1
|
Grijpink LCM, van der Valk WH, van Beelen ESA, de Groot JCMJ, Locher H, Vossen ACTM. Cytomegalovirus host receptor expression in the human fetal inner ear. PLoS One 2025; 20:e0320605. [PMID: 40163451 PMCID: PMC11957294 DOI: 10.1371/journal.pone.0320605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Fetal infection with human cytomegalovirus (hCMV) can cause sensorineural hearing loss and vestibular impairment, yet its pathogenesis remains unclear. This study aims to identify potential target cell types of hCMV in the human fetal inner ear. Viral particles use several envelope glycoproteins to enter target cells, including the pentameric complex, the trimeric complex and glycoprotein B. Platelet-derived growth factor receptor alpha (PDGFRA) serves as the receptor in fibroblasts, neuropilin-2 (NRP2) in epithelial, endothelial and dendritic cells as well as in leukocytes. Upon binding of these glycoproteins, glycoprotein B initiates membrane fusion which is proposed to be mediated by EGFR. When and where these proteins are expressed in the fetal inner ear during development is unknown. To address this, expression patterns of PDGFRA, NRP2 and EGFR were investigated in human fetal inner ear tissue using single-nucleus RNA sequencing data (first trimester: N = 2) and immunohistochemistry (first trimester: N = 6, second trimester: N = 5). PDGFRA gene and protein expression was detected in mesenchymal cells, NRP2 protein expression in epithelial cells and endothelial cells, and EGFR gene and protein expression in both epithelial cells and mesenchymal cells. Notably, all three receptors were present in tissue from the first and second trimesters. In conclusion, hCMV host receptors PDGFRA, NRP2 and EGFR are expressed in mesenchymal, epithelial and endothelial cells within the cochlea and vestibular organs during the first and second trimesters. These cell types may serve as targets for hCMV infection of the fetal inner ear.
Collapse
Affiliation(s)
- Lucia C. M. Grijpink
- Leiden University Center for Infectious Diseases (LUCID), Medical Microbiology and Infection Control, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter H. van der Valk
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Edward S. A. van Beelen
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - John C. M. J. de Groot
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Heiko Locher
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Ann C. T. M. Vossen
- Leiden University Center for Infectious Diseases (LUCID), Medical Microbiology and Infection Control, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Ozer EA, Keskin A, Berrak YH, Cankara F, Can F, Gursoy-Ozdemir Y, Keskin O, Gursoy A, Yapici-Eser H. Shared interactions of six neurotropic viruses with 38 human proteins: a computational and literature-based exploration of viral interactions and hijacking of human proteins in neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2025; 5:18. [PMID: 39987419 PMCID: PMC11846830 DOI: 10.1007/s44192-025-00128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Viral infections may disrupt the structural and functional integrity of the nervous system, leading to acute conditions such as encephalitis, and neuropsychiatric conditions as mood disorders, schizophrenia, and neurodegenerative diseases. Investigating viral interactions of human proteins may reveal mechanisms underlying these effects and offer insights for therapeutic interventions. This study explores molecular interactions of virus and human proteins that may be related to neuropsychiatric disorders. METHODS Herpes Simplex Virus-1 (HSV-1), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Influenza A virus (IAV) (H1N1, H5N1), and Human Immunodeficiency Virus (HIV1&2) were selected as key viruses. Protein structures for each virus were accessed from the Protein Data Bank and analyzed using the HMI-Pred web server to detect interface mimicry between viral and human proteins. The PANTHER classification system was used to categorize viral-human protein interactions based on function and cellular localization. RESULTS Energetically favorable viral-human protein interactions were identified for HSV-1 (467), CMV (514), EBV (495), H1N1 (3331), H5N1 (3533), and HIV 1&2 (62425). Besides immune and apoptosis-related pathways, key neurodegenerative pathways, including those associated with Parkinson's and Huntington's diseases, were frequently interacted. A total of 38 human proteins, including calmodulin 2, Ras-related botulinum toxin substrate 1 (Rac1), PDGF-β, and vimentin, were found to interact with all six viruses. CONCLUSION The study indicates a substantial number of energetically favorable interactions between human proteins and selected viral proteins, underscoring the complexity and breadth of viral strategies to hijack host cellular mechanisms. Further in vivo and in vitro validation is required to understand the implications of these interactions.
Collapse
Affiliation(s)
| | - Aleyna Keskin
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Fatma Cankara
- Graduate School of Sciences and Engineering, Computational Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Fusun Can
- Department of Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey.
| | - Hale Yapici-Eser
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
3
|
Venturini C, Breuer J. Cytomegalovirus Genetic Diversity and Evolution: Insights into Genotypes and Their Role in Viral Pathogenesis. Pathogens 2025; 14:50. [PMID: 39861011 PMCID: PMC11768282 DOI: 10.3390/pathogens14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous virus that infects most of the human population and causes significant morbidity and mortality, particularly among immunocompromised individuals. Understanding CMV's genetic diversity and evolutionary dynamics is crucial for elucidating its pathogenesis and developing effective therapeutic interventions. This review provides a comprehensive examination of CMV's genetic diversity and evolution, focussing on the role of different genotypes in viral pathogenesis.
Collapse
Affiliation(s)
- Cristina Venturini
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK;
| | | |
Collapse
|
4
|
Schultz EP, Ponsness L, Lanchy JM, Zehner M, Klein F, Ryckman BJ. Human cytomegalovirus gH/gL/gO binding to PDGFRα provides a regulatory signal activating the fusion protein gB that can be blocked by neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631902. [PMID: 39829861 PMCID: PMC11741351 DOI: 10.1101/2025.01.08.631902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Herpesviruses require membrane fusion for entry and spread, a process facilitated by the fusion glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL can be modified by the accessory protein gO, or the set of proteins UL128, UL130 and UL131. While the binding of the gH/gL/gO and gH/gL/UL128-131 complexes to cellular receptors including PDFGRα and NRP2 has been well-characterized structurally, the specific role of receptor engagements by the gH/gL/gO and gH/gL/UL128-131 in regulation of fusion has remained unclear. We describe a cell-cell fusion assay that can quantitatively measure fusion on a timescale of minutes and demonstrate that binding of gH/gL/gO to PDGFRα dramatically enhances gB-mediated cell-cell fusion. In contrast, gH/gL/pUL128-131-regulated fusion is significantly slower and gH/gL alone cannot promote gB fusion activity within this timescale. The genetic diversity of gO influenced the observed cell-cell fusion rates, correlating with previously reported effects on HCMV infectivity. Mutations in gL that had no effect on formation of gH/gL/gO or binding to PDGFRα dramatically reduced the cell-cell fusion rate, suggesting that gL plays a critical role in linking the gH/gL/gO-PDGFRα receptor-binding to activation of gB. Several neutralizing human monoclonal antibodies were found to potently block gH/gL/gO-PDGFRα regulated cell-cell fusion, suggesting this mechanism as a therapeutic target.
Collapse
Affiliation(s)
- Eric P. Schultz
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Lars Ponsness
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Matthias Zehner
- Laboratory for Infection and Immune Biology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brent J. Ryckman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
5
|
Aydın Güçlü Ö, Demirdöğen E, Kazak E, Acet Öztürk NA, Yıldız MN, Terzi OE, Görek Dilektaşlı A, Ursavaş A. Prognostic significance of plasma cytomegalovirus (CMV) DNA load in immunocompetent patients with CMV pneumonia: A retrospective cohort study. J Med Virol 2024; 96:e70019. [PMID: 39428968 DOI: 10.1002/jmv.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Cytomegalovirus (CMV) pneumonia, often presented as pneumonitis, is characterized by respiratory failure and large interstitial infiltrates visible on chest radiographs. This retrospective cohort study investigates the predictive significance of plasma CMV DNA load on the short- and long-term mortality among immunocompetent patients diagnosed with CMV pneumonia. The study included 61 immunocompetent patients suspected of having CMV pneumonia, treated with intravenous ganciclovir after positive CMV DNA results from bronchoalveolar lavage or plasma. Our multivariate Cox regression analysis identified several independent predictors of mortality. Having idiopathic pulmonary fibrosis (IPF) significantly increased the risk of in-hospital mortality (HR: 7.27, 95% CI: 1.62-32.52, p = 0.009), as did shorter durations of antiviral therapy (HR: 0.90, 95% CI: 0.84-0.97, p = 0.005) and higher CMV DNA levels (>3870 IU/mL; HR: 9.63, 95% CI: 2.32-39.98, p = 0.002). High CMV DNA levels (>5154 IU/mL) were also predictors of 30-day mortality (HR: 9.39, 95% CI: 2.20-40.01, p = 0.002). For 1-year mortality, the presence of IPF (HR: 2.96, 95% CI: 1.08-8.06, p = 0.034), hypersensitivity pneumonia (HP) (HR: 4.30, 95% CI: 1.57-11.78, p = 0.005), shorter duration of total antiviral therapy (HR: 0.95, 95% CI: 0.93-0.99, p = 0.010), and higher CMV DNA levels (>327 IU/mL) (HR: 3.36, 95% CI: 1.33-8.47, p = 0.010) were identified as independent determinants. The study reveals that IPF increases short and long-term mortality risks, while HP increases long-term mortality. Extended antiviral treatment duration results in a 10% reduction in in-hospital mortality for each additional day of treatment. Furthermore, elevated viral loads are associated with higher mortality rates, highlighting the necessity for careful monitoring.
Collapse
Affiliation(s)
- Özge Aydın Güçlü
- Department of Pulmonology, Faculty of Medicine, Uludağ University, Bursa, Turkey
| | - Ezgi Demirdöğen
- Department of Pulmonology, Faculty of Medicine, Uludağ University, Bursa, Turkey
| | - Esra Kazak
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | | | - Merve Nur Yıldız
- Department of Pulmonology, Faculty of Medicine, Uludağ University, Bursa, Turkey
| | - Orkun Eray Terzi
- Department of Pulmonology, Faculty of Medicine, Uludağ University, Bursa, Turkey
| | | | - Ahmet Ursavaş
- Department of Pulmonology, Faculty of Medicine, Uludağ University, Bursa, Turkey
| |
Collapse
|
6
|
Zamora D, Xie H, Sadowska-Klasa A, Kampouri E, Biernacki MA, Ueda Oshima M, Duke E, Green ML, Kimball LE, Holmberg L, Waghmare A, Greninger AL, Jerome KR, Hill GR, Hill JA, Leisenring WM, Boeckh MJ. CMV reactivation during pretransplantation evaluation: a novel risk factor for posttransplantation CMV reactivation. Blood Adv 2024; 8:4568-4580. [PMID: 38924728 PMCID: PMC11399585 DOI: 10.1182/bloodadvances.2023012234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
ABSTRACT Cytomegalovirus (CMV) disease occurs occasionally before allogeneic hematopoietic cell transplantation (HCT) and is associated with poor post-HCT outcomes; however, the impact of pre-HCT CMV reactivation is unknown. Pre-HCT CMV reactivation was assessed in HCT candidates from the preemptive antiviral therapy (2007-2017) and letermovir prophylaxis (2018-2021) eras. CMV DNA polymerase chain reaction (PCR) surveillance was routinely performed during the pre-HCT workup period, and antiviral therapy was recommended according to risk of progression to CMV disease. Risk factors for pre-HCT CMV reactivation were characterized, and the associations of pre-HCT CMV reactivation with post-HCT outcomes were examined using logistic regression and Cox proportional hazard models, respectively. A total of 1694 patients were identified, and 11% had pre-HCT CMV reactivation 14 days (median; interquartile range [IQR], 6-23) before HCT. Lymphopenia (≤0.3 × 103/μL) was the strongest risk factor for pre-HCT CMV reactivation at multiple PCR levels. In the preemptive therapy era, patients with pre-HCT CMV reactivation had a significantly increased risk of CMV reactivation by day 100 as well as CMV disease and death by 1 year after HCT. Clearance of pre-HCT CMV reactivation was associated with a lower risk of post-HCT CMV reactivation. Similar associations with post-HCT CMV end points were observed in a cohort of patients receiving letermovir prophylaxis. Pre-HCT CMV reactivation can be routinely detected in high-risk HCT candidates and is a significant risk factor for post-HCT CMV reactivation and disease. Pre-HCT CMV DNA PCR surveillance is recommended in high-risk HCT candidates, and antiviral therapy may be indicated to prevent post-HCT CMV reactivation.
Collapse
Affiliation(s)
- Danniel Zamora
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Hu Xie
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Alicja Sadowska-Klasa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Eleftheria Kampouri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Melinda A. Biernacki
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Elizabeth Duke
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Margaret L. Green
- Division of Allergy & Infectious Disease, University of Washington School of Medicine, Seattle, WA
| | - Louise E. Kimball
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Leona Holmberg
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Alpana Waghmare
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Alexander L. Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Geoffrey R. Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Joshua A. Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Michael J. Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
7
|
Baber A, Calvet L, Vissac C, Salmona M, Legoff J, De Jong A, Mariotte E, Zafrani L, Azoulay E, Darmon M. Cytomegalovirus infection in intensive care unit patients with hematological malignancies: Characteristics and clinical outcomes. J Crit Care 2024; 82:154766. [PMID: 38479298 DOI: 10.1016/j.jcrc.2024.154766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is associated with poor outcome in ICU patients. However, data on immunocompromised patients are scarce. This study aims to describe characteristics and outcomes of critically ill hematological patients and CMV infection. CMV disease characteristics and relationship between CMV viral load, CMV disease, coinfections by other pathogens and outcomes are described. METHODS Retrospective single center study (Jan 2010-Dec 2017). Adult patients, admitted to the ICU, having underlying hematological malignancy and CMV infection were included. Results are reported as median (interquartile) or n (%). Factors associated with hospital mortality or CMV disease were analysed using logistic regression. RESULTS 178 patients were included (median age 55y [42-64], 69.1% male). Hospital mortality was 53% (n = 95). Median viral load was 2.7 Log [2.3-3.5]. CMV disease occurred in 44 (24.7%) patients. Coinfections concerned 159 patients (89.3%). After adjustment for confounders, need for vasopressors (OR 2.53; 95%CI 1.11-5.97) and viral load (OR 1.88 per Log; 95%CI 1.29-2.85) were associated with hospital mortality. However, neither CMV disease nor treatment were associated with outcomes. Allogeneic stem cell transplantation (OR 2.55; 95%CI 1.05-6.16), mechanical ventilation (OR 4.11; OR 1.77-10.54) and viral load (OR 1.77 per Log; 95%CI 1.23-2.61) were independently associated with CMV disease. Coinfections were not associated with CMV disease or hospital mortality. CONCLUSION In critically-ill hematological patients, CMV viral load is independently associated with hospital mortality. Conversely, neither CMV disease nor treatment was associated with outcome suggesting viral load to be a surrogate for immune status rather than a cause of poor outcome.
Collapse
Affiliation(s)
- A Baber
- Université de Paris, Assistance Publique-Hôpitaux de Paris; Hôpitaux universitaires Saint-Louis, Lariboisière, Fernand-Widal; Intensive care unit, Paris, France
| | - L Calvet
- Université de Paris, Assistance Publique-Hôpitaux de Paris; Hôpitaux universitaires Saint-Louis, Lariboisière, Fernand-Widal; Intensive care unit, Paris, France
| | - C Vissac
- Université de Paris, Assistance Publique-Hôpitaux de Paris; Hôpitaux universitaires Saint-Louis, Lariboisière, Fernand-Widal; Intensive care unit, Paris, France
| | - M Salmona
- Université de Paris; Assistance Publique-Hôpitaux de Paris; Hôpitaux universitaires Saint-Louis, Lariboisière, Fernand-Widal; Department of microbiology, Paris, France
| | - J Legoff
- Université de Paris; Assistance Publique-Hôpitaux de Paris; Hôpitaux universitaires Saint-Louis, Lariboisière, Fernand-Widal; Department of microbiology, Paris, France
| | - A De Jong
- Université de Paris, Assistance Publique-Hôpitaux de Paris; Hôpitaux universitaires Saint-Louis, Lariboisière, Fernand-Widal; Intensive care unit, Paris, France
| | - E Mariotte
- Université de Paris, Assistance Publique-Hôpitaux de Paris; Hôpitaux universitaires Saint-Louis, Lariboisière, Fernand-Widal; Intensive care unit, Paris, France
| | - L Zafrani
- Université de Paris, Assistance Publique-Hôpitaux de Paris; Hôpitaux universitaires Saint-Louis, Lariboisière, Fernand-Widal; Intensive care unit, Paris, France
| | - E Azoulay
- Université de Paris, Assistance Publique-Hôpitaux de Paris; Hôpitaux universitaires Saint-Louis, Lariboisière, Fernand-Widal; Intensive care unit, Paris, France
| | - M Darmon
- Université de Paris, Assistance Publique-Hôpitaux de Paris; Hôpitaux universitaires Saint-Louis, Lariboisière, Fernand-Widal; Intensive care unit, Paris, France.
| |
Collapse
|
8
|
Mogotsi MT, Ogunbayo AE, Bester PA, O'Neill HG, Nyaga MM. Longitudinal analysis of the enteric virome in paediatric subjects from the Free State Province, South Africa, reveals early gut colonisation and temporal dynamics. Virus Res 2024; 346:199403. [PMID: 38776984 PMCID: PMC11169482 DOI: 10.1016/j.virusres.2024.199403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The gut of healthy neonates is devoid of viruses at birth, but rapidly becomes colonised by normal viral commensals that aid in important physiological functions like metabolism but can, in some instances, result in gastrointestinal illnesses. However, little is known about how this colonisation begins, its variability and factors shaping the gut virome composition. Thus, understanding the development, assembly, and progression of enteric viral communities over time is key. To explore early-life virome development, metagenomic sequencing was employed in faecal samples collected longitudinally from a cohort of 17 infants during their first six months of life. The gut virome analysis revealed a diverse and dynamic viral community, formed by a richness of different viruses infecting humans, non-human mammals, bacteria, and plants. Eukaryotic viruses were detected as early as one week of life, increasing in abundance and diversity over time. Most of the viruses detected are commonly associated with gastroenteritis and include members of the Caliciviridae, Picornaviridae, Astroviridae, Adenoviridae, and Sedoreoviridae families. The most common co-occurrences involved asymptomatic norovirus-parechovirus, norovirus-sapovirus, sapovirus-parechovirus, observed in at least 40 % of the samples. Majority of the plant-derived viruses detected in the infants' gut were from the Virgaviridae family. This study demonstrates the first longitudinal characterisation of the gastrointestinal virome in infants, from birth up to 6 months of age, in sub-Saharan Africa. Overall, the findings from this study delineate the composition and variability of the healthy infants' gut virome over time, which is a significant step towards understanding the dynamics and biogeography of viral communities in the infant gut.
Collapse
Affiliation(s)
- Milton Tshidiso Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Ayodeji Emmanuel Ogunbayo
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Phillip Armand Bester
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Hester Gertruida O'Neill
- Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Martin Munene Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
9
|
Mancebo FJ, Nuévalos M, Lalchandani J, Martín Galiano AJ, Fernández-Ruiz M, Aguado JM, García-Ríos E, Pérez-Romero P. Cytomegalovirus UL44 protein induces a potent T-cell immune response in mice. Antiviral Res 2024; 227:105914. [PMID: 38759930 DOI: 10.1016/j.antiviral.2024.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Due to the severity of CMV infection in immunocompromised individuals the development of a vaccine has been declared a priority. However, despite the efforts made there is no yet a vaccine available for clinical use. We designed an approach to identify new CMV antigens able to inducing a broad immune response that could be used in future vaccine formulations. We have used serum samples from 28 kidney transplant recipients, with a previously acquired CMV-specific immune response to identify viral proteins that were recognized by the antibodies present in the patient serum samples by Western blot. A band of approximately 45 kDa, identified as UL44, was detected by most serum samples. UL44 immunogenicity was tested in BALB/c mice that received three doses of the UL44-pcDNA DNA vaccine. UL44 elicited both, a strong antibody response and CMV-specific cellular response. Using bioinformatic analysis we demonstrated that UL44 is a highly conserved protein and contains epitopes that are able to activate CD8 lymphocytes of the most common HLA alleles in the world population. We constructed a UL44 ORF deletion mutant virus that produced no viral progeny, suggesting that UL44 is an essential viral protein. In addition, other authors have demonstrated that UL44 is one of the most abundant viral proteins after infection and have suggested an essential role of UL44 in viral replication. Altogether, our data suggests that UL44 is a potent antigen, and favored by its abundance, it may be a good candidate to include in a vaccine formulation.
Collapse
Affiliation(s)
- Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Jaanam Lalchandani
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | | | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre', Instituto de Investigación Biomédica Hospital "12 de Octubre' (imas12) Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre', Instituto de Investigación Biomédica Hospital "12 de Octubre' (imas12) Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Estéfani García-Ríos
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| | - Pilar Pérez-Romero
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
10
|
Kostera J, Hubbard M, Jackson D, Liesman RM. Evaluation of Alinity m CMV assay performance for detecting CMV in plasma, cerebrospinal fluid, and bronchoalveolar lavage specimens. Diagn Microbiol Infect Dis 2024; 109:116301. [PMID: 38723453 DOI: 10.1016/j.diagmicrobio.2024.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/28/2024]
Abstract
Accurate detection and quantification of cytomegalovirus (CMV) is crucial to preventing adverse outcomes in immunocompromised individuals. Current assays were developed for use with plasma specimens, but CMV may be present in bronchoalveolar lavage (BAL) fluid and cerebrospinal fluid (CSF). We evaluated the performance of the Abbott Alinity m CMV assay compared to the Abbott RealTime CMV assay for quantification of CMV in plasma, BAL, and CSF specimens. To evaluate clinical performance, 190 plasma, 78 BAL, and 20 CSF specimens were tested with the Alinity m assay and compared to the RealTime assay. The Alinity m CMV assay showed high precision (SD <0.01 to 0.13) for all 3 specimen types. Clincal plasma and BAL specimens with quantifiable CMV DNA demonstrated strong correlation to RealTime CMV assay results (r2 = 0.9779 for plasma, r2 = 0.9373 for BAL). The Alinity m CMV assay may be useful for quantification of CMV in plasma, BAL, and CSF specimens.
Collapse
Affiliation(s)
| | - Mark Hubbard
- Department of Pathology and Laboratory Medicine, The University of Kansas Health System, Kansas City, KS, USA
| | - Dillon Jackson
- Department of Pathology and Laboratory Medicine, The University of Kansas Health System, Kansas City, KS, USA
| | - Rachael M Liesman
- Department of Pathology and Laboratory Medicine, The University of Kansas Health System, Kansas City, KS, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
11
|
Menschikowski H, Bednar C, Kübel S, Hermann M, Bauer L, Thomas M, Cordsmeier A, Ensser A. Evaluation of Bispecific T-Cell Engagers Targeting Murine Cytomegalovirus. Viruses 2024; 16:869. [PMID: 38932161 PMCID: PMC11209133 DOI: 10.3390/v16060869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Human cytomegalovirus is a ubiquitous herpesvirus that, while latent in most individuals, poses a great risk to immunocompromised patients. In contrast to directly acting traditional antiviral drugs, such as ganciclovir, we aim to emulate a physiological infection control using T cells. For this, we constructed several bispecific T-cell engager (BiTE) constructs targeting different viral glycoproteins of the murine cytomegalovirus and evaluated them in vitro for their efficacy. To isolate the target specific effect without viral immune evasion, we established stable reporter cell lines expressing the viral target glycoprotein B, and the glycoprotein complexes gN-gM and gH-gL, as well as nano-luciferase (nLuc). First, we evaluated binding capacities using flow cytometry and established killing assays, measuring nLuc-release upon cell lysis. All BiTE constructs proved to be functional mediators for T-cell recruitment and will allow a proof of concept for this treatment option. This might pave the way for strikingly safer immunosuppression in vulnerable patient groups.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Armin Ensser
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (H.M.); (S.K.); (M.H.); (A.C.)
| |
Collapse
|
12
|
Sharma H, Mossman K, Austin RC. Fatal attractions that trigger inflammation and drive atherosclerotic disease. Eur J Clin Invest 2024; 54:e14169. [PMID: 38287209 DOI: 10.1111/eci.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Atherosclerosis is the salient, underlying cause of cardiovascular diseases, such as arrhythmia, coronary artery disease, cardiomyopathy, pulmonary embolism and myocardial infarction. In recent years, atherosclerosis pathophysiology has evolved from a lipid-based to an inflammation-centric ideology. METHODS This narrative review is comprised of review and original articles that were found through the PubMed search engine. The following search terms or amalgamation of terms were used: "cardiovascular disease," "atherosclerosis," "inflammation," "GRP78," "Hsp60," "oxidative low-density lipoproteins," "aldehyde dehydrogenase," "β2-glycoprotein," "lipoprotein lipase A," "human cytomegalovirus." "SARS-CoV-2," "chlamydia pneumonia," "autophagy," "thrombosis" and "therapeutics." RESULTS Emerging evidence supports the concept that atherosclerosis is associated with the interaction between cell surface expression of stress response chaperones, including GRP78 and Hsp60, and their respective autoantibodies. Moreover, various other autoantigens and their autoantibodies have displayed a compelling connection with the development of atherosclerosis, including oxidative low-density lipoproteins, aldehyde dehydrogenase, β2-glycoprotein and lipoprotein lipase A. Atherosclerosis progression is also concurrent with viral and bacterial activators of various diseases. This narrative review will focus on the contributions of human cytomegalovirus as well as SARS-CoV-2 and chlamydia pneumonia in atherosclerosis development. Notably, the interaction of an autoantigen with their respective autoantibodies or the presence of a foreign antigen can enhance inflammation development, which leads to atherosclerotic lesion progression. CONCLUSION We will highlight and discuss the complex role of the interaction between autoantigens and autoantibodies, and the presence of foreign antigens in the development of atherosclerotic lesions in relationship to pro-inflammatory responses.
Collapse
Affiliation(s)
- Hitesh Sharma
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| | - Karen Mossman
- Department of Medicine, Michael DeGroote Institute for Infectious Disease Research and the McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Chen H, Jian Z, Xu T, Xu L, Deng L, Shao L, Zhang L, He L, Li Y, Zhu L. Advances in the mechanism of inflammasomes activation in herpes virus infection. Front Immunol 2024; 15:1346878. [PMID: 38590522 PMCID: PMC10999540 DOI: 10.3389/fimmu.2024.1346878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Herpesviruses, prevalent DNA viruses with a double-stranded structure, establish enduring infections and play a part in various diseases. Despite their deployment of multiple tactics to evade the immune system, both localized and systemic inflammatory responses are triggered by the innate immune system's recognition of them. Recent progress has offered more profound understandings of the mechanisms behind the activation of the innate immune system by herpesviruses, specifically through inflammatory signaling. This process encompasses the initiation of an intracellular nucleoprotein complex, the inflammasome associated with inflammation.Following activation, proinflammatory cytokines such as IL-1β and IL-18 are released by the inflammasome, concurrently instigating a programmed pathway for cell death. Despite the structural resemblances between herpesviruses, the distinctive methods of inflammatory activation and the ensuing outcomes in diseases linked to the virus exhibit variations.The objective of this review is to emphasize both the similarities and differences in the mechanisms of inflammatory activation among herpesviruses, elucidating their significance in diseases resulting from these viral infections.Additionally, it identifies areas requiring further research to comprehensively grasp the impact of this crucial innate immune signaling pathway on the pathogenesis of these prevalent viruses.
Collapse
Affiliation(s)
- Hourui Chen
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lina Shao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leyi Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Youyou Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Giménez E, Gozalbo-Rovira R, Albert E, Piñana JL, Solano C, Navarro D. Letermovir use may impact on the Cytomegalovirus DNA fragmentation profile in plasma from allogeneic hematopoietic stem cell transplant recipients. J Med Virol 2024; 96:e29564. [PMID: 38506145 DOI: 10.1002/jmv.29564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Cytomegalovirus (CMV) DNA in plasma is mainly unprotected and highly fragmented. The size of the amplicon largely explains the variation in CMV DNA loads quantified across PCR platforms. In this proof-of-concept study, we assessed whether the CMV DNA fragmentation profile may vary across allogeneic hematopoietic stem cell transplant recipients (allo-SCT), within the same patient over time, or is affected by letermovir (LMV) use. A total of 52 plasma specimens from 14 nonconsecutive allo-SCT recipients were included. The RealTime CMV PCR (Abbott Molecular), was used to monitor CMV DNA load in plasma, and fragmentation was assessed with a laboratory-designed PCR generating overlapping amplicons (around 90-110 bp) within the CMV UL34, UL80.5, and UL54 genes. Intrapatient, inter-patient, and LMV-associated qualitative and quantitative variations in seven amplicons were observed. These variations were seemingly unrelated to the CMV DNA loads measured by the Abbott PCR assay. CMV DNA loads quantified by UL34_4, UL54.5, and UL80.5_1 PCR assays discriminate between LMV and non-LMV patients. Our observations may have relevant implications in the management of active CMV infection in allo-SCT recipients, either treated or not with LMV, although the data need further validation.
Collapse
Affiliation(s)
- Estela Giménez
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | | | - Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - José Luis Piñana
- Hematology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Carlos Solano
- Hematology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Department of Microbiology School of Medicine, University of Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Jih J, Liu YT, Liu W, Zhou ZH. The incredible bulk: Human cytomegalovirus tegument architectures uncovered by AI-empowered cryo-EM. SCIENCE ADVANCES 2024; 10:eadj1640. [PMID: 38394211 PMCID: PMC10889378 DOI: 10.1126/sciadv.adj1640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
The compartmentalization of eukaryotic cells presents considerable challenges to the herpesvirus life cycle. The herpesvirus tegument, a bulky proteinaceous aggregate sandwiched between herpesviruses' capsid and envelope, is uniquely evolved to address these challenges, yet tegument structure and organization remain poorly characterized. We use deep-learning-enhanced cryogenic electron microscopy to investigate the tegument of human cytomegalovirus virions and noninfectious enveloped particles (NIEPs; a genome packaging-aborted state), revealing a portal-biased tegumentation scheme. We resolve atomic structures of portal vertex-associated tegument (PVAT) and identify multiple configurations of PVAT arising from layered reorganization of pUL77, pUL48 (large tegument protein), and pUL47 (inner tegument protein) assemblies. Analyses show that pUL77 seals the last-packaged viral genome end through electrostatic interactions, pUL77 and pUL48 harbor a head-linker-capsid-binding motif conducive to PVAT reconfiguration, and pUL47/48 dimers form 45-nm-long filaments extending from the portal vertex. These results provide a structural framework for understanding how herpesvirus tegument facilitates and evolves during processes spanning viral genome packaging to delivery.
Collapse
Affiliation(s)
- Jonathan Jih
- Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yun-Tao Liu
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Wei Liu
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Z. Hong Zhou
- Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Hunsperger E, Osoro E, Munyua P, Njenga MK, Mirieri H, Kikwai G, Odhiambo D, Dayan M, Omballa V, Agogo GO, Mugo C, Widdowson MA, Inwani I. Seroconversion and seroprevalence of TORCH infections in a pregnant women cohort study, Mombasa, Kenya, 2017-2019. Epidemiol Infect 2024; 152:e68. [PMID: 38305089 PMCID: PMC11077605 DOI: 10.1017/s0950268824000165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Women infected during pregnancy with TORCH (Toxoplasmosis, Other, Rubella, Cytomegalovirus, and Herpes simplex viruses) pathogens have a higher risk of adverse birth outcomes including stillbirth / miscarriage because of mother-to-child transmission. To investigate these risks in pregnant women in Kenya, we analyzed serum specimens from a pregnancy cohort study at three healthcare facilities. A sample of 481 participants was selected for TORCH pathogen antibody testing to determine seroprevalence. A random selection of 285 from the 481 participants was selected to measure seroconversion. These sera were tested using an IgG enzyme-linked immunosorbent assay against 10 TORCH pathogens. We found that the seroprevalence of all but three of the 10 TORCH pathogens at enrollment was >30%, except for Bordetella pertussis (3.8%), Treponema pallidum (11.4%), and varicella zoster virus (0.5%). Conversely, very few participants seroconverted during their pregnancy and were herpes simplex virus type 2 (n = 24, 11.2%), parvovirus B19 (n = 14, 6.2%), and rubella (n = 12, 5.1%). For birth outcomes, 88% of the participant had live births and 12% had stillbirths or miscarriage. Cytomegalovirus positivity at enrolment had a statistically significant positive association with a live birth outcome (p = 0.0394). Of the 10 TORCH pathogens tested, none had an association with adverse pregnancy outcome.
Collapse
Affiliation(s)
- Elizabeth Hunsperger
- Division of Global Health Protection, US Centers for Disease Control and Prevention (CDC), Nairobi, Kenya
| | - Eric Osoro
- Washington State University (WSU) Global Health Kenya, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University (WSU), Pullman, WA, USA
| | - Peninah Munyua
- Division of Global Health Protection, US Centers for Disease Control and Prevention (CDC), Nairobi, Kenya
| | - M. Kariuki Njenga
- Washington State University (WSU) Global Health Kenya, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University (WSU), Pullman, WA, USA
| | - Harriet Mirieri
- Washington State University (WSU) Global Health Kenya, Nairobi, Kenya
| | - Gilbert Kikwai
- Kenya Medical Research Institute (KEMRI), Center for Global Health Research, Nairobi, Kenya
| | - Dennis Odhiambo
- Kenya Medical Research Institute (KEMRI), Center for Global Health Research, Nairobi, Kenya
| | - Moshe Dayan
- Kenya Medical Research Institute (KEMRI), Center for Global Health Research, Nairobi, Kenya
| | - Victor Omballa
- Kenya Medical Research Institute (KEMRI), Center for Global Health Research, Nairobi, Kenya
| | - George O. Agogo
- Division of Global Health Protection, US Centers for Disease Control and Prevention (CDC), Nairobi, Kenya
| | - Cyrus Mugo
- Department of Paediatrics and Child Health/Kenyatta National Hospital, University of Nairobi, Nairobi, Kenya
| | - Marc-Alain Widdowson
- Division of Global Health Protection, US Centers for Disease Control and Prevention (CDC), Nairobi, Kenya
- Institute of Tropical Medicine, Antwerp, Belgium
| | - Irene Inwani
- Department of Paediatrics and Child Health/Kenyatta National Hospital, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
17
|
Alsanea MS, Al-Qahtani AA, Almaghrabi RS, AlAbdulkareem MA, Alahideb BM, Obeid D, Alsuwairi FA, Alhamlan FS. Diagnosis of Human Cytomegalovirus Drug Resistance Mutations in Solid Organ Transplant Recipients-A Review. Diagnostics (Basel) 2024; 14:203. [PMID: 38248079 PMCID: PMC10814084 DOI: 10.3390/diagnostics14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 01/23/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection may be asymptomatic in healthy individuals but can cause severe complications in immunocompromised patients, including transplant recipients. Breakthrough and drug-resistant HCMV infections in such patients are major concerns. Clinicians are first challenged to accurately diagnose HCMV infection and then to identify the most effective antiviral drug and determine when to initiate therapy, alter drug dosage, or switch medication. This review critically examines HCMV diagnostics approaches, particularly for immunocompromised patients, and the development of genotypic techniques to rapidly diagnose drug resistance mutations. The current standard method to identify prevalent and well-known resistance mutations involves polymerase chain reaction amplification of UL97, UL54, and UL56 gene regions, followed by Sanger sequencing. This method can confirm clinical suspicion of drug resistance as well as determine the level of drug resistance and range of cross-resistance with other drugs. Despite the effectiveness of this approach, there remains an urgent need for more rapid and point-of-care HCMV diagnosis, allowing for timely lifesaving intervention.
Collapse
Affiliation(s)
- Madain S. Alsanea
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; (M.S.A.); (A.A.A.-Q.); (M.A.A.); (B.M.A.); (D.O.); (F.A.A.)
| | - Ahmed A. Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; (M.S.A.); (A.A.A.-Q.); (M.A.A.); (B.M.A.); (D.O.); (F.A.A.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Reem S. Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia;
| | - Maha A. AlAbdulkareem
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; (M.S.A.); (A.A.A.-Q.); (M.A.A.); (B.M.A.); (D.O.); (F.A.A.)
| | - Basma M. Alahideb
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; (M.S.A.); (A.A.A.-Q.); (M.A.A.); (B.M.A.); (D.O.); (F.A.A.)
| | - Dalia Obeid
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; (M.S.A.); (A.A.A.-Q.); (M.A.A.); (B.M.A.); (D.O.); (F.A.A.)
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia;
| | - Feda A. Alsuwairi
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; (M.S.A.); (A.A.A.-Q.); (M.A.A.); (B.M.A.); (D.O.); (F.A.A.)
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; (M.S.A.); (A.A.A.-Q.); (M.A.A.); (B.M.A.); (D.O.); (F.A.A.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| |
Collapse
|
18
|
Gocho K, Yamashita A, Iizuka N, Sato K, Imasaka K, Hamanaka N, Kimura T. Primary Cytomegalovirus Pneumonia Successfully Treated with Corticosteroid Therapy and Valganciclovir. Intern Med 2024; 63:271-276. [PMID: 37225488 PMCID: PMC10864076 DOI: 10.2169/internalmedicine.1638-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/23/2023] [Indexed: 05/26/2023] Open
Abstract
Cytomegalovirus infection is typically asymptomatic in immunocompetent individuals. A 26-year-old woman was admitted to our hospital with a fever and breathlessness. Chest computed tomography (CT) revealed bilateral diffuse reticulation and nodules. Laboratory investigations showed atypical lymphocytosis and increased transaminases. She was treated with corticosteroid pulse therapy because of acute lung injury, and her clinical condition improved. Based on the presence of cytomegalovirus antibodies, antigen, and polymerase chain reaction findings, she was diagnosed with primary cytomegalovirus pneumonia and treated with valganciclovir. Primary cytomegalovirus pneumonia is very rare in immunocompetent individuals. The efficacy of corticosteroid and valganciclovir against cytomegalovirus pneumonia in this patient is noteworthy.
Collapse
Affiliation(s)
- Kyoko Gocho
- Department of Respiratory Medicine, Saiseikai Yokohamashi Tobu Hospital, Japan
| | - Aya Yamashita
- Department of Respiratory Medicine, Saiseikai Yokohamashi Tobu Hospital, Japan
| | - Noboru Iizuka
- Department of Respiratory Medicine, Saiseikai Yokohamashi Tobu Hospital, Japan
| | - Kenya Sato
- Department of Respiratory Medicine, Saiseikai Yokohamashi Tobu Hospital, Japan
| | - Keisuke Imasaka
- Department of Respiratory Medicine, Saiseikai Yokohamashi Tobu Hospital, Japan
| | - Nobuyuki Hamanaka
- Department of Respiratory Medicine, Saiseikai Yokohamashi Tobu Hospital, Japan
| | - Tokuhiro Kimura
- Department of Diagnostic Pathology, Saiseikai Yokohamashi Tobu Hospital, Japan
| |
Collapse
|
19
|
Ma C, Chen P, Du J, Wang L, Lu N, Sun J, Qilong X, Wang Y, Dou L, Liu DH. Adoptive transfer of CMV-specific TCR-T cells for the treatment of CMV infection after haploidentical hematopoietic stem cell transplantation. J Immunother Cancer 2024; 12:e007735. [PMID: 38184303 PMCID: PMC10773422 DOI: 10.1136/jitc-2023-007735] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) reactivation after unmanipulated haploidentical stem cell transplantation (SCT) frequently occurs, causing life-threatening morbidities and transplantation failure. Pre-emptive therapy upon the detection of CMV viremia using antiviral agents is currently the standard of care but it was associated with significant toxicity. The CMV antigen-specific cytotoxic T lymphocyte therapy was limited by the time-consuming manufacture process and relatively low success rate. More effective and safer approaches for the treatment of CMV reactivation after haploidentical SCT are in urgent need. METHODS A single-arm, open-label, phase I clinical trial evaluating the safety and efficacy of CMV-targeting T cell receptor-engineered T (CMV-TCR-T) cell therapy as the first-line pre-emptive therapy for patients with CMV reactivation after haploidentical peripheral blood SCT (PBSCT) was conducted in the Chinese PLA General Hospital. Six patients with CMV reactivation after haploidentical SCT were adoptively transferred by one to three doses of SCT donors-derived CMV-TCR-T cells. This trial was a dose-escalation study with doses ranging from 1×103 CMV-TCR-T cells/kg body weight per dose to 5×105 CMV-TCR-T cells/kg per dose. RESULTS Except for the grade 1 cytokine release syndrome observed in one patient and mild fever in two patients, no other adverse events were observed. Four patients had response within a month after CMV-TCR-T cell infusion without the administration of any antiviral agents. The other two patients who initially did not respond to CMV-TCR-T cell therapy had salvage ganciclovir and foscarnet administration and then had rapid CMV clearance. The CMV-TCR-T cells displayed overall robust expansion and persistence in the peripheral blood after infusion. The CMV-TCR-T cells were first detected in the peripheral blood of these patients 3-7 days after the first dose of CMV-TCR-T infusion, rapidly expanded and persisted for at least 1-4 months, providing long-term protection against CMV reactivation. In one patient, the CMV-TCR-T cells started to expand even when the anti-graft-versus-host disease reagents were still being used, further indicating the proliferation potential of CMV-TCR-T cells. CONCLUSIONS Our study first showed CMV-TCR-T cell as a highly feasible, safe and effective first-line pre-emptive treatment for CMV reactivation after haploidentical PBSCT. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT05140187).
Collapse
Affiliation(s)
- Chao Ma
- Chinese PLA General Hospital, Beijing, China
| | - Peng Chen
- Chinese PLA General Hospital, Beijing, China
| | - Jishan Du
- Chinese PLA General Hospital, Beijing, China
| | - Lu Wang
- Chinese PLA General Hospital, Beijing, China
| | - Ning Lu
- Chinese PLA General Hospital, Beijing, China
| | - Jiaojun Sun
- Beijing Immunnotech Applied Science, Beijing, China
| | - Xu Qilong
- Beijing Immunnotech Applied Science, Beijing, China
| | - Yu Wang
- Beijing Immunnotech Applied Science, Beijing, China
| | - Liping Dou
- Chinese PLA General Hospital, Beijing, China
| | | |
Collapse
|
20
|
Yang J, Kang CI, Lee YH, Ko JH, Huh K, Cho SY, Chung DR, Peck KR, Jung CW. Risk factors and clinical outcomes of cytomegalovirus diseases in hematologic malignancy patients without hematopoietic stem-cell transplantation. Support Care Cancer 2023; 32:56. [PMID: 38133709 DOI: 10.1007/s00520-023-08258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE This study aims to evaluate the risk factors and prognosis for CMV diseases in hematologic malignancy patients without hematopoietic stem-cell transplantation (HSCT). METHODS We performed a case-control study (1:2) between 2012 and 2022. Adults with pathologic-confirmed CMV diseases (n=60) among hematologic malignancy patients were matched and compared to whom without CMV disease. RESULTS Lymphoma was the most common underlying malignancy, and gastrointestinal tract involvement was the most common CMV disease. In the case group, high-dose steroid administration and transfusion within one month before diagnosis were higher (p<0.001). Steroid administration (aOR=5.78; 95% confidence interval: 1.25-26.68, p=0.024), red blood cell transfusion within one month (aOR=14.63; 2.75-77.76, p=0.002), low BMI (aOR=13.46, 2.07-87.45, p=0.006), and hypoalbuminemia (aOR=26.48, 5.93-118.17, p<0.001) were independent risk factors associated with CMV disease. The 30-day mortality was higher in the case group and CMV disease was significantly associated with all-cause mortality (aOR=14.41, 3.23-64.31, p<0.001). CONCLUSION In hematologic malignancy patients without HSCT, risk factors for CMV organ disease included high-dose steroid administration and RBC transfusion within one month, low BMI, and hypoalbuminemia. Overall mortality was significantly higher with CMV disease, and CMV disease occurrence was a significant risk factor for mortality.
Collapse
Affiliation(s)
- Jinyoung Yang
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Cheol-In Kang
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
| | - Young Ho Lee
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Kyungmin Huh
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Sun Young Cho
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Doo Ryeon Chung
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Chul Won Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Burgess HM, Grande R, Riccio S, Dinesh I, Winkler GS, Depledge DP, Mohr I. CCR4-NOT differentially controls host versus virus poly(a)-tail length and regulates HCMV infection. EMBO Rep 2023; 24:e56327. [PMID: 37846490 PMCID: PMC10702830 DOI: 10.15252/embr.202256327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023] Open
Abstract
Unlike most RNA and DNA viruses that broadly stimulate mRNA decay and interfere with host gene expression, human cytomegalovirus (HCMV) extensively remodels the host translatome without producing an mRNA decay enzyme. By performing a targeted loss-of-function screen in primary human fibroblasts, we here identify the host CCR4-NOT deadenylase complex members CNOT1 and CNOT3 as unexpected pro-viral host factors that selectively regulate HCMV reproduction. We find that the scaffold subunit CNOT1 is specifically required for late viral gene expression and genome-wide host responses in CCR4-NOT-disrupted cells. By profiling poly(A)-tail lengths of individual HCMV and host mRNAs using nanopore direct RNA sequencing, we reveal poly(A)-tails of viral messages to be markedly longer than those of cellular mRNAs and significantly less sensitive to CCR4-NOT disruption. Our data establish that mRNA deadenylation by host CCR4-NOT is critical for productive HCMV replication and define a new mechanism whereby herpesvirus infection subverts cellular mRNA metabolism to remodel the gene expression landscape of the infected cell. Moreover, we expose an unanticipated host factor with potential to become a therapeutic anti-HCMV target.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbial SciencesUniversity of SurreyGuildfordUK
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
| | - Rebecca Grande
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
| | - Sofia Riccio
- Department of Microbial SciencesUniversity of SurreyGuildfordUK
| | - Ikshitaa Dinesh
- Department of Microbial SciencesUniversity of SurreyGuildfordUK
| | | | - Daniel P Depledge
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
- Institute of VirologyHannover Medical SchoolHannoverGermany
- German Center for Infection Research (DZIF), partner site Hannover‐BraunschweigHannoverGermany
| | - Ian Mohr
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
- Laura and Isaac Perlmutter Cancer Institute, School of MedicineNew York UniversityNew YorkNYUSA
| |
Collapse
|
22
|
Lee M, Albert E, Wessels E, Kim SK, Chung HS, Giménez E, Vreeswijk T, Claas ECJ, Tai YC, Reinhardt B, Sasaki MM, Navarro D. Multicenter performance evaluation of the Alinity m CMV assay for quantifying cytomegalovirus DNA in plasma samples. J Clin Microbiol 2023; 61:e0041523. [PMID: 37728341 PMCID: PMC10654106 DOI: 10.1128/jcm.00415-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/30/2023] [Indexed: 09/21/2023] Open
Abstract
Monitoring of cytomegalovirus (CMV) viral load is critical for informing treatment decisions in order to prevent the severe health consequences of CMV infection or reactivation of latent CMV in immunocompromised individuals. This first field evaluation examined the analytical and clinical performance of the Alinity m CMV assay. Analytical performance was assessed with a commercially available six-member panel, while the clinical performance evaluation compared the Alinity m CMV assay to the RealTime CMV assay and a laboratory-developed test (LDT) as the test of record at three large hospital-based clinical laboratories. Precision of the Alinity m CMV assay was demonstrated with total standard deviation (SD) between 0.08 and 0.28 Log IU/mL. A total of 457 plasma specimens were tested on the Alinity m CMV assay and compared to the test of record at each site (n = 304 with RealTime CMV and n = 153 with LDT CMV). The Alinity m CMV assay had excellent correlation (correlation coefficient r ≥0.942) in comparison to the RealTime CMV or LDT CMV assays. The mean observed bias ranged from -0.03 to 0.34 Log IU/mL. Median onboard turnaround time of Alinity m CMV was less than 3 h. When the CMV assay is run on the Alinity m system, it has the capacity to shorten time to result and, therefore, to therapy.
Collapse
Affiliation(s)
- Miae Lee
- Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Eliseo Albert
- Hospital Clinico Universitario de Valencia, Valencia, Spain
| | - Els Wessels
- Leiden University Medical Center, Leiden, the Netherlands
| | - Soo-Kyung Kim
- Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Hae-Sun Chung
- Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Estela Giménez
- Hospital Clinico Universitario de Valencia, Valencia, Spain
| | - Tom Vreeswijk
- Leiden University Medical Center, Leiden, the Netherlands
| | | | - Yan Chin Tai
- Abbott Laboratories (Singapore) Pte. Ltd., Singapore
| | | | | | - David Navarro
- Hospital Clinico Universitario de Valencia, Valencia, Spain
| |
Collapse
|
23
|
Zeng J, Jaijyan DK, Yang S, Pei S, Tang Q, Zhu H. Exploring the Potential of Cytomegalovirus-Based Vectors: A Review. Viruses 2023; 15:2043. [PMID: 37896820 PMCID: PMC10612100 DOI: 10.3390/v15102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Viral vectors have emerged as powerful tools for delivering and expressing foreign genes, playing a pivotal role in gene therapy. Among these vectors, cytomegalovirus (CMV) stands out as a promising viral vector due to its distinctive attributes including large packaging capacity, ability to achieve superinfection, broad host range, capacity to induce CD8+ T cell responses, lack of integration into the host genome, and other qualities that make it an appealing vector candidate. Engineered attenuated CMV strains such as Towne and AD169 that have a ~15 kb genomic DNA deletion caused by virus passage guarantee human safety. CMV's large genome enables the efficient incorporation of substantial foreign genes as demonstrated by CMV vector-based therapies for SIV, tuberculosis, cancer, malaria, aging, COVID-19, and more. CMV is capable of reinfecting hosts regardless of prior infection or immunity, making it highly suitable for multiple vector administrations. In addition to its broad cellular tropism and sustained high-level gene expression, CMV triggers robust, virus-specific CD8+ T cell responses, offering a significant advantage as a vaccine vector. To date, successful development and testing of murine CMV (MCMV) and rhesus CMV (RhCMV) vectors in animal models have demonstrated the efficacy of CMV-based vectors. These investigations have explored the potential of CMV vectors for vaccines against HIV, cancer, tuberculosis, malaria, and other infectious pathogens, as well as for other gene therapy applications. Moreover, the generation of single-cycle replication CMV vectors, produced by deleting essential genes, ensures robust safety in an immunocompromised population. The results of these studies emphasize CMV's effectiveness as a gene delivery vehicle and shed light on the future applications of a CMV vector. While challenges such as production complexities and storage limitations need to be addressed, ongoing efforts to bridge the gap between animal models and human translation continue to fuel the optimism surrounding CMV-based vectors. This review will outline the properties of CMV vectors and discuss their future applications as well as possible limitations.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518060, China
| | - Shakai Pei
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
24
|
Parsons AJ, Stein KR, Atanasoff KE, Ophir SI, Casado JP, Tortorella D. The CD46 ectodomain participates in human cytomegalovirus infection of epithelial cells. J Gen Virol 2023; 104:001892. [PMID: 37668349 PMCID: PMC10484303 DOI: 10.1099/jgv.0.001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) primary infections are typically asymptomatic in healthy individuals yet can cause increased morbidity and mortality in organ transplant recipients, AIDS patients, neonates, and the elderly. The successful, widespread dissemination of this virus among the population can be attributed in part to its wide cellular tropism and ability to establish life-long latency. HCMV infection is a multi-step process that requires numerous cellular and viral factors. The viral envelope consists of envelope protein complexes that interact with cellular factors; such interactions dictate virus recognition and attachment to different cell types, followed by fusion either at the cell membrane or within an endocytic vesicle. Several HCMV entry factors, including neuropilin-2 (Nrp2), THBD, CD147, OR14I1, and CD46, are characterized as participating in HCMV pentamer-specific entry of non-fibroblast cells such as epithelial, trophoblast, and endothelial cells, respectively. This study focuses on characterizing the structural elements of CD46 that impact HCMV infection. Infectivity studies of wild-type and CD46 knockout epithelial cells demonstrated that levels of CD46 expressed on the cell surface were directly related to HCMV infectivity. Overexpression of CD46 isomers BC1, BC2, and C2 enhanced infection. Further, CD46 knockout epithelial cells expressing CD46 deletion and chimeric molecules identified that the intact ectodomain was critical for rescue of HCMV infection in CD46 knockout cells. Collectively, these data support a model that the extracellular domain of CD46 participates in HCMV infection due to its surface expression.
Collapse
Affiliation(s)
- Andrea J. Parsons
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kathryn R. Stein
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristina E. Atanasoff
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sabrina I. Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jailene Paredes Casado
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
25
|
Mahar UR, Jhatial MA, Qazi R, Ahmed U, Ahsan B, Bokhari SWI. Significance of CMV reactivation in non-allogeneic stem cell transplant patients with cancers: experience of single tertiary care cancer institute. Virusdisease 2023; 34:383-388. [PMID: 37780907 PMCID: PMC10533462 DOI: 10.1007/s13337-023-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
CMV reactivation is rare in hematological as well as solid organ malignancies in non-allogeneic stem cell transplant settings. An increasing number of patients undergoing active treatment or follow-up and diagnosed with CMV reactivation in recent years prompted us to investigate the risk factors and outcomes of CMV reactivation or disease. This was a hospital-based retrospective study that included 174 cancer patients suspected of CMV reactivation. Among them, forty-one tested positive for CMV viremia. The risk factors for CMV reactivation included the use of steroids in 78% of patients, active cancer in 43.9%, use of a monoclonal antibody rituximab in 31.7%, a history of radiation in 26.8%, and autologous stem cell transplant in 12% of patients. The median age was 36 years, and the most common clinical feature was fever (58.5%; n = 24), followed by GI symptoms (12.1%; n = 5), respiratory symptoms (14.6%; n = 6), cytopenia (7.3%; n = 3), and visual/neurological symptoms (4.8%; n = 2). The mean CMV viral load was 37,332 copies/ml (range: 75.00-633,000.00 copies/ml). Nineteen patients received CMV treatment with an average treatment duration of 81.5 days. The median overall survival was 2 months, with 12.0% of patients alive at 5 years. CMV reactivation is associated with significant morbidity and mortality. We recommend vigilant monitoring of CMV-related symptoms, with a low threshold for testing and treatment, for patients with multiple risk factors for CMV reactivation.
Collapse
Affiliation(s)
- Uzma Rasool Mahar
- Department of Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Mussadique Ali Jhatial
- Department of Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Romena Qazi
- Department of Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Usman Ahmed
- Department of Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Bushra Ahsan
- Department of Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Syed Waqas Imam Bokhari
- Department of Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| |
Collapse
|
26
|
Moy MA, Collins-McMillen D, Crawford L, Parkins C, Zeltzer S, Caviness K, Zaidi SSA, Caposio P, Goodrum F. Stabilization of the human cytomegalovirus UL136p33 reactivation determinant overcomes the requirement for UL135 for replication in hematopoietic cells. J Virol 2023; 97:e0014823. [PMID: 37565749 PMCID: PMC10506481 DOI: 10.1128/jvi.00148-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a beta herpesvirus that persists indefinitely in the human host through a latent infection. The polycistronic UL133-UL138 gene locus of HCMV encodes genes regulating latency and reactivation. While UL138 is pro-latency, restricting virus replication in CD34+ hematopoietic progenitor cells (HPCs), UL135 overcomes this restriction and is required for reactivation. By contrast, UL136 is expressed with later kinetics and encodes multiple proteins with differential roles in latency and reactivation. Like UL135, the largest UL136 isoform, UL136p33, is required for reactivation from latency in HPCs; viruses failing to express either protein are unresponsive to reactivation stimuli. Furthermore, UL136p33 is unstable, and its instability is important for the establishment of latency, and sufficient accumulation of UL136p33 is a checkpoint for reactivation. We hypothesized that stabilizing UL136p33 might overcome the requirement of UL135 for replication. We generated recombinant viruses lacking UL135 that expressed a stabilized variant of UL136p33. Stabilizing UL136p33 did not impact the replication of the UL135 mutant virus in fibroblasts. However, in the context of infection in HPCs, stabilization of UL136p33 strikingly compensated for the loss of UL135, resulting in increased replication in CD34+ HPCs and in humanized NOD-scid IL2Rγcnull (huNSG) mice. This finding suggests that while UL135 is essential for replication in HPCs, it functions largely at steps preceding the accumulation of UL136p33, and that stabilized expression of UL136p33 largely overcomes the requirement for UL135. Taken together, our genetic evidence indicates an epistatic relationship between UL136p33 and UL135, whereby UL135 may initiate events early in reactivation that drive the accumulation of UL136p33 to a threshold required for productive reactivation. IMPORTANCE Human cytomegalovirus (HCMV) is one of nine human herpesviruses and a significant human pathogen. While HCMV establishes a lifelong latent infection that is typically asymptomatic in healthy individuals, its reactivation from latency can have devastating consequences in the immunocompromised. Defining viral genes important in the establishment of or reactivation from latency is important to defining the molecular basis of latent and replicative states and in controlling infection and CMV disease. Here we define a genetic relationship between two viral genes in controlling virus reactivation from latency using primary human hematopoietic progenitor cells and humanized mouse models.
Collapse
Affiliation(s)
- Melissa A. Moy
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Donna Collins-McMillen
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Lindsey Crawford
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Christopher Parkins
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Sebastian Zeltzer
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Katie Caviness
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, Arizona, USA
| | | | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Felicia Goodrum
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
27
|
Panda K, Parashar D, Viswanathan R. An Update on Current Antiviral Strategies to Combat Human Cytomegalovirus Infection. Viruses 2023; 15:1358. [PMID: 37376657 PMCID: PMC10303229 DOI: 10.3390/v15061358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) remains an essential global concern due to its distinct life cycle, mutations and latency. As HCMV is a herpesvirus, it establishes a lifelong persistence in the host through a chronic state of infection. Immunocompromised individuals are at risk of significant morbidity and mortality from the virus. Until now, no effective vaccine has been developed to combat HCMV infection. Only a few antivirals targeting the different stages of the virus lifecycle and viral enzymes are licensed to manage the infection. Therefore, there is an urgent need to find alternate strategies to combat the infection and manage drug resistance. This review will provide an insight into the clinical and preclinical antiviral approaches, including HCMV antiviral drugs and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Kingshuk Panda
- Dengue-Chikungunya Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| | - Deepti Parashar
- Dengue-Chikungunya Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| | - Rajlakshmi Viswanathan
- Bacteriology Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| |
Collapse
|
28
|
Yang D, Zhao G, Zhang HM. m 6A reader proteins: the executive factors in modulating viral replication and host immune response. Front Cell Infect Microbiol 2023; 13:1151069. [PMID: 37325513 PMCID: PMC10266107 DOI: 10.3389/fcimb.2023.1151069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
N6-Methyladenosine (m6A) modification is the most abundant covalent modification of RNA. It is a reversible and dynamic process induced by various cellular stresses including viral infection. Many m6A methylations have been discovered, including on the genome of RNA viruses and on RNA transcripts of DNA viruses, and these methylations play a positive or negative role on the viral life cycle depending on the viral species. The m6A machinery, including the writer, eraser, and reader proteins, achieves its gene regulatory role by functioning in an orchestrated manner. Notably, data suggest that the biological effects of m6A on target mRNAs predominantly depend on the recognition and binding of different m6A readers. These readers include, but are not limited to, the YT521-B homology (YTH) domain family, heterogeneous nuclear ribonucleoproteins (HNRNPs), insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs), and many others discovered recently. Indeed, m6A readers have been recognized not only as regulators of RNA metabolism but also as participants in a variety of biological processes, although some of these reported roles are still controversial. Here, we will summarize the recent advances in the discovery, classification, and functional characterization of m6A reader proteins, particularly focusing on their roles and mechanisms of action in RNA metabolism, gene expression, and viral replication. In addition, we also briefly discuss the m6A-associated host immune responses in viral infection.
Collapse
Affiliation(s)
- Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Guangze Zhao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Huifang Mary Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| |
Collapse
|
29
|
Schinas G, Moustaka V, Polyzou E, Almyroudi MP, Dimopoulos G, Akinosoglou K. Targeting CMV Reactivation to Optimize Care for Critically Ill COVID-19 Patients: A Review on the Therapeutic Potential of Antiviral Treatment. Viruses 2023; 15:v15051165. [PMID: 37243251 DOI: 10.3390/v15051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Cytomegalovirus (CMV) reactivation has been linked to adverse clinical outcomes in critically ill patients, with emerging evidence suggesting a potential connection with severe COVID-19. Mechanisms driving this association may include primary lung injury, amplification of systemic inflammation, and secondary immunosuppression. Diagnostic challenges in detecting and assessing CMV reactivation necessitate a comprehensive approach to improve accuracy and inform treatment decisions. Currently, there is limited evidence on the efficacy and safety of CMV pharmacotherapy in critically ill COVID-19 patients. Although insights from non-COVID-19 critical illness studies suggest a potential role for antiviral treatment or prophylaxis, the risks and benefits must be carefully balanced in this vulnerable patient population. Understanding the pathophysiological role of CMV in the context of COVID-19 and exploring the advantages of antiviral treatment are crucial for optimizing care in critically ill patients. This review provides a comprehensive synthesis of available evidence, emphasizing the need for additional investigation to establish the role of CMV treatment or prophylaxis in the management of severe COVID-19 and to develop a framework for future research on this topic.
Collapse
Affiliation(s)
| | - Vasiliki Moustaka
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni Polyzou
- Medical School, University of Patras, 26504 Patras, Greece
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| | - Maria Panagiota Almyroudi
- Department of Emergency Medicine, University Hospital ATTIKON, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - George Dimopoulos
- 3rd Department of Critical Care, EVGENIDIO Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Karolina Akinosoglou
- Medical School, University of Patras, 26504 Patras, Greece
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
30
|
Berengua C, Miró E, Gutiérrez C, Sánchez M, Mulero A, Ramos P, Del Cuerpo M, Torrego A, García-Cadenas I, Pajares V, Navarro F, Martino R, Rabella N. Detection of cytomegalovirus in bronchoalveolar lavage fluid from immunocompromised patients with pneumonitis by viral culture and DNA quantification. J Virol Methods 2023; 317:114743. [PMID: 37116585 DOI: 10.1016/j.jviromet.2023.114743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
PURPOSE To compare the detection of human cytomegalovirus (HCMV) in bronchoalveolar lavage (BAL) fluid by viral culture and quantitative polymerase chain reaction (qPCR), and to establish a viral load threshold that can identify cases of HCMV replication indicative of pneumonitis. There is currently no universal viral load cut-off to differentiate between patients with and without pneumonitis, and the interpretation of qPCR results is challenging. METHODS 176 consecutive BAL samples from immunosuppressed hosts with signs and/or symptoms of respiratory infection were prospectively studied by viral culture and qPCR. RESULTS Concordant results were obtained in 81.25% of the BAL samples. The rest were discordant, as only 34% of the qPCR-positive BAL samples were positive by culture. The median HCMV load was significantly higher in culture-positive than in culture-negative BAL samples (5,038 vs 178 IU/mL). Using a cut-off value of 1,258 IU/mL of HCMV in BAL, pneumonia was diagnosed with a sensitivity of 76%, a specificity of 100%, a VPP of 100% and VPN of 98%, and HCMV was isolated in 100% of the BAL cultures. CONCLUSION We found that a qPCR-negative was a quick and reliable way of ruling out HCMV pneumonitis, but a positive result did not always indicate clinically significant replication in the lung. However, an HCMV load in BAL fluid of ≥1,258 IU/mL was always associated with disease, whereas <200 IU/mL rarely so.
Collapse
Affiliation(s)
- C Berengua
- Genetics and Microbiology Department. Universitat Autònoma de Barcelona. Spain; Microbiology Department. Hospital de la Santa Creu i Sant Pau. Barcelona. Spain; Sant Pau Institute of Biomedical Research (IIb Sant Pau) Barcelona. Spain.
| | - E Miró
- Genetics and Microbiology Department. Universitat Autònoma de Barcelona. Spain; Microbiology Department. Hospital de la Santa Creu i Sant Pau. Barcelona. Spain; Sant Pau Institute of Biomedical Research (IIb Sant Pau) Barcelona. Spain
| | - C Gutiérrez
- Microbiology Department. Hospital de la Santa Creu i Sant Pau. Barcelona. Spain
| | - M Sánchez
- Microbiology Department. Hospital de la Santa Creu i Sant Pau. Barcelona. Spain
| | - A Mulero
- Microbiology Department. Hospital de la Santa Creu i Sant Pau. Barcelona. Spain
| | - P Ramos
- Microbiology Department. Hospital de la Santa Creu i Sant Pau. Barcelona. Spain
| | - M Del Cuerpo
- Microbiology Department. Hospital de la Santa Creu i Sant Pau. Barcelona. Spain
| | - A Torrego
- Pneumology Department. Hospital de la Santa Creu i Sant Pau. Barcelona. Spain; Sant Pau Institute of Biomedical Research (IIb Sant Pau) Barcelona. Spain
| | - I García-Cadenas
- Pneumology Department. Hospital de la Santa Creu i Sant Pau. Barcelona. Spain; Sant Pau Institute of Biomedical Research (IIb Sant Pau) Barcelona. Spain
| | - V Pajares
- Pneumology Department. Hospital de la Santa Creu i Sant Pau. Barcelona. Spain; Sant Pau Institute of Biomedical Research (IIb Sant Pau) Barcelona. Spain
| | - F Navarro
- Genetics and Microbiology Department. Universitat Autònoma de Barcelona. Spain; Microbiology Department. Hospital de la Santa Creu i Sant Pau. Barcelona. Spain; Sant Pau Institute of Biomedical Research (IIb Sant Pau) Barcelona. Spain
| | - R Martino
- Hematology Department. Hospital de la Santa Creu I Sant Pau. Barcelona. Spain; Sant Pau Institute of Biomedical Research (IIb Sant Pau) Barcelona. Spain
| | - N Rabella
- Genetics and Microbiology Department. Universitat Autònoma de Barcelona. Spain; Microbiology Department. Hospital de la Santa Creu i Sant Pau. Barcelona. Spain; Sant Pau Institute of Biomedical Research (IIb Sant Pau) Barcelona. Spain
| |
Collapse
|
31
|
Zhang Z, Xia S, Wang Z, Yin N, Chen J, Shao L. The SUMOylation of Human Cytomegalovirus Capsid Assembly Protein Precursor (UL80.5) Affects Its Interaction with Major Capsid Protein (UL86) and Viral Replication. Viruses 2023; 15:v15040931. [PMID: 37112911 PMCID: PMC10145422 DOI: 10.3390/v15040931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Human Cytomegalovirus Capsid Assembly Protein Precursor (pAP, UL80.5) plays a key role in capsid assembly by forming an internal protein scaffold with Major Capsid Protein (MCP, UL86) and other capsid subunits. In this study, we revealed UL80.5 as a novel SUMOylated viral protein. We confirmed that UL80.5 interacted with the SUMO E2 ligase UBC9 (58-93aa) and could be covalently modified by SUMO1/SUMO2/SUMO3 proteins. 371Lysine located within a ψKxE consensus motif on UL80.5 carboxy-terminal was the major SUMOylation site. Interestingly, the SUMOylation of UL80.5 restrained its interaction with UL86 but had no effects on translocating UL86 into the nucleus. Furthermore, we showed that the removal of the 371lysine SUMOylation site of UL80.5 inhibited viral replication. In conclusion, our data demonstrates that SUMOylation plays an important role in regulating UL80.5 functions and viral replication.
Collapse
Affiliation(s)
- Zhigang Zhang
- Basic Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Sisi Xia
- Department of Biological Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhigang Wang
- Basic Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Nina Yin
- Basic Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jun Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Luyao Shao
- Basic Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
32
|
Nagel B, Frankel L, Ardeljan A, Cardeiro M, Rashid S, Takabe K, Rashid OM. The Association of Human Cytomegalovirus Infection and Colorectal Cancer: A Clinical Analysis. World J Oncol 2023; 14:119-124. [PMID: 37188037 PMCID: PMC10181428 DOI: 10.14740/wjon1565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/06/2023] [Indexed: 05/17/2023] Open
Abstract
Background Human cytomegalovirus (HCMV) commonly infects humans and establishes lifelong infection. It causes disease and increased mortality rates in patients with immunosuppression. HCMV gene products are found to be present in multiple human malignancies and target cellular functions involved in tumor development; additionally, a tumor-cytoreductive role of CMV has also been observed. The purpose of this study was to evaluate the correlation between CMV infection and the incidence of colorectal cancer (CRC). Methods The data were provided by a national database that is compliant with Health Insurance Portability and Accountability Act (HIPAA). Using International Classification of Disease (ICD)-10 and ICD-9 diagnostic codes, the data were filtered to evaluate patients infected with HCMV versus patients never infected with HCMV. Patient data from 2010 to 2019 were assessed. Access to the database was granted by Holy Cross Health, Fort Lauderdale for the purpose of academic research. Standard statistical methods were used. Results Between January 2010 and December 2019, the query was analyzed and resulted in 14,235 patients after matching in the infected and control groups. The groups were matched by age range, sex, Charlson Comorbidity Index (CCI) score, and treatment. The incidence of CRC was 1.159% (165 patients) in the HCMV group and 2.845% (405 patients) in the control group. The difference after matching was statistically significant by a P-value < 2.2 × 10-16 with an odds ratio of 0.37 (95% confidence interval (CI) 0.32 - 0.42). Conclusions The study shows a statistically significant correlation between CMV infection and a reduced incidence of CRC. Further evaluation is recommended to assess the potential of CMV in reducing CRC incidence.
Collapse
Affiliation(s)
- Brittany Nagel
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Lexi Frankel
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Amalia Ardeljan
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
- Department of Surgery, Michael and Dianne Biennes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, FL, USA
| | - Matthew Cardeiro
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Selena Rashid
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY, USA
| | - Omar M. Rashid
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, FL, USA
- Department of Surgery, Michael and Dianne Biennes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, FL, USA
- University of Miami, Leonard Miami School of Medicine, Miami, FL, USA
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgical Oncology, Broward Health, Fort Lauderdale, FL, USA
- TopLine MD Alliance, Fort Lauderdale, FL, USA
- Department of Surgical Oncology, Memorial Health, Pembroke Pines, FL, USA
- Department of Surgical Oncology, Delray Medical Center, Delray, FL, USA
- Corresponding Author: Omar M. Rashid, Complex General Surgical Oncology, General & Robotic Surgery, TopLine MD Alliance, Fort Lauderdale, FL 33308, USA.
| |
Collapse
|
33
|
Marais B, John V, Du Toit M, Mbambo J, John J. Cytomegalovirus haemorrhagic cystitis in a pregnant patient with
AIDS. Ther Adv Urol 2023; 15:17562872231159531. [PMID: 36969499 PMCID: PMC10034270 DOI: 10.1177/17562872231159531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/03/2023] [Indexed: 03/24/2023] Open
Abstract
Cytomegalovirus (CMV), an AIDS defining disease, has a high seroprevalence in the
general population, while symptomatic infections occur mostly in
immunocompromised individuals. Symptomatic CMV infections commonly include
pneumonia, encephalitis, retinitis and colitis, while urinary tract involvement
is a rare entity. We present a rare case of massive macroscopic haematuria due
to CMV haemorrhagic cystitis in a 29-year-old woman in her second trimester of
pregnancy. She was treated with intravenous Ganciclovir after initial
resuscitation, and her symptoms promptly resolved. Timely diagnosis and
treatment of symptomatic CMV infection is necessary to prevent associated
morbidity, and this is especially significant during pregnancy in order to
prevent foetal transmission. Both our patient and her baby remained symptom free
at the 6-month follow-up post-delivery. Clinicians should have a high index of
suspicion to biopsy the bladder urothelium of at-risk patients who present with
haemorrhagic cystitis and have non-specific cystoscopy findings as
histopathological analysis is the mainstay of diagnosing CMV-cystitis.
Collapse
Affiliation(s)
| | - Veena John
- Department of Paediatrics, Frere Hospital,
Walter Sisulu University, East London, South Africa
| | - Mariëtte Du Toit
- Division of Anatomical Pathology, Faculty of
Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Groote
Schuur Hospital, Cape Town, South Africa
| | - Jeanne Mbambo
- Department of Urology, Frere Hospital, Walter
Sisulu University, East London, South Africa
| | - Jeff John
- Department of Urology, Frere Hospital, Walter
Sisulu University, East London, South Africa
- Department of Urology, Groote Schuur Hospital,
University of Cape Town, Cape Town, South Africa
| |
Collapse
|
34
|
Quantitative PCR for the Diagnosis of HCMV Pneumonia in HSCT Recipients and Other Immunocompromised Hosts. HEMATO 2023. [DOI: 10.3390/hemato4010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Pneumonia is among the most serious manifestations of HCMV infection, with high morbidity and mortality. Probable pneumonia is defined as the detection of HCMV in bronchoalveolar lavage (BAL) by viral isolation or DNA quantification (qPCR) combined with symptoms and/or signs of respiratory infection. However, currently, there is no reproducible and well-defined viral load (VL) from BAL that can reliably differentiate patients with pneumonia from the much more common detection of viral DNA in seropositive patients without true HCMV pneumonia. Several studies have been published with the aim of establishing an optimal VL for differentiating pneumonia from viral lung shedding. The aim of this review is to collect and analyze the methodology and the conclusions obtained in studies whose objectives included the correlation between HCMV VL in BAL and/or the plasma and the occurrence of HCMV pneumonia. For this purpose, a total of 14 articles have been included. There are some conclusions on which they all agree. PCR techniques were more sensitive and had a higher NPV than culture techniques but were less specific and had a low PPV. The mean HCMV loads in both BAL and the plasma were significantly higher in patients with pneumonitis than in those without. The HCMV load in patients with pneumonitis was higher in BAL than in the plasma, making qPCR in BAL a better predictor of HCMV pneumonitis than in the plasma. Nevertheless, this review highlights the difficulty of establishing a universal VL value, both in BAL and in the blood, to differentiate patients with HCMV pneumonia from those without. To complete the information available in these studies, prospective multicentre studies would be required. Methodologically, a large number of patients with HCMV pneumonitis would have to be included, and a subclassification of the type of immunosuppression of each patient should be made in order to obtain an optimal VL threshold in different host groups.
Collapse
|
35
|
Moy MA, Collins-McMillen D, Crawford L, Parkins C, Zeltzer S, Caviness K, Caposio P, Goodrum F. UL135 and UL136 Epistasis Controls Reactivation of Human Cytomegalovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525282. [PMID: 36747736 PMCID: PMC9900790 DOI: 10.1101/2023.01.24.525282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human cytomegalovirus (HCMV) is beta herpesvirus that persists indefinitely in the human host through a protracted, latent infection. The polycistronic UL133-UL138 gene locus of HCMV encodes genes regulating latency and reactivation. While UL138 is pro-latency, restricting virus replication in CD34+ hematopoietic progenitor cells (HPCs), UL135 overcomes this restriction for reactivation. By contrast, UL136 is expressed with later kinetics and encodes multiple protein isoforms with differential roles in latency and reactivation. Like UL135, the largest UL136 isoform, UL136p33, is required for reactivation from latency in hematopoietic cells. Furthermore, UL136p33 is unstable, and its instability is important for the establishment of latency and sufficient accumulation of UL136p33 is a checkpoint for reactivation. We hypothesized that stabilizing UL136p33 might overcome the requirement of UL135 for reactivation. To test this, we generated recombinant viruses lacking UL135 that expressed a stabilized variant of UL136p33. Stabilizing UL136p33 did not impact replication of the UL135-mutant virus in fibroblasts. However, in the context of infection in hematopoietic cells, stabilization of UL136p33 strikingly compensated for the loss of UL135, resulting in increased replication in CD34+ HPCs and in humanized NOD- scid IL2Rγ c null (NSG) mice. This finding suggests that while UL135 is essential for reactivation, it functions at steps preceding the accumulation of UL136p33 and that stabilized expression of UL136p33 largely overcomes the requirement for UL135 in reactivation. Taken together, our genetic evidence indicates an epistatic relationship between UL136p33 and UL135 whereby UL135 may initiate events early in reactivation that will result in the accumulation of UL136p33 to a threshold required for productive reactivation. SIGNIFICANCE Human cytomegalovirus (HCMV) is one of nine human herpesviruses and a significant human pathogen. While HCMV establishes a life-long latent infection that is typically asymptomatic in healthy individuals, its reactivation from latency can have devastating consequences in the immune compromised. Defining virus-host and virus-virus interactions important for HCMV latency, reactivation and replication is critical to defining the molecular basis of latent and replicative states and in controlling infection and CMV disease. Here we define a genetic relationship between two viral genes in controlling virus reactivation from latency using primary human hematopoietic progenitor cell and humanized mouse models.
Collapse
|
36
|
Cheng Y, Du Y, Wang Q, Lv Q, Xue Y, Zhou W, Zhang C, Chen X, Wang D. Human cytomegalovirus-encoded microRNAs expression profile in plasma of patients with aortic dissection. J Cardiothorac Surg 2023; 18:39. [PMID: 36653806 PMCID: PMC9848029 DOI: 10.1186/s13019-023-02122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Aortic dissection (AD) is a rare disease with high mortality for which no effective diagnostic biomarkers are available. Human cytomegalovirus (HCMV) infection is an important cause of the occurrence and progression of many diseases, but the relationship between HCMV infection and AD is not clear. METHODS In this study, we first used quantitative reverse transcription polymerase chain reaction (qRT-PCR) to determine the expression profile of 25 HCMV-encoded microRNAs (HCMV miRNAs) in the plasma within a training set consisting of 20 AD patients and 20 healthy controls. Then, abnormal expressed HCMV miRNAs were verified in a validation set of 12 AD patients and 12 healthy controls. In addition, HCMV infection was detected in the third cohort consisting of 20 AD patients and 20 healthy controls. RESULTS The 95% quantile of the expression levels of HCMV miRNAs in the training set was used as the threshold for distinction between AD patients and healthy controls. The proportion of individuals with high level of five types of HCMV miRNAs was significantly different between AD patients and healthy controls. In the validation set, only the proportion of individuals with high levels of hcmv-miR-UL112-5p and hcmv-miR-UL22A-5p, two of the five HCMV miRNAs obtained in the preliminary screening, showed significant difference between AD patients and healthy controls. In the third cohort, there was no significant difference in HCMV DNA levels and anti-HCMV IgG concentrations between AD patients and healthy controls. CONCLUSIONS The HCMV miRNAs levels in plasma differed in AD patients and healthy controls. This finding may contribute to a further understanding of the relationship between HCMV infection and AD and are worthy of future research on the diagnosis and etiology of AD.
Collapse
Affiliation(s)
- Yongqing Cheng
- grid.41156.370000 0001 2314 964XDepartment of Cardio-Thoracic Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, 210008 Jiangsu China
| | - Yufan Du
- grid.41156.370000 0001 2314 964XPresent Address: State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210033 Jiangsu China
| | - Qi Wang
- grid.41156.370000 0001 2314 964XPresent Address: State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210033 Jiangsu China
| | - Qinghe Lv
- grid.41156.370000 0001 2314 964XPresent Address: State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210033 Jiangsu China
| | - Yunxin Xue
- grid.41156.370000 0001 2314 964XDepartment of Cardio-Thoracic Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, 210008 Jiangsu China
| | - Weihong Zhou
- grid.41156.370000 0001 2314 964XDepartment of Health Management Centre, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, 210008 Jiangsu China
| | - Chenyu Zhang
- grid.41156.370000 0001 2314 964XPresent Address: State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210033 Jiangsu China
| | - Xi Chen
- grid.41156.370000 0001 2314 964XPresent Address: State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210033 Jiangsu China
| | - Dongjin Wang
- grid.41156.370000 0001 2314 964XDepartment of Cardio-Thoracic Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, 210008 Jiangsu China
| |
Collapse
|
37
|
Kong W, Tao Y, Fan Q, Xie L, Chen C, Du K, Wei W. Changes and Treatment Prognosis of Aqueous Humor Cytokine Concentrations of Patients with Acquired Immune Deficiency Syndrome Complicated by Cytomegalovirus Retinitis. J Ocul Pharmacol Ther 2022; 38:695-702. [PMID: 36378859 DOI: 10.1089/jop.2022.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose: The purposes of this study were to investigate cytokine changes in the aqueous humor after treatment of acquired immune deficiency syndrome (AIDS) complicated with cytomegalovirus retinitis (CMVR) and to determine whether these changes are useful prognostic indicators. Methods: This study included 12 patients (15 eyes) undergoing treatment for AIDS and CMVR. The patients received intravitreal injections and systemic intravenous treatment with ganciclovir and foscarnet sodium. The aqueous humor of each eye was sampled before treatment and before the third and fifth injections. The samples were tested to determine the concentrations of each of 27 cytokines using the Luminex 200™ liquid phase chip. Results: The concentrations of cytokines interleukin (IL)-1rα (P = 0.002), IL-1b (P = 0.001), IL-8 (P = 0.001), basic fibroblast growth factor (bFGF) (P < 0.001), interferon γ-induced protein 10 (IP-10) (P = 0.001), and tumor necrosis factor (TNF)-α (P = 0.004) in the aqueous humor before the third and fifth injections were significantly lower after than before treatment. The reductions in TNF-α (P = 0.028) and IL-1b (P = 0.028) concentrations after treatment were statistically significant compared with the postoperative visual acuity improvement (≥3 lines and <3 lines). The difference in TNF-α (P = 0.018) level before and after treatment (the difference between before treatment and before the fifth intravitreal injection) was also statistically significant compared with the number of injections (≥6 times and <6 times). Conclusion: The cytokines IL-1rα, IL-1b, IL-8, bFGF, IP-10, and TNF-α may offer new avenues for evaluation of therapeutic effect, and TNF-α and IL-1b may be important cytokines for prognostic evaluation (based on visual acuity and the number of injections) in patients suffering from AIDS and CMVR. Clinical Trial Registration: Number: ChiCTR2200056955.
Collapse
Affiliation(s)
- Wenjun Kong
- Department of Opthalmology, Beijing You'an Hosptial, Capital Medical University, Beijing, China
| | - Yong Tao
- Department of Opthalmology, Beijing Chaoyang Hosptial, Capital Medical University, Beijing, China
| | - Qian Fan
- Department of Opthalmology, Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Lianyong Xie
- Department of Opthalmology, Beijing You'an Hosptial, Capital Medical University, Beijing, China
| | - Chao Chen
- Department of Opthalmology, Beijing You'an Hosptial, Capital Medical University, Beijing, China
| | - Kuifang Du
- Department of Opthalmology, Beijing You'an Hosptial, Capital Medical University, Beijing, China
| | - Wenbin Wei
- Department of Opthalmology, Beijing Tongren Hosptial, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Brizić I, Lisnić B, Krstanović F, Brune W, Hengel H, Jonjić S. Mouse Models for Cytomegalovirus Infections in Newborns and Adults. Curr Protoc 2022; 2:e537. [PMID: 36083111 DOI: 10.1002/cpz1.537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article describes procedures for infecting adult mice with murine cytomegalovirus (MCMV) and for infecting newborn mice to model congenital CMV infection. Methods are included for propagating MCMV in cell cultures and preparing a more virulent form of MCMV from the salivary glands of infected mice. A plaque assay is provided for determining MCMV titers of infected tissues or virus stocks. Also, methods are described for preparing the murine embryonic fibroblasts used for propagating MCMV, and for the plaque assay. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Fran Krstanović
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Hartmut Hengel
- Institute of Virology, Medical Center-University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
39
|
García-Ríos E, Rodríguez MJ, Terrón MC, Luque D, Pérez-Romero P. Identification and Characterization of Epithelial Cell-Derived Dense Bodies Produced upon Cytomegalovirus Infection. Vaccines (Basel) 2022; 10:vaccines10081308. [PMID: 36016196 PMCID: PMC9412340 DOI: 10.3390/vaccines10081308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Dense bodies (DB) are complex, noninfectious particles produced during CMVinfection containing envelope and tegument proteins that may be ideal candidates as vaccines. Although DB were previously described in fibroblasts, no evidence of DB formation has been shown after propagating CMV in epithelial cells. In the present study, both fibroblast MRC-5 and epithelial ARPE-19 cells were used to study DB production during CMV infection. We demonstrate the formation of epithelial cell-derived DB, mostly located as cytoplasmic inclusions in the perinuclear area of the infected cell. DB were gradient-purified, and the nature of the viral particles was confirmed using CMV-specific immunelabeling. Epithelial cell-derived DB had higher density and more homogeneous size (200-300 nm) compared to fibroblast-derived DB (100-600 nm).In agreement with previous results characterizing DB from CMV-infected fibroblasts, the pp65 tegument protein was predominant in the epithelial cell-derived DB. Our results also suggest that epithelial cells had more CMV capsids in the cytoplasm and had spherical bodies compatible with nucleus condensation (pyknosis) in cells undergoing apoptosis that were not detected in MRC-5 infected cells at the tested time post-infection. Our results demonstrate the formation of DB in CMV-infected ARPE-19 epithelial cells that may be suitable candidate to develop a multiprotein vaccine with antigenic properties similar to that of the virions while not including the viral genome.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Department of Science, Universidad Internacional de Valencia—VIU, Pintor Sorolla 21, 46002 Valencia, Spain
| | - María Josefa Rodríguez
- Electron and Confocal Microscopy Unit, Instituto de Salud Carlos III, Unidades Centrales Científico-Técnicas, Majadahonda, 28220 Madrid, Spain
| | - María Carmen Terrón
- Electron and Confocal Microscopy Unit, Instituto de Salud Carlos III, Unidades Centrales Científico-Técnicas, Majadahonda, 28220 Madrid, Spain
| | - Daniel Luque
- Electron and Confocal Microscopy Unit, Instituto de Salud Carlos III, Unidades Centrales Científico-Técnicas, Majadahonda, 28220 Madrid, Spain
- Correspondence: (D.L.); (P.P.-R.)
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Correspondence: (D.L.); (P.P.-R.)
| |
Collapse
|
40
|
Human cytomegalovirus: a survey of end-organ diseases and diagnostic challenges in solid organ transplant recipients. Curr Opin Organ Transplant 2022; 27:243-249. [PMID: 36354249 DOI: 10.1097/mot.0000000000000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE OF REVIEW Human cytomegalovirus (CMV) infection is one of the most important infectious complications in solid organ transplant (SOT) recipients, leading to significant morbidity and mortality. Therefore, early detection and prompt treatment are imperative to improve transplant outcomes. This article highlights the clinical characteristics of the most common CMV end-organ diseases in SOT recipients and their diagnostic modalities and challenges. RECENT FINDINGS CMV can cause a variety of end-organ diseases in SOT recipients. Although CMV nucleic acid amplification by polymerase chain reaction (PCR) is frequently employed to detect CMV reactivation or infection, its predictive value for various CMV end-organ diseases remains uncertain. Given the limitation of PCR or other noninvasive tests, confirmation of CMV end-organ disease may require tissue biopsy, which may not be feasible or available, or may cause untoward complications. SUMMARY The utility of PCR to diagnose CMV end-organ disease is limited. As CMV can infect any organ system(s), clinicians caring for SOT recipients need to maintain vigilance for any signs and symptoms of end-organ disease to allow early recognition and prompt treatment. Invasive procedures might be needed to confirm the diagnosis and minimize the empirical use of antiviral therapy that may have substantial drug toxicities.
Collapse
|
41
|
Pugh JL, Coplen CP, Sukhina AS, Uhrlaub J, Padilla‐Torres J, Hayashi T, Nikolich‐Žugich J. Lifelong cytomegalovirus and early-LIFE irradiation synergistically potentiate age-related defects in response to vaccination and infection. Aging Cell 2022; 21:e13648. [PMID: 35657768 PMCID: PMC9282846 DOI: 10.1111/acel.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/02/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
While whole-body irradiation (WBI) can induce some hallmarks of immune aging, (re)activation of persistent microbial infection also occurs following WBI and may contribute to immune effects of WBI over the lifespan. To test this hypothesis in a model relevant to human immune aging, we examined separate and joint effects of lifelong latent murine cytomegalovirus (MCMV) and of early-life WBI over the course of the lifespan. In late life, we then measured the response to a West Nile virus (WNV) live attenuated vaccine, and lethal WNV challenge subsequent to vaccination. We recently published that a single dose of non-lethal WBI in youth, on its own, was not sufficient to accelerate aging of the murine immune system, despite widespread DNA damage and repopulation stress in hematopoietic cells. However, 4Gy sub-lethal WBI caused manifest reactivation of MCMV. Following vaccination and challenge with WNV in the old age, MCMV-infected animals experiencing 4Gy, but not lower, dose of sub-lethal WBI in youth had reduced survival. By contrast, old irradiated mice lacking MCMV and MCMV-infected, but not irradiated, mice were both protected to the same high level as the old non-irradiated, uninfected controls. Analysis of the quality and quantity of anti-WNV immunity showed that higher mortality in MCMV-positive WBI mice correlated with increased levels of MCMV-specific immune activation during WNV challenge. Moreover, we demonstrate that infection, including that by WNV, led to MCMV reactivation. Our data suggest that MCMV reactivation may be an important determinant of increased late-life mortality following early-life irradiation and late-life acute infection.
Collapse
Affiliation(s)
- Jason L. Pugh
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
- Graduate Interdisciplinary Program in GeneticsUniversity of ArizonaTucsonArizonaUSA
| | - Christopher P. Coplen
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Alona S. Sukhina
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Jennifer L. Uhrlaub
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Jose Padilla‐Torres
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | | | - Janko Nikolich‐Žugich
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
- Graduate Interdisciplinary Program in GeneticsUniversity of ArizonaTucsonArizonaUSA
- BIO5 Institute University of ArizonaTucsonArizonaUSA
| |
Collapse
|
42
|
Yang S, Liu X, Wang M, Cao D, Jaijyan DK, Enescu N, Liu J, Wu S, Wang S, Sun W, Xiao L, Gu A, Li Y, Zhou H, Tyagi S, Wu J, Tang Q, Zhu H. Circular RNAs Represent a Novel Class of Human Cytomegalovirus Transcripts. Microbiol Spectr 2022; 10:e0110622. [PMID: 35604147 PMCID: PMC9241847 DOI: 10.1128/spectrum.01106-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) infects a large portion of the human population globally. Several HCMV-derived noncoding RNAs are involved in the regulation of viral gene expression and the virus life cycle. Here, we reported that circRNAs are a new class of HCMV transcripts. We bioinformatically predict 704 candidate circRNAs encoded by the TB40/E strain and 230 encoded by the HAN strain. We also systematically compare circRNA features, including the breakpoint sequence consensus, strand preference, length distribution, and exon numbers between host genome-encoded circRNAs and viral circRNAs, and showed that the unique characteristics of viral circRNAs are correlated with their genome types. Furthermore, we experimentally confirmed 324 back-splice junctions (BSJs) from three HCMV strains, Towne, TB40/E, and Toledo, and identified 4 representative HCMV circRNAs by RNase R treatment. Interestingly, we also showed that HCMV contains alternative back-splicing circRNAs. We developed a new amplified FISH method that allowed us to visualize circRNAs and quantify the number of circRNA molecules in the infected cells. The competitive endogenous RNA network analysis suggests that HCMV circRNAs play important roles in viral DNA synthesis via circRNA-miRNA-mRNA networks. Our findings highlight that circRNAs are an important component of the HCMV transcriptome that may contribute to viral replication and pathogenesis. IMPORTANCE HCMV infects 40% to 100% of the human population globally and may be a life-threatening pathogen in immunocompromised individuals. CircRNA is a family of unique RNA that is the most newly found and remains unknown in many aspects. Our current studies computationally identified HCMV-encoded circRNAs and confirmed the existence of the HCMV circRNAs in the infected cells. We systematically compared the features between host and different viral circRNAs and found that the unique characteristics of circRNAs were correlated with their genome types. We also first reported that HCMV contained alternative back-splicing circRNAs. More importantly, we developed a new amplified FISH method which allowed us for the first time not only to visualize circRNAs but also to quantify the number of circRNA molecules in the infected cells. This work describes a novel component of HCMV transcriptome bringing a new understanding of HCMV biology and disease.
Collapse
Affiliation(s)
| | | | - Mei Wang
- Jinan University, Guangzhou, Guangdong, China
| | - Di Cao
- Jinan University, Guangzhou, Guangdong, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Nicole Enescu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jian Liu
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, China
| | - Songbin Wu
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Sashuang Wang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Alison Gu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Yaolan Li
- Jinan University, Guangzhou, Guangdong, China
| | - Hong Zhou
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Newark, New Jersey, USA
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jianguo Wu
- Jinan University, Guangzhou, Guangdong, China
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
43
|
Ong DSY, Chong GLM, Chemaly RF, Cremer OL. Comparative clinical manifestations and immune effects of cytomegalovirus infections following distinct types of immunosuppression. Clin Microbiol Infect 2022; 28:1335-1344. [PMID: 35709902 DOI: 10.1016/j.cmi.2022.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is a well-recognized complication of solid organ and hematopoietic cell transplantation. However, CMV infection also occurs in patients with human immunodeficiency virus (HIV) infection, previously immunocompetent intensive care unit (ICU) patients, and individuals on immunosuppressive medications for various underlying diseases. OBJECTIVES This review describes the comparative effects of CMV infection in distinct types of acquired immunosuppression. SOURCES Selected peer-reviewed publications on CMV infections published until December 2021. CONTENT CMV infection affects various organ systems through direct cytolytic mechanisms, but may also exert indirect effects by promoting pro-inflammatory and immunosuppressive responses. This has been well studied in transplant recipients, for whom antiviral prophylaxis and pre-emptive therapy have now become standard practice. These strategies not only prevent direct CMV disease manifestations, but also mitigate various immunopathological processes to reduce graft-versus-host disease, graft rejection, and the occurrence of secondary bacterial and fungal infections. The efficacy of neither prophylactic nor pre-emptive treatment of CMV infection has been demonstrated for patients with critical illness- or medication-induced immunosuppression. Many observational studies have shown an independent association between CMV reactivation and a prolonged duration of mechanical ventilation or increased mortality in the ICU. Furthermore, data suggest that CMV reactivation may increase pulmonary inflammation and prolong the duration of mechanical ventilation. IMPLICATIONS A large number of observational and experimental studies suggest attributable morbidity and mortality related to CMV infection, not only in transplant recipients and patients with HIV infection but also in patients with critically illness- or medication-induced immunosuppression. Adequately powered randomized controlled trials investigating the efficacy of prophylaxis or pre-emptive treatment of CMV infection in these patients are lacking, with a notable exception for transplant recipients.
Collapse
Affiliation(s)
- David S Y Ong
- Department of Medical Microbiology and Infection Control, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands; Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Ga-Lai M Chong
- Erasmus University Medical Center, Department of Medical Microbiology & Infectious Diseases, Rotterdam, the Netherlands
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, & Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Olaf L Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
44
|
Ochola GO, Li B, Obanda V, Ommeh S, Ochieng H, Yang XL, Onyuok SO, Shi ZL, Agwanda B, Hu B. Discovery of novel DNA viruses in small mammals from Kenya. Virol Sin 2022; 37:491-502. [PMID: 35680114 PMCID: PMC9437603 DOI: 10.1016/j.virs.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Emergence and re-emergence of infectious diseases of wildlife origin have led pre-emptive pathogen surveillances in animals to be a public health priority. Rodents and shrews are among the most numerically abundant vertebrate taxa and are known as natural hosts of important zoonotic viruses. Many surveillance programs focused more on RNA viruses. In comparison, much less is known about DNA viruses harbored by these small mammals. To fill this knowledge gap, tissue specimens of 232 animals including 226 rodents, five shrews and one hedgehog were collected from 5 counties in Kenya and tested for the presence of DNA viruses belonging to 7 viral families by PCR. Diverse DNA sequences of adenoviruses, adeno-associated viruses, herpesviruses and polyomaviruses were detected. Phylogenetic analyses revealed that most of these viruses showed distinction from previously described viruses and formed new clusters. Furthermore, this is the first report of the discovery and full-length genome characterization of a polyomavirus in Lemniscomys species. This novel polyomavirus, named LsPyV KY187, has less than 60% amino acid sequence identity to the most related Glis glis polyomavirus 1 and Sciurus carolinensis polyomavirus 1 in both large and small T-antigen proteins and thus can be putatively allocated to a novel species within Betapolyomavirus. Our findings help us better understand the genetic diversity of DNA viruses in rodent and shrew populations in Kenya and provide new insights into the evolution of those DNA viruses in their small mammal reservoirs. It demonstrates the necessity of ongoing pathogen discovery studies targeting rodent-borne viruses in East Africa.
Collapse
Affiliation(s)
- Griphin Ochieng Ochola
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; Mammalogy Section, National Museums of Kenya, Nairobi, 40658-00100, Kenya; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Vincent Obanda
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, 40241-00100, Kenya
| | - Sheila Ommeh
- Institute of Biotechnology Research, Jomo Kenyatta University of Science and Technology, Nairobi, 62000-00200, Kenya
| | - Harold Ochieng
- Mammalogy Section, National Museums of Kenya, Nairobi, 40658-00100, Kenya
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Samson Omondi Onyuok
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Mammalogy Section, National Museums of Kenya, Nairobi, 40658-00100, Kenya
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Bernard Agwanda
- Mammalogy Section, National Museums of Kenya, Nairobi, 40658-00100, Kenya.
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
45
|
Taherifard E, Movahed H, Kiani Salmi S, Taherifard A, Abdollahifard S, Taherifard E. Cytomegalovirus coinfection in patients with severe acute respiratory syndrome coronavirus 2 infection: a systematic review of reported cases. Infect Dis (Lond) 2022; 54:543-557. [PMID: 35522073 DOI: 10.1080/23744235.2022.2070273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Dysfunction of both the innate and the adaptive immune systems is observed in severe coronavirus disease 2019 which, together with administration of immunosuppressive drugs, could lead to cytomegalovirus coinfection or reactivation associated with a poorer outcome. The current study aimed to systematically review the pattern, presentations, clinical course and outcome of patients with severe acute respiratory syndrome coronavirus 2 and cytomegalovirus coinfection. METHODS Three online databases, PubMed, Scopus and Web of Science, were searched, and after excluding duplicates and irrelevant reports, eligible articles were identified. Information about patients' age and gender, comorbidities, presentations of coronavirus disease 2019 and cytomegalovirus, treatment courses and outcomes were extracted. RESULTS A total of 34 reports with 59 patients with coinfection were considered to be eligible for data extraction. A majority of patients were middle-aged or elderly (84.5%). More than three-fourths (79.2%) had at least one comorbidity. Cytomegalovirus viremia was documented in 43 patients. The most common end organ involved was the gastrointestinal tract in 13 patients (48.1% of 27 patients with end organ involvement), mostly as cytomegalovirus colitis, followed by the respiratory tract in 12 patients. There was a significant association between intubation and fatal outcome (p = .011). CONCLUSION We comprehensively reviewed published cases with coronavirus disease 2019 and cytomegalovirus reactivation. The findings may assist in appraising signs and symptoms for early suspicion, detection and treatment in patients with unusual clinical courses or with severe, prolonged or unexplained deterioration of end organ function.
Collapse
Affiliation(s)
| | - Hamed Movahed
- Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Sima Kiani Salmi
- Radiology Department, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Ali Taherifard
- Radiology Department, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Saeed Abdollahifard
- Research Center for Neuromodulation and Pain, Shiraz, Fars, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | | |
Collapse
|
46
|
An eIF3d-dependent switch regulates HCMV replication by remodeling the infected cell translation landscape to mimic chronic ER stress. Cell Rep 2022; 39:110767. [PMID: 35508137 PMCID: PMC9127984 DOI: 10.1016/j.celrep.2022.110767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Regulated loading of eIF3-bound 40S ribosomes on capped mRNA is generally dependent upon the translation initiation factor eIF4E; however, mRNA translation often proceeds during physiological stress, such as virus infection, when eIF4E availability and activity are limiting. It remains poorly understood how translation of virus and host mRNAs are regulated during infection stress. While initially sensitive to mTOR inhibition, which limits eIF4E-dependent translation, we show that protein synthesis in human cytomegalovirus (HCMV)-infected cells unexpectedly becomes progressively reliant upon eIF3d. Targeting eIF3d selectively inhibits HCMV replication, reduces polyribosome abundance, and interferes with expression of essential virus genes and a host gene expression signature indicative of chronic ER stress that fosters HCMV reproduction. This reveals a strategy whereby cellular eIF3d-dependent protein production is hijacked to exploit virus-induced ER stress. Moreover, it establishes how switching between eIF4E and eIF3d-responsive cap-dependent translation can differentially tune virus and host gene expression in infected cells. Instead of eIF4E-regulated ribosome loading, Thompson et al. show capped mRNA translation in HCMV-infected cells becomes reliant upon eIF3d. Depleting eIF3d inhibits HCMV replication, reduces polyribosomes, and restricts virus late gene and host chronic ER stress-induced gene expression. Thus, switching to eIF3d-responsive translation tunes gene expression to support virus replication.
Collapse
|
47
|
Abstract
While many viral infections are limited and eventually resolved by the host immune response or by death of the host, other viruses establish long-term relationships with the host by way of a persistent infection, that range from chronic viruses that may be eventually cleared to those that establish life-long persistent or latent infection. Viruses infecting hosts from bacteria to humans establish quiescent infections that must be reactivated to produce progeny. For mammalian viruses, most notably herpesviruses, this quiescent maintenance of viral genomes in the absence of virus replication is referred to as latency. The latent strategy allows the virus to persist quiescently within a single host until conditions indicate a need to reactivate to reach a new host or, to re-seed a reservoir within the host. Here, I review common themes in viral strategies to regulate the latent cycle and reactivate from it ranging from bacteriophage to herpesviruses with a focus on human cytomegalovirus (HCMV). Themes central to herpesvirus latency include, epigenetic repression of viral gene expression and mechanisms to regulate host signaling and survival. Critical to the success of a latent program are mechanisms by which the virus can "sense" fluctuations in host biology (within the host) or environment (outside the host) and make appropriate "decisions" to maintain latency or re-initiate the replicative program. The signals or environments that indicate the establishment of a latent state, the very nature of the latent state, as well as the signals driving reactivation have been topics of intense study from bacteriophage to human viruses, as these questions encompass the height of complexity in virus-host interactions-where the host and the virus coexist.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
48
|
Deciphering the Potential Coding of Human Cytomegalovirus: New Predicted Transmembrane Proteome. Int J Mol Sci 2022; 23:ijms23052768. [PMID: 35269907 PMCID: PMC8911422 DOI: 10.3390/ijms23052768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
CMV is a major cause of morbidity and mortality in immunocompromised individuals that will benefit from the availability of a vaccine. Despite the efforts made during the last decade, no CMV vaccine is available. An ideal CMV vaccine should elicit a broad immune response against multiple viral antigens including proteins involved in virus-cell interaction and entry. However, the therapeutic use of neutralizing antibodies targeting glycoproteins involved in viral entry achieved only partial protection against infection. In this scenario, a better understanding of the CMV proteome potentially involved in viral entry may provide novel candidates to include in new potential vaccine design. In this study, we aimed to explore the CMV genome to identify proteins with putative transmembrane domains to identify new potential viral envelope proteins. We have performed in silico analysis using the genome sequences of nine different CMV strains to predict the transmembrane domains of the encoded proteins. We have identified 77 proteins with transmembrane domains, 39 of which were present in all the strains and were highly conserved. Among the core proteins, 17 of them such as UL10, UL139 or US33A have no ascribed function and may be good candidates for further mechanistic studies.
Collapse
|
49
|
Abstract
Herpesviruses are ubiquitous double-stranded DNA viruses that cause lifelong infections and are associated with a variety of diseases. While they have evolved multiple mechanisms to evade the immune system, they are all recognized by the innate immune system, which can lead to both localized and systemic inflammation. A more recently appreciated mechanism of herpesvirus innate immune activation is through inflammasome signaling. The inflammasome is an intracellular multiprotein complex that, when activated, leads to the release of proinflammatory cytokines, including IL-1β and IL-18, and activation of the inflammatory programed cell death pathway known as pyroptosis. Despite the herpesviruses sharing a similar structure, their mechanisms of inflammasome activation and the consequences of inflammasome activation in cases of virus-associated disease are not uniform. This review will highlight the similarities and differences among herpesviruses with regard to their mechanisms of inflammasome activation and impacts on diseases caused by herpesviruses. Furthermore, it will identify areas where additional studies are warranted to better understand the impact of this important innate immune signaling program on the pathogenesis of these common viruses.
Collapse
|
50
|
Basílio-Queirós D, Venturini L, Luther-Wolf S, Dammann E, Ganser A, Stadler M, Falk CS, Weissinger EM. Adaptive NK cells undergo a dynamic modulation in response to human cytomegalovirus and recruit T cells in in vitro migration assays. Bone Marrow Transplant 2022; 57:712-720. [PMID: 35177828 PMCID: PMC9090630 DOI: 10.1038/s41409-022-01603-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/23/2022]
Abstract
Human cytomegalovirus (HCMV) reactivation remains a relevant complication after hematopoietic stem cell transplantation (HSCT) despite the great progress made in prophylaxis and treatment. Adaptive Natural Killer (NK) cells undergo a persistent reconfiguration in response to HCMV reactivation however, the exact role of adaptive NK cells in HCMV surveillance is currently unknown. We studied the relationship between HCMV reactivation and adaptive NK cells in 70 patients monitored weekly until day +100 after HSCT. Absolute cell counts of adaptive NK cells increased significantly after resolution of HCMV-reactivation compared to patients without reactivation. Patients with HCMV-reactivation had an early reconstitution of adaptive NK cells (“Responders”) and had mainly a single reactivation (75% Responders vs 48% Non-Responders). Adaptive NK cells eliminated HCMV-infected human foreskin fibroblasts (HFF) in vitro and recruited T cells in an in vitro transwell migration assay. An extensive cytokine/chemokine panel demonstrated strongly increased secretion of CXCL10/IP-10, IFN-α, IL-1α, IL-1β, IL-5, IL-7 and CCL4. Thus, adaptive NK cells may control viral spread and T cell expansion and survival during HCMV-reactivation. Taken together, we have demonstrated the potential of adaptive NK cells in the control of HCMV reactivation both by direct cytotoxicity and by recruitment of other immune cells. Human cytomegalovirus (HCMV) is a β-herpes virus that causes life-long infection as a latent virus in its host. Its prevalence depends on socioeconomic geographical factors and can affect 50–90% of the population depending on these factors. HCMV infection is usually asymptomatic in healthy individuals. However, in patients lacking proper immune responses, such as following hematopoietic stem cell transplant (HSCT), HCMV can reactivate and increase the mortality and morbidity rates in these patients. We set to investigate the role of a population of innate cells, the adaptive Natural Killer (NK) cells, in the response to HCMV reactivation after HSCT. Our findings revealed that adaptive NK cells are modulated in response to HCMV reactivation after HSCT. Furthermore, in addition to their ability to eliminate HCMV-infected target cells after in vitro expansion, we have also shown that adaptive NK cells recruit T cells in response to co-culture with HCMV-infected target cells and identified secreted factors possibly involved in this recruitment.
Collapse
Affiliation(s)
- Débora Basílio-Queirós
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology Laboratory, Hannover Medical School, Hanover, Germany.
| | - Letizia Venturini
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology Laboratory, Hannover Medical School, Hanover, Germany.,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Brunswick, Germany
| | - Susanne Luther-Wolf
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology Laboratory, Hannover Medical School, Hanover, Germany
| | - Elke Dammann
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology Laboratory, Hannover Medical School, Hanover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology Laboratory, Hannover Medical School, Hanover, Germany
| | - Michael Stadler
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology Laboratory, Hannover Medical School, Hanover, Germany
| | - Christine S Falk
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Brunswick, Germany.,Hannover Medical School, Institute of Transplant Immunology, Hanover, Germany
| | - Eva M Weissinger
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology Laboratory, Hannover Medical School, Hanover, Germany.,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Brunswick, Germany
| |
Collapse
|