1
|
Sun Y, Shan X, Li M, Niu Y, Sun Z, Ma X, Wang T, Zhang J, Niu D. Autoimmune mechanisms and inflammation in obesity-associated type 2 diabetes, atherosclerosis, and non-alcoholic fatty liver disease. Funct Integr Genomics 2025; 25:84. [PMID: 40205260 DOI: 10.1007/s10142-025-01587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
Obesity, characterized by the excessive accumulation of white adipose tissue, is a significant global health burden and a major risk factor for a range of diseases, including malignancies and metabolic disorders. Individuals with high visceral fat content are particularly susceptible to severe complications such as type 2 diabetes, cardiovascular diseases, and liver disorders. However, the pathogenesis of obesity-related metabolic diseases extends beyond simple adiposity. Chronic obesity triggers a prolonged inflammatory response, which leads to tissue fibrosis and sustained organ damage, contributing to multi-organ dysfunction. This review explores the autoimmune mechanisms and inflammatory pathways underlying obesity-induced type 2 diabetes, atherosclerosis, and non-alcoholic fatty liver disease, with an emphasis on their interrelated pathophysiology and the potential for therapeutic interventions.
Collapse
Grants
- LZ22C010003 Key Project of Zhejiang Provincial Natural Science Foundation of China
- LZ22C010003 Key Project of Zhejiang Provincial Natural Science Foundation of China
- LZ22C010003 Key Project of Zhejiang Provincial Natural Science Foundation of China
- LZ22C010003 Key Project of Zhejiang Provincial Natural Science Foundation of China
- LZ22C010003 Key Project of Zhejiang Provincial Natural Science Foundation of China
- 2021R52043 Scientific and Technological Innovation Leading Talents Project of Zhejiang Provincial "High-level Talents Special Support Plan"
- 2021R52043 Scientific and Technological Innovation Leading Talents Project of Zhejiang Provincial "High-level Talents Special Support Plan"
- 2021R52043 Scientific and Technological Innovation Leading Talents Project of Zhejiang Provincial "High-level Talents Special Support Plan"
- 2021R52043 Scientific and Technological Innovation Leading Talents Project of Zhejiang Provincial "High-level Talents Special Support Plan"
- 2021R52043 Scientific and Technological Innovation Leading Talents Project of Zhejiang Provincial "High-level Talents Special Support Plan"
- 32202656, 32402753 National Natural Science Foundation of China
- 32202656, 32402753 National Natural Science Foundation of China
- 32202656, 32402753 National Natural Science Foundation of China
- 32202656, 32402753 National Natural Science Foundation of China
- 32202656, 32402753 National Natural Science Foundation of China
- LQ23C170003, LQ23C180003 & LQ24C170001 Zhejiang Provincial Natural Science Foundation of China
- LQ23C170003, LQ23C180003 & LQ24C170001 Zhejiang Provincial Natural Science Foundation of China
- LQ23C170003, LQ23C180003 & LQ24C170001 Zhejiang Provincial Natural Science Foundation of China
- LQ23C170003, LQ23C180003 & LQ24C170001 Zhejiang Provincial Natural Science Foundation of China
- LQ23C170003, LQ23C180003 & LQ24C170001 Zhejiang Provincial Natural Science Foundation of China
- 2021C02068-4 Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding
- 2021C02068-4 Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding
Collapse
Affiliation(s)
- Yuanyuan Sun
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xueting Shan
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mingyang Li
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yifan Niu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhongxin Sun
- Department of Plastic, Reconstructive & Hand Microsurgery, Ningbo NO.6 Hospital, Ningbo, 315000, Zhejiang, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, 211300, Jiangsu, China.
| | - Jufang Zhang
- Department of Plastic and Aesthetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
2
|
Zhao Y, Yue R. White adipose tissue in type 2 diabetes and the effect of antidiabetic drugs. Diabetol Metab Syndr 2025; 17:116. [PMID: 40186308 PMCID: PMC11969724 DOI: 10.1186/s13098-025-01678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
White adipose tissue (WAT) is highly flexible and was previously considered a passive location for energy storage. Its endocrine function has been established for several years, earning it the title of an "endocrine organ" due to its ability to secrete many adipokines that regulate metabolism. WAT is one of the core tissues that influence insulin sensitivity. Its dysfunction enhances insulin resistance and type 2 diabetes (T2D) progression. However, T2D may cause WAT dysfunction, including changes in distribution, metabolism, adipocyte hypertrophy, inflammation, aging, and adipokines and free fatty acid levels, which may exacerbate insulin resistance. This review used PubMed to search WAT dysfunction in T2D and the effects of these changes on insulin resistance. Additionally, we described and discussed the effects of antidiabetic drugs, including insulin therapy, sulfonylureas, metformin, glucose-like peptide-1 receptor agonists, thiazolidinediones, and sodium-dependent glucose transporters-2 inhibitors, on WAT parameters under T2D conditions.
Collapse
Affiliation(s)
- Yixuan Zhao
- Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, 610072, P. R. China
| | - Rensong Yue
- Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, 610072, P. R. China.
| |
Collapse
|
3
|
Domagalski M, Olszańska J, Pietraszek‐Gremplewicz K, Nowak D. The role of adipogenic niche resident cells in colorectal cancer progression in relation to obesity. Obes Rev 2025; 26:e13873. [PMID: 39763022 PMCID: PMC11884973 DOI: 10.1111/obr.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 03/08/2025]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and has one of the highest mortality rates. Considering its nonlinear etiology, many risk factors are associated with CRC formation and development, with obesity at the forefront. Obesity is regarded as one of the key environmental risk determinants for the pathogenesis of CRC. Excessive food intake and a sedentary lifestyle, together with genetic predispositions, lead to the overgrowth of adipose tissue along with a disruption in the number and function of its building cells. Adipose tissue-resident cells may constitute part of the CRC microenvironment. Alterations in their physiology and secretory profiles observed in obesity may further contribute to CRC progression, and despite similar localization, their contributions are not equivalent. They can interact with CRC cells, either directly or indirectly, influencing various processes that contribute to tumorigenesis. The main aim of this review is to provide insights into the diversity of adipose tissue resident cells, namely, adipocytes, adipose stromal cells, and immunological cells, regarding the role of particular cell types in co-forming the CRC microenvironment. The scope of this study was also devoted to the abnormalities in adipose tissue physiology observed in obesity states and their impact on CRC development.
Collapse
Affiliation(s)
- Mikołaj Domagalski
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | - Joanna Olszańska
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | | | - Dorota Nowak
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| |
Collapse
|
4
|
You D, Kang S. JMJD8 Regulates Adipocyte Hypertrophy Through the Interaction With Perilipin 2. Diabetes 2025; 74:458-471. [PMID: 39787420 PMCID: PMC11926275 DOI: 10.2337/db23-0883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
ARTICLE HIGHLIGHTS New research builds on previous findings that JMJD8 mediates insulin resistance by promoting adipocyte hypertrophy. We identified PLIN2 as a binding partner of JMJD8 using proteomics approaches. This study reveals a physical interaction between JMJD8 and PLIN2, which plays a crucial role in driving adipocyte hypertrophy and insulin resistance. JMJD8 suppresses fasting-induced lipophagy and reduces energy production by inhibiting PLIN2 phosphorylation. These findings highlight the importance of JMJD8 and PLIN2 in regulating lipid droplet homeostasis and suggest a potential mechanism for controlling fat mobilization during energy deprivation.
Collapse
Affiliation(s)
- Dongjoo You
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, CA
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
5
|
Ribas-Latre A, Hoffmann A, Gebhardt C, Weiner J, Arndt L, Raulien N, Gericke M, Ghosh A, Krause K, Klöting N, Pfluger PT, Sheikh BN, Ebert T, Tönjes A, Stumvoll M, Wolfrum C, Blüher M, Wagner U, Vendrell J, Fernández-Veledo S, Heiker JT. The serine protease KLK7 promotes immune cell infiltration in visceral adipose tissue in obesity. Metabolism 2025; 168:156239. [PMID: 40154838 DOI: 10.1016/j.metabol.2025.156239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/05/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Obesity is a major health problem associated with global metabolic dysfunction and increased inflammation. It is thus critical to identify the mechanisms underlying the crosstalk between immune cells and adipose tissue that drive cardiovascular and metabolic dysfunction in obesity. Expression of the kallikrein-related serine protease 7 (KLK7) in adipose tissue is linked to inflammation and insulin resistance in high fat diet (HFD)-fed mice. Here, we engineered mice with a macrophage-specific KLK7 knockout (KLK7MKO) to investigate how KLK7 loss impacts immune cell function and obesity-related pathology. Compared to control mice, we observed lower levels of systemic inflammation, with less infiltration and activation of inflammatory macrophages in HFD-fed KLK7MKO mice, particularly in the epididymal adipose tissue. Mechanistically, we uncover that Klk7 deficiency reduces pro-inflammatory gene expression in macrophages and restricts their migration through higher cell adhesion, hallmark features of macrophages in obese conditions. Importantly, through analyses of 1143 human visceral adipose tissue samples, we uncover that KLK7 expression is associated with pathways controlling cellular migration and inflammatory gene expression. In addition, serum KLK7 levels were strongly correlated with circulating inflammatory markers in a second cohort of 60 patients with obesity and diabetes. Our work uncovers the pro-inflammatory role of KLK7 in controlling inflammatory macrophage polarization and infiltration in visceral obesity, thereby contributing to metabolic disease. Thus, targeting KLK7 to control immune cell activation may dissociate adipose dysfunction from obesity, thereby representing an alternative obesity therapy.
Collapse
Affiliation(s)
- Aleix Ribas-Latre
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany; Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Claudia Gebhardt
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Lilli Arndt
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Nora Raulien
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Adhideb Ghosh
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Kerstin Krause
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Paul T Pfluger
- German Center for Diabetes Research, Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Centre, Munich, Germany; Division of Neurobiology of Diabetes, TUM School of Medicine & Health, Technical University of Munich, Munich, Germany
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Ebert
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Anke Tönjes
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Ulf Wagner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Joan Vendrell
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain
| | - Sonia Fernández-Veledo
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; Universitat Rovira i Virgili (URV), 43201 Reus, Spain
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany.
| |
Collapse
|
6
|
Chen F, Sarver DC, Saqib M, Velez LM, Aja S, Seldin MM, Wong GW. Loss of CTRP10 results in female obesity with preserved metabolic health. eLife 2025; 13:RP93373. [PMID: 40126547 PMCID: PMC11932693 DOI: 10.7554/elife.93373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.
Collapse
Affiliation(s)
- Fangluo Chen
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Leandro M Velez
- Center for Epigenetics and Metabolism, University of California, IrvineIrvineUnited States
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Marcus M Seldin
- Center for Epigenetics and Metabolism, University of California, IrvineIrvineUnited States
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
7
|
Wang X, Wang J, Zhao X, Zhang J, Zhang Y. The adipokines in oral cancer pathogenesis and its potential as a new therapeutic approach. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03939-w. [PMID: 40056203 DOI: 10.1007/s00210-025-03939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/16/2025] [Indexed: 03/10/2025]
Abstract
The involvement of adipose tissue in the development of cancer is currently the subject of an increasing number of research due to the growing relevance of lipid metabolism in tumor growth. Obesity influences the tumor immune microenvironment (TME) in oral cancer. Visceral white adipose tissue (WAT) consists of adipocytes, connective tissue, immune cells, and stromovascular cells. The metabolic processes of immune cells within the adipose tissue of individuals with obesity predominantly depend on oxidative phosphorylation (intrinsically) and are characterized by elevated levels of M2 macrophages, Treg cells, Th2 cells, and eosinophils from an extrinsic perspective. The adipokines secreted by adipocytes facilitate communication with adjacent tissues to regulate glucose and lipid metabolism. Obesity influences cancer progression through the dysregulation of adipocytokines, characterized by an augmented synthesis of the oncogenic adipokine leptin, coupled with a reduced secretion of adiponectin. Under standard physiological settings, these adipokines fulfill essential roles in sustaining homeostasis. This review analyzed the influence of adipocytes on oral cancer by detailing the mediators released by adipocytes. Comprehending the molecular foundations of the protumor roles of adipokines in oral cancers might provide novel treatment targets.
Collapse
Affiliation(s)
- Xue Wang
- Department of Stomatology, Jilin Province FAW General Hospital, Jilin, 130000, China
| | - Jiapeng Wang
- Department of Orthopedics, Jilin Province FAW General Hospital, Jilin, 130000, China.
| | - Xuemei Zhao
- Department of Stomatology, Jilin Province FAW General Hospital, Jilin, 130000, China
| | - Jiayin Zhang
- Department of Stomatology, Jilin Province FAW General Hospital, Jilin, 130000, China
| | - Yan Zhang
- Medical Department, Changchun Sci-Tech University, Changchun, 130000, China
| |
Collapse
|
8
|
Gonzales D, Morris CE, Kannan S, Soykan O, Kezirian EJ. Selective Adipose Cryolysis for Reduction of Lingual Tissue in a Porcine Model. Otolaryngol Head Neck Surg 2025; 172:1053-1062. [PMID: 39692255 DOI: 10.1002/ohn.1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVES Oropharyngeal fat volume is associated with obstructive sleep apnea (OSA) severity. Selective adipose cryolysis may produce cold-induced adipose cell death while sparing surrounding tissues. This study explored (1) similarities in tongue fat between porcine and human models and (2) the feasibility and potential reduction of lingual fat using selective adipose cryolysis. STUDY DESIGN Porcine model. SETTING Preclinical research laboratory under IACUC-approved protocols. METHODS Anatomical, histological, and biochemical characterizations of tongue tissue from 6 porcine and 4 human cadaver specimens were conducted to establish comparative frameworks. Comparison of fat distribution and composition was conducted via image analysis of histological sections as well as gas chromatography analysis of fatty acid composition. Safety and efficacy of selective adipose cryolysis were evaluated in an additional 16 porcine animals using a prototype cooling system. Histological analysis examined tissue response at 3, 6, 30, and 45 d posttreatment. RESULTS Comparative analysis revealed similar fat distribution and composition between human and porcine tongues. Selective adipose cryolysis induced progressive reduction in treated area tongue fat content at all timepoints, from 42% at baseline to 32% (t = 3 d) and 14% (t = 30 d), accompanied by macrophage infiltration, crown-like structure formation, and tissue remodeling. CONCLUSION Selective adipose cryolysis holds promise as a targeted therapeutic approach for reducing lingual fat in humans. The porcine model may provide valuable insight into treatment mechanisms and support initial translational work. Further research is warranted to elucidate long-term treatment outcomes and optimize clinical implementation strategies, with the goal of improving management of OSA in humans.
Collapse
Affiliation(s)
- Donald Gonzales
- Department of Research, Cryosa, Inc., Arden Hills, Minnesota, USA
| | | | - Srinivas Kannan
- Department of Research, Cryosa, Inc., Arden Hills, Minnesota, USA
| | - Orhan Soykan
- Department of Research, Cryosa, Inc., Arden Hills, Minnesota, USA
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Eric J Kezirian
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
9
|
Jack BU, Dias S, Pheiffer C. Comparative Effects of Tumor Necrosis Factor Alpha, Lipopolysaccharide, and Palmitate on Mitochondrial Dysfunction in Cultured 3T3-L1 Adipocytes. Cell Biochem Biophys 2025; 83:905-918. [PMID: 39269560 PMCID: PMC11870959 DOI: 10.1007/s12013-024-01522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
We have previously reported that dysregulated lipid metabolism and inflammation in 3T3-L1 adipocytes is attributed to tumor necrosis factor alpha (TNFα) rather than lipopolysaccharide (LPS) and palmitate (PA). In this study, we further compared the modulative effects of TNFα, LPS, and PA on mitochondrial function by treating 3T3-L1 adipocytes with TNFα (10 ng/mL), LPS (100 ng/mL), and PA (0.75 mM) individually or in combination for 24 h. Results showed a significant reduction in intracellular adenosine triphosphate (ATP) content, mitochondrial bioenergetics, total antioxidant capacity, and the mRNA expression of citrate synthase (Cs), sirtuin 3 (Sirt3), protein kinase AMP-activated catalytic subunit alpha 2 (Prkaa2), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Ppargc1α), nuclear respiratory factor 1 (Nrf1), and superoxide dismutase 1 (Sod1) in cells treated with TNFα individually or in combination with LPS and PA. Additionally, TNFα treatments decreased insulin receptor substrate 1 (Irs1), insulin receptor substrate 2 (Irs2), solute carrier family 2, facilitated glucose transporter member 4 (Slc2a4), and phosphoinositide 3 kinase regulatory subunit 1 (Pik3r1) mRNA expression. Treatment with LPS and PA alone, or in combination, did not affect the assessed metabolic parameters, while the combination of LPS and PA increased lipid peroxidation. These results show that TNFα but not LPS and PA dysregulate mitochondrial function, thus inducing oxidative stress and impaired insulin signaling in 3T3-L1 adipocytes. This suggests that TNFα treatment can be used as a basic in vitro model for studying the pathophysiology of mitochondrial dysfunction and related metabolic complications and screening potential anti-obesity therapeutics in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Babalwa Unice Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa.
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa.
| | - Stephanie Dias
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa
| |
Collapse
|
10
|
Li Y, Zhang H, Ibáñez CF, Xie M. Characterization of subcutaneous and visceral de-differentiated fat cells. Mol Metab 2025; 93:102105. [PMID: 39884650 PMCID: PMC11848481 DOI: 10.1016/j.molmet.2025.102105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
OBJECTIVE The capacity of mature adipocytes to de-differentiate into fibroblast-like cells has been demonstrated in vitro and a few, rather specific in vivo conditions. A detailed comparison between de-differentiated fat (DFAT) cells and adipose stem and progenitor cells (ASPCs) from different adipose depots is yet to be conducted. Moreover, whether de-differentiation of mature adipocytes from classical subcutaneous and visceral depots occurs under physiological conditions remains unknown. METHODS Here, we used in vitro "ceiling culture", single cell/nucleus RNA sequencing, epigenetic anaysis and genetic lineage tracing to address these unknowns. RESULTS We show that in vitro-derived DFAT cells have lower adipogenic potential and distinct cellular composition compared to ASPCs. In addition, DFAT cells derived from adipocytes of inguinal origin have dramatically higher adipogenic potential than DFAT cells of the epididymal origin, due in part to enhanced NF-KB signaling in the former. We also show that high-fat diet (HFD) feeding enhances DFAT cell colony formation and re-differentiation into adipocytes, while switching from HFD to chow diet (CD) only reverses their re-differentiation. Moreover, HFD deposits epigenetic changes in DFAT cells and ASPCs that are not reversed after returning to CD. Finally, combining genetic lineage tracing and single cell/nucleus RNA sequencing, we demonstrate the existence of DFAT cells in inguinal and epididymal adipose depots in vivo, with transcriptomes resembling late-stage ASPCs. CONCLUSIONS These data uncover the cell type- and depot-specific properties of DFAT cells, as well as their plasticity in response to dietary intervention. This knowledge may shed light on their role in life style change-induced weight loss and regain.
Collapse
Affiliation(s)
- Yan Li
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Houyu Zhang
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Carlos F Ibáñez
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing 102206, China; School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Department of Neuroscience, Karolinska Institute, Stockholm 17165, Sweden.
| | - Meng Xie
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China; Beijing Key Laboratory of Behavior and Mental Health, Beijing 100871, China; Biosciences and Nutrition Unit, Department of Medicine Huddinge, Karolinska Institute, Huddinge 14183, Sweden.
| |
Collapse
|
11
|
Alarcon PC, Ulanowicz CJ, Damen MSMA, Eom J, Sawada K, Chung H, Alahakoon T, Oates JR, Wayland JL, Stankiewicz TE, Moreno-Fernandez ME, Zacharias WJ, Salomonis N, Divanovic S. Obesity Uncovers the Presence of Inflammatory Lung Macrophage Subsets With an Adipose Tissue Transcriptomic Signature in Influenza Virus Infection. J Infect Dis 2025; 231:e317-e327. [PMID: 39494998 PMCID: PMC11841630 DOI: 10.1093/infdis/jiae535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024] Open
Abstract
Obesity is an independent risk factor for increased disease severity during influenza A virus (IAV) infection. White adipose tissue (WAT) inflammation promotes disease pathogenesis in obesity. Whether obesity modifies lung and WAT immune cells to amplify influenza severity is unknown. We show that obesity establishes a proinflammatory transcriptome in lung immune cells that is augmented during IAV infection and that IAV infection changes WAT immune cell milieu in obesity. Notably, a decrease in WAT macrophages (ATM) inversely correlates with an increase in infiltrating lung macrophages in obese IAV-infected mice. Further analyses of lung immune cell uncovered a macrophage subset that shares a transcriptomic signature with inflammatory ATMs. Importantly, adoptive transfer of ATMs from obese mice into lean IAV infected mice promotes host immune cell infiltration to the lungs. These findings suggest that, in an obese state, ATMs may exacerbate the inflammatory milieu important in pathologic responses to IAV infection.
Collapse
Affiliation(s)
- Pablo C Alarcon
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
- Immunology Graduate Program
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Ohio
| | - Cassidy J Ulanowicz
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
- Immunology Graduate Program
| | - Michelle S M A Damen
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
| | - John Eom
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
| | - Keisuke Sawada
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
- Immunology Graduate Program
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Ohio
| | - Hak Chung
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
| | - Tara Alahakoon
- Program in Biochemistry and Biophysics, Amherst College, Massachusetts
| | - Jarren R Oates
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
- Immunology Graduate Program
| | - Jennifer L Wayland
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
- Immunology Graduate Program
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Ohio
| | - Traci E Stankiewicz
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
| | - William J Zacharias
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Ohio
- Pulmonary Biology
| | - Nathan Salomonis
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Immunology Graduate Program
- Biomedical Informatics
| | - Senad Divanovic
- Department of Pediatrics, College of Medicine, University of Cincinnati
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center
- Immunology Graduate Program
- Medical Scientist Training Program, College of Medicine, University of Cincinnati, Ohio
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Ohio
| |
Collapse
|
12
|
Peng C, Jiang H, Jing L, Yang W, Guan X, Wang H, Yu S, Cao Y, Wang M, Ma H, Lv Z, Gu H, Xia C, Guo X, Sun B, Wang A, Xie C, Wu W, Lu L, Song J, Lei S, Wu R, Zang Y, Tang E, Li J. Macrophage SUCLA2 coupled glutaminolysis manipulates obesity through AMPK. Nat Commun 2025; 16:1738. [PMID: 39966410 PMCID: PMC11836283 DOI: 10.1038/s41467-025-57044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 02/09/2025] [Indexed: 02/20/2025] Open
Abstract
Obesity is regarded as a chronic inflammatory disease involving adipose tissue macrophages (ATM), but whether immunometabolic reprogramming of ATM affects obesity remains unclarified. Here we show that in ATM glutaminolysis is the fundamental metabolic flux providing energy and substrate, bridging with AMP-activated protein kinase (AMPK) activity, succinate-induced interleukin-1β (IL-1β) production, and obesity. Abrogation of AMPKα in myeloid cells promotes proinflammatory ATM, impairs thermogenesis and energy expenditure, and aggravates obesity in mice fed with high-fat diet (HFD). Conversely, IL-1β neutralization or myeloid IL-1β abrogation prevents obesity caused by AMPKα deficiency. Mechanistically, ATP generated from glutaminolysis suppresses AMPK to decrease phosphorylation of the β subunit of succinyl-CoA synthetase (SUCLA2), thereby resulting in the activation of succinyl-CoA synthetase and the overproduction of succinate and IL-1β; by contrast, siRNA-mediated SUCLA2 knockdown reduces obesity induced by HFD in mice. Lastly, phosphorylated SUCLA2 in ATM correlates negatively with obesity in humans. Our results thus implicate a glutaminolysis/AMPK/SUCLA2/IL-1β axis of inflammation and obesity regulation in ATM.
Collapse
Grants
- 32000525 National Natural Science Foundation of China (National Science Foundation of China)
- 82273983 National Natural Science Foundation of China (National Science Foundation of China)
- National Key R&D Program of China (2022YFA1303800),Science and Technology Commission of Shanghai Municipality (23ZR1474700),Shanghai Institute of Materia Medica, Chinese Academy of Science (New Star project)
- China Postdoctoral Science Foundation (2024M760704)
- the Research Funds of Hangzhou Institute for Advanced Study, UCAS (2024HIAS-N001)
- the Research Funds of Hangzhou Institute for Advanced Study, UCAS (No. 2022ZZ01013, and. 2023HIAS-V002)
- Medical Innovation Research Special Project of Shanghai (19411971500), Medical Innovation Research Special Project of Shanghai (22Y11908600), Science and Technology Commission of Yangpu District (YPM202101 and YPGWM202401)
- the National Natural Science Foundation of China grants (82130099, and 92253306),the Research Funds of Hangzhou Institute for Advanced Study, UCAS (2023HIAS-Y030)
Collapse
Affiliation(s)
- Chang Peng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Haowen Jiang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Liya Jing
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Lingang Laboratory, Shanghai, 201203, China
| | - Wenhua Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Xiaotong Guan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Hanlin Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Sike Yu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yutang Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huan Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Zan Lv
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- College of Pharmacy, Fudan University, Shanghai, 210023, China
| | - Hongyu Gu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Chunmei Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bin Sun
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
- Institute of Gastrointestinal Surgery and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Aili Wang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
- Institute of Gastrointestinal Surgery and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenbiao Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Luyiyi Lu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jiayi Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Saifei Lei
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Rui Wu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yi Zang
- Lingang Laboratory, Shanghai, 201203, China
| | - Erjiang Tang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
- Institute of Gastrointestinal Surgery and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| | - Jia Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
13
|
Zhu C, Cheng Y, Yang L, Lyu Y, Li J, Zhao P, Zhu Y, Xin X, Yin L. Notch1 siRNA and AMD3100 Ameliorate Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines 2025; 13:486. [PMID: 40002899 PMCID: PMC11853639 DOI: 10.3390/biomedicines13020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Background and Objectives: As a key mechanism of metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis, inflammation triggered by chronic liver injury and immune cells with macrophages enables MASLD to progress to an advanced stage with irreversible processes such as fibrosis, cell necrosis, and cancer in the liver. The complexity of MASLD, including crosstalk between multiple organs and the liver, makes developing a new drug for MASLD challenging, especially in single-drug therapy. It was reported that upregulation of Notch1 is closely associated with the function of pro-inflammatory macrophages. To leverage this signaling pathway in treating MASLD, we developed a combination therapy. Materials and Methods: We chose Notch1 siRNA (siNotch1) to block the Notch pathway so that phenotypic regulation and functional recovery can be achieved in macrophages, combining with small molecule drug AMD3100. AMD3100 can cut off the migration of inflammatory cells to the liver to impede the development of inflammation and inhibit the CXCL12/CXCR4 biological axis in liver fibrosis to protect against the activation of HSCs. Then, we investigated the efficacy of the combination therapy on resolving inflammation and MASLD. Results: We demonstrated that in liver cells, siNotch1 combined with AMD3100 not only directly modulated macrophages by downregulating multiple pathways downstream of Notch, exerting anti-inflammatory, anti-migration, and switch of macrophage phenotype, but also modulated macrophage phenotypes through inhibiting NET release. The restored macrophages further regulate HSC and neutrophils. In in vivo pharmacodynamic studies, combination therapy exhibits a superior therapeutical effect over monotherapy in MASLD models. Conclusions: These results constitute an siRNA therapeutical approach combined with a small molecule drug against inflammation and liver injury in MASLD, offering a promising therapeutic intervention for MASLD.
Collapse
Affiliation(s)
- Chunli Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Yiheng Cheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Lei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Yifu Lyu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Jingjing Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Pengbo Zhao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Ying Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
14
|
de Andrade AG, Vanderley SER, de Farias Marques L, Almeida FS, Cavalcante-Silva LHA, Keesen TSL. Leptin, NK cells, and the weight of immunity: Insights into obesity. Int Immunopharmacol 2025; 147:113992. [PMID: 39755107 DOI: 10.1016/j.intimp.2024.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Obesity is a chronic inflammatory disease that affects more than 1 billion people worldwide and is associated with various metabolic and physiological dysfunctions, directly impacting the dynamics of the immune response, partly due to elevated leptin levels. Leptin is an important peptide hormone that regulates neuroendocrine function and energy homeostasis, with its blood levels reflecting energy reserves, fat mass, or energy deprivation. This hormone also plays a fundamental role in regulating immune function, including the activity of NK cells, which are essential components in antiviral and antitumor activity. In obese individuals, leptin resistance is commonly established, however, NK cells and other immune components remain responsive to this hormone. So far, leptin has demonstrated paradoxical activities of these cells, often associated with a dysfunctional profile when associated with obesity. The excessive fat is usually related to metabolic remodeling in NK cells, resulting in compromised antitumor responses due to reduced cytotoxic capacity and decreased expression of cytokines important for these defense mechanisms, such as IFN-γ. Therefore, this review approaches a better understanding of the immunoendocrine interactions between leptin and NK cells in the context of obesity.
Collapse
Affiliation(s)
- Arthur Gomes de Andrade
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Shayenne Eduarda Ramos Vanderley
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Lorrane de Farias Marques
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Fernanda Silva Almeida
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Tatjana Souza Lima Keesen
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil.
| |
Collapse
|
15
|
Kusumastuti SA, Nugrahaningsih DAA, Hartati Wahyuningsih MS. Metformin attenuates inflammation and improves insulin sensitivity in coculture of LPS-induced 3T3-L1 adipocytes and RAW 264.7 macrophages mediated by IRS-1/GLUT-4 pathway. Arch Physiol Biochem 2025:1-7. [PMID: 39895508 DOI: 10.1080/13813455.2025.2460102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/06/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVE Metformin is an anti-diabetic drug used to control blood glucose levels. The effects of metformin on insulin sensitivity in inflammation-induced adipocytes are not fully understood.This study aimed to explore the mechanism of metformin on insulin sensitivity enhancement in the coculture of LPS-induced 3T3-L1 adipocytes and RAW 264.7 macrophages. MATERIAL AND METHODS Insulin resistance was induced in coculture cells using Lipopolysaccharide, followed by adding 25, 50, and 100 µg/ml of metformin for 24 h of incubation. Glucose consumption, GLUT-4, IRS-1, and IL-6 mRNA expressions were quantified. RESULTS Metformin, starting at a concentration of 25 µg/ml, enhanced glucose consumption, upregulated GLUT-4 mRNA expression, and stimulated the expression of IRS-1 mRNA in coculture cells at 100 µg/ml of concentration. Additionally, Metformin inhibited inflammation by reducing IL-6 mRNA expression in coculture cells up to 100 µg/ml. DISCUSSION AND CONCLUSION These findings suggest that metformin attenuated inflammation and improved insulin sensitivity in inflammation-induced adipocytes that may be mediated by the IRS-1/GLUT-4 pathway.
Collapse
Affiliation(s)
- Siska Andrina Kusumastuti
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, South Tangerang, Indonesia
| | - Dwi Aris Agung Nugrahaningsih
- Pharmacology and Therapy Department, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Pharmacology and Therapy Department, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
16
|
Heo YJ, Lee MK, Im JH, Kim BS, Lee HI. Anti-obesity effects of ethanol extract of green Citrus junos peel enriched in naringin and hesperidin in vitro and in vivo. Nutr Res Pract 2025; 19:1-13. [PMID: 39959742 PMCID: PMC11821779 DOI: 10.4162/nrp.2025.19.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND/OBJECTIVES Green Citrus junos (yuja) peel extract has higher naringin and hesperidin contents and antioxidant activity than yellow yuja peel extract, but its anti-obesity effects are unclear. This study examined the anti-obesity properties of green yuja peel ethanol extract (GYE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese mice. MATERIALS/METHODS The effects of GYE on adipocyte differentiation were assessed by measuring Oil red O staining, mRNA and protein expression. The beneficial effects of GYE on HFD-induced obese mice were evaluated using the body weight, body composition, visceral fat size, and biochemical analysis. RESULTS GYE inhibited adipocyte differentiation and lipid accumulation compared to the control cells, as evidenced by Oil red O staining and the triglyceride level, respectively. GYE down-regulated the adipogenic genes CCAAT/enhancer binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), and lipogenic gene diacylglycerol O-acyltransferase 2 (DGAT2). GYE at 100 μg/mL downregulated the phosphorylation levels of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt), and their downstream targets PPARγ and sterol regulatory element-binding protein-1 (SREBP-1c) compared to the control group. In obese mice, GYE (100 mg/kg/day) reduced the body weight, body weight gain, and serum lipid level compared to the control group. Analysis using dual-energy X-ray absorptiometry showed that GYE decreased the fat percentage, fat in tissue, and abdominal circumference, while it increased the lean percentage compared to control group. Furthermore, GYE significantly reduced the visceral fat weight and size compared to the control group. CONCLUSION GYE suppressed adipocyte differentiation by inhibiting the PI3K-Akt pathway in vitro and reduced the body fat mass and visceral adiposity in HFD-induced obese mice. These findings suggest that GYE is a viable natural option for combating obesity.
Collapse
Affiliation(s)
- Yu-Jin Heo
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea
| | - Ju-Hye Im
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea
| | - Bo Seop Kim
- Department of Research & Technical Support Team, Mokpo Marine Food-Industry Research Center, Mokpo 58621, Korea
| | - Hae-In Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
17
|
Chen F, Sarver DC, Saqib M, Velez LM, Aja S, Seldin MM, Wong GW. Loss of CTRP10 results in female obesity with preserved metabolic health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.01.565163. [PMID: 37961647 PMCID: PMC10635050 DOI: 10.1101/2023.11.01.565163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologous in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.
Collapse
Affiliation(s)
- Fangluo Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dylan C. Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leandro M Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Huynh PM, Wang F, An YA. Hypoxia signaling in the adipose tissue. J Mol Cell Biol 2025; 16:mjae039. [PMID: 39363240 DOI: 10.1093/jmcb/mjae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024] Open
Abstract
Obesity per se is rapidly emerging all over the planet and further accounts for many other life-threatening conditions, such as diabetes, cardiovascular diseases, and cancers. Decreased oxygen supply or increased relative oxygen consumption in the adipose tissue results in adipose tissue hypoxia, which is a hallmark of obesity. This review aims to provide an up-to-date overview of the hypoxia signaling in the adipose tissue. First, we summarize literature evidence to demonstrate that hypoxia is regularly observed during adipose tissue remodeling in humans and rodent models with obesity. Next, we discuss how hypoxia-inducible factors (HIFs) are regulated and how adipose tissues behave in response to hypoxia. Then, the differential roles of adipose HIF-1α and HIF-2α in adipose tissue biology and obesity pathology are highlighted. Finally, the review emphasizes the importance of modulating adipose hypoxia as a therapeutic avenue to assist adipose tissues in functionally adapting to hypoxic conditions, ultimately promoting adipose health and improving outcomes due to obesity.
Collapse
Affiliation(s)
- Phu M Huynh
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fenfen Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
19
|
Kim HJ, Kim YJ, Seong JK. Mouse models for metabolic health research: molecular mechanism of exercise effects on health improvement through adipose tissue remodelling. J Physiol 2025. [PMID: 39823247 DOI: 10.1113/jp285975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025] Open
Abstract
Exercise provides health benefits to multiple metabolic tissues through complex biological pathways and interactions between organs. However, investigating these complex mechanisms in humans is still limited, making mouse models extremely useful for exploring exercise-induced changes in whole-body metabolism and health. In this review, we focus on gaining a broader understanding of the metabolic phenotypes and molecular mechanisms induced by exercise in mouse models. We first discuss the differences in adaptations induced by aerobic and resistance exercise, and compare voluntary wheel running and forced treadmill exercise, the two main methods of aerobic exercise research in mice, to show the similarities and differences between the same aerobic exercise but different methods, and their impact on experimental outcomes. The effects of exercise on metabolic phenotypes, including alleviation of obesity and metabolic disorders, and the mechanisms involved in adipose tissue remodelling and browning are explored, as well as the role of the gut microbiota in mediating the physiological responses and metabolic effects of exercise. Understanding these molecular mechanisms and methodological aspects of exercise experiments in mouse models can serve as a valuable template for the design of future basic research in exercise physiology and will provide a strong scientific evidence base for optimizing the design of exercise intervention programmes for metabolic health.
Collapse
Affiliation(s)
- Hye Jin Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Korea Model Animal Priority Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Youn Ju Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Korea Model Animal Priority Center (KMPC), Seoul National University, Seoul, Republic of Korea
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Korea Model Animal Priority Center (KMPC), Seoul National University, Seoul, Republic of Korea
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
- BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Phuong NQ, Bilal M, Nawaz A, Anh LD, Memoona, Aslam MR, Khalid S, Kado T, Watanabe Y, Nishimura A, Igarashi Y, Okabe K, Hirabayashi K, Yamamoto S, Nakagawa T, Mori H, Usui I, Fujisaka S, Hayashi R, Tobe K. Role of transforming growth factor-β1 in regulating adipocyte progenitors. Sci Rep 2025; 15:941. [PMID: 39824986 PMCID: PMC11748614 DOI: 10.1038/s41598-024-81917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/29/2024] [Indexed: 01/20/2025] Open
Abstract
Adipose tissue (AT) metabolism involves coordinating various cells and cellular processes to regulate energy storage, release, and overall metabolic homeostasis. Therein, macrophage and its cytokine are important in controlling tissue homeostasis. Among cytokines, the role of transforming growth factor-β1 (Tgf-β1), a cytokine abundantly expressed in CD206+ M2-like macrophage and correlated with the expansion of AT and fibrosis, in AT metabolism, remains unknown. We used CD206CreERT2; Tgf-β1f/f mouse model in which the Tgf-β1 gene was conditionally deleted in CD206+ M2-like macrophages followed by tamoxifen administration, to investigate the role of the Tgf-β1 gene in glucose and insulin metabolism. Our data demonstrated that lack of CD206+ M2-like macrophages derived Tgf-β1 gene improved glucose metabolism and insulin sensitivity by enhancing adipogenesis via hyperplasia. The Tgf-β1 gene, specifically from CD206+ M2-like macrophages, deletion stimulated APs' proliferation and differentiation, leading to the generation of smaller mature adipocytes, therefore enhancing insulin sensitivity and improving glucose metabolism under normal chow conditions. Our study brings a new perspective that Tgf-β1 gene deletion specific from CD206+ M2-like macrophage promotes adipocyte hyperplasia, improving glucose homeostasis and insulin sensitivity in the lean state.
Collapse
Affiliation(s)
- Nguyen Quynh Phuong
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Clinical Oncology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Muhammad Bilal
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
- Research Center for Pre-Disease Science, Faculty of Education and Research Promotion, University of Toyama, Toyama, 930-0194, Japan.
- Advanced Postdoctoral Fellowships of the Japan Diabetes Society (JDS), Tokyo, Japan.
| | - Allah Nawaz
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Le Duc Anh
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Memoona
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Muhammad Rahil Aslam
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Sana Khalid
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Tomonobu Kado
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ayumi Nishimura
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Faculty of Education and Research Promotion, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshiko Igarashi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- JSPS Research Fellowship for Young Scientist Japan, Tokyo, Japan
| | - Keisuke Okabe
- Toyama University Hospital, Center for Clinical and Translational Research, Toyama, Japan
| | - Kenichi Hirabayashi
- Department of Diagnostic Pathology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Seiji Yamamoto
- Department of Pathology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Isao Usui
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ryuji Hayashi
- Clinical Oncology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Kazuyuki Tobe
- Research Center for Pre-Disease Science, Faculty of Education and Research Promotion, University of Toyama, Toyama, 930-0194, Japan.
- Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
21
|
Aru N, Yang C, Chen Y, Liu J. Low L3 skeletal muscle index and endometrial cancer: a statistic pooling analysis. BMC Cancer 2025; 25:43. [PMID: 39780132 PMCID: PMC11716173 DOI: 10.1186/s12885-025-13430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE Sarcopenia, a condition characterized by the gradual decline of muscle mass, strength, and function, is a key indicator of malnutrition in cancer patients and has been linked to poor prognoses in oncology. Sarcopenia is commonly assessed by measuring the skeletal muscle index (SMI) of the third lumbar spine (L3) using computed tomography (CT). This meta-analysis aimed to explore the relationship between low SMI and clinicopathological features, as well as prognosis, in individuals with endometrial cancer (EC). METHODS Data from various databases including PubMed, Embase, Cochrane, Medline, and Web of Science were searched up until October 20th, 2024. Studies that investigated the association of low SMI and EC survival or clinicopathological characteristics were included. Pooled effect sizes were reported as hazards ratio (HR), odds ratios (ORs) or weighted mean difference (WMD). The quality and risk of bias in the studies were evaluated using the Newcastle-Ottawa Scale (NOS) and the Quality In Prognosis Studies (QUIPS), and the study was registered on PROSPERO (CRD42024509949) before commencing the search. RESULTS A total of 218 studies were identified across all five databases, with 11 studies meeting the criteria for qualitative and quantitative analysis, involving 1588 patients. The findings of our meta-analysis demonstrated a significant link between low SMI and progression-free survival [P = 0.002; HR: 1.62, 95% CI: 1.20-2.17]. Low SMI was also associated with a BMI < 25 (P < 0.00001; OR: 4.55, 95% CI: 3.01-6.87), FIGO stage (P = 0.04; OR: 1.33, 95% CI: 1.01-1.75), pathology grades (P = 0.001; OR: 1.77, 95% CI: 1.26-2.49), and the endometrioid pathological type (P = 0.01; OR: 0.68, 95% CI: 0.51-0.92). However, no significant correlation was found between low SMI and 5-year overall survival, serous pathological type, recurrence, length of hospital stay, intraoperative complications, and postoperative complications. All the included studies scored ≥ 7 on the NOS, indicating relatively high-quality evidence. CONCLUSIONS The meta-analysis highlighted the association between low SMI and unfavorable clinical features and outcomes in EC patients, emphasizing the importance of early diagnosis and appropriate management of sarcopenia assessed by low SMI to enhance prognoses in EC patients.
Collapse
Affiliation(s)
- Na Aru
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Congyu Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuntian Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaming Liu
- Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, China.
| |
Collapse
|
22
|
Yu X, Chen S, Funcke JB, Straub LG, Pirro V, Emont MP, Droz BA, Collins KA, Joung C, Pearson MJ, James CM, Babu GJ, Efthymiou V, Vernon A, Patti ME, An YA, Rosen ED, Coghlan MP, Samms RJ, Scherer PE, Kusminski CM. The GIP receptor activates futile calcium cycling in white adipose tissue to increase energy expenditure and drive weight loss in mice. Cell Metab 2025; 37:187-204.e7. [PMID: 39642881 PMCID: PMC11711001 DOI: 10.1016/j.cmet.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
Obesity is a chronic disease that contributes to the development of insulin resistance, type 2 diabetes (T2D), and cardiovascular risk. Glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) co-agonism provide an improved therapeutic profile in individuals with T2D and obesity when compared with selective GLP-1R agonism. Although the metabolic benefits of GLP-1R agonism are established, whether GIPR activation impacts weight loss through peripheral mechanisms is yet to be fully defined. Here, we generated a mouse model of GIPR induction exclusively in the adipocyte. We show that GIPR induction in the fat cell protects mice from diet-induced obesity and triggers profound weight loss (∼35%) in an obese setting. Adipose GIPR further increases lipid oxidation, thermogenesis, and energy expenditure. Mechanistically, we demonstrate that GIPR induction activates SERCA-mediated futile calcium cycling in the adipocyte. GIPR activation further triggers a metabolic memory effect, which maintains weight loss after the transgene has been switched off, highlighting a unique aspect in adipocyte biology. Collectively, we present a mechanism of peripheral GIPR action in adipose tissue, which exerts beneficial metabolic effects on body weight and energy balance.
Collapse
Affiliation(s)
- Xinxin Yu
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Leon G Straub
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Valentina Pirro
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Margo P Emont
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Brian A Droz
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Kyla Ai Collins
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Chanmin Joung
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mackenzie J Pearson
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Corey M James
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Gopal J Babu
- Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Vissarion Efthymiou
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Ashley Vernon
- Department of Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Mary Elizabeth Patti
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Yu A An
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matthew P Coghlan
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ricardo J Samms
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
23
|
Wang L, Li J, Tang P, Zhu D, Tai L, Wang Y, Miyata T, Woodgett JR, Di LJ. GSK3β Deficiency Expands Obese Adipose Vasculature to Mitigate Metabolic Disorders. Circ Res 2025; 136:91-111. [PMID: 39629559 DOI: 10.1161/circresaha.124.325187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Maintaining a well-developed vascular system alongside adipose tissue (AT) expansion significantly reduces the risk of metabolic complications. Although GSK3β (glycogen synthase kinase-3 beta) is known for its role in various cellular processes, its specific functions in AT and regulation of body homeostasis have not been reported. METHODS GSK3β-floxed and GSK3α-floxed mice were crossed with adiponectin-Cre mice to generate GSK3β or GSK3α adipocyte-specific knockout mice (GSK3βADKO and GSK3αADKO). A comprehensive whole-body metabolism analysis was performed on obese GSK3βADKO mice induced by a high-fat diet. RNA sequencing was conducted on AT of both obese GSK3βADKO and GSK3αADKO mice. Various analyses, including vessel perfusion studies, lipolysis analysis, multiplex protein assays, in vitro protein phosphorylation assays, and whole-mount histology staining, were performed on AT of obese GSK3βADKO mice. Tube-formation experiments were performed using 3B-11 endothelial cells cultured in the conditional medium of matured adipocytes under hypoxic conditions. Chromatin precipitation and immunofluorescence studies were conducted using cultured adipocytes with GSK3 inhibition. RESULTS Our findings provide the first evidence that adipocyte-specific knockout of GSK3β expands AT vascularization and mitigates obesity-related metabolic disorders. GSK3β deficiency, but not GSK3α, in adipocytes activates AMPK (AMP-activated protein kinase), leading to increased phosphorylation and nuclear accumulation of HIF-2α, resulting in enhanced transcriptional regulation. Consequently, adipocytes increased VEGF (vascular endothelial growth factor) expression, which engages VEGFR2 on endothelial cells, promoting angiogenesis, expanding the vasculature, and improving vessel perfusion within obese AT. GSK3β deficiency promotes AT remodeling, shifting unhealthy adipocyte function toward a healthier state by increasing insulin-sensitizing hormone adiponectin and preserving healthy adipocyte function. These effects lead to reduced fibrosis, reactive oxygen species, and ER (endoplasmic reticulum) stress in obese AT and improve metabolic disorders associated with obesity. CONCLUSIONS Deletion of GSK3β in adipocytes activates the AMPK/HIF-2α/VEGF/VEGFR2 axis, promoting vasculature expansion within obese AT. This results in a significantly improved local microenvironment, reducing inflammation and effectively ameliorating metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Li Wang
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
- The Ministry of Education Frontiers Science Center for Precision Oncology (L.W., L.D.), University of Macau, China
- Proteomics, Metabolomics and Drug development core facility, Faculty of Health Sciences (L.W.), University of Macau, China
| | - Jiajia Li
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Ping Tang
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Dongliang Zhu
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Lixin Tai
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Yuan Wang
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Tsukiko Miyata
- Lunenfeld-Tanenbaum Research Institute, Sinai Health and Department of Medical Biophysics, University of Toronto, Ontario, Canada (T.M., J.R.W.)
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health and Department of Medical Biophysics, University of Toronto, Ontario, Canada (T.M., J.R.W.)
| | - Li-Jun Di
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
- The Ministry of Education Frontiers Science Center for Precision Oncology (L.W., L.D.), University of Macau, China
| |
Collapse
|
24
|
Luk C, Bridge KI, Warmke N, Simmons KJ, Drozd M, Moran A, MacCannell ADV, Cheng CW, Straw S, Scragg JL, Smith J, Ozber CH, Wilkinson CG, Skromna A, Makava N, Prag HA, Simon Futers T, Brown OI, Bruns AF, Walker AM, Watt NT, Mughal R, Griffin KJ, Yuldasheva NY, Limumpornpetch S, Viswambharan H, Sukumar P, Beech DJ, Vidal-Puig A, Witte KK, Murphy MP, Hartley RC, Wheatcroft SB, Cubbon RM, Roberts LD, Kearney MT, Haywood NJ. Paracrine role of endothelial IGF-1 receptor in depot-specific adipose tissue adaptation in male mice. Nat Commun 2025; 16:170. [PMID: 39747815 PMCID: PMC11696296 DOI: 10.1038/s41467-024-54669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
During recent decades, changes in lifestyle have led to widespread nutritional obesity and its related complications. Remodelling adipose tissue as a therapeutic goal for obesity and its complications has attracted much attention and continues to be actively explored. The endothelium lines all blood vessels and is close to all cells, including adipocytes. The endothelium has been suggested to act as a paracrine organ. We explore the role of endothelial insulin-like growth factor-1 receptor (IGF-1R), as a paracrine modulator of white adipose phenotype. We show that a reduction in endothelial IGF-1R expression in the presence of high-fat feeding in male mice leads to depot-specific beneficial white adipose tissue remodelling, increases whole-body energy expenditure and enhances insulin sensitivity via a non-cell-autonomous paracrine mechanism. We demonstrate that increased endothelial malonate may be contributory and that malonate prodrugs have potentially therapeutically relevant properties in the treatment of obesity-related metabolic disease.
Collapse
Affiliation(s)
- Cheukyau Luk
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Katherine I Bridge
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Nele Warmke
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katie J Simmons
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre, University of Leeds, Leeds, UK
| | - Michael Drozd
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Amy Moran
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Amanda D V MacCannell
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Chew W Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sam Straw
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Jason L Scragg
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Jessica Smith
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Claire H Ozber
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Division of Gastroenterology & Surgery, Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Chloe G Wilkinson
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, St Mary's Hospital, Oxford Road, Manchester, UK
| | - Anna Skromna
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natallia Makava
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - T Simon Futers
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Oliver I Brown
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Alexander-Francisco Bruns
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Andrew Mn Walker
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Nicole T Watt
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Romana Mughal
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Department of Optometry and Vision Sciences, University of Huddersfield, Huddersfield, UK
| | - Kathryn J Griffin
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Nadira Y Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sunti Limumpornpetch
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Division of Internal Medicine, Cardiology Unit, Faculty of Medicine Prince of Songkla University, Songkhla, Thailand
| | - Hema Viswambharan
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Piruthivi Sukumar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | | | - Klaus K Witte
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| |
Collapse
|
25
|
Wang Z, Liu X, Sheng L, Xie Y, Feng W, Yu L. Effects of duration of high-fat diet on adipocyte hyperplasia in rat epididymis. Obes Res Clin Pract 2025; 19:54-62. [PMID: 39922761 DOI: 10.1016/j.orcp.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/25/2024] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND High-fat diet (HFD) contributes to obesity and enhances the expression of mature adipocyte markers. However, the effect of HFD on adipocyte hyperplasia remains controversial. This may be due to variations in the duration of HFD. This study aimed to investigate the effects of different durations of HFD on adipocyte hyperplasia and the expression of mature adipocyte-related markers in obese rats. METHODS We divided 32 Sprague-Dawley rats into four groups: B (standard diet control), H1 (HFD for four weeks), H2 (HFD for eight weeks), and H3 (HFD for 12 weeks). We evaluated the morphological changes in epididymal fat cells, measured serum inflammatory markers using enzyme-linked immunosorbent assay (ELISA) kits, and quantified adipocyte hyperplasia and maturation markers using western blotting. RESULTS We observed progressive increases in body weight, epididymal fat weight, serum leptin, TNF-α, IL-6, irisin, PPARγ, adiponectin, and FNDC5 protein expression over 8 weeks of HFD. 12 weeks of HFD intervention resulted in significant decreases in irisin, PPARγ, adiponectin, and FNDC5. Concurrently, the expression of perilipin A and ATGL declined with prolonged HFD. CONCLUSIONS Our results suggest that the duration of HFD significantly affects adipocyte ability to undergo hyperplasia in the epididymis of obese rats. Specifically, 4 weeks of HFD did not change the capacity for adipocyte hyperplasia, while 8 weeks of the diet enhanced this capacity. Interestingly, a longer diet duration (12 weeks) led to a decrease in adipocyte hyperplasia.
Collapse
Affiliation(s)
- Zhaoxin Wang
- Department of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Xiujuan Liu
- Department of Sports and Health, Nanjing Sport Institute, Nanjing, China.
| | - Lei Sheng
- Department of Scientific Research, Nanjing Sport Institute, Nanjing, China.
| | - Yuting Xie
- Department of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Wanyu Feng
- Department of Science Experiment Center, Nanjing Sport Institute, Nanjing, China
| | - Li Yu
- Department of Sports and Health, Nanjing Sport Institute, Nanjing, China
| |
Collapse
|
26
|
Levate G, Wang Y, McCredie R, Fenwick M, Rae MT, Duncan WC, Siemienowicz KJ. Insights into the effects of sex and tissue location on the evolution of adipocyte dysfunction in an ovine model of polycystic ovary syndrome (PCOS). Mol Cell Endocrinol 2025; 595:112416. [PMID: 39557184 DOI: 10.1016/j.mce.2024.112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Adipose tissue dysfunction is one of the features of Polycystic Ovary Syndrome (PCOS) with dysregulated adipogenesis, altered functional pathways and increased inflammation. It is increasingly clear that there are also male correlates of the hormonal and metabolic features of PCOS. We hypothesised that the effects of adipose tissue dysfunction are not sex-specific but rather fat depot-specific and independent of obesity. We used a clinically realistic ovine model of PCOS where pregnant sheep are injected with 100 mg of testosterone propionate twice weekly from day 62 to day 102 of gestation. We studied control and prenatally androgenised (PA) female and male offspring during adolescence and weight-matched control and PA female sheep during adulthood. We examined subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT) and in adult female sheep bone marrow adipose tissue (BMAT). Adipogenesis related gene expression in SAT was similar in adolescent female and male controls and the reduction in adipogenesis related gene expression by PA in female adipose tissue was not observed in males. Differences in expression of genes associated with adipose tissue function in adolescence in SAT driven by PA were found in both sexes. In adulthood, the changes seen in adolescent females were absent or reversed but there was an increase in inflammatory markers that was weight independent. In addition, BMAT showed increased inflammatory markers. Adipose dysfunction evolves with time and is focussed on SAT rather than VAT and is generally sex-specific although there are also effects of prenatal androgenisation on male SAT. In female adults, the inflammation seen in SAT is also present in BMAT and the development of blood cells in an inflammatory environment may have systemic implications.
Collapse
Affiliation(s)
- Giovanni Levate
- Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Yuan Wang
- Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Riada McCredie
- Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Megan Fenwick
- Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Michael T Rae
- Centre for Biomedicine and Global Health, Edinburgh Napier University, Edinburgh, UK
| | - W Colin Duncan
- Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
27
|
Morshed MN, Akter R, Mahmud I, Gwon AY, Jeang JW, Lee YG, Park DW, Yang DC, Kim YJ, Kang SC. Experimental Validation of Antiobesogenic and Osteoprotective Efficacy of Ginsenoside CK via Targeting Lipid and Atherosclerosis Pathways. Life (Basel) 2024; 15:41. [PMID: 39859981 PMCID: PMC11767077 DOI: 10.3390/life15010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
The present study explored the possible antiobesogenic and osteoprotective properties of the gut metabolite ginsenoside CK to clarify its influence on lipid and atherosclerosis pathways, thereby validating previously published hypotheses. These hypotheses were validated by harvesting and cultivating 3T3-L1 and MC3T3-E1 in adipogenic and osteogenic media with varying concentrations of CK. We assessed the differentiation of adipocytes and osteoblasts in these cell lines by applying the most effective doses of CK that we initially selected. Using 3T3-L1 adipocytes in vitro assessments, CK could effectively decrease intracellular lipid accumulation, inhibit α-glucosidase enzyme, increase 2-NBDG glucose uptake, reduce inflammation-associated cytokines (TNFα, and IL-6), adipogenic regulatory genes (PPARγ, FAS, C/EBPα), lipogenic gene LPL, and increase the expression of thermogenic gene UCP1. Additionally, CK treatment induced osteoblast development in MC3T3-E1 cells as shown by increased mineralization and calcium distribution, collagen content, alkaline phosphatase activity, and decreased inflammatory cytokines TNFα, and IL-6 and increased the regulated expressions of osteogenic genes including Runx2, ALP, BGLAP, OCN, and Col1a1. Significantly, as a major inhibitory regulator, the TP53 gene was down-regulated in both 3T3-L1 and MC3T3E1 cells after the treatment of CK. These encouraging results demonstrate the possible use of CK as an innovative treatment for controlling obesity and osteoporosis, targeting the underlying mechanisms of obesogenic and bone loss. Further studies are necessary to explore the clinical implications of these results and the potential of CK in future treatment strategies. This research highlights the promise of CK in addressing significant health issues.
Collapse
Affiliation(s)
- Md. Niaj Morshed
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (R.A.); (A.-Y.G.); (J.W.J.); (Y.-G.L.); (D.W.P.); (D.C.Y.)
| | - Reshmi Akter
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (R.A.); (A.-Y.G.); (J.W.J.); (Y.-G.L.); (D.W.P.); (D.C.Y.)
| | - Imran Mahmud
- Department of Biochemistry & Biotechnology, University of Turku, 20014 Turku, Finland;
| | - Ah-Yeong Gwon
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (R.A.); (A.-Y.G.); (J.W.J.); (Y.-G.L.); (D.W.P.); (D.C.Y.)
| | - Jin Woo Jeang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (R.A.); (A.-Y.G.); (J.W.J.); (Y.-G.L.); (D.W.P.); (D.C.Y.)
| | - Yeong-Geun Lee
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (R.A.); (A.-Y.G.); (J.W.J.); (Y.-G.L.); (D.W.P.); (D.C.Y.)
| | - Dae Won Park
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (R.A.); (A.-Y.G.); (J.W.J.); (Y.-G.L.); (D.W.P.); (D.C.Y.)
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (R.A.); (A.-Y.G.); (J.W.J.); (Y.-G.L.); (D.W.P.); (D.C.Y.)
| | - Yeon Ju Kim
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (R.A.); (A.-Y.G.); (J.W.J.); (Y.-G.L.); (D.W.P.); (D.C.Y.)
| | - Se-Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (R.A.); (A.-Y.G.); (J.W.J.); (Y.-G.L.); (D.W.P.); (D.C.Y.)
| |
Collapse
|
28
|
Díez-Sainz E, Milagro FI, Aranaz P, Riezu-Boj JI, Batrow PL, Contu L, Gautier N, Amri EZ, Mothe-Satney I, Lorente-Cebrián S. Human miR-1 Stimulates Metabolic and Thermogenic-Related Genes in Adipocytes. Int J Mol Sci 2024; 26:276. [PMID: 39796132 PMCID: PMC11720367 DOI: 10.3390/ijms26010276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
MicroRNAs play a pivotal role in the regulation of adipose tissue function and have emerged as promising therapeutic candidates for the management of obesity and associated comorbidities. Among them, miR-1 could be a potential biomarker for metabolic diseases and contribute to metabolic homeostasis. However, thorough research is required to fully elucidate the impact of miR-1 on human adipocyte thermogenesis and metabolism. This study aimed to explore the effect of miR-1 on human adipocyte browning, a process whose activation has been linked to obesity protection and counteraction. Human multipotent adipose-derived stem cells, hMADS cells, were differentiated into white and brown-like adipocytes and transfected with miR-1 mimics for gene expression and western blotting analyses. miR-1 inhibited the expression of its previously validated target PTK9/TWF1 and modulated the expression profile of key genes involved in thermogenesis and adipocyte browning (increased UCP1 at mRNA and protein level, increased CPT1M, decreased HIF3A), adipocyte differentiation and metabolism (decreased PLIN1, FASN, RXRA, PPARG, FABP4, MAPKAPK2), as well as genes related to the cytoskeleton (decreased ACTB) and extracellular matrix (decreased COL1A1). These findings suggest that miR-1 can modulate the expression of adipocyte human genes associated with thermogenesis and metabolism, which could hold value for eventual therapeutic potential in obesity.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - José I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Pierre-Louis Batrow
- CNRS, Inserm, Institut de Biologie Valrose (iBV), Université Côte d’Azur, 06107 Nice, France; (P.-L.B.); (L.C.); (N.G.); (E.-Z.A.); (I.M.-S.)
| | - Laura Contu
- CNRS, Inserm, Institut de Biologie Valrose (iBV), Université Côte d’Azur, 06107 Nice, France; (P.-L.B.); (L.C.); (N.G.); (E.-Z.A.); (I.M.-S.)
| | - Nadine Gautier
- CNRS, Inserm, Institut de Biologie Valrose (iBV), Université Côte d’Azur, 06107 Nice, France; (P.-L.B.); (L.C.); (N.G.); (E.-Z.A.); (I.M.-S.)
| | - Ez-Zoubir Amri
- CNRS, Inserm, Institut de Biologie Valrose (iBV), Université Côte d’Azur, 06107 Nice, France; (P.-L.B.); (L.C.); (N.G.); (E.-Z.A.); (I.M.-S.)
| | - Isabelle Mothe-Satney
- CNRS, Inserm, Institut de Biologie Valrose (iBV), Université Côte d’Azur, 06107 Nice, France; (P.-L.B.); (L.C.); (N.G.); (E.-Z.A.); (I.M.-S.)
| | - Silvia Lorente-Cebrián
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-Centro de Investigación y Tecnología Agroalimentaria (CITA), 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), 50009 Zaragoza, Spain
| |
Collapse
|
29
|
Blüher M. Understanding Adipose Tissue Dysfunction. J Obes Metab Syndr 2024; 33:275-288. [PMID: 39734091 PMCID: PMC11704217 DOI: 10.7570/jomes24013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024] Open
Abstract
Diseases affecting adipose tissue (AT) function include obesity, lipodystrophy, and lipedema, among others. Both a lack of and excess AT are associated with increased risk for developing diseases including type 2 diabetes mellitus, hypertension, obstructive sleep apnea, and some types of cancer. However, individual risk of developing cardiometabolic and other 'obesity-related' diseases is not entirely determined by fat mass. Rather than excess fat accumulation, AT dysfunction may represent the mechanistic link between obesity and comorbid diseases. There are people who remain metabolically healthy despite obesity, whereas people with normal weight or very low subcutaneous AT mass may develop typically obesity-related diseases. AT dysfunction is characterized by adipocyte hypertrophy, impaired subcutaneous AT expandability (ectopic fat deposition), hypoxia, a variety of stress, inflammatory processes, and the release of proinflammatory, diabetogenic, and atherogenic signals. Genetic and environmental factors might contribute to AT heterogeneity either alone or via interaction with intrinsic biological factors. However, many questions remain regarding the mechanisms of AT dysfunction initiation and whether and how it could be reversed. Do AT signatures define clinically relevant subtypes of obesity? Is the cellular composition of AT associated with variation in obesity phenotypes? What roles do environmental compounds play in the manifestation of AT dysfunction? Answers to these and other questions may explain AT disease mechanisms and help to define strategies for improving AT health. This review focuses on recent advances in our understanding of AT biology.
Collapse
Affiliation(s)
- Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
30
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
31
|
Zhang L, Lou K, Zhang Y, Leng Y, Huang Y, Liao X, Liu X, Feng S, Feng G. Tools for regulating metabolic diseases: extracellular vesicles from adipose macrophages. Front Endocrinol (Lausanne) 2024; 15:1510712. [PMID: 39735643 PMCID: PMC11674605 DOI: 10.3389/fendo.2024.1510712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Metabolic diseases have gradually become one of the most significant global medical burdens. Diseases such as obesity, diabetes, and metabolic syndrome, along with their complications, are clinically categorized as metabolic diseases. Long-term oral medication significantly reduces patient compliance and quality of life. Therefore, alternative therapies that intervene at the cellular level or target the root causes of metabolic diseases might help change this predicament. Research has found that extracellular vesicles derived from adipose macrophages can effectively regulate metabolic diseases by influencing the disease's development. This regulation is likely related to the role of these extracellular vesicles as important mediators in modulating adipose tissue function and insulin sensitivity, and their involvement in the crosstalk between adipocytes and macrophages. This review aims to describe the regulation of metabolic diseases mediated by adipose macrophage-derived extracellular vesicles, with a focus on their involvement in adipocyte crosstalk, the regulation of metabolism-related autoimmunity, and their potential as therapeutic agents for metabolic diseases, providing new avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Kecheng Lou
- Department of Urology, Lanxi People’s Hospital, Jinhua, Zhejiang, China
| | - Yunmeng Zhang
- Department of Anesthesiology, Jiujiang College Hospital, Jiujiang, Jiangxi, China
| | - Yuanjing Leng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Yuqing Huang
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Xinxin Liao
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Xiaoliang Liu
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Shangzhi Feng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Guoqiang Feng
- Department of Rehabilitation, Jiujiang College Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
32
|
Castelli V, Kacem H, Brandolini L, Giorgio C, Scenna MS, Allegretti M, Cimini A, d'Angelo M. TNFα-CXCR1/2 partners in crime in insulin resistance conditions. Cell Death Discov 2024; 10:486. [PMID: 39627194 PMCID: PMC11615304 DOI: 10.1038/s41420-024-02227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024] Open
Abstract
Type 2 diabetes mellitus (T2D) is defined by chronic hyperglycemia due to insufficient insulin secretion or activity and decreased insulin sensitivity, known as insulin resistance (IR). This condition leads to oxidative stress and inflammation, increasing the risk of systemic inflammatory diseases. Obesity and a sedentary lifestyle are major risk factors for IR and T2D. Various metabolites act as mediators of IR by disrupting communication between organs. Lipids, including free fatty acids and short-chain fatty acids, along with intracellular lipotoxins, impair insulin function and mitochondrial activity, contributing to IR through direct and indirect mechanisms such as oxidative stress and inflammation. Our research explores the role of TNFα and CXCR1/2 in IR conditions, emphasizing their interactions and potential as therapeutic targets. In this study we selected two models of IR, adipocytes and hepatocytes, since are key players in glucose and lipid metabolism. To develop IR model, TNFα was used as challenge and we focused on investigating the role of CXCR1/2 inhibition. We assessed glucose uptake, insulin signaling pathways, and gene expression related to IR. Cells treated with TNFα showed reduced p-Akt and increased p-JNK levels, indicative of IR. In contrast, CXCR1/2 inhibition restored p-Akt levels and reduced p-JNK levels, suggesting improvements in insulin signaling and glucose uptake. Furthermore, CXCR1/2 inhibition counteracted the TNFα-induced decrease in IGF expression and restored GLUT2 expression, indicating enhanced insulin sensitivity. These results underscore the pivotal role of CXCR1/2 in modulating the inflammatory response and insulin signaling in IR conditions in both IR models. CXCR1/2 inhibition can mitigate IR and improve glucose metabolism. Thus, targeting the TNFα-CXCR1/2 pathway presents a promising therapeutic approach for managing IR and T2D. Further investigation is necessary to understand the clinical implications of these findings and develop effective treatments for patients with IR and T2D.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Housem Kacem
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | - Marta Sofia Scenna
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, USA
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
33
|
Shi X, Jiang A, Qiu Z, Lin A, Liu Z, Zhu L, Mou W, Cheng Q, Zhang J, Miao K, Luo P. Novel perspectives on the link between obesity and cancer risk: from mechanisms to clinical implications. Front Med 2024; 18:945-968. [PMID: 39542988 DOI: 10.1007/s11684-024-1094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/07/2024] [Indexed: 11/17/2024]
Abstract
Existing epidemiologic and clinical studies have demonstrated that obesity is associated with the risk of a variety of cancers. In recent years, an increasing number of experimental and clinical studies have unraveled the complex relationship between obesity and cancer risk and the underlying mechanisms. Obesity-induced abnormalities in immunity and biochemical metabolism, including chronic inflammation, hormonal disorders, dysregulation of adipokines, and microbial dysbiosis, may be important contributors to cancer development and progression. These contributors play different roles in cancer development and progression at different sites. Lifestyle changes, weight loss medications, and bariatric surgery are key approaches for weight-centered, obesity-related cancer prevention. Treatment of obesity-related inflammation and hormonal or metabolic dysregulation with medications has also shown promise in preventing obesity-related cancers. In this review, we summarize the mechanisms through which obesity affects the risk of cancer at different sites and explore intervention strategies for the prevention of obesity-associated cancers, concluding with unresolved questions and future directions regarding the link between obesity and cancer. The aim is to provide valuable theoretical foundations and insights for the in-depth exploration of the complex relationship between obesity and cancer risk and its clinical applications.
Collapse
Affiliation(s)
- Xiaoye Shi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Zhengang Qiu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zaoqu Liu
- Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Kai Miao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
34
|
Mu Z, Li B, Chen M, Liang C, Gu W, Su J. Endoplasmic reticulum stress induces renal fibrosis in high‑fat diet mice via the TGF‑β/SMAD pathway. Mol Med Rep 2024; 30:235. [PMID: 39422027 PMCID: PMC11544397 DOI: 10.3892/mmr.2024.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The aim of the present study was to investigate the role and mechanism of endoplasmic reticulum stress (ERS) in kidney injury caused by high‑fat diet (HFD). An obese mouse model was established via HFD feeding and intervention was performed by intraperitoneal injection of the ERS inhibitor salubrinal (Sal). Changes in the body and kidney weight and serum biochemical indices of the mice were determined. Hematoxylin and eosin and Masson staining were used to observe the pathological changes of renal tissues. Reverse transcription‑quantitative PCR and western blotting were used to observe the expression of ERS‑related proteins and TGF‑β/SMAD pathway‑related proteins. Immunohistochemistry was employed to explore the distribution of these proteins. Compared with those in the control group, the weight gain, lipid metabolism disorders and deterioration of renal function in the model group were greater. Malondialdehyde was elevated and superoxide dismutase was decreased in renal tissues. The mRNA and protein levels of TGF‑β1, SMAD2/3, α‑smooth muscle actin, collagen I, glucose‑regulated protein 78 and C/EBP‑homologous protein were markedly elevated, whereas SMAD7 was markedly decreased. Sal markedly inhibited the aforementioned effects. This investigation revealed a link between ERS and renal injury caused by HFD. ERS in HFD‑fed mice triggers renal fibrosis through the TGF‑β/SMAD pathway.
Collapse
Affiliation(s)
- Zhidan Mu
- Department of Physiology and Pathophysiology, College of Basic Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| | - Bin Li
- Department of Physiology and Pathophysiology, College of Basic Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| | - Mingyang Chen
- Department of Physiology and Pathophysiology, College of Basic Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| | - Chen Liang
- Department of Physiology and Pathophysiology, College of Basic Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| | - Wei Gu
- Department of Infection Disease, First Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| | - Juan Su
- Department of Physiology and Pathophysiology, College of Basic Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| |
Collapse
|
35
|
Carvalho LM, Carvalho BG, Souza LL, da Mota JC, Ribeiro AA, Nicoletti CF. Obesity as an aggravating factor of systemic lupus erythematosus disease: What we already know and what we must explore. A rapid scoping review. Nutrition 2024; 128:112559. [PMID: 39244807 DOI: 10.1016/j.nut.2024.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can affect various organs and systems. Symptoms of SLE can vary widely from person to person and over time, including fatigue, joint pain, skin rashes, fever, and inflammation of multiple organs. The association between SLE and excess body weight has been the subject of study, with evidence suggesting that overweight and obesity can worsen the disease´s clinical presentation. Obesity is linked to a state of low-grade chronic inflammation, which can exacerbate the inflammation present in SLE. Additionally, obesity may negatively impact treatment response, disease progression, and patient prognosis. Patients with SLE and obesity may face additional challenges in managing the disease, such as increased symptom severity, higher risk of cardiovascular and renal complications, and a reduced response to conventional treatments. Obesity can also influence the quality of life of patients with SLE, making a holistic approach that considers the individual's nutritional status essential. Therefore, understanding the relationship between obesity and SLE is crucial for optimizing treatment, improving clinical outcomes, and enhancing patients' quality of life. Further research is needed to elucidate the underlying pathophysiological mechanisms, develop more precise and personalized management strategies, and identify biomarkers that can predict disease prognosis and treatment response.
Collapse
Affiliation(s)
- Lucas M Carvalho
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Beatriz G Carvalho
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia L Souza
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jhulia Cnl da Mota
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amanda A Ribeiro
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carolina F Nicoletti
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
36
|
Škrlep M, Poklukar K, Vrecl M, Brankovič J, Čandek-Potokar M. Growth Performance, Carcass Quality, and Lipid Metabolism in Krškopolje Pigs and Modern Hybrid Pigs: Comparison of Genotypes and Evaluation of Dietary Protein Reduction. Animals (Basel) 2024; 14:3331. [PMID: 39595384 PMCID: PMC11591021 DOI: 10.3390/ani14223331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
This study compared the performance, meat quality and adipose tissue characteristics of Krškopolje pigs and modern hybrid pigs under identical rearing conditions, besides examining the effects of dietary protein reduction in both genotypes. A total of 29 pigs (14 Krškopolje and 15 hybrids) were assigned to litter into two dietary groups (high and low protein). The low-protein diet for hybrid pigs corresponded to the high-protein diet for Krškopolje pigs. All diets were iso-energetic. Dietary protein reduction decreased growth rate and muscle development in modern hybrids but had no significant impact on performance, quality or metabolic traits in Krškopolje pigs. Genotype differences revealed that Krškopolje pigs had lower growth rates, less lean and more fat deposition, as reflected in thicker subcutaneous and higher intramuscular fat compared to modern hybrids. Krškopolje pigs also exhibited higher myoglobin concentration and fatty acid saturation. Lipogenic enzyme activity and histo-morphological traits behaved in a tissue-specific manner but still indicated a greater lipogenic potential in Krškopolje pigs. This study provides valuable insights into breed-specific responses to dietary changes and highlights the unique characteristics of Krškopolje pigs.
Collapse
Affiliation(s)
- Martin Škrlep
- Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia; (M.Š.); (K.P.)
| | - Klavdija Poklukar
- Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia; (M.Š.); (K.P.)
| | - Milka Vrecl
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia; (M.V.); (J.B.)
| | - Jana Brankovič
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia; (M.V.); (J.B.)
| | - Marjeta Čandek-Potokar
- Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia; (M.Š.); (K.P.)
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, SI-2311 Hoče, Slovenia
| |
Collapse
|
37
|
Ban S, Baek J, Choi S, Han SH. Development of a sex-specific visceral fat area estimation using discrete multi-wavelength near-infrared spectroscopy measurements in Korean individuals. Int J Obes (Lond) 2024:10.1038/s41366-024-01682-5. [PMID: 39558073 DOI: 10.1038/s41366-024-01682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND/OBJECTIVES A high level of visceral fat area (VFA) is associated with obesity and cardiometabolic risk factors. VFA measured by computer tomography (CT) scan is accurate but has limitations for everyday use. Meanwhile, near-infrared (NIR) light penetrates the superficial layers of the human body so that fat content can be measured just as CT imaging measures fat accumulation. SUBJECTS/METHODS This study evaluated whether discrete multi-wavelength NIR spectroscopy (DMW-NIRS) can be used to measure abdominal fat as a satisfactory alternative to a CT scan. 290 subjects were enrolled in this study, and each subject underwent DMW-NIRS NIR measurement and CT scan. A sex-specific DMW-NIRS-based VFA estimation formula was developed by multiple linear regression, including lipid density, age, and body mass index (BMI). RESULTS The model of DMW-NIRS estimated VFA gave the least Akaike Information Criterions (AIC), Root Mean Squared Errors (RMSE), and the greatest Coefficient of determination (R2) to predict VFA (1199, 29.5, 0.544 in female, and 1714, 41.3, 0.504 in male, respectively). Also, the DMW-NIRS estimated that VFA was highly performed to determine visceral obesity, which is comparable with other obesity surrogates. CONCLUSIONS This study suggested that lipid density can be used as a valid, noninvasive method to determine visceral obesity.
Collapse
Affiliation(s)
- Soonhyun Ban
- Olive Healthcare, 4, Jeongui-ro 8-gil, Songpa-gu, Seoul, 05836, Republic of Korea
| | - Jihyeon Baek
- Olive Healthcare, 4, Jeongui-ro 8-gil, Songpa-gu, Seoul, 05836, Republic of Korea
| | - Soee Choi
- Olive Healthcare, 4, Jeongui-ro 8-gil, Songpa-gu, Seoul, 05836, Republic of Korea
| | - Sung-Ho Han
- Olive Healthcare, 4, Jeongui-ro 8-gil, Songpa-gu, Seoul, 05836, Republic of Korea.
| |
Collapse
|
38
|
Yang Y, Luo L, Li Y, Shi X, Li C, Chai J, Jiang S, Zheng R. Succinic Acid Improves the Metabolism of High-Fat Diet-Induced Mice and Promotes White Adipose Browning. Nutrients 2024; 16:3828. [PMID: 39599615 PMCID: PMC11597198 DOI: 10.3390/nu16223828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Succinic acid plays a crucial role as an essential intermediate in the mitochondrial tricarboxylic acid cycle in mitochondria. In recent years, growing evidence has supported the the important role of succinic acid in fat metabolism. Therefore, we aimed to investigate the effects of succinic acid on adipose tissue metabolism and insulin sensitivity in high-fat diet (HFD)-induced obese mice and try to explore its potential mechanism. We found that the addition of succinic acid (40 mM) to drinking water inhibited the hypertrophy of inguinal white adipose tissue (iWAT) in HFD-induced mice. Furthermore, succinic acid supplementation enhanced insulin sensitivity and improved their glucose tolerance in obese mice. Interestingly, succinic acid supplementation improved lipid metabolism in HFD-fed mice, as shown by decreased serum levels of TG, TC, LDL-C, and increased HDL-C. In addition, succinic acid supplementation increased the expression of browning markers and mitochondria-related genes in iWAT. Further studies showed that the addition of succinic acid to drinking water promotes the browning of iWAT by activating the PI3K-AKT/MAPK signaling pathway. These results suggest that succinic acid has the potential to be used as an effective component for dietary intervention and may, therefore, play an important role in ameliorating and preventing obesity and associated metabolic diseases caused by HFD.
Collapse
Affiliation(s)
- Yuxuan Yang
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liang Luo
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yiqi Li
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiangda Shi
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Li
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jin Chai
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Siwen Jiang
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Rong Zheng
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (L.L.); (Y.L.); (X.S.); (C.L.); (J.C.); (S.J.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
39
|
Jin T, Jia J, Li W, Wu P, Liu T, Luo B, Zhang Z. Doramectin attenuates inflammation, obesity and insulin resistance in food-borne obese mice. Biochem Biophys Res Commun 2024; 732:150404. [PMID: 39033553 DOI: 10.1016/j.bbrc.2024.150404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The avermectin derivative doramectin is widely used clinically as an antiparasitic drug and, in addition, doramectin may have a modulatory role in obesity. Adipose tissue macrophage recruitment and polarization play an important role in obesity-induced inflammation and insulin resistance. The aim of this study was to investigate the effects of doramectin on high-fat diet-induced inflammation and macrophage polarization in white adipose tissue of epididymis of obese mice. We found that compared with high-fat diet-fed obese mice, doramectin treatment resulted in a significant decrease in body weight and lipid levels, improved insulin resistance, an increase in the proportion of M2-type macrophages and a decrease in the proportion of M1-type macrophages in the epididymal white adipose tissues, as well as a decrease in the infiltration of inflammatory cells in the adipose tissues. Thus, doramectin can ameliorate high-fat diet-induced obesity and adipose inflammation by affecting macrophage polarization in white adipose tissue.
Collapse
Affiliation(s)
- Tianrong Jin
- Medical College of Chongqing University, 131 Yubei Road, Shapingba District, Chongqing, 400030, China
| | - Jialin Jia
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Wenhua Li
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Pengfei Wu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 83 Xinqiao Main Street, Chongqing, 400037, China
| | - Tingting Liu
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Bangwei Luo
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China.
| | - Zhiren Zhang
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China.
| |
Collapse
|
40
|
Sakata K, Fukuchi M. Accelerated BDNF expression in visceral white adipose tissues following high-fat diet feeding in mice. Genes Cells 2024; 29:1077-1084. [PMID: 39278976 DOI: 10.1111/gtc.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is expressed in the white adipose tissues (WATs), and the expression increases during high-fat diet (HFD) feeding, implicating its role in obesity. Here, we focused on BDNF expression in epididymal WAT (eWAT), a visceral adipose tissue, in mice. During 2 weeks of HFD feeding, Bdnf mRNA expression in eWAT slightly increased, but a robust increase was observed after 8 weeks of HFD feeding. This upregulation of Bdnf mRNA was correlated with significant induction of hypoxia-inducible factor 1α (Hif1α) and platelet-derived growth factor subunit B (Pdgfb) mRNA in eWAT following 8 weeks of HFD feeding. Furthermore, the increased expression of the M1 macrophage markers was strongly correlated with the elevation of Bdnf mRNA in the eWAT. Notably, 8 weeks of HFD feeding significantly elevated Tnfα mRNA expression in eWAT, while no such induction was observed in inguinal WAT (iWAT). In contrast, the expression of Adipoq (adiponectin), implicated in improved insulin sensitivity and anti-inflammatory effects, was significantly upregulated in iWAT, but not in eWAT. Thus, our study may show the role of BDNF in eWAT in obesity models, potentially contributing to the pathological state of visceral adipose tissues.
Collapse
Affiliation(s)
- Kurumi Sakata
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| |
Collapse
|
41
|
Myers JW, Park WY, Eddie AM, Shinde AB, Prasad P, Murphy AC, Leonard MZ, Pinette JA, Rampy JJ, Montufar C, Shaikh Z, Hickman TT, Reynolds GN, Winn NC, Lantier L, Peck SH, Coate KC, Stein RW, Carrasco N, Calipari ES, McReynolds MR, Zaganjor E. Systemic inhibition of de novo purine biosynthesis prevents weight gain and improves metabolic health by increasing thermogenesis and decreasing food intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620705. [PMID: 39553975 PMCID: PMC11566042 DOI: 10.1101/2024.10.28.620705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Objective Obesity is a major health concern, largely because it contributes to type 2 diabetes mellitus (T2DM), cardiovascular disease, and various malignancies. Increase in circulating amino acids and lipids, in part due to adipose dysfunction, have been shown to drive obesity-mediated diseases. Similarly, elevated purines and uric acid, a degradation product of purine metabolism, are found in the bloodstream and in adipose tissue. These metabolic changes are correlated with metabolic syndrome, but little is known about the physiological effects of targeting purine biosynthesis. Methods To determine the effects of purine biosynthesis on organismal health we treated mice with mizoribine, an inhibitor of inosine monophosphate dehydrogenase 1 and 2 (IMPDH1/2), key enzymes in this pathway. Mice were fed either a low-fat (LFD; 13.5% kcal from fat) or a high-fat (HFD; 60% kcal from fat) diet for 30 days during drug or vehicle treatment. We ascertained the effects of mizoribine on weight gain, body composition, food intake and absorption, energy expenditure, and overall metabolic health. Results Mizoribine treatment prevented mice on a HFD from gaining weight, but had no effect on mice on a LFD. Body composition analysis demonstrated that mizoribine significantly reduced fat mass but did not affect lean mass. Although mizoribine had no effect on lipid absorption, food intake was reduced. Furthermore, mizoribine treatment induced adaptive thermogenesis in skeletal muscle by upregulating sarcolipin, a regulator of muscle thermogenesis. While mizoribine-treated mice exhibited less adipose tissue than controls, we did not observe lipotoxicity. Rather, mizoribine-treated mice displayed improved glucose tolerance and reduced ectopic lipid accumulation. Conclusions Inhibiting purine biosynthesis prevents mice on a HFD from gaining weight, and improves their metabolic health, to a significant degree. We also demonstrated that the purine biosynthesis pathway plays a previously unknown role in skeletal muscle thermogenesis. A deeper mechanistic understanding of how purine biosynthesis promotes thermogenesis and decreases food intake may pave the way to new anti-obesity therapies. Crucially, given that many purine inhibitors have been FDA-approved for use in treating various conditions, our results indicate that they may benefit overweight or obese patients.
Collapse
Affiliation(s)
- Jacob W. Myers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Woo Yong Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander M. Eddie
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Abhijit B. Shinde
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Alexandria C. Murphy
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Michael Z. Leonard
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Julia A. Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jessica J. Rampy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Claudia Montufar
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zayedali Shaikh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tara T. Hickman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Garrett N. Reynolds
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nathan C. Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| | - Sun H. Peck
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Katie C. Coate
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roland W. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nancy Carrasco
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Erin S. Calipari
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
42
|
Zaccaron RP, Mendes C, da Costa C, Silveira PCL, Rezin GT. Skin metabolism in obesity: A narrative review. Wound Repair Regen 2024; 32:1022-1027. [PMID: 39318160 DOI: 10.1111/wrr.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Obesity is a complex multifactorial disease in which excess body fat triggers negative health effects. Systemically, obesity causes several changes, such as inflammation, oxidative stress, mitochondrial dysfunction and apoptosis; factors linked to the slow and incomplete epithelial regenerative process. Specifically, in the integumentary system, obesity causes an expansion of the skin's surface area and changes in collagen deposition. Molecular underpinnings of why obesity delays wound healing are still poorly understood. In addition to the primary role of dermal adipocytes in lipid storage and heat insulation, they also promote skin immunity, wound healing and hair follicle cycling. As a consequence of the cellular and dysfunctional adaptations of adipocytes, inflammatory immune alterations, alteration in the expression of proteins genes associated with the blood supply, altered collagen formation through fibroblast senescence and excessive degradation of extracellular matrix proteins are metabolic characteristics of the system in obesity that contribute to sustained inflammation and decreased mechanical resistance of the skin.
Collapse
Affiliation(s)
- Rubya Pereira Zaccaron
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Carolini Mendes
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Camila da Costa
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| |
Collapse
|
43
|
Lai HH, Jeng KS, Huang CT, Chu AJ, Her GM. Heightened TPD52 linked to metabolic dysfunction and associated abnormalities in zebrafish. Arch Biochem Biophys 2024; 761:110166. [PMID: 39349129 DOI: 10.1016/j.abb.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
The tumor protein D52 (TPD52) gene encodes a proto-oncogene protein associated with various medical conditions, including breast and prostate cancers. It plays a role in multiple biological pathways such as cell growth, differentiation, and apoptosis. The function of TPD52 in lipid droplet biosynthesis has been investigated in vitro. However, its precise role in lipid metabolism in animal models is not fully understood. To investigate the functions of TPD52 in vivo, we performed a conditional TPD52 protein expression analysis using a Tet-off transgenic system to establish conditionally expressed Tpd52 transgenic zebrafish. The effect of Tpd52 on lipogenesis was assessed using various methods, including whole-mount Oil Red O staining, histological examination, and measurement of inflammatory markers and potential targets using real-time quantitative polymerase chain reaction and immunoblotting in Tpd52 fish. Zebrafish with increased Tpd52 levels exhibited notable weight gain and the enlargement of fat deposits, which were mainly attributed to an increase in the volume of adipocytes. Moreover, Tpd52 overexpression was correlated with the triggering of the adipocyte differentiation signaling pathway. During adipocytic differentiation in response to nutrient status, our observations revealed adipogenesis, nonalcoholic fatty liver disease, and metabolic cardiomyopathy (MCM) in Tpd52 transgenic zebrafish. To gain a deeper understanding of the contribution of these proteins to the regulation of cellular growth, we investigated the expression of their corresponding genes and proteins in zebrafish. In the present study, the activated protein kinase pathway was identified as the primary target of TPD52. Adult Tpd52 zebrafish showed increased lipid accumulation, resulting in the development of visceral obesity, nonalcoholic fatty liver disease, and MCM. These findings strongly suggest that TPD52 actively contributes to adipose tissue expansion and its subsequent effects. This investigation provides compelling evidence that Tpd52 facilitates adipocyte development and related metabolic comorbidities in zebrafish.
Collapse
Affiliation(s)
- Hsin-Hung Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Kuo-Shyang Jeng
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei, 220, Taiwan
| | - Chung-Tsui Huang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Far Eastern Memorial Hospital, New Taipei, 220, Taiwan
| | - An-Ju Chu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
44
|
Huang X, Jiang D, Zhu Y, Fang Z, Feng B. Short-Term Zinc Supplementation Stimulates Visceral Adipose Catabolism and Inflammation in Mice. Nutrients 2024; 16:3719. [PMID: 39519550 PMCID: PMC11547266 DOI: 10.3390/nu16213719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Zinc (Zn), a fundamental trace element in human biology, exhibits pivotal roles in sustaining vital physiological processes and regulating metabolic homeostasis. Insufficient zinc intake has been linked to deleterious consequences on growth, reproductive functions, metabolic activities, and immune responses in both humans and animals. Oral zinc supplementation is usually performed to meet zinc requirement. Previous studies have shown that long-term supplementation of zinc in mice impaired AKT signaling and induced adipocyte hypertrophy in visceral adipose tissue. METHODS The presented study was conducted to investigate the role and mechanism of short-term zinc supplementation on lipids metabolism. Zinc sulfate was supplemented in the drinking water of C57/BL6J male mice at 30 ppm or 90 ppm for one week. Water consumption, food intake, and body weight were analyzed, adipose tissue and serum profile of metabolites were investigated, and the key genes related to lipid metabolism were analyzed. RESULTS Short-term zinc supplementation decreased visceral adipose tissue weight and adipocyte size compared to the control group, but no difference was observed in food intake, water consumption, and body weight between the two groups. Further studies revealed that short-term zinc supplementation significantly increased the serum insulin level while decreasing the serum NEFA content. In addition, zinc supplementation increased the expression of Atgl and Hsl in the visceral adipose tissue compared with the control mice. Furthermore, the phosphorylation level of HSL and protein level of PPARg in the epididymal adipose tissue increased by zinc supplementation compared with the control mice. In comparison, the protein level of FASN was down-regulated by short-term zinc supplementation in the epididymal adipose tissue, although the expression of lipogenic genes was not changed. The expression of F4/80 and Tnfa were increased in zinc-supplemented adipose tissue as compared with the control group. CONCLUSIONS Our findings suggest that short-term zinc supplementation might reduce fat deposition by enhancing lipolysis in mice. Future studies could focus on the effect of intermittent zinc supplementation on fat reduction in both animal models and humans.
Collapse
Affiliation(s)
- Xiaohua Huang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (Y.Z.); (Z.F.)
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Dandan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (Y.Z.); (Z.F.)
| | - Yingguo Zhu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (Y.Z.); (Z.F.)
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (Y.Z.); (Z.F.)
- Key Laboratory for Food Science and Human Health, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (Y.Z.); (Z.F.)
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
45
|
Tol MJ, Shimanaka Y, Bedard AH, Sapia J, Cui L, Colaço-Gaspar M, Hofer P, Ferrari A, Qian K, Kennelly JP, Lee SD, Gao Y, Xiao X, Gao J, Mack JJ, Weston TA, Pan C, Lusis AJ, Williams KJ, Su B, Pike DP, Reed A, Milosevich N, Cravatt BF, Arita M, Young SG, Ford DA, Zechner R, Vanni S, Tontonoz P. Dietary control of peripheral adipose storage capacity through membrane lipid remodelling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620374. [PMID: 39554041 PMCID: PMC11565995 DOI: 10.1101/2024.10.25.620374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Complex genetic and dietary cues contribute to the development of obesity, but how these are integrated on a molecular level is incompletely understood. Here, we show that PPARγ supports hypertrophic expansion of adipose tissue via transcriptional control of LPCAT3, a membrane-bound O-acyltransferase that enriches diet-derived omega-6 ( n -6) polyunsaturated fatty acids (PUFAs) in the phospholipidome. In high-fat diet-fed mice, lowering membrane n -6 PUFA levels by adipocyte-specific Lpcat3 knockout ( Lpcat3 AKO ) or by dietary lipid manipulation leads to dysfunctional triglyceride (TG) storage, ectopic fat deposition and insulin resistance. Aberrant lipolysis of stored TGs in Lpcat3 AKO adipose tissues instigates a non-canonical adaptive response that engages a futile lipid cycle to increase energy expenditure and limit further body weight gain. Mechanistically, we find that adipocyte LPCAT3 activity promotes TG storage by selectively enriching n -6 arachidonoyl-phosphatidylethanolamine at the ER-lipid droplet interface, which in turn favours the budding of large droplets that exhibit greater resistance to ATGL-dependent hydrolysis. Thus, our study highlights the PPARγ-LPCAT3 pathway as a molecular link between dietary n -6 PUFA intake, adipose expandability and systemic energy balance.
Collapse
|
46
|
Dronkers J, van Veldhuisen DJ, van der Meer P, Meems LMG. Heart Failure and Obesity: Unraveling Molecular Mechanisms of Excess Adipose Tissue. J Am Coll Cardiol 2024; 84:1666-1677. [PMID: 39415402 DOI: 10.1016/j.jacc.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 10/18/2024]
Abstract
Obesity is an ongoing pandemic and is associated with the development of heart failure (HF), and especially HF with preserved ejection fraction. The definition of obesity is currently based on anthropometric measurements but neglects the location and molecular properties of excess fat. Important depots associated with HF development are subcutaneous adipose tissue and visceral adipose tissue, both located in the abdominal region, and epicardial adipose tissue (EAT) surrounding the myocardium. However, mechanisms linking these different adipose tissue depots to HF development are incompletely understood. EAT in particular is of great interest because of its close proximity to the heart. In this review, we therefore focus on the characteristics of different adipose tissue depots and their response to obesity. In addition, we evaluate how different mechanisms associated with EAT expansion potentially contribute to HF and in particular HF with preserved ejection fraction development.
Collapse
Affiliation(s)
- Just Dronkers
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Dirk J van Veldhuisen
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Peter van der Meer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Laura M G Meems
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands.
| |
Collapse
|
47
|
FINK JULIUS, TANAKA MASAMI, HORIE SHIGEO. Effects of Fasting on Metabolic Hormones and Functions: A Narrative Review. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2024; 70:348-359. [PMID: 39545228 PMCID: PMC11560338 DOI: 10.14789/jmj.jmj24-0012-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 11/17/2024]
Abstract
The occurrence of the metabolic syndrome and its related diseases such as diabetes are steadily rising in our modern society. Modern food choices and the more sedentary lifestyles largely contribute to this shift in our society's health. Fasting has been practiced for religious purposes all over the world long time before science showed the benefits of it. The effects of fasting on glucose and fat metabolism are of great interest. Fasting triggers a cascade of changes in the hormonal, microbiome and enzymatic environments, leading to shifted glucose and fat metabolisms. Fasting-induced metabolic function changes are affected by several factors such as sex hormones, lipid-released hormones, growth hormone, insulin, and the gut microbiome, leading to lipolysis and the release of FFA into the bloodstream. The purpose of this review is to summarize the newest research results on the specific pathways fasting triggers to improve metabolic functions and understand the potential applications of fasting as prevention/treatment of several metabolic conditions.
Collapse
Affiliation(s)
- JULIUS FINK
- Corresponding author: Julius Fink, Department of Urology, Juntendo University, Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan, TEL: +81-3-3813-3111 E-mail:
| | | | | |
Collapse
|
48
|
Pellegrini V, La Grotta R, Carreras F, Giuliani A, Sabbatinelli J, Olivieri F, Berra CC, Ceriello A, Prattichizzo F. Inflammatory Trajectory of Type 2 Diabetes: Novel Opportunities for Early and Late Treatment. Cells 2024; 13:1662. [PMID: 39404426 PMCID: PMC11476093 DOI: 10.3390/cells13191662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Low-grade inflammation (LGI) represents a key driver of type 2 diabetes (T2D) and its associated cardiovascular diseases (CVDs). Indeed, inflammatory markers such as hs-CRP and IL-6 predict the development of T2D and its complications, suggesting that LGI already increases before T2D diagnosis and remains elevated even after treatment. Overnutrition, unhealthy diets, physical inactivity, obesity, and aging are all recognized triggers of LGI, promoting insulin resistance and sustaining the pathogenesis of T2D. Once developed, and even before frank appearance, people with T2D undergo a pathological metabolic remodeling, with an alteration of multiple CVD risk factors, i.e., glycemia, lipids, blood pressure, and renal function. In turn, such variables foster a range of inflammatory pathways and mechanisms, e.g., immune cell stimulation, the accrual of senescent cells, long-lasting epigenetic changes, and trained immunity, which are held to chronically fuel LGI at the systemic and tissue levels. Targeting of CVD risk factors partially ameliorates LGI. However, some long-lasting inflammatory pathways are unaffected by common therapies, and LGI burden is still increased in many T2D patients, a phenomenon possibly underlying the residual inflammatory risk (i.e., having hs-CRP > 2 mg/dL despite optimal LDL cholesterol control). On the other hand, selected disease-modifying drugs, e.g., GLP-1RA, seem to also act on the pathogenesis of T2D, curbing the inflammatory trajectory of the disease and possibly preventing it if introduced early. In addition, selected trials demonstrated the potential of canonical anti-inflammatory therapies in reducing the rate of CVDs in patients with this condition or at high risk for it, many of whom had T2D. Since colchicine, an inhibitor of immune cell activation, is now approved for the prevention of CVDs, it might be worth exploring a possible therapeutic paradigm to identify subjects with T2D and an increased LGI burden to treat them with this drug. Upcoming studies will reveal whether disease-modifying drugs reverse early T2D by suppressing sources of LGI and whether colchicine has a broad benefit in people with this condition.
Collapse
Affiliation(s)
- Valeria Pellegrini
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | - Rosalba La Grotta
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | - Francesca Carreras
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | - Angelica Giuliani
- Cardiac Rehabilitation Unit of Bari Institute, Istituti Clinici Scientifici Maugeri IRCCS, 70124 Bari, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60127 Ancona, Italy; (J.S.); (F.O.)
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60127 Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60127 Ancona, Italy; (J.S.); (F.O.)
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60127 Ancona, Italy
| | | | - Antonio Ceriello
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | | |
Collapse
|
49
|
Yan XY, Luo YY, Chen HJ, Hu XQ, Zheng P, Fang HT, Ding F, Zhang L, Li Z, Yan YE. IRX3 promotes adipose tissue browning and inhibits fibrosis in obesity-resistant mice. Int J Biochem Cell Biol 2024; 175:106638. [PMID: 39173825 DOI: 10.1016/j.biocel.2024.106638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Obesity is one of the threats to human health and survival. High fat diet (HFD)-induced obesity leads to adipose tissue fibrosis and a series of metabolic diseases. There are some people still thin under HFD, a phenomenon known as the "obesity resistance (OR) phenotype". It was found that Iroquois homeobox 3 (IRX3) is considered as a regulator in obesity, but the regulatory mechanism between OR and IRX3 is still unclear. In this study, we investigated OR on a HFD and the role of the IRX3 gene. Using mice, we observed that OR mice had lower body weights, reduced liver lipid synthesis, and increased white adipose tissue (WAT) lipolysis compared to obesity-prone (OP) mice. Additionally, OR mice exhibited spontaneous WAT browning and less fibrosis, correlating with higher Irx3 expression. Utilizing 3T3-L1 differentiated adipocytes, our study demonstrated that overexpression of Irx3 promoted thermogenesis-related gene expression and reduced adipocyte fibrosis. Therefore, Irx3 promotes WAT browning and inhibits fibrosis in OR mice. These results provide insight into the differences between obesity and OR, new perspectives on obesity treatment, and guidance for lessening adipose tissue fibrosis.
Collapse
Affiliation(s)
- Xi-Yue Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yuan-Yuan Luo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui-Jian Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiao-Qin Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Peng Zheng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hong-Ting Fang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Fei Ding
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Li Zhang
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Zhen Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - You-E Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
50
|
Yang M, Liu J, Shen Q, Chen H, Liu Y, Wang N, Yang Z, Zhu X, Zhang S, Li X, Qian Y. Body Roundness Index Trajectories and the Incidence of Cardiovascular Disease: Evidence From the China Health and Retirement Longitudinal Study. J Am Heart Assoc 2024; 13:e034768. [PMID: 39319466 DOI: 10.1161/jaha.124.034768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/25/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Several previous cross-sectional studies suggested that body roundness index (BRI) may be associated with cardiovascular disease (CVD). However, the association should be further validated. Our study aimed to assess the association of the BRI trajectories with CVD among middle-aged and older Chinese people in a longitudinal cohort. METHODS AND RESULTS A total of 9935 participants from the CHARLS (China Health and Retirement Longitudinal Study) with repeated BRI measurements from 2011 to 2016 were included. The BRI trajectories were identified by group-based trajectory modeling. The primary outcome was incident CVD (stroke or cardiac events), which occurred in 2017 to 2020. Cox proportional hazards regression models were used to examine the association of BRI trajectories with CVD risk. Participants were divided into 3 BRI trajectories, named the low-stable BRI trajectory, moderate-stable BRI trajectory and high-stable BRI trajectory, accounting for 49.81%, 42.35%, and 7.84% of the study population, respectively. Compared with participants in the low-stable BRI trajectory group, those in the moderate-stable and high-stable BRI trajectory groups had an increased risk of CVD, with multivariable adjusted hazard ratios of 1.22 (95% CI, 1.09-1.37) and 1.55 (95% CI, 1.26-1.90), respectively. Furthermore, simultaneously adding the BRI trajectory to the conventional risk model improved CVD risk reclassification (all P<0.05). CONCLUSIONS A higher BRI trajectory was associated with an increased risk of CVD. The BRI can be included as a predictive factor for CVD incidence.
Collapse
Affiliation(s)
- Man Yang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University Wuxi Center for Disease Control and Prevention Wuxi China
| | - Jia Liu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University Wuxi Center for Disease Control and Prevention Wuxi China
| | - Qian Shen
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University Wuxi Center for Disease Control and Prevention Wuxi China
| | - Hai Chen
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University Wuxi Center for Disease Control and Prevention Wuxi China
| | - Yaqi Liu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University Wuxi Center for Disease Control and Prevention Wuxi China
| | - Nanxi Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University Wuxi Center for Disease Control and Prevention Wuxi China
| | - Zhijie Yang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University Wuxi Center for Disease Control and Prevention Wuxi China
| | - Xiaowei Zhu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University Wuxi Center for Disease Control and Prevention Wuxi China
| | - Siyi Zhang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University Wuxi Center for Disease Control and Prevention Wuxi China
| | - Xinyan Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University Wuxi Center for Disease Control and Prevention Wuxi China
| | - Yun Qian
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University Wuxi Center for Disease Control and Prevention Wuxi China
| |
Collapse
|