1
|
Chen Z, Xu L, Yuan Y, Zhang S, Xue R. Metabolic crosstalk between platelets and cancer: Mechanisms, functions, and therapeutic potential. Semin Cancer Biol 2025; 110:65-82. [PMID: 39954752 DOI: 10.1016/j.semcancer.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Platelets, traditionally regarded as passive mediators of hemostasis, are now recognized as pivotal regulators in the tumor microenvironment, establishing metabolic feedback loops with tumor and immune cells. Tumor-derived signals trigger platelet activation, which induces rapid metabolic reprogramming, particularly glycolysis, to support activation-dependent functions such as granule secretion, morphological changes, and aggregation. Beyond self-regulation, platelets influence the metabolic processes of adjacent cells. Through direct mitochondrial transfer, platelets reprogram tumor and immune cells, promoting oxidative phosphorylation. Additionally, platelet-derived cytokines, granules, and extracellular vesicles drive metabolic alterations in immune cells, fostering suppressive phenotypes that facilitate tumor progression. This review examines three critical aspects: (1) the distinctive metabolic features of platelets, particularly under tumor-induced activation; (2) the metabolic crosstalk between activated platelets and other cellular components; and (3) the therapeutic potential of targeting platelet metabolism to disrupt tumor-promoting networks. By elucidating platelet metabolism, this review highlights its essential role in tumor biology and its therapeutic implications.
Collapse
Affiliation(s)
- Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Xu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yejv Yuan
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Nieuwland R, Lucien F, Gustafson D, Lenassi M, Martinod K, Hisada Y. Monitoring and reporting the composition of plasma and serum to improve biobanks and comparability of extracellular vesicle research: communication from the ISTH SSC Subcommittee on Vascular Biology. J Thromb Haemost 2025; 23:1698-1703. [PMID: 39938685 DOI: 10.1016/j.jtha.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/14/2025]
Abstract
Transparent reporting is key to improving the reproducibility of scientific research. In 2023, the International Society for Extracellular Vesicles updated the "Minimal information for studies of extracellular vesicles" (MISEV) reporting guidelines and published new recommendations for blood extracellular vesicle (EV) research entitled "MIBlood-EV: Minimal information to enhance the quality and reproducibility of blood extracellular vesicle research." The MIBlood-EV recommendations are part of MISEV 2023 and promote reporting not only the protocols used for blood collection and handling but also the composition of the prepared samples that are used to measure EVs. Plasma and serum are commonly used starting materials for EV research; reporting their composition can help to improve reproducibility, comparison of measurement results, and support evidence-based guideline development. We conducted an online survey among the International Society on Thrombosis and Haemostasis (ISTH) EV researchers. Of the 20 respondents, 95% were familiar with MISEV, but 35% were unaware of the 2023 update, and only 65% applied these guidelines to their reports. With regard to MIBlood-EV, 40% were unaware of this reporting tool, and 20% did not follow its recommendations. This is surprising because most respondents agree that preanalytical variables of blood EV research are not satisfactorily described (75%), confirm that having a standardized reporting tool is beneficial for blood EV research (90%), and consider MIBlood-EV applicable to other fields of ISTH research (80%). In this Scientific and Standardization Committee communication, we summarize the survey results, as well as the background and goals of MISEV and how MIBlood-EV can be useful to improve the reproducibility of blood research within the ISTH community.
Collapse
Affiliation(s)
- Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Laboratory of Specialized Diagnostics & Research, Department of Laboratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, Minnesota, USA; Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dakota Gustafson
- Department of Medicine, Queen's University School of Medicine, Kingston, Ontario, Canada; Department of Public Health Sciences, Queen's University School of Medicine, Kingston, Ontario, Canada
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kimberly Martinod
- Experimental Cardiology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Yohei Hisada
- Division of Hematology, Department of Medicine, University of North Carolina Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Tang R, Luo S, Liu H, Sun Y, Liu M, Li L, Ren H, Angele MK, Börner N, Yu K, Guo Z, Yin G, Luo H. Circulating Tumor Microenvironment in Metastasis. Cancer Res 2025; 85:1354-1367. [PMID: 39992721 PMCID: PMC11997552 DOI: 10.1158/0008-5472.can-24-1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/12/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Activation of invasion and metastasis is a central hallmark of cancer, contributing to the primary cause of death for patients with cancer. In the multistep metastatic process, cancer cells must infiltrate the circulation, survive, arrest at capillary beds, extravasate, and form metastatic clones in distant organs. However, only a small proportion of circulating tumor cells (CTC) successfully form metastases, with transit of CTCs in the circulation being the rate-limiting step. The fate of CTCs is influenced by the circulating tumor microenvironment (cTME), which encompasses factors affecting their biological behaviors in the circulation. This liquid and flowing microenvironment differs significantly from the primary TME or the premetastatic niche. This review summarizes the latest advancements in identifying the biophysical cues, key components, and biological roles of the cTME, highlighting the network among biophysical attributes, blood cells, and nonblood factors in cancer metastasis. In addition to the potential of the cTME as a therapeutic target for inhibiting metastasis, the cTME could also represent as a biomarker for predicting patient outcomes and developing strategies for treating cancer.
Collapse
Affiliation(s)
- Rui Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shujuan Luo
- Department of Obstetrics, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Liu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lu Li
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haoyu Ren
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Martin K. Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich Munich, Germany
| | - Nikolaus Börner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich Munich, Germany
| | - Keda Yu
- Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Zufeng Guo
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Guobing Yin
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haojun Luo
- Department of Thyroid and Breast Surgery, Renji Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Xu DG, Tan J. Interplay of genetic and clinical factors in cancer-associated thrombosis: Deciphering the prothrombotic landscape of colorectal cancer. World J Gastroenterol 2025; 31:103901. [PMID: 40248375 PMCID: PMC12001197 DOI: 10.3748/wjg.v31.i14.103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/03/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Colorectal cancer (CRC), the third most prevalent cancer globally, exhibits a notable association with venous thromboembolism (VTE), significantly impacting patient morbidity and mortality. We delve into the complex pathogenesis of cancer-associated thrombosis (CAT) in CRC, highlighting the interplay of clinical risk factors and tumor-specific mechanisms. Our comprehensive review synthesizes the current understanding of CRC's pro-thrombotic tendencies, examining both general clinical factors (e.g., age, gender, obesity, prior VTE history) and tumor-specific aspects (e.g., tumor location, stage, targeted therapies). Key findings illustrate how CRC cells themselves actively contribute to coagulation cascade activation through various procoagulant elements such as tissue factor, cancer procoagulant, and extracellular vesicles. We also explore how CRC influences host cells to adopt a procoagulant phenotype, thereby exacerbating thrombotic risks. This review underscores the role of genetic mutations in CRC (e.g., KRAS, p53) in modulating coagulation-related protein expression and thrombosis risks. An in-depth understanding of the genetic landscape specific to CRC subtypes is essential for developing targeted anticoagulation strategies and could significantly advance thrombosis prevention while improving the overall management of patients with CRC. This highlights the urgent need for precision in addressing CAT within clinical settings.
Collapse
Affiliation(s)
- Duo-Gang Xu
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan Province, China
| | - Jing Tan
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan Province, China
| |
Collapse
|
5
|
Pelegrín-Mateo FJ, Zambrano CB, Vázquez EB, Escobar IG, Martín AM. Cancer genetic profile and risk of thrombosis. Eur J Intern Med 2025:S0953-6205(25)00137-2. [PMID: 40221227 DOI: 10.1016/j.ejim.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Cancer-associated thrombosis (CAT) remains a leading cause of morbidity and mortality among oncology patients, with an incidence influenced by tumor type, stage, treatment, and molecular characteristics. This review explores the molecular determinants of venous thromboembolism (VTE) in cancer, emphasizing its pathophysiology and association with specific oncogenic alterations. Certain molecular profiles exhibit heightened VTE risk. In lung cancer, due to hypercoagulability mechanisms linked to tissue factor overexpression, an increased incidence of VTE has been reported in populations with ALK (30-40 %) and ROS1 rearrangements (34.7-46.6 %). In gastrointestinal cancers, while pancreatic adenocarcinoma has the highest VTE rates (up to 22 %), KRAS mutations seem to be implicated but not conclusively validated. Similarly, colorectal cancer mutations (KRAS/BRAFV600E) and antiangiogenic therapies may elevate thrombotic risk, warranting further study. High-grade gliomas, particularly glioblastomas, present VTE rates up to 30 %, driven by podoplanin-induced platelet aggregation. IDH1 mutations inversely correlate with thrombosis, highlighting its protective role. Emerging evidence suggests that agnostic biomarkers such as STK11 mutations influence VTE risk across tumor types, while others like KRAS, MET and BRCA mutations show inconclusive results. Large-scale validation studies are imperative to integrate molecular profiles into clinical practice. Until then, management decisions should be individualized, balancing the thrombotic risks with oncologic considerations.
Collapse
Affiliation(s)
- Francisco J Pelegrín-Mateo
- Medical Oncology Department, Hospital General Universitario Dr. Balmis, Av. Pintor Baeza 12, 03010. Alicante, Spain.
| | - Carmen Beato Zambrano
- Medical Oncology Department, Hospital Universitario Virgen de la Macarena, Av. Dr. Fedriani 3, 41009. Sevilla, Spain
| | - Elena Brozos Vázquez
- Medical Oncology Department, Complejo Hospitalario de A Coruña. C. As rubias 84, 15006. A Coruña, Spain
| | - Ignacio García Escobar
- Medical Oncology Department, Hospital General Universitario de Toledo, Av. Río Guadiana, 45007. Toledo, Spain
| | - Andrés Muñoz Martín
- Medical Oncology Department, Hospital General Universitario Gregorio Marañón, Universidad Complutense. C. Dr Esquerdo 46, 28007. Madrid, Spain
| |
Collapse
|
6
|
Chou SC, Chang SL, Yu CY, Lin CI, Chang YT, Chen LF, Li JY, Pai CH, Lin SR, Cheng WC, Yuan CT, Lin SW. Tissue factor, factor VIII and IX in microvesicle-induced thrombosis and tumor growth of pancreatic cancer. Thromb J 2025; 23:32. [PMID: 40217494 PMCID: PMC11987238 DOI: 10.1186/s12959-025-00715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Tissue factor (TF)-rich cancer microvesicles are correlated with thrombosis risk. Intrinsic coagulation factors are also associated with the risk of thrombosis in cancer patients. This study explored the roles of pancreatic cancer-derived microvesicles and intrinsic factors in thrombogenesis. METHODS Human pancreatic cancer cell lines rich in TF (AsPC-1-TFhigh, MIAPaCa-2-TFhigh) or poor in TF [AsPC-1-TFKO(knockout) and MIAPaCa-2-TFlow] were generated for microvesicle preparation and injected into coagulation-defective mice. Inferior vena cava (IVC) clots and lung thrombosis were evaluated. Immunodeficient hemophilia A (NSG-HA) mice were orthotopically injected with the cells mentioned above, and the tumor and IVC clot weights were analyzed. RESULTS With the injection of TFhigh microvesicles, IVC clots were rarely found in hemophilic mice. The TFlow and TFKO microvesicles resulted in few IVC clots in any mouse. Lung thrombosis was substantially reduced in the hemophilic mice infused with any microvesicle type. In orthotopic tumor models, TFhigh cells grew faster than did TFlow cells. TFhigh tumor-bearing NSG-WT mice had the most enormous IVC clots, whereas NSG-HA mice had no IVC clots. CONCLUSION Pancreatic cancer thrombosis induced by TF-expressing microvesicles strongly depended on FVIII and FIX, while VWF played a minor role. Moreover, TF, but not FVIII, was significantly related to tumor growth.
Collapse
Affiliation(s)
- Sheng-Chieh Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Lun Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yeh Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chao-I Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yen-Ting Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Li-Fu Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Jia-Yi Li
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chen-Hsueh Pai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, College of Science, Chung-Yuan Christian University, Taoyuan, Taiwan
- Center for Nanotechnology, Chung-Yuan Christian University, Taoyuan, Taiwan
| | - Wern-Cherng Cheng
- Department of Laboratory Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chang-Tsu Yuan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan.
- Department of Laboratory Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Li K, Guo B, Gu J, Ta N, Gu J, Yu H, Sun M, Han T. Emerging advances in drug delivery systems (DDSs) for optimizing cancer complications. Mater Today Bio 2025; 30:101375. [PMID: 39759851 PMCID: PMC11699619 DOI: 10.1016/j.mtbio.2024.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/13/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
The management and treatment of tumor complications pose continuous challenges due to the inherent complexity. However, the advent of drug delivery systems (DDSs) brings promising opportunities to address the tumor complications using innovative technological approaches. This review focuses on common oncological complications, including cancer thrombosis, malignant serous effusion, tumor-associated infections, cancer pain, and treatment-related complications. Emphasis was placed on the application and potential of DDSs in mitigating and treating these tumor complications, and we delved into the underlying mechanisms of common cancer-associated complications, discussed the limitations of conventional treatments, and outlined the current status and potential development of DDSs for various complications in this review. Moreover, we have discussed the existing challenges in DDSs research, underscoring the need for addressing issues related to biocompatibility and targeting of DDSs, optimizing drug delivery routes, and enhancing delivery efficiency and precision. In conclusion, DDSs offer promising avenues for treating cancer complications, offering the potential for the development of more effective and safer drug delivery strategies, thereby improving the quality of life and survival rates of cancer patients.
Collapse
Affiliation(s)
- Kerui Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Bei Guo
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110001, China
| | - Junmou Gu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Na Ta
- Department of Neurology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, China
| | - Jia Gu
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Hao Yu
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110001, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Tao Han
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Lami V, Nieri D, Pagnini M, Gattini M, Donati C, De Santis M, Cipriano A, Bazzan E, Sbrana A, Celi A, Neri T. Circulating, Extracellular Vesicle-Associated Tissue Factor in Cancer Patients with and without Venous Thromboembolism. Biomolecules 2025; 15:83. [PMID: 39858477 PMCID: PMC11762650 DOI: 10.3390/biom15010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer is characterized by chronic inflammation and hypercoagulability, with an excess of venous thromboembolism (VTE). Tissue factor, the initiator of blood coagulation, circulates associated with extracellular vesicles (EV-TF). Studies investigating EV-TF between cancer-associated and non-cancer-associated VTE are lacking. We therefore compared EV-TF in unprovoked VTE (U-VTE), cancer-associated VTE (C-VTE), and cancer without VTE (C-w/o VTE). We also investigated interleukin-6 (IL-6) levels between the same groups. The final population included 68 patients (U-VTE: n = 15; C-VTE: n = 24; C-w/o VTE: n = 29). All patients with VTE were enrolled within 48 h of diagnosis; non-VTE patients were recruited in the oncologic outpatient services. EV were isolated by differential centrifugation from 4 mL of peripheral blood; the final EV pellet (16,000× g for 45 min) was resuspended in 100 μL saline and tested for TF using a one-step clotting assay. There was a statistically significant difference for higher EV-TF in C-VTE and C-w/o VTE compared to U-VTE (p = 0.024; Kruskal-Wallis test). There was no significant difference between C-VTE and C-w/o VTE. Moreover, we did not find any difference in IL-6 levels. These preliminary data suggest that cancer represents, per se, a strong driver of EV-TF generation.
Collapse
Affiliation(s)
- Valentina Lami
- UO Medicina d’Urgenza e Pronto Soccorso, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy; (V.L.)
| | - Dario Nieri
- UO Pneumologia, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy; (D.N.); (A.C.)
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
| | - Marta Pagnini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, University of Pisa, 56126 Pisa, Italy
| | - Mario Gattini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
| | - Claudia Donati
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
| | - Mariella De Santis
- Dipartimento Cardio Toraco Vascolare, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy;
| | - Alessandro Cipriano
- UO Medicina d’Urgenza e Pronto Soccorso, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy; (V.L.)
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy;
| | - Andrea Sbrana
- Dipartimento di Oncologia, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy;
| | - Alessandro Celi
- UO Pneumologia, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy; (D.N.); (A.C.)
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, University of Pisa, 56126 Pisa, Italy
| | - Tommaso Neri
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
9
|
Haghbin M, Sotoodeh Jahromi A, Hashemi Tayer A, Ghasemi Nejad Z. The Potential Clinical Relevance of Procoagulant Microparticles as Biomarkers of Blood Coagulation in Breast Cancer: A Systematic Review. Asian Pac J Cancer Prev 2025; 26:23-32. [PMID: 39873982 PMCID: PMC12082420 DOI: 10.31557/apjcp.2025.26.1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 01/11/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Breast cancer (BC) is a global challenge that affects a large portion of individuals, especially women. It has been suggested that microparticles (MPs) can be used as a diagnostic, prognostic, or therapeutic biomarker in various diseases. Moreover, MPs are known to elevate in cancer cases. Platelet-derived MPs (PMPs) play a crucial role in the metastasis of BC, warranting specific focus. This study aimed to explore the involvement of procoagulant MPs in BC. METHODS This systematic review was carried out using the Preferred Reporting Items for Systematic reviews, and Meta-Analyses (PRISMA). Terms defined as MESH keywords were searched PubMed/MEDLINE, Embase, Web of Science, and Cochrane Library searched in from 2011 to March 2024. Experimental and quasi-experimental studies were assessed by the CONSORT checklist. RESULTS Eventually, 15 studies were included. 426 participants were studied in the included articles. The potential clinical relevance of MPs as biomarkers in BC was indicated. Also, the role of MPs in immune modulation and multidrug resistance was approved. PMPs were found to enhance malignant features, including migration and invasion. Moreover, there were lower levels of MPs before neo-adjuvant chemotherapy, suggesting a potential impact of chemotherapy on MPs levels. The study highlights the remarkable capacity of multidrug-resistant BC-derived MPs to alter the phenotype and functionality of immune cells. CONCLUSIONS The findings underscore the intricate interplay between MPs and cellular signaling pathways, shedding light on their potential as diagnostic biomarkers, and therapeutic targets in cancer. Specifically, the association between MPs levels and disease severity, as evidenced by their correlation with tissue-based biomarkers, tumor grading, and distant metastasis, highlights their clinical relevance in prognostication and risk stratification.
Collapse
Affiliation(s)
| | | | - Akbar Hashemi Tayer
- Research Center for Noncommunicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran.
| | | |
Collapse
|
10
|
Gayibov E, Karim AH. A Rapid Review of Adenocarcinoma and Pulmonary Tumor Thrombotic Microangiopathy: A Deadly Duo. Cureus 2025; 17:e76842. [PMID: 39897287 PMCID: PMC11787629 DOI: 10.7759/cureus.76842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Pulmonary tumor thrombotic microangiopathy (PTTM) is a rare paraneoplastic syndrome associated with various adenocarcinomas, most commonly gastric adenocarcinoma. This condition can progressively worsen pulmonary arterial hypertension, leading to acute or subacute pulmonary heart failure and respiratory insufficiency. This paper examines the pathogenesis, clinical presentation, diagnosis, treatment, and prognosis of PTTM. Given PTTM's poor prognosis, we emphasize treatment strategies. PTTM in adenocarcinoma patients can mimic other pulmonary diseases, causing diagnostic delays. Current PTTM treatment strategies primarily focus on managing the underlying malignancy and addressing thrombotic complications. Anti-angiogenic therapy with bevacizumab and the platelet-derived growth factor receptor antagonist imatinib have shown promise in multiple cases. Further research is needed to develop more effective and targeted therapies for this challenging condition. The precise mechanisms underlying this association remain to be fully elucidated.
Collapse
Affiliation(s)
- Emin Gayibov
- Third Faculty of Medicine, Charles University, Prague, CZE
| | - Amin H Karim
- Department of Cardiovascular Disease, Baylor College of Medicine, Houston, USA
- Department of Cardiovascular Disease, Weill Medical College of Cornell University, New York City, USA
- Department of Cardiovascular Disease, Methodist Academy of Medicine, Houston, USA
| |
Collapse
|
11
|
Hamulyák EN, Yust-Katz S, Leader A. Management of anticoagulation in patients with brain metastasis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:246-252. [PMID: 39644055 DOI: 10.1182/hematology.2024000660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Venous thromboembolism (VTE) is a prevalent and serious complication among cancer patients, necessitating therapeutic anticoagulation for many individuals with brain metastases. Simultaneously, patients with brain metastases, particularly those with high-risk primary tumors, have an increased risk of intracranial hemorrhage (ICH). Managing anticoagulation in these patients presents a dual challenge: preventing thromboembolism while avoiding hemorrhagic events. Here, we present our approach to anticoagulation for acute VTE in patients with brain metastases, based on the available evidence. We review potential risk factors for anticoagulation-associated ICH in this population and discuss strategies for managing acute VTE in patients with and without ICH.
Collapse
Affiliation(s)
- Eva N Hamulyák
- Department of Internal Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Shlomit Yust-Katz
- Neurooncology Unit, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel; Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avi Leader
- Department of Medicine, Hematology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
12
|
Mokresh ME, Alomari O, Varda A, Akdag G, Odabas H. Safety and efficacy of tisotumab vedotin with cervical cancers: A systematic review and meta-analysis. J Obstet Gynaecol Res 2024; 50:2195-2210. [PMID: 39428336 DOI: 10.1111/jog.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Tisotumab vedotin (TV) holds promise for treating recurrence or metastatic cervical cancer (r/mCC), with recent FDA approval for second-line use in recurrent or metastatic cases. Our research aims to evaluate TV's efficacy and safety in these patients, focusing on overall survival (OS) and progression-free survival (PFS) outcomes. METHODS We searched five electronic databases in February 2024, retrieved articles, screened them based on inclusion and exclusion criteria, and assessed their quality. A meta-analysis of the extracted data was performed and applied a random-effects model for our analysis. RESULTS The search identified 86 articles, with six meeting the inclusion criteria. Meta-analysis revealed 80.8% and 48.0% OS at 6 and 12 months, and a 29.9% PFS at 6 months. Combined treatment with carboplatin or pembrolizumab showed 33.0% PFS at 1 year and 15.1% at 2 years. The objective response rate (ORR) was 21.0%, reaching 43.3% with combined treatment. Confirmed disease control rate (CDCR) was 70.0% overall and in combination. The median duration of response (DOR) was 6.1 months, increasing to 9.5 months in combined treatment, with a consistent time to response (TTR) of 1.4 months. Adverse events included ocular issues (conjunctivitis 30.3%, dry eye 18.7%) and common side effects (nausea 38.4%, epistaxis 35.7%). CONCLUSION This systematic review and meta-analysis highlights the potential of TV as a treatment option for r/mCC patients. However, healthcare providers must communicate safety profiles and recommend prophylactic measures for optimal patient outcomes. Further studies, particularly assessing combination treatments, are needed to clarify TV's role in treatment algorithms and improve clinical outcomes.
Collapse
Affiliation(s)
- Muhammed Edib Mokresh
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Omar Alomari
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Abdullah Varda
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Goncagul Akdag
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, Turkey
| | - Hatice Odabas
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, Turkey
| |
Collapse
|
13
|
Yang BL, Long YY, Lei Q, Gao F, Ren WX, Cao YL, Wu D, Xu LY, Qu J, Li H, Yu YL, Zhang AY, Wang S, Wang HX, Chen ZC, Li QB. Lethal pulmonary thromboembolism in mice induced by intravenous human umbilical cord mesenchymal stem cell-derived large extracellular vesicles in a dose- and tissue factor-dependent manner. Acta Pharmacol Sin 2024; 45:2300-2312. [PMID: 38914677 PMCID: PMC11489411 DOI: 10.1038/s41401-024-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have obvious advantages over MSC therapy. But the strong procoagulant properties of MSC-EVs pose a potential risk of thromboembolism, an issue that remains insufficiently explored. In this study, we systematically investigated the procoagulant activity of large EVs derived from human umbilical cord MSCs (UC-EVs) both in vitro and in vivo. UC-EVs were isolated from cell culture supernatants. Mice were injected with UC-EVs (0.125, 0.25, 0.5, 1, 2, 4 μg/g body weight) in 100 μL PBS via the tail vein. Behavior and mortality were monitored for 30 min after injection. We showed that these UC-EVs activated coagulation in a dose- and tissue factor-dependent manner. UC-EVs-induced coagulation in vitro could be inhibited by addition of tissue factor pathway inhibitor. Notably, intravenous administration of high doses of the UC-EVs (1 μg/g body weight or higher) led to rapid mortality due to multiple thrombus formations in lung tissue, platelets, and fibrinogen depletion, and prolonged prothrombin and activated partial thromboplastin times. Importantly, we demonstrated that pulmonary thromboembolism induced by the UC-EVs could be prevented by either reducing the infusion rate or by pre-injection of heparin, a known anticoagulant. In conclusion, this study elucidates the procoagulant characteristics and mechanisms of large UC-EVs, details the associated coagulation risk during intravenous delivery, sets a safe upper limit for intravenous dose, and offers effective strategies to prevent such mortal risks when high doses of large UC-EVs are needed for optimal therapeutic effects, with implications for the development and application of large UC-EV-based as well as other MSC-EV-based therapies.
Collapse
Affiliation(s)
- Bian-Lei Yang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yao-Ying Long
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Lei
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Gao
- Department of Hematology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Wen-Xiang Ren
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Lin Cao
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Di Wu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liu-Yue Xu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiao Qu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - He Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ya-Li Yu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - An-Yuan Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shan Wang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Xiang Wang
- Department of Hematology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhi-Chao Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiu-Bai Li
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Engineering Research Center for Application of Extracellular Vesicles, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
14
|
Leader A, Wilcox JA, Zwicker JI. How I treat acute venous thromboembolism in patients with brain tumors. Blood 2024; 144:1781-1790. [PMID: 39197077 PMCID: PMC11530362 DOI: 10.1182/blood.2023023450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 08/30/2024] Open
Abstract
ABSTRACT Venous thromboembolism (VTE) is a common complication in patients with brain tumors. The management of acute VTE is particularly challenging due to an elevated risk of intracranial hemorrhage (ICH). Risk of developing ICH on anticoagulation is influenced by a number of factors including tumor type, recent surgery, concomitant medications, platelet counts, and radiographic features. In patients with a heightened risk for ICH, the benefits of anticoagulation need to be balanced against a likelihood of developing major hemorrhagic complications. Management decisions include whether to administer anticoagulation, at what dose, placement of an inferior vena cava filter, monitoring for development of hemorrhage or progressive thrombus, and escalation of anticoagulant dose. This article discusses the complexities of treating acute VTE in patients with brain tumors and outlines treatment algorithms based on the presence or absence of ICH at the time of VTE diagnosis. Through case-based scenarios, we illustrate our approach to anticoagulation, emphasizing individualized risk assessments and evidence-based practices to optimize treatment outcomes while minimizing the risks of hemorrhagic events in patients with brain tumors.
Collapse
Affiliation(s)
- Avi Leader
- Hematology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Medicine, Weill Cornell Medical College, New York, NY
| | - Jessica A. Wilcox
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeffrey I. Zwicker
- Hematology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
15
|
Zhang Y, Zeng J, Bao S, Zhang B, Li X, Wang H, Cheng Y, Zhang H, Zu L, Xu X, Xu S, Song Z. Cancer progression and tumor hypercoagulability: a platelet perspective. J Thromb Thrombolysis 2024; 57:959-972. [PMID: 38760535 DOI: 10.1007/s11239-024-02993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Venous thromboembolism, which is common in cancer patients and accompanies or even precedes malignant tumors, is known as cancer-related thrombosis and is an important cause of cancer- associated death. At present, the exact etiology of the elevated incidence of venous thrombosis in cancer patients remains elusive. Platelets play a crucial role in blood coagulation, which is intimately linked to the development of arterial thrombosis. Additionally, platelets contribute to tumor progression and facilitate immune evasion by tumors. Tumor cells can interact with the coagulation system through various mechanisms, such as producing hemostatic proteins, activating platelets, and directly adhering to normal cells. The relationship between platelets and malignant tumors is also significant. In this review article, we will explore these connections.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingtong Zeng
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shihao Bao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianjie Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hanqing Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Cheng
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Xu
- Colleges of Nursing, Tianjin Medical University, Tianjin, China
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
16
|
Hisada Y, Archibald SJ, Bansal K, Chen Y, Dai C, Dwarampudi S, Balas N, Hageman L, Key NS, Bhatia S, Bhatia R, Mackman N, Gangaraju R. Biomarkers of bleeding and venous thromboembolism in patients with acute leukemia. J Thromb Haemost 2024; 22:1984-1996. [PMID: 38574862 PMCID: PMC11214882 DOI: 10.1016/j.jtha.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Coagulopathy and associated bleeding and deep vein thrombosis (DVT) are major causes of morbidity and mortality in patients with acute leukemia. The underlying mechanisms of these complications have not been fully elucidated. OBJECTIVES To evaluate the associations between biomarker levels and bleeding and DVT in acute leukemia patients. METHODS We examined plasma levels of activators, inhibitors, and biomarkers of the coagulation and fibrinolytic pathways in patients aged ≥18 years with newly diagnosed acute leukemia compared with those of normal controls. Multivariable regression models were used to examine the association of biomarkers with bleeding and DVT in acute leukemia patients. The study included 358 patients with acute leukemia (29 with acute promyelocytic leukemia [APL], 253 with non-APL acute myeloid leukemia, and 76 with acute lymphoblastic leukemia) and 30 normal controls. RESULTS Patients with acute leukemia had higher levels of extracellular vesicle tissue factor (EVTF) activity, phosphatidylserine-positive extracellular vesicles, plasminogen activator inhibitor-1, plasmin-antiplasmin complexes, and cell-free DNA and lower levels of citrullinated histone H3-DNA complexes compared with normal controls. APL patients had the highest levels of EVTF activity and the lowest levels of tissue plasminogen activator among acute leukemia patients. There were 41 bleeding and 23 DVT events in acute leukemia patients. High EVTF activity was associated with increased risk of bleeding (subdistribution hazard ratio, 2.30; 95% CI, 0.99-5.31), whereas high levels of plasminogen activator inhibitor-1 were associated with increased risk of DVT (subdistribution hazard ratio, 3.00; 95% CI, 0.95-9.47) in these patients. CONCLUSION Our study shows alterations in several biomarkers in acute leukemia and identifies biomarkers associated with risk of bleeding and DVT.
Collapse
Affiliation(s)
- Yohei Hisada
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Sierra J Archibald
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Karan Bansal
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yanjun Chen
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chen Dai
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sindhu Dwarampudi
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nora Balas
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nigel S Key
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ravi Bhatia
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Radhika Gangaraju
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
17
|
Chen Y, Jiao W, Wang Y, Liang Z, Wang L, Li D, Liang Y, Niu H. Microtubule interacting and trafficking domain containing 1 deficiency leads to poor survival via tissue factor-mediated coagulation in bladder cancer. J Thromb Haemost 2024; 22:1956-1972. [PMID: 38554936 DOI: 10.1016/j.jtha.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Patients with cancer are at an increased risk of developing a hypercoagulative phenotype and venous thromboembolism. However, no clinical trial has yet confirmed that anticoagulant therapy improves cancer prognosis, and the mechanism underlying hypercoagulation in patients with bladder cancer is not well understood. OBJECTIVES We hypothesized that the prognostic genes affect tumor progression via tumor-mediated coagulation. METHODS We detected the most significant prognostic genes of bladder cancer with The Cancer Genome Atlas dataset and validated them in 2 Gene Expression Omnibus datasets and 1 ArrayExpress dataset. Immunohistochemical tests were performed on a cohort of 80 individuals to further examine the prognostic genes. For the most reliable prognostic gene, its influence on coagulation was evaluated with gene knockdown followed by next-generation sequencing and cellular and animal experiments. RESULTS Depletion of microtubule interacting and trafficking domain containing 1 (MITD1), a major prognostic gene of bladder cancer, significantly increased the tissue factor (TF) expression. MITD1 deficiency led to cytokinesis arrest, which, in turn, promoted the TF expression via unfolded protein response and c-Jun. The knockdown of IRE1, an essential kinase of unfolded protein response or the inactivation of c-Jun using c-Jun N-terminal kinase inhibitors weakened MITD1 deficiency- or dithiothreitol-induced TF upregulation. Cells lacking MITD1 promoted coagulation and metastasis in the experimental metastasis assay. CONCLUSION Our findings suggest the novel role of tumor prognostic genes upon the development of hypercoagulative phenotype and venous thromboembolism, thereby underlining the importance of anticoagulant therapy and shedding light on the therapeutic value of targeting MITD1 in bladder cancer.
Collapse
Affiliation(s)
- Yuanbin Chen
- Qingdao Clinical Medical Research Center for Urinary System Disease, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Jiao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yonghua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhijuan Liang
- Qingdao Clinical Medical Research Center for Urinary System Disease, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liping Wang
- Qingdao Clinical Medical Research Center for Urinary System Disease, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Li
- Qingdao Clinical Medical Research Center for Urinary System Disease, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ye Liang
- Qingdao Clinical Medical Research Center for Urinary System Disease, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Haitao Niu
- Qingdao Clinical Medical Research Center for Urinary System Disease, The Affiliated Hospital of Qingdao University, Qingdao, China; Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
18
|
Tatsumi K. The pathogenesis of cancer-associated thrombosis. Int J Hematol 2024; 119:495-504. [PMID: 38421488 DOI: 10.1007/s12185-024-03735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Patients with cancer have a higher risk of venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), compared to the general population. Cancer-associated thrombosis (CAT) is a thrombotic event that occurs as a complication of cancer or cancer therapy. Major factors determining VTE risk in cancer patients include not only treatment history and patient characteristics, but also cancer type and site. Cancer types can be broadly divided into three groups based on VTE risk: high risk (pancreatic, ovarian, brain, stomach, gynecologic, and hematologic), intermediate risk (colon and lung), and low risk (breast and prostate). This implies that the mechanism of VTE differs between cancer types and that specific VTE pathways may exist for different cancer types. This review summarizes the specific pathways that contribute to VTE in cancer patients, with a particular focus on leukocytosis, neutrophil extracellular traps (NETs), tissue factor (TF), thrombocytosis, podoplanin (PDPN), plasminogen activator inhibitor-1 (PAI-1), the intrinsic coagulation pathway, and von Willebrand factor (VWF).
Collapse
Affiliation(s)
- Kohei Tatsumi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan.
| |
Collapse
|
19
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
20
|
Catherine Prater M, Polley KR, Cooper JA. Improvements in markers of inflammation and coagulation potential following a 5-day high-fat diet rich in cottonseed oil vs. Olive oil in healthy males. Cytokine 2024; 175:156494. [PMID: 38171039 DOI: 10.1016/j.cyto.2023.156494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Low-grade inflammation is believed to be a risk factor for chronic diseases and is nutritionally responsive. Cottonseed oil (CSO), which is rich in n-6 polyunsaturated fats, has been shown to lower cholesterol and other chronic disease risk factors. The purpose of this secondary analysis was to determine the comparative responses of markers of inflammation and coagulation potential of healthy adult males consuming diets rich in CSO vs. olive oil (OO). METHODS Fifteen normal-weight males, ages 21.7 ± 2.58y, completed a randomized crossover trial. Each intervention consisted of a 3-day lead-in diet and a 5-day outpatient, controlled feeding intervention (CSO or OO). There was a 2 to 4-week washout period between interventions. The 5-day intervention diets were 35 % carbohydrate, 15 % protein, and 50 % fat, enriched with either CSO or OO (44 % of total energy from oil). At pre- and post- diet intervention visits, a fasting blood draw was collected for analysis of markers of inflammation (Tumor Necrosis Factor Alpha (TNF-α), Interleukin-6 (IL-6), C-Reactive Protein (CRP)) and coagulation potential (Tissue Factor (TF), Plasminogen Activator Inhibitor-1 (PAI-1)). RESULTS The CSO-enriched diets reduced TNF-α (CSO: -0.12 ± 0.02 pg/ml, OO: -0.01 ± 0.05 pg/ml; p < 0.01) and TF (CSO: -0.59 ± 0.68 pg/ml, OO: 1.13 ± 0.83 pg/ml; p = 0.02) compared to OO diets. There were no differences in IL-6, CRP, or PAI-1 between diets. CONCLUSION A 5-day, CSO-enriched diet may be sufficient to reduce inflammation and coagulation potential compared to OO-enriched diets in a healthy male population which could have implications in chronic disease prevention.
Collapse
Affiliation(s)
- M Catherine Prater
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA 30602, USA
| | - Kristine R Polley
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA 30602, USA
| | - Jamie A Cooper
- Department of Kinesiology, University of Georgia, 330 River Road, Athens, GA 30602, USA.
| |
Collapse
|
21
|
Yu L, Zeng X, Hu X, Wen Q, Chen P. Advances and challenges in clinical applications of tumor cell-derived extracellular vesicles. Colloids Surf B Biointerfaces 2024; 234:113704. [PMID: 38113751 DOI: 10.1016/j.colsurfb.2023.113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Extracellular vesicles (EVs) are a class of substances that feature vesicle-like structures. Initially deemed to be "biological waste", recent studies have highlighted the crucial role of EVs in mediating information communication between cells by transporting bioactive components. Specifically, tumor cell-derived extracellular vesicles (TEVs) contain components that can be utilized for disease diagnosis and as vaccines to activate the immune system. Moreover, since TEVs have a phospholipid bilayer shell and can transport exogenous substances, they are being increasingly explored as drug delivery vehicles in anti-tumor therapy. TEVs have proven highly compatible with their corresponding tumor cells, allowing for efficient drug delivery and exerting killing effects on tumor cells through various mechanisms such as domino effects, lysosomal pathways, and inhibition of drug efflux from tumor tissues. Despite these promising developments, challenges remain in the clinical applications of EVs derived from tumor cells. This paper outlines the current advances and limitations in this field, highlighting the potential of TEVs as a powerful tool for combating cancer.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Xiaonan Zeng
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
22
|
YUSTINASARI LR, KURATOMI M, KAGAWA S, GONDO A, ARAMAKI N, IMAI H, KUSAKABE KT. Specific expression and blood kinetics for relaxin 2, lipocalin 2, and tissue factor pathway inhibitor 2 at the canine placenta and pregnant bloods. J Vet Med Sci 2024; 86:77-86. [PMID: 38057091 PMCID: PMC10849861 DOI: 10.1292/jvms.23-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
In general, humoral factors released from the placenta influence pregnancy progression, but the involvement of the canine placenta is often unidentified. We investigated specific genes in canine placentas and analyzed the blood dynamics of the translated proteins. Furthermore, RNAs are known to be released from placentas embedding in exosomes, a type of extracellular vesicles. Here, the presence of cell-free RNAs in pregnant serums was also confirmed. RNA specimens were purified from the normal healthy dog placentas and applied to RNA-Seq analysis. Expressions of frequent genes were confirmed by RT-PCR using placentas from other individuals and breeds. Relaxin (RLN) 2, lipocalin (LCN) 2, and tissue factor pathway inhibitor (TFPI) 2 were selected as high-expressed and placenta-specific genes. By western blot, the three factors were clearly detected in the pregnant serums. Quantitative analysis revealed that the amount of RLN2 increased significantly from non-pregnancy to day 41 of pregnancy. Regarding LCN2 and TFPI2, the protein serum levels elevated during pregnancy, but the statistical differences were not detected. Exosomes were found in all pregnant serums; however, the percentage was less than 6% in total extracellular vesicles. The cell-free RNA related to RLN2 was detected, but no elevation was confirmed during pregnancy. We found specific genes in the canine placenta and the transition of their translated protein into the blood. These factors may become useful tools for research on canine pregnancy and monitoring of reproductive management. Exosomes and cell-free RNA could not be found to be valid in canine reproduction.
Collapse
Affiliation(s)
- Lita Rakhma YUSTINASARI
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Maria KURATOMI
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Seizaburo KAGAWA
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ai GONDO
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Nobuaki ARAMAKI
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroyuki IMAI
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ken Takeshi KUSAKABE
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
23
|
Adnani L, Rak J. Intercellular Molecular Transfer Mediated by Extracellular Vesicles in Cancer. Results Probl Cell Differ 2024; 73:327-352. [PMID: 39242385 DOI: 10.1007/978-3-031-62036-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Among multiple pathways of intercellular communication operative in multicellular organisms, the trafficking of extracellular vesicles (EVs) and particles (EP) represents a unique mode of cellular information exchange with emerging roles in health and disease, including cancer. A distinctive feature of EV/EP-mediated cell-cell communication is that it involves simultaneous short- or long-range transfer of numerous molecular constituents (cargo) from donor to recipient cells. EV/EP uptake by donor cells elicits signalling or metabolic responses, or else leads to EV-re-emission or degradation. EVs are heterogeneous membranous structures released from cells via increasingly defined mechanisms involving either formation of multivesicular endosomes (exosomes) or budding from the plasma membrane (ectosomes). EPs (exomeres, supermeres) are membraneless complex particles, smaller than EVs and of less defined biogenesis and function. EVs/EPs carry complex assemblies of proteins, lipids and nucleic acids (RNA, DNA), which they shuttle into intercellular milieu, body fluids and recipient cells, via surface contact, fusion and different forms of internalization (endocytosis, micropinocytosis). While the physiological functions of EVs/EPs communication pathways continue to be investigated, their roles in cancer are increasingly well-defined. For example, EVs are involved in the transmission of cancer-specific molecular cargo, including mutant, oncogenic, transforming, or regulatory macromolecules to indolent, or normal cells, sometimes triggering their quasi-transformation-like states, or phenotypic alterations. Conversely, a reciprocal and avid uptake of stromal EVs by cancer cells may be responsible for modulating their oncogenic repertoire, as exemplified by the angiocrine effects of endothelial EVs influencing cancer cell stemness. EV exchanges during cancer progression have also been implicated in the formation of tumour stroma, angiogenesis and non-angiogenic neovascularization processes, immunosuppression, colonization of metastatic organ sites (premetastatic niche), paraneoplastic and systemic pathologies (thrombosis, diabetes, hepatotoxicity). Thus, an EV/EP-mediated horizontal transfer of cellular content emerges as a new dimension in cancer pathogenesis with functional, diagnostic, and therapeutic implications.
Collapse
Affiliation(s)
- Lata Adnani
- The Research Institute of the McGill University Health Centre, McGill University, QC, Canada
| | - Janusz Rak
- The Research Institute of the McGill University Health Centre, McGill University, QC, Canada.
| |
Collapse
|
24
|
Chowdhury NN, Yang Y, Dutta A, Luo M, Wei Z, Abrahams SR, Revenko AS, Shah F, Miles LA, Parmer RJ, de Laat B, Wolberg AS, Luyendyk JP, Fishel ML, Flick MJ. Plasminogen deficiency suppresses pancreatic ductal adenocarcinoma disease progression. Mol Oncol 2024; 18:113-135. [PMID: 37971174 PMCID: PMC10766200 DOI: 10.1002/1878-0261.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 10/06/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal metastatic disease associated with robust activation of the coagulation and fibrinolytic systems. However, the potential contribution of the primary fibrinolytic protease plasminogen to PDAC disease progression has remained largely undefined. Mice bearing C57Bl/6-derived KPC (KRasG12D , TRP53R172H ) tumors displayed evidence of plasmin activity in the form of high plasmin-antiplasmin complexes and high plasmin generation potential relative to mice without tumors. Notably, plasminogen-deficient mice (Plg- ) had significantly diminished KPC tumor growth in subcutaneous and orthotopic implantation models. Moreover, the metastatic potential of KPC cells was significantly diminished in Plg- mice, which was linked to reduced early adhesion and/or survival of KPC tumor cells. The reduction in primary orthotopic KPC tumor growth in Plg- mice was associated with increased apoptosis, reduced accumulation of pro-tumor immune cells, and increased local proinflammatory cytokine production. Elimination of fibrin(ogen), the primary proteolytic target of plasmin, did not alter KPC primary tumor growth and resulted in only a modest reduction in metastatic potential. In contrast, deficiencies in the plasminogen receptors Plg-RKT or S100A10 in tumor cells significantly reduced tumor growth. Plg-RKT reduction in tumor cells, but not reduced S100A10, suppressed metastatic potential in a manner that mimicked plasminogen deficiency. Finally, tumor growth was also reduced in NSG mice subcutaneously or orthotopically implanted with patient-derived PDAC tumor cells in which circulating plasminogen was pharmacologically reduced. Collectively, these studies suggest that plasminogen promotes PDAC tumor growth and metastatic potential, in part through engaging plasminogen receptors on tumor cells.
Collapse
Affiliation(s)
- Nayela N. Chowdhury
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
| | - Yi Yang
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| | - Ananya Dutta
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| | - Michelle Luo
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| | - Zimu Wei
- Department of Pathobiology & Diagnostic InvestigationMichigan State UniversityEast LansingMIUSA
- Institute for Integrative ToxicologyMichigan State UniversityEast LansingMIUSA
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMIUSA
| | - Sara R. Abrahams
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| | | | - Fenil Shah
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndianapolisINUSA
| | - Lindsey A. Miles
- Department of Molecular MedicineScripps Research InstituteLa JollaCAUSA
| | - Robert J. Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare SystemUniversity of California, San DiegoCAUSA
| | - Bas de Laat
- Synapse Research InstituteMaastrichtThe Netherlands
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| | - James P. Luyendyk
- Department of Pathobiology & Diagnostic InvestigationMichigan State UniversityEast LansingMIUSA
- Institute for Integrative ToxicologyMichigan State UniversityEast LansingMIUSA
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMIUSA
| | - Melissa L. Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
| | - Matthew J. Flick
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillNCUSA
- UNC Blood Research CenterUniversity of North Carolina at Chapel HillNCUSA
| |
Collapse
|
25
|
Su Y, Yi J, Zhang Y, Leng D, Huang X, Shi X, Zhang Y. EML4-ALK fusion protein in Lung cancer cells enhances venous thrombogenicity through the pERK1/2-AP-1-tissue factor axis. J Thromb Thrombolysis 2024; 57:67-81. [PMID: 37940761 PMCID: PMC10830642 DOI: 10.1007/s11239-023-02916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Accumulating evidence links the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearrangement to venous thromboembolism (VTE) in non-small cell lung cancer (NSCLC) patients. However, the corresponding mechanisms remain unclear. METHOD High-throughput sequencing analysis of H3122 human ALK-positive NSCLC cells treated with ALK inhibitor/ dimethyl sulfoxide (DMSO) was performed to identify coagulation-associated differential genes between EML4-ALK fusion protein inhibited cells and control cells. Sequentially, we confirmed its expression in NSCLC patients' tissues and in the plasma of a subcutaneous xenograft mouse model. An inferior vena cava (IVC) ligation model was used to assess clot formation potential. Additionally, pathways involved in tissue factor (TF) regulation were explored in ALK-positive cell lines H3122 and H2228. Statistical significance was determined by Student t-test and one-way ANOVA using SPSS. RESULTS Sequencing analysis identified a significant downregulation of TF after inhibiting EML4-ALK fusion protein activity in H3122 cells. In clinical NSCLC cases, TF expression was increased especially in ALK-positive NSCLC tissues. Meanwhile, H3122 and H2228 with high TF expression exhibited shorter plasma clotting time and higher TF activity versus ALK-negative H1299 and A549 in cell culture supernatant. Mice bearing H2228 tumor showed a higher concentration of tumor-derived TF and TF activity in plasma and the highest adjusted IVC clot weights. Limiting EML4-ALK protein phosphorylation downregulated extracellular regulated protein kinases 1/2 (ERK1/2)-activating the protein-1(AP-1) signaling pathway and thus attenuated TF expression. CONCLUSION EML4-ALK fusion protein may enhance venous thrombogenicity by regulating coagulation factor TF expression. There was potential involvement of the pERK1/2-AP-1 pathway in this process.
Collapse
Affiliation(s)
- Yanping Su
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiawen Yi
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuan Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Dong Leng
- Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiaoxi Huang
- Basic Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xinyu Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Yuhui Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
26
|
Pavlovic D, Niciforovic D, Markovic M, Papic D. Cancer-Associated Thrombosis: Epidemiology, Pathophysiological Mechanisms, Treatment, and Risk Assessment. Clin Med Insights Oncol 2023; 17:11795549231220297. [PMID: 38152726 PMCID: PMC10752082 DOI: 10.1177/11795549231220297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Cancer patients represent a growing population with drastically difficult care and a lowered quality of life, especially due to the heightened risk of vast complications. Thus, it is well established so far that one of the most prominent complications in individuals with cancer is venous thromboembolism. Since there are various improved methods for screening and diagnosing cancer and its complications, the incidence of cancer-associated thrombosis has been on the rise in recent years. Therefore, the high mortality and morbidity rates among these patients are not a surprise. Consequently, there is an excruciating need for understanding the mechanisms behind this complex process, as well as the imperative for adequate analysis and application of the most suitable steps for cancer-associated thrombosis prevention. There are various and numerous mechanisms offering potential answers to cancer-associated thrombosis, some of which have already been elucidated in various preclinical and clinical scenarios, yet further and more elaborate studies are crucial to understanding and preventing this complex and harsh clinical entity. This article elaborates on the growing incidence, mortality, morbidity, and risk factors of cancer-associated thrombosis while emphasizing the pathophysiological mechanisms in the light of various types of cancer in patients and summarizes the most novel therapy and prevention guidelines recommendations.
Collapse
Affiliation(s)
- Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Danijela Niciforovic
- Center for Internal Oncology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Marina Markovic
- Center for Internal Oncology, University Clinical Center Kragujevac, Kragujevac, Serbia
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Papic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
27
|
Tawil N, Mohammadnia A, Rak J. Oncogenes and cancer associated thrombosis: what can we learn from single cell genomics about risks and mechanisms? Front Med (Lausanne) 2023; 10:1252417. [PMID: 38188342 PMCID: PMC10769496 DOI: 10.3389/fmed.2023.1252417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Single cell analysis of cancer cell transcriptome may shed a completely new light on cancer-associated thrombosis (CAT). CAT causes morbid, and sometimes lethal complications in certain human cancers known to be associated with high risk of venous thromboembolism (VTE), pulmonary embolism (PE) or arterial thromboembolism (ATE), all of which worsen patients' prognosis. How active cancers drive these processes has long evaded scrutiny. While "unspecific" microenvironmental effects and consequences of patient care (e.g., chemotherapy) have been implicated in pathogenesis of CAT, it has also been suggested that oncogenic pathways driven by either genetic (mutations), or epigenetic (methylation) events may influence the coagulant phenotype of cancer cells and stroma, and thereby modulate the VTE/PE risk. Consequently, the spectrum of driver events and their downstream effector mechanisms may, to some extent, explain the heterogeneity of CAT manifestations between cancer types, molecular subtypes, and individual cases, with thrombosis-promoting, or -protective mutations. Understanding this molecular causation is important if rationally designed countermeasures were to be deployed to mitigate the clinical impact of CAT in individual cancer patients. In this regard, multi-omic analysis of human cancers, especially at a single cell level, has brought a new meaning to concepts of cellular heterogeneity, plasticity, and multicellular complexity of the tumour microenvironment, with profound and still relatively unexplored implications for the pathogenesis of CAT. Indeed, cancers may contain molecularly distinct cellular subpopulations, or dynamic epigenetic states associated with different profiles of coagulant activity. In this article we discuss some of the relevant lessons from the single cell "omics" and how they could unlock new potential mechanisms through which cancer driving oncogenic lesions may modulate CAT, with possible consequences for patient stratification, care, and outcomes.
Collapse
Affiliation(s)
- Nadim Tawil
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Abdulshakour Mohammadnia
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Rue University, Montreal, QC, Canada
| | - Janusz Rak
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
28
|
Wójcik-Giertuga M, Malczewska-Herman A, Kos-Kudła B. The Risk of Venous Thromboembolism in Neuroendocrine Neoplasms. Cancers (Basel) 2023; 15:5477. [PMID: 38001737 PMCID: PMC10670321 DOI: 10.3390/cancers15225477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) differ from other malignancies in their ability to produce hormones and biogenic amines, as well as offer a better prognosis in well-differentiated tumors. There are no definite data on the occurrence of thromboembolic events in NENs and no recommendations regarding the use of antithrombotic prophylaxis in this group. Accurate assessment of the thromboembolic risk in NENs represents an important issue, in order to reduce morbidity and mortality due to complications of VTE. The aim of this work was to review the occurrence of thromboembolic events in NENs and the use of antithrombotic prophylaxis in this group. A total of 28 studies identified on PubMed were analyzed. NENs, especially of pancreatic primary, exhibit an increased thrombotic risk. Atypical VTE locations are quite common in NENs. Hormonally active NENs are associated with a significantly increased thromboembolic risk. Further studies in NENs are needed to evaluate the parameters of coagulation and fibrinolysis as predictive biomarkers for VTE complications.
Collapse
Affiliation(s)
- Monika Wójcik-Giertuga
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland; (A.M.-H.); (B.K.-K.)
| | | | | |
Collapse
|
29
|
Hisada Y, Archibald SJ, Bansal K, Chen Y, Dai C, Dwarampudi S, Balas N, Hageman L, Key NS, Bhatia S, Bhatia R, Mackman N, Gangaraju R. Biomarkers of bleeding and venous thromboembolism in patients with acute leukemia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.18.23297216. [PMID: 37905148 PMCID: PMC10615001 DOI: 10.1101/2023.10.18.23297216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Coagulopathy and associated bleeding and venous thromboembolism (VTE) are major causes of morbidity and mortality in patients with acute leukemia. The underlying mechanisms of these complications have not been fully elucidated. Objectives To evaluate the associations between biomarker levels and bleeding and VTE in acute leukemia patients. Patients/Method We examined plasma levels of activators, inhibitors and biomarkers of the coagulation and fibrinolytic pathways in patients ≥18 years with newly diagnosed acute leukemia compared to healthy controls. Multivariable regression models were used to examine the association of biomarkers with bleeding and VTE in acute leukemia patients. The study included 358 patients with acute leukemia (29 acute promyelocytic leukemia [APL], 253 non-APL acute myeloid leukemia [AML] and 76 acute lymphoblastic leukemia [ALL]), and 30 healthy controls. Results Patients with acute leukemia had higher levels of extracellular vesicle (EV) tissue factor (TF) activity, phosphatidylserine-positive EVs, plasminogen activator inhibitor-1 (PAI-1), plasmin-antiplasmin complexes, cell-free DNA and lower levels of citrullinated histone H3-DNA complexes compared to healthy controls. APL patients had the highest levels of EVTF activity and the lowest levels of tissue plasminogen activator among the acute leukemia patients. There were 41 bleeding and 37 VTE events in acute leukemia patients. High EVTF activity was associated with increased risk of bleeding (sHR 2.30, 95%CI 0.99-5.31) whereas high PAI-1 was associated with increased risk of VTE (sHR 3.79, 95%CI 1.40-10.28) in these patients. Conclusions Our study shows alterations in several biomarkers in acute leukemia and identifies biomarkers associated with risk of bleeding and VTE.
Collapse
Affiliation(s)
- Yohei Hisada
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Sierra J. Archibald
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Karan Bansal
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Yanjun Chen
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Chen Dai
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Sindhu Dwarampudi
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Nora Balas
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Nigel S. Key
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Ravi Bhatia
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Radhika Gangaraju
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
30
|
Gotta J, Gruenewald LD, Eichler K, Martin SS, Mahmoudi S, Booz C, Biciusca T, Reschke P, Bernatz S, Pinto Dos Santos D, Scholtz JE, Alizadeh LS, Nour-Eldin NEA, Hammerstingl RM, Gruber-Rouh T, Mader C, Hardt SE, Sommer CM, Bucolo G, D'Angelo T, Onay M, Finkelmeier F, Leistner DM, Vogl TJ, Giannitsis E, Koch V. Unveiling the diagnostic enigma of D-dimer testing in cancer patients: Current evidence and areas of application. Eur J Clin Invest 2023; 53:e14060. [PMID: 37409393 DOI: 10.1111/eci.14060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Cancer is a well-known risk factor for venous thromboembolism (VTE). A combined strategy of D-dimer testing and clinical pre-test probability is usually used to exclude VTE. However, its effectiveness is diminished in cancer patients due to reduced specificity, ultimately leading to a decreased clinical utility. This review article seeks to provide a comprehensive summary of how to interpret D-dimer testing in cancer patients. METHODS In accordance with PRISMA standards, literature pertaining to the diagnostic and prognostic significance of D-dimer testing in cancer patients was carefully chosen from reputable sources such as PubMed and the Cochrane databases. RESULTS D-dimers have not only a diagnostic value in ruling out VTE but can also serve as an aid for rule-in if their values exceed 10-times the upper limit of normal. This threshold allows a diagnosis of VTE in cancer patients with a positive predictive value of more than 80%. Moreover, elevated D-dimers carry important prognostic information and are associated with VTE reoccurrence. A gradual increase in risk for all-cause death suggests that VTE is also an indicator of biologically more aggressive cancer types and advanced cancer stages. Considering the lack of standardization for D-dimer assays, it is essential for clinicians to carefully consider the variations in assay performance and the specific test characteristics of their institution. CONCLUSIONS Standardizing D-dimer assays and developing modified pretest probability models specifically for cancer patients, along with adjusted cut-off values for D-dimer testing, could significantly enhance the accuracy and effectiveness of VTE diagnosis in this population.
Collapse
Affiliation(s)
- Jennifer Gotta
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | - Katrin Eichler
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Simon S Martin
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | - Christian Booz
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Teodora Biciusca
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Philipp Reschke
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Simon Bernatz
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | - Jan-Erik Scholtz
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Leona S Alizadeh
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | | | | | - Christoph Mader
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stefan E Hardt
- Department of Cardiology, Angiology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christof M Sommer
- Clinic of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Giuseppe Bucolo
- Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Tommaso D'Angelo
- Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Melis Onay
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | - David M Leistner
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Thomas J Vogl
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Evangelos Giannitsis
- Department of Cardiology, Angiology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Vitali Koch
- Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
31
|
Bucciol R, Othman M. Tissue factor positive microparticles as a biomarker for increased risk of breast cancer-associated thrombosis: a mini review. Curr Opin Hematol 2023; 30:180-185. [PMID: 37522480 DOI: 10.1097/moh.0000000000000774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
PURPOSE OF REVIEW Cancer-associated thrombosis (CAT), such as venous thromboembolism (VTE), is a frequent complication in cancer patients, resulting in poor prognosis. Breast cancer is not highly thrombogenic but is highly prevalent, resulting in increased VTE cases. Many cancers express tissue factor (TF), a glycoprotein that triggers coagulation. The cancer cells were shown to express and release substantial amounts of TF-positive microparticles (MPTF), associated with a prothrombotic state. This narrative review evaluated the current use of the procoagulant MPTF as a biomarker for thrombosis risk in breast cancer. RECENT FINDINGS Tumors of epithelial origin with elevated TF expression have been associated with increased VTE incidence. Thus, studies have affirmed the use of MPTF biomarkers for VTE risk in many cancers. Patients with metastatic breast cancer and CAT were found to exhibit elevated procoagulant microparticles in vitro, due to TF expression. The silencing of TF was associated with decreased microparticle release in breast carcinoma cell lines, associated with decreased coagulation. SUMMARY CAT is a multifactorial condition, with several various underlying diseases. It is proposed that MPTF may be an effective biomarker for thrombosis risk in breast cancer patients but requires a more systemic evaluation utilizing standardized quantification methods.
Collapse
Affiliation(s)
- Regan Bucciol
- Department of Biomedical and Molecular Sciences, Queen's University
| | - Maha Othman
- Department of Biomedical and Molecular Sciences, Queen's University
- School of Baccalaureate Nursing, St Lawrence College, Kingston, Ontario, Canada
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
32
|
Potere N, Abbate A, Kanthi Y, Carrier M, Toldo S, Porreca E, Di Nisio M. Inflammasome Signaling, Thromboinflammation, and Venous Thromboembolism. JACC Basic Transl Sci 2023; 8:1245-1261. [PMID: 37791298 PMCID: PMC10544095 DOI: 10.1016/j.jacbts.2023.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 10/05/2023]
Abstract
Venous thromboembolism (VTE) remains a major health burden despite anticoagulation advances, suggesting incomplete management of pathogenic mechanisms. The NLRP3 (NACHT-, LRR- and pyrin domain-containing protein 3) inflammasome, interleukin (IL)-1, and pyroptosis are emerging contributors to the inflammatory pathogenesis of VTE. Inflammasome pathway activation occurs in patients with VTE. In preclinical models, inflammasome signaling blockade reduces venous thrombogenesis and vascular injury, suggesting that this therapeutic approach may potentially maximize anticoagulation benefits, protecting from VTE occurrence, recurrence, and ensuing post-thrombotic syndrome. The nonselective NLRP3 inhibitor colchicine and the anti-IL-1β agent canakinumab reduce atherothrombosis without increasing bleeding. Rosuvastatin reduces primary venous thrombotic events at least in part through lipid-lowering independent mechanisms, paving the way to targeted anti-inflammatory strategies in VTE. This review outlines recent preclinical and clinical evidence supporting a role for inflammasome pathway activation in venous thrombosis, and discusses the, yet unexplored, therapeutic potential of modulating inflammasome signaling to prevent and manage VTE.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences, “G. d'Annunzio” University, Chieti, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Yogendra Kanthi
- Vascular Thrombosis & Inflammation Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marc Carrier
- Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Ettore Porreca
- Department of Innovative Technologies in Medicine and Dentistry, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti, Italy
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, “G. d'Annunzio” University, Chieti, Italy
| |
Collapse
|
33
|
Asao T, Tobias GC, Lucotti S, Jones DR, Matei I, Lyden D. Extracellular vesicles and particles as mediators of long-range communication in cancer: connecting biological function to clinical applications. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:461-485. [PMID: 38707985 PMCID: PMC11067132 DOI: 10.20517/evcna.2023.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Over the past decade, extracellular vesicles and particles (EVPs) have emerged as critical mediators of intercellular communication, participating in numerous physiological and pathological processes. In the context of cancer, EVPs exert local effects, such as increased invasiveness, motility, and reprogramming of tumor stroma, as well as systemic effects, including pre-metastatic niche formation, determining organotropism, promoting metastasis and altering the homeostasis of various organs and systems, such as the liver, muscle, and circulatory system. This review provides an overview of the critical advances in EVP research during the past decade, highlighting the heterogeneity of EVPs, their roles in intercellular communication, cancer progression, and metastasis. Moreover, the clinical potential of systemic EVPs as useful cancer biomarkers and therapeutic agents is explored. Last but not least, the progress in EVP analysis technologies that have facilitated these discoveries is discussed, which may further propel EVP research in the future.
Collapse
Affiliation(s)
- Tetsuhiko Asao
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 163-8001, Japan
| | - Gabriel Cardial Tobias
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - David R. Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Irina Matei
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
34
|
Muse O, Patell R, Peters CG, Yang M, El-Darzi E, Schulman S, Falanga A, Marchetti M, Russo L, Zwicker JI, Flaumenhaft R. The unfolded protein response links ER stress to cancer-associated thrombosis. JCI Insight 2023; 8:e170148. [PMID: 37651191 PMCID: PMC10629814 DOI: 10.1172/jci.insight.170148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Thrombosis is a common complication of advanced cancer, yet the cellular mechanisms linking malignancy to thrombosis are poorly understood. The unfolded protein response (UPR) is an ER stress response associated with advanced cancers. A proteomic evaluation of plasma from patients with gastric and non-small cell lung cancer who were monitored prospectively for venous thromboembolism demonstrated increased levels of UPR-related markers in plasma of patients who developed clots compared with those who did not. Release of procoagulant activity into supernatants of gastric, lung, and pancreatic cancer cells was enhanced by UPR induction and blocked by antagonists of the UPR receptors inositol-requiring enzyme 1α (IRE1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK). Release of extracellular vesicles bearing tissue factor (EVTFs) from pancreatic cancer cells was inhibited by siRNA-mediated knockdown of IRE1α/XBP1 or PERK pathways. Induction of UPR did not increase tissue factor (TF) synthesis, but rather stimulated localization of TF to the cell surface. UPR-induced TF delivery to EVTFs was inhibited by ADP-ribosylation factor 1 knockdown or GBF1 antagonism, verifying the role of vesicular trafficking. Our findings show that UPR activation resulted in increased vesicular trafficking leading to release of prothrombotic EVTFs, thus providing a mechanistic link between ER stress and cancer-associated thrombosis.
Collapse
Affiliation(s)
- Oluwatoyosi Muse
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rushad Patell
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian G. Peters
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Emale El-Darzi
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Falanga
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Marina Marchetti
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Russo
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Jeffrey I. Zwicker
- Hematology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Dudiki T, Veleeparambil M, Zhevlakova I, Biswas S, Klein EA, Ford P, Podrez EA, Byzova TV. Mechanism of Tumor-Platelet Communications in Cancer. Circ Res 2023; 132:1447-1461. [PMID: 37144446 PMCID: PMC10213120 DOI: 10.1161/circresaha.122.321861] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Thrombosis is one of the main complications in cancer patients often leading to mortality. However, the mechanisms underlying platelet hyperactivation are poorly understood. METHODS Murine and human platelets were isolated and treated with small extracellular vesicles (sEVs) from various cancer cell lines. The effects of these cancer-sEVs on platelets were evaluated both in vitro and in vivo using various approaches, including the detection of cancer-sEV-specific markers in murine platelets and patient samples, measurement of platelet activation and thrombosis assays. Signaling events induced by cancer-sEVs and leading to platelet activation were identified, and the use of blocking antibodies to prevent thrombosis was demonstrated. RESULTS We demonstrate that platelets very effectively take up sEVs from aggressive cancer cells. The process of uptake is fast, proceeds effectively in circulation in mice, and is mediated by the abundant sEV membrane protein-CD63. The uptake of cancer-sEVs leads to the accumulation of cancer cell-specific RNA in platelets in vitro and in vivo. The human prostate cancer-sEV-specific RNA marker PCA3 is detected in platelets of ~70% of prostate cancer patients. This was markedly reduced after prostatectomy. In vitro studies showed that platelet uptake of cancer-sEVs induces strong platelet activation in a CD63-RPTPα (receptor-like protein tyrosine phosphatase alpha)-dependent manner. In contrast to physiological agonists ADP and thrombin, cancer-sEVs activate platelets via a noncanonical mechanism. Intravital studies demonstrated accelerated thrombosis both in murine tumor models and in mice that received intravenous injections of cancer-sEVs. The prothrombotic effects of cancer-sEVs were rescued by blocking CD63. CONCLUSIONS Tumors communicate with platelets by means of sEVs, which deliver cancer markers and activate platelets in a CD63-dependent manner leading to thrombosis. This emphasizes the diagnostic and prognostic value of platelet-associated cancer markers and identifies new pathways for intervention.
Collapse
Affiliation(s)
- Tejasvi Dudiki
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Manoj Veleeparambil
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Irina Zhevlakova
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Sudipta Biswas
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Eric A. Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of Medicine, Education Institute, Cleveland Clinic, Cleveland, OH
| | - Peter Ford
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Eugene A. Podrez
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Tatiana V. Byzova
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
36
|
Kawano T, Hisada Y, Grover SP, Schug WJ, Paul DS, Bergmeier W, Mackman N. Decreased Platelet Reactivity and Function in a Mouse Model of Human Pancreatic Cancer. Thromb Haemost 2023; 123:501-509. [PMID: 36716775 PMCID: PMC10820933 DOI: 10.1055/s-0043-1761419] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cancer patients have increased thrombosis and bleeding compared with the general population. Cancer is associated with activation of both platelets and coagulation. Mouse models have been used to study the dysregulation of platelets and coagulation in cancer. We established a mouse model of pancreatic cancer in which tissue factor-expressing human pancreatic tumors (BxPC-3) are grown in nude mice. Tumor-bearing mice have an activated coagulation system and increased venous thrombosis compared to control mice. We also showed that tumor-derived, tissue factor-positive extracellular vesicles activated platelets ex vivo and in vivo. In this study, we determined the effect of tumors on a platelet-dependent arterial thrombosis model. Unexpectedly, we observed significantly reduced carotid artery thrombosis in tumor-bearing mice compared to controls. In addition, we observed significantly increased tail bleeding in tumor-bearing mice compared to controls. These results suggested that the presence of the tumor affected platelets. Indeed, tumor-bearing mice exhibited a significant decrease in platelet count and an increase in mean platelet volume and percentage of reticulated platelets, findings that are consistent with increased platelet turnover. Levels of the platelet activation marker platelet factor 4 were also increased in tumor-bearing mice. We also observed decreased platelet receptor expression in tumor-bearing mice and reduced levels of active αIIb/β3 integrin in response to PAR4 agonist peptide and convulxin in platelets from tumor-bearing mice compared with platelets from control mice. In summary, our study suggests that in tumor-bearing mice there is chronic platelet activation, leading to thrombocytopenia, decreased receptor expression, and impaired platelet adhesive function.
Collapse
Affiliation(s)
- Tomohiro Kawano
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Yohei Hisada
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Steven P. Grover
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Wyatt J. Schug
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, North Carolina, United States
| | - David S. Paul
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, UNC Blood Research Center, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
37
|
Burdett KB, Unruh D, Drumm M, Steffens A, Lamano J, Judkins J, Schwartz M, Javier R, Amidei C, Lipp ES, Peters KB, Lai A, Eldred BSC, Heimberger AB, McCortney K, Scholtens DM, Horbinski C. Determining venous thromboembolism risk in patients with adult-type diffuse glioma. Blood 2023; 141:1322-1336. [PMID: 36399711 PMCID: PMC10082363 DOI: 10.1182/blood.2022017858] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Venous thromboembolism (VTE) is a life-threating condition that is common in patients with adult-type diffuse gliomas, yet thromboprophylaxis is controversial because of possible intracerebral hemorrhage. Effective VTE prediction models exist for other cancers, but not glioma. Our objective was to develop a VTE prediction tool to improve glioma patient care, incorporating clinical, blood-based, histologic, and molecular markers. We analyzed preoperative arterial blood, tumor tissue, and clinical-pathologic data (including next-generation sequencing data) from 258 patients with newly diagnosed World Health Organization (WHO) grade 2 to 4 adult-type diffuse gliomas. Forty-six (17.8%) experienced VTE. Tumor expression of tissue factor (TF) and podoplanin (PDPN) each positively correlated with VTE, although only circulating TF and D-dimers, not circulating PDPN, correlated with VTE risk. Gliomas with mutations in isocitrate dehydrogenase 1 (IDH1) or IDH2 (IDHmut) caused fewer VTEs; multivariable analysis suggested that this is due to IDHmut suppression of TF, not PDPN. In a predictive time-to-event model, the following predicted increased VTE risk in newly diagnosed patients with glioma: (1) history of VTE; (2) hypertension; (3) asthma; (4) white blood cell count; (5) WHO tumor grade; (6) patient age; and (7) body mass index. Conversely, IDHmut, hypothyroidism, and MGMT promoter methylation predicted reduced VTE risk. These 10 variables were used to create a web-based VTE prediction tool that was validated in 2 separate cohorts of patients with adult-type diffuse glioma from other institutions. This study extends our understanding of the VTE landscape in these tumors and provides evidence-based guidance for clinicians to mitigate VTE risk in patients with glioma.
Collapse
Affiliation(s)
| | | | - Michael Drumm
- Department of Neurological Surgery, Northwestern University, Chicago, IL
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Alicia Steffens
- Department of Neurological Surgery, Northwestern University, Chicago, IL
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Jonathan Lamano
- Department of Neurosurgery, Stanford University, Stanford, CA
| | - Jonathan Judkins
- Department of Medicine, Oregon Health and Science University, Portland, OR
| | - Margaret Schwartz
- Department of Neurological Surgery, Northwestern University, Chicago, IL
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Rodrigo Javier
- University of Chicago Pritzker School of Medicine, Chicago, IL
| | - Christina Amidei
- Department of Neurological Surgery, Northwestern University, Chicago, IL
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Eric S. Lipp
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, NC
| | - Katherine B. Peters
- The Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, NC
| | - Albert Lai
- Department of Neurology, University of California, Los Angeles, CA
| | | | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University, Chicago, IL
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Kathleen McCortney
- Department of Neurological Surgery, Northwestern University, Chicago, IL
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | | | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, IL
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
- Department of Pathology, Northwestern University, Chicago, IL
| |
Collapse
|
38
|
Heterogeneity of Extracellular Vesicles and Particles: Molecular Voxels in the Blood Borne "Hologram" of Organ Function, Disfunction and Cancer. Arch Immunol Ther Exp (Warsz) 2023; 71:5. [PMID: 36729313 DOI: 10.1007/s00005-023-00671-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/17/2022] [Indexed: 02/03/2023]
Abstract
Extracellular vesicles (EVs) and particles (EPs) serve as unique carriers of complex molecular information with increasingly recognized roles in health and disease. Individual EVs/EPs collectively contribute to the molecular fingerprint of their producing cell, reflecting its identity, state, function and phenotype. This property is of particular interest in cancer where enormous heterogeneity of cancer cells is compounded by the presence of altered stromal, vascular and immune cell populations, which is further complicated by systemic responses elicited by the disease in individual patients. These diverse and interacting cellular compartments are dynamically represented by myriads of EVs/EPs released into the circulating biofluids (blood) during cancer progression and treatment. Current approaches of liquid biopsy seek to follow specific elements of the EV/EP cargo that may have diagnostic utility (as biomarkers), such as cancer cell-derived mutant oncoproteins or nucleic acids. However, with emerging technologies enabling high-throughput EV/EP analysis at a single particle level, a more holistic approach may be on the horizon. Indeed, each EV/EP carries multidimensional information (molecular "voxel") that could be integrated across thousands of particles into a larger and unbiased landscape (EV/EP "hologram") reflecting the true cellular complexity of the disease, along with cellular interactions, systemic responses and effects of treatment. Thus, the longitudinal molecular mapping of EV/EP populations may add a new dimension to crucial aspects of cancer biology, personalized diagnostics, and therapy.
Collapse
|
39
|
Akinbo DB, Ajayi OI. Thrombotic Pathogenesis and Laboratory Diagnosis in Cancer Patients, An Update. Int J Gen Med 2023; 16:259-272. [PMID: 36711430 PMCID: PMC9879027 DOI: 10.2147/ijgm.s385772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/04/2023] [Indexed: 01/23/2023] Open
Abstract
Cancer-associated thrombosis (CAT) is a leading cause of mortality in cancer patients and its incidence varies in different parts of the world. Venous thromboembolism (VTE) is a prominent manifestation of CAT, and significantly impacts morbidity and survival compared to arterial thrombosis in cancer patients. Several risk factors for developing VTE such as chemotherapy and immobilization have also been found co-existing with cancer patients and contributing to the increased risk of VTE in cancer patients than in non-cancer patients. This review highlights recent mechanisms in the pathogenesis of hypercoagulable syndromes associated with cancer, multiple mechanisms implicated in promoting cancer-associated thrombosis and their diagnostic approaches. Cancer cells interact with every part of the hemostatic system; generating their own procoagulant factors, through stimulation of the prothrombotic properties of other blood cell components or the initiation of clotting by cancer therapies which can all directly activate the coagulation cascade and contribute to the VTE experienced in CAT. It is our hope that the multiple interconnections between the hemostatic system and cancer biology and the improved biomarkers reported in this study can be relevant in establishing a predictive model for VTE, optimize early detection of asymptomatic microthrombosis for more personalized prophylactic strategies and incorporate effective therapeutic options and patient management to reduce mortality and morbidity, and improve the quality of life of affected cancer patients.
Collapse
Affiliation(s)
- David Bolaji Akinbo
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Afe Babalola University, Ado – Ekiti, Ekiti State, Nigeria,Department of Food, Nutrition, Dietetics and Health, College of Health and Human Sciences, Kansas State University, Manhattan, KS, USA,Correspondence: David Bolaji Akinbo, Email
| | - Olutayo Ifedayo Ajayi
- Department of Physiology, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Edo State, Nigeria
| |
Collapse
|
40
|
Shi Q, Ji T, Tang X, Guo W. The role of tumor-platelet interplay and micro tumor thrombi during hematogenous tumor metastasis. Cell Oncol (Dordr) 2023; 46:521-532. [PMID: 36652166 DOI: 10.1007/s13402-023-00773-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In addition to their pivotal roles in coagulation and thrombosis, platelets are crucial in tumor progression, with plenty of clinical and experimental data demonstrating that the interplay of platelets and tumor cells is essential for hematogenous tumor metastasis. After detach from primary sites, tumor cells intravasate into the blood circulation becoming circulating tumor cells and induce platelet activation, aggregation and encasement around tumor cells to form micro tumor thrombi, which create a permissive tumor microenvironment for metastasis. Platelets in micro tumor thrombi protect tumor cells from immune surveillance and anoikis (detachment-triggered apoptosis) through various pathways, which are significant for tumor cell survival in the bloodstream. Moreover, platelets can facilitate tumor metastasis by expediting epithelial-mesenchymal transition (EMT), adhesion to the endothelium, angiogenesis, tumor proliferation processes and platelet-derived microvesicle (PMV) formation. CONCLUSIONS Here, we provide a synopsis of the current understanding of the formation of micro tumor thrombi and the role of micro tumor thrombi in tumor hematogenous metastasis based on the tumor-platelet interplay. We also highlight potential therapeutic strategies targeting platelets for tumor treatment, including cancer-associated platelet-targeted nanomedicines.
Collapse
Affiliation(s)
- Qianyu Shi
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Tao Ji
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China.
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China
| | - Wei Guo
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| |
Collapse
|
41
|
Patel SS, Tao D, McMurry HS, Shatzel JJ. Screening for occult cancer after unprovoked venous thromboembolism: Assessing the current literature and future directions. Eur J Haematol 2023; 110:24-31. [PMID: 36192850 PMCID: PMC9729376 DOI: 10.1111/ejh.13874] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
Abstract
While significant evidence has established an increased rate of thrombosis in patients with cancer, the risk of occult malignancy in the setting of an unprovoked thrombosis is less clear. Despite continued interest in developing an effective screening system for occult malignancy following unprovoked venous thromboembolism (VTE), discrepancies in the literature and guideline recommendations leave providers uncertain whether to screen or perform further diagnostics for this patient population. Evidence suggests that screening for malignancy can detect cancer sooner in patients with unprovoked VTE, but there is a lack of high-quality evidence demonstrating improvements in survival who receive early detection. In the following manuscript, we summarize VTE in relation to cancer epidemiology and pathophysiology. Our literature review summarizes the spectrum of testing strategies for occult malignancy following unprovoked VTE, including biomarker detection methods and various imaging approaches. We evaluate the benefit of additional diagnostic strategies, review current guidelines on the issue, and provide guidance to the reader on the best practice for investigating undiagnosed malignancy in patients with unprovoked VTE.
Collapse
Affiliation(s)
- Sarah S Patel
- Division of Internal Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Derrick Tao
- Providence Portland Medical Center, Earle A. Chiles Research Institute, Portland, Oregon, USA
| | - Hannah S McMurry
- Division of Internal Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph J Shatzel
- Division of Hematology & Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
42
|
Xiang Y, Xiang P, Zhang L, Li Y, Zhang J. A narrative review for platelets and their RNAs in cancers: New concepts and clinical perspectives. Medicine (Baltimore) 2022; 101:e32539. [PMID: 36596034 PMCID: PMC9803462 DOI: 10.1097/md.0000000000032539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent years have witnessed a growing body of evidence suggesting that platelets are involved in several stages of the metastatic process via direct or indirect interactions with cancer cells, contributing to the progression of neoplastic malignancies. Cancer cells can dynamically exchange components with platelets in and out of blood vessels, and directly phagocytose platelets to hijack their proteome, transcriptome, and secretome, or be remotely regulated by metabolites or microparticles released by platelets, resulting in phenotypic, genetic, and functional modifications. Moreover, platelet interactions with stromal and immune cells in the tumor microenvironment lead to alterations in their components, including the ribonucleic acid (RNA) profile, and complicate the impact of platelets on cancers. A deeper understanding of the roles of platelets and their RNAs in cancer will contribute to the development of anticancer strategies and the optimization of clinical management. Encouragingly, advances in high-throughput sequencing, bioinformatics data analysis, and machine learning have allowed scientists to explore the potential of platelet RNAs for cancer diagnosis, prognosis, and guiding treatment. However, the clinical application of this technique remains controversial and requires larger, multicenter studies with standardized protocols. Here, we integrate the latest evidence to provide a broader insight into the role of platelets in cancer progression and management, and propose standardized recommendations for the clinical utility of platelet RNAs to facilitate translation and benefit patients.
Collapse
Affiliation(s)
- Yunhui Xiang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Pinpin Xiang
- Department of Laboratory Medicine, Xiping Community Health Service Center of Longquanyi District Chengdu City, Chengdu, China
| | - Liuyun Zhang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanying Li
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Zhang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- * Correspondence: Juan Zhang, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, 32# West Second Section, First Ring Road, Qingyang District, Chengdu City, Sichuan Province 610072, China (e-mail: )
| |
Collapse
|
43
|
Moik F, Ay C. Hemostasis and cancer: Impact of haemostatic biomarkers for the prediction of clinical outcomes in patients with cancer. J Thromb Haemost 2022; 20:2733-2745. [PMID: 36106749 PMCID: PMC9827869 DOI: 10.1111/jth.15880] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023]
Abstract
Patients with cancer are characterized by a dysregulation of the hemostatic system and systemic hypercoagulability. Different components of the hemostatic system are involved in tumor-promoting mechanisms including primary tumor growth, cancer cell invasion, immune evasion, angiogenesis, and the metastatic process. Therefore, different degrees of systemic hemostatic activation in patients with cancer can reflect distinct underlying biological phenotypes of cancer and seem to correlate with cancer aggressiveness. Peripheral blood levels of hemostatic biomarkers, indicating the activation status of different parts of the hemostatic system including the coagulation cascade, fibrinolytic activity, platelet activation, or endothelial activation, can be used to reflect cancer-associated systemic hypercoagulability. Thereby, hemostatic biomarkers represent promising candidates to investigate as surrogate markers for underlying cancer activity and progression dynamics and therefore as biomarkers for the prediction of clinical outcomes in cancer patients. In the present review, we provide an up-to-date summary of available data on hemostatic biomarkers for prognostication of overall survival and prediction of therapy response in patients with cancer, including specific oncologic treatment settings for potential clinical application. We provide a thorough discussion on potential clinical implementation and current limitations and highlight the most promising emerging biomarkers that might be used to contribute to risk-stratified, personalized oncologic decision making in the future.
Collapse
Affiliation(s)
- Florian Moik
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of ViennaViennaAustria
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of GrazGrazAustria
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of ViennaViennaAustria
| |
Collapse
|
44
|
Adnani L, Spinelli C, Tawil N, Rak J. Role of extracellular vesicles in cancer-specific interactions between tumour cells and the vasculature. Semin Cancer Biol 2022; 87:196-213. [PMID: 36371024 DOI: 10.1016/j.semcancer.2022.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/25/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Cancer progression impacts and exploits the vascular system in several highly consequential ways. Among different types of vascular cells, blood cells and mediators that are engaged in these processes, endothelial cells are at the centre of the underlying circuitry, as crucial constituents of angiogenesis, angiocrine stimulation, non-angiogenic vascular growth, interactions with the coagulation system and other responses. Tumour-vascular interactions involve soluble factors, extracellular matrix molecules, cell-cell contacts, as well as extracellular vesicles (EVs) carrying assemblies of molecular effectors. Oncogenic mutations and transforming changes in the cancer cell genome, epigenome and signalling circuitry exert important and often cancer-specific influences upon pathways of tumour-vascular interactions, including the biogenesis, content, and biological activity of EVs and responses of cancer cells to them. Notably, EVs may carry and transfer bioactive, oncogenic macromolecules (oncoproteins, RNA, DNA) between tumour and vascular cells and thereby elicit unique functional changes and forms of vascular growth and remodeling. Cancer EVs influence the state of the vasculature both locally and systemically, as exemplified by cancer-associated thrombosis. EV-mediated communication pathways represent attractive targets for therapies aiming at modulation of the tumour-vascular interface (beyond angiogenesis) and could also be exploited for diagnostic purposes in cancer.
Collapse
Affiliation(s)
- Lata Adnani
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Cristiana Spinelli
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Nadim Tawil
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Janusz Rak
- McGill University and Research Institute of the McGill University Health Centre, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
45
|
Najahi H, Alessio N, Squillaro T, Conti GO, Ferrante M, Di Bernardo G, Galderisi U, Messaoudi I, Minucci S, Banni M. Environmental microplastics (EMPs) exposure alter the differentiation potential of mesenchymal stromal cells. ENVIRONMENTAL RESEARCH 2022; 214:114088. [PMID: 35973457 DOI: 10.1016/j.envres.2022.114088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Humans are exposed to environmental microplastic (MPs) that can be frequent in surrounding environment. The mesenchymal stromal cells are a heterogeneous population, which contain fibroblasts and stromal cells, progenitor cells and stem cells. They are part of the stromal component of most tissue and organs in our organisms. Any injury to their functions may impair tissue renewal and homeostasis. We evaluated the effects of different size MPs that could be present in water bottles on human bone marrow mesenchymal stromal cells (BMMSCs) and adipose mesenchymal stromal cells (AMSCs). MPs of polyethylene terephthalate (MPs-PET) (<1 μm and <2.6 μm) were tested in this study. PET treatments induced a reduction in proliferating cells (around 30%) associated either with the onset of senescence or increase in apoptosis. The AMSCs and BMMSCs exposed to PET showed an alteration of differentiation potential. AMSCs remained in an early stage of adipocyte differentiation as shown by high levels of mRNA for Peroxisome Proliferator Activated Receptor Gamma (PPARG) (7.51 vs 1.00) and reduction in Lipoprotein Lipase (LPL) mRNA levels (0.5 vs 1.0). A loss of differentiation capacity was also observed for the osteocyte phenotype in BMMSCs. In particular, we observed a reduction in Bone Gamma-Carboxy glutamate Protein (BGLAP) (0.4 for PET1 and 0.6 for PET2.6 vs 0.1 CTRL) and reduction in Osteopontin (SPP1) (0.3 for PET 1 and 0.64 for PET 2.6 vs 0.1 CTRL). This pioneering mesenchymal cell response study demonstrated that environmental microplastic could be bioavailable for cell uptake and may further lead to irreversible diseases.
Collapse
Affiliation(s)
- Hana Najahi
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, Sousse University, Chott-Mariem, 4042, Sousse, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia
| | - Nicola Alessio
- Department of Experimental Medicine, "Luigi Vanvitelli" Campania University, 81038, Napoli, Italy
| | - Tiziana Squillaro
- Department of Experimental Medicine, "Luigi Vanvitelli" Campania University, 81038, Napoli, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies G. F. Ingrassia, Catania University, Via Santa Sofia 87, 95123, Catania, Italy
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies G. F. Ingrassia, Catania University, Via Santa Sofia 87, 95123, Catania, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, "Luigi Vanvitelli" Campania University, 81038, Napoli, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, "Luigi Vanvitelli" Campania University, 81038, Napoli, Italy
| | - Imed Messaoudi
- Higher Institute of Biotechnology, Monastir University, Tunisia
| | - Sergio Minucci
- Department of Experimental Medicine, "Luigi Vanvitelli" Campania University, 81038, Napoli, Italy
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, Sousse University, Chott-Mariem, 4042, Sousse, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia.
| |
Collapse
|
46
|
Sheng IY, Gupta S, Reddy CA, Angelini D, Funchain P, Sussman TA, Sleiman J, Ornstein MC, McCrae K, Khorana AA. Thromboembolism in Patients with Metastatic Urothelial Cancer Treated with Immune Checkpoint Inhibitors. Target Oncol 2022; 17:563-569. [PMID: 35986816 DOI: 10.1007/s11523-022-00905-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Immunotherapy has become one of the mainstays for metastatic urothelial carcinoma treatment. Whether immune checkpoint inhibitor therapy increases thromboembolism (TE) risk is unknown. OBJECTIVE We investigated the incidence of arterial thromboembolism (ATE) and venous thromboembolism (VTE) events and its associated outcomes in patients with metastatic urothelial cancer treated with immune checkpoint inhibitors. METHODS Patients with urothelial cancer treated with immune checkpoint inhibitors at the Cleveland Clinic from 1/1/2015 to 12/31/2019 were identified. The Kaplan-Meier method estimated overall survival and Cox proportional hazards regression evaluated the impact of TE on overall survival. RESULTS Of 279 patients, 72% were men with pure urothelial cancer (62%) who started atezolizumab (40%), nivolumab (3%), or pembrolizumab (57%). At a median follow-up of 5.6 months (range 0.3-51.6), 42 patients developed a TE (VTE n = 37, 13%, ATE n = 5, 2%). The cumulative incidence of TE after immune checkpoint inhibitor therapy was 9.1% (95% confidence interval 6.0-13.0) at 6 months and 13.6% (95% confidence interval 9.6-18.4) at 12 months. Most TE (VTE 62%, ATE 100%) occurred within 6 months of immune checkpoint inhibitor initiation (median doses 5, range 1-59), and the majority (VTE 81%, ATE 100%) resulted in hospitalization (median: 5 days, 4 days, respectively). Thromboembolism (hazard ratio 2.296, p = 0.0004), Bajorin score 1 or 2 (hazard ratio 1.490, p = 0.0315), and Bajorin score 2 (hazard ratio 3.50, p < 0.0001) were associated with worse overall survival. CONCLUSIONS Immune checkpoint inhibitors are associated with a high TE risk. Thromboembolism is associated with worsened survival, among other poor outcomes. Further investigation into the mechanism behind immune checkpoint inhibitor-associated TE is needed.
Collapse
Affiliation(s)
- Iris Y Sheng
- Department of Medicine, Beth Israel Lahey Mt. Auburn Hospital, Boston, MA, USA
| | - Shilpa Gupta
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, 10201 Carnegie Ave/CA 60, Cleveland, OH, 44106, USA
| | - Chandana A Reddy
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Dana Angelini
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, 10201 Carnegie Ave/CA 60, Cleveland, OH, 44106, USA
| | - Pauline Funchain
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, 10201 Carnegie Ave/CA 60, Cleveland, OH, 44106, USA
| | - Tamara A Sussman
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Joseph Sleiman
- Department of Gastroenterology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Moshe C Ornstein
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, 10201 Carnegie Ave/CA 60, Cleveland, OH, 44106, USA
| | - Keith McCrae
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, 10201 Carnegie Ave/CA 60, Cleveland, OH, 44106, USA
| | - Alok A Khorana
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, 10201 Carnegie Ave/CA 60, Cleveland, OH, 44106, USA.
| |
Collapse
|
47
|
Mackman N, Sachetto ATA, Hisada Y. Measurement of tissue factor-positive extracellular vesicles in plasma: strengths and weaknesses of current methods. Curr Opin Hematol 2022; 29:266-274. [PMID: 35852819 DOI: 10.1097/moh.0000000000000730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review evaluates the different methods used to measure levels of tissue factor (TF) in plasma and on extracellular vesicles (EVs). Levels of TF-positive (TF+) EVs in blood are increased in a variety of diseases, such as cancer, sepsis, and viral infection, and are associated with thrombosis. Highly sensitive assays are required to measure the low levels of TF+ EVs in blood. RECENT FINDINGS TF antigen levels in plasma have been measured using standard ELISAs, SimpleStep ELISA technology, and solid-phase proximity ligation assay. Some studies reported the detection of TF+ EVs in plasma by flow cytometry. In addition, TF+ EVs can be captured onto beads and chips using anti-TF antibodies. Several assays have been developed to measure TF activity in EVs isolated from plasma. Importantly, activity-based assays are more sensitive than antigen-based assays as a single TF/FVIIa complex can generate large amounts of FXa. SUMMARY We recommend isolating EVs from plasma and measuring TF activity using a functional assay in the presence and absence of an anti-TF antibody. We do not recommend using antigen-based assays as these are not sensitive enough to detect the low levels of TF in plasma.
Collapse
Affiliation(s)
- Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | | | |
Collapse
|
48
|
Abstract
Tissue factor (TF), an initiator of extrinsic coagulation pathway, is positively correlated with venous thromboembolism (VTE) of tumor patients. Beyond thrombosis, TF plays a vital role in tumor progression. TF is highly expressed in cancer tissues and circulating tumor cell (CTC), and activates factor VIIa (FVIIa), which increases tumor cells proliferation, angiogenesis, epithelial-mesenchymal transition (EMT) and cancer stem cells(CSCs) activity. Furthermore, TF and TF-positive microvesicles (TF+MVs) activate the coagulation system to promote the clots formation with non-tumor cell components (e.g., platelets, leukocytes, fibrin), which makes tumor cells adhere to clots to form CTC clusters. Then, tumor cells utilize clots to cause its reducing fluid shear stress (FSS), anoikis resistance, immune escape, adhesion, extravasation and colonization. Herein, we review in detail that how TF signaling promotes tumor metastasis, and how TF-targeted therapeutic strategies are being in the preclinical and clinical trials.
Collapse
|
49
|
Hisada Y, Sachetto ATA, Mackman N. Circulating tissue factor-positive extracellular vesicles and their association with thrombosis in different diseases. Immunol Rev 2022; 312:61-75. [PMID: 35708588 DOI: 10.1111/imr.13106] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022]
Abstract
Tissue factor (TF) is a procoagulant protein released from activated host cells, such as monocytes, and tumor cells on extracellular vesicles (EVs). TF + EVs are observed in the circulation of patients with various types of diseases. In this review, we will summarize the association between TF + EVs and activation of coagulation and survival in different types of diseases, including cancer, sepsis, and infections with different viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We will also discuss the source of TF + EVs in various diseases. EVTF activity is associated with thrombosis in pancreatic cancer patients and coronavirus disease 2019 patients (COVID-19) and with disseminated intravascular coagulation in cancer patients. EVTF activity is also associated with worse survival in patients with cancer and COVID-19. Monocytes are the major sources of TF + EVs in sepsis, and viral infections, such as HIV, Ebola virus, and SARS-CoV-2. In contrast, alveolar epithelial cells are the major source of TF + EVs in bronchoalveolar lavage fluid in COVID-19 and influenza A patients. These studies indicate that EVTF activity could be used as a biomarker to identify patients that have an increased risk of coagulopathy and mortality.
Collapse
Affiliation(s)
- Yohei Hisada
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ana Teresa Azevedo Sachetto
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
50
|
Henderson MW, Lima F, Moraes CRP, Ilich A, Huber SC, Barbosa MS, Santos I, Palma AC, Nunes TA, Ulaf RG, Ribeiro LC, Bernardes AF, Bombassaro B, Dertkigil SSJ, Moretti ML, Strickland S, Annichino-Bizzacchi JM, Orsi FA, Mansour E, Velloso LA, Key NS, De Paula EV. Contact and intrinsic coagulation pathways are activated and associated with adverse clinical outcomes in COVID-19. Blood Adv 2022; 6:3367-3377. [PMID: 35235941 PMCID: PMC8893951 DOI: 10.1182/bloodadvances.2021006620] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/19/2022] [Indexed: 12/27/2022] Open
Abstract
Coagulation activation is a prominent feature of severe acute respiratory syndrome coronavirus 2 (COVID-19) infection. Activation of the contact system and intrinsic pathway has increasingly been implicated in the prothrombotic state observed in both sterile and infectious inflammatory conditions. We therefore sought to assess activation of the contact system and intrinsic pathway in individuals with COVID-19 infection. Baseline plasma levels of protease:serpin complexes indicative of activation of the contact and intrinsic pathways were measured in samples from inpatients with COVID-19 and healthy individuals. Cleaved kininogen, a surrogate for bradykinin release, was measured by enzyme-linked immunosorbent assay, and extrinsic pathway activation was assessed by microvesicle tissue factor-mediated factor Xa (FXa; MVTF) generation. Samples were collected within 24 hours of COVID-19 diagnosis. Thirty patients with COVID-19 and 30 age- and sex-matched controls were enrolled. Contact system and intrinsic pathway activation in COVID-19 was demonstrated by increased plasma levels of FXIIa:C1 esterase inhibitor (C1), kallikrein:C1, FXIa:C1, FXIa:α1-antitrypsin, and FIXa:antithrombin (AT). MVTF levels were also increased in patients with COVID-19. Because FIXa:AT levels were associated with both contact/intrinsic pathway complexes and MVTF, activation of FIX likely occurs through both contact/intrinsic and extrinsic pathways. Among the protease:serpin complexes measured, FIXa:AT complexes were uniquely associated with clinical indices of disease severity, specifically total length of hospitalization, length of intensive care unit stay, and extent of lung computed tomography changes. We conclude that the contact/intrinsic pathway may contribute to the pathogenesis of the prothrombotic state in COVID-19. Larger prospective studies are required to confirm whether FIXa:AT complexes are a clinically useful biomarker of adverse clinical outcomes.
Collapse
Affiliation(s)
- Michael W. Henderson
- University of North Carolina (UNC) Blood Research Center, UNC at Chapel Hill, Chapel Hill, NC
| | - Franciele Lima
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Anton Ilich
- University of North Carolina (UNC) Blood Research Center, UNC at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, UNC at Chapel Hill, Chapel Hill, NC
| | | | - Mayck Silva Barbosa
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Andre C. Palma
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Thyago Alves Nunes
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Raisa Gusso Ulaf
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Luciana Costa Ribeiro
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Ana Flavia Bernardes
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Bruna Bombassaro
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Sergio San Juan Dertkigil
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Maria Luiza Moretti
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY; and
| | - Joyce M. Annichino-Bizzacchi
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
- Hematology and Hemotherapy Center, and
| | - Fernanda Andrade Orsi
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Eli Mansour
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Licio A. Velloso
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Nigel S. Key
- University of North Carolina (UNC) Blood Research Center, UNC at Chapel Hill, Chapel Hill, NC
- Division of Hematology, Department of Medicine, UNC at Chapel Hill, Chapel Hill, NC
- Department of Pathology and Laboratory Medicine, UNC at Chapel Hill, Chapel Hill, NC
| | - Erich Vinicius De Paula
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
- Hematology and Hemotherapy Center, and
| |
Collapse
|