura Carbonari
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Erika Di Pietro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Eleonora De Felice
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Cristina Limatola
- IRCCS Neuromed Via Atinese 18, 86077 Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur, Italy.
| |
Collapse
|
35
|
Liu Y, Ma W, Tian X, Wang Q, Lu X, Luo Y, Xu J. Immunomodulatory Roles of IL-15 in Immune Cells and its Potential for Cancer Immunotherapy. Anticancer Agents Med Chem 2024; 24:1457-1466. [PMID: 39229995 DOI: 10.2174/0118715206321574240821112747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Interleukin-15 (IL-15) was identified in 1994 as a T-cell growth factor with the capability to mimic the functions of IL-2. IL-15 engages with the IL-15Rα subunit expressed on the surface of antigen-presenting cells (APCs) and, through a trans-presentation mechanism, activates the IL-2/IL-15Rβγ complex receptor on the surface of natural killer (NK) cells and CD8+ T cells. This interaction initiates a cascade of downstream signaling pathways, playing a pivotal role in the activation, proliferation, and anti-apoptotic processes in NK cells, CD8+ T cells, and B cells. It provides a substantial theoretical foundation and potential therapeutic targets for tumor immunotherapy. Whether through active or passive immunotherapeutic strategies, IL-15 has emerged as a critical molecule for stimulating anti-tumor cell proliferation.
Collapse
Affiliation(s)
- Youhan Liu
- Graduate School of Education, Shandong Sport University, Jinan, 250102, China
| | - Wen Ma
- Graduate School of Education, Shandong Sport University, Jinan, 250102, China
| | - Xuewen Tian
- Graduate School of Education, Shandong Sport University, Jinan, 250102, China
| | - Qinglu Wang
- Graduate School of Education, Shandong Sport University, Jinan, 250102, China
| | - Xin Lu
- Graduate School of Education, Shandong Sport University, Jinan, 250102, China
| | - Ying Luo
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, 255000, China
| | - Jun Xu
- Graduate School of Education, Shandong Sport University, Jinan, 250102, China
| |
Collapse
|
36
|
Zhang XX, Wu XH. Decreased CD56+CD16-CD94+uNK cells in the mid-luteal phase in women with recurrent implantation failure are associated with IL-15 deficiency. Am J Reprod Immunol 2023; 90:e13794. [PMID: 38009057 DOI: 10.1111/aji.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/18/2023] [Accepted: 10/21/2023] [Indexed: 11/28/2023] Open
Abstract
PROBLEM Whether the abnormal development of uterine natural killer (uNK) cells contributes to women with recurrent implantation failure (RIF) remains unclear. METHOD OF STUDY We characterized the development of uNK cells and peripheral blood NK cells (pbNK) in the mid-luteal phase in women with RIF (n = 31) and controls (n = 14) by flow cytometry. Endometrial IL-15 mRNA expression was studied by quantitative reverse transcription-PCR. The GSE58144 dataset was used to validate the correlation results. RESULTS We found decreased proportions of stage 4 CD56+CD16-CD94+ uNK cells (median: 9.56% vs. 17.78%, P .014) and increased proportions of stage 6 CD56+CD16+CD57+ uNK cells (median: 1.54% vs. 0.74%, P = .020) in the mid-luteal endometrium of women with RIF compared to fertile women. We also found that there was no quantitative correlation between uNK cells and the corresponding pbNK cell subpopulations (P > .05). In addition, IL-15 mRNA levels in the mid-luteal endometrium were positively correlated with the proportion of CD56+ uNK cells (r = .392, P = .008), especially with stage 4 uNK cell populations (r = .408, P = .005). CONCLUSIONS We showed that the proportion of stage 4 uNK cells decreased in the RIF group compared to controls, and the decrease in stage 4 uNK cells correlated positively with low IL-15 mRNA expression. We suggest that the reduced stage 4 uNK cells in women with RIF are associated with IL-15 deficiency.
Collapse
Affiliation(s)
- Xin-Xian Zhang
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei, China
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Obstetrics and Gynecology, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, Hebei, China
| | - Xiao-Hua Wu
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei, China
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Obstetrics and Gynecology, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
37
|
Besser HA, Khosla C. Celiac disease: mechanisms and emerging therapeutics. Trends Pharmacol Sci 2023; 44:949-962. [PMID: 37839914 PMCID: PMC10843302 DOI: 10.1016/j.tips.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Celiac disease (CeD) is a widespread, gluten-induced, autoimmune disorder that lacks any medicinal therapy. Towards the goal of developing non-dietary treatments for CeD, research has focused on elucidating its molecular and cellular etiology. A model of pathogenesis has emerged centered on interactions between three molecular families: specific class II MHC proteins on antigen-presenting cells (APCs), deamidated gluten-derived peptides, and T cell receptors (TCRs) on inflammatory CD4+ T cells. Growing evidence suggests that this pathogenic axis can be pharmacologically targeted to protect patients from some of the adverse effects of dietary gluten. Further studies have revealed the existence of additional host and environmental contributors to disease initiation and tissue damage. This review summarizes our current understanding of CeD pathogenesis and how it is being harnessed for therapeutic design and development.
Collapse
Affiliation(s)
- Harrison A Besser
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H (Chemistry, Engineering and Medicine for Human Health), Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Yang Y, Du T, Yu W, Zhou Y, Yang C, Kuang D, Wang J, Tang C, Wang H, Zhao Y, Yang H, Huang Q, Wu D, Li B, Sun Q, Liu H, Lu S, Peng X. Single-cell transcriptomic atlas of distinct early immune responses induced by SARS-CoV-2 Proto or its variants in rhesus monkey. MedComm (Beijing) 2023; 4:e432. [PMID: 38020713 PMCID: PMC10661830 DOI: 10.1002/mco2.432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Immune responses induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection play a critical role in the pathogenesis and outcome of coronavirus disease 2019 (COVID-19). However, the dynamic profile of immune responses postinfection by SARS-CoV-2 variants of concern (VOC) is not fully understood. In this study, peripheral blood mononuclear cells single-cell sequencing was performed to determine dynamic profiles of immune response to Prototype, Alpha, Beta, and Delta in a rhesus monkey model. Overall, all strains induced dramatic changes in both cellular subpopulations and gene expression levels at 1 day postinfection (dpi), which associated function including adaptive immune response, innate immunity, and IFN response. COVID-19-related genes revealed different gene profiles at 1 dpi among the four SARS-CoV-2 strains, including genes reported in COVID-19 patients with increased risk of autoimmune disease and rheumatic diseases. Delta-infected animal showed inhibition of translation pathway. B cells, T cells, and monocytes showed much commonality rather than specificity among the four strains. Monocytes were the major responders to SARS-CoV-2 infection, and the response lasted longer in Alpha than the other strains. Thus, this study reveals the early immune responses induced by SARS-CoV-2 Proto or its variants in nonhuman primates, which is important information for controlling rapidly evolving viruses.
Collapse
Affiliation(s)
- Yun Yang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Tingfu Du
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Wenhai Yu
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Yanan Zhou
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Chengyun Yang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Dexuan Kuang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Junbin Wang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Cong Tang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Haixuan Wang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Yuan Zhao
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Hao Yang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Qing Huang
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Daoju Wu
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Bai Li
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
| | - Qiangming Sun
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationBeijingChina
| | - Hongqi Liu
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationBeijingChina
| | - Shuaiyao Lu
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationBeijingChina
| | - Xiaozhong Peng
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical SchoolKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationBeijingChina
- State Key Laboratory of Medical Molecular BiologyDepartment of Molecular Biology and BiochemistryInstitute of Basic Medical SciencesMedical Primate Research CenterNeuroscience CenterChinese Academy of Medical SciencesSchool of Basic MedicinePeking Union Medical CollegeBeijingChina
| |
Collapse
|
39
|
Paudel S, Mishra N, Agarwal R. Phytochemicals as Immunomodulatory Molecules in Cancer Therapeutics. Pharmaceuticals (Basel) 2023; 16:1652. [PMID: 38139779 PMCID: PMC10746110 DOI: 10.3390/ph16121652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Phytochemicals are natural plant-derived products that provide significant nutrition, essential biomolecules, and flavor as part of our diet. They have long been known to confer protection against several diseases via their anti-inflammatory, immune-regulatory, anti-microbial, and several other properties. Deciphering the role of phytochemicals in the prevention, inhibition, and treatment of cancer-unrestrained cell proliferation due to the loss of tight regulation on cell growth and replication-has been the focus of recent research. Particularly, the immunomodulatory role of phytochemicals, which is pivotal in unchecked cell proliferation and metastasis, has recently been studied extensively. The immune system is a critical component of the tumor microenvironment, and it plays essential roles in both preventing and promoting oncogenesis. Immunomodulation includes stimulation, amplification, or inactivation of some stage(s) of the immune response. Phytochemicals and their products have demonstrated immune regulation, such as macrophage migration, nitric oxide synthase inhibition, lymphocyte, T-cell, and cytokine stimulation, natural killer cell augmentation, and NFκB, TNF, and apoptosis regulation. There is a dearth of extensive accounts of the immunomodulatory effects of phytochemicals in cancer; thus, we have compiled these effects with mechanistic aspects of dietary phytochemicals in cancer, highlighting promising candidates and ongoing clinical trials on immunotherapeutic strategies to mitigate oncogenesis.
Collapse
Affiliation(s)
| | | | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.P.); (N.M.)
| |
Collapse
|
40
|
Fantini M, Arlen PM, Tsang KY. Potentiation of natural killer cells to overcome cancer resistance to NK cell-based therapy and to enhance antibody-based immunotherapy. Front Immunol 2023; 14:1275904. [PMID: 38077389 PMCID: PMC10704476 DOI: 10.3389/fimmu.2023.1275904] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells are cellular components of the innate immune system that can recognize and suppress the proliferation of cancer cells. NK cells can eliminate cancer cells through direct lysis, by secreting perforin and granzymes, or through antibody-dependent cell-mediated cytotoxicity (ADCC). ADCC involves the binding of the Fc gamma receptor IIIa (CD16), present on NK cells, to the constant region of an antibody already bound to cancer cells. Cancer cells use several mechanisms to evade antitumor activity of NK cells, including the accumulation of inhibitory cytokines, recruitment and expansion of immune suppressor cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), modulation of ligands for NK cells receptors. Several strategies have been developed to enhance the antitumor activity of NK cells with the goal of overcoming cancer cells resistance to NK cells. The three main strategies to engineer and boost NK cells cytotoxicity include boosting NK cells with modulatory cytokines, adoptive NK cell therapy, and the employment of engineered NK cells to enhance antibody-based immunotherapy. Although the first two strategies improved the efficacy of NK cell-based therapy, there are still some limitations, including immune-related adverse events, induction of immune-suppressive cells and further cancer resistance to NK cell killing. One strategy to overcome these issues is the combination of monoclonal antibodies (mAbs) that mediate ADCC and engineered NK cells with potentiated anti-cancer activity. The advantage of using mAbs with ADCC activity is that they can activate NK cells, but also favor the accumulation of immune effector cells to the tumor microenvironment (TME). Several clinical trials reported that combining engineered NK cells with mAbs with ADCC activity can result in a superior clinical response compared to mAbs alone. Next generation of clinical trials, employing engineered NK cells with mAbs with higher affinity for CD16 expressed on NK cells, will provide more effective and higher-quality treatments to cancer patients.
Collapse
|
41
|
Lajevardi V, Hosseini ZSS, Heidari S. Efficacy of using oral methotrexate with phototherapy in the treatment of vitiligo in comparison with single phototherapy treatment: A double-blinded randomized controlled trial. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:657-662. [PMID: 37859524 DOI: 10.1111/phpp.12918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Vitiligo is an acquired skin disease with a worldwide prevalence of 0.5%-2% and a tendency to involve both genders. Although the exact pathologic mechanism is unknown, there is some evidence for the role of autoimmunity in this disease. Based on this theory, various immunosuppressive agents, such as topical or systemic corticosteroids and phototherapy (including narrowband ultraviolet B), are used. Methotrexate is another immunosuppressant that has recently become popular as a single treatment for vitiligo; however, the synergistic effect and its superiority over other treatments are two crucial factors that are still obscure. This study aimed to compare the efficacy of methotrexate+ NB-UVB versus placebo+ NB-UVB in vitiligo patients. METHODS In this double-blinded, randomized controlled trial, 42 patients were randomly allocated into two groups: the first group received three times weekly NB-UVB plus placebo, and the second group was treated with three times weekly NB-UVB in combination with a weekly dose of 12.5 mg MTX. The total duration of treatment was 6 months, patients were followed up every 2 months, and the assessment tools were VASI (repigmentation indicator) and VIDA (disease activity indicator) scores. RESULTS Both treatment groups showed improvement in VASI and VIDA scores during 6-month follow-up, but no statistical significance was found between the two treatment methods. CONCLUSION This study demonstrated that both treatment modalities were equally effective, and further studies are required to evaluate the efficacy of MTX with other medications with longer follow-up and a larger sample size.
Collapse
Affiliation(s)
- Vahide Lajevardi
- Department of Dermatology, RAZI Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sama Heidari
- Department of Dermatology, RAZI Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Rejeski K, Perez A, Iacoboni G, Blumenberg V, Bücklein VL, Völkl S, Penack O, Albanyan O, Stock S, Müller F, Karschnia P, Petrera A, Reid K, Faramand R, Davila ML, Modi K, Dean EA, Bachmeier C, von Bergwelt-Baildon M, Locke FL, Bethge W, Bullinger L, Mackensen A, Barba P, Jain MD, Subklewe M. Severe hematotoxicity after CD19 CAR-T therapy is associated with suppressive immune dysregulation and limited CAR-T expansion. SCIENCE ADVANCES 2023; 9:eadg3919. [PMID: 37738350 PMCID: PMC10516499 DOI: 10.1126/sciadv.adg3919] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Prolonged cytopenias after chimeric antigen receptor (CAR) T cell therapy are a significant clinical problem and the underlying pathophysiology remains poorly understood. Here, we investigated how (CAR) T cell expansion dynamics and serum proteomics affect neutrophil recovery phenotypes after CD19-directed CAR T cell therapy. Survival favored patients with "intermittent" neutrophil recovery (e.g., recurrent neutrophil dips) compared to either "quick" or "aplastic" recovery. While intermittent patients displayed increased CAR T cell expansion, aplastic patients exhibited an unfavorable relationship between expansion and tumor burden. Proteomics of patient serum collected at baseline and in the first month after CAR-T therapy revealed higher markers of endothelial dysfunction, inflammatory cytokines, macrophage activation, and T cell suppression in the aplastic phenotype group. Prolonged neutrophil aplasia thus occurs in patients with systemic immune dysregulation at baseline with subsequently impaired CAR-T expansion and myeloid-related inflammatory changes. The association between neutrophil recovery and survival outcomes highlights critical interactions between host hematopoiesis and the immune state stimulated by CAR-T infusion.
Collapse
Affiliation(s)
- Kai Rejeski
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
| | - Ariel Perez
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
- Blood and Marrow Transplant Program, Miami Cancer Institute, Miami, FL, USA
| | - Gloria Iacoboni
- Department of Hematology, University Hospital Vall d’Hebron, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Viktoria Blumenberg
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
| | - Veit L. Bücklein
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
| | - Simon Völkl
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Olaf Penack
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Department of Hematology, Oncology and Tumorimmunology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Omar Albanyan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
- Adult Hematology-Oncology and Stem Cell Transplantation, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Sophia Stock
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
| | - Fabian Müller
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Agnese Petrera
- Metabolomics and Proteomics Core Facility, Helmholtz Zentrum Munich – German Research Center for Environmental Health, Munich, Germany
| | - Kayla Reid
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Rawan Faramand
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Marco L. Davila
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Karnav Modi
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Erin A. Dean
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Christina Bachmeier
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Michael von Bergwelt-Baildon
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Wolfgang Bethge
- Department of Hematology, Oncology, Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Lars Bullinger
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Department of Hematology, Oncology and Tumorimmunology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Mackensen
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Pere Barba
- Department of Hematology, University Hospital Vall d’Hebron, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Michael D. Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Marion Subklewe
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich and Berlin sites, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), partner sites, Munich and Erlangen, Germany
| |
Collapse
|
43
|
Lujan RA, Pei L, Shannon JP, Dábilla N, Dolan PT, Hickman HD. Widespread and dynamic expression of granzyme C by skin-resident antiviral T cells. Front Immunol 2023; 14:1236595. [PMID: 37809077 PMCID: PMC10552530 DOI: 10.3389/fimmu.2023.1236595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
After recognition of cognate antigen (Ag), effector CD8+ T cells secrete serine proteases called granzymes in conjunction with perforin, allowing granzymes to enter and kill target cells. While the roles for some granzymes during antiviral immune responses are well characterized, the function of others, such as granzyme C and its human ortholog granzyme H, is still unclear. Granzyme C is constitutively expressed by mature, cytolytic innate lymphoid 1 cells (ILC1s). Whether other antiviral effector cells also produce granzyme C and whether it is continually expressed or responsive to the environment is unknown. To explore this, we analyzed granzyme C expression in different murine skin-resident antiviral lymphocytes. At steady-state, dendritic epidermal T cells (DETCs) expressed granzyme C while dermal γδ T cells did not. CD8+ tissue-resident memory T cells (TRM) generated in response to cutaneous viral infection with the poxvirus vaccinia virus (VACV) also expressed granzyme C. Both DETCs and virus-specific CD8+ TRM upregulated granzyme C upon local VACV infection. Continual Ag exposure was not required for maintained TRM expression of granzyme C, although re-encounter with cognate Ag boosted expression. Additionally, IL-15 treatment increased granzyme C expression in both DETCs and TRM. Together, our data demonstrate that granzyme C is widely expressed by antiviral T cells in the skin and that expression is responsive to both environmental stimuli and TCR engagement. These data suggest that granzyme C may have functions other than killing in tissue-resident lymphocytes.
Collapse
Affiliation(s)
- Ramon A. Lujan
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
- School of Nursing, Duke University, Durham, NC, United States
| | - Luxin Pei
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - John P. Shannon
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nathânia Dábilla
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, United States
| | - Patrick T. Dolan
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, United States
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
44
|
Kazakov AS, Deryusheva EI, Rastrygina VA, Sokolov AS, Permyakova ME, Litus EA, Uversky VN, Permyakov EA, Permyakov SE. Interaction of S100A6 Protein with the Four-Helical Cytokines. Biomolecules 2023; 13:1345. [PMID: 37759746 PMCID: PMC10526228 DOI: 10.3390/biom13091345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies have revealed the ability of specific S100 proteins to modulate cell signaling via direct interaction with cytokines. Previously, we revealed the binding of ca. 71% of the four-helical cytokines via the S100P protein, due to the presence in its molecule of a cytokine-binding site overlapping with the binding site for the S100P receptor. Here, we show that another S100 protein, S100A6 (that has a pairwise sequence identity with S100P of 35%), specifically binds numerous four-helical cytokines. We have studied the affinity of the recombinant forms of 35 human four-helical cytokines from all structural families of this fold to Ca2+-loaded recombinant human S100A6, using surface plasmon resonance spectroscopy. S100A6 recognizes 26 of the cytokines from all families of this fold, with equilibrium dissociation constants from 0.3 nM to 12 µM. Overall, S100A6 interacts with ca. 73% of the four-helical cytokines studied to date, with a selectivity equivalent to that for the S100P protein, with the differences limited to the binding of interleukin-2 and oncostatin M. The molecular docking study evidences the presence in the S100A6 molecule of a cytokine-binding site, analogous to that found in S100P. The findings argue the presence in some of the promiscuous members of the S100 family of a site specific to a wide range of four-helical cytokines. This unique feature of the S100 proteins potentially allows them to modulate the activity of the numerous four-helical cytokines in the disorders accompanied by an excessive release of the cytokines.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Evgenia I. Deryusheva
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Victoria A. Rastrygina
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Andrey S. Sokolov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Maria E. Permyakova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Ekaterina A. Litus
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Vladimir N. Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
- Department of Molecular, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Eugene A. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Sergei E. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| |
Collapse
|
45
|
Lui G, Minnar CM, Soon-Shiong P, Schlom J, Gameiro SR. Exploiting an Interleukin-15 Heterodimeric Agonist (N803) for Effective Immunotherapy of Solid Malignancies. Cells 2023; 12:1611. [PMID: 37371081 DOI: 10.3390/cells12121611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Identifying effective immunotherapies for solid tumors remains challenging despite the significant clinical responses observed in subsets of patients treated with immune checkpoint inhibitors. Interleukin-15 (IL-15) is a promising cytokine for the treatment of cancer as it stimulates NK and CD8+ lymphocytes. However, unfavorable pharmacokinetics and safety concerns render recombinant IL-15 (rIL-15) a less attractive modality. These shortcomings were addressed by the clinical development of heterodimeric IL-15 agonists, including N803. In preclinical tumor models, N803 elicited significant Th1 immune activation and tumor suppressive effects, primarily mediated by NK and CD8+ T lymphocytes. In addition, multiple clinical studies have demonstrated N803 to be safe for the treatment of cancer patients. The combination of N803 with the immune checkpoint inhibitor nivolumab demonstrated encouraging clinical responses in nivolumab-naïve and nivolumab-refractory patients with non-small cell lung cancer. In a recent Phase II/III clinical study, most Bacillus Calmette-Guerin (BCG)-refractory bladder cancer patients treated with N803 plus BCG experienced durable complete responses. Currently, N803 is being evaluated preclinically and clinically in combination with various agents, including chemotherapeutics, immune checkpoint inhibitors, vaccines, and other immuno-oncology agents. This report will review the mechanism(s) of action of N803 and how it relates to the preclinical and clinical studies of N803.
Collapse
Affiliation(s)
- Grace Lui
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine M Minnar
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sofia R Gameiro
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Ma S, Peng P, Duan Z, Fan Y, Li X. Predicting the Progress of Tuberculosis by Inflammatory Response-Related Genes Based on Multiple Machine Learning Comprehensive Analysis. J Immunol Res 2023; 2023:7829286. [PMID: 37228444 PMCID: PMC10205410 DOI: 10.1155/2023/7829286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/04/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Background Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, affects approximately one-quarter of the global population and is considered one of the most lethal infectious diseases worldwide. The prevention of latent tuberculosis infection (LTBI) from progressing into active tuberculosis (ATB) is crucial for controlling and eradicating TB. Unfortunately, currently available biomarkers have limited effectiveness in identifying subpopulations that are at risk of developing ATB. Hence, it is imperative to develop advanced molecular tools for TB risk stratification. Methods The TB datasets were downloaded from the GEO database. Three machine learning models, namely LASSO, RF, and SVM-RFE, were used to identify the key characteristic genes related to inflammation during the progression of LTBI to ATB. The expression and diagnostic accuracy of these characteristic genes were subsequently verified. These genes were then used to develop diagnostic nomograms. In addition, single-cell expression clustering analysis, immune cell expression clustering analysis, GSVA analysis, immune cell correlation, and immune checkpoint correlation of characteristic genes were conducted. Furthermore, the upstream shared miRNA was predicted, and a miRNA-genes network was constructed. Candidate drugs were also analyzed and predicted. Results In comparison to LTBI, a total of 96 upregulated and 26 downregulated genes related to the inflammatory response were identified in ATB. These characteristic genes have demonstrated excellent diagnostic performance and significant correlation with many immune cells and immune sites. The results of the miRNA-genes network analysis suggested a potential role of hsa-miR-3163 in the molecular mechanism of LTBI progressing into ATB. Moreover, retinoic acid may offer a potential avenue for the prevention of LTBI progression to ATB and for the treatment of ATB. Conclusion Our research has identified key inflammatory response-related genes that are characteristic of LTBI progression to ATB and hsa-miR-3163 as a significant node in the molecular mechanism of this progression. Our analyses have demonstrated the excellent diagnostic performance of these characteristic genes and their significant correlation with many immune cells and immune checkpoints. The CD274 immune checkpoint presents a promising target for the prevention and treatment of ATB. Furthermore, our findings suggest that retinoic acid may have a role in preventing LTBI from progressing to ATB and in treating ATB. This study provides a new perspective for differential diagnosis of LTBI and ATB and may uncover potential inflammatory immune mechanisms, biomarkers, therapeutic targets, and effective drugs in the progression of LTBI into ATB.
Collapse
Affiliation(s)
- Shuai Ma
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443000, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443000, China
| | - Peifei Peng
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhihao Duan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443000, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443000, China
| | - Yifeng Fan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443000, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443000, China
| | - Xinzhi Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443000, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443000, China
| |
Collapse
|
47
|
Motomura K, Miller D, Galaz J, Liu TN, Romero R, Gomez-Lopez N. The effects of progesterone on immune cellular function at the maternal-fetal interface and in maternal circulation. J Steroid Biochem Mol Biol 2023; 229:106254. [PMID: 36681283 PMCID: PMC10038932 DOI: 10.1016/j.jsbmb.2023.106254] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Progesterone is a sex steroid hormone that plays a critical role in the establishment and maintenance of pregnancy. This hormone drives numerous maternal physiological adaptations to ensure the continuation of pregnancy and to facilitate fetal growth, including broad and potent modulation of the maternal immune system to promote maternal-fetal tolerance. In this brief review, we provide an overview of the immunomodulatory functions of progesterone in the decidua, placenta, myometrium, and maternal circulation during pregnancy. Specifically, we summarize current evidence of the regulated functions of innate and adaptive immune cells induced by progesterone and its downstream effector molecules in these compartments, including observations in human pregnancy and in animal models. Our review highlights the gaps in knowledge of interactions between progesterone and maternal cellular immunity that may direct future research.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Tzu Ning Liu
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Detroit Medical Center, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
48
|
Badeński A, Badeńska M, Świętochowska E, Janek A, Gliwińska A, Morawiec-Knysak A, Szczepańska M. Assessment of Interleukin-15 (IL-15) Concentration in Children with Idiopathic Nephrotic Syndrome. Int J Mol Sci 2023; 24:ijms24086993. [PMID: 37108157 PMCID: PMC10139059 DOI: 10.3390/ijms24086993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Idiopathic nephrotic syndrome (INS) is a chronic glomerular disease in children, characterized by severe proteinuria, hypoalbuminemia, and/or presence of edema and hyperlipidemia. The pathogenesis, however, has not been yet established. The clinical course of the disease is characterized by frequent relapses. Interleukin-15 (IL-15) is a pro-inflammatory cytokine, that apart from its involvement in the immune system, was found to be playing a vital role in various cells' functioning, including renal tissue. It is desirable to look for new predictors of INS. Our study aimed to evaluate IL-15 as a potential marker in the early diagnosis of the disease. The cohort participating in the study consisted of patients hospitalized in Clinical Hospital No. 1 in Zabrze, from December 2019 to December 2021, including study group with INS (n = 30) and control group (n = 44). Results: The concentration of IL-15 in both serum and urine was significantly elevated in patients with INS, compared to healthy controls. The cytokine might serve as a marker of the disease, however, further research on larger study groups is needed.
Collapse
Affiliation(s)
- Andrzej Badeński
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Marta Badeńska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze-Rokitnica, Poland
| | - Artur Janek
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Aleksandra Gliwińska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Aurelia Morawiec-Knysak
- Department of Pediatric Nephrology with Dialysis Division for Children, Public Clinical Hospital No. 1 in Zabrze, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| |
Collapse
|
49
|
Zhang Y, Su J. Interleukin-2 family cytokines: An overview of genes, expression, signaling and functional roles in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104645. [PMID: 36696924 DOI: 10.1016/j.dci.2023.104645] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The interleukin-2 (IL-2) family cytokines include IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, which share γ chain (γc) subunit in receptors. The IL-2 family cytokines have unique biological effects that regulate differentiation, survival and activation of multiple lymphocyte lineages. Deficiency of IL-2 family signaling pathway in mammals prevents CD4+ T cells from developing effector functions and CD8+ T cells from developing immunological memory. In the present review, we addressed available information from teleost IL-2 family cytokines and discussed implications in teleost immunity. Also, we described and discussed their expression profiles, receptors, signaling transductions and functions. In teleost, IL-2 family has 5 members (IL-2, IL-4/13, IL-7, IL-15, IL-21) without IL-9, and their receptors share a common γc subunit and include other 6 subunits (IL-2Rβ1/2, IL-4Rα1/2, IL-13Rα1/2, IL-7Rα, IL-15Rα, and IL-21Rα1/2). Some paralogues have changes in domain structure and show differential expression, modulation, functions. IL-2 family cytokines constitutively express in many immune associated tissues and are largely induced after pathogenic microbial stimulation. In general, there are relatively conserved functions in the IL-2 family throughout vertebrates, and many of the key IL-2 family members are important in lymphocyte proliferation and differentiation, development, inflammation from fishes to mammals. This review will give an update on the effective information of teleost IL-2 family cytokines. Thus, it will provide a source of reference for other researchers/readers and inspire further interest.
Collapse
Affiliation(s)
- Yanqi Zhang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianguo Su
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
50
|
Farley MJ, Bartlett DB, Skinner TL, Schaumberg MA, Jenkins DG. Immunomodulatory Function of Interleukin-15 and Its Role in Exercise, Immunotherapy, and Cancer Outcomes. Med Sci Sports Exerc 2023; 55:558-568. [PMID: 36730979 DOI: 10.1249/mss.0000000000003067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Exercise has been shown to improve physical and psychosocial outcomes for people across the cancer care continuum. A proposed mechanism underpinning the relationship between exercise and cancer outcomes is exercise-induced immunomodulation via secretion of anti-inflammatory myokines from skeletal muscle tissue. Myokines have the potential to impair cancer growth through modulation of natural killer (NK) cells and CD8+ T cells while improving the effectiveness of cancer therapies. Interleukin-15 (IL-15), one of the most abundant myokines found in skeletal muscle, has a key immunoregulatory role in supporting the proliferation and maturation of T cells and NK cells, which have a key role in the host's immune response to cancer. Furthermore, IL-15 is being explored clinically as an immunotherapy agent with doses similar to the IL-15 concentrations released by skeletal muscle during exercise. Here we review the role of IL-15 within the immune system, examine how IL-15 is produced as a myokine during exercise, and how it may improve outcomes for people with cancer, specifically as an adjuvant or neoadjuvant to immunotherapy. We summarize the available evidence showing changes in IL-15 in response to both acute exercise and training, and the results are inconsistent; higher quality research is needed to advance the understanding of how exercise-mediated increases in IL-15 potentially benefit those who are being treated for, or who have had, cancer.
Collapse
Affiliation(s)
- Morgan J Farley
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, AUSTRALIA
| | - David B Bartlett
- School of Biosciences and Medicine, University of Surrey, Surrey, UNITED KINGDOM
| | - Tina L Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, AUSTRALIA
| | | | | |
Collapse
|