1
|
Breideband L, Wächtershäuser KN, Sarkar R, Puspathasan M, Stelzer EH, Pampaloni F. Gravitational forces and matrix stiffness modulate the invasiveness of breast cancer cells in bioprinted spheroids. Mater Today Bio 2025; 31:101640. [PMID: 40124331 PMCID: PMC11930500 DOI: 10.1016/j.mtbio.2025.101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/29/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
The progression of breast cancer is influenced by the stiffness of the extracellular matrix (ECM), which becomes stiffer as cancer advances due to increased collagen IV and laminin secretion by cancer-associated fibroblasts. Intriguingly, breast cancer cells cultivated in two-dimensions exhibit a less aggressive behavior when exposed to weightlessness, or microgravity conditions. This study aims to elucidate the interplay between matrix stiffness and microgravity on breast cancer progression. For this purpose, three-dimensional spheroids of breast cancer cell lines (MCF-7 and MDA-MB-231) were formed. These spheroids were subsequently bioprinted in hydrogels of varying stiffness, obtained by the mixing of gelatin methacrylate and poly(ethylene) glycol diacrylate mixed at different ratios. The constructs were printed with a custom stereolithography (SLA) bioprinter converted from a low-cost, commercially available 3D printer. These bioprinted structures, encapsulating breast cancer spheroids, were then placed in a clinostat (microgravity simulation device) for a duration of seven days. Comparative analyses were conducted between objects cultured under microgravity and standard earth gravity conditions. Protein expression was characterized through fluorescent microscopy, while gene expression of MCF-7 constructs was analyzed via RNA sequencing. Remarkably, the influence of a stiffer ECM on the protein and gene expression levels of breast cancer cells could be modulated and sometimes even reversed in microgravity conditions. The study's findings hold implications for refining therapeutic strategies for advanced breast cancer stages - an array of genes involved in reversing aggressive or even metastatic behavior might lead to the discovery of new compounds that could be used in a clinical setting.
Collapse
Affiliation(s)
- Louise Breideband
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Kaja Nicole Wächtershäuser
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Ryan Sarkar
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Melosha Puspathasan
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Ernst H.K. Stelzer
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| |
Collapse
|
2
|
Joshi P, Nascimento HSD, Kang SY, Lee M, Vanga MG, Lee SH, Ku B, Miranda MDS, Lee MY. Dynamic Culture of Bioprinted Liver Tumor Spheroids in a Pillar/Perfusion Plate for Predictive Screening of Anticancer Drugs. Biotechnol Bioeng 2025; 122:995-1009. [PMID: 39821523 DOI: 10.1002/bit.28924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025]
Abstract
Recent advancements in three-dimensional (3D) cell culture technologies, such as cell spheroids, organoids, and 3D bioprinted tissue constructs, have significantly improved the physiological relevance of in vitro models. These models better mimic tissue structure and function, closely emulating in vivo characteristics and enhancing phenotypic analysis, critical for basic research and drug screening in personalized cancer therapy. Despite their potential, current 3D cell culture platforms face technical challenges, which include user-unfriendliness in long-term dynamic cell culture, incompatibility with rapid cell encapsulation in biomimetic hydrogels, and low throughput for compound screening. To address these issues, we developed a 144-pillar plate with sidewalls and slits (144PillarPlate) and a complementary 144-perfusion plate with perfusion wells and reservoirs (144PerfusionPlate) for dynamic 3D cell culture and predictive compound screening. To accelerate biomimetic tissue formation, small Hep3B liver tumor spheroids suspended in alginate were printed and encapsulated on the 144PillarPlate rapidly by using microsolenoid valve-driven 3D bioprinting technology. The microarray bioprinting technology enabled precise and rapid loading of small spheroids in alginate on the pillar plate, facilitating reproducible and scalable formation of large tumor spheroids with minimal manual intervention. The bioprinted Hep3B spheroids on the 144PillarPlate were dynamically cultured in the 144PerfusionPlate and tested with anticancer drugs to measure drug effectiveness and determine the concentration required to inhibit 50% of the cell viability (IC50 value). The perfusion plate enabled the convenient dynamic culture of tumor spheroids and facilitated the dynamic testing of anticancer drugs with increased sensitivity. It is envisioned that the integration of microarray bioprinting of tumor spheroids onto the pillar plate, along with dynamic 3D cell culture in the perfusion plate, could more accurately replicate tumor microenvironments. This advancement has the potential to enhance the predictive drug screening process in personalized cancer therapy significantly.
Collapse
Affiliation(s)
- Pranav Joshi
- Bioprinting Laboratories Inc., Dallas, Texas, USA
| | - Hamilton Silva do Nascimento
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
- Institute of Veterinary Medicine, Federal University of Para, Castanhal, Brazil
| | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Minseong Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | | | | | - Bosung Ku
- MBD Co. Ltd., Suwon, Republic of Korea
| | | | - Moo-Yeal Lee
- Bioprinting Laboratories Inc., Dallas, Texas, USA
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| |
Collapse
|
3
|
Zhang Z, Sanders HS, Dragun V, Cole S, Smith BD. Fluorescent Molecular Probe for Imaging Hypoxia in 2D Cell Culture Monolayers and 3D Tumor Spheroids: The Cell Membrane Partition Model for Predicting Probe Distribution in a Spheroid. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18046-18058. [PMID: 40079788 DOI: 10.1021/acsami.4c22228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Compared to cultured 2D cell monolayers, 3D multicellular spheroids are more realistic tumor models. Nonetheless, spheroids remain under-utilized in preclinical research, in part, because there is a lack of fluorescence sensors that can noninvasively interrogate all the individual cells within a spheroid. This present study describes a deep-red fluorogenic molecular probe for microscopic imaging of cells that contain a high level of nitroreductase enzyme activity as a biomarker of cell hypoxia. A first-generation version of the probe produced "turn-on" fluorescence in a 2D cell monolayer under hypoxic conditions; however, it was not useful in a 3D multicellular tumor spheroid because it only accumulated in the peripheral cells. To guide the probe structural optimization process, an intuitive theoretical membrane partition model was conceived to predict how a dosed probe will distribute within a 3D spheroid. The model identifies three limiting molecular diffusion pathways that are determined by a probe's membrane partition properties. A lipophilic probe with high membrane affinity rapidly becomes trapped in the membranes of the peripheral cells. In contrast, a very hydrophilic probe molecule with negligible membrane affinity diffuses rapidly through the spheroid intercellular space and rarely enters the cells. However, a probe molecule with intermediate membrane affinity undergoes sequential diffusion in and out of cells and distributes to all the cells within a spheroid. Using the model as a predictive tool, a second-generation fluorescent probe was prepared with a smaller and more hydrophilic molecular structure, and optical sectioning using structured illumination or light sheet microscopy revealed roughly even probe diffusion throughout a tumor spheroid. The membrane permeation model is likely to be broadly applicable for the structural optimization of various classes of molecules and nanoparticles to enable even distribution within a tumor spheroid.
Collapse
Affiliation(s)
- Zhumin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Hailey S Sanders
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Vivienne Dragun
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Sara Cole
- Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
4
|
De Martinis ECP, Alves VF, Pereira MG, Andrade LN, Abichabki N, Abramova A, Dannborg M, Bengtsson-Palme J. Applying 3D cultures and high-throughput technologies to study host-pathogen interactions. Front Immunol 2025; 16:1488699. [PMID: 40051624 PMCID: PMC11882522 DOI: 10.3389/fimmu.2025.1488699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Recent advances in cell culturing and DNA sequencing have dramatically altered the field of human microbiome research. Three-dimensional (3D) cell culture is an important tool in cell biology, in cancer research, and for studying host-microbe interactions, as it mimics the in vivo characteristics of the host environment in an in vitro system, providing reliable and reproducible models. This work provides an overview of the main 3D culture techniques applied to study interactions between host cells and pathogenic microorganisms, how these systems can be integrated with high-throughput molecular methods, and how multi-species model systems may pave the way forward to pinpoint interactions among host, beneficial microbes and pathogens.
Collapse
Affiliation(s)
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Neves Andrade
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nathália Abichabki
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Abramova
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
| | - Mirjam Dannborg
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Uehara MK, Bual R, Shafiq M, Yoshida K, Ijima H. Proposal for a non-adhesive single-cell culture technology for primary hepatocytes. Cytotechnology 2025; 77:30. [PMID: 39744312 PMCID: PMC11685352 DOI: 10.1007/s10616-024-00696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/24/2024] [Indexed: 03/08/2025] Open
Abstract
Primary hepatocytes (PHs) are indispensable for studying liver function, drug screening, and regenerative medicine. However, freshly isolated PHs only survive for a few hours in non-adherent suspension culture. This study proposes treatment with PEG-GRGDS, a polymer-peptide conjugate comprising polyethylene glycol (PEG) and the pentapeptide sequence Gly-Arg-Gly-Asp-Ser (GRGDS), to sustain the viability of dispersed single PHs under non-adherent conditions. As a proof of concept, PHs treated with the PEG-GRGDS molecule were cultured in a microarray with single-cell-sized microwells. After 24 h of culture, enhanced cell survival was confirmed via esterase activity alongside activity for Cytochrome P450 1A1 (CYP1A1). Some liver-specific functionalities, including albumin secretion, were observed in the treated PHs. Additionally, it was observed that the length of the PEG-chain in the conjugates influenced the maintenance of single-cell dispersion and the levels of polymerized actin in the cells. These findings suggest that treatment with a polymer-peptide like PEG-GRGDS might provide a promising platform for the short-term culture of non-adherent single PHs. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00696-1.
Collapse
Affiliation(s)
- Mario K. Uehara
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395 Japan
| | - Ronald Bual
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395 Japan
- Department of Chemical Engineering & Technology, College of Engineering, Mindanao State University-Iligan Institute of Technology, A. Bonifacio Avenue, Tibanga, 9200 Iligan City, Philippines
| | - Muhammad Shafiq
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395 Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-Ku, Kawasaki, 210-0821 Japan
| | - Kozue Yoshida
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395 Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395 Japan
| |
Collapse
|
6
|
Grigoreva TA, Kindt DN, Sagaidak AV, Novikova DS, Tribulovich VG. Cellular Systems for Colorectal Stem Cancer Cell Research. Cells 2025; 14:170. [PMID: 39936962 DOI: 10.3390/cells14030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
Oncological diseases consistently occupy leading positions among the most life-threatening diseases, including in highly developed countries. At the same time, the second most common cause of cancer death is colorectal cancer. The current level of research shows that the development of effective therapy, in this case, requires a new grade of understanding processes during the emergence and development of a tumor. In particular, the concept of cancer stem cells that ensure the survival of chemoresistant cells capable of giving rise to new tumors is becoming widespread. To provide adequate conditions that reproduce natural processes typical for tumor development, approaches based on increasingly complex cellular systems are being improved. This review discusses the main strategies that allow for the study of the properties of tumor cells with an emphasis on colorectal cancer stem cells. The features of working with tumor cells and the advantages and disadvantages of 2D and 3D culture systems are considered.
Collapse
Affiliation(s)
- Tatyana A Grigoreva
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia
| | - Daria N Kindt
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia
| | - Aleksandra V Sagaidak
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia
| | - Daria S Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia
| | - Vyacheslav G Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia
| |
Collapse
|
7
|
Youhanna S, Kemas AM, Wright SC, Zhong Y, Klumpp B, Klein K, Motso A, Michel M, Ziegler N, Shang M, Sabatier P, Kannt A, Sheng H, Oliva‐Vilarnau N, Büttner FA, Seashore‐Ludlow B, Schreiner J, Windbergs M, Cornillet M, Björkström NK, Hülsmeier AJ, Hornemann T, Olsen JV, Wang Y, Gramignoli R, Sundström M, Lauschke VM. Chemogenomic Screening in a Patient-Derived 3D Fatty Liver Disease Model Reveals the CHRM1-TRPM8 Axis as a Novel Module for Targeted Intervention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407572. [PMID: 39605182 PMCID: PMC11744578 DOI: 10.1002/advs.202407572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Indexed: 11/29/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a leading cause of chronic liver disease with few therapeutic options. To narrow the translational gap in the development of pharmacological MASH treatments, a 3D liver model from primary human hepatocytes and non-parenchymal cells derived from patients with histologically confirmed MASH was established. The model closely mirrors disease-relevant endpoints, such as steatosis, inflammation and fibrosis, and multi-omics analyses show excellent alignment with biopsy data from 306 MASH patients and 77 controls. By combining high-content imaging with scalable biochemical assays and chemogenomic screening, multiple novel targets with anti-steatotic, anti-inflammatory, and anti-fibrotic effects are identified. Among these, activation of the muscarinic M1 receptor (CHRM1) and inhibition of the TRPM8 cation channel result in strong anti-fibrotic effects, which are confirmed using orthogonal genetic assays. Strikingly, using biosensors based on bioluminescence resonance energy transfer, a functional interaction along a novel MASH signaling axis in which CHRM1 inhibits TRPM8 via Gq/11 and phospholipase C-mediated depletion of phosphatidylinositol 4,5-bisphosphate can be demonstrated. Combined, this study presents the first patient-derived 3D MASH model, identifies a novel signaling module with anti-fibrotic effects, and highlights the potential of organotypic culture systems for phenotype-based chemogenomic drug target identification at scale.
Collapse
|
8
|
Tavares I, Morais M, Dias F, Ferreira M, Martins G, Fernandes R, Bidarra SJ, Medeiros R, Teixeira AL. Extracellular vesicles derived-microRNAs predicting enzalutamide-resistance in 3D spheroid prostate Cancer model. Int J Biol Macromol 2025; 284:137993. [PMID: 39592052 DOI: 10.1016/j.ijbiomac.2024.137993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Enzalutamide (ENZ) has emerged as a major treatment advance in castration-resistant prostate cancer (CRPC) patients; however the development of resistance remains a key challenge. The extracellular vesicles (VEs)-derived miRNAs play crucial roles tumor microenvironment cell communication, thereby influencing resistance mechanisms. Considering the urgent need for molecular biomarkers to monitor ENZ response and predict resistance, we intend to identify an EV-derived miRNA profile associated with ENZ resistance using an innovative 3D-spheroid in vitro model. Through the generation of this model, we provide a comprehensive platform for elucidating the molecular alterations involved in the process. An in vitro model of ENZ resistance was established through continuous exposure of LNCaP to increasing ENZ concentrations. A screening of 799 miRNAs from resistant and normal LNCaP cells were quantified. A bioinformatic analysis was performed using miRTarbase and Cytoscape and top 5 overexpressed miRNAs were selected, that will be analyzed in extracellular vesicles derived from ENZ resistance 3D spheroid models. We identified 12 up- and 13 downregulated miRNAs in LNCaP 30 μM ENZ cells compare to LNCaP·In silico analysis led to the construction of a 76 proteins cluster and functional enrichment revealed terms like PI3K/AKT, TFG-β and FOXO. hsa-miR-22-3p was significantly decreased at 5 and 20 μM ENZ concentration intracellularly, but significantly increased at 20 μM ENZ in EVs. hsa-miR-221-3p and miR-222-3p were upregulated in all concentrations both intracellularly and in EVs. The developed 3D-spheroid model effectively replicated the ENZ resistance to ENZ in an AR-independent manner, underscoring the importance of EVs-derived miRNAs in this adaptive process.
Collapse
Affiliation(s)
- Inês Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
| | - Mariana Ferreira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal
| | - Gabriela Martins
- Department of Immunology, Portuguese Oncology Institute of Porto (IPO- Porto), Porto, Portugal
| | - Rui Fernandes
- HEMS-Histology and Electron Microscopy, Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Sílvia Joana Bidarra
- Bioengineered 3D Microenvironment Group, Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal; INEB, Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal; Biomedical Reasearch Center (CEBIMED), Faculty of Health Sciences, Fernando Pessoa University (UFP), Porto, Portugal; Research Department, Portuguese League Against Cancer (LPCC- NRNorte), Porto, Portugal; Faculty of Medicine, University of Porto (FMUP), University of Porto, Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal.
| |
Collapse
|
9
|
Berry MA, Bland AR, Major GS, Ashton JC. Development of an ALK-positive Non-Small-Cell Lung Cancer in Vitro Tumor 3D Culture Model for Therapeutic Screening. J Histochem Cytochem 2025; 73:63-79. [PMID: 39991927 PMCID: PMC11851580 DOI: 10.1369/00221554251318435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Cancer cell monolayers are commonly used for preclinical drug screening. However, monolayers do not begin to mimic the complexity of the tumor microenvironment, including hypoxia and nutrient gradients within the tumor. To more accurately mimic solid tumors, we developed and drug-tested an anaplastic lymphoma kinase (ALK)-positive (H3122) non-small-cell lung cancer 3D (three-dimensional) culture model using light-activated gelatin methacryloyl hydrogels. We previously demonstrated that the combination of alectinib, an ALK inhibitor, and SHP099, an SHP2 inhibitor, had synergistic efficacy in ALK-positive cell monolayers. We aimed to test this drug combination in our novel ALK-positive 3D cancer model. We first validated the 3D cultures by comparing the distribution of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the 3D cultures with sections from time-matched mouse xenografts, finding a comparable percentage of TUNEL-positive cells in the 3D culture and xenograft inner cores at each time point. When we investigated the effect of the combination of alectinib and SHP099 in these novel 3D cultures, we found a comparable cellular response compared with our two-dimensional experiments especially with the drugs in combination. We suggest that 3D cultures be used as preclinical screening platforms to ensure that only the most efficacious drug candidates move on to in vivo testing.
Collapse
Affiliation(s)
- Madeleine A. Berry
- Department of Pharmacology and Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Abigail R. Bland
- Department of Pharmacology and Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Gretel S. Major
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering and Nanomedicine, University of Otago, Christchurch, New Zealand
| | - John C. Ashton
- Department of Pharmacology and Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Nair DG, Weiskirchen R. Advanced In Vitro Models for Preclinical Drug Safety: Recent Progress and Prospects. Curr Issues Mol Biol 2024; 47:7. [PMID: 39852122 PMCID: PMC11763796 DOI: 10.3390/cimb47010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
The majority of drugs are typically orally administered. The journey from drug discovery to approval is often long and expensive, involving multiple stages. A major challenge in the drug development process is drug-induced liver injury (DILI), a condition that affects the liver, the organ responsible for metabolizing most drugs. Traditionally, identifying DILI risk has been difficult due to the poor correlation between preclinical animal models and in vitro systems. Differences in physiology between humans and animals or cell lines contribute to the failure of many drug programs during clinical trials. The use of advanced in vitro systems that closely mimic human physiology, such as organ-on-a-chip models like gut-liver-on-a-chip, can be crucial in improving drug efficacy while minimizing toxicity. Additionally, the adaptation of these technologies has the potential to significantly reduce both the time and cost associated with obtaining safe drug approvals, all while adhering to the 3Rs principle (replacement, reduction, refinement). In this review, we discuss the significance, current status, and future prospects of advanced platforms, specifically organ-on-a-chip models, in supporting preclinical drug discovery.
Collapse
Affiliation(s)
- Dileep G. Nair
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital Aachen, D-52074 Aachen, Germany;
- Keliomics Inc., 4640 S Macadam Ave #270, Portland, OR 97239, USA
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
11
|
Wongpakham T, Chunfong T, Jeamsaksiri W, Chessadangkul K, Bhanpattanakul S, Kallayanathum W, Tharasanit T, Pimpin A. Development of Pyramidal Microwells for Enhanced Cell Spheroid Formation in a Cell-on-Chip Microfluidic System for Cardiac Differentiation of Mouse Embryonic Stem Cells. Cells 2024; 13:2132. [PMID: 39768221 PMCID: PMC11674798 DOI: 10.3390/cells13242132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Three-dimensional (3D) tissue culture models provide in vivo-like conditions for studying cell physiology. This study aimed to examine the efficiency of pyramidal microwell geometries in microfluidic devices on spheroid formation, cell growth, viability, and differentiation in mouse embryonic stem cells (mESCs). The static culture using the hanging drop (HD) method served as a control. The microfluidic chips were fabricated to have varying pyramidal tip angles, including 66°, 90°, and 106°. From flow simulations, when the tip angle increased, streamline distortion decreased, resulting in more uniform flow and a lower velocity gradient near the spheroids. These findings demonstrate the significant influence of microwell geometry on fluid dynamics. The 90° microwells provide optimal conditions, including uniform flow and reduced shear stress, while maintaining the ability for waste removal, resulting in superior spheroid growth compared to the HD method and other microwell designs. From the experiments, by Day 3, spheroids in the 90° microwells reached approximately 400 µm in diameter which was significantly larger than those in the 66° microwells, 106° microwells, and HD cultures. Brachyury gene expression in the 90° microwells was four times higher than the HD method, indicating enhanced mesodermal differentiation essential for cardiac differentiation. Immunofluorescence staining confirmed cardiomyocyte differentiation. In conclusion, microwell geometry significantly influences 3D cell culture outcomes. The pyramidal microwells with a 90° tip angle proved most effective in promoting spheroid growth and cardiac differentiation of mESC differentiation, providing insights for optimizing microfluidic systems in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tepparit Wongpakham
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (T.W.); (T.C.); (K.C.)
| | - Thanapat Chunfong
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (T.W.); (T.C.); (K.C.)
| | - Wutthinan Jeamsaksiri
- Thai Microelectronics Center, National Electronics and Computer Technology Center, Chachoengsao 24000, Thailand;
| | - Kriengkai Chessadangkul
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (T.W.); (T.C.); (K.C.)
| | - Sudchaya Bhanpattanakul
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wirakan Kallayanathum
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Theerawat Tharasanit
- Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Alongkorn Pimpin
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (T.W.); (T.C.); (K.C.)
- Micro/Nano Electromechanical Integrated Device Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Santos LM, Shimabuko DY, Sipert CR. Dimethyl sulfoxide affects the viability and mineralization activity of apical papilla cells in vitro. Braz Dent J 2024; 35:e246054. [PMID: 39699497 DOI: 10.1590/0103-644020246054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/24/2024] [Indexed: 12/20/2024] Open
Abstract
Dimethyl sulfoxide (DMSO) is widely used as an adjuvant in dissolving insoluble compounds in an aqueous medium; however, it can induce significant molecular changes in cells. The possible damages may occur obeying a tissue-specific profile, and the effect on human apical papilla cells (hAPC) remains unknown. Therefore, this study aimed to evaluate DMSO effects on the viability and mineralization activity in hAPC cultures in vitro and to establish standards of maximum concentrations for its use in laboratory routines. hAPCs were cultured, plated, and maintained in media containing increasing concentrations of Dimethyl sulfoxide (0.1%, 0.5%, 1%, 5%, and 10%) for 24 h, 48 h, 72 h, and 7 days. At each time point, the cells were subjected to the MTT assay. The Alizarin red S staining assay was performed to evaluate the osteo/odontogenic mineralization potential of hAPC DMSO-exposed (0.1%, 0.5%, and 1%) in the 21-day time-point. Statistical analysis was performed using one-way analysis of variance followed by Tukey's post hoc test (p<0.05). In general, the 5% and 10% DMSO concentrations were shown to be cytotoxic for hAPC at all analyzed time points, and the hAPC DMSO-stimulated presented higher osteo/odontogenic mineralization potential. Therefore, the 5% and 10% DMSO concentrations should be avoided, and the mineralization activity assay should be carefully designed in order to avoid biases at in vitro assays using hAPC cultures.
Collapse
Affiliation(s)
- Letícia Martins Santos
- Department of Biomaterial and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Danielle Yumi Shimabuko
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Carla Renata Sipert
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Zhukova OA, Ozerskaya IV, Basmanov DV, Stolyarov VY, Bogush VG, Kolesov VV, Zykov KA, Yusubalieva GM, Baklaushev VP. “Lung-on-a-chip” as an instrument for studying the pathophysiology of human respiration. КЛИНИЧЕСКАЯ ПРАКТИКА 2024; 15:70-88. [DOI: 10.17816/clinpract637140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
“Lung-on-a-chip” (LoC) is a microfluidic device, imitating the gas-fluid interface of the pulmonary alveole in the human lung and intended for pathophysiological, pharmacological and molecular-biological studies of the air-blood barrier in vitro. The LoC device itself contains a system of fluid and gas microchannels, separated with a semipermeable elastic membrane, containing a polymer base and the alveolar cell elements. Depending on the type of LoC (single-, double- and three-channel), the membrane may contain only alveolocytes or alveolocytes combined with other cells — endotheliocytes, fibroblasts, alveolar macrophages or tumor cells. Some LoC models also include proteinic or hydrogel stroma, imitating the pulmonary interstitium. The first double-channel LoC variant, in which one side of the membrane contained an alveolocytic monolayer and the other side — a monolayer of endotheliocytes, was developed in 2010 by a group of scientists from the Harvard University for maximally precise in vitro reproduction of the micro-environment and biomechanics operations of the alveoli. Modern LoC modifications include the same elements and differ only by the construction of the microfluidic system, by the biomaterial of semipermeable membrane, by the composition of cellular and stromal elements and by specific tasks to be solved. Besides the LoC imitating the hematoalveolar barrier, there are modifications for studying the specific pathophysiological processes, for the screening of medicinal products, for modeling specific diseases, for example, lung cancer, chronic obstructive pulmonary disease or asthma. In the present review, we have analyzed the existing types of LoC, the biomaterials used, the methods of detecting molecular processes within the microfluidic devices and the main directions of research to be conducted using the “lung-on-a-chip”.
Collapse
Affiliation(s)
- Oksana A. Zhukova
- Pulmonology Scientific Research Institute
- Federal Center of Brain Research and Neurotechnologies
| | | | - Dmitry V. Basmanov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine
| | | | | | | | - Kirill A. Zykov
- Pulmonology Scientific Research Institute
- Russian University of Medicine
| | - Gaukhar M. Yusubalieva
- Federal Center of Brain Research and Neurotechnologies
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
- Engelhardt Institute of Molecular Biology
| | - Vladimir P. Baklaushev
- Pulmonology Scientific Research Institute
- Federal Center of Brain Research and Neurotechnologies
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies
- Engelhardt Institute of Molecular Biology
| |
Collapse
|
14
|
Koronowicz A, Krawczyk K, Such A, Piasna-Słupecka E, Drozdowska M, Leszczyńska T. Biological Effect of Food for Special Medical Purposes (Nutramil TM Complex) on Melanoma Cells in In Vitro Study. Nutrients 2024; 16:4287. [PMID: 39770908 PMCID: PMC11679902 DOI: 10.3390/nu16244287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Melanoma malignum is considered the most dangerous form of skin cancer, characterized by the exceptional resistance to many conventional chemotherapies. The aim of this study was to evaluate the effect of NutramilTM Complex (NC)-Food for Special Medical Purpose (FSMP), on two types of melanoma cell lines, primary WM115 and malignant WM266-4. METHODS At 24 h after seeding, growth medium was replaced with a medium containing encoded treatments of NC or NC-CC (NutramilTM Complex without calcium caseinate) at various concentrations. Cells were treated for 24, 48, and 72 h. RESULTS Our results showed that NutramilTM Complex reduces proliferation of malignant melanoma WM266-4 cells but did not affect the proliferation of WM115 primary melanoma. This was followed by measured down-regulation of selected pro-survival proteins expression in WM266-4 cells, specifically ERK1/2, AKT-1, HSP27, Survivin, and TAK1. Interestingly, our results showed elevated levels of some pro-apoptotic proteins in both cell lines, including Bad, Smad2, p38MAPK, cleaved forms of Caspase-3/7, as well as cleaved PARP. CONCLUSIONS Taken together, our results indicate that various melanoma cancer cell lines may respond in a different way to the same compound. They also suggest induction of apoptotic pathway by NutramilTM Complex as the most likely mechanism of its anticarcinogenic activity.
Collapse
Affiliation(s)
- Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Krakow, Poland; (K.K.); (A.S.); (E.P.-S.); (M.D.); (T.L.)
| | | | | | | | | | | |
Collapse
|
15
|
Liu J, Wang Q, Le Y, Hu M, Li C, An N, Song Q, Yin W, Ma W, Pan M, Feng Y, Wang Y, Han L, Liu J. 3D-Bioprinting for Precision Microtissue Engineering: Advances, Applications, and Prospects. Adv Healthc Mater 2024:e2403781. [PMID: 39648541 DOI: 10.1002/adhm.202403781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Microtissues, engineered to emulate the complexity of human organs, are revolutionizing the fields of regenerative medicine, disease modelling, and drug screening. Despite the promise of traditional microtissue engineering, it has yet to achieve the precision required to fully replicate organ-like structures. Enter 3D bioprinting, a transformative approach that offers unparalleled control over the microtissue's spatial arrangement and mechanical properties. This cutting-edge technology enables the detailed layering of bioinks, crafting microtissues with tissue-like 3D structures. It allows for the direct construction of organoids and the fine-tuning of the mechanical forces vital for tissue maturation. Moreover, 3D-printed devices provide microtissues with the necessary guidance and microenvironments, facilitating sophisticated tissue interactions. The applications of 3D-printed microtissues are expanding rapidly, with successful demonstrations of their functionality in vitro and in vivo. This technology excels at replicating the intricate processes of tissue development, offering a more ethical and controlled alternative to traditional animal models. By simulating in vivo conditions, 3D-printed microtissues are emerging as powerful tools for personalized drug screening, offering new avenues for pharmaceutical development and precision medicine.
Collapse
Affiliation(s)
- Jinrun Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Qi Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yinpeng Le
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Min Hu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Chen Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Ni An
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Qingru Song
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Wenzhen Yin
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Wenrui Ma
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Mingyue Pan
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yutian Feng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Lu Han
- Beijing Institute of Graphic Communication, Beijing, 102600, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| |
Collapse
|
16
|
Huang J, Li A, Liang R, Wu X, Jia S, Chen J, Jiao Z, Li C, Zhang X, Lin J. Future perspectives: advances in bone/cartilage organoid technology and clinical potential. BIOMATERIALS TRANSLATIONAL 2024; 5:425-443. [PMID: 39872930 PMCID: PMC11764185 DOI: 10.12336/biomatertransl.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 01/30/2025]
Abstract
Bone and cartilage tissues are essential for movement and structure, yet diseases like osteoarthritis affect millions. Traditional therapies have limitations, necessitating innovative approaches. Organoid technology, leveraging stem cells' regenerative potential, offers a novel platform for disease modelling and therapy. This review focuses on advancements in bone/cartilage organoid technology, highlighting the role of stem cells, biomaterials, and external factors in organoid development. We discuss the implications of these organoids for regenerative medicine, disease research, and personalised treatment strategies, presenting organoids as a promising avenue for enhancing cartilage repair and bone regeneration. Bone/cartilage organoids will play a greater role in the treatment of bone/cartilage diseases in the future, and promote the progress of biological tissue engineering.
Collapse
Affiliation(s)
- Jingtao Huang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Gunagdong Province, China
| | - Aikang Li
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Gunagdong Province, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
| | - Rongji Liang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Gunagdong Province, China
| | - Xiaohao Wu
- Immunology and Rheumatology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Gunagdong Province, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Gunagdong Province, China
| | - Zilu Jiao
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
| | - Canfeng Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Gunagdong Province, China
| |
Collapse
|
17
|
Velliou RI, Giannousi E, Ralliou C, Kassi E, Chatzigeorgiou A. Ex Vivo Tools and Models in MASLD Research. Cells 2024; 13:1827. [PMID: 39594577 PMCID: PMC11592755 DOI: 10.3390/cells13221827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MASLD) presents a growing global health challenge with limited therapeutic choices. This review delves into the array of ex vivo tools and models utilized in MASLD research, encompassing liver-on-a-chip (LoC) systems, organoid-derived tissue-like structures, and human precision-cut liver slice (PCLS) systems. Given the urgent need to comprehend MASLD pathophysiology and identify novel therapeutic targets, this paper aims to shed light on the pivotal role of advanced ex vivo models in enhancing disease understanding and facilitating the development of potential therapies. Despite challenges posed by the elusive disease mechanism, these innovative methodologies offer promise in reducing the utilization of in vivo models for MASLD research while accelerating drug discovery and biomarker identification, thereby addressing critical unmet clinical needs.
Collapse
Affiliation(s)
- Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (R.-I.V.); (E.G.); (C.R.)
| | - Eirini Giannousi
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (R.-I.V.); (E.G.); (C.R.)
| | - Christiana Ralliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (R.-I.V.); (E.G.); (C.R.)
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; (R.-I.V.); (E.G.); (C.R.)
| |
Collapse
|
18
|
Abed H, Radha R, Anjum S, Paul V, AlSawaftah N, Pitt WG, Ashammakhi N, Husseini GA. Targeted Cancer Therapy-on-A-Chip. Adv Healthc Mater 2024; 13:e2400833. [PMID: 39101627 PMCID: PMC11582519 DOI: 10.1002/adhm.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/15/2024] [Indexed: 08/06/2024]
Abstract
Targeted cancer therapy (TCT) is gaining increased interest because it reduces the risks of adverse side effects by specifically treating tumor cells. TCT testing has traditionally been performed using two-dimensional (2D) cell culture and animal studies. Organ-on-a-chip (OoC) platforms have been developed to recapitulate cancer in vitro, as cancer-on-a-chip (CoC), and used for chemotherapeutics development and testing. This review explores the use of CoCs to both develop and test TCTs, with a focus on three main aspects, the use of CoCs to identify target biomarkers for TCT development, the use of CoCs to test free, un-encapsulated TCTs, and the use of CoCs to test encapsulated TCTs. Despite current challenges such as system scaling, and testing externally triggered TCTs, TCToC shows a promising future to serve as a supportive, pre-clinical platform to expedite TCT development and bench-to-bedside translation.
Collapse
Affiliation(s)
- Heba Abed
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Remya Radha
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Shabana Anjum
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Vinod Paul
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - Nour AlSawaftah
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - William G. Pitt
- Department of Chemical EngineeringBrigham Young UniversityProvoUT84602USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMI48824USA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095‐1600USA
| | - Ghaleb A. Husseini
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| |
Collapse
|
19
|
Wei X, Uchibori K, Kondo N, Utsumi T, Takemoto A, Koike S, Takagi S, Yanagitani N, Nishio M, Katayama R. MIG6 loss increased RET inhibitor tolerant persister cells in RET-rearranged non-small cell lung cancer. Cancer Lett 2024; 604:217220. [PMID: 39244004 DOI: 10.1016/j.canlet.2024.217220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Recently approved RET tyrosine kinase inhibitors (TKIs) have shown promising therapeutic effects against RET-rearranged non-small cell lung cancer (NSCLC) or RET-mutated thyroid cancer. However, resistance develops, limiting long-term efficacy. Although many RET-TKI resistance mechanisms, such as secondary mutations in RET or activation of bypass pathways, are known, some primary or acquired resistance mechanisms are unclear. Here, human genome-wide CRISPR/Cas9 screening was performed to identify genes related to drug-tolerant persister cells. Patient-derived cells with RET-fusion were introduced genome-wide sgRNA library and treated with RET-TKI for 9 days, resulting in the discovery of several candidate genes. Knockout of MED12 or MIG6 significantly increased residual drug-tolerant persister cells under RET-TKI treatment. MIG6 loss induced significant EGFR activation even with low concentrations of EGFR ligands and led to resistance to RET-TKIs. EGFR inhibition with afatinib or cetuximab in combination with RET TKIs was effective in addressing drug persistence. By contrast, a KIF5B-RET positive cells established from a RET-rearranged NSCLC patient, showed significant resistance to RET-TKIs and high dependence on EGFR bypass signaling. Consistently, knocking out EGFR or RET led to high sensitivity to RET or EGFR inhibitor respectively. Here, we have provided a comprehensive analysis of adaptive and acquired resistance against RET-rearranged NSCLC.
Collapse
Affiliation(s)
- Xinzhao Wei
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Ken Uchibori
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Nobuyuki Kondo
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Utsumi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ai Takemoto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sumie Koike
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Takagi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
20
|
Gao H, Peng W, Zhou Y, Ding Z, Su M, Wu Z, Yu C. Flexible and multi-functional three-dimensional scaffold based on enokitake-like Au nanowires for real-time monitoring of endothelial mechanotransduction. Biosens Bioelectron 2024; 263:116610. [PMID: 39079209 DOI: 10.1016/j.bios.2024.116610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Endothelial cells are sensitive to mechanical force and can convert it into biochemical signals to trigger mechano-chemo-transduction. Although conventional techniques have been used to investigate the subsequent modifications of cellular expression after mechanical stimulation, the in situ and real-time acquiring the transient biochemical information during mechanotransduction process remains an enormous challenge. In this work, we develop a flexible and multi-functional three-dimensional conductive scaffold that integrates cell growth, mechanical stimulation, and electrochemical sensing by in situ growth of enokitake-like Au nanowires on a three-dimensional porous polydimethylsiloxane substrate. The conductive scaffold possesses stable and desirable electrochemical sensing performance toward nitric oxide under mechanical deformation. The prepared e-AuNWs/CC/PDMS scaffold exhibits a good electrocatalytic ability to NO with a linear range from 2.5 nM to 13.95 μM and a detection limit of 8 nM. Owing to the excellent cellular compatibility, endothelial cells can be cultured directly on the scaffold and the real-time inducing and recording of nitric oxide secretion under physiological and pathological conditions were achieved. This work renders a reliable sensing platform for real-time monitoring cytomechanical signaling during endothelial mechanotransduction and is expected to promote other related biological investigations based on three-dimensional cell culture.
Collapse
Affiliation(s)
- Hui Gao
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Wenjing Peng
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Yaqiu Zhou
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Zhengyuan Ding
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Mengjie Su
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Zengqiang Wu
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Chunmei Yu
- School of Public Health, Nantong University, Nantong, 226019, China.
| |
Collapse
|
21
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
22
|
Padmanaban AM, Ganesan K, Ramkumar KM. A Co-Culture System for Studying Cellular Interactions in Vascular Disease. Bioengineering (Basel) 2024; 11:1090. [PMID: 39593750 PMCID: PMC11591305 DOI: 10.3390/bioengineering11111090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) are leading causes of morbidity and mortality globally, characterized by complications such as heart failure, atherosclerosis, and coronary artery disease. The vascular endothelium, forming the inner lining of blood vessels, plays a pivotal role in maintaining vascular homeostasis. The dysfunction of endothelial cells contributes significantly to the progression of CVDs, particularly through impaired cellular communication and paracrine signaling with other cell types, such as smooth muscle cells and macrophages. In recent years, co-culture systems have emerged as advanced in vitro models for investigating these interactions and mimicking the pathological environment of CVDs. This review provides an in-depth analysis of co-culture models that explore endothelial cell dysfunction and the role of cellular interactions in the development of vascular diseases. It summarizes recent advancements in multicellular co-culture models, their physiological and therapeutic relevance, and the insights they provide into the molecular mechanisms underlying CVDs. Additionally, we evaluate the advantages and limitations of these models, offering perspectives on how they can be utilized for the development of novel therapeutic strategies and drug testing in cardiovascular research.
Collapse
Affiliation(s)
- Abirami M. Padmanaban
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China;
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| |
Collapse
|
23
|
Ritter P, Oliveto S, Cordiglieri C, Fasciani A, Di Buduo CA, della Volpe L, Bocconi A, Conci C, Miguel CP, Di Micco R, Balduini A, Raimondi MT, Biffo S. A millifluidic bioreactor allows the long term culture of primary lymphocytes or CD34 + hematopoietic cells while allowing the detection of tumorigenic expansion. Front Bioeng Biotechnol 2024; 12:1388312. [PMID: 39416278 PMCID: PMC11479935 DOI: 10.3389/fbioe.2024.1388312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Long-term culture of primary lymphocytes and hematopoietic stem and progenitor cells (HSPCs) is pivotal to their expansion and study. Furthermore, genetic engineering of the above-mentioned primary human cells has several safety needs, including the requirement of efficient in vitro assays for unwanted tumorigenic events. In this work, we tested and optimized the Miniaturized Optically Accessible Bioreactor (MOAB) platform. The MOAB consists of a millifluidic cell culture device with three optically-accessible culture chambers. Inside the MOAB, we inserted a silk-based framework that resembles some properties of the bone marrow environment and cultivated in this device either CD4+ T lymphocytes isolated from healthy donor buffy coat or cord blood-derived hematopoietic CD34+ cells. A fraction of these cells is viable for up to 3 months. Next, we tested the capability of the MOAB to detect tumorigenic events. Serial dilutions of engineered fluorescent tumor cells were mixed with either CD4+ or CD34+ primary cells, and their growth was followed. By this approach, we successfully detected as little as 100 tumorigenic cells mixed with 100,000 primary cells. We found that non-tumorigenic primary cells colonized the silk environment, whereas tumor cells, after an adaptation phase, expanded and entered the circulation. We conclude that the millifluidic platform allows the detection of rare tumorigenic events in the long-term culture of human cells.
Collapse
Affiliation(s)
- Paolo Ritter
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Stefania Oliveto
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Chiara Cordiglieri
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
| | - Alessandra Fasciani
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
| | | | - Lucrezia della Volpe
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Bocconi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Claudio Conci
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | | | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University School for Advanced Studies IUSS, Pavia, Italy
| | | | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Stefano Biffo
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Irfan S, Etekochay MO, Atanasov AG, Prasad VP, Kandimalla R, Mofatteh M, V P, Emran TB. Human olfactory neurosphere-derived cells: a unified tool for neurological disease modelling and neurotherapeutic applications. Int J Surg 2024; 110:6321-6329. [PMID: 38652180 PMCID: PMC11486950 DOI: 10.1097/js9.0000000000001460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
As one of the leading causes of global mortality and morbidity, various neurological diseases cause social and economic burdens. Despite significant advances in the treatment of neurological diseases, establishing a proper disease model, especially for degenerative and infectious diseases, remains a major challenging issue. For long, mice were the model of choice but suffered from serious drawbacks of differences in anatomical and functional aspects of the nervous system. Furthermore, the collection of postmortem brain tissues limits their usage in cultured cell lines. Overcoming such limitations has prompted the usage of stem cells derived from the peripheral nervous system, such as the cells of the olfactory mucosa as a preferred choice. These cells can be easily cultured in vitro and retain the receptors of neuronal cells life-long. Such cells have various advantages over embryonic or induced stem cells, including homology, and ease of culture and can be conveniently obtained from diseased individuals through either biopsies or exfoliation. They have continuously helped in understanding the genetic and developmental mechanisms of degenerative diseases like Alzheimer's and Parkinson's disease. Moreover, the mode of infection of various viruses that can lead to postviral olfactory dysfunction, such as the Zika virus can be monitored through these cells in vitro and their therapeutic development can be fastened.
Collapse
Affiliation(s)
- Saad Irfan
- Animal Science Department, Faculty of Animal and Agriculture Sciences, Universitas Diponegoro, Semarang, Indonesia
| | | | - Atanas G. Atanasov
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| | - Vishnu P. Prasad
- Rajiv Gandhi University of Health Sciences, Jayanagar, Bengaluru, Karnataka
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka, Hyderabad, Telangana State
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
| | - Mohammad Mofatteh
- School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Priyanka V
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | - Talha B. Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
25
|
Yan L, Li D, Li S, Jiao Li J, Du G, Liu H, Zhang J, Li X, Fan Z, Jiu J, Li R, Kong N, Liu W, Du Y, Wang B. Exosomes derived from 3D-cultured MSCs alleviate knee osteoarthritis by promoting M2 macrophage polarization through miR-365a-5p and inhibiting TLR2/Myd88/NF-κB pathway. CHEMICAL ENGINEERING JOURNAL 2024; 497:154432. [DOI: 10.1016/j.cej.2024.154432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Calabretta MM, Gregucci D, Guardigli M, Michelini E. Low-cost and sustainable smartphone-based tissue-on-chip device for bioluminescence biosensing. Biosens Bioelectron 2024; 261:116454. [PMID: 38875866 DOI: 10.1016/j.bios.2024.116454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Several organ-on-chip and cell-on-chip devices have been reported, however, their main drawback is that they are not interoperable (i.e., they have been fabricated with customized equipment, thus cannot be applied in other facilities, unless having the same setup), and require cell-culture facilities and benchtop instrumentation. As a consequence, results obtained with such devices do not generally comply with the principles of findability, accessibility, interoperability, and reusability (FAIR). To overcome such limitation, leveraging cost-effective 3D printing we developed a bioluminescent tissue on-a-chip device that can be easily implemented in any laboratory. The device enables continuous monitoring of cell co-cultures expressing different bioluminescent reporter proteins and, thanks to the implementation of new highly bioluminescent luciferases having high pH and thermal stability, can be monitored via smartphone camera. Another relevant feature is the possibility to insert the chip into a commercial 24-well plate for use with standard benchtop instrumentation. The suitability of this device for 3D cell-based biosensing for monitoring activation of target molecular pathways, i.e., the inflammatory pathway via nuclear factor kappa-B (NF-κB) activation, and general cytotoxicity is here reported showing similar analytical performance when compared to conventional 3D cell-based assays performed in 24-well plates.
Collapse
Affiliation(s)
- Maria Maddalena Calabretta
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via P. Gobetti 85, 40129, Bologna, Italy; Center for Applied Biomedical Research (CRBA), Azienda Ospedaliero-Universitaria Policlinico S. Orsola-Malpighi, 40138, Bologna, Italy
| | - Denise Gregucci
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via P. Gobetti 85, 40129, Bologna, Italy; Center for Applied Biomedical Research (CRBA), Azienda Ospedaliero-Universitaria Policlinico S. Orsola-Malpighi, 40138, Bologna, Italy
| | - Massimo Guardigli
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Elisa Michelini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via P. Gobetti 85, 40129, Bologna, Italy; Center for Applied Biomedical Research (CRBA), Azienda Ospedaliero-Universitaria Policlinico S. Orsola-Malpighi, 40138, Bologna, Italy; Health Sciences and Technologies Interdepartmental Center for Industrial Research (HSTICIR), University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
27
|
Tan NK, Chan H, Lu Z, Zreiqat H, Lakhwani G, Lesani P, New EJ. Ultrasensitive Dual Fluorophore-Conjugated Carbon Dots for Intracellular pH Sensing in 3D Tumor Models. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47303-47313. [PMID: 39215383 DOI: 10.1021/acsami.4c10836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The dysregulation of pH has been linked to the onset of chronic conditions, such as cancer and neurological diseases. Consequently, the development of a highly sensitive tool for intracellular pH sensing is imperative to investigate the interplay between pH and the biochemical changes accompanying disease pathogenesis. Here, we present the development of a ratiometric fluorescent nanoprobe, NpRhoDot, designed for precisely measuring pH levels. We demonstrate its efficacy in sensitively reporting intracellular pH in monolayer A549 lung cancer cells, primary fibroblast cells, and 3D tumor spheroids derived from the DLD-1 colorectal adenocarcinoma cell line. NpRhoDot leverages a novel design, where stable carbon dots are functionalized with a pH-responsive ratiometric fluorescent probe comprising a naphthalimide-rhodamine moiety, NpRho1. This design confers NpRhoDot with the high pH sensitivity characteristics of organic fluorescent probes, along with excellent photostability up to 1 h and biocompatibility of carbon dots. Through one-photon and two-photon fluorescence microscopy, we validate the reliability of NpRhoDot for biosensing intracellular pH in monolayer and three-dimensional tumor models from pH 4 to 7.
Collapse
Affiliation(s)
- Nian Kee Tan
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hazel Chan
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zufu Lu
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hala Zreiqat
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
| | - Girish Lakhwani
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence in Exciton Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pooria Lesani
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
28
|
Chowdhury R, Bhuia MS, Al Hasan MS, Hossain Snigdha S, Afrin S, Büsselberg D, Habtemariam S, Sönmez Gürer E, Sharifi‐Rad J, Ahmed Aldahish A, Аkhtayeva N, Islam MT. Anticancer potential of phytochemicals derived from mangrove plants: Comprehensive mechanistic insights. Food Sci Nutr 2024; 12:6174-6205. [PMID: 39554337 PMCID: PMC11561795 DOI: 10.1002/fsn3.4318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer is a collection of illnesses characterized by aberrant cellular proliferation that can infiltrate or metastasize to distant anatomical sites, posing a notable threat to human well-being due to its substantial morbidity and death rates worldwide. The potential of plant-derived natural compounds as anticancer medicines has been assessed owing to their favorable attributes of few side effects and significant antitumor activity. Mangrove plants and their derived compounds have been scientifically shown to exhibit many significant beneficial biological activities, such as anti-inflammatory, immunomodulatory, antioxidant, neuroprotective, cardioprotective, and hepatoprotective properties. This study summarized mangrove plants and their derived compounds as potential anticancer agents, with an emphasis on the underlying molecular mechanisms. To explore this, we gathered data on the preclinical (in vivo and in vitro) anticancer effects of mangrove plants and their derived compounds from reputable literature spanning 2000 to 2023. We conducted thorough searches in various academic databases, including PubMed, ScienceDirect, Wiley Online, SpringerLink, Google Scholar, Scopus, and the Web of Science. The results demonstrated that mangrove plants and their derived compounds have promising anticancer properties in preclinical pharmacological test systems through various molecular mechanisms, including induction of oxidative stress and mitochondrial dysfunction, cytotoxicity, genotoxicity, cell cycle arrest, apoptosis, autophagy, antiproliferative, antimetastatic, and other miscellaneous actions. Upon thorough observation of the pertinent information, it is suggested that mangrove plants and their derived chemicals may serve as a potential lead in the development of novel drugs for cancer therapy.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Shimul Bhuia
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Sakib Al Hasan
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | | | - Sadia Afrin
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| | | | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of PharmacognosySivas Cumhuriyet UniversitySivasTurkey
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Nursulu Аkhtayeva
- Department of Biodiversity and Bioresources of Al‐Farabi Kazakh National UniversityAlmatyKazakhstan
| | - Muhammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| |
Collapse
|
29
|
Singh SP, Pathuri G, Asch AS, Rao CV, Madka V. Stat3 Inhibitors TTI-101 and SH5-07 Suppress Bladder Cancer Cell Survival in 3D Tumor Models. Cells 2024; 13:1463. [PMID: 39273033 PMCID: PMC11394313 DOI: 10.3390/cells13171463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Bladder cancer (BCa) is one of the most lethal genitourinary malignancies owing to its propensity for recurrence and poor survival. The biochemical pathway, signal transducer and activator of transcription 3 (STAT3), has gained significance as a molecular pathway that promotes proliferation, invasion, and chemoresistance. In this study, we explored the targeting of STAT3 with TTI-101 and SH5-07 in BCa and elucidated the mechanisms in three-dimensional (3D) spheroid and organoid models. We optimized the growth of spheroids from human, rat, and mouse BCa cell lines (J82, NBT-II, and MB49 respectively) and organoids from BBN (N-butyl-N-(4-hydroxybutyl)-nitrosamine)-induced rat bladder tumors. Cell viability was assessed using MTT and trypan blue assays. Intracellular ATP production, ROS production, and calcium AM (CA)/EtBr staining were used to measure the spheroid and organoid inhibition and mitochondrial function. Western blot analysis was performed to evaluate the pharmacodynamic markers involved in cell proliferation, apoptosis, cancer stem cells (CSCs), and STAT3 signaling in BCa. We found that targeting STAT3 (using TTI-101 and SH5-07) significantly reduced the proliferation of BCa spheroids and organoids, which was accompanied by decreased expression of pSTAT3, Cyclin D1, and PCNA. Our data also demonstrated that treatment with STAT3 inhibitors induced ROS production and cell death in BCa spheroids and organoids. STAT3 inhibition-induced cell death was associated with the activation of caspase 3/7 and PARP cleavage. Moreover, TTI-101 and SH5-07 target cancer stem cells by downregulating the expression of CD44 and CD133 in 3D models. This study provides the first evidence for the prevention of BCa with small-molecule inhibitors TTI-101 and SH5-07 via suppression of CSCs and STAT3 signaling.
Collapse
Affiliation(s)
- Surya P. Singh
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.P.S.); (G.P.); (C.V.R.)
- Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.P.S.); (G.P.); (C.V.R.)
- Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Adam S. Asch
- Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Chinthalapally V. Rao
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.P.S.); (G.P.); (C.V.R.)
- Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.P.S.); (G.P.); (C.V.R.)
- Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
30
|
Zhu W, Obara H. Flow structure of okra mucilage in rotating wall vessel system. Heliyon 2024; 10:e36149. [PMID: 39262968 PMCID: PMC11388502 DOI: 10.1016/j.heliyon.2024.e36149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024] Open
Abstract
The rotating-wall vessel (RWV) bioreactor, a 3D suspension culture system, faces challenges related to non-uniform tissue growth during the incubation of bone and heart tissues. Okra mucilage, an extract from okra pods with non-Newtonian rheological properties, has shown potential as a plasma replacement agent and has no induced cytotoxic effects. In this study, we investigated the flow structure of okra mucilage in rotating wall vessel system. By modifying the RWV and adding okra mucilage, we analyzed the flow structure using a high-speed camera and particle image velocimetry (PIV). Our results showed that okra mucilage creates a concentric circle-shaped rigid-like rotation at all rotation speeds (1-50 rpm). The high viscosity of okra mucilage resulted in a low terminal velocity for microparticles and quick response to rotational movements. These findings suggest that okra mucilage has the potential to enhance the uniformity of tissue growth in RWV systems by stabilizing the flow structure and reducing microparticle sedimentation.
Collapse
Affiliation(s)
- Weijun Zhu
- Tokyo Metropolitan University, Minamiosaw 1-1, Hachioji 192-0397, Tokyo, Japan
| | - Hiromichi Obara
- Tokyo Metropolitan University, Minamiosaw 1-1, Hachioji 192-0397, Tokyo, Japan
| |
Collapse
|
31
|
Sgarminato V, Madrid-Wolff J, Boniface A, Ciardelli G, Tonda-Turo C, Moser C. 3D in vitromodeling of the exocrine pancreatic unit using tomographic volumetric bioprinting. Biofabrication 2024; 16:045034. [PMID: 39121863 DOI: 10.1088/1758-5090/ad6d8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, a leading cause of cancer-related deaths globally. Initial lesions of PDAC develop within the exocrine pancreas' functional units, with tumor progression driven by interactions between PDAC and stromal cells. Effective therapies require anatomically and functionally relevantin vitrohuman models of the pancreatic cancer microenvironment. We employed tomographic volumetric bioprinting, a novel biofabrication method, to create human fibroblast-laden constructs mimicking the tubuloacinar structures of the exocrine pancreas. Human pancreatic ductal epithelial (HPDE) cells overexpressing the KRAS oncogene (HPDE-KRAS) were seeded in the multiacinar cavity to replicate pathological tissue. HPDE cell growth and organization within the structure were assessed, demonstrating the formation of a thin epithelium covering the acini inner surfaces. Immunofluorescence assays showed significantly higher alpha smooth muscle actin (α-SMA) vs. F-actin expression in fibroblasts co-cultured with cancerous versus wild-type HPDE cells. Additionally,α-SMA expression increased over time and was higher in fibroblasts closer to HPDE cells. Elevated interleukin (IL)-6 levels were quantified in supernatants from co-cultures of stromal and HPDE-KRAS cells. These findings align with inflamed tumor-associated myofibroblast behavior, serving as relevant biomarkers to monitor early disease progression and target drug efficacy. To our knowledge, this is the first demonstration of a 3D bioprinted model of exocrine pancreas that recapitulates its true 3-dimensional microanatomy and shows tumor triggered inflammation.
Collapse
Affiliation(s)
- Viola Sgarminato
- Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Jorge Madrid-Wolff
- Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Antoine Boniface
- Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Christophe Moser
- Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Jamshed L, Jamshed S, Frank RA, Hewitt LM, Thomas PJ, Holloway AC. Assessing Receptor Activation in 2D and 3D Cultured Hepatocytes: Responses to a Single Compound and a Complex Mixture. TOXICS 2024; 12:631. [PMID: 39330559 PMCID: PMC11436198 DOI: 10.3390/toxics12090631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
Responding to global standards and legislative updates in Canada, including Bill S-5 (2023), toxicity testing is shifting towards more ethical, in vitro methods. Traditional two-dimensional (2D) monolayer cell cultures, limited in replicating the complex in vivo environment, have prompted the development of more relevant three-dimensional (3D) spheroidal hepatocyte cultures. This study introduces the first 3D spheroid model for McA-RH7777 cells, assessing xenobiotic receptor activation, cellular signaling, and toxicity against dexamethasone and naphthenic acid (NA)-fraction components; NAFCs. Our findings reveal that 3D McA-RH7777 spheroids demonstrate enhanced sensitivity and more uniform dose-response patterns in gene expression related to xenobiotic metabolism (AhR and PPAR) for both single compounds and complex mixtures. Specifically, 3D cultures showed significant gene expression changes upon dexamethasone exposure and exhibited varying degrees of sensitivity and resistance to the apoptotic effects induced by NAFCs, in comparison to 2D cultures. The optimization of 3D culture conditions enhances the model's physiological relevance and enables the identification of genomic signatures under varied exposures. This study highlights the potential of 3D spheroid cultures in providing a more accurate representation of the liver's microenvironment and advancing our understanding of cellular mechanisms in toxicity testing.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.J.); (S.J.)
| | - Shanza Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.J.); (S.J.)
| | - Richard A. Frank
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada; (R.A.F.); (L.M.H.)
| | - L. Mark Hewitt
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada; (R.A.F.); (L.M.H.)
| | - Philippe J. Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1S 5B6, Canada;
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada; (L.J.); (S.J.)
| |
Collapse
|
33
|
de Villiers M, Kotzé AF, du Plessis LH. Pneumatic extrusion bioprinting-based high throughput fabrication of a melanoma 3D cell culture model for anti-cancer drug screening. Biomed Mater 2024; 19:055034. [PMID: 39025118 DOI: 10.1088/1748-605x/ad651f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The high incidence of malignant melanoma highlights the need forin vitromodels that accurately represent the tumour microenvironment, enabling developments in melanoma therapy and drug screening. Despite several advancements in 3D cell culture models, appropriate melanoma models for evaluating drug efficacy are still in high demand. The 3D pneumatic extrusion-based bioprinting technology offers numerous benefits, including the ability to achieve high-throughput capabilities. However, there is a lack of research that combines pneumatic extrusion-based bioprinting with analytical assays to enable efficient drug screening in 3D melanoma models. To address this gap, this study developed a simple and highly reproducible approach to fabricate a 3D A375 melanoma cell culture model using the pneumatic extrusion-based bioprinting technology. To optimise this method, the bioprinting parameters for producing 3D cell cultures in a 96-well plate were adjusted to improve reproducibility while maintaining the desired droplet size and a cell viability of 92.13 ± 6.02%. The cross-linking method was optimised by evaluating cell viability and proliferation of the 3D bioprinted cells in three different concentrations of calcium chloride. The lower concentration of 50 mM resulted in higher cell viability and increased cell proliferation after 9 d of incubation. The A375 cells exhibited a steadier proliferation rate in the 3D bioprinted cell cultures, and tended to aggregate into spheroids, whereas the 2D cell cultures generally formed monolayered cell sheets. In addition, we evaluated the drug responses of four different anti-cancer drugs on the A375 cells in both the 2D and 3D cell cultures. The 3D cell cultures exhibited higher levels of drug resistance in all four tested anti-cancer drugs. This method presents a simple and cost-effective method of producing and analysing 3D cell culture models that do not add additional complexity to current assays and shows considerable potential for advancing 3D cell culture models' drug efficacy evaluations.
Collapse
Affiliation(s)
- Maryke de Villiers
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Awie F Kotzé
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
34
|
Mishra A, Kumar R, Harilal S, Nigam M, Datta D, Singh S. Emerging Landscape of In Vitro Models for Assessing Rheumatoid Arthritis Management. ACS Pharmacol Transl Sci 2024; 7:2280-2305. [PMID: 39144547 PMCID: PMC11320735 DOI: 10.1021/acsptsci.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 08/16/2024]
Abstract
Rheumatoid arthritis (RA) is a complex condition that is influenced by various causes, including immunological, genetic, and environmental factors. Several studies using animal models have documented immune system dysfunction and described the clinical characteristics of the disease. These studies have provided valuable insights into the pathogenesis of inflammatory arthritis and the identification of new targets for treatment. Nevertheless, none of these animal models successfully replicated all the characteristics of RA. Additionally, numerous experimental medications, which were developed based on our enhanced comprehension of the immune system's function in RA, have shown potential in animal research but ultimately proved ineffective during different stages of clinical trials. There have been several novel therapy alternatives, which do not achieve a consistently outstanding therapeutic outcome in all patients. This underscores the importance of employing the progress in in vitro models, particularly 3D models like tissue explants, and diverse multicomponent approaches such as coculture strategies, synovial membrane, articular cartilage, and subchondral bone models that accurately replicate the structural characteristics of RA pathophysiology. These methods are crucial for the advancement of potential therapeutic strategies. This review discusses the latest advancements in in vitro models and their potential to greatly impact research on managing RA.
Collapse
Affiliation(s)
- Abhay
Prakash Mishra
- Department
of Pharmacology, University of Free State, Bloemfontein 9301, South Africa
- Department
of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Rajesh Kumar
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Seetha Harilal
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Manisha Nigam
- Department
of Biochemistry, Hemvati Nandan Bahuguna
Garhwal University, Srinagar
Garhwal, Uttarakhand 246174, India
| | - Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sudarshan Singh
- Office of
Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Faculty of
Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
35
|
McCartan AJS, Mrsny RJ. In vitro modelling of intramuscular injection site events. Expert Opin Drug Deliv 2024; 21:1155-1173. [PMID: 39126130 DOI: 10.1080/17425247.2024.2388841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Intramuscular (IM) injections deliver a plethora of drugs. The majority of IM-related literature details dissolution and/or pharmacokinetic (PK) studies, using methods with limited assessments of post-injection events that can impact drug fate, and absorption parameters. Food and Drug Association guidelines no longer require preclinical in vivo modeling in the U.S.A. Preclinical animal models fail to correlate with clinical outcomes, highlighting the need to study, and understand, IM drug fate in vitro using bespoke models emulating human IM sites. Post-IM injection events, i.e. underlying processes that influence PK outcomes, remain unacknowledged, complicating the application of in vitro methods in preclinical drug development. Understanding such events could guide approaches to predict and modulate IM drug fate in humans. AREAS COVERED This article reviews challenges in biorelevant IM site modeling (i.e. modeling drug fate outcomes), the value of technologies available for developing IM injectables, methods for studying drug fate, and technologies for training in performing IM administrations. PubMed, Web-of-Science, and Lens databases provided papers published between 2014 and 2024. EXPERT OPINION IM drug research is expanding what injectable therapeutics can achieve. However, post-injection events that influence PK outcomes remain poorly understood. Until addressed, advances in IM drug development will not realize their full potential.
Collapse
Affiliation(s)
- Adam J S McCartan
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath, UK
| | - Randall J Mrsny
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath, UK
| |
Collapse
|
36
|
Yang H, Niu S, Guo M, Xue Y. Applications of 3D organoids in toxicological studies: a comprehensive analysis based on bibliometrics and advances in toxicological mechanisms. Arch Toxicol 2024; 98:2309-2330. [PMID: 38806717 DOI: 10.1007/s00204-024-03777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
A mechanism exploration is an important part of toxicological studies. However, traditional cell and animal models can no longer meet the current needs for in-depth studies of toxicological mechanisms. The three-dimensional (3D) organoid derived from human embryonic stem cells (hESC) or induced pluripotent stem cells (hiPSC) is an ideal experimental model for the study of toxicological effects and mechanisms, which further recapitulates the human tissue microenvironment and provides a reliable method for studying complex cell-cell interactions. This article provides a comprehensive overview of the state of the 3D organoid technology in toxicological studies, including a bibliometric analysis of the existing literature and an exploration of the latest advances in toxicological mechanisms. The use of 3D organoids in toxicology research is growing rapidly, with applications in disease modeling, organ-on-chips, and drug toxicity screening being emphasized, but academic communications among countries/regions, institutions, and research scholars need to be further strengthened. Attempts to study the toxicological mechanisms of exogenous chemicals such as heavy metals, nanoparticles, drugs and organic pollutants are also increasing. It can be expected that 3D organoids can be better applied to the safety evaluation of exogenous chemicals by establishing a standardized methodology.
Collapse
Affiliation(s)
- Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
37
|
Hamilton G, Hochmair MJ, Stickler S. Overcoming resistance in small-cell lung cancer. Expert Rev Respir Med 2024; 18:569-580. [PMID: 39099310 DOI: 10.1080/17476348.2024.2388288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Small-cell lung cancer (SCLC) accounts for 15% of lung cancers and has a dismal prognosis due to early dissemination and acquired chemoresistance. The initial good response to chemotherapy is followed by refractory relapses within 1-2 years. Mechanisms leading to chemoresistance are not clear and progress is poor. AREAS COVERED This article reviews the current evidence of the resistance of SCLCs at the cellular level including alteration of key proteins and the possible presence of cancer stem cells (CSCs). Without compelling evidence for cellular mechanisms and clinical failures of novel approaches, the study of SCLC has advanced to the role of 3D tumor cell aggregates in chemoresistance. EXPERT OPINION The scarcity of viable tumor specimen from relapsed SCLC patients has hampered the investigations of acquired chemoresistance but a panel of nine SCLC circulating tumor cell (CTC) cell lines have revealed characteristics of SCLC in the advanced refractory states. The chemoresistance of relapsed SCLC seems to be linked to the spontaneous formation of large spheroids, termed tumorospheres, which contain resistant quiescent and hypoxic cells shielded by a physical barrier. So far, drugs to tackle large tumor spheroids are in preclinical and early clinical development.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maximilian J Hochmair
- Department of Pneumonology, Karl Landsteiner Institute for Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Liang Z, Han Y, Chen T, Wang J, Lin K, Yuan L, Li X, Xu H, Wang T, Liu Y, Xiao L, Liang Q. Application of 3D bioprinting technology apply to assessing Dangguiniantongtang (DGNT) decoctions in arthritis. Chin Med 2024; 19:96. [PMID: 38978120 PMCID: PMC11229348 DOI: 10.1186/s13020-024-00948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/19/2024] [Indexed: 07/10/2024] Open
Abstract
The aim of this study was to develop a three-dimensional (3D) cell model in order to evaluate the effectiveness of a traditional Chinese medicine decoction in the treatment of arthritis. Chondrocytes (ATDC5) and osteoblasts (MC3T3-E1) were 3D printed separately using methacryloyl gelatin (GelMA) hydrogel bioinks to mimic the natural 3D cell environment. Both cell types showed good biocompatibility in GelMA. Lipopolysaccharide (LPS) was added to the cell models to create inflammation models, which resulted in increased expression of inflammatory factors IL-1β, TNF-α, iNOS, and IL-6, and decreased expression of cell functional genes such as Collagen II (COLII), transcription factor SOX-9 (Sox9), Aggrecan, alkaline phosphatase (ALP), RUNX family transcription factor 2 (Runx2), Collagen I (COLI), Osteopontin (OPN), and bone morphogenetic protein-2 (BMP-2). The created inflammation model was then used to evaluate the effectiveness of Dangguiniantongtang (DGNT) decoctions. The results showed that DGNT reduced the expression of inflammatory factors and increased the expression of functional genes in the cell model. In summary, this study established a 3D cell model to assess the effectiveness of traditional Chinese medicine (TCM) decoctions, characterized the gene expression profile of the inflammatory state model, and provided a practical reference for future research on TCM efficacy evaluation for arthritis treatment.
Collapse
Affiliation(s)
- Zhichao Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 540 Xinhua Road, Shanghai, 200052, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Yunxi Han
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Tao Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
- Institute of Rehabilitation Medicine, School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, 1200 Cailun Road, Shanghai, 201203, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
- Institute of Rehabilitation Medicine, School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, 1200 Cailun Road, Shanghai, 201203, China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Luying Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Xuefei Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Tengteng Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China
| | - Yang Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China.
| | - Lianbo Xiao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 540 Xinhua Road, Shanghai, 200052, China.
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, 540 Xinhua Road, Shanghai, 200052, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
39
|
Miranda GASC, Corrêa IA, Amorim ÉA, Caldas LA, Carneiro FÁ, da Costa LJ, Granjeiro JM, Tanuri A, de Souza W, Baptista LS. Cost-effective 3D lung tissue spheroid as a model for SARS-CoV-2 infection and drug screening. Artif Organs 2024; 48:723-733. [PMID: 38385713 DOI: 10.1111/aor.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/15/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The SARS-CoV-2 pandemic has spurred an unparalleled scientific endeavor to elucidate the virus' structure, infection mechanisms, and pathogenesis. Two-dimensional culture systems have been instrumental in shedding light on numerous aspects of COVID-19. However, these in vitro systems lack the physiological complexity to comprehend the infection process and explore treatment options. Three-dimensional (3D) models have been proposed to fill the gap between 2D cultures and in vivo studies. Specifically, spheroids, composed of lung cell types, have been suggested for studying SARS-CoV-2 infection and serving as a drug screening platform. METHODS 3D lung spheroids were prepared by coculturing human alveolar or bronchial epithelial cells with human lung stromal cells. The morphology, size, and ultrastructure of spheroids before and after SARS-CoV-2 infection were analyzed using optical and electron microscopy. Immunohistochemistry was used to detect spike protein and, thus, the virus presence in the spheroids. Multiplex analysis elucidated the cytokine release after virus infection. RESULTS The spheroids were stable and kept their size and morphology after SARS-CoV-2 infection despite the presence of multivesicular bodies, endoplasmic reticulum rearrangement, tubular compartment-enclosed vesicles, and the accumulation of viral particles. The spheroid responded to the infection releasing IL-6 and IL-8 cytokines. CONCLUSION This study demonstrates that coculture spheroids of epithelial and stromal cells can serve as a cost-effective infection model for the SARS-CoV-2 virus. We suggest using this 3D spheroid as a drug screening platform to explore new treatments related to the cytokines released during virus infection, especially for long COVID treatment.
Collapse
Affiliation(s)
| | - Isadora Alonso Corrêa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Érica Almeida Amorim
- Gcell 3D, Rio de Janeiro, Brazil
- Laboratório de Ultraestrutura celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Ayres Caldas
- Laboratório de Ultraestrutura celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Núcleo Multidisciplinar de Pesquisa (Numpex-bio), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Ávila Carneiro
- Laboratório de Ultraestrutura celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Núcleo Multidisciplinar de Pesquisa (Numpex-bio), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Jesus da Costa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Mauro Granjeiro
- Laboratório de Biologia de Células Eucarióticas, Duque de Caxias, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, Brazil
- Laboratório de Pesquisa Clínica em Odontologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandra Santos Baptista
- Núcleo Multidisciplinar de Pesquisa (Numpex-bio), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia de Células Eucarióticas, Duque de Caxias, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Singh S, Kachhawaha K, Singh SK. Comprehensive approaches to preclinical evaluation of monoclonal antibodies and their next-generation derivatives. Biochem Pharmacol 2024; 225:116303. [PMID: 38797272 DOI: 10.1016/j.bcp.2024.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Biotherapeutics hold great promise for the treatment of several diseases and offer innovative possibilities for new treatments that target previously unaddressed medical needs. Despite successful transitions from preclinical to clinical stages and regulatory approval, there are instances where adverse reactions arise, resulting in product withdrawals. As a result, it is essential to conduct thorough evaluations of safety and effectiveness on an individual basis. This article explores current practices, challenges, and future approaches in conducting comprehensive preclinical assessments to ensure the safety and efficacy of biotherapeutics including monoclonal antibodies, toxin-conjugates, bispecific antibodies, single-chain antibodies, Fc-engineered antibodies, antibody mimetics, and siRNA-antibody/peptide conjugates.
Collapse
Affiliation(s)
- Santanu Singh
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Kajal Kachhawaha
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sumit K Singh
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
41
|
Farhangnia P, Ghods R, Falak R, Zarnani AH, Delbandi AA. Identification of placenta-specific protein 1 (PLAC-1) expression on human PC-3 cell line-derived prostate cancer stem cells compared to the tumor parental cells. Discov Oncol 2024; 15:251. [PMID: 38943028 PMCID: PMC11213845 DOI: 10.1007/s12672-024-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Placenta-specific protein 1 (PLAC-1) is a gene primarily expressed in the placenta and the testis. Interestingly, it is also found to be expressed in many solid tumors, and it is involved in malignant cell features. However, no evidence has been reported regarding the relationship between PLAC-1 and cancer stem cells (CSCs). In the current research, we explored the expression of the PLAC-1 molecule in prostate cancer stem cells (PCSCs) derived from the human PC-3 cell line. The enrichment of PCSCs was achieved using a three-dimensional cell culture technique known as the sphere-formation assay. To confirm the identity of PCSCs, we examined the expression of genes associated with stemness and pluripotency, such as SOX2, OCT4, Nanog, C-Myc, and KLF-4, as well as stem cell differentiation molecules like CD44 and CD133. These evaluations were conducted in both the PCSCs and the original tumor cells (parental cells) using real-time PCR and flow cytometry. Subsequently, we assessed the expression of the PLAC-1 molecule in both enriched cells and parental tumor cells at the gene and protein levels using the same techniques. The tumor cells from the PC-3 cell line formed spheroids with CSC characteristics in a non-adherent medium. The expression of SOX2, OCT4, Nanog, and C-Myc genes (p < 0.01), and the molecules CD44 and CD133 (p < 0.05) were significantly elevated in PCSCs compared to the parental cells. The expression of the PLAC-1 molecule in PCSCs showed a significant increase compared to the parental cells at both gene (p < 0.01) and protein (p < 0.001) levels. In conclusion, it was indicated for the first time that PLAC-1 is up-regulated in PCSCs derived from human PC-3 cell line. This study may propose PLAC-1 as a potential target in targeted therapies, which should be confirmed through further studies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Wang Y, Ma D, Zhang Q, Qian W, Liang D, Shen J, Pan X, Wang C, Sheng E, Zhu D. 3D-Bioprinted Hepar-on-a-Chip Implanted in Graphene-Based Plasmonic Sensors. ACS Sens 2024; 9:3423-3432. [PMID: 38803215 DOI: 10.1021/acssensors.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Precise three-dimensional (3D) bioprinting designs enable the fabrication of unique structures for 3D-cell culture models. There is still an absence of real-time detection tools to effectively track in situ 3D-cell performance, hindering a comprehensive understanding of disease progression and drug efficacy assessment. While numerous bioinks have been developed, few are equipped with internal sensors capable of accurate detection. This study addresses these challenges by constructing a 3D-bioprinted hepar-on-a-chip embedded with graphene quantum dot-capped gold nanoparticle-based plasmonic sensors, featuring strong surface-enhanced Raman scattering (SERS) enhancement, biostability, and signal consistency. Such an integrated hepar-on-a-chip demonstrates excellent capability in the secretion of liver function-related proteins and the expression of drug metabolism and transport-related genes. Furthermore, the on-site detection of cell-secreted biomarker glutathione transferase α (GST-α) was successfully achieved using the plasmonic probe, with a dynamic linear detection range of 20-500 ng/mL, showcasing high anti-interference and specificity for GST-α. Ultimately, this integrated hepar-on-a-chip system offers a high-quality platform for monitoring liver injury.
Collapse
Affiliation(s)
- Yuting Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Dandan Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Qijia Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Wenhui Qian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Dongbing Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Jiachen Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Xing Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Chao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Enze Sheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
43
|
Da Silva D, Crous A, Abrahamse H. Enhancing Osteoblast Differentiation from Adipose-Derived Stem Cells Using Hydrogels and Photobiomodulation: Overcoming In Vitro Limitations for Osteoporosis Treatment. Curr Issues Mol Biol 2024; 46:6346-6365. [PMID: 39057021 PMCID: PMC11276038 DOI: 10.3390/cimb46070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoporosis represents a widespread and debilitating chronic bone condition that is increasingly prevalent globally. Its hallmark features include reduced bone density and heightened fragility, which significantly elevate the risk of fractures due to the decreased presence of mature osteoblasts. The limitations of current pharmaceutical therapies, often accompanied by severe side effects, have spurred researchers to seek alternative strategies. Adipose-derived stem cells (ADSCs) hold considerable promise for tissue repair, albeit they encounter obstacles such as replicative senescence in laboratory conditions. In comparison, employing ADSCs within three-dimensional (3D) environments provides an innovative solution, replicating the natural extracellular matrix environment while offering a controlled and cost-effective in vitro platform. Moreover, the utilization of photobiomodulation (PBM) has emerged as a method to enhance ADSC differentiation and proliferation potential by instigating cellular stimulation and facilitating beneficial performance modifications. This literature review critically examines the shortcomings of current osteoporosis treatments and investigates the potential synergies between 3D cell culture and PBM in augmenting ADSC differentiation towards osteogenic lineages. The primary objective of this study is to assess the efficacy of combined 3D environments and PBM in enhancing ADSC performance for osteoporosis management. This research is notably distinguished by its thorough scrutiny of the existing literature, synthesis of recent advancements, identification of future research trajectories, and utilization of databases such as PubMed, Scopus, Web of Science, and Google Scholar for this literature review. Furthermore, the exploration of biomechanical and biophysical stimuli holds promise for refining treatment strategies. The future outlook suggests that integrating PBM with ADSCs housed within 3D environments holds considerable potential for advancing bone regeneration efforts. Importantly, this review aspires to catalyse further advancements in combined therapeutic strategies for osteoporosis regeneration.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (D.D.S.); (A.C.)
| |
Collapse
|
44
|
Ferretti L, Moccia V, Centelleghe C, Venerando A, Dettin M, Sieni E, Zamuner A, Caicci F, Castagnaro M, Zappulli V, Mazzariol S. Bottlenose dolphin (Tursiops truncatus) immortalized fibroblasts on novel 3D in vitro collagen-free scaffolds. PLoS One 2024; 19:e0304992. [PMID: 38861523 PMCID: PMC11166351 DOI: 10.1371/journal.pone.0304992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Dolphins, as apex predators, can be considered relevant sentinels of the health of marine ecosystems. The creation of 3D cell models to assess in vitro cell-to-cell and cell-to-matrix interactions in environmental-mimicking conditions, is of considerable interest. However, to date the establishment of cetacean 3D culture systems has not yet been accomplished. Thus, in this study, different 3D systems of bottlenose dolphin (Tursiops truncatus) skin fibroblasts have been analyzed. Particularly, novel scaffolds based on hyaluronic acid and ionic-complementary self-assembling peptides such as RGD-EAbuK and EAbuK-IKVAV have been compared to Matrigel. Histological and fluorescent staining, electron microscopy (TEM) analyses and viability assays have been performed and RT-PCR has been used to detect extracellular matrix (ECM) components produced by cells. Results showed that Matrigel induced cells to form aggregates with lower viability and no ECM production compared to the novel scaffolds. Moreover, scaffolds allowed dispersed cells to produce a collagenous ECM containing collagen1a1, laminin B1 and elastin. The HA-EAbuK-IKVAV scaffold resulted in the most suitable 3D model in terms of cell quantity and viability. The development of this innovative approach is the first step towards the possibility to create 3D in vitro models for this protected species.
Collapse
Affiliation(s)
- Lucrezia Ferretti
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Andrea Venerando
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Elisabetta Sieni
- Department of Theoretical and Applied Sciences, Insubria University, Varese, Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Department of Civil, Environmental, and Architectural Engineering, University of Padova, Padova, Italy
| | | | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| |
Collapse
|
45
|
Li X, Wang M, Davis TP, Zhang L, Qiao R. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices. BIOSENSORS 2024; 14:301. [PMID: 38920605 PMCID: PMC11201418 DOI: 10.3390/bios14060301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Three-dimensional (3D) printing presents a compelling alternative for fabricating microfluidic devices, circumventing certain limitations associated with traditional soft lithography methods. Microfluidics play a crucial role in the biomedical sciences, particularly in the creation of tissue spheroids and pharmaceutical research. Among the various 3D printing techniques, light-driven methods such as stereolithography (SLA), digital light processing (DLP), and photopolymer inkjet printing have gained prominence in microfluidics due to their rapid prototyping capabilities, high-resolution printing, and low processing temperatures. This review offers a comprehensive overview of light-driven 3D printing techniques used in the fabrication of advanced microfluidic devices. It explores biomedical applications for 3D-printed microfluidics and provides insights into their potential impact and functionality within the biomedical field. We further summarize three light-driven 3D printing strategies for producing biomedical microfluidic systems: direct construction of microfluidic devices for cell culture, PDMS-based microfluidic devices for tissue engineering, and a modular SLA-printed microfluidic chip to co-culture and monitor cells.
Collapse
Affiliation(s)
| | | | | | - Liwen Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
46
|
Kase AM, Gleba J, Miller JL, Miller E, Petit J, Barrett MT, Zhou Y, Parent EE, Cai H, Knight JA, Orme J, Reynolds J, Durham WF, Metz TM, Meurice N, Edenfield B, Alasonyalilar Demirer A, Bilgili A, Hickman PG, Pawlush ML, Marlow L, Wickland DP, Tan W, Copland JA. Patient-Derived Tumor Xenograft Study with CDK4/6 Inhibitor Plus AKT Inhibitor for the Management of Metastatic Castration-Resistant Prostate Cancer. Mol Cancer Ther 2024; 23:823-835. [PMID: 38442920 DOI: 10.1158/1535-7163.mct-23-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/04/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive malignancy with poor outcomes. To investigate novel therapeutic strategies, we characterized three new metastatic prostate cancer patient derived-tumor xenograft (PDTX) models and developed 3D spheroids from each to investigate molecular targeted therapy combinations including CDK4/6 inhibitors (CDK4/6i) with AKT inhibitors (ATKi). Metastatic prostate cancer tissue was collected and three PDTX models were established and characterized using whole-exome sequencing. PDTX 3D spheroids were developed from these three PDTXs to show resistance patterns and test novel molecular-targeted therapies. CDK4/6i's were combined with AKTi's to assess synergistic antitumor response to prove our hypothesis that blockade of AKT overcomes drug resistance to CDK4/6i. This combination was evaluated in PDTX three-dimensional (3D) spheroids and in vivo experiments with responses measured by tumor volumes, PSA, and Ga-68 PSMA-11 PET-CT imaging. We demonstrated CDK4/6i's with AKTi's possess synergistic antitumor activity in three mCRPC PDTX models. These models have multiple unique pathogenic and deleterious genomic alterations with resistance to single-agent CDK4/6i's. Despite this, combination therapy with AKTi's was able to overcome resistance mechanisms. The IHC and Western blot analysis confirmed on target effects, whereas tumor volume, serum PSA ELISA, and radionuclide imaging demonstrated response to therapy with statistically significant SUV differences seen with Ga-68 PSMA-11 PET-CT. These preclinical data demonstrating antitumor synergy by overcoming single-agent CDK 4/6i as well as AKTi drug resistance provide the rational for a clinical trial combining a CDK4/6i with an AKTi in patients with mCRPC whose tumor expresses wild-type retinoblastoma 1.
Collapse
Affiliation(s)
- Adam M Kase
- Division of Hematology-Oncology, Mayo Clinic Jacksonville, Florida
| | - Justyna Gleba
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - James L Miller
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Erin Miller
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Joachim Petit
- Division of Hematology-Oncology, Mayo Clinic Scottsdale, Arizona
| | | | - Yumei Zhou
- Division of Hematology-Oncology, Mayo Clinic Scottsdale, Arizona
| | | | - Hancheng Cai
- Radiology Department, Mayo Clinic Jacksonville, Florida
| | - Joshua A Knight
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Jacob Orme
- Division of Hematology-Oncology, Mayo Clinic Rochester, Minnesota
| | - Jordan Reynolds
- Department of Laboratory Medicine and Pathology, Mayo Clinic Jacksonville, Florida
| | | | - Thomas M Metz
- Charles River Discovery Research Services Germany, Freiburg, Germany
| | - Nathalie Meurice
- Division of Hematology-Oncology, Mayo Clinic Scottsdale, Arizona
| | | | | | - Ahmet Bilgili
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | | | | | - Laura Marlow
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Daniel P Wickland
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic Jacksonville, Florida
| | - Winston Tan
- Division of Hematology-Oncology, Mayo Clinic Jacksonville, Florida
| | - John A Copland
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| |
Collapse
|
47
|
Bulygina IN, Karshieva SS, Permyakova ES, Korol AA, Kolesnikov EA, Choudhary R, Senatov FS, Koudan EV. In vitro evaluation of doxorubicin release from diopside particles on MG-63 and HF spheroids as a 3D model of tumor and healthy tissues. Toxicol In Vitro 2024; 98:105830. [PMID: 38641231 DOI: 10.1016/j.tiv.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Local drug delivery systems based on bioceramics ensure safe and effective treatment of bone defects and anticancer therapy. A promising drug delivery scaffold material for bone treatment applications is diopside (CaMgSi2O6) which is bioactive, degradable, and possesses drug-release ability. Currently, in vitro assessment of drug release from biomaterials is performed mostly on a 2D cell monolayer. However, to interpret and integrate biochemical signals, cells need a 3D microenvironment that provides cell-cell and cell-extracellular matrix interactions. In this regard, 3D cell models are gaining popularity. In this work, we proposed the protocol for evaluation of the effect of doxorubicin released from diopside on MG-63 cells and primary human fibroblasts in 3D culture conditions. Tissue spheroids with similar diameters were incubated with doxorubicin-loaded diopside for 72 h, the amount of diopside was calculated in accordance with the required doxorubicin concentration. We demonstrated that doxorubicin is gradually released from diopside and exhibits an activity similar to that of the pure drug at the same total concentration. It is important to note that doxorubicin was more potent on MG-63 spheroids compared to HF spheroids, which confirmed the reliability of spheroids as 3D models of tumor and healthy tissues.
Collapse
Affiliation(s)
- Inna N Bulygina
- National University of Science and Technology "MISIS", 119049 Moscow, Russia.
| | - Saida Sh Karshieva
- National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | | | - Artem A Korol
- National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | - Evgeny A Kolesnikov
- National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | - Rajan Choudhary
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kipsala Street 6A, LV-1048 Riga, Latvia
| | - Fedor S Senatov
- National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | - Elizaveta V Koudan
- National University of Science and Technology "MISIS", 119049 Moscow, Russia
| |
Collapse
|
48
|
Teixeira Polez R, Huynh N, Pridgeon CS, Valle-Delgado JJ, Harjumäki R, Österberg M. Insights into spheroids formation in cellulose nanofibrils and Matrigel hydrogels using AFM-based techniques. Mater Today Bio 2024; 26:101065. [PMID: 38706731 PMCID: PMC11066555 DOI: 10.1016/j.mtbio.2024.101065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
The recent FDA decision to eliminate animal testing requirements emphasises the role of cell models, such as spheroids, as regulatory test alternatives for investigations of cellular behaviour, drug responses, and disease modelling. The influence of environment on spheroid formation are incompletely understood, leading to uncertainty in matrix selection for scaffold-based 3D culture. This study uses atomic force microscopy-based techniques to quantify cell adhesion to Matrigel and cellulose nanofibrils (CNF), and cell-cell adhesion forces, and their role in spheroid formation of hepatocellular carcinoma (HepG2) and induced pluripotent stem cells (iPS(IMR90)-4). Results showed different cell behaviour in CNF and Matrigel cultures. Both cell lines formed compact spheroids in CNF but loose cell aggregates in Matrigel. Interestingly, the type of cell adhesion protein, and not the bond strength, appeared to be a key factor in the formation of compact spheroids. The gene expression of E- and N-cadherins, proteins on cell membrane responsible for cell-cell interactions, was increased in CNF culture, leading to formation of compact spheroids while Matrigel culture induced integrin-laminin binding and downregulated E-cadherin expression, resulting in looser cell aggregates. These findings enhance our understanding of cell-biomaterial interactions in 3D cultures and offer insights for improved 3D cell models, culture biomaterials, and applications in drug research.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Ngoc Huynh
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Chris S. Pridgeon
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Riina Harjumäki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| |
Collapse
|
49
|
de Araújo TBS, Nogueira RLR, Siquara da Rocha LDO, Bastos IN, Dias RB, Souza BSDF, Lambert DW, Coletta RD, Silva VAO, Gurgel Rocha CA. Enhancing scaffold-free spheroid models: 3D cell bioprinting method for metastatic HSC3-Oral squamous carcinoma cell line. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100158. [PMID: 38852983 DOI: 10.1016/j.slasd.2024.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
3D in vitro systems offer advantages over the shortcomings of two-dimensional models by simulating the morphological and functional features of in vivo-like environments, such as cell-cell and cell-extracellular matrix interactions, as well as the co-culture of different cell types. Nevertheless, these systems present technical challenges that limit their potential in cancer research requiring cell line- and culture-dependent standardization. This protocol details the use of a magnetic 3D bioprinting method and other associated techniques (cytotoxicity assay and histological analysis) using oral squamous cell carcinoma cell line, HSC3, which offer advantages compared to existing widely used approaches. This protocol is particularly timely, as it validates magnetic bioprinting as a method for the rapid deployment of 3D cultures as a tool for compound screening and development of heterotypic cultures such as co-culture of oral squamous cell carcinoma cells with cancer-associated fibroblasts (HSC3/CAFs).
Collapse
Affiliation(s)
- Taís Bacelar Sacramento de Araújo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador 40110-150, Bahia, Brazil
| | - Raphael Luís Rocha Nogueira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador 40110-909, Bahia, Brazil
| | - Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador 40110-909, Bahia, Brazil
| | - Iasmin Nogueira Bastos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador 40110-150, Bahia, Brazil
| | - Rosane Borges Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador 40110-150, Bahia, Brazil
| | - Bruno Solano De Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador 40110-909, Bahia, Brazil; Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), São Rafael Hospital, Salvador 41253-190, Brazil
| | | | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-903, São Paulo, Brazil; Graduate Program in Oral Biology, School of Dentistry University of Campinas, Piracicaba 13414-903, São Paulo, Brazil
| | - Viviane Aline Oliveira Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador 40110-909, Bahia, Brazil; Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), São Rafael Hospital, Salvador 41253-190, Brazil; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil.
| | - Clarissa A Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador 40110-150, Bahia, Brazil; Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador 40110-909, Bahia, Brazil; Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), São Rafael Hospital, Salvador 41253-190, Brazil.
| |
Collapse
|
50
|
Ishikawa S, Kamata H, Sakai T. Preclustering Gelatin for Faster-Forming Injectable Hydrogels: A Strategy for Fabricating 3D Hydrogel Scaffolds with Improved Cell Dispersion. Macromol Biosci 2024; 24:e2300450. [PMID: 38403872 DOI: 10.1002/mabi.202300450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Gelatin-based injectable hydrogels capable of encapsulating cells are pivotal in tissue engineering because they can conform to any geometry and exhibit physical properties similar to those of living tissues. However, the slow gelation process observed in these cell-encapsulating hydrogels often causes an uneven dispersion of cells. This study proposes an approach for achieving fast gelation of unmodified gelatin under physiological conditions through gelatin preclustering. By using tetrafunctional succinimidyl-terminated poly(ethylene glycol) as a clustering agent, the gelation process is successfully expedited fivefold without requiring chemical modifications, effectively addressing the associated challenges of uneven cell distribution.
Collapse
Affiliation(s)
- Shohei Ishikawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyuki Kamata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takamasa Sakai
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|