1
|
Sun Y, Shen Y, Li X. Retracted article: Knockdown of long non-coding RNA AGAP2-AS1 suppresses the proliferation and metastasis of glioma by targeting microRNA-497-5p. Bioengineered 2024; 15:1995573. [PMID: 34709983 PMCID: PMC10802192 DOI: 10.1080/21655979.2021.1995573] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Yi Sun, Yulong Shen and Xing Li. Knockdown of long non-coding RNA AGAP2-AS1 suppresses the proliferation and metastasis of glioma by targeting microRNA-497-5p. Bioengineered. 2021 Oct. doi: 10.1080/21655979.2021.1995573.Since publication, significant concerns have been raised about the compliance with ethical policies for human research and the integrity of the data reported in the article.When approached for an explanation, the authors provided some original data but were not able to provide all the necessary supporting information. As verifying the validity of published work is core to the scholarly record's integrity, we are retracting the article. All authors listed in this publication have been informed.We have been informed in our decision-making by our editorial policies and the COPE guidelines. The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as 'Retracted.'
Collapse
Affiliation(s)
- Yi Sun
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Yulong Shen
- Department of Neurosurgery, Huaihua First People’s Hospital, Huaihua City, Hunan Province, China
| | - Xing Li
- Department of Neurosurgery, Taizhou First People’s Hospital, Taizhou City, Zhejiang Province, China
| |
Collapse
|
2
|
Peng Y, Long XD. The role of the ceRNA network mediated by lncRNA SNHG3 in the progression of cancer. Discov Oncol 2024; 15:514. [PMID: 39349640 PMCID: PMC11442963 DOI: 10.1007/s12672-024-01184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are a distinct class of RNAs with longer than 200 base pairs that are not translated into proteins. Small Nucleolar RNA Host Gene 3 (SNHG3) is a lncRNA and frequently dysregulated in various human cancers. OBJECTIVE This review provides a comprehensive analysis of current research on lncRNA SNHG3, focusing on its role within the competitive endogenous RNA (ceRNA) network and its implications in cancer. METHODS A systematic literature review was conducted using PubMed up to October 2023. The search strategy included keywords such as "lncRNA SNHG3", "competitive endogenous RNA", "cancer", and related terms. Studies were selected based on relevance to SNHG3's involvement in cancer pathogenesis and progression. RESULTS Disruptions in the ceRNA network involving lncRNA SNHG3 can impair normal cell growth and differentiation, significantly contributing to disease pathogenesis, particularly cancer. This review highlights SNHG3's substantial impact on various cancer processes and its potential as a diagnostic and therapeutic tool for aggressive cancers. CONCLUSION The findings underscore SNHG3's pivotal role in cancer prevention, diagnosis, and treatment, laying a foundation for future research in cancer management. Insights from this review emphasize the necessity for further exploration and development of SNHG3-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ying Peng
- Department of Pathology, the First Affiliated Hospital, Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China
| | - Xi-Dai Long
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China.
- Department of Tumor Pathology, Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Guangxi Zhuang Autonomous Region, Baise, 533000, China.
| |
Collapse
|
3
|
Guo J, Zhang J, Xiang Y, Zhou S, Yang Y, Zheng J. Long noncoding RNA SNHG3 interacts with microRNA-502-3p to mediate ITGA6 expression in liver hepatocellular carcinoma. Cancer Sci 2024; 115:2286-2300. [PMID: 38680094 PMCID: PMC11247603 DOI: 10.1111/cas.16190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
SNHG3, a long noncoding RNA (lncRNA), has been linked to poor outcomes in patients with liver hepatocellular carcinoma (LIHC). In this study, we found that SNHG3 was overexpressed in LIHC and associated with poor outcomes in patients with LIHC. Functional assays, including colony formation, spheroid formation, and in vivo assays showed that SNHG3 promoted stemness of cancer stem cells (CSC) and tumor growth in vivo by interacting with microRNA-502-3p (miR-502-3p). miR-502-3p inhibitor repressed the tumor-suppressing effects of SNHG3 depletion. Finally, by RNA pull-down, dual-luciferase reporter assay, m6A methylation level detection, and m6A-IP-qPCR assays, we found that miR-502-3p targeted YTHDF3 to regulate the translation of integrin alpha-6 (ITGA6) and targeted HBXIP to inhibit the m6A modification of ITGA6 through methyltransferase-like 3 (METTL3). Our study revealed that SNHG3 controls the YTHDF3/ITGA6 and HBXIP/METTL3/ITGA6 pathways by repressing miR-502-3p expression to sustain the self-renewal properties of CSC in LIHC.
Collapse
Affiliation(s)
- Juncheng Guo
- Postdoctoral Workstation, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Jianquan Zhang
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Yang Xiang
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Shuai Zhou
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Yijun Yang
- Department of Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Haikou, Hainan, China
| |
Collapse
|
4
|
Thapa R, Afzal O, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Altamimi ASA, Subramaniyan V, Thangavelu L, Singh SK, Dua K. Unveiling the connection: Long-chain non-coding RNAs and critical signaling pathways in breast cancer. Pathol Res Pract 2023; 249:154736. [PMID: 37579591 DOI: 10.1016/j.prp.2023.154736] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Breast cancer is a complex and diverse condition that disrupts multiple signaling pathways essential for cell proliferation, survival, and differentiation. Recently, the significant involvement of long-chain non-coding RNAs (lncRNAs) in controlling key signaling pathways associated with breast cancer development has been discovered. This review aims to explore the interaction between lncRNAs and various pathways, including the AKT/PI3K/mTOR, Wnt/β-catenin, Notch, DNA damage response, TGF-β, Hedgehog, and NF-κB signaling pathways, to gain a comprehensive understanding of their roles in breast cancer. The AKT/PI3K/mTOR pathway regulates cell growth, survival, and metabolic function. Recent data suggests that specific lncRNAs can influence the functioning of this pathway, acting as either oncogenes or tumor suppressors. Dysregulation of this pathway is commonly observed in breast cancer cases. Moreover, breast cancer development has been associated with other pathways such as Wnt/β-catenin, Notch, TGF-β, Hedgehog, and NF-κB. Emerging studies have identified lncRNAs that modulate breast cancer's growth, progression, and metastasis by interacting with these pathways. To advance the development of innovative diagnostic tools and targeted treatment options, it is crucial to comprehend the intricate relationship between lncRNAs and vital signaling pathways in breast cancer. By fully harnessing the therapeutic potential of lncRNAs, there is a possibility of developing more effective and personalized therapy choices for breast cancer patients. Further investigation is necessary to comprehensively understand the role of lncRNAs within breast cancer signaling pathways and fully exploit their therapeutic potential.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Vetriselvan Subramaniyan
- Department of Pharmacology, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Malaysia
| | - Lakshmi Thangavelu
- Center for Global Health Research , Saveetha Medical College , Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| |
Collapse
|
5
|
Huang H, Lu D, Li K, Zheng M, Qin X, Cui X, Chen Y, Chen C, Huang N, Zheng L, Zhao J, Zhu B. Hsa_circ_0007031 promotes the proliferation and migration of osteosarcoma cells by sponging miR-196a-5p to regulate the HOXB6. Biochem Pharmacol 2023:115667. [PMID: 37356630 DOI: 10.1016/j.bcp.2023.115667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Circular RNAs (circRNAs), a subclass of noncoding RNAs, have been demonstrated to play an essential role in osteosarcoma (OS) development. However, there is still a significant gap in investigating its biological functions and underlying molecular mechanisms, and novel targets of circRNAs have yet to be fully explored. Herein, we found that hsa_circ_0007031 is noticeably raised in OS clinical tissues and cell lines. Hsa-circ-0007031 accelerates OS cell proliferation and migration in vitro and tumor growth and metastasis in vivo and is strongly linked with the stemness of cancer stem cells in OS. Mechanistically, hsa_circ_0007031 shares miRNA response elements with Homeobox B6 (HOXB6), which is identified as a novel pro-tumorigenic gene of OS. Hsa_circ_0007031 competitively binds to miR-196a-5p to prevent miR-196a-5p from lowering the level of HOXB6, which modulates chemokines of cytokine-cytokine receptor interaction signaling pathway and finally promotes OS malignant behavior. In summary, our data unveiled that hsa_circ_0007031/miR-196a-5p/HOXB6 axis-mediated cytokine-cytokine receptor interaction facilitates the progression of OS and maintains the properties of tumor stem cells, which could be a promising therapeutic target for OS.
Collapse
Affiliation(s)
- Hanji Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China
| | - Dejie Lu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Kanglu Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Mingjun Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiong Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China; Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Xiaofei Cui
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ying Chen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China
| | - Chaotao Chen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Nanchang Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China; International Joint Laboratory of Ministry of Education for Regeneration of Bone and Soft Tissues, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; International Joint Laboratory of Ministry of Education for Regeneration of Bone and Soft Tissues, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Bo Zhu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
6
|
Chuang YT, Shiau JP, Tang JY, Farooqi AA, Chang FR, Tsai YH, Yen CY, Chang HW. Connection of Cancer Exosomal LncRNAs, Sponging miRNAs, and Exosomal Processing and Their Potential Modulation by Natural Products. Cancers (Basel) 2023; 15:cancers15082215. [PMID: 37190145 DOI: 10.3390/cancers15082215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Cancerous exosomes contain diverse biomolecules that regulate cancer progression. Modulating exosome biogenesis with clinical drugs has become an effective strategy for cancer therapy. Suppressing exosomal processing (assembly and secretion) may block exosomal function to reduce the proliferation of cancer cells. However, the information on natural products that modulate cancer exosomes lacks systemic organization, particularly for exosomal long noncoding RNAs (lncRNAs). There is a gap in the connection between exosomal lncRNAs and exosomal processing. This review introduces the database (LncTarD) to explore the potential of exosomal lncRNAs and their sponging miRNAs. The names of sponging miRNAs were transferred to the database (miRDB) for the target prediction of exosomal processing genes. Moreover, the impacts of lncRNAs, sponging miRNAs, and exosomal processing on the tumor microenvironment (TME) and natural-product-modulating anticancer effects were then retrieved and organized. This review sheds light on the functions of exosomal lncRNAs, sponging miRNAs, and exosomal processing in anticancer processes. It also provides future directions for the application of natural products when regulating cancerous exosomal lncRNAs.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
7
|
Fan L, Zhong Z, Lin Y, Li J. Non-coding RNAs as potential biomarkers in osteosarcoma. Front Genet 2022; 13:1028477. [PMID: 36338952 PMCID: PMC9627036 DOI: 10.3389/fgene.2022.1028477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Osteosarcoma (OS) is a primary solid malignant tumor that occurs most frequently in the metaphysis of long bones. More likely to happen to children and adolescents. OS has high mortality and disability rate. However, the etiology and pathogenesis of OS have not been fully understood till now. Due to the lack of effective biomarkers, OS cannot be precisely detected in the early stage. With the application of next-generation and high-throughput sequencing, more and more abnormally expressed non-coding RNAs(ncRNAs) have been identified in OS. Growing evidences have suggested the ncRNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), have played an important role in the tumorigenesis and progression of OS. Thus, they can be served as novel biomarkers for diagnosis, treatment and prognosis. This review summarized the application of ncRNA as biomarkers in OS in detail, and discussed the limitation and future improvement of the potential biomarkers.
Collapse
Affiliation(s)
- Lijuan Fan
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, Henan, China
- Luoyang Postgraduate Training Department, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhenhao Zhong
- Department of Spinal Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yubo Lin
- School of Clinical Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, Henan, China
- Luoyang Postgraduate Training Department, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First College for Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- *Correspondence: Jitian Li,
| |
Collapse
|
8
|
Hu K, Yu H, Liu S, Liao D, Zhang Y. Systematic pan-cancer analysis on the expression and role of regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene 12. Front Mol Biosci 2022; 9:946507. [PMID: 36148010 PMCID: PMC9486007 DOI: 10.3389/fmolb.2022.946507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Regulator of chromatin condensation 1 (RCC1) is the major guanine nucleotide exchange factor of RAN GTPase, which plays a key role in various biological processes such as cell cycle and DNA damage repair. Small nucleolar RNA host gene 3 (SNHG3) and small nucleolar RNA host gene12 are long-stranded non-coding RNAs (lncRNAs) and are located on chromatin very close to the sequence of Regulator of chromatin condensation 1. Many studies have shown that they are aberrantly expressed in tumor tissues and can affect the proliferation and viability of cancer cells. Although the effects of Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 on cellular activity have been reported, respectively, their overall analysis on the pan-cancer level has not been performed. Here, we performed a comprehensive analysis of Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 in 33 cancers through the Cancer Genome Atlas and Gene Expression Database. The results showed that Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 were highly expressed in a variety of tumor tissues compared to normal tissues. The expression of Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 in BRCA, LGG and LIHC was associated with TP53 mutations. In addition, Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 expression was closely associated with the prognosis of patients with multiple tumors. Immunocorrelation analysis indicated that Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 showed a correlation with multiple immune cell infiltration. The results of enrichment analysis suggested that Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 was involved in the regulation of cell cycle, apoptosis and other pathways. We found that these effects were mainly mediated by Regulator of chromatin condensation 1, while the trend of small nucleolar RNA host gene 3/small nucleolar RNA host gene12 regulation was also consistent with regulator of chromatin condensation 1. The important role played by Regulator of chromatin condensation 1 in tumor diseases was further corroborated by the study of adjacent lncRNAs.These findings provide new and comprehensive insights into the role of Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 in tumor development and show their potential as clinical monitoring and therapy.
Collapse
|
9
|
Shan DD, Zheng QX, Wang J, Chen Z. Small nucleolar RNA host gene 3 functions as a novel biomarker in liver cancer and other tumour progression. World J Gastroenterol 2022; 28:1641-1655. [PMID: 35581965 PMCID: PMC9048787 DOI: 10.3748/wjg.v28.i16.1641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer has become the most life-threatening disease in the world. Mutations in and aberrant expression of genes encoding proteins and mutations in noncoding RNAs, especially long noncoding RNAs (lncRNAs), have significant effects in human cancers. LncRNAs have no protein-coding ability but function extensively in numerous physiological and pathological processes. Small nucleolar RNA host gene 3 (SNHG3) is a novel lncRNA and has been reported to be differentially expressed in various tumors, such as liver cancer, gastric cancer, and glioma. However, the interaction mechanisms for the regulation between SNHG3 and tumor progression are poorly understood. In this review, we summarize the results of SNHG3 studies in humans, animal models, and cells to underline the expression and role of SNHG3 in cancer. SNHG3 expression is upregulated in most tumors and is detrimental to patient prognosis. SNHG3 expression in lung adenocarcinoma remains controversial. Concurrently, SNHG3 affects oncogenes and tumor suppressor genes through various mechanisms, including competing endogenous RNA effects. A deeper understanding of the contribution of SNHG3 in clinical applications and tumor development may provide a new target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dan-Dan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
10
|
Wang D, Zou L, Luo J, Zhang C, Feng H, Qin G. Potential diagnostic and prognostic value of the long non-coding RNA SNHG3 in human cancers: A systematic review and meta-analysis. Int J Biol Markers 2022; 37:3-12. [PMID: 35130083 DOI: 10.1177/03936155221077121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Small nucleolar RNA host gene 3 (SNHG3), as a novel long non-coding RNA (lncRNA) participates in the oncogenic processes of various cancers. We combined a systematic review and a meta-analysis to assess the potential role of SNHG3 as a pan-cancer marker for cancer diagnosis and prognosis. METHODS Our study comprehensively searched for SNHG3 expression profiling studies from PubMed, Web of Science, Excerpta Medica Database (EMBASE), Cochrane Library, Google Scholar, and The Cancer Genome Atlas (TCGA). The diagnostic capacity of SNHG3 for all cancers in TCGA database was evaluated from the perspective of pooled sensitivity, specificity, diagnostic odds ratio (DOR), area under the curve (AUC) of the summary receiver operating characteristic (sROC) curve. Also, this research studied the correlation of SNHG3 expression and the overall survival to access its prognostic value. RESULTS A sum total of 11,888 cancer patients and 730 controls from 44 eligible studies were enrolled in this integrated analysis. In TCGA database, SNHG3 was significantly upregulated in most types of cancers (16/33, 48%). The pooled sensitivity, specificity, and DOR with 95% CIs was 0.72 (95% CI: 0.60-0.82), 0.87 (95% CI: 0.84-0.90), and 18 (95% CI: 11-30), respectively. Similarly, the AUC of the sROC curve was 0.89 (95% CI: 0.86-0.92), indicating SNHG3 was highly conserved as a diagnosis biomarker. Additionally, SNHG3 overexpression significantly deteriorated the overall survival of cancer patients (pooled HR = 1.28, 95% CI:1.11-1.48; P < 0.05). CONCLUSIONS These findings suggest that the lncRNA SNHG3 could serve as a promising diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Dingting Wang
- Department of Otolaryngology Head and Neck Surgery, 556508Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Longfei Zou
- Department of Orthopedic Surgery, 556508Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Luo
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yibin, Yibin, China
| | - Conghong Zhang
- Department of Otolaryngology Head and Neck Surgery, Sichuan Province Panzhihua Central Hospital, Panzhihua, China * These authors contributed equally to this work
| | - Huajun Feng
- Department of Otolaryngology Head and Neck Surgery, 556508Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, 556508Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Gu H, Zhong Y, Liu J, Shen Q, Wei R, Zhu H, Zhang X, Xia X, Yao M, Ni M. The Role of miR-4256/HOXC8 Signaling Axis in the Gastric Cancer Progression: Evidence From lncRNA-miRNA-mRNA Network Analysis. Front Oncol 2022; 11:793678. [PMID: 35111675 PMCID: PMC8801578 DOI: 10.3389/fonc.2021.793678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a deadly human malignancy and the molecular mechanisms underlying gastric cancer pathophysiology are very complicated. Thus, further investigations are warranted to decipher the underlying molecular mechanisms. With the development of high-throughput screening and bioinformatics, gene expression profiles with large scale have been performed in gastric cancer. In the present study, we mined The Cancer Genome Atlas (TCGA) database and analyzed the gene expression profiles between gastric cancer tissues and normal gastric tissues. A series of differentially expressed lncRNAs, miRNAs and mRNAs between gastric cancer tissues and normal gastric tissues were identified. Based on the differentially expressed genes, we constructed miRNA-mRNA network, lncRNA-mRNA network and transcriptional factors-mRNA-miRNA-lncRNA network. Furthermore, the Kaplan survival analysis showed that high expression levels of EVX1, GBX2, GCM1, HOXC8, HOXC9, HOXC10, HOXC11, HOXC12 and HOXC13 were all significantly correlated with shorter overall survival of the patients with gastric cancer. On the other hand, low expression level of HOXA13 was associated with shorter overall survival of patients with gastric cancer. Among these hub genes, we performed the in vitro functional studies of HOXC8 in the gastric cancer cells. Knockdown of HOXC8 and overexpression of miR-4256 both significantly repressed the gastric cancer cell proliferation and migration, and miR-4256 repressed the expression of HOXC8 via targeting its 3' untranslated region in gastric cancer cells. Collectively, our results revealed that a complex interaction networks of differentially expressed genes in gastric cancer, and further functional studies indicated that miR-4256/HOXC8 may be an important axis in regulating gastric cancer progression.
Collapse
Affiliation(s)
- Haijuan Gu
- Department of Pharmacy, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Yuejiao Zhong
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jibin Liu
- Institute of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Qian Shen
- Department of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Rong Wei
- Department of Pharmacy, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Haixia Zhu
- Clinical Laboratory, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Xunlei Zhang
- Department of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Xianxian Xia
- Department of Pharmacy, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Min Yao
- Department of Pharmacy, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Meixin Ni
- Department of Pharmacy, Tumor Hospital Affiliated to Nantong University, Nantong, China
| |
Collapse
|
12
|
Xi X, Hu Z, Wu Q, Hu K, Cao Z, Zhou J, Liao J, Zhang Z, Hu Y, Zhong X, Bao Y. High expression of small nucleolar RNA host gene 3 predicts poor prognosis and promotes bone metastasis in prostate cancer by activating transforming growth factor-beta signaling. Bioengineered 2022; 13:1895-1907. [PMID: 35030969 PMCID: PMC8805939 DOI: 10.1080/21655979.2021.2020393] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bone metastasis is closely related to tumor death in prostate cancer (PC). Long noncoding RNA small nucleolar RNA host gene 3 (SNHG3) has been implicated in the initiation and progression of multiple human cancers. Nevertheless, the biological function of SNHG3 in PC has not been elucidated. Our results indicated that SNHG3 was upregulated in bone metastasis-positive PC tissues compared to bone metastasis-negative PC tissues and adjacent normal tissues. High expression of SNHG3 indicates advanced clinicopathological features and predicts poor prognosis in patients with PC. Meanwhile, SNHG3 knockdown suppressed the proliferation, migration, and invasion abilities of PC cells and inhibited PC cell metastasis to the bone. Mechanistically, SNHG3 enhanced the expression of transforming growth factor beta receptor 1 (TGFBR1) and activated transforming growth factor-Beta (TGF-β) signaling by targeting miR-214-3p. Our study demonstrated the novel role of the SNHG3/miR-214-3p/TGF-β axis in tumor growth and bone metastasis in PC, indicating that SNHG3 may act as a biomarker and promising therapeutic target against PC.
Collapse
Affiliation(s)
- Xinhua Xi
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Zhengbo Hu
- Department of Orthopedics, Shaoguan First People's Hospital Affiliated Southern Medical University, Shaoguan, Guangdong, China
| | - Qiang Wu
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Konghe Hu
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Zhengguo Cao
- Department of Urology, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Jun Zhou
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Junjian Liao
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Zhipeng Zhang
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Yongyu Hu
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Xueren Zhong
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Yongzheng Bao
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| |
Collapse
|
13
|
Guo X, Zheng J, Yu MJ, Piao HZ, Zhao HY. Long noncoding RNA SNHG3 promotes glioma tumorigenesis by sponging miR-485-5p to upregulate LMX1B expression. Kaohsiung J Med Sci 2021; 37:851-862. [PMID: 34153159 DOI: 10.1002/kjm2.12411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/07/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
LIM homeobox transcription factor 1-beta (LMX1B) has recently been found to be highly expressed in advanced gliomas and is associated with poor survival. However, the regulatory molecular mechanism of LMX1B expression in gliomas remains unclear. In this study, bioinformatics analysis showed that miR-485-5p may be the potential upstream regulator of LMX1B, and long noncoding RNA (lncRNA) small nucleolar RNA host gene 3 (SNHG3) may function as a competitive endogenous RNA to sponge miR-485-5p. In addition, the expression of SNHG3 and LMX1B in advanced glioma tissues was significantly upregulated, while the expression of miR-485-5p was significantly downregulated. SNHG3 overexpression reduced the expression of miR-485-5p; increased the expression of LMX1B; and promoted the proliferation, migration, and invasion of glioma cells. In contrast, miR-485-5p overexpression reduced the expression of LMX1B and inhibited cell proliferation, migration, and invasion. The luciferase reporter assay and RNA immunoprecipitation assay further confirmed the interaction between SNHG3 and miR-485-5p and between miR-485-5p and LMX1B. In addition, subcutaneous and orthotropic xenograft models confirmed that lncRNA SNHG3 silencing or miR-485-5p overexpression significantly reduced the growth of glioma xenografts and prolonged survival time. These results indicate that lncRNA SNHG3 can regulate the expression of LMX1B by sponging miR-485-5p, thereby promoting the proliferation, migration, and invasion of glioma cells. This study provides the first evidence that the SNHG3/miR-485-5p/LMX1B axis is involved in glioma tumorigenesis and highlights the potential of SNHG3 and miR-485-5p as therapeutic targets for glioma.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming-Jun Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao-Zhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Hong-Yu Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Zhang GZ, Wu ZL, Li CY, Ren EH, Yuan WH, Deng YJ, Xie QQ. Development of a Machine Learning-Based Autophagy-Related lncRNA Signature to Improve Prognosis Prediction in Osteosarcoma Patients. Front Mol Biosci 2021; 8:615084. [PMID: 34095215 PMCID: PMC8176230 DOI: 10.3389/fmolb.2021.615084] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background Osteosarcoma is a frequent bone malignancy in children and young adults. Despite the availability of some prognostic biomarkers, most of them fail to accurately predict prognosis in osteosarcoma patients. In this study, we used bioinformatics tools and machine learning algorithms to establish an autophagy-related long non-coding RNA (lncRNA) signature to predict the prognosis of osteosarcoma patients. Methods We obtained expression and clinical data from osteosarcoma patients in the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. We acquired an autophagy gene list from the Human Autophagy Database (HADb) and identified autophagy-related lncRNAs by co-expression analyses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the autophagy-related lncRNAs were conducted. Univariate and multivariate Cox regression analyses were performed to assess the prognostic value of the autophagy-related lncRNA signature and validate the relationship between the signature and osteosarcoma patient survival in an independent cohort. We also investigated the relationship between the signature and immune cell infiltration. Results We initially identified 69 autophagy-related lncRNAs, 13 of which were significant predictors of overall survival in osteosarcoma patients. Kaplan-Meier analyses revealed that the 13 autophagy-related lncRNAs could stratify patients based on their outcomes. Receiver operating characteristic curve analyses confirmed the superior prognostic value of the lncRNA signature compared to clinically used prognostic biomarkers. Importantly, the autophagy-related lncRNA signature predicted patient prognosis independently of clinicopathological characteristics. Furthermore, we found that the expression levels of the autophagy-related lncRNA signature were significantly associated with the infiltration levels of different immune cell subsets, including T cells, NK cells, and dendritic cells. Conclusion The autophagy-related lncRNA signature established here is an independent and robust predictor of osteosarcoma patient survival. Our findings also suggest that the expression of these 13 autophagy-related lncRNAs may promote osteosarcoma progression by regulating immune cell infiltration in the tumor microenvironment.
Collapse
Affiliation(s)
- Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,Lintao County Traditional Chinese Medicine Hospital of Gansu Province, Lintao, China
| | - Zuo-Long Wu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Chun-Ying Li
- The Fourth People's Hospital of Qinghai Province, Xining, China
| | - En-Hui Ren
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,Department of Orthopaedics, Xining First People's Hospital, Xining, China
| | - Wen-Hua Yuan
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Ya-Jun Deng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Qi-Qi Xie
- Affiliated Hospital of Qinghai University, Xining, China.,Affiliated Cancer Hospital of Qinghai University, Xining, China.,Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| |
Collapse
|
15
|
Overexpression of lncRNA SNGH3 Predicts Unfavorable Prognosis and Clinical Outcomes in Human Cancers: Evidence from a Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2020:7974034. [PMID: 32802874 PMCID: PMC7335396 DOI: 10.1155/2020/7974034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been confirmed to play a crucial role in human disease, especially in tumor development and progression. Small nucleolar RNA host gene (SNHG3), a newly identified lncRNA, has been found dysregulated in various cancers. Nevertheless, the results remain controversial. Thus, we aim to analyze the comprehensive data to elaborate the association between SNHG3 expression and clinical outcomes in multiple cancers. We searched PubMed, Web of Science, Cochrane Library, Embase, and MEDLINE database to identify eligible articles. STATA software was applied to calculate the hazard ratio (HR) and odds ratio (OR) with 95% confidence interval (95% CI) for survival outcomes and clinical parameters, respectively. Besides, the data from The Cancer Genome Atlas (TCGA) dataset was extracted to verify the results in our meta-analysis. There were thirteen studies totaling 919 cancer patients involved in this meta-analysis. The results demonstrated that high SNHG3 expression was significantly associated with poor overall survival (OS) (HR = 2.53, 95% CI: 1.94-3.31) in cancers, disease-free survival (DFS) (HR = 3.89, 95% CI: 1.34-11.3), and recurrence-free survival (RFS) (HR = 2.42, 95% CI: 1.14-5.15) in hepatocellular carcinoma. Analysis stratified by analysis method, sample size, follow-up time, and cancer type further verified the prognostic value of SNHG3. Additionally, patients with high SNHG3 expression tended to have more advanced clinical stage, higher histological grade, earlier distant metastasis, and earlier lymph node metastasis. Excavation of TCGA dataset valuated that SNHG3 was upregulated in various cancers and predicted worse OS and DFS. Overexpressed SNHG3 was strongly associated with poor survival and clinical outcomes in human cancers and therefore can serve as a promising biomarker for predicting patients' prognosis.
Collapse
|
16
|
Wang Y, Zhou B, Yan L, Wu J, Xing Z, Zhang S, Xiang F. lncRNA NORAD promotes the progression of osteosarcoma via targeting of miR-155-5p. Exp Ther Med 2021; 21:645. [PMID: 33968176 PMCID: PMC8097224 DOI: 10.3892/etm.2021.10077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in teens. Non-coding RNA activated by DNA damage (NORAD), a long non-coding RNA (lncRNA), has been reported to be involved in cancer biology, although its role in OS remains largely unknown. In the present study reverse transcription-quantitative PCR (RT-qPCR) was used to determine the expression levels of NORAD and miR-155-5p in samples from patients with OS. OS cell lines (Saos-2 and U2OS) were used as cell models. The biological influence of NORAD on OS cells was studied in vitro using Cell Counting Kit-8 and Transwell assays. The interaction between NORAD and miR-155-5p was clarified by bioinformatics analysis, RT-qPCR, luciferase reporter assay and RNA immunoprecipitation. NORAD was significantly increased in OS samples in comparison with controls, while miR-155-5p was reduced. Knockdown of NORAD and transfection of miR-155-5p mimics markedly inhibited the viability, migration and invasion of OS cells. There was a negative correlation between NORAD and miR-155-5p expression levels in OS samples. Taken together, the results of the present study indicated that the NORAD/miR-155-5p axis played a crucial role in regulating the proliferation, migration and invasion of OS cells. It is hypothesized that NORAD and miR-155-5p may serve as potential novel therapeutic targets for OS management.
Collapse
Affiliation(s)
- Ye Wang
- Department of Orthopedics, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Bin Zhou
- Department of Orthopedics, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Liping Yan
- Department of Orthopedics, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Jianhui Wu
- Department of Orthopedics, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Zhijie Xing
- Department of Orthopedics, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Shaochun Zhang
- Department of Orthopedics, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Fusheng Xiang
- Department of Orthopedics, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| |
Collapse
|
17
|
Yue J, Wu Y, Qiu L, Zhao R, Jiang M, Zhang H. LncRNAs link cancer stemness to therapy resistance. Am J Cancer Res 2021; 11:1051-1068. [PMID: 33948345 PMCID: PMC8085841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023] Open
Abstract
Cancer stem cells (CSCs) are a cellular subpopulation accelerating cancer cell growth, invasion and metastasis and survival. After chemoradiotherapy, CSCs are enriched because of their survival advantages and lead to tumor relapse and metastasis. Elimination of CSCs is critically important for the radical treatment of human cancers. Long non-coding RNAs (lncRNAs) are a group of RNAs longer than 200 nucleotides and have no protein-coding potential. Aberrant expressions of lncRNAs are associated with human diseases including cancer. LncRNAs function as cancer biomarkers, prognostic factors and therapeutic targets. They induce cancer stemness by chromatin modification, transcriptional regulation or post-transcriptional regulation of target genes as a sponge or through assembling a scaffold complex. Several factors caused aberrant expressions of lncRNAs in CSCs such as genes mutations, epigenetic alteration and environmental stimuli. Targeting of lncRNAs has been demonstrated to significantly reverse the chemoradioresistance of CSCs. In this review, we have summarized the progress of studies regarding lncRNAs-mediated therapy resistance of CSCs and clarified the molecular mechanisms. Furthermore, we have for the first time analyzed the influences of lncRNAs on cell metabolism and emphasized the effect of tumor microenvironment on lncRNAs functions in CSCs. Overall, the thorough understanding of the association of lncRNAs and CSCs would contribute to the reversal of therapy resistance.
Collapse
Affiliation(s)
- Jing Yue
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of MedicineHangzhou 310002, China
| | - Yueguang Wu
- Department of Surgical Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of MedicineHangzhou 310002, China
| | - Liqing Qiu
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of MedicineHangzhou 310002, China
| | - Ruping Zhao
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of MedicineHangzhou 310002, China
| | - Mingfeng Jiang
- Department of Clinical Laboratory, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of MedicineHangzhou 310002, China
| | - Hongfang Zhang
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of MedicineHangzhou 310002, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of MedicineHangzhou 310006, China
| |
Collapse
|
18
|
Wang Z, Liu Q, Huang P, Cai G. miR-299-3p suppresses cell progression and induces apoptosis by downregulating PAX3 in gastric cancer. Open Life Sci 2021; 16:266-276. [PMID: 33817318 PMCID: PMC8005920 DOI: 10.1515/biol-2021-0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is ranked the fourth leading cause of cancer-related death, with an over 75% mortality rate worldwide. In recent years, miR-299-3p has been identified as a biomarker in multiple cancers, such as acute promyelocytic leukemia, thyroid cancer, and lung cancer. However, the regulatory mechanism of miR-299-3p in GC cell progression is still largely unclear. Cell viability and apoptosis tests were performed by CCK8 and flow cytometry assay, respectively. Transwell assay was recruited to examine cell invasion ability. The interaction between miR-299-3p and PAX3 was determined by the luciferase reporter system. PAX3 protein level was evaluated by western blot assay. The expression of miR-299-3p was downregulated in GC tissues and cell lines (MKN-45, AGS, and MGC-803) compared with the normal tissues and cells. Besides, overexpression of miR-299-3p significantly suppressed proliferation and invasion and promoted apoptosis in GC. Next, we clarified that PAX3 expression was regulated by miR-299-3p using a luciferase reporter system, qRT-PCR, and western blot assay. Additionally, downregulation of PAX3 repressed GC cell progression. The rescue experiments indicated that restoration of PAX3 inversed miR-299-3p-mediated inhibition on cell proliferation and invasion. miR-299-3p suppresses cell proliferation and invasion as well as induces apoptosis by regulating PAX3 expression in GC, representing desirable biomarkers for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Zhenfen Wang
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| | - Qing Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| | - Ping Huang
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| | - Guohao Cai
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| |
Collapse
|
19
|
Yan J, Fang T, Zhang M, Zhou Q. LINC00467 facilitates osteosarcoma progression by sponging miR‑217 to regulate KPNA4 expression. Int J Mol Med 2021; 47:26. [PMID: 33537823 PMCID: PMC7895521 DOI: 10.3892/ijmm.2021.4859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS) is a musculoskeletal malignancy that originates from interstitial cells. An increasing number of studies have verified that long non-coding RNAs (lncRNAs) participate in the progression of numerous types of cancer. It has been reported that LINC00467 is a cancer-promoting gene in some types of cancer; however, the regulatory mechanism of LINC00467 in OS remains unknown. In the present study, reverse transcription-quantitative PCR was used to determine LINC00467 expression in OS tissues and cells. Additionally, the impact of LINC00467-knockdown on OS cell proliferation, migration and invasion was analyzed using Cell Counting Kit-8, colony formation and Transwell assays, as well as western blot analysis. RNA pulldown and luciferase reporter assays were conducted to investigate the regulatory mechanism of LINC00467 in OS. The results delineated that LINC00467 expression was elevated in OS tissues and cells, and that high LINC00467 expression was associated with a poor prognosis in patients with OS. LINC00467 inhibition suppressed OS progression by inhibiting cell proliferation, migration, invasion and epithelial-mesenchymal transition. LINC00467 served as a molecular sponge for microRNA (miR)-217, while karyopherin subunit α4 (KPNA4) was a downstream target gene of miR-217. Moreover, the overexpression of KPNA4 reversed the inhibitory effects of LINC00467 inhibition on OS progression. Therefore, the present study elucidated the potential mechanism of LINC00467 in OS and indicated that LINC00467 exerted its carcinogenic effects on OS through the miR-217/KPNA4 axis, implying that LINC00467 may be a novel potential therapeutic target for OS.
Collapse
Affiliation(s)
- Jing Yan
- Department of Orthopaedics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, Jiangsu 223002, P.R. China
| | - Tao Fang
- Department of Orthopaedics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, Jiangsu 223002, P.R. China
| | - Ming Zhang
- Department of Orthopaedics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, Jiangsu 223002, P.R. China
| | - Quan Zhou
- Department of Orthopaedics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, Jiangsu 223002, P.R. China
| |
Collapse
|
20
|
Zhao S, Gao X, Zhong C, Li Y, Wang M, Zang S. SNHG3 Knockdown Suppresses Proliferation, Migration and Invasion, and Promotes Apoptosis in Non-Small Cell Lung Cancer Through Regulating miR-216a/ZEB1 Axis. Onco Targets Ther 2020; 13:11327-11336. [PMID: 33177840 PMCID: PMC7649239 DOI: 10.2147/ott.s263637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 01/14/2023] Open
Abstract
Background Tumour growth and development are dependent on many factors including long noncoding RNAs (lncRNAs). However, limited information is available on the involvement of lncRNAs in non-small cell lung cancer (NSCLC) and the molecular mechanisms have not been defined. Here, we examined the expression of small nucleolar RNA host gene 3 (SNHG3) and its contribution to the development of NSCLC. Methods We detected SNHG3, miR-216a, and ZEB1 expression in tissues from NSCLC patients and lung adenocarcinoma cell lines using quantitative real-time polymerase chain reaction. Proliferation, migrations, invasion, and apoptosis of tumour cells were assessed using cell counting kit-8, transwell experiments, and flow cytometry after SNHG3 knockdown by small interfering RNAs. Bioinformatics and luciferase reporter assays were employed for analysing the interactions between SNHG3, miR-216a, and ZEB1. Results We found highly upregulated SNHG3 in tissues and cells from NSCLC patients, which was linked to poor prognosis. SNHG3 silencing diminished the ability of NSCLC cells to proliferate, migrate, and invade and promoted apoptosis. Furthermore, SNHG3 competed with endogenous RNA and enhanced the expression of ZEB1 by interfering with miR-216a. ZEB1 overexpression or miR-216a blockade reversed SNHG3-induced tumour inhibition. Similar effects were observed in vivo where SNHG3 knockdown inhibited NSCLC tumour growth by reducing expression of miR-216a while increasing that of ZEB1. Conclusion Knockdown of SNHG3 inhibits NSCLC tumour development and progression by upregulation of ZEB1 and interference with miR-216a, revealing an attractive alternative target for patients with NSCLC.
Collapse
Affiliation(s)
- Shasha Zhao
- Department of Respiratory Medicine, The First Hospital Affiliated to the Xinxiang Medical College, Weihui, Henan 453100, People's Republic of China
| | - Xinyuan Gao
- Department of Respiratory Medicine, The First Hospital Affiliated to the Xinxiang Medical College, Weihui, Henan 453100, People's Republic of China
| | - Chunlei Zhong
- Department of Respiratory Medicine, The First Hospital Affiliated to the Xinxiang Medical College, Weihui, Henan 453100, People's Republic of China
| | - Yunxia Li
- Department of Respiratory Medicine, The First Hospital Affiliated to the Xinxiang Medical College, Weihui, Henan 453100, People's Republic of China
| | - Ming Wang
- Department of Respiratory Medicine, The First Hospital Affiliated to the Xinxiang Medical College, Weihui, Henan 453100, People's Republic of China
| | - Shuzhi Zang
- Department of Respiratory Medicine, The First Hospital Affiliated to the Xinxiang Medical College, Weihui, Henan 453100, People's Republic of China
| |
Collapse
|
21
|
Xu B, Mei J, Ji W, Bian Z, Jiao J, Sun J, Shao J. LncRNA SNHG3, a potential oncogene in human cancers. Cancer Cell Int 2020; 20:536. [PMID: 33292213 PMCID: PMC7640707 DOI: 10.1186/s12935-020-01608-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are composed of > 200 nucleotides; they lack the ability to encode proteins but play important roles in a variety of human tumors. A large number of studies have shown that dysregulated expression of lncRNAs is related to tumor oncogenesis and progression. Emerging evidence shows that SNHG3 is a novel oncogenic lncRNA that is abnormally expressed in various tumors, including osteosarcoma, liver cancer, lung cancer, etc. SNHG3 primarily competes as a competitive endogenous RNA (ceRNA) that targets tumor suppressor microRNAs (miRNAs) and ceRNA mechanisms that regulate biological processes of tumors. In addition, abnormal expression of SNHG3 is significantly correlated with patient clinical features. Upregulation of SNHG3 contributes to biological functions, including tumor cell proliferation, migration, invasion and EMT. Therefore, SNHG3 may represent a potential diagnostic and prognostic biomarker, as well as a novel therapeutic target.
Collapse
Affiliation(s)
- Bin Xu
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, P. R. China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Jun Sun
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China.
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
22
|
MiR-196: emerging of a new potential therapeutic target and biomarker in colorectal cancer. Mol Biol Rep 2020; 47:9913-9920. [PMID: 33130965 DOI: 10.1007/s11033-020-05949-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Deregulation of microRNAs, as key elements in colorectal cancer (CRC) pathogenesis, is correlated with various stages of this cancer. miR-196 is involved in the initiation and progression of a verity of malignances, especially CRC. miR-196 in CRC cells could target different types of genes with oncogenic and/or tumor suppressor function such as HOX genes, GATA6, SOCS1, SOCS3, ANXA1, DFFA, PDCD4, ZG16 and ING5. Therefore, these genes could be up or down-regulated in cells and subsequently change the capacity of CRC cells in terms of tumor development, progression and, response to therapy. Comprehension of miR-196-associated aberrations underlying the CRC pathogenesis might introduce promising targets for therapy. Additionally, it seems that miR-196 expression profiling, especially circulatory exosomal miR-196, might be useful for diagnosis and prognosis determination of the CRC patients. In this review, at first, we summarize the roles of miR-196 in different types of cancers. After that, a detailed discussion about this miRNA and also their targets in CRC pathogenesis, progression, and response to treatment are represented. Moreover, we highlight the potential utilization of miR-196 and its targets as therapeutic targets and novel biomarkers in early detection and prediction of prognosis in CRC patients.
Collapse
|
23
|
Liu EL, Zhou YX, Li J, Zhang DH, Liang F. Long-Chain Non-Coding RNA SNHG3 Promotes the Growth of Ovarian Cancer Cells by Targeting miR-339-5p/TRPC3 Axis. Onco Targets Ther 2020; 13:10959-10971. [PMID: 33149611 PMCID: PMC7604867 DOI: 10.2147/ott.s249873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Background Long-chain non-coding RNA (lncRNA) small nucleolar RNA host gene 3 (SNHG3) is reportedly overexpressed in malignant tumors, but its regulatory role in human ovarian cancer (OC) is not fully understood. Methods A qRT-PCR assay was carried out to detect the level of SNHG3 in OC tissues, serum and cells, a CCK-8 assay to measure the proliferation of OC cells, a transwell assay to measure the invasion and migration of OC cells, and a flow cytometry to detect the cell cycle distribution and apoptosis rate of OC cells. In addition, in vivo experiment was also conducted to determine the effect of SNHG3 on the growth of OC cells. Results SNHG3 was overexpressed in OC tissues, serum, and cells, and the overexpression in serum indicated a poor prognosis of patients. It was also found that knockdown of SNHG3 could inhibit the malignant phenotypes of OC cells, cause G1/G0 cell cycle arrest, and intensify apoptosis. Furthermore, in in vitro experiments, the growth ability of OC cells was inhibited under knockdown of SNHG3. Assays for relationship verification showed that SNHG3 regulated the expression of miR-339-5p and the canonical transient receptor potential 3 (TRPC3), and the rescue experiment revealed that co-transfection of si-SNHG3+miR-339-5p-inhibitor or si-SNHG3+pcDNA3.1-TRPC3 could reverse the effects of knockdown of SNHG3 on the biological behavior of OC cells. Conclusion SNHG3 can be adopted as a marker for diagnosis and prognosis evaluation of OC and it plays a role in the progression of OC by enabling the miR-339-5p sponge to regulate TRPC3 expression.
Collapse
Affiliation(s)
- En-Ling Liu
- The Department of Obstetrics and Gynecology, Tangshan Gongren Hospital Affiliated to Hebei Medical University, Tangshan, Hebei Province, People's Republic of China
| | - Yu-Xiu Zhou
- The Department of Immunology, Tangshan Gongren Hospital Affiliated to Hebei Medical University, Tangshan, Hebei Province, People's Republic of China
| | - Jun Li
- The Department of Obstetrics and Gynecology, Tangshan Gongren Hospital Affiliated to Hebei Medical University, Tangshan, Hebei Province, People's Republic of China
| | - Dong-Hong Zhang
- The Department of Obstetrics and Gynecology, Tangshan Gongren Hospital Affiliated to Hebei Medical University, Tangshan, Hebei Province, People's Republic of China
| | - Feng Liang
- The Department of Obstetrics and Gynecology, Tangshan Gongren Hospital Affiliated to Hebei Medical University, Tangshan, Hebei Province, People's Republic of China
| |
Collapse
|
24
|
Deng Y, Yuan W, Ren E, Wu Z, Zhang G, Xie Q. A four-methylated LncRNA signature predicts survival of osteosarcoma patients based on machine learning. Genomics 2020; 113:785-794. [PMID: 33069828 DOI: 10.1016/j.ygeno.2020.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022]
Abstract
Risk stratification using prognostic markers facilitates clinical decision-making in treatment of osteosarcoma (OS). In this study, we performed a comprehensive analysis of DNA methylation and transcriptome data from OS patients to establish an optimal methylated lncRNA signature for determining OS patient prognosis. The original OS datasets were downloaded from the the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Univariate, Lasso, and machine learning algorithm-iterative Lasso Cox regression analyses were used to establish a methylated lncRNA signature that significantly correlated with OS patient survival. The validity of this signature was verified by the Kaplan-Meier curves, Receiver Operating Characteristic (ROC) curves. We established a four-methylated lncRNA signature that can predict OS patient survival (verified in independent cohort [GSE39055]). Kaplan-Meier analysis showed that the signature can distinguish between the survival of high- and low-risk patients. ROC analysis corroborated this finding and revealed that the signature had higher prediction accuracy than known biomarkers. Kaplan-Meier analysis of the clinical subgroup showed that the signature's prognostic ability was independent of clinicopathological factors. The four-methylated lncRNA signature is an independent prognostic biomarker of OS.
Collapse
Affiliation(s)
- Yajun Deng
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Wenhua Yuan
- Department of Orthopedics, Xichang People's Hospital, Xichang, Sichuan 615000, P.R. China
| | - Enhui Ren
- Department of Orthopaedics, Lanzhou University Second Hospital, 730000 Lanzhou, P.R. China
| | - Zuolong Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, 730000 Lanzhou, P.R. China
| | - Guangzhi Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, 730000 Lanzhou, P.R. China
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai 810000, P.R. China.
| |
Collapse
|
25
|
Sun B, Han Y, Cai H, Huang H, Xuan Y. Long non-coding RNA SNHG3, induced by IL-6/STAT3 transactivation, promotes stem cell-like properties of gastric cancer cells by regulating the miR-3619-5p/ARL2 axis. Cell Oncol (Dordr) 2020; 44:179-192. [PMID: 32930970 DOI: 10.1007/s13402-020-00560-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chemotherapy is, next to surgery and radiotherapy, the mainstay regimen for the clinical management of gastric cancer. This therapy is, however, heavily compromised by the acquisition of resistance. Here, we aimed to clarify the potential involvement of long non-coding RNA SNGH3 in the acquisition of cisplatin resistance and stemness in gastric cancer. METHODS Cell viability and proliferation were measured using Cell Counting Kit-8 and colony formation assays, respectively. Stem cell-like cell growth was evaluated using a mammosphere formation assay. RNA levels of SNHG2, OCT-4, SOX-2, CD44, miR-3619-5p and ARL2 were determined using qRT-PCR, whereas protein levels of OCT-4, SOX-2, CD44, ARL2, STAT3 and pSTAT3 were determined using Western blotting. Dual luciferase reporter assays were employed to interrogate regulatory interactions between STAT3, SNHG3, miR-3619-5p and ARL2, respectively. Direct binding of STAT3 to the SNHG3 promoter was investigated using a chromatin immunoprecipitation assay. RESULTS We found that IL-6 triggered stem cell-like properties in cisplatin-treated gastric cancer cells and activated STAT3, which in turn transcriptionally regulated SNHG3 expression. SNHG3 expression up-regulation positively correlated with cisplatin resistance and stemness of gastric cancer cells, while SNHG3 down-regulation inhibited stem cell-like properties. In addition, we found that SNHG3 up-regulated ARL2 expression through sponging miR-3619-5p, which predominantly mediated the oncogenic properties of SNHG3 in this disease. CONCLUSIONS Our data indicate an involvement of aberrant SNHG3 over-expression in the acquisition of both cisplatin resistance and stemness of gastric cancer cells, and of the IL-6/STAT3/SNHG3/miR-3619-5p/ARL2 signaling cascade in the oncogenic properties of SNHG3.
Collapse
Affiliation(s)
- Bo Sun
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Yang Han
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Hong Cai
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Hua Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Yi Xuan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
26
|
Zhang X, Zheng W, Jiang W, Lin R, Xing C. Long non-coding RNA SNHG3 accelerates progression in glioma by modulating miR-384/HDGF axis. Open Life Sci 2020; 15:654-664. [PMID: 33817254 PMCID: PMC7747505 DOI: 10.1515/biol-2020-0066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Glioma is a malignant primary brain tumor that occurs in the central nervous system and has threatened the well-being of millions of patients. It is well acknowledged that long non-coding RNA (lncRNA) SNHG3 participates in the regulation of proliferation, inflation, differentiation, and metastasis in many cancers. However, the regulatory effect of SNHG3 on glioma progression is still controversial. The expression of SNHG3 and HDGF was upregulated, whereas miR-384 was downregulated in glioma tissues, compared with the normal tissues. Interestingly, high SNHG3 contributed to low survival rate while low SNHG3 showed the opposite result. Moreover, SNHG3 or HDGF knockdown significantly suppressed proliferation, migration, and invasion and induced apoptosis in glioma. Meanwhile, restoration of HDGF abrogated the inhibition of SNHG3 silencing on glioma cell progression. Besides, miR-384 inhibitor attenuated SNHG3 silencing induced inhibition on HDGF mRNA and protein expression in A172 and SHG44 cells. LncRNA SNHG3 promotes cell proliferation, migration, and invasion in glioma by enhancing HDGF expression via miR-384 sponging, representing the promising targets for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Weixin Zheng
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Wenting Jiang
- Department of Ultrasound, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59 Shengli Road, Zhangzhou, Fujian, China
| | - Ruisheng Lin
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Chunyang Xing
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| |
Collapse
|
27
|
Jiang H, Li X, Wang W, Dong H. Long non-coding RNA SNHG3 promotes breast cancer cell proliferation and metastasis by binding to microRNA-154-3p and activating the notch signaling pathway. BMC Cancer 2020; 20:838. [PMID: 32883233 PMCID: PMC7469338 DOI: 10.1186/s12885-020-07275-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 08/09/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is a malignant tumor that occurs in the epithelial tissue of the breast gland. Long non-coding RNA (lncRNA) small nucleolar RNA host gene 3 (SNHG3) has been found to promote BC cell proliferation and invasion by regulating the microRNA (miR)-101/zinc-finger enhancer binding axis in BC. Herein, the objective of the present study is to evaluate the effect of lncRNA SNHG3 on BC cell proliferation and metastasis with the Notch signaling pathway. METHODS Differentially expressed lncRNA in BC tissues and normal breast tissues was analyzed. SNHG3 si-RNA-1 and SNHG3 si-RNA-2 were constructed to detect the mechanism of SNHG3 interference in BC cell proliferation, viability, migration and invasion. Then, dual-luciferase reporter gene assay was utilized to verify the binding relation between SNHG3 and miR-154-3p as well as miR-154-3p and Notch2. Moreover, xenograft transplantation was applied to confirm the in vitro experiments. RESULTS Highly expressed SNHG3 was observed in BC tissues. The growth of BC cells in vivo and in vitro was evidently repressed after silencing SNHG3. BC cell invasion and migration were inhibited by silencing SNHG3 in vitro. SNHG3 could act as a competing endogenous RNA of miR-154-3p and upregulate the Notch signaling pathway to promote BC cell development. Activation of the Notch signaling pathway can partly reverse the inhibition of cell activity induced by silencing SNHG3. CONCLUSION Our study demonstrated that interfered lncRNA SNHG3 promoted BC cell proliferation and metastasis by activating the Notch signaling pathway. This investigation may offer new insight for BC treatment.
Collapse
Affiliation(s)
- Hongnan Jiang
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Xiaojun Li
- Department of Rdaiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Wei Wang
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, PR China.
| |
Collapse
|
28
|
Kushlinskii NE, Fridman MV, Braga EA. Long Non-Coding RNAs as Competitive Endogenous RNAs in Osteosarcoma. Mol Biol 2020; 54:684-707. [DOI: 10.1134/s0026893320050052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 01/06/2025]
|
29
|
Li Y, Zhao Z, Liu W, Li X. SNHG3 Functions as miRNA Sponge to Promote Breast Cancer Cells Growth Through the Metabolic Reprogramming. Appl Biochem Biotechnol 2020; 191:1084-1099. [PMID: 31956955 PMCID: PMC7320061 DOI: 10.1007/s12010-020-03244-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are important ingredient in tumor microenvironment. The dynamic interplay between CAFs and cancer cells plays essential roles during tumor development and progression. However, the mechanisms of intercellular communication between CAFs and cancer cells remain largely unknown. We characterized exosomes secreted from breast cancer patient-derived CAFs by transmission electron microscopy. The expression of SNHG3, miR-330-5p, and PKM (Pyruvate Kinase M1/M2) was examined by real-time QPCR and immunoblot. The function of SNHG3 on the growth and metabolism of tumor cells was used by CCK8 and mitochondrial oxygen consumption assays. The binding between SNHG3, miR-330-5p, and PKM was examined by dual luciferase reporter assays. Orthotopical xenograft of breast tumor experiments was performed to determine the function of SNHG3 in vivo. We demonstrated that exosomes secreted from CAFs reprogram the metabolic pathways after tumor cells uptake the exosomes. CAF-secreted exosomal lncRNA SNHG3 served as a molecular sponge for miR-330-5p in breast cancer cells. Moreover, PKM could be targeted by miR-330-5p and was controlled by SNHG3 in breast cancer cells. Mechanistically, SNHG3 knockdown in CAF-secreted exosomes suppressed glycolysis metabolism and cell proliferation by the increase of miR-330-5p and decrease of PKM expression in tumor cells. SNHG3 functions as a miR-330-5p sponge to positively regulate PKM expression, inhibit mitochondrial oxidative phosphorylation, increase glycolysis carboxylation, and enhance breast tumor cell proliferation. Overall, SNHG3 could play a major role in the development and progression of breast cancer and support the therapeutic potential of targeting communication between cancer cells and tumor microenvironment.
Collapse
Affiliation(s)
- Yan Li
- Breast Internal Medicine Department, The 3rd Affiliated Teaching Hospital of XinJiang Medical University (Affiliated Cancer Hospital), Urumqi, 830011 China
| | - Zhenhui Zhao
- Breast Internal Medicine Department, The 3rd Affiliated Teaching Hospital of XinJiang Medical University (Affiliated Cancer Hospital), Urumqi, 830011 China
| | - Wei Liu
- Breast Internal Medicine Department, The 3rd Affiliated Teaching Hospital of XinJiang Medical University (Affiliated Cancer Hospital), Urumqi, 830011 China
| | - Xun Li
- Breast Internal Medicine Department, The 3rd Affiliated Teaching Hospital of XinJiang Medical University (Affiliated Cancer Hospital), Urumqi, 830011 China
| |
Collapse
|
30
|
Dacheng W, Songhe L, Weidong J, Shutao Z, Jingjing L, Jiaming Z. RETRACTED: LncRNA SNHG3 promotes the growth and metastasis of colorectal cancer by regulating miR-539/RUNX2 axis. Biomed Pharmacother 2020; 125:110039. [PMID: 32187965 DOI: 10.1016/j.biopha.2020.110039] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Authors and Editor-in-Chief. The corresponding author notified the journal that “LncRNA SNHG3 did not affect colorectal cancer cell invasion, which was inconsistent with our published results”. As the results were unreliable the authors requested its retraction. The journal was also alerted to suspected image similarities within Figure 2D, that appear to be present in another publication, as detailed here: https://pubpeer.com/publications/7855CA1A494A20F55AAE1463D1B648. The journal requested the authors provide an explanation and source data relating to the affected figure. The Authors did not provide an explanation in response to these concerns. The Editor-in-Chief assessed this case and decided to retract the article.
Collapse
Affiliation(s)
- Wen Dacheng
- Department of Gastrointestinal Nutrition and Hernia Surgery, the Second Hospital of Jilin University, Nanguan District, Changchun, 130041, China
| | - Li Songhe
- Department of Ophthalmology, the First Hospital of Jilin University, Chaoyang District, Changchun, 130021, China.
| | - Jiang Weidong
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Nanguan District, Changchun, 130041, China
| | - Zhao Shutao
- Department of Gastrointestinal Nutrition and Hernia Surgery, the Second Hospital of Jilin University, Nanguan District, Changchun, 130041, China
| | - Liu Jingjing
- Department of Gastrointestinal Nutrition and Hernia Surgery, the Second Hospital of Jilin University, Nanguan District, Changchun, 130041, China
| | - Zhu Jiaming
- Department of Gastrointestinal Nutrition and Hernia Surgery, the Second Hospital of Jilin University, Nanguan District, Changchun, 130041, China
| |
Collapse
|
31
|
Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An Emerging Class of Long Non-coding RNA With Oncogenic Role Arises From the snoRNA Host Genes. Front Oncol 2020; 10:389. [PMID: 32318335 PMCID: PMC7154078 DOI: 10.3389/fonc.2020.00389] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
The small nucleolar RNA host genes (SNHGs) are a group of long non-coding RNAs, which are reported in many studies as being overexpressed in various cancers. With very few exceptions, the SNHGs (SNHG1, SNHG3, SNHG5, SNHG6, SNHG7, SNHG12, SNHG15, SNHG16, SNHG20) are recognized as inducing increased proliferation, cell cycle progression, invasion, and metastasis of cancer cells, which makes this class of transcripts a viable biomarker for cancer development and aggressiveness. Through our literature research, we also found that silencing of SNHGs through small interfering RNAs or short hairpin RNAs is very effective in both in vitro and in vivo experiments by lowering the aggressiveness of solid cancers. The knockdown of SNHG as a new cancer therapeutic option should be investigated more in the future.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Stefan
- African Organisation for Research and Training in Cancer, Cape Town, South Africa
| | - Calin Ionescu
- Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. I. Chiricuta”, Cluj-Napoca, Romania
| |
Collapse
|
32
|
Li T, Xing Y, Yang F, Sun Y, Zhang S, Wang Q, Zhang W. LncRNA SNHG3 sponges miR-577 to up-regulate SMURF1 expression in prostate cancer. Cancer Med 2020; 9:3852-3862. [PMID: 32248648 PMCID: PMC7286463 DOI: 10.1002/cam4.2992] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer remains one of the most prevalent cancers and the main causes of cancer-related deaths in males. Various articles introduced that long noncoding RNAs (lncRNAs) are found in vital functions in the development and progression of cancers. Although SNHG3 (small nucleolar RNA host gene 3) has been investigated in many cancers, now researches on the role and mechanism of SNHG3 in prostate cancer are lacked. In this work, SNHG3 exerted high expression in prostate cancer cell lines. Suppression of SNHG3 inhibited cell proliferation, migration, EMT (epithelial-mesenchymal transition) process and promoted cell apoptosis. Additionally, it was found that SNHG3 could bind with miR-577. Subsequently, SMURF1 (Smad ubiquitination regulatory factor 1) was identified as a downstream target of miR-577 and had a negative correlation with miR-577. SNHG3 was found to positively regulate SMURF1 expression. Furthermore, rescue assays demonstrated that co-transfection of pcDNA3.1/SMURF1 reversed the effects of SNHG3 knockdown in cell proliferation, migration, EMT process and cell apoptosis. SNHG3 also promoted tumorigenesis in vivo. All the results above explained that SNHG3 accelerated prostate cancer progression by sponging miR-577 to up-regulate SMURF1 expression, suggesting that SNHG3 may act as a biomarker for prostate cancer patients.
Collapse
Affiliation(s)
- Teng Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Xing
- Department of Opthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fan Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Sun
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaojin Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingwei Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weixing Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Yin R, Liu J, Zhao D, Wang F. Long Non-Coding RNA ASB16-AS1 Functions as a miR-760 Sponge to Facilitate the Malignant Phenotype of Osteosarcoma by Increasing HDGF Expression. Onco Targets Ther 2020; 13:2261-2274. [PMID: 32214826 PMCID: PMC7081065 DOI: 10.2147/ott.s240022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose ASB16 antisense RNA 1 (ASB16-AS1) is a cancer-associated long non-coding RNA that contributes to tumorigenesis and tumor development. Nevertheless, to the best of our knowledge, whether and how ASB16-AS1 is implicated in osteosarcoma (OS) malignancy remains unclear and therefore warrants exploration. Our current study focused on making in-depth investigation of ASB16-AS1 in OS. In the present study, the expression pattern of ASB16-AS1 in OS tissues and cell lines was analyzed. In addition, we examined the clinical value of ASB16-AS1 for OS patients. Furthermore, we explored the impacts of ASB16-AS1 on the malignant phenotype of OS cells in vitro and in vivo as well as the underlying mechanism. Methods ASB16-AS1, microRNA-760 (miR-760) and hepatoma-derived growth factor (HDGF) expressions were measured using reverse transcription-quantitative PCR. Cell proliferation and apoptosis were evaluated using CCK-8 and flow cytometry analyses, respectively, and cell migration and invasion were determined via cell migration and invasion assays. Results ASB16-AS1 expression was significantly elevated in OS tissues and cell lines, and increased ASB16-AS1 expression was related to patients' tumor size, TNM stage, and distant metastasis. The overall survival rate of OS patients presenting high ASB16-AS1 expression was shorter than that of patients presenting low ASB16-AS1 expression. Reduced ASB16-AS1 expression inhibited OS cell proliferation, migration, and invasion; promoted cell apoptosis; and impaired tumor growth in vivo. Mechanistically, ASB16-AS1 served as a sponge for miR-760 and positively modulated the expression of its target HDGF. Finally, inhibiting miR-760 and restoring HDGF expression abolished the impacts of ASB16-AS1 knockdown on the malignant characteristics of OS cells. Conclusion ASB16-AS1 is a novel oncogenic lncRNA in OS cells. ASB16-AS1 increased HDGF expression by sponging miR-760, thereby conferring cancer-promoting roles in OS. ASB16-AS1 is a potential early diagnostic and therapeutic target in OS.
Collapse
Affiliation(s)
- Ruofeng Yin
- Department of Orthopedics, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Junzhi Liu
- Department of Quality Control, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Dongxu Zhao
- Department of Orthopedics, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Fei Wang
- Department of Orthopedics, China-Japan Union Hospital Jilin University, Changchun, Jilin 130033, People's Republic of China
| |
Collapse
|
34
|
Lin Q, Han J, Sun Q, Wen L, Wang S. Functional variant of IL33 is associated with survival of osteosarcoma patients. J Bone Oncol 2019; 20:100270. [PMID: 31890491 PMCID: PMC6931128 DOI: 10.1016/j.jbo.2019.100270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 11/25/2022] Open
Abstract
Objectives Previous genome-wide association study showed that GLDC/IL33 loci were associated with overall survival in patients with osteosarcoma (OS). We performed a replication study to explore whether variants of GLDC/IL33 are associated with the survival of OS patients and to further verify their functional role in the gene expression. Methods A total of 216 patients with OS were enrolled. The overall survival time was calculated from the date of diagnosis till the date of last follow-up or mortality. Two SNPs were genotyped, including rs55933544 and rs74438701. OS specimens were obtained from 72 patients during surgery. The gene expression level of IL33 and GLDC was evaluated by qPCR. Patients were classified into two groups according to the 5-year overall survival (death/survival). The chi-square test was used to analyze difference of genotype frequency. The Student t-test was used to compare the gene expression level between different genotypes. Cumulative survival time was calculated by the Kaplan–Meier method and analyzed by the log-rank test. Results Genotype TT of rs55933544 was significantly associated with the event of death (0.176 vs. 0.061, p < 0.001). Patients with no risk allele T of rs55933544 showed a 5-year overall survival of 81.4% (110/141), which was significantly higher than an overall survival of 55.0% (29/54) for patients with one risk allele and 44.8% (12/21) for patients with two risk alleles (p < 0.01). Genotype TT of rs55933544 were indicative of remarkably lower expression of IL33 than genotype CC (0.00041 ± 0.00025 vs. 0.00065 ± 0.00031, p = 0.04). Patients with low IL33 expression presented remarkably worse survival as compared with the patients with high IL33 expression (p < .01) Conclusions Variant rs55933544 was associated with the survival time of OS patients. IL33 may contribute to a poor prognosis of OS. Further investigation into the biological mechanisms by which IL33 influences the overall survival can shed light on the improvement of clinical outcome for OS patients.
Collapse
Affiliation(s)
- Qingxi Lin
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| | - Jingjing Han
- Department of Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Sun
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| | - Li Wen
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| | - Shoufeng Wang
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| |
Collapse
|
35
|
Liu J, Li W, Zhang J, Ma Z, Wu X, Tang L. Identification of key genes and long non-coding RNA associated ceRNA networks in hepatocellular carcinoma. PeerJ 2019; 7:e8021. [PMID: 31695969 PMCID: PMC6827457 DOI: 10.7717/peerj.8021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although multiple efforts have been made to understand the development of HCC, morbidity, and mortality rates remain high. In this study, we aimed to discover the mRNAs and long non-coding RNAs (lncRNAs) that contribute to the progression of HCC. We constructed a lncRNA-related competitive endogenous RNA (ceRNA) network to elucidate the molecular regulatory mechanism underlying HCC. METHODS A microarray dataset (GSE54238) containing information about both mRNAs and lncRNAs was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and lncRNAs (DElncRNAs) in tumor tissues and non-cancerous tissues were identified using the limma package of the R software. The miRNAs that are targeted by DElncRNAs were predicted using miRcode, while the target mRNAs of miRNAs were retrieved from miRDB, miRTarBas, and TargetScan. Functional annotation and pathway enrichment of DEGs were performed using the EnrichNet website. We constructed a protein-protein interaction (PPI) network of DEGs using STRING, and identified the hub genes using Cytoscape. Survival analysis of the hub genes and DElncRNAs was performed using the gene expression profiling interactive analysis database. The expression of molecules with prognostic values was validated on the UALCAN database. The hepatic expression of hub genes was examined using the Human Protein Atlas. The hub genes and DElncRNAs with prognostic values as well as the predictive miRNAs were selected to construct the ceRNA networks. RESULTS We found that 10 hub genes (KPNA2, MCM7, CKS2, KIF23, HMGB2, ZWINT, E2F1, MCM4, H2AFX, and EZH2) and four lncRNAs (FAM182B, SNHG6, SNHG1, and SNHG3) with prognostic values were overexpressed in the hepatic tumor samples. We also constructed a network containing 10 lncRNA-miRNA-mRNA pathways, which might be responsible for regulating the biological mechanisms underlying HCC. CONCLUSION We found that the 10 significantly overexpressed hub genes and four lncRNAs were negatively correlated with the prognosis of HCC. Further, we suggest that lncRNA SNHG1 and the SNHG3-related ceRNAs can be potential research targets for exploring the molecular mechanisms of HCC.
Collapse
Affiliation(s)
- Jun Liu
- Department of Clinical Laboratory, Yue Bei People’s Hospital, Shaoguan, Guangdong, China
- Morning Star Academic Cooperation, Shanghai, China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People’s Hospital, Shaoguan, Guangdong, China
| | - Jian Zhang
- Department of Clinical Laboratory, Yue Bei People’s Hospital, Shaoguan, Guangdong, China
| | - Zhanzhong Ma
- Department of Clinical Laboratory, Yue Bei People’s Hospital, Shaoguan, Guangdong, China
| | - Xiaoyan Wu
- Community Healthcare Center, Shanghai, Shanghai, China
| | - Lirui Tang
- Morning Star Academic Cooperation, Shanghai, China
- Shanghai JiaoTong University School of Medicine, Shanghai Ninth People’s Hospital, Shanghai, China
| |
Collapse
|
36
|
Long noncoding RNA TTN-AS1 enhances the malignant characteristics of osteosarcoma by acting as a competing endogenous RNA on microRNA-376a thereby upregulating dickkopf-1. Aging (Albany NY) 2019; 11:7678-7693. [PMID: 31525734 PMCID: PMC6781980 DOI: 10.18632/aging.102280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Abstract
The expression levels and detailed functions of TTN-AS1 in osteosarcoma (OS) have not yet been explored. This study aimed to measure TTN-AS1 expression in OS tissues and cell lines, investigate its specific roles in the aggressive characteristics of OS cells in vitro and in vivo, and elucidate the regulatory mechanisms of TTN-AS1 action. TTN-AS1 expression was high in OS tissue samples and cell lines; TTN-AS1 overexpression correlated with the clinical stage, distant metastasis, and shorter overall survival of the patients. A TTN-AS1 knockdown inhibited OS cell proliferation, migration, and invasion and induced apoptosis in vitro and slowed tumor growth in vivo. Mechanism investigation revealed that TTN-AS1 acts as a competing endogenous RNA on microRNA-376a-3p (miR-376a) in OS cells. Dickkopf-1 (DKK1) mRNA was identified as a direct target of miR-376a in OS cells. Resumption of DKK1 expression reversed the tumor-suppressive activities of miR-376a overexpression in OS cells. The knockdown of miR-376a counteracted the reduction in the malignant characteristics of OS cells by the downregulation of TTN-AS1. In conclusion, TTN-AS1 functions as a competing endogenous RNA targeting miR-376a and increases the malignancy of OS cells in vitro and in vivo by upregulating DKK1.
Collapse
|
37
|
Wang L, Su K, Wu H, Li J, Song D. LncRNA SNHG3 regulates laryngeal carcinoma proliferation and migration by modulating the miR-384/WEE1 axis. Life Sci 2019; 232:116597. [DOI: 10.1016/j.lfs.2019.116597] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
|
38
|
Tian D, Wei X, Zhu H, Zhu L, Li T, Li W. LncRNA-SNHG3 is an independent prognostic biomarker of intrahepatic cholangiocarcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2706-2712. [PMID: 31934101 PMCID: PMC6949551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Numerous deregulated long non-coding RNAs (lncRNAs) accompany the initiation and progression of carcinogenesis. The present study aimed to explore the prognostic significance of lncRNA-SNHG3 on intrahepatic cholangiocarcinoma (ICC) patients. METHODS LncRNA microarray assays were used to evaluate lncRNA expression profiling in three pairs of ICC tissues and adjacent non-tumorous tissues. RT-qPCR was performed to further validate the accuracy of the microarray results. RESULTS lncRNA microarray and RT-qPCR assays revealed that SNHG3 expression levels were significantly increased in ICC tissues compared to the adjacent non-tumor tissues. A high SNHG3 expression level was significantly correlated with shorter OS in ICC patients. A multivariate regression analysis discovered that SNHG3 could serve as an independent prognostic factor for predicting the OS of ICC patients. CONCLUSION We found SNHG3 to be an independent risk factor for predicting the prognosis of ICC. SNHG3 shows a strong promise in the development of novel therapeutic targets for the treatment of ICC.
Collapse
Affiliation(s)
- Daguang Tian
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University Kunming, Yunnan Province, China
| | - Xiaoping Wei
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University Kunming, Yunnan Province, China
| | - Hong Zhu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University Kunming, Yunnan Province, China
| | - Lei Zhu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University Kunming, Yunnan Province, China
| | - Tiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University Kunming, Yunnan Province, China
| | - Wen Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University Kunming, Yunnan Province, China
| |
Collapse
|
39
|
Bai Y, Li S. Long noncoding RNA OIP5-AS1 aggravates cell proliferation, migration in gastric cancer by epigenetically silencing NLRP6 expression via binding EZH2. J Cell Biochem 2019; 121:353-362. [PMID: 31219209 DOI: 10.1002/jcb.29183] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023]
Abstract
The critical role of long noncoding RNAs (lncRNAs) in the development of multiple cancers has been revealed either functioning as a tumor initiator or a cancer suppressor. A widely recognized OIP5 antisense RNA 1 (lncRNA OIP5-AS1) has been validated to be an essential regulator of the tumorigenesis of various malignancies. Whereas, the potential role and the exact mechanism of lncRNA OIP5-AS1 by which OIP5-AS1 mediates gastric cancer (GC) progression remains vague. Therefore, first our work probed its expression levels in GC cell lines and related normal cells by real-time quantitative polymerase chain reaction. The heightened level of OIP5-AS1 was detected in GC cell lines. In terms of its cellular effects, we performed a series of functional experiments and as presented in the assays, the proliferative potential and motility was diminished. However, more apoptotic cells were induced with the introduction of OIP5-AS1 silencing. Meanwhile, higher Nod-like receptor pyrin domain-containing protein 6 (NLRP6) and enhancer of zeste homolog 2 (EZH2) expression in the GC cells was monitored. Besides, OIP5-AS1 was disclosed to locate mainly in the nucleus. In terms of mechanism, OIP5-AS1 directly bound to EZH2 and obstructed NLRP6 expression, speeding up GC progression.
Collapse
Affiliation(s)
- Yunlei Bai
- Department of GI Medicine, The First Hospital of Yulin, Yulin, Shaanxi, China
| | - Sheng Li
- Department of General Surgery, Yulin No. 2 Hospital, Yulin, Shaanxi, China
| |
Collapse
|