1
|
Fenton NM, Sharpe LJ, Fitzsimmons DM, Capell-Hattam IM, Brown AJ. Comprehensive survey of disease-causing missense mutations of the cholesterol synthesis enzyme NSDHL: Low temperature and a chemical chaperone rescue low protein expression of select mutants. J Steroid Biochem Mol Biol 2025; 251:106758. [PMID: 40222685 DOI: 10.1016/j.jsbmb.2025.106758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Cholesterol is essential to human life. Perturbations to any of the 22 cholesterol synthesis enzymes can lead to devastating developmental diseases. Each enzyme is exquisitely regulated both transcriptionally and post-translationally, playing a critical role in providing cholesterol to cells. We examined 13 missense mutations and one deletion mutation in the cholesterol synthesis enzyme NSDHL (NAD(P) Dependent Steroid Dehydrogenase-Like), known to cause the X-linked developmental disorders CHILD (congenital hemidysplasia with ichthyosiform erythroderma and limb defects) syndrome and CK syndrome. Little is known about the effect of these missense mutations on the stability and function of NSDHL. Here we show that protein expression levels were low for all mutants, but some could be rescued by a lower temperature (30°C vs. 37°C) and/or the chemical chaperone glycerol. Additionally, heat shock proteins 70 and 90 are needed for optimal NSDHL protein expression suggesting that disease mutations in NSDHL may interfere with this interaction, perhaps during translation resulting in lower protein synthesis. Our findings that these disease-causing mutations reduce NSDHL protein expression, but some respond to lower temperature and/or the chemical chaperone glycerol, can help inform future treatments for CHILD and CK syndrome.
Collapse
Affiliation(s)
- Nicole M Fenton
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
| | - Dylan M Fitzsimmons
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
| | | | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Riachi M, Bryant D, Ellis J, Hughes C, Polubothu S, Del Valle Torres I, Sauvadet A, Knöpfel N, Muwanga-Nanyonjo N, Martin SB, Bruzos A, Kelly G, Calvani E, Palma-Duran SA, Silva Dos Santos M, Chaloner C, Khalil Y, Clayton P, Mills P, Bulstrode N, Dand N, Di WL, Barral P, Simpson MA, Barker J, Lee JC, Macrae J, Kinsler VA. Cholesterol pathway gene variants and reduced keratinocyte cholesterol support a final common druggable pathway in hyperproliferative inflammatory skin diseases. J Invest Dermatol 2025:S0022-202X(25)00414-2. [PMID: 40274221 DOI: 10.1016/j.jid.2025.02.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 04/26/2025]
Abstract
Hyperproliferative inflammatory skin disease (HISD) is frequently seen in rare monogenic diseases of cholesterol metabolism and responds to topical cholesterol/statin. We hypothesised that aberrant cholesterol metabolism within keratinocytes could be important in HISD more generally, driven by either immunological or lipid pathway genetic variation. Whilst other epidermal lipids have been well characterised in HISDs, cholesterol and its metabolites have not. Using GCxGC 3D mass spectrometry we find here that primary keratinocytes from diverse monogenic HISDs (Inflammatory Linear Verruvous Epidermal Naevus ILVEN n=14, CHILD syndrome n=2), and from plaque psoriasis (n=2), demonstrate significantly reduced mean cholesterol across all patient groups compared to controls. This striking abnormality appears causally implicated, as treatment in vitro with cholesterol and statin rescues the cellular hyperproliferation. Using SNPsea and burden analysis of large international psoriasis cohorts we go on to show that GWAS hits are significantly enriched in proximity to genes encoding lipid metabolic pathways, and that rare variants in lipid metabolic pathway genes are significantly enriched in psoriasis patients. These data identify a final common pathway of aberrant keratinocyte cholesterol metabolism in HISD, which should be drugged topically to avoid first pass metabolism. In parallel we implicate genetic variation in lipid pathway genes in psoriasis susceptibility, potentially explaining the co-morbidity of abnormal serum lipid profile and psoriasis.
Collapse
Affiliation(s)
- Melissa Riachi
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Dale Bryant
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - James Ellis
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Connor Hughes
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Satyamaanasa Polubothu
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK; Paediatric Dermatology, Great Ormond St Hospital for Children, London, UK
| | - Ignacio Del Valle Torres
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Aimie Sauvadet
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Nicole Knöpfel
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK; Paediatric Dermatology, Great Ormond St Hospital for Children, London, UK
| | - Noreen Muwanga-Nanyonjo
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK; Paediatric Dermatology, Great Ormond St Hospital for Children, London, UK
| | - Sara Barberan Martin
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Alicia Bruzos
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Gavin Kelly
- Bioinformatics and Biostatistics, The Francis Crick Insitute, London, UK
| | - Enrica Calvani
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | | | | | - Charlotte Chaloner
- Department of Medical and Molecular Genetics, King's College London, London, UK; The Peter Gorer Department of Immunology, King's College London, London, UK
| | - Youssef Khalil
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Peter Clayton
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Philippa Mills
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK
| | - Neil Bulstrode
- Plastic Surgery, Great Ormond St Hospital for Children, London, UK
| | - Nick Dand
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Wei-Li Di
- The Peter Gorer Department of Immunology, King's College London, London, UK
| | - Patricia Barral
- Immune Response to Lipids Laboratory, The Francis Crick Institute, London, UK
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Jonathan Barker
- St John's Institute of Dermatology, Guys and St Thomas' Trust, London UK
| | - James C Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | - James Macrae
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Veronica A Kinsler
- Mosaicism and Precision Medicine Laboratory, The Francis Crick Institute, London, UK; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK; Paediatric Dermatology, Great Ormond St Hospital for Children, London, UK.
| |
Collapse
|
3
|
Duot M, Coomson SY, Shrestha SK, Nagulla MVMK, Audic Y, Barve RA, Huang H, Gautier-Courteille C, Paillard L, Lachke SA. Transcriptome Meta-Analysis Uncovers Cell-Specific Regulatory Relationships in Embryonic, Juvenile, Adult, and Aged Mouse Lens Epithelium and Fibers. Invest Ophthalmol Vis Sci 2025; 66:42. [PMID: 40238114 PMCID: PMC12011134 DOI: 10.1167/iovs.66.4.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Purpose The lens transcriptome has been examined using microarrays and RNA-sequencing (RNA-seq). These omics data are the basis of the bioinformatics web-resource iSyTE that has identified new genes involved in lens development and cataract. The lens predominantly contains epithelial and fiber cells, and yet, presently, iSyTE is based on whole lens data. To gain cell-specific regulatory insights, we meta-analyzed isolated epithelium and fiber transcriptomes from embryonic/postnatal, adult and aged lenses. Methods Mouse lens epithelium and fiber transcriptome public datasets at embryonic (E) and postnatal (P) stages E12.5, E14.5, E16.5, E18.5, P0.5, P0, P5, P13, and age one month, three months, six months, and two years were analyzed. Microarray or RNA-seq data were analyzed by appropriate methods and compared to other resources (e.g., Cat-Map, CompBio). Results Across all RNA-seq datasets examined, 2466 genes are differentially expressed between epithelium and fibers, of which 106 are cataract-linked. Gene ontology enrichment validates epithelial and fiber expression, corroborating the meta-analysis. Whole embryonic-body-in silico subtraction and other analyses identify several new high-priority epithelial- and/or fiber-enriched genes (e.g., Casz1, Ell2). Furthermore, new insights into cell-specific regulatory processes at distinct stages are identified (e.g., ribonucleoprotein regulation in E12.5 epithelium). Finally, this data is made accessible at iSyTE (https://research.bioinformatics.udel.edu/iSyTE/). Conclusions This spatiotemporal transcriptome meta-analysis comprehensively informs on epithelium- and fiber-specific regulatory processes in developing, adult and aged lenses. Notably, it includes the first description of an embryonic stage (i.e., E12.5) representing early primary fiber differentiation, thus informing on the initial transcriptome changes as lens cell-types are readily distinguishable.
Collapse
Affiliation(s)
- Matthieu Duot
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France
| | - Sarah Y. Coomson
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Sanjaya K. Shrestha
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | | | - Yann Audic
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France
| | - Ruteja A. Barve
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| | - Carole Gautier-Courteille
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France
| | - Luc Paillard
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
4
|
Jin Y, Basu S, Feng M, Ning Y, Munasinghe I, Joachim AM, Li J, Qin L, Madden R, Burks H, Gao P, Wu JQ, Sheikh SW, Joice AC, Perera C, Werbovetz KA, Zhang K, Wang MZ. CYP5122A1 encodes an essential sterol C4-methyl oxidase in Leishmania donovani and determines the antileishmanial activity of antifungal azoles. Nat Commun 2024; 15:9409. [PMID: 39482311 PMCID: PMC11528044 DOI: 10.1038/s41467-024-53790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
Visceral leishmaniasis is a life-threatening parasitic disease, but current antileishmanial drugs have severe drawbacks. Antifungal azoles inhibit the activity of cytochrome P450 (CYP) 51 enzymes which are responsible for removing the C14α-methyl group of lanosterol, a key step in ergosterol biosynthesis in Leishmania. However, they exhibit varying degrees of antileishmanial activities in culture, suggesting the existence of unrecognized molecular targets. Our previous study reveals that, in Leishmania, lanosterol undergoes parallel C4- and C14-demethylation to form 4α,14α-dimethylzymosterol and T-MAS, respectively. In the current study, CYP5122A1 is identified as a sterol C4-methyl oxidase that catalyzes the sequential oxidation of lanosterol to form C4-oxidation metabolites. CYP5122A1 is essential for both L. donovani promastigotes in culture and intracellular amastigotes in infected mice. CYP5122A1 overexpression results in growth delay, increased tolerance to stress, and altered expression of lipophosphoglycan and proteophosphoglycan. CYP5122A1 also helps to determine the antileishmanial effect of antifungal azoles in vitro. Dual inhibitors of CYP51 and CYP5122A1 possess superior antileishmanial activity against L. donovani promastigotes whereas CYP51-selective inhibitors have little effect on promastigote growth. Our findings uncover the critical biochemical and biological role of CYP5122A1 in L. donovani and provide an important foundation for developing new antileishmanial drugs by targeting both CYP enzymes.
Collapse
Affiliation(s)
- Yiru Jin
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Mei Feng
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Yu Ning
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Indeewara Munasinghe
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS, 66047, USA
| | - Arline M Joachim
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Junan Li
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lingli Qin
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Robert Madden
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Hannah Burks
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Philip Gao
- Protein Production Group, The University of Kansas, Lawrence, KS, 66047, USA
| | - Judy Qiju Wu
- Department of Pharmacy Practice, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Salma Waheed Sheikh
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - April C Joice
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Chamani Perera
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS, 66047, USA
| | - Karl A Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA.
| |
Collapse
|
5
|
Ning Y, Basu S, Hsu FF, Feng M, Wang MZ, Zhang K. Molecular Characterization of Sterol C4-Methyl Oxidase in Leishmania major. Int J Mol Sci 2024; 25:10908. [PMID: 39456689 PMCID: PMC11507432 DOI: 10.3390/ijms252010908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Sterol biosynthesis requires the oxidative removal of two methyl groups from the C-4 position by sterol C-4-demethylase and one methyl group from the C-14 position by sterol C-14-demethylase. In Leishmania donovani, a CYP5122A1 (Cytochrome P450 family 5122A1) protein was recently identified as the bona fide sterol C-4 methyl oxidase catalyzing the initial steps of C-4-demethylation. Besides CYP5122A1, Leishmania parasites possess orthologs to ERG25 (ergosterol pathway gene 25), the canonical sterol C-4 methyl oxidase in Saccharomyces cerevisiae. To determine the contribution of CYP5122A1 and ERG25 in sterol biosynthesis, we assessed the essentiality of these genes in Leishmania major, which causes cutaneous leishmaniasis. Like in L. donovani, CYP5122A1 in L. major could only be deleted in the presence of a complementing episome. Even with strong negative selection, L. major chromosomal CYP5122A1-null mutants retained the complementing episome in both promastigote and amastigote stages, demonstrating its essentiality. In contrast, the L. major ERG25-null mutants were fully viable and replicative in culture and virulent in mice. Deletion and overexpression of ERG25 did not affect the sterol composition, indicating that ERG25 is not required for C-4-demethylation. These findings suggest that CYP5122A1 is the dominant and possibly only sterol C-4 methyl oxidase in Leishmania, and inhibitors of CYP5122A1 may have strong therapeutic potential against multiple Leishmania species.
Collapse
Affiliation(s)
- Yu Ning
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (Y.N.); (S.B.)
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (Y.N.); (S.B.)
| | - Fong-fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Mei Feng
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA; (M.F.); (M.Z.W.)
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA; (M.F.); (M.Z.W.)
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (Y.N.); (S.B.)
| |
Collapse
|
6
|
Peeples ES, Mirnics K, Korade Z. Chemical Inhibition of Sterol Biosynthesis. Biomolecules 2024; 14:410. [PMID: 38672427 PMCID: PMC11048061 DOI: 10.3390/biom14040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Cholesterol is an essential molecule of life, and its synthesis can be inhibited by both genetic and nongenetic mechanisms. Hundreds of chemicals that we are exposed to in our daily lives can alter sterol biosynthesis. These also encompass various classes of FDA-approved medications, including (but not limited to) commonly used antipsychotic, antidepressant, antifungal, and cardiovascular medications. These medications can interfere with various enzymes of the post-lanosterol biosynthetic pathway, giving rise to complex biochemical changes throughout the body. The consequences of these short- and long-term homeostatic disruptions are mostly unknown. We performed a comprehensive review of the literature and built a catalogue of chemical agents capable of inhibiting post-lanosterol biosynthesis. This process identified significant gaps in existing knowledge, which fall into two main areas: mechanisms by which sterol biosynthesis is altered and consequences that arise from the inhibitions of the different steps in the sterol biosynthesis pathway. The outcome of our review also reinforced that sterol inhibition is an often-overlooked mechanism that can result in adverse consequences and that there is a need to develop new safety guidelines for the use of (novel and already approved) medications with sterol biosynthesis inhibiting side effects, especially during pregnancy.
Collapse
Affiliation(s)
- Eric S. Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA;
- Division of Neonatology, Children’s Nebraska, Omaha, NE 68114, USA
| | - Karoly Mirnics
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Zhai L, Bonds AC, Smith CA, Oo H, Chou JCC, Welander PV, Dassama LMK. Novel sterol binding domains in bacteria. eLife 2024; 12:RP90696. [PMID: 38329015 PMCID: PMC10942540 DOI: 10.7554/elife.90696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Sterol lipids are widely present in eukaryotes and play essential roles in signaling and modulating membrane fluidity. Although rare, some bacteria also produce sterols, but their function in bacteria is not known. Moreover, many more species, including pathogens and commensal microbes, acquire or modify sterols from eukaryotic hosts through poorly understood molecular mechanisms. The aerobic methanotroph Methylococcus capsulatus was the first bacterium shown to synthesize sterols, producing a mixture of C-4 methylated sterols that are distinct from those observed in eukaryotes. C-4 methylated sterols are synthesized in the cytosol and localized to the outer membrane, suggesting that a bacterial sterol transport machinery exists. Until now, the identity of such machinery remained a mystery. In this study, we identified three novel proteins that may be the first examples of transporters for bacterial sterol lipids. The proteins, which all belong to well-studied families of bacterial metabolite transporters, are predicted to reside in the inner membrane, periplasm, and outer membrane of M. capsulatus, and may work as a conduit to move modified sterols to the outer membrane. Quantitative analysis of ligand binding revealed their remarkable specificity for 4-methylsterols, and crystallographic structures coupled with docking and molecular dynamics simulations revealed the structural bases for substrate binding by two of the putative transporters. Their striking structural divergence from eukaryotic sterol transporters signals that they form a distinct sterol transport system within the bacterial domain. Finally, bioinformatics revealed the widespread presence of similar transporters in bacterial genomes, including in some pathogens that use host sterol lipids to construct their cell envelopes. The unique folds of these bacterial sterol binding proteins should now guide the discovery of other proteins that handle this essential metabolite.
Collapse
Affiliation(s)
- Liting Zhai
- Department of Chemistry and Sarafan ChEM-H, Stanford UniversityStanfordUnited States
| | - Amber C Bonds
- Department of Earth System Science, Stanford UniversityStanfordUnited States
| | - Clyde A Smith
- Department of Chemistry and Stanford Synchrotron Radiation Lightsource, Stanford UniversityStanfordUnited States
| | - Hannah Oo
- Department of Chemistry and Sarafan ChEM-H, Stanford UniversityStanfordUnited States
| | | | - Paula V Welander
- Department of Earth System Science, Stanford UniversityStanfordUnited States
| | - Laura MK Dassama
- Department of Chemistry and Sarafan ChEM-H, Stanford UniversityStanfordUnited States
- Department of Microbiology and Immunology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
8
|
Madan B, Wadia SR, Patnaik S, Harmston N, Tan E, Tan IBH, Nes WD, Petretto E, Virshup DM. The cholesterol biosynthesis enzyme FAXDC2 couples Wnt/β-catenin to RTK/MAPK signaling. J Clin Invest 2024; 134:e171222. [PMID: 38488003 PMCID: PMC10940096 DOI: 10.1172/jci171222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/17/2024] [Indexed: 03/18/2024] Open
Abstract
Wnts, cholesterol, and MAPK signaling are essential for development and adult homeostasis. Here, we report that fatty acid hydroxylase domain containing 2 (FAXDC2), a previously uncharacterized enzyme, functions as a methyl sterol oxidase catalyzing C4 demethylation in the Kandutsch-Russell branch of the cholesterol biosynthesis pathway. FAXDC2, a paralog of MSMO1, regulated the abundance of the specific C4-methyl sterols lophenol and dihydro-T-MAS. Highlighting its clinical relevance, FAXDC2 was repressed in Wnt/β-catenin-high cancer xenografts, in a mouse genetic model of Wnt activation, and in human colorectal cancers. Moreover, in primary human colorectal cancers, the sterol lophenol, regulated by FAXDC2, accumulated in the cancerous tissues and not in adjacent normal tissues. FAXDC2 linked Wnts to RTK/MAPK signaling. Wnt inhibition drove increased recycling of RTKs and activation of the MAPK pathway, and this required FAXDC2. Blocking Wnt signaling in Wnt-high cancers caused both differentiation and senescence; and this was prevented by knockout of FAXDC2. Our data show the integration of 3 ancient pathways, Wnts, cholesterol synthesis, and RTK/MAPK signaling, in cellular proliferation and differentiation.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Shawn R. Wadia
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Siddhi Patnaik
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Science Division, Yale-NUS College, Singapore
| | - Emile Tan
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | - Iain Bee Huat Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Department of Medical Oncology, National Cancer Centre, Singapore
| | - W. David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Enrico Petretto
- Center for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, China
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
9
|
Nakano K, Okamoto M, Takahashi-Nakaguchi A, Sasamoto K, Yamaguchi M, Chibana H. Evaluation of Antifungal Selective Toxicity Using Candida glabrata ERG25 and Human SC4MOL Knock-In Strains. J Fungi (Basel) 2023; 9:1035. [PMID: 37888291 PMCID: PMC10607794 DOI: 10.3390/jof9101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
With only four classes of antifungal drugs available for the treatment of invasive systemic fungal infections, the number of resistant fungi is increasing, highlighting the urgent need for novel antifungal drugs. Ergosterol, an essential component of cell membranes, and its synthetic pathway have been targeted for antifungal drug development. Sterol-C4-methyl monooxygenase (Erg25p), which is a greater essential target than that of existing drugs, represents a promising drug target. However, the development of antifungal drugs must consider potential side effects, emphasizing the importance of evaluating their selective toxicity against fungi. In this study, we knocked in ERG25 of Candida glabrata and its human ortholog, SC4MOL, in ERG25-deleted Saccharomyces cerevisiae. Utilizing these strains, we evaluated 1181-0519, an Erg25p inhibitor, that exhibited selective toxicity against the C. glabrata ERG25 knock-in strain. Furthermore, 1181-0519 demonstrated broad-spectrum antifungal activity against pathogenic Candida species, including Candida auris. The approach of utilizing a gene that is functionally conserved between yeast and humans and subsequently screening for molecular target drugs enables the identification of selective inhibitors for both species.
Collapse
Affiliation(s)
- Keiko Nakano
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Michiyo Okamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | | | - Kaname Sasamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
- School of Medicine, Niigata University, Niigata 951-8510, Japan
- Faculty of Medicine, University of the Ryukyus, Okinawa 903-0125, Japan
| |
Collapse
|
10
|
Wang F, Liu F. Mechanism-based understanding of the potential cellular targets of triclosan in zebrafish larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104255. [PMID: 37657728 DOI: 10.1016/j.etap.2023.104255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Triclosan (TCS) has become widely distributed due to its widespread use. In this study, we investigated the mechanisms of TCS's potential effects on cellular targets in zebrafish (Danio rerio) larvae using transcriptome sequencing. The expressions of 772, 368, and 1039 genes were significantly altered in zebrafish after embryos were exposed to 2, 10, and 50 μg/L TCS for consecutive 50 d, respectively, and 33 differentially expressed genes (DEGs) were found. DEGs were significantly enriched in the biological processes, including inflammatory response and purine ribonucleoside bisphosphate biosynthetic process by Go analysis, and in processes such as egg coat formation, binding of sperm to zona pellucida, positive regulation of acrosome reaction, and immune response by Gene set enrichment analysis (GSEA). Both KEGG pathway analysis and GSEA showed that NOD-like receptor signaling pathway and Steroid biosynthesis were significantly affected. Results showed that TCS potentially affected reproduction, immune, and metabolism of zebrafish larvae.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China.
| | - Fei Liu
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China
| |
Collapse
|
11
|
Jin Y, Basu S, Feng M, Ning Y, Munasinghe I, Joachim AM, Li J, Madden R, Burks H, Gao P, Perera C, Werbovetz KA, Zhang K, Wang MZ. CYP5122A1 encodes an essential sterol C4-methyl oxidase in Leishmania donovani and determines the antileishmanial activity of antifungal azoles. RESEARCH SQUARE 2023:rs.3.rs-3185204. [PMID: 37546914 PMCID: PMC10402201 DOI: 10.21203/rs.3.rs-3185204/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Visceral leishmaniasis, caused by Leishmania donovani, is a life-threatening parasitic disease, but current antileishmanial drugs are limited and have severe drawbacks. There have been efforts to repurpose antifungal azole drugs for the treatment of Leishmania infection. Antifungal azoles are known to potently inhibit the activity of cytochrome P450 (CYP) 51 enzymes which are responsible for removing the C14α-methyl group of lanosterol, a key step in ergosterol biosynthesis in Leishmania. However, they exhibit varying degrees of antileishmanial activities in culture, suggesting the existence of unrecognized molecular targets for these compounds. Our previous study reveals that, in Leishmania, lanosterol undergoes parallel C4- and C14-demethylation reactions to form 4α,14α-dimethylzymosterol and T-MAS, respectively. In the current study, CYP5122A1 is identified as a sterol C4-methyl oxidase that catalyzes the sequential oxidation of lanosterol to form C4-oxidation metabolites. CYP5122A1 is essential for both L. donovani promastigotes in culture and intracellular amastigotes in infected mice. Overexpression of CYP5122A1 results in growth delay, differentiation defects, increased tolerance to stress, and altered expression of lipophosphoglycan and proteophosphoglycan. CYP5122A1 also helps to determine the antileishmanial effect of antifungal azoles in vitro. Dual inhibitors of CYP51 and CYP5122A1, e.g., clotrimazole and posaconazole, possess superior antileishmanial activity against L. donovani promastigotes whereas CYP51-selective inhibitors, e.g., fluconazole and voriconazole, have little effect on promastigote growth. Our findings uncover the critical biochemical and biological role of CYP5122A1 in L. donovani and provide an important foundation for developing new antileishmanial drugs by targeting both CYP enzymes.
Collapse
Affiliation(s)
- Yiru Jin
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mei Feng
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
| | - Yu Ning
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Indeewara Munasinghe
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Arline M. Joachim
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Junan Li
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | - Robert Madden
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Hannah Burks
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Philip Gao
- Protein Production Group, The University of Kansas, Lawrence, KS 66047, USA
| | - Chamani Perera
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Karl A. Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
12
|
Tkemaladze T, Bratland E, Bregvadze K, Shatirishvili T, Tatishvili N, Abzianidze E, Houge G, Douzgou S. MSMO1 deficiency: a potentially partially treatable, ultrarare neurodevelopmental disorder with psoriasiform dermatitis, alopecia and polydactyly. Clin Dysmorphol 2023; 32:97-105. [PMID: 37195326 DOI: 10.1097/mcd.0000000000000461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MSMO1 deficiency (OMIM #616834) is an ultrarare autosomal recessive disorder of distal cholesterol metabolism with only five cases reported to date. The disorder is caused by missense variants in the MSMO1 gene encoding methylsterol monooxygenase 1, leading to the accumulation of methylsterols. Clinically, MSMO1 deficiency is characterized by growth and developmental delay, often in association with congenital cataracts, microcephaly, psoriasiform dermatitis and immune dysfunction. Treatment with oral and topical cholesterol supplements and statins was reported to improve the biochemical, immunological, and cutaneous findings, supporting a potential treatment following the precision diagnosis of MSMO1 deficiency. We describe two siblings from a consanguineous family presenting with novel clinical features of polydactyly, alopecia and spasticity. Whole-exome sequencing revealed a novel, homozygous c.548A > C, p.(Glu183Ala) variant. Based on previously published treatment algorithms, we initiated a modified dosage regime with systemic cholesterol supplementation, statins and bile acid along with topical application of a cholesterol/statin formulation. This resulted in a marked improvement of psoriasiform dermatitis and some hair growth.
Collapse
Affiliation(s)
- Tinatin Tkemaladze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University
- Department of Child Neurology, M. Iashvili Children's Central Hospital, Tbilisi, Georgia
| | - Eirik Bratland
- Department of Medical Genetics, Haukeland University Hospital
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kakha Bregvadze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University
| | - Teona Shatirishvili
- Department of Child Neurology, M. Iashvili Children's Central Hospital, Tbilisi, Georgia
| | - Nino Tatishvili
- Department of Child Neurology, M. Iashvili Children's Central Hospital, Tbilisi, Georgia
| | - Elene Abzianidze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Sofia Douzgou
- Department of Medical Genetics, Haukeland University Hospital
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Sulic AM, Das Roy R, Papagno V, Lan Q, Saikkonen R, Jernvall J, Thesleff I, Mikkola ML. Transcriptomic landscape of early hair follicle and epidermal development. Cell Rep 2023; 42:112643. [PMID: 37318953 DOI: 10.1016/j.celrep.2023.112643] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/04/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Morphogenesis of ectodermal organs, such as hair, tooth, and mammary gland, starts with the formation of local epithelial thickenings, or placodes, but it remains to be determined how distinct cell types and differentiation programs are established during ontogeny. Here, we use bulk and single-cell transcriptomics and pseudotime modeling to address these questions in developing hair follicles and epidermis and produce a comprehensive transcriptomic profile of cellular populations in the hair placode and interplacodal epithelium. We report previously unknown cell populations and marker genes, including early suprabasal and genuine interfollicular basal markers, and propose the identity of suprabasal progenitors. By uncovering four different hair placode cell populations organized in three spatially distinct areas, with fine gene expression gradients between them, we posit early biases in cell fate establishment. This work is accompanied by a readily accessible online tool to stimulate further research on skin appendages and their progenitors.
Collapse
Affiliation(s)
- Ana-Marija Sulic
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Rishi Das Roy
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Verdiana Papagno
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Riikka Saikkonen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; Department of Geosciences and Geography, University of Helsinki, 00014 Helsinki, Finland
| | - Irma Thesleff
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
14
|
Luo L, Guo Y, Chen L, Zhu J, Li C. Crosstalk between cholesterol metabolism and psoriatic inflammation. Front Immunol 2023; 14:1124786. [PMID: 37234169 PMCID: PMC10206135 DOI: 10.3389/fimmu.2023.1124786] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Psoriasis is a chronic autoinflammatory skin disease associated with multiple comorbidities, with a prevalence ranging from 2 to 3% in the general population. Decades of preclinical and clinical studies have revealed that alterations in cholesterol and lipid metabolism are strongly associated with psoriasis. Cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-17), which are important in the pathogenesis of psoriasis, have been shown to affect cholesterol and lipid metabolism. Cholesterol metabolites and metabolic enzymes, on the other hand, influence not only the biofunction of keratinocytes (a primary type of cell in the epidermis) in psoriasis, but also the immune response and inflammation. However, the relationship between cholesterol metabolism and psoriasis has not been thoroughly reviewed. This review mainly focuses on cholesterol metabolism disturbances in psoriasis and their crosstalk with psoriatic inflammation.
Collapse
Affiliation(s)
- Lingling Luo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Youming Guo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Lihao Chen
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Yu Q, Gamayun I, Wartenberg P, Zhang Q, Qiao S, Kusumakshi S, Candlish S, Götz V, Wen S, Das D, Wyatt A, Wahl V, Ectors F, Kattler K, Yildiz D, Prevot V, Schwaninger M, Ternier G, Giacobini P, Ciofi P, Müller TD, Boehm U. Bitter taste cells in the ventricular walls of the murine brain regulate glucose homeostasis. Nat Commun 2023; 14:1588. [PMID: 36949050 PMCID: PMC10033832 DOI: 10.1038/s41467-023-37099-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
The median eminence (ME) is a circumventricular organ at the base of the brain that controls body homeostasis. Tanycytes are its specialized glial cells that constitute the ventricular walls and regulate different physiological states, however individual signaling pathways in these cells are incompletely understood. Here, we identify a functional tanycyte subpopulation that expresses key taste transduction genes including bitter taste receptors, the G protein gustducin and the gustatory ion channel TRPM5 (M5). M5 tanycytes have access to blood-borne cues via processes extended towards diaphragmed endothelial fenestrations in the ME and mediate bidirectional communication between the cerebrospinal fluid and blood. This subpopulation responds to metabolic signals including leptin and other hormonal cues and is transcriptionally reprogrammed upon fasting. Acute M5 tanycyte activation induces insulin secretion and acute diphtheria toxin-mediated M5 tanycyte depletion results in impaired glucose tolerance in diet-induced obese mice. We provide a cellular and molecular framework that defines how bitter taste cells in the ME integrate chemosensation with metabolism.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Igor Gamayun
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Philipp Wartenberg
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Qian Zhang
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Soumya Kusumakshi
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Sarah Candlish
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Viktoria Götz
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Shuping Wen
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Debajyoti Das
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Amanda Wyatt
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Vanessa Wahl
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Fabien Ectors
- FARAH Mammalian Transgenics Platform, Liège University, Liège, Belgium
| | - Kathrin Kattler
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Daniela Yildiz
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Gaetan Ternier
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Philippe Ciofi
- Neurocentre Magendie - INSERM Unit 1215, University of Bordeaux, Bordeaux, France
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ulrich Boehm
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany.
| |
Collapse
|
16
|
Jiang P, Iqbal A, Cui Z, Yu H, Zhao Z. Bta-miR-33a affects gene expression and lipid levels in Chinese Holstein mammary epithelial cells. Arch Anim Breed 2022; 65:357-370. [PMID: 36304442 PMCID: PMC9594864 DOI: 10.5194/aab-65-357-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 08/29/2022] [Indexed: 11/07/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules of about 19-25 nucleotides in length that regulate different biological processes, including lipid metabolism. In this study, we explored the effect of bta-miR-33a on lipid metabolism in bovine mammary epithelial cells (BMECs) of Chinese Holstein for the first time. For this purpose, the plasmids of bta-miR-33a mimic, bta-miR-33a inhibitor and bta-miR-33a negative control were constructed to overexpress or repress bta-miR-33a in BMECs. The effects of plasmid transfection were analysed by examining the mRNA and protein expression levels of ELOVL6 and the intracellular triglycerides. The results showed that bta-miR-33a directly inhibited the expression of ELOVL6 in BMECs; decreased the mRNA levels of ELOVL5, HACD2, CPT1A and MSMO1; and increased the mRNA level of ALOX15. Sequence bta-miR-33a also increased the contents of triglycerides in the cells, presumably as a consequence of these gene expression changes. In summary, the results of the present study suggest that bta-miR-33a regulates lipid metabolism by targeting ELOVL6, which might be a potential molecular marker of milk fat composition.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Animal Breeding and Genetics, College of Coastal
Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong,
524088, PR China
| | - Ambreen Iqbal
- Department of Animal Breeding and Genetics, College of Coastal
Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong,
524088, PR China
| | - Zhiqian Cui
- College of Animal Science, Jilin University,
Changchun, 130062, PR China
| | - Haibin Yu
- Department of Animal Breeding and Genetics, College of Coastal
Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong,
524088, PR China
| | - Zhihui Zhao
- Department of Animal Breeding and Genetics, College of Coastal
Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong,
524088, PR China
| |
Collapse
|
17
|
Mennen R, Hallmark N, Pallardy M, Bars R, Tinwell H, Piersma A. Genome-wide expression screening in the cardiac embryonic stem cell test shows additional differentiation routes that are regulated by morpholines and piperidines. Curr Res Toxicol 2022; 3:100086. [PMID: 36157598 PMCID: PMC9489494 DOI: 10.1016/j.crtox.2022.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
The cardiac embryonic stem cell test (ESTc) is a well-studied non-animal alternative test method based on cardiac cell differentiation inhibition as a measure for developmental toxicity of tested chemicals. In the ESTc, a heterogenic cell population is generated besides cardiomyocytes. Using the full biological domain of ESTc may improve the sensitivity of the test system, possibly broadening the range of chemicals for which developmental effects can be detected in the test. In order to improve our knowledge of the biological and chemical applicability domains of the ESTc, we applied a hypothesis-generating data-driven approach on control samples as follows. A genome-wide expression screening was performed, using Next Generation Sequencing (NGS), to map the range of developmental pathways in the ESTc and to search for a predictive embryotoxicity biomarker profile, instead of the conventional read-out of beating cardiomyocytes. The detected developmental pathways included circulatory system development, skeletal system development, heart development, muscle and organ tissue development, and nervous system and cell development. Two pesticidal chemical classes, the morpholines and piperidines, were assessed for perturbation of differentiation in the ESTc using NGS. In addition to the anticipated impact on cardiomyocyte differentiation, the other developmental pathways were also regulated, in a concentration-response fashion. Despite the structural differences between the morpholine and piperidine pairs, their gene expression effect patterns were largely comparable. In addition, some chemical-specific gene regulation was also observed, which may help with future mechanistic understanding of specific effects with individual test compounds. These similar and unique regulations of gene expression profiles by the test compounds, adds to our knowledge of the chemical applicability domain, specificity and sensitivity of the ESTc. Knowledge of both the biological and chemical applicability domain contributes to the optimal placement of ESTc in test batteries and in Integrated Approaches to Testing and Assessment (IATA).
Collapse
Affiliation(s)
- R.H. Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - N. Hallmark
- Bayer AG Crop Science Division, Monheim, Germany
| | - M. Pallardy
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM UMR996, Châtenay-Malabry 92296, France
| | - R. Bars
- Bayer Crop Science, Sophia-Antipolis, France
| | - H. Tinwell
- Bayer Crop Science, Sophia-Antipolis, France
| | - A.H. Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| |
Collapse
|
18
|
Xie S, Ding B, Wang S, Zhang X, Yan W, Xia Q, Meng D, Shen S, Yu B, Liu H, Hu J, Wang S. Construction of hypoxia-immune-related prognostic model and targeted therapeutic strategies for cervical cancer. Int Immunol 2022; 34:379-394. [PMID: 35561666 DOI: 10.1093/intimm/dxac017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence indicates that hypoxia and immunity play important roles in tumorigenesis and development. However, the hypoxia-immune-related prognostic risk model has not been established in cervical cancer (CC). We aimed to construct a hypoxia-immune-based prognostic risk model with potential application in CC patient prognosis and predicting response to targeted therapy. The RNA-seq data and corresponding clinical information were retrieved from The Cancer Genome Atlas (TCGA) database. Hypoxia and immune status of CC patients were evaluated using the Consensus Clustering method and single sample gene set enrichment analysis (ssGSEA), respectively. The univariate Cox regression, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression were applied to establish the prognostic risk model of CC. The chemotherapy response for six chemotherapeutic agents of each CC patient was calculated according to the Genomics of Drug Sensitivity in Cancer (GDSC). And the Connectivity Map (CMap) database was performed to screen candidate small molecule drugs. In this study, we identified 7 gene signatures (P4HA2, MSMO1, EGLN1, ZNF316, IKZF3, ISCU, MYO1B) with prognostic values. And the survival time of patients with low-risk was significantly longer than those with high-risk. Meanwhile, CC patients in the high-risk group yielded higher sensitivity to five chemotherapeutic agents. And we listed ten candidate small-molecules drugs that exhibited a high correlation with the prognosis of cervical cancer. Thus, the prognostic model can accurately predict the prognosis of patients with CC and may be helpful for the development of new hypoxia-immune prognostic markers and therapeutic strategies for CC.
Collapse
Affiliation(s)
- Shuqian Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Bo Ding
- Department of Gynecology and Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shiyuan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qianqian Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Dan Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Siyuan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Bingjia Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
19
|
Yu M, Tang J, Huang Y, Guo C, Du P, Li N, Quan Q. HOXA10 Regulates the Synthesis of Cholesterol in Endometrial Stromal Cells. Front Endocrinol (Lausanne) 2022; 13:852671. [PMID: 35546998 PMCID: PMC9084188 DOI: 10.3389/fendo.2022.852671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The expression of homeobox A10 (HOXA10) in endometrial stromal cells is regulated by steroid hormones, especially by estrogen. As a precursor molecule of estrogen, abnormal cholesterol metabolism is significantly positively correlated with endometriosis. The purpose of this study was to explore the regulation of HOXA10 on cholesterol synthesis in endometrial stromal cells. METHOD mRNA expression data of eutopic endometrial stromal cell (ESC) and ovarian endometriotic cysts stromal cell (OESC) were download from the Gene Expression Omnibus (GEO) databases. Overexpression and silence of HOXA10 were conducted in cultured ESC and subjected to mRNA sequencing. The differentially expressed genes (DEGs) were selected by analyzing the sequencing data. Weighted gene co-expression network analysis (WGCNA) was applied to identify the key genes associated with HOXA10. The methylation rate of HOXA10 CpGs and the correlation between HOXA10 expression and the methylation in eutopic endometrial tissue (EU) and ovarian cyst (OC) were analyzed. RESULTS HOXA10 in ESC was significantly higher expressed than that in OESC. Six key genes (HMGCR, MSMO1, ACAT2, HMGCS1, EBP, and SQLE), which were regulated by HOXA10, were identified from the salmon4 module by WGCNA. All these key genes were enriched in cholesterol synthesis. Moreover, the expression of HOXA10 was negatively related to its CpGs methylation rate. CONCLUSION In this study, six key genes that were regulated by HOXA10 were selected, and all of them were enriched in cholesterol synthesis. This finding provided a new insight into the metabolic mechanism of cholesterol in ESC. It also provided a potential treatment strategy for cholesterol metabolism maladjustment in patients with ovarian endometriosis.
Collapse
Affiliation(s)
- Meixing Yu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jia Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Yanqing Huang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chenbing Guo
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peng Du
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ning Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qingli Quan
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
- *Correspondence: Qingli Quan,
| |
Collapse
|
20
|
King RJ, Singh PK, Mehla K. The cholesterol pathway: impact on immunity and cancer. Trends Immunol 2022; 43:78-92. [PMID: 34942082 PMCID: PMC8812650 DOI: 10.1016/j.it.2021.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 01/03/2023]
Abstract
Cholesterol is a multifaceted metabolite that is known to modulate processes in cancer, atherosclerosis, and autoimmunity. A common denominator between these diseases appears to be the immune system, in which many cholesterol-associated metabolites impact both adaptive and innate immunity. Many cancers display altered cholesterol metabolism, and recent studies demonstrate that manipulating systemic cholesterol metabolism may be useful in improving immunotherapy responses. However, cholesterol can have both proinflammatory and anti-inflammatory roles in mammals, acting via multiple immune cell types, and depending on context. Gaining mechanistic insights into various cholesterol-related metabolites can improve our understanding of their functions and extensive effects on the immune system, and ideally will inform the design of future therapeutic strategies against cancer and/or other pathologies.
Collapse
Affiliation(s)
- Ryan J. King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Pankaj K. Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Correspondence: Pankaj K. Singh, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.559.2726, FAX: 402-559-2813 and Kamiya Mehla, Ph.D., Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.836.9117, FAX: 402-559-2813
| | - Kamiya Mehla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Correspondence: Pankaj K. Singh, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.559.2726, FAX: 402-559-2813 and Kamiya Mehla, Ph.D., Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.836.9117, FAX: 402-559-2813
| |
Collapse
|
21
|
Vachon L, Smaani A, Tessier N, Jean G, Demers A, Milasan A, Ardo N, Jarry S, Villeneuve L, Alikashani A, Finherty V, Ruiz M, Sorci-Thomas MG, Mayer G, Martel C. Downregulation of low-density lipoprotein receptor mRNA in lymphatic endothelial cells impairs lymphatic function through changes in intracellular lipids. Theranostics 2022; 12:1440-1458. [PMID: 35154499 PMCID: PMC8771568 DOI: 10.7150/thno.58780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Rationale: Impairment in lymphatic transport is associated with the onset and progression of atherosclerosis in animal models. The downregulation of low-density-lipoprotein receptor (LDLR) expression, rather than increased circulating cholesterol level per se, is involved in early atherosclerosis-related lymphatic dysfunction. Enhancing lymphatic function in Ldlr-/- mice with a mutant form of VEGF-C (VEGF-C 152s), a selective VEGFR-3 agonist, successfully delayed atherosclerotic plaque onset when mice were subsequently fed a high-fat diet. However, the specific mechanisms by which LDLR protects against lymphatic function impairment is unknown. Methods and results: We have thus injected wild-type and Pcsk9-/- mice with an adeno-associated virus type 1 expressing a shRNA for silencing Ldlr in vivo. We herein report that lymphatic contractility is reduced upon Ldlr dowregulation in wild-type mice only. Our in vitro experiments reveal that a decrease in LDLR expression at the mRNA level reduces the chromosome duplication phase and the protein expression of VEGFR-3, a membrane-bound key lymphatic marker. Furthermore, it also significantly reduced the levels of 18 lipid subclasses, including key constituents of lipid rafts as well as the transcription of several genes involved in cholesterol biosynthesis and cellular and metabolic processes. Exogenous PCSK9 only reduces lymphatic endothelial-LDLR at the protein level and does not affect lymphatic endothelial cell integrity. This puts forward that PCSK9 may act upon lymphatic muscle cells to mediate its effect on lymphatic contraction capacity in vivo. Conclusion: Our results suggest that treatments that specifically palliate the down regulation of LDLR mRNA in lymphatic endothelial cells preserve the integrity of the lymphatic endothelium and sustain lymphatic function, a prerequisite player in atherosclerosis.
Collapse
Affiliation(s)
- Laurent Vachon
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Ali Smaani
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Nolwenn Tessier
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Gabriel Jean
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Annie Demers
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Andreea Milasan
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Nadine Ardo
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Stéphanie Jarry
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Louis Villeneuve
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Vincent Finherty
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Matthieu Ruiz
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Metabolomics platform, Montreal, Quebec, Canada
| | | | - Gaétan Mayer
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Gene regulation by morpholines and piperidines in the cardiac embryonic stem cell test. Toxicol Appl Pharmacol 2021; 433:115781. [PMID: 34737147 DOI: 10.1016/j.taap.2021.115781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022]
Abstract
The cardiac embryonic stem cell test (ESTc) is an in vitro embryotoxicity screen which uses cardiomyocyte formation as the main differentiation route. Studies are ongoing into whether an improved specification of the biological domain can broaden the applicability of the test, e.g. to discriminate between structurally similar chemicals by measuring expression of dedicated gene transcript biomarkers. We explored this with two chemical classes: morpholines (tridemorph; fenpropimorph) and piperidines (fenpropidin; spiroxamine). These compounds cause embryotoxicity in rat such as cleft palate. This malformation can be linked to interference with retinoic acid balance, neural crest (NC) cell migration, or cholesterol biosynthesis. Also neural differentiation within the ESTc was explored in relation to these compounds. Gene transcript expression of related biomarkers were measured at low and high concentrations on differentiation day 4 (DD4) and DD10. All compounds showed stimulating effects on the cholesterol biosynthesis related marker Msmo1 after 24 h exposure and tridemorph showed inhibition of Cyp26a1 which codes for one of the enzymes that metabolises retinoic acid. A longer exposure duration enhanced expression levels for differentiation markers for cardiomyocytes (Nkx2-5; Myh6) and neural cells (Tubb3) on DD10. This readout gave additional mechanistic insight which enabled previously unavailable in vitro discrimination between the compounds, showing the practical utility of specifying the biological domain of the ESTc.
Collapse
|
23
|
Zheng G, Wang Z, Fan Y, Wang T, Zhang L, Wang M, Chen S, Jiang L. The Clinical Significance and Immunization of MSMO1 in Cervical Squamous Cell Carcinoma Based on Bioinformatics Analysis. Front Genet 2021; 12:705851. [PMID: 34759952 PMCID: PMC8573162 DOI: 10.3389/fgene.2021.705851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/28/2021] [Indexed: 01/14/2023] Open
Abstract
Objective: The genetic markers for the detection or treatment of cervical squamous cell carcinoma (CESC) are not yet complete. This study aimed to identify the role of MSMO1 (Alternative name: SC4MOL) in the occurrence and development of CESC. Methods: We evaluated the significance of MSMO1 expression in CESC by using analysis of a public dataset from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Oncomine and GEPIA2 were used to validate MSMO1 as an independent prognostic factor in CESC. Multiple tools were used to analyze the factors and functions associated with MSMO1, such as methylation, miRNA, and co-expressed genes. Furthermore, TIMER and TISIDB were used to study the relationship between MSMO1 expression and immunization in CESC. Results: MSMO1 was highly expressed in tumor specimens and could be used as an independent prognostic factor of CESC (p < 0.05). But Casiopeinas chemotherapeutics and p63 loss could reduce the expression of MSMO1. The level of methylation MSMO1 was significantly increased in tumor tissues but there was an insignificant effect on the prognosis. MSMO1 was also closely related to hsa-miR-23a-3p, hsa-miR-23b-3p, hsa-miR-130b-3p, and gene IDI1. Specifically, the expression level of MSMO1 had a significant negative correlation with the infiltration level of CD4+T cells, Macrophages, Neutrophils, and DCs in CESC. In addition, GSEA identified differential enrichment in systemic lupus erythematosus, vascular smooth muscle contraction, cytokine receptor interaction, focal adhesion, chemokine signaling pathway, and Leishmania infection pathway in KEGG. Conclusion: Our findings provide evidence of the implications of MSMO1 in tumors, suggesting that MSMO1 is a promising prognostic biomarker in CESC.
Collapse
Affiliation(s)
- Guangfei Zheng
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
- Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Zhuan Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yuchun Fan
- Medical College, Guangxi University, Nanning, China
| | - Tian Wang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Linli Zhang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Mengling Wang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Su Chen
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, South-Central University for Nationalities, Wuhan, China
| | - Lihe Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- Medical College, Guangxi University, Nanning, China
- Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Vallejo AN, Mroczkowski HJ, Michel JJ, Woolford M, Blair HC, Griffin P, McCracken E, Mihalik SJ, Reyes‐Mugica M, Vockley J. Pervasive inflammatory activation in patients with deficiency in very-long-chain acyl-coA dehydrogenase (VLCADD). Clin Transl Immunology 2021; 10:e1304. [PMID: 34194748 PMCID: PMC8236555 DOI: 10.1002/cti2.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES Very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a disorder of fatty acid oxidation. Symptoms are managed by dietary supplementation with medium-chain fatty acids that bypass the metabolic block. However, patients remain vulnerable to hospitalisations because of rhabdomyolysis, suggesting pathologic processes other than energy deficit. Since rhabdomyolysis is a self-destructive process that can signal inflammatory/immune cascades, we tested the hypothesis that inflammation is a physiologic dimension of VLCADD. METHODS All subjects (n = 18) underwent informed consent/assent. Plasma cytokine and cytometry analyses were performed. A prospective case analysis was carried out on a patient with recurrent hospitalisation. Health data were extracted from patient medical records. RESULTS Patients showed systemic upregulation of nine inflammatory mediators during symptomatic and asymptomatic periods. There was also overall abundance of immune cells with high intracellular expression of IFNγ, IL-6, MIP-1β (CCL4) and TNFα, and the transcription factors p65-NFκB and STAT1 linked to inflammatory pathways. A case analysis of a patient exhibited already elevated plasma cytokine levels during diagnosis in early infancy, evolving into sustained high systemic levels during recurrent rhabdomyolysis-related hospitalisations. There were corresponding activated leukocytes, with higher intracellular stores of inflammatory molecules in monocytes compared to T cells. Exposure of monocytes to long-chain free fatty acids recapitulated the cytokine signature of patients. CONCLUSION Pervasive plasma cytokine upregulation and pre-activated immune cells indicate chronic inflammatory state in VLCADD. Thus, there is rationale for practical implementation of clinical assessment of inflammation and/or translational testing, or adoption, of anti-inflammatory intervention(s) for personalised disease management.
Collapse
Affiliation(s)
- Abbe N Vallejo
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Henry J Mroczkowski
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Present address:
Department of PediatricsUniversity of Tennessee Health Sciences CenterMemphisTNUSA
| | - Joshua J Michel
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Michael Woolford
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Harry C Blair
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Pittsburgh Veterans Administration Medical CenterPittsburghPAUSA
| | - Patricia Griffin
- Division of Pediatric Rheumatology, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Elizabeth McCracken
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Center for Rare Disease and TherapyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Stephanie J Mihalik
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Miguel Reyes‐Mugica
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Jerry Vockley
- Children's Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of Genetic and Genomic Medicine, Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Center for Rare Disease and TherapyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Department of Human GeneticsUniversity of Pittsburgh Graduate School of Public HealthPittsburghPAUSA
| |
Collapse
|
25
|
Shin S, Zhou H, He C, Wei Y, Wang Y, Shingu T, Zeng A, Wang S, Zhou X, Li H, Zhang Q, Mo Q, Long J, Lan F, Chen Y, Hu J. Qki activates Srebp2-mediated cholesterol biosynthesis for maintenance of eye lens transparency. Nat Commun 2021; 12:3005. [PMID: 34021134 PMCID: PMC8139980 DOI: 10.1038/s41467-021-22782-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Defective cholesterol biosynthesis in eye lens cells is often associated with cataracts; however, how genes involved in cholesterol biosynthesis are regulated in lens cells remains unclear. Here, we show that Quaking (Qki) is required for the transcriptional activation of genes involved in cholesterol biosynthesis in the eye lens. At the transcriptome level, lens-specific Qki-deficient mice present downregulation of genes associated with the cholesterol biosynthesis pathway, resulting in a significant reduction of total cholesterol level in the eye lens. Mice with Qki depletion in lens epithelium display progressive accumulation of protein aggregates, eventually leading to cataracts. Notably, these defects are attenuated by topical sterol administration. Mechanistically, we demonstrate that Qki enhances cholesterol biosynthesis by recruiting Srebp2 and Pol II in the promoter regions of cholesterol biosynthesis genes. Supporting its function as a transcription co-activator, we show that Qki directly interacts with single-stranded DNA. In conclusion, we propose that Qki-Srebp2-mediated cholesterol biosynthesis is essential for maintaining the cholesterol level that protects lens from cataract development.
Collapse
Affiliation(s)
- Seula Shin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenxi He
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunfei Wang
- Clinical Science Division, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Takashi Shingu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ailiang Zeng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Zhou
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Jilin, China
| | - Hongtao Li
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qinling Mo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Neuroscience Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
26
|
Kuniholm MH, Bramah-Lawani M, Fitzpatrick M, Nouraie M, Qin S, Huang L, Vallejo AN, Landay AL, Morris A. Association of Monocyte Migration Marker CD11b With Pulmonary Function in People Living With HIV. J Acquir Immune Defic Syndr 2021; 86:344-352. [PMID: 33148999 PMCID: PMC9597655 DOI: 10.1097/qai.0000000000002544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/19/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Maladaptive immune responses contribute to the pathogenesis of many chronic lung diseases. Here, we tested hypotheses that CD4 and CD8 T-cell and monocyte phenotypes are associated with lung function in people living with HIV and those without HIV. METHODS Markers of T cell differentiation, activation, exhaustion and senescence, and markers of monocyte recruitment and migration were quantified in 142 HIV-positive and 73 HIV-negative participants of the Pittsburgh HIV Lung Cohort. All participants underwent lung function testing. RESULTS CD4 or CD8 T-cell phenotypes were not associated with measures of lung function in HIV-positive or HIV-negative participants after adjustment for multiple comparisons. In HIV-positive participants, however, the percentage of classical monocytes that were CD11b+ had positive associations at the Bonferroni-adjusted significance threshold of P = 0.05/63 with prebronchodilator and postbronchodilator forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC) ratio (β = 0.36; P = 0.00003 and β = 0.31; P = 0.0003, respectively). In stratified analyses of n = 87 participants with CD4 ≥ 500 cells/µL, associations of percentage of classical monocytes that were CD11b+ with prebronchodilator and postbronchodilator FEV1/FVC ratio were stronger (β = 0.48 and β = 0.41, for pre- and post-, respectively) than in the entire HIV-positive study population. Significant associations of monocyte phenotypes were not observed in HIV-negative participants after adjustment for multiple comparisons. CONCLUSIONS CD11b+ expression on classical monocytes is positively associated with FEV1/FVC ratio in people living with HIV including in those with CD4 T-cell recovery. Given the normal surveillance activity of monocytes, such association suggests this monocyte subset may play a role in preservation of pulmonary function in PLWH.
Collapse
Affiliation(s)
- Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY
| | | | | | - Mehdi Nouraie
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Shulin Qin
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Laurence Huang
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Abbe N Vallejo
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA; and
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Alison Morris
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
27
|
Srivastava AK, Chand Yadav T, Khera HK, Mishra P, Raghuwanshi N, Pruthi V, Prasad R. Insights into interplay of immunopathophysiological events and molecular mechanistic cascades in psoriasis and its associated comorbidities. J Autoimmun 2021; 118:102614. [PMID: 33578119 DOI: 10.1016/j.jaut.2021.102614] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Psoriasis is an inflammatory skin disease with complex pathogenesis and multiple etiological factors. Besides the essential role of autoreactive T cells and constellation of cytokines, the discovery of IL-23/Th17 axis as a central signaling pathway has unraveled the mechanism of accelerated inflammation in psoriasis. This has provided insights into psoriasis pathogenesis and revolutionized the development of effective biological therapies. Moreover, genome-wide association studies have identified several candidate genes and susceptibility loci associated with this disease. Although involvement of cellular innate and adaptive immune responses and dysregulation of immune cells have been implicated in psoriasis initiation and maintenance, there is still a lack of unifying mechanism for understanding the pathogenesis of this disease. Emerging evidence suggests that psoriasis is a high-mortality disease with additional burden of comorbidities, which adversely affects the treatment response and overall quality of life of patients. Furthermore, changing trends of psoriasis-associated comorbidities and shared patterns of genetic susceptibility, risk factors and pathophysiological mechanisms manifest psoriasis as a multifactorial systemic disease. This review highlights the recent progress in understanding the crucial role of different immune cells, proinflammatory cytokines and microRNAs in psoriasis pathogenesis. In addition, we comprehensively discuss the involvement of various complex signaling pathways and their interplay with immune cell markers to comprehend the underlying pathophysiological mechanism, which may lead to exploration of new therapeutic targets and development of novel treatment strategies to reduce the disastrous nature of psoriasis and associated comorbidities.
Collapse
Affiliation(s)
- Amit Kumar Srivastava
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Tara Chand Yadav
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Harvinder Kour Khera
- Tata Institute for Genetics and Society, Centre at InStem, Bangalore, 560065, Karnataka, India; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Purusottam Mishra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Navdeep Raghuwanshi
- Vaccine Formulation & Research Center, Gennova (Emcure) Biopharmaceuticals Limited, Pune, 411057, Maharashtra, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ramasare Prasad
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
28
|
Kim DG, Cho S, Lee KY, Cheon SH, Yoon HJ, Lee JY, Kim D, Shin KS, Koh CH, Koo JS, Choi Y, Lee HH, Oh YK, Jeong YS, Chung SJ, Baek M, Jung KY, Lim HJ, Kim HS, Park SJ, Lee JY, Lee SJ, Lee BJ. Crystal structures of human NSDHL and development of its novel inhibitor with the potential to suppress EGFR activity. Cell Mol Life Sci 2021; 78:207-225. [PMID: 32140747 PMCID: PMC11068002 DOI: 10.1007/s00018-020-03490-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 02/17/2020] [Indexed: 02/03/2023]
Abstract
NAD(P)-dependent steroid dehydrogenase-like (NSDHL), an essential enzyme in human cholesterol synthesis and a regulator of epidermal growth factor receptor (EGFR) trafficking pathways, has attracted interest as a therapeutic target due to its crucial relevance to cholesterol-related diseases and carcinomas. However, the development of pharmacological agents for targeting NSDHL has been hindered by the absence of the atomic details of NSDHL. In this study, we reported two X-ray crystal structures of human NSDHL, which revealed a detailed description of the coenzyme-binding site and the unique conformational change upon the binding of a coenzyme. A structure-based virtual screening and biochemical evaluation were performed and identified a novel inhibitor for NSDHL harboring suppressive activity towards EGFR. In EGFR-driven human cancer cells, treatment with the potent NSDHL inhibitor enhanced the antitumor effect of an EGFR kinase inhibitor. Overall, these findings could serve as good platforms for the development of therapeutic agents against NSDHL-related diseases.
Collapse
Affiliation(s)
- Dong-Gyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sujin Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu-Yeon Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Ho Cheon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo-Youn Lee
- Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Dongyoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwang-Soo Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Choong-Hyun Koh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Sung Koo
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuri Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu-Kyoung Oh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoo-Seong Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suk-Jae Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Moonkyu Baek
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Kwan-Young Jung
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hyo Jin Lim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Hyoun Sook Kim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Sung Jean Park
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 13120, Republic of Korea
| | - Jeong-Yeon Lee
- Department of Medicine, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sang Jae Lee
- PAL-XFEL, Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
29
|
Kalay Yildizhan I, Gökpınar İli E, Onoufriadis A, Kocyigit P, Kesidou E, Simpson MA, McGrath JA, Kutlay NY, Kundakci N. New Homozygous Missense MSMO1 Mutation in Two Siblings with SC4MOL Deficiency Presenting with Psoriasiform Dermatitis. Cytogenet Genome Res 2020; 160:523-530. [PMID: 33161406 DOI: 10.1159/000511126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022] Open
Abstract
Sterol-C4-methyl oxidase (SC4MOL) deficiency was recently described as an autosomal recessive cholesterol biosynthesis disorder caused by mutations in the MSMO1 (sometimes also referred to as SC4MOL) gene. To date, 5 patients from 4 unrelated families with SC4MOL deficiency have been reported. Diagnosis can be challenging as the biochemical accumulation of methylsterols can affect global development and cause skin and ocular pathology. Herein, we describe 2 siblings from a consanguineous Turkish family with SC4MOL deficiency presenting with psoriasiform dermatitis, ocular abnormalities (nystagmus, optic hypoplasia, myopia, and strabismus), severe intellectual disability, and growth and motor delay. We undertook whole-exome sequencing and identified a new homozygous missense mutation c.81A>C; p.Asn27Thr in MSMO1. Segregation analysis in all available family members confirmed recessive inheritance of the mutation. The siblings were treated with a combination of oral and topical statin and cholesterol which resulted in clinical improvement. This study demonstrates how genomics-based diagnosis and therapy can be helpful in clinical practice.
Collapse
Affiliation(s)
| | - Ezgi Gökpınar İli
- Department of Medical Genetics, School of Medicine, Ankara University, Ankara, Turkey.,Genetic Diseases Center, Başakşehir Pine and Sakura City Hospital, Istanbul, Turkey
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Pelin Kocyigit
- Department of Dermatology, School of Medicine, Ankara University, Ankara, Turkey
| | - Evangelia Kesidou
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Nüket Yürür Kutlay
- Department of Medical Genetics, School of Medicine, Ankara University, Ankara, Turkey
| | - Nihal Kundakci
- Department of Dermatology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
30
|
Bunel A, Nivet AL, Blondin P, Vigneault C, Richard FJ, Sirard MA. The effects of LH inhibition with cetrorelix on cumulus cell gene expression during the luteal phase under ovarian coasting stimulation in cattle. Domest Anim Endocrinol 2020; 72:106429. [PMID: 32320933 DOI: 10.1016/j.domaniend.2019.106429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 01/14/2023]
Abstract
Cumulus cells have an important role to play in the final preparation of the oocyte before ovulation. During the final phase of follicular differentiation, FSH levels are low and LH maintains follicular growth; however, it is not known if at that time LH has an influence on cumulus cells inside the follicle. In humans, LH is often inhibited to avoid a premature ovulatory LH surge. This procedure provides a tool to investigate the role of LH in follicular development. In this study, we investigated the impact of suppressing LH using the GnRH antagonist cetrorelix during an ovarian coasting stimulation protocol on the transcriptome of bovine cumulus cells (CC). Oocytes were collected twice from 6 dairy cows. For the first collection, the cows received FSH twice daily for 3 d, followed by FSH withdrawal for 68 h as a control protocol. For the second collection, the same stimulation protocol was used, but the cows also received, starting on day 2 of FSH stimulation, a GnRH antagonist once a day until recovery of the cumulus-oocyte complexes (COC). Half of the COC were subjected to in vitro maturation, fertilization, and culture to assess blastocyst rates. The other half of the COC underwent microarray analysis (n = 3 cows, 2 treatments, 6 oocyte collections) and qRT-PCR (n = 6 cows: 3 microarray cows +3 other cows, 2 treatments, 12 oocyte collections). The differential expression of specific genes was confirmed by RT-qPCR: decrease of ATP6AP2, SC4MOL, and OSTC and increase of PTGDS in the LH-inhibited condition. The global transcriptomic analysis of cumulus cells demonstrated that the inhibition of LH secretion may decrease survival and growth of the follicle. Moreover, the results suggested that LH may be important to cumulus for the maintenance of cellular mechanisms such as global RNA expression, protein and nucleic acid metabolism, and energy production. These results support the hypothesis that LH support is important during the final part of follicle maturation through its influence on the cumulus cells.
Collapse
Affiliation(s)
- A Bunel
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - A L Nivet
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - P Blondin
- L'Alliance Boviteq, Saint-Hyacinthe, QC, Canada
| | - C Vigneault
- L'Alliance Boviteq, Saint-Hyacinthe, QC, Canada
| | - F J Richard
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - M A Sirard
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
31
|
Anderson RA, Schwalbach KT, Mui SR, LeClair EE, Topczewska JM, Topczewski J. Zebrafish models of skeletal dysplasia induced by cholesterol biosynthesis deficiency. Dis Model Mech 2020; 13:dmm042549. [PMID: 32430393 PMCID: PMC7328163 DOI: 10.1242/dmm.042549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/27/2020] [Indexed: 12/23/2022] Open
Abstract
Human disorders of the post-squalene cholesterol biosynthesis pathway frequently result in skeletal abnormalities, yet our understanding of the mechanisms involved is limited. In a forward-genetic approach, we have found that a late-onset skeletal mutant, named kolibernu7 , is the result of a cis-acting regulatory mutation leading to loss of methylsterol monooxygenase 1 (msmo1) expression within pre-hypertrophic chondrocytes. Generated msmo1nu81 knockdown mutation resulted in lethality at larval stage. We demonstrated that this is a result of both cholesterol deprivation and sterol intermediate accumulation by creating a mutation eliminating activity of Lanosterol synthase (Lss). Our results indicate that double lssnu60;msmo1nu81 and single lssnu60 mutants survive significantly longer than msmo1nu81 homozygotes. Liver-specific restoration of either Msmo1 or Lss in corresponding mutant backgrounds suppresses larval lethality. Rescued mutants develop dramatic skeletal abnormalities, with a loss of Msmo1 activity resulting in a more-severe patterning defect of a near-complete loss of hypertrophic chondrocytes marked by col10a1a expression. Our analysis suggests that hypertrophic chondrocytes depend on endogenous cholesterol synthesis, and blocking C4 demethylation exacerbates the cholesterol deficiency phenotype. Our findings offer new insight into the genetic control of bone development and provide new zebrafish models for human disorders of the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Rebecca A Anderson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin T Schwalbach
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Stephanie R Mui
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Elizabeth E LeClair
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Jolanta M Topczewska
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Jacek Topczewski
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| |
Collapse
|
32
|
Ochoa-Rosales C, Portilla-Fernandez E, Nano J, Wilson R, Lehne B, Mishra PP, Gao X, Ghanbari M, Rueda-Ochoa OL, Juvinao-Quintero D, Loh M, Zhang W, Kooner JS, Grabe HJ, Felix SB, Schöttker B, Zhang Y, Gieger C, Müller-Nurasyid M, Heier M, Peters A, Lehtimäki T, Teumer A, Brenner H, Waldenberger M, Ikram MA, van Meurs JBJ, Franco OH, Voortman T, Chambers J, Stricker BH, Muka T. Epigenetic Link Between Statin Therapy and Type 2 Diabetes. Diabetes Care 2020; 43:875-884. [PMID: 32033992 DOI: 10.2337/dc19-1828] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the role of epigenetics in statins' diabetogenic effect comparing DNA methylation (DNAm) between statin users and nonusers in an epigenome-wide association study in blood. RESEARCH DESIGN AND METHODS Five cohort studies' participants (n = 8,270) were classified as statin users when they were on statin therapy at the time of DNAm assessment with Illumina 450K or EPIC array or noncurrent users otherwise. Associations of DNAm with various outcomes like incident type 2 diabetes, plasma glucose, insulin, and insulin resistance (HOMA of insulin resistance [HOMA-IR]) as well as with gene expression were investigated. RESULTS Discovery (n = 6,820) and replication (n = 1,450) phases associated five DNAm sites with statin use: cg17901584 (1.12 × 10-25 [DHCR24]), cg10177197 (3.94 × 10-08 [DHCR24]), cg06500161 (2.67 × 10-23 [ABCG1]), cg27243685 (6.01 × 10-09 [ABCG1]), and cg05119988 (7.26 × 10-12 [SC4MOL]). Two sites were associated with at least one glycemic trait or type 2 diabetes. Higher cg06500161 methylation was associated with higher fasting glucose, insulin, HOMA-IR, and type 2 diabetes (odds ratio 1.34 [95% CI 1.22, 1.47]). Mediation analyses suggested that ABCG1 methylation partially mediates the effect of statins on high insulin and HOMA-IR. Gene expression analyses showed that statin exposure and ABCG1 methylation were associated with ABCG1 downregulation, suggesting epigenetic regulation of ABCG1 expression. Further, outcomes insulin and HOMA-IR were significantly associated with ABCG1 expression. CONCLUSIONS This study sheds light on potential mechanisms linking statins with type 2 diabetes risk, providing evidence on DNAm partially mediating statins' effects on insulin traits. Further efforts shall disentangle the molecular mechanisms through which statins may induce DNAm changes, potentially leading to ABCG1 epigenetic regulation.
Collapse
Affiliation(s)
- Carolina Ochoa-Rosales
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Centro de Vida Saludable de la Universidad de Concepción, Concepción, Chile
| | | | - Jana Nano
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Rory Wilson
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Benjamin Lehne
- Department of Epidemiology and Biostatistics, Imperial College London, London, U.K
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Xu Gao
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Oscar L Rueda-Ochoa
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Electrocardiography Research group, School of Medicine, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | - Marie Loh
- Department of Epidemiology and Biostatistics, Imperial College London, London, U.K
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, U.K
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, U.K
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, U.K
- National Heart and Lung Institute, Imperial College London, London, U.K
- Imperial College Healthcare NHS Trust, London, U.K
- MRC-PHE Centre for Environment and Health, Imperial College London, London, U.K
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Stephan B Felix
- Partner Site Greifswald, German Center for Cardiovascular Research (DZHK), Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- KORA Study Centre, University Hospital of Augsburg, Augsburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alexander Teumer
- Partner Site Greifswald, German Center for Cardiovascular Research (DZHK), Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Oscar H Franco
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - John Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, U.K
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, U.K
- Imperial College Healthcare NHS Trust, London, U.K
- MRC-PHE Centre for Environment and Health, Imperial College London, London, U.K
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Taulant Muka
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Wada Y, Kikuchi A, Kaga A, Shimizu N, Ito J, Onuma R, Fujishima F, Totsune E, Sato R, Niihori T, Shirota M, Funayama R, Sato K, Nakazawa T, Nakayama K, Aoki Y, Aiba S, Nakagawa K, Kure S. Metabolic and pathologic profiles of human LSS deficiency recapitulated in mice. PLoS Genet 2020; 16:e1008628. [PMID: 32101538 PMCID: PMC7062289 DOI: 10.1371/journal.pgen.1008628] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/09/2020] [Accepted: 01/26/2020] [Indexed: 11/18/2022] Open
Abstract
Skin lesions, cataracts, and congenital anomalies have been frequently associated with inherited deficiencies in enzymes that synthesize cholesterol. Lanosterol synthase (LSS) converts (S)-2,3-epoxysqualene to lanosterol in the cholesterol biosynthesis pathway. Biallelic mutations in LSS have been reported in families with congenital cataracts and, very recently, have been reported in cases of hypotrichosis. However, it remains to be clarified whether these phenotypes are caused by LSS enzymatic deficiencies in each tissue, and disruption of LSS enzymatic activity in vivo has not yet been validated. We identified two patients with novel biallelic LSS mutations who exhibited congenital hypotrichosis and midline anomalies but did not have cataracts. We showed that the blockade of the LSS enzyme reaction occurred in the patients by measuring the (S)-2,3-epoxysqualene/lanosterol ratio in the forehead sebum, which would be a good biomarker for the diagnosis of LSS deficiency. Epidermis-specific Lss knockout mice showed neonatal lethality due to dehydration, indicating that LSS could be involved in skin barrier integrity. Tamoxifen-induced knockout of Lss in the epidermis caused hypotrichosis in adult mice. Lens-specific Lss knockout mice had cataracts. These results confirmed that LSS deficiency causes hypotrichosis and cataracts due to loss-of-function mutations in LSS in each tissue. These mouse models will lead to the elucidation of the pathophysiological mechanisms associated with disrupted LSS and to the development of therapeutic treatments for LSS deficiency.
Collapse
Affiliation(s)
- Yoichi Wada
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- * E-mail:
| | - Akimune Kaga
- Department of Pediatrics, Tohoku Kosai Hospital, Sendai, Miyagi, Japan
| | - Naoki Shimizu
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Ryo Onuma
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Fumiyoshi Fujishima
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Eriko Totsune
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ryo Sato
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Sciences, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
34
|
Zhang H, Li C, Xin Y, Cui X, Cui J, Zhou G. Suppression of NSDHL attenuates adipogenesis with a downregulation of LXR-SREBP1 pathway in 3T3-L1 cells. Biosci Biotechnol Biochem 2020; 84:980-988. [PMID: 31985358 DOI: 10.1080/09168451.2020.1719823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Previous RNA-Seq analyses revealed that NAD(P)H steroid dehydrogenase-like (NSDHL) has a different expression during 3T3-L1 differentiation; however, its roles in adipogenesis are unknown. In the present study, using quantitative real-time PCR, we confirmed that NSDHL knockdown increased the proliferation of 3T3-L1 preadipocytes, but attenuated the differentiation of 3T3-L1 preadipocytes, as evidenced by reduced lipid accumulation and down-regulation of PPARγ gene expression. Further analyses showed that the expression peak of NSDHL was at the early stage of 3T3-L1 preadipocytes differentiation and LXR-SREBP1 signaling pathway was downregulated in NSDHL-knockdown 3T3-L1 cells. Collectively, our findings indicate that NSDHL is a novel modulator of adipogenesis. Moreover, our data provide insight into the complex relationships between sterol sensing, LXR-SREBP1 signaling pathway, and PPARγ in 3T3-L1 cells.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Life Science, Liaocheng University, Liaocheng, China
| | - Chengping Li
- College of Life Science, Liaocheng University, Liaocheng, China
| | - Youzhi Xin
- College of Life Science, Liaocheng University, Liaocheng, China.,Chinese Academy of Geological Sciences, Beijing, China
| | - Xiao Cui
- College of Life Science, Liaocheng University, Liaocheng, China
| | - Jianwei Cui
- College of Life Science, Liaocheng University, Liaocheng, China
| | - Guoli Zhou
- College of Life Science, Liaocheng University, Liaocheng, China
| |
Collapse
|
35
|
Ferrante T, Adinolfi S, D'Arrigo G, Poirier D, Daga M, Lolli ML, Balliano G, Spyrakis F, Oliaro-Bosso S. Multiple catalytic activities of human 17β-hydroxysteroid dehydrogenase type 7 respond differently to inhibitors. Biochimie 2019; 170:106-117. [PMID: 31887335 DOI: 10.1016/j.biochi.2019.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
Cholesterol biosynthesis is a multistep process in mammals that includes the aerobic removal of three methyl groups from the intermediate lanosterol, one from position 14 and two from position 4. During the demethylations at position 4, a 3-ketosteroid reductase catalyses the conversion of both 4-methylzymosterone and zymosterone to 4-methylzymosterol and zymosterol, respectively, restoring the alcoholic function of lanosterol, which is also maintained in cholesterol. Unlike other eukaryotes, mammals also use the same enzyme as an estrone reductase that can transform estrone (E1) into estradiol (E2). This enzyme, named 17β-hydroxysteroid dehydrogenase type 7 (HSD17B7), is therefore a multifunctional protein in mammals, and one that belongs to both the HSD17B family, which is involved in steroid-hormone metabolism, and to the family of post-squalene cholesterol biosynthesis enzymes. In the present study, a series of known inhibitors of human HSD17B7's E1-reductase activity have been assayed for potential inhibition against 3-ketosteroid reductase activity. Surprisingly, the assayed compounds lost their inhibition activity when tested in HepG2 cells that were incubated with radiolabelled acetate and against the recombinant overexpressed human enzyme incubated with 4-methylzymosterone (both radiolabelled and not). Preliminary kinetic analyses suggest a mixed or non-competitive inhibition on the E1-reductase activity, which is in agreement with Molecular Dynamics simulations. These results raise questions about the mechanism(s) of action of these possible inhibitors, the enzyme dynamic regulation and the interplay between the two activities.
Collapse
Affiliation(s)
- Terenzio Ferrante
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Salvatore Adinolfi
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Giulia D'Arrigo
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Centre and Université Laval, 2705, Boulevard Laurier T-4-50 Québec, G1V 4G2, Canada
| | - Martina Daga
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Marco Lucio Lolli
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Gianni Balliano
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Francesca Spyrakis
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Simonetta Oliaro-Bosso
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy.
| |
Collapse
|
36
|
Wang Y, Tang K, Zhang W, Guo W, Wang Y, Zan L, Yang W. Fatty acid-binding protein 1 increases steer fat deposition by facilitating the synthesis and secretion of triacylglycerol in liver. PLoS One 2019; 14:e0214144. [PMID: 31009469 PMCID: PMC6476475 DOI: 10.1371/journal.pone.0214144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Castration is an important means of improving the beef quality via increasing fat deposition. However, little is known about the molecular mechanism underlying the fat deposition after castration. Here, the intramuscular fat (IMF) content of the steer group was shown to be much higher than the bull group. To understand transcriptional changes in the genes involved in fat deposition following castration, differential expression patterns of mRNAs in liver tissue were investigated in steers and bulls using RNA sequencing. In total, we obtained 58,282,367-54,918,002 uniquely mapped reads, which covered 90.13% of the currently annotated transcripts; 5,864 novel transcripts and optimized 9,088 known genes were determined. These results indicated that castration could change the expression patterns of mRNAs in liver tissue, and 282 differentially expressed genes (DEGs) were detected between steers and bulls. KEGG pathway analysis showed that the DEGs were mostly enriched in PPAR signaling pathway, steroid biosynthesis, steroid hormone biosynthesis, and biosynthesis of fatty acids. Furthermore, eight DEGs were corroborated via quantitative real-time PCR and we found that FABP1 gene knockdown in bovine hepatocytes prominently reduced intracellular triacylglycerol (TAG) synthesis and very low density lipoprotein (VLDL) secretion in culture medium. In summary, these results indicate that FABP1 may promote fat deposition by promoting the production and secretion of TAG and VLDL in steer liver.
Collapse
Affiliation(s)
- Yujuan Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Keqiong Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Wenli Guo
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Yaning Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Centre, Yangling, Shaanxi, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Centre, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
37
|
Metabolism and Biological Activities of 4-Methyl-Sterols. Molecules 2019; 24:molecules24030451. [PMID: 30691248 PMCID: PMC6385002 DOI: 10.3390/molecules24030451] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
4,4-Dimethylsterols and 4-methylsterols are sterol biosynthetic intermediates (C4-SBIs) acting as precursors of cholesterol, ergosterol, and phytosterols. Their accumulation caused by genetic lesions or biochemical inhibition causes severe cellular and developmental phenotypes in all organisms. Functional evidence supports their role as meiosis activators or as signaling molecules in mammals or plants. Oxygenated C4-SBIs like 4-carboxysterols act in major biological processes like auxin signaling in plants and immune system development in mammals. It is the purpose of this article to point out important milestones and significant advances in the understanding of the biogenesis and biological activities of C4-SBIs.
Collapse
|
38
|
Bovio PP, Franz H, Heidrich S, Rauleac T, Kilpert F, Manke T, Vogel T. Differential Methylation of H3K79 Reveals DOT1L Target Genes and Function in the Cerebellum In Vivo. Mol Neurobiol 2018; 56:4273-4287. [PMID: 30302725 PMCID: PMC6505521 DOI: 10.1007/s12035-018-1377-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
The disruptor of telomeric silencing 1-like (DOT1L) mediates methylation of histone H3 at position lysine 79 (H3K79). Conditional knockout of Dot1l in mouse cerebellar granule cells (Dot1l-cKOAtoh1) led to a smaller external granular layer with fewer precursors of granule neurons. Dot1l-cKOAtoh1 mice had impaired proliferation and differentiation of granular progenitors, which resulted in a smaller cerebellum. Mutant mice showed mild ataxia in motor behavior tests. In contrast, Purkinje cell-specific conditional knockout mice showed no obvious phenotype. Genome-wide transcription analysis of Dot1l-cKOAtoh1 cerebella using microarrays revealed changes in genes that function in cell cycle, cell migration, axon guidance, and metabolism. To identify direct DOT1L target genes, we used genome-wide profiling of H3K79me2 and transcriptional analysis. Analysis of differentially methylated regions (DR) and differentially expressed genes (DE) revealed in total 12 putative DOT1L target genes in Dot1l-cKOAtoh1 affecting signaling (Tnfaip8l3, B3galt5), transcription (Otx1), cell migration and axon guidance (Sema4a, Sema5a, Robo1), cholesterol and lipid metabolism (Lss, Cyp51), cell cycle (Cdkn1a), calcium-dependent cell-adhesion or exocytosis (Pcdh17, Cadps2), and unknown function (Fam174b). Dysregulated expression of these target genes might be implicated in the ataxia phenotype observed in Dot1l-cKOAtoh1.
Collapse
Affiliation(s)
- Patrick Piero Bovio
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Henriette Franz
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Stefanie Heidrich
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Tudor Rauleac
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Fabian Kilpert
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Tanja Vogel
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
39
|
Civallero G, de Kremer R, Giugliani R. High-Risk Screening and Diagnosis of Inborn Errors of Metabolism. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2018. [DOI: 10.1177/2326409818792065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Gabriel Civallero
- Medical Genetics Service, HCPA, Porto Alegre, Brazil
- Department of Genetics, UFRGS, Porto Alegre, Brazil
| | - Raquel de Kremer
- Centro de Estudios de las Metabolopatías Congénitas, CEMECO, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
| | - Roberto Giugliani
- Medical Genetics Service, HCPA, Porto Alegre, Brazil
- Department of Genetics, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
40
|
Dimopoulou M, Verhoef A, Pennings JL, van Ravenzwaay B, Rietjens IM, Piersma AH. A transcriptomic approach for evaluating the relative potency and mechanism of action of azoles in the rat Whole Embryo Culture. Toxicology 2017; 392:96-105. [DOI: 10.1016/j.tox.2017.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 01/07/2023]
|
41
|
Ahmed D, Cassol E. Role of cellular metabolism in regulating type I interferon responses: Implications for tumour immunology and treatment. Cancer Lett 2017; 409:20-29. [PMID: 28888999 DOI: 10.1016/j.canlet.2017.08.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022]
Abstract
Type I interferons (IFN) are increasingly recognized for their role in regulating anti-tumour immune responses. However, chronic activation of these pathways can result in immunosuppression and has been linked to poor responses to genotoxic and radiotoxic therapies. Emerging evidence suggests energy, lipid and amino acid metabolism play an important role in regulating and fine tuning type I IFN responses. Further, dysregulation of these processes has been implicated in the pathogenesis of chronic viral infections and autoimmune disorders. Systematic evaluation of these interrelationships in cancer models and patients may have important implications for the development of targeted IFN based anti-cancer therapeutics with minimal toxicity and limited off target effects.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
42
|
Corso G, Dello Russo A, Gelzo M. Liver and the defects of cholesterol and bile acids biosynthesis: Rare disorders many diagnostic pitfalls. World J Gastroenterol 2017; 23:5257-5265. [PMID: 28839426 PMCID: PMC5550775 DOI: 10.3748/wjg.v23.i29.5257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/01/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
In recent decades, biotechnology produced a growth of knowledge on the causes and mechanisms of metabolic diseases that have formed the basis for their study, diagnosis and treatment. Unfortunately, it is well known that the clinical features of metabolic diseases can manifest themselves with very different characteristics and escape early detection. Also, it is well known that the prognosis of many metabolic diseases is excellent if diagnosed and treated early. In this editorial we briefly summarized two groups of inherited metabolic diseases, the defects of cholesterol biosynthesis and those of bile acids. Both groups show variable clinical manifestations but some clinical signs and symptoms are common in both the defects of cholesterol and bile acids. The differential diagnosis can be made analyzing sterol profiles in blood and/or bile acids in blood and urine by chromatographic techniques (GC-MS and LC-MS/MS). Several defects of both biosynthetic pathways are treatable so early diagnosis is crucial. Unfortunately their diagnosis is made too late, due either to the clinical heterogeneity of the syndromes (severe, mild and very mild) that to the scarcity of scientific dissemination of these rare diseases. Therefore, the delay in diagnosis leads the patient to the medical observation when the disease has produced irreversible damages to the body. Here, we highlighted simple clinical and laboratory descriptions that can potentially make you to suspect a defect in cholesterol biosynthesis and/or bile acids, as well, we suggest appropriate request of the laboratory tests that along with common clinical features can help to diagnose these defects.
Collapse
|
43
|
Frisso G, Gelzo M, Procopio E, Sica C, Lenza MP, Dello Russo A, Donati MA, Salvatore F, Corso G. A rare case of sterol-C4-methyl oxidase deficiency in a young Italian male: Biochemical and molecular characterization. Mol Genet Metab 2017; 121:329-335. [PMID: 28673550 DOI: 10.1016/j.ymgme.2017.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/28/2022]
Abstract
Inborn defects of cholesterol biosynthesis are metabolic disorders presenting with multi-organ and tissue anomalies. An autosomal recessive defect involving the demethylating enzyme C4-methyl sterol (SC4MOL) has been reported in only 4 patients so far. In infancy, all patients were affected by microcephaly, bilateral congenital cataracts, growth delay, psoriasiform dermatitis, immune dysfunction, and intellectual disability. Herein, we describe a new case of SC4MOL deficiency in which a 19-year-old Italian male was affected by bilateral congenital cataracts, growth delay and learning disabilities, behavioral disorders and small stature, but not microcephaly. Our patient had abundant scalp dandruff, without other skin manifestations. Analysis of the blood sterol profile showed accumulation of C4-monomethyl and C4-dimethyl sterols suggesting a deficiency of the SC4MOL enzyme. Sequencing of the MSMO1 gene (also known as the "SC4MOL" gene) confirmed mutations in each allele (c.731A>G, p.Y244C, which is already known, and c.605G>A, p.G202E, which is a novel variant). His father carried c.731A>G mutation, whereas his mother carried c.605G>A. Thus, the combination of multiple skills and methodologies, in particular, blood sterol profiling and genetic analysis, led to the diagnosis of a new case of a very rare defect of cholesterol biosynthesis. Consequently, we suggest that these two analyses should be performed as soon as possible in all undiagnosed patients affected by bilateral cataracts and developmental delay.
Collapse
Affiliation(s)
- Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; CEINGE Biotecnologie Avanzate s.c.a r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Monica Gelzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Elena Procopio
- SOC Malattie Metaboliche e Muscolari Ereditarie, Centro di Eccellenza di Neuroscienze, Azienda Ospedaliero-Universitaria A. Meyer, Firenze, Italy
| | - Concetta Sica
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Maria Pia Lenza
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Antonio Dello Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Maria Alice Donati
- SOC Malattie Metaboliche e Muscolari Ereditarie, Centro di Eccellenza di Neuroscienze, Azienda Ospedaliero-Universitaria A. Meyer, Firenze, Italy
| | - Francesco Salvatore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; CEINGE Biotecnologie Avanzate s.c.a r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy.
| | - Gaetano Corso
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Foggia, Viale L. Pinto 1, 71122 Foggia, Italy.
| |
Collapse
|
44
|
Progressive effects of silver nanoparticles on hormonal regulation of reproduction in male rats. Toxicol Appl Pharmacol 2016; 313:35-46. [DOI: 10.1016/j.taap.2016.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 02/05/2023]
|
45
|
Lopez AM, Chuang JC, Posey KS, Turley SD. Suppression of brain cholesterol synthesis in male Mecp2-deficient mice is age dependent and not accompanied by a concurrent change in the rate of fatty acid synthesis. Brain Res 2016; 1654:77-84. [PMID: 27789278 DOI: 10.1016/j.brainres.2016.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/13/2016] [Accepted: 10/21/2016] [Indexed: 12/29/2022]
Abstract
Mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2) are the principal cause of Rett syndrome, a progressive neurodevelopmental disorder afflicting 1 in 10,000 to 15,000 females. Studies using hemizygous Mecp2 mouse models have revealed disruptions to some aspects of their lipid metabolism including a partial suppression of cholesterol synthesis in the brains of mature Mecp2 mutants. The present studies investigated whether this suppression is evident from early neonatal life, or becomes manifest at a later stage of development. We measured the rate of cholesterol synthesis, in vivo, in the brains of male Mecp2-/y and their Mecp2+/y littermates at 7, 14, 21, 28, 42 and 56 days of age. Brain weight was consistently lower in the Mecp2-/y mice than in their Mecp2+/y controls except at 7 days of age. In the 7- and 14-day-old mice there was no genotypic difference in the rate of brain cholesterol synthesis but, from 21 days and later, it was always marginally lower in the Mecp2-/y mice than in age-matched Mecp2+/y littermates. At no age was a genotypic difference detected in either the rate of fatty acid synthesis or cholesterol concentration in the brain. Cholesterol synthesis rates in the liver and lungs of 56-day-old Mecp2-/y mice were normal. The onset of lower rates of brain cholesterol synthesis at about the time closure of the blood brain barrier purportedly occurs might signify a disruption to mechanism(s) that dictate intracellular levels of cholesterol metabolites including oxysterols known to exert a regulatory influence on the cholesterol biosynthetic pathway.
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jen-Chieh Chuang
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kenneth S Posey
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
46
|
Sevastou I, Pryce G, Baker D, Selwood DL. Characterisation of Transcriptional Changes in the Spinal Cord of the Progressive Experimental Autoimmune Encephalomyelitis Biozzi ABH Mouse Model by RNA Sequencing. PLoS One 2016; 11:e0157754. [PMID: 27355629 PMCID: PMC4927105 DOI: 10.1371/journal.pone.0157754] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/04/2016] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating immune-mediated neurological disorder affecting young adults. MS is primarily relapsing-remitting, but neurodegeneration and disability accumulate from disease onset. The most commonly used mouse MS models exhibit a monophasic immune response with fast accumulation of neurological damage that does not allow the study of progressive neurodegeneration. The chronic relapsing and secondary progressive EAE (pEAE) Biozzi ABH mouse model of MS exhibits a reproducible relapsing-remitting disease course that slowly accumulates permanent neurological deficit and develops a post-relapsing progressive disease that permits the study of demyelination and neurodegeneration. RNA sequencing (RNAseq) was used to explore global gene expression in the pEAE Biozzi ABH mouse. Spinal cord tissue RNA from pEAE Biozzi ABH mice and healthy age-matched controls was sequenced. 2,072 genes were differentially expressed (q<0.05) from which 1,397 were significantly upregulated and 675 were significantly downregulated. This hypothesis-free investigation characterised the genomic changes that describe the pEAE mouse model. The differentially expressed genes revealed a persistent immunoreactant phenotype, combined with downregulation of the cholesterol biosynthesis superpathway and the LXR/RXR activation pathway. Genes differentially expressed include the myelination genes Slc17a7, Ugt8A and Opalin, the neuroprotective genes Sprr1A, Osm and Wisp2, as well as genes identified as MS risk factors, including RGs14 and Scap2. Novel genes with unestablished roles in EAE or MS were also identified. The identification of differentially expressed novel genes and genes involved in MS pathology, opens the door to their functional study in the pEAE mouse model which recapitulates some of the important clinical features of progressive MS.
Collapse
Affiliation(s)
- Ioanna Sevastou
- Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Science, London, WC1E 6BT, United Kingdom
| | - Gareth Pryce
- Neuroimmmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, United Kingdom
| | - David Baker
- Neuroimmmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, United Kingdom
| | - David L. Selwood
- Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Science, London, WC1E 6BT, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Zhang X, Sun S, Nie X, Boutté Y, Grison M, Li P, Kuang S, Men S. Sterol Methyl Oxidases Affect Embryo Development via Auxin-Associated Mechanisms. PLANT PHYSIOLOGY 2016; 171:468-82. [PMID: 27006488 PMCID: PMC4854682 DOI: 10.1104/pp.15.01814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/21/2016] [Indexed: 05/20/2023]
Abstract
Sterols are essential molecules for multiple biological processes, including embryogenesis, cell elongation, and endocytosis. The plant sterol biosynthetic pathway is unique in the involvement of two distinct sterol 4α-methyl oxidase (SMO) families, SMO1 and SMO2, which contain three and two isoforms, respectively, and are involved in sequential removal of the two methyl groups at C-4. In this study, we characterized the biological functions of members of the SMO2 gene family. SMO2-1 was strongly expressed in most tissues during Arabidopsis (Arabidopsis thaliana) development, whereas SMO2-2 showed a more specific expression pattern. Although single smo2 mutants displayed no obvious phenotype, the smo2-1 smo2-2 double mutant was embryonic lethal, and the smo2-1 smo2-2/+ mutant was dwarf, whereas the smo2-1/+ smo2-2 mutant exhibited a moderate phenotype. The phenotypes of the smo2 mutants resembled those of auxin-defective mutants. Indeed, the expression of DR5rev:GFP, an auxin-responsive reporter, was reduced and abnormal in smo2-1 smo2-2 embryos. Furthermore, the expression and subcellular localization of the PIN1 auxin efflux facilitator also were altered. Consistent with these observations, either the exogenous application of auxin or endogenous auxin overproduction (YUCCA9 overexpression) partially rescued the smo2-1 smo2-2 embryonic lethality. Surprisingly, the dwarf phenotype of smo2-1 smo2-2/+ was completely rescued by YUCCA9 overexpression. Gas chromatography-mass spectrometry analysis revealed a substantial accumulation of 4α-methylsterols, substrates of SMO2, in smo2 heterozygous double mutants. Together, our data suggest that SMO2s are important for correct sterol composition and function partially through effects on auxin accumulation, auxin response, and PIN1 expression to regulate Arabidopsis embryogenesis and postembryonic development.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071 Tianjin, China (X.Z., S.S., X.N., P.L., S.K., S.M.); andCentre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200 Membrane Biogenesis Laboratory, Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (Y.B., M.G.)
| | - Shuangli Sun
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071 Tianjin, China (X.Z., S.S., X.N., P.L., S.K., S.M.); andCentre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200 Membrane Biogenesis Laboratory, Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (Y.B., M.G.)
| | - Xiang Nie
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071 Tianjin, China (X.Z., S.S., X.N., P.L., S.K., S.M.); andCentre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200 Membrane Biogenesis Laboratory, Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (Y.B., M.G.)
| | - Yohann Boutté
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071 Tianjin, China (X.Z., S.S., X.N., P.L., S.K., S.M.); andCentre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200 Membrane Biogenesis Laboratory, Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (Y.B., M.G.)
| | - Magali Grison
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071 Tianjin, China (X.Z., S.S., X.N., P.L., S.K., S.M.); andCentre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200 Membrane Biogenesis Laboratory, Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (Y.B., M.G.)
| | - Panpan Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071 Tianjin, China (X.Z., S.S., X.N., P.L., S.K., S.M.); andCentre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200 Membrane Biogenesis Laboratory, Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (Y.B., M.G.)
| | - Susu Kuang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071 Tianjin, China (X.Z., S.S., X.N., P.L., S.K., S.M.); andCentre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200 Membrane Biogenesis Laboratory, Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (Y.B., M.G.)
| | - Shuzhen Men
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071 Tianjin, China (X.Z., S.S., X.N., P.L., S.K., S.M.); andCentre National de la Recherche Scientifique-University of Bordeaux, Unité Mixte de Recherche 5200 Membrane Biogenesis Laboratory, Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (Y.B., M.G.)
| |
Collapse
|
48
|
Santori FR. Nuclear hormone receptors put immunity on sterols. Eur J Immunol 2015; 45:2730-41. [PMID: 26222181 PMCID: PMC4651655 DOI: 10.1002/eji.201545712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/01/2015] [Accepted: 07/24/2015] [Indexed: 12/13/2022]
Abstract
Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and nonclassic (all others) NHRs; 17 nonclassic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and nonsterol intermediates and derivatives, is a source of ligands for many classic and nonclassic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review, we summarize the roles of nonclassic NHRs and their potential ligands in the immune system.
Collapse
Affiliation(s)
- Fabio R Santori
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
49
|
Gabitova L, Restifo D, Gorin A, Manocha K, Handorf E, Yang DH, Cai KQ, Klein-Szanto AJ, Cunningham D, Kratz LE, Herman GE, Golemis EA, Astsaturov I. Endogenous Sterol Metabolites Regulate Growth of EGFR/KRAS-Dependent Tumors via LXR. Cell Rep 2015; 12:1927-38. [PMID: 26344763 DOI: 10.1016/j.celrep.2015.08.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/10/2015] [Accepted: 08/07/2015] [Indexed: 02/04/2023] Open
Abstract
Meiosis-activating sterols (MAS) are substrates of SC4MOL and NSDHL in the cholesterol pathway and are important for normal organismal development. Oncogenic transformation by epidermal growth factor receptor (EGFR) or RAS increases the demand for cholesterol, suggesting a possibility for metabolic interference. To test this idea in vivo, we ablated Nsdhl in adult keratinocytes expressing KRAS(G12D). Strikingly, Nsdhl inactivation antagonized the growth of skin tumors while having little effect on normal skin. Loss of Nsdhl induced the expression of ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, reduced the expression of low-density lipoprotein receptor (LDLR), decreased intracellular cholesterol, and was dependent on the liver X receptor (LXR) α. Importantly, EGFR signaling opposed LXRα effects on cholesterol homeostasis, whereas an EGFR inhibitor synergized with LXRα agonists in killing cancer cells. Inhibition of SC4MOL or NSDHL, or activation of LXRα by sterol metabolites, can be an effective strategy against carcinomas with activated EGFR-KRAS signaling.
Collapse
Affiliation(s)
- Linara Gabitova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Tatarstan 420000, Russia
| | - Diana Restifo
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Andrey Gorin
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Tatarstan 420000, Russia
| | - Kunal Manocha
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Elizabeth Handorf
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Dong-Hua Yang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Andres J Klein-Szanto
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - David Cunningham
- The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Lisa E Kratz
- Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gail E Herman
- The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Igor Astsaturov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Tatarstan 420000, Russia.
| |
Collapse
|
50
|
Radiographic features of the skeleton in disorders of post-squalene cholesterol biosynthesis. Pediatr Radiol 2015; 45:965-76. [PMID: 25646736 DOI: 10.1007/s00247-014-3257-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 11/05/2014] [Accepted: 11/26/2014] [Indexed: 01/26/2023]
Abstract
Disorders of post-squalene cholesterol biosynthesis are inborn errors of metabolism characterised by multiple congenital abnormalities, including significant skeletal involvement. The most frequent and best-characterised example is the Smith-Lemli-Opitz syndrome. Nine other disorders are known, namely autosomal-recessive Antley-Bixler syndrome, Greenberg dysplasia, X-linked dominant chondrodysplasia punctata, X-linked recessive male emopamil-binding protein deficiency, CHILD syndrome, CK syndrome, sterol C4 methyloxidase-like deficiency, desmosterolosis and lathosterolosis. This study provides an overview of the radiologic features observed in these diseases. A common pattern of limb abnormalities is recognisable, including polydactyly, which is typically post-axial and rarely interdigital and can involve all four limbs, and syndactyly of the toes. Chondrodysplasia punctata is specifically associated with a subgroup of disorders of cholesterol biosynthesis (Greenberg dysplasia, CHILD syndrome, X-linked dominant chondrodysplasia punctata, male emopamil-binding protein deficiency). The possible occurrence of epiphyseal stippling in the Smith-Lemli-Opitz syndrome, initially reported, does not appear to be confirmed. Stippling is also associated with other congenital disorders such as chromosomal abnormalities, brachytelephalangic chondrodysplasia punctata (X-linked recessive chondrodysplasia punctata, disruptions of vitamin K metabolism, maternal autoimmune diseases), rhizomelic chondrodysplasia punctata (peroxisomal disorders) and lysosomal storage disorders. In the differential diagnosis of epiphyseal stippling, a moth-eaten appearance of bones, asymmetry, or presence of a common pattern of limb abnormalities indicate inborn errors of cholesterol biosynthesis. We highlight the specific differentiating radiologic features of disorders of post-squalene cholesterol biosynthesis.
Collapse
|