1
|
Palani HK, Arunachalam AK, Kulkarni U, Yasar M, Venkatraman A, Palanikumar S, Radhakrishnan RN, Solomon M, Rajasekaran A, Bankar A, Datari PVR, Selvarajan S, Korula A, Dash P, Schneider D, Wirthlin L, Abraham A, George B, Mathews V. Safety, efficacy and total cost of point-of-care manufactured anti-CD19 CAR-T cell therapy in India: VELCART trial. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200977. [PMID: 40248244 PMCID: PMC12005290 DOI: 10.1016/j.omton.2025.200977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
Decentralized or point-of-care (POC) manufacture of CAR-T cells is a potential strategy to improve accessibility and reduce cost and logistic challenges. A total of 10 relapsed/refractory patients (B cell acute lymphoblastic leukemia [B-ALL] N = 6, diffuse large B cell lymphoma [DLBCL] N = 4) were enrolled in this POC phase 1 study. Chimeric antigen receptor (CAR)-T cells were manufactured using the fully automated CliniMACS Prodigy system. The CAR-T cell products had a median 15-fold expansion with a median transduction rate of 38%. The immunophenotypic characterization indicates a significant increase in central memory and effector T cells. All the patients were infused with fresh CAR-T cells. Complete remission rates were 100% for B-ALL and 50% for DLBCL. At a median follow-up of 15 months, 8 of 10 patients remain without disease progression. Adverse events reported were cytokine release syndrome grade 2 or higher in 2 of 10 patients. None of the patients developed immune effector cell-associated neurotoxicity syndrome. Late hematological toxicity of grade 2 or higher was noted only in one patient. Evaluation of health care resource utilization demonstrates that the median cost was US$12,724, while the manufacturing cost was US$35,107. Our data highlight the safety, efficacy, low cost, and potential to enhance the accessibility of CAR-T cell therapy in low- and middle-income countries through a fully automated and closed manufacturing platform.
Collapse
Affiliation(s)
- Hamenth Kumar Palani
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore 632517, Tamil Nadu, India
| | - Arun Kumar Arunachalam
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore 632517, Tamil Nadu, India
| | - Uday Kulkarni
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore 632517, Tamil Nadu, India
| | - Mohammed Yasar
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore 632517, Tamil Nadu, India
| | - Arvind Venkatraman
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore 632517, Tamil Nadu, India
| | - Swathy Palanikumar
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore 632517, Tamil Nadu, India
| | | | - Majeela Solomon
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore 632517, Tamil Nadu, India
| | - Abirami Rajasekaran
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore 632517, Tamil Nadu, India
| | - Aniket Bankar
- Princess Margaret Cancer Center, University Avenue, Toronto, ON M5G2C1, Canada
| | | | - Sushil Selvarajan
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore 632517, Tamil Nadu, India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore 632517, Tamil Nadu, India
| | - Pradyot Dash
- Lentigen Technology Inc., A Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Dina Schneider
- Lentigen Technology Inc., A Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Louisa Wirthlin
- Lentigen Technology Inc., A Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Aby Abraham
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore 632517, Tamil Nadu, India
| | - Biju George
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore 632517, Tamil Nadu, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore 632517, Tamil Nadu, India
| |
Collapse
|
2
|
Yassin AAK, Ureña Martin C, Le Saux G, Pandey A, Tzadka S, Toledo E, Pandit JJ, Sherf T, Nusbaum I, Bhattachrya B, Banerji R, Greenshpan Y, Abu Ahmad MA, Radinsky O, Sklartz M, Gazit R, Elkabets M, Ghassemi S, Cohen O, Schvartzman M, Porgador A. Mechanostimulatory Platform for Improved CAR T Cell Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2412482. [PMID: 40348587 DOI: 10.1002/adma.202412482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 04/29/2025] [Indexed: 05/14/2025]
Abstract
Chimeric Antigen Receptor T (CAR T) cell immunotherapy has revolutionized cancer treatment, yet it is hindered by rapid T-cell exhaustion caused by uncontrolled activation during CAR generation. Leveraging insights into T-cell mechanosensing, a novel mechanostimulatory platform is engineered for T-cell activation based on an antigen-carrying surface with controlled elasticity and nanotopography. The platform is designed to optimize and balance T-cell exhaustion, proliferation, and CAR expression. It enhances the differentiation of T cells into the central memory subset, which is crucial for the persistence of CAR T cell therapy's anticancer effects. The platform produces CAR T cells with higher antitumor efficacy, as validated through ex vivo experiments, and with higher in vivo persistence and ability to suppress tumor proliferation, as compared to CAR T cells generated by standard protocols. RNA-seq analysis confirmed an increased transcriptional signature of central memory T cells. Furthermore, this platform completely eliminates T-cell toxicity associated with the non-viral transfection process typically observed with standard activation methods. This platform presents a promising pathway for improving the efficiency and safety of CAR T cell therapy.
Collapse
Affiliation(s)
- Abed Al-Kader Yassin
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Carlos Ureña Martin
- Department of Materials Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Ilse Katz Institute for the Nanoscale Science and Technology, Beer-Sheva, Israel
| | - Guillaume Le Saux
- Department of Materials Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Ilse Katz Institute for the Nanoscale Science and Technology, Beer-Sheva, Israel
| | - Ashish Pandey
- Department of Materials Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Ilse Katz Institute for the Nanoscale Science and Technology, Beer-Sheva, Israel
| | - Sivan Tzadka
- Department of Materials Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Ilse Katz Institute for the Nanoscale Science and Technology, Beer-Sheva, Israel
| | - Esti Toledo
- Department of Materials Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Ilse Katz Institute for the Nanoscale Science and Technology, Beer-Sheva, Israel
| | - Jatin Jawhir Pandit
- Department of Materials Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Ilse Katz Institute for the Nanoscale Science and Technology, Beer-Sheva, Israel
| | - Tomer Sherf
- Department of Materials Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Ilse Katz Institute for the Nanoscale Science and Technology, Beer-Sheva, Israel
| | - Idan Nusbaum
- Department of Materials Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Ilse Katz Institute for the Nanoscale Science and Technology, Beer-Sheva, Israel
| | - Baisali Bhattachrya
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Rajashri Banerji
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Yariv Greenshpan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Muhammad Abu Abu Ahmad
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Olga Radinsky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Menachem Sklartz
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Sabah Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ofir Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Department of Software and Information System Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Ilse Katz Institute for the Nanoscale Science and Technology, Beer-Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
3
|
Olofsson A, Humbert M, Rekha RS, Frankling MH, Lund-Johansen F, Bergman P, Björkhem-Bergman L, Karlsson AC. Adaptive immune responses against common viruses are sustained and functional in end-of-life patients. iScience 2025; 28:112082. [PMID: 40124502 PMCID: PMC11930376 DOI: 10.1016/j.isci.2025.112082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Viral infections occur with increased frequency in patients in palliative care, impacting their quality of life and increasing mortality rates. Still, the function of the immune system has never been thoroughly studied at the end of life. We investigated virus-specific humoral and cellular immune responses in elderly end-of-life patients (n = 38) and controls (n = 28). Virus-specific T cell responses were characterized using high-parameter flow cytometry, after stimulation with cytomegalovirus (CMV) and human coronavirus OC43 peptides. Although some virus-specific T cells from patients exhibited elevated expression of costimulatory and coinhibitory molecules, their functional profile remained largely intact compared to controls. The expression of the cytotoxic markers Granzyme B, CD107a, and 2B4 on CMV-specific T cells correlated closely with survival time. Significantly, our data demonstrate that both humoral and cellular immunity remain responsive and functional against common viruses in end-of-life patients.
Collapse
Affiliation(s)
- Anna Olofsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marion Humbert
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Rokeya S. Rekha
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Helde Frankling
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Fridtjof Lund-Johansen
- Institute of Clinical Medicine, University of Oslo, Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Immunology, Oslo University Hospital, ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Peter Bergman
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Björkhem-Bergman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Research and Development Unit/Palliative Care, Stockholms Sjukhem, Mariebergsgatan 22, Stockholm, Sweden
| | - Annika C. Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Rahbech A, Kurzay A, Fresnillo Saló S, Seremet T, Debets R, Met Ö, Peeters MJW, Thor Straten P. MerTK signaling in human primary T cells modulates memory potential and improves recall response. J Leukoc Biol 2025; 117:qiae226. [PMID: 39422252 DOI: 10.1093/jleuko/qiae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
Immune therapy using checkpoint inhibitors or adoptive cell transfer has revolutionized the treatment of several types of cancers. However, response to treatment is currently limited to a fraction of patients. Elucidation of immune modulatory mechanisms might optimize patient selection and present ways to modify anti-cancer immune responses. We recently discovered the expression and an important costimulatory role of TAM receptor MerTK signaling on activated human primary CD8+ T cells. Here we extend our study of the costimulatory role of MerTK expression in human CD8+ T cells. We uncover a clear link between MerTK expression and less differentiated Central Memory T cells based on an increased expression of CCR7, CD45RO, CD28, CD62L, and an altered metabolic profile. In addition, we observe an improved proliferative capacity and elevated expression of effector molecule IFNγ upon recall responses of MerTK-expressing cells in vitro. Finally, using gp100TCR-transduced T cells, we demonstrate how PROS1 treatment results in improved cytotoxicity and killing of tumors. Our findings describe a role of MerTK expression in T cells, which could be exploited in the search for improving immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anne Rahbech
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 13, 2730 Herlev, Denmark
| | - Annina Kurzay
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 13, 2730 Herlev, Denmark
| | - Sara Fresnillo Saló
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 13, 2730 Herlev, Denmark
| | - Tina Seremet
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 13, 2730 Herlev, Denmark
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC-Cancer Institute, Dr Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Özcan Met
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 13, 2730 Herlev, Denmark
| | - Marlies J W Peeters
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 13, 2730 Herlev, Denmark
| | - Per Thor Straten
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, Borgmester Ib Juuls Vej 13, 2730 Herlev, Denmark
| |
Collapse
|
5
|
Zhang S, Wen Q, Su S, Wang Y, Wang J, Xie N, Zhu W, Wen X, Di L, Lu Y, Xu M, Wang M, Chen H, Duo J, Huang Y, Wan D, Tao Z, Zhao S, Chai G, Hao J, Da Y. Peripheral immune profiling highlights a dynamic role of low-density granulocytes in myasthenia gravis. J Autoimmun 2025; 152:103395. [PMID: 40043622 DOI: 10.1016/j.jaut.2025.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune neuromuscular disease marked by dysregulation of several immune cell populations. Here we explored peripheral immune landscape, particularly the role of low-density granulocytes (LDGs). METHODS Single-cell and bulk RNA sequencing analyzed peripheral immune cells from MG patients pre- (n = 4) and after treatment (n = 2), as well as healthy controls (n = 3). Flow cytometry was employed for validating LDG subsets, and various functional assays were conducted to assess their impact on T cell proliferation and differentiation, NET formation, and ROS production. RESULTS Single-cell analysis highlighted a shift towards inflammatory Th1/Th17/Tfh subsets, an intense interferon-mediated immune response, and an expansion of immature myeloid subsets in MG. Flow cytometry showed increased LDGs correlated with disease severity. Unlike myeloid-derived suppressor cells, MG LDGs do not restrict T cell proliferation but induce a pro-inflammatory Th1/Th17 response. They also display enhanced spontaneous neutrophil extracellular traps (NETs) formation and basal reactive oxygen species (ROS) production. LDGs decreased after intravenous immunoglobulin and increased after prolonged immunotherapy in minimal manifestation status (MM), with reduced pro-inflammatory activity. Bulk RNA sequencing revealed significant transcriptional differences in LDGs, especially in cell cycle and granule protein genes. CONCLUSION Peripheral immune profiling sheds light on the intricate role of LDGs in MG. These cells, as a distinct subtype of neutrophils with a proinflammatory phenotype, are notable increased in MG, exacerbating chronic inflammation. Furthermore, immunotherapy expanded LDGs but reduced their proinflammatory capacities. The complex interplay of LDGs in MG underscores their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shengyao Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaye Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingsi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Nairong Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Di
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hai Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianying Duo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongshan Wan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Tao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shufang Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guoliang Chai
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Yue T, Sun Y, Dai Y, Jin F. Mechanisms for resistance to BCMA-targeted immunotherapies in multiple myeloma. Blood Rev 2025; 70:101256. [PMID: 39818472 DOI: 10.1016/j.blre.2025.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Multiple myeloma (MM) remains incurable and patients eventually face the relapse/refractory dilemma. B cell maturation antigen (BCMA)-targeted immunotherapeutic approaches have shown great effectiveness in patients with relapsed/refractory MM, mainly including chimeric antigen receptor T cells (CAR-T), bispecific T cell engagers (TCEs), and antibody-drug conjugates (ADCs). However, their impact on long-term survival remains to be determined. Nonetheless, resistance to these novel therapies is still inevitable, raising a challenge that we have never met in both laboratory research and clinical practice. In this scenario, the investigation aiming to enhance and prolong the anti-MM activity of BCMA-targeted therapies has been expanding rapidly. Despite considerable uncertainty in our understanding of the mechanisms for their resistance, they have mainly been attributed to antigen-dependency, T cell-driven factors, and (immune) tumor microenvironment. In this review, we summarize the current understanding of the mechanisms for resistance to BCMA-targeted immunotherapies and discuss potential strategies for overcoming it.
Collapse
Affiliation(s)
- Tingting Yue
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Fengyan Jin
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
7
|
Fahnøe U, Feng S, Underwood AP, Jacobsen K, Ameri A, Blicher TH, Sølund CS, Rosenberg BR, Brix L, Weis N, Bukh J. T cell receptor usage and epitope specificity amongst CD8 + and CD4 + SARS-CoV-2-specific T cells. Front Immunol 2025; 16:1510436. [PMID: 40092978 PMCID: PMC11906682 DOI: 10.3389/fimmu.2025.1510436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/02/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the critical importance of understanding protective long-lasting immune responses. This study investigates the epitope specificity, T cell receptor (TCR) usage, and phenotypic changes in SARS-CoV-2-specfic CD8+ and CD4+ T cells over time in convalescent individuals with COVID-19. Methods Peripheral blood mononuclear cells (PBMCs) were collected from 28 unvaccinated individuals with primary SARS-CoV-2 infection (6 identified as the D614G variant, clade 20C) and analyzed up to 12 months post-symptom onset. Antigen-specific CD8+ and CD4+ T cells were analyzed using flow cytometry and single-cell RNA sequencing (scRNAseq) using specific dextramer and antibody reagents. TCR clonotypes and activation markers were characterized to explore T cell dynamics. Results SARS-CoV-2-specific CD8+ T cells exhibited waning frequencies long-term, transitioning from memory-like to a naïve-like state. scRNAseq revealed specificity against both spike and non-spike antigens with increased CD95 and CD127 expression over time, indicating that naïve-like T cells may represent stem cell memory T cells, which are multipotent and self-renewing, likely important for long-lived immunity. TCR clonal expansion was observed mainly in memory T cells, with overlapping TCR beta chain (TRB)-complementary determining region 3 (CDR3) sequences between participants, suggesting shared public TCR epitope-specific repertoires against SARS-CoV-2. Further, unique spike-specific CD4+ T cells with high CD95 and CD127 expression were identified, which may play a crucial role in long-term protection. Discussion This study highlights epitope-specificity heterogeneity, with some immunodominant responses, and suggests a potential role for long-lived SARS-CoV-2-specific T cell immunity. Shared TCR repertoires offers insights into cross-reactive and protective T cell clones, providing valuable information for optimizing vaccine strategies against emerging SARS-CoV-2 variants. The findings underscore the critical role of cellular immunity in long-term protection against SARS-CoV-2 and emphasizes the importance of understanding T cell dynamics.
Collapse
Affiliation(s)
- Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Alexander P. Underwood
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | | | | | - Christina S. Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
8
|
Zawidzka EM, Biavati L, Thomas A, Zanettini C, Marchionni L, Leone R, Borrello I. Tumor-specific CD8 + T cells from the bone marrow resist exhaustion and exhibit increased persistence in tumor-bearing hosts as compared with tumor-infiltrating lymphocytes. J Immunother Cancer 2025; 13:e009367. [PMID: 40010772 PMCID: PMC11865787 DOI: 10.1136/jitc-2024-009367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Immunotherapy is now an integral aspect of cancer therapy. Strategies employing adoptive cell therapy (ACT) have seen the establishment of chimeric antigen receptor (CAR)-T cells using peripheral blood lymphocytes as well as tumor-infiltrating lymphocytes (TILs) with significant clinical results. The bone marrow (BM) is an immunological niche housing T cells with specificity for previously encountered antigens, including tumor-associated antigens from certain solid cancers. This study sought to improve our understanding of tumor-specific BM T cells in the context of solid tumors by comparing them with TILs, and to assess whether there is a rationale for using the BM as a source of T cells for ACT against solid malignancies. METHODS We used the murine B16 melanoma model examining both the endogenous OVA-specific T cell response using an OVA-specific tetramer or examining the OVA-specific response with OVA-specific transgenic CD8+ (OT-1) T cells. Specifically, we compared baseline intrinsic properties of TILs or BM T cells from tumor-bearing mice and their changes following adoptive transfer in the tumor and bone marrow (as well as other compartments when indicated). RESULTS In tumor-bearing mice, endogenous tumor-specific T cells could be detected in the BM early in the course of tumor progression and possessed a more stem-cell-like and memory phenotype in an unsupervised cluster analysis compared with TILs which appeared more exhausted. The BM and tumor microenvironments significantly impact the fate of T cells. Naïve OT-1 transferred T cells acquired an exhausted phenotype in the tumor but maintained a more memory-like phenotype in the BM with tumor progression. Importantly, in a competitive transfer experiment, BM T cells infiltrated the tumor more efficiently than TILs, displayed a higher polyfunctionality with interleukin-2, interferon-γ, tumor necrosis factor-α production and showed greater persistence compared with TILs. CONCLUSIONS T cells from the BM appear superior to TILs as a source of cells for cellular therapy. They possess a memory-enriched phenotype and exhibit improved effector function, greater persistence within a tumor-bearing host, and the capacity for increased tumor infiltration. These data provide a foundation for further exploring the BM as a source of tumor-specific T cells for ACT in solid malignancies.
Collapse
Affiliation(s)
- Elizabeth M Zawidzka
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | - Luca Biavati
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | - Amy Thomas
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | | | | | - Robert Leone
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | - Ivan Borrello
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
- Cancer Institute, Tampa General Hospital, Tampa, Florida, USA
| |
Collapse
|
9
|
Chih YC, Dietsch AC, Koopmann P, Ma X, Agardy DA, Zhao B, De Roia A, Kourtesakis A, Kilian M, Krämer C, Suwala AK, Stenzinger M, Boenig H, Blum A, Pienkowski VM, Aman K, Becker JP, Feldmann H, Bunse T, Harbottle R, Riemer AB, Liu HK, Etminan N, Sahm F, Ratliff M, Wick W, Platten M, Green EW, Bunse L. Vaccine-induced T cell receptor T cell therapy targeting a glioblastoma stemness antigen. Nat Commun 2025; 16:1262. [PMID: 39893177 PMCID: PMC11787355 DOI: 10.1038/s41467-025-56547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
T cell receptor-engineered T cells (TCR-T) could be advantageous in glioblastoma by allowing safe and ubiquitous targeting of the glioblastoma-derived peptidome. Protein tyrosine phosphatase receptor type Z1 (PTPRZ1), is a clinically targetable glioblastoma antigen associated with glioblastoma cell stemness. Here, we identify a therapeutic HLA-A*02-restricted PTPRZ1-reactive TCR retrieved from a vaccinated glioblastoma patient. Single-cell sequencing of primary brain tumors shows PTPRZ1 overexpression in malignant cells, especially in glioblastoma stem cells (GSCs) and astrocyte-like cells. The validated vaccine-induced TCR recognizes the endogenously processed antigen without off-target cross-reactivity. PTPRZ1-specific TCR-T (PTPRZ1-TCR-T) kill target cells antigen-specifically, and in murine experimental brain tumors, their combined intravenous and intracerebroventricular administration is efficacious. PTPRZ1-TCR-T maintain stem cell memory phenotype in vitro and in vivo and lyse all examined HLA-A*02+ primary glioblastoma cell lines with a preference for GSCs and astrocyte-like cells. In summary, we demonstrate the proof of principle to employ TCR-T to treat glioblastoma.
Collapse
MESH Headings
- Glioblastoma/immunology
- Glioblastoma/therapy
- Glioblastoma/pathology
- Glioblastoma/genetics
- Humans
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Mice
- Brain Neoplasms/immunology
- Brain Neoplasms/therapy
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
- Cancer Vaccines/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Antigens, Neoplasm/immunology
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/immunology
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism
- HLA-A2 Antigen/immunology
- Immunotherapy, Adoptive/methods
- Xenograft Model Antitumor Assays
- Female
Collapse
Grants
- Swiss Cancer Foundation (Swiss Bridge Award), the Else Kröner Fresenius Foundation (2019_EKMS.49), the University Heidelberg Foundation (Hella Buühler Award), the DFG (German Research Foundation), project 404521405 (SFB1389 UNITE Glioblastoma B03), the DKFZ Hector institute (T-SIRE), the Hertie Foundation, the University of Heidelberg, ExploreTech! the DKTK Joint Funding AMI2GO, the Rolf Schwiete Foundation (2021-009), the HI-TRON strategy project PACESSETTING, the DKTK Joint Funding Program INNOVATION INVENT4GB.
- The DFG, project 404521405 (SFB1389 UNITE Glioblastoma B01) the DKTK Joint Funding AMI2GO, the Rolf Schwiete Foundation (2021-009), the HI-TRON strategy project PACESSETTING, the DKTK Joint Funding Program INNOVATION INVENT4GB.
Collapse
Affiliation(s)
- Yu-Chan Chih
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
| | - Amelie C Dietsch
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
| | - Philipp Koopmann
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
| | - Xiujian Ma
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Division of Molecular Neurogenetics, DKFZ, DKFZ-ZMBH alliance, Heidelberg, Germany
| | - Dennis A Agardy
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
| | - Binghao Zhao
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
| | - Alice De Roia
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- DNA Vector Laboratory, DKFZ, Heidelberg, Germany
| | - Alexandros Kourtesakis
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Neurology Clinic, Heidelberg University Hospital, Heidelberg, Germany
- CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Michael Kilian
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Krämer
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
| | - Abigail K Suwala
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Institute for Pathology, Department of Neuropathology, Heidelberg University, Heidelberg, Germany
- CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Miriam Stenzinger
- Institute for Clinical Transfusion Medicine and Cell Therapy, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Halvard Boenig
- Faculty of Medicine, Goethe University, Frankfurt a.M., Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt a.M., Frankfurt, Germany
| | | | | | - Kuralay Aman
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
| | - Jonas P Becker
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Division of Immunotherapy and Immunoprevention, DKFZ, Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Henrike Feldmann
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
| | - Theresa Bunse
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
| | - Richard Harbottle
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- DNA Vector Laboratory, DKFZ, Heidelberg, Germany
| | - Angelika B Riemer
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Division of Immunotherapy and Immunoprevention, DKFZ, Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Hai-Kun Liu
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Division of Molecular Neurogenetics, DKFZ, DKFZ-ZMBH alliance, Heidelberg, Germany
| | - Nima Etminan
- Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | - Felix Sahm
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Institute for Pathology, Department of Neuropathology, Heidelberg University, Heidelberg, Germany
- CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Miriam Ratliff
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- CCU Neurooncology, DKFZ, Heidelberg, Germany
- Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | - Wolfgang Wick
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Neurology Clinic, Heidelberg University Hospital, Heidelberg, Germany
- CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ, Mainz, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Edward W Green
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
| | - Lukas Bunse
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany.
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany.
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
10
|
Song F, Tsahouridis O, Stucchi S, Walhart T, Mendell S, Hardy PB, Axtman M, Guduru SKR, Gilbert TSK, Graves LM, Herring LE, Savoldo B, Ma X, Woodcock M, Milner JJ, Ivanova A, Pearce KH, Xu Y, Dotti G. A multi-kinase inhibitor screen identifies inhibitors preserving stem-cell-like chimeric antigen receptor T cells. Nat Immunol 2025; 26:279-293. [PMID: 39779871 PMCID: PMC11785528 DOI: 10.1038/s41590-024-02042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Chimeric antigen receptor T cells (CAR T cells) with T stem (TSCM) cell-like phenotypic characteristics promote sustained antitumor effects. We performed an unbiased and automated high-throughput screen of a kinase-focused compound set to identify kinase inhibitors (KIs) that preserve human TSCM cell-like CAR T cells. We identified three KIs, UNC10225387B, UNC10225263A and UNC10112761A, that combined in vitro increased the frequency of CD45RA+CCR7+TCF1hi TSCM cell-like CAR T cells from both healthy donors and patients with cancer. KI-treated CAR T cells showed enhanced antitumor effects both in vitro and in vivo in mouse tumor models. The KI cocktail maintains TSCM cell-like phenotype preferentially in CAR T cells originating from naive T cells and causes transcriptomic changes without arresting T cell activation or modulating the chromatin organization. Specific kinases, ITK, ADCK3, MAP3K4 and CDK13, targeted by the KI cocktail in a dose-dependent manner are directly associated with the preservation of TSCM cell-like CAR T cells. Knockdown of these kinases individually or in combination enriches for TSCM cell-like CAR T cells, but only CAR T cells generated in the presence of the KI cocktail show robust expansion and differentiation on stimulation with tumor cells. Overall, transient pharmacological inhibition of strategically targeted kinases maintains stem-like features in CAR T cells and improves their antitumor activity.
Collapse
Affiliation(s)
- Feifei Song
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ourania Tsahouridis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Simone Stucchi
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tara Walhart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sophie Mendell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - P Brian Hardy
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew Axtman
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shiva K R Guduru
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas S K Gilbert
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lee M Graves
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E Herring
- Michael Hooker Proteomics Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xingcong Ma
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mark Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Oncology division, department of medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Justin J Milner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anastasia Ivanova
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yang Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Chandora K, Chandora A, Saeed A, Cavalcante L. Adoptive T Cell Therapy Targeting MAGE-A4. Cancers (Basel) 2025; 17:413. [PMID: 39941782 PMCID: PMC11815873 DOI: 10.3390/cancers17030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
MAGE A4 (Melanoma Antigen Gene A4) is a cancer testis antigen (CTA) that is expressed normally in germline cells (testis/embryonic tissues) but absent in somatic cells. The MAGE A4 CTA is expressed in a variety of tumor types, like synovial sarcoma, ovarian cancer and non-small cell lung cancer. Having its expression profile limited to germline cells has made MAGE A4 a sought-after immunotherapeutic target in certain malignancies. In this review, we focus on MAGE-A4's function and expression, current clinical trials involving targeted immunotherapy approaches, and challenges and opportunities facing MAGE-A4's targeted therapeutics.
Collapse
Affiliation(s)
- Kapil Chandora
- Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA 30310, USA; (K.C.)
| | - Akshay Chandora
- Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA 30310, USA; (K.C.)
| | - Anwaar Saeed
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Ludimila Cavalcante
- Division of Hematology and Oncology, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22903, USA
| |
Collapse
|
12
|
Zhu S, Zuo S, Li C, You X, Jiang E, Feng X, Luo Y. LLT1 overexpression renders allogeneic-NK resistance and facilitates the generation of enhanced universal CAR-T cells. J Exp Clin Cancer Res 2025; 44:25. [PMID: 39856752 PMCID: PMC11763111 DOI: 10.1186/s13046-025-03273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The benefit of universal CAR-T cells over autologous CAR-T cell therapy is that they are a treatment that is ready to use. However, the prevention of graft-versus-host disease (GVHD) and host-versus-graft reaction (HVGR) remains challenging. Deleting class I of human leukocyte antigen (HLA-I) and class II of human leukocyte antigen (HLA-II) can prevent rejection by allogeneic T cells; however, natural killer (NK) cell rejection due to the loss of self-recognition remains unresolved. This study tested whether the overexpression of Lectin-like transcript 1 (LLT1), an NK cell inhibitory ligand, in T cell receptor (TCR) and HLA-I/II disrupted universal CD38-targeting CAR-T cells could prevent rejection by allogeneic NK cells. METHODS We generated CD38-targeting universal CAR-T cells by transducing T cells with lentiviruses encoding the CD38 CAR and LLT1 constructs. T cells were subjected to CD38, TCR, HLA-I, and HLA-II gene knockdown using CRISPR/Cas9, followed by lentiviral transduction. We performed cytotoxicity, proliferation, and cytokine assays to evaluate the functionality of universal chimeric antigen receptor-T cell (UCAR-T) cells and conducted in vitro and in vivo assays, including allogeneic responses and RNA sequencing, to assess their resistance to allogeneic T and NK cells, anti-leukemia efficacy, and persistence in treating hematologic malignancies. RESULTS Genetic editing of CD38 universal CAR-T cells, including CD38, T cell receptor alpha constant (TRAC), beta-2-microglobulin (B2M), and class II major histocompatibility complex transactivator (CIITA) knockdowns, was successfully achieved. In vitro, LLT1 overexpression boosted CAR-T cell proliferation and antitumor activity, leading to a transcriptional signature characterized by elevated stemness-related markers (SELL, BCL6, TCF7, and CD27) and increased levels of IL-10 and other cytokines. It also effectively mitigates rejection by allogeneic NK and T cells. In a humanized T-cell acute lymphoblastic leukemia (T-ALL) model, CD38 allogeneic universal CAR-T cells demonstrated superior survival rates and tumor clearance with reduced inflammatory responses. CONCLUSION According to these results, LLT1 overexpression enhances UCAR-T cell activity and prevents allogeneic rejection, providing essential insights for the development of universal CAR-T cell therapy.
Collapse
Affiliation(s)
- Shuxian Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shiyu Zuo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Chuo Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xingjie You
- Geriatric Medical Center, Division of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- T-Cell Precision Therapy Lab, Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
- Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou, 311121, China.
| | - Yuechen Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
13
|
Kuilman T, Schrikkema DS, Gadiot J, Gomez-Eerland R, Bies L, Walker J, Spaapen RM, Kok H, Houg D, Viyacheva M, Claassen YB, Saornil M, Krijgsman O, Stringer B, Ding H, Geleijnse A, Meinema AC, Weissbrich B, Lancee M, Engele CG, Sabatino M, Chen PL, Tsai KY, Mulé JJ, Sondak VK, van den Bulk J, de Miranda NF, Jedema I, Haanen JG, van Heijst JWJ, Schumacher TN, Linnemann C, Bendle GM. Enabling next-generation engineered TCR-T therapies based on high-throughput TCR discovery from diagnostic tumor biopsies. Nat Commun 2025; 16:649. [PMID: 39809767 PMCID: PMC11733228 DOI: 10.1038/s41467-024-55420-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) can mediate tumor regression, including complete and durable responses, in a range of solid cancers, most notably in melanoma. However, its wider application and efficacy has been restricted by the limited accessibility, proliferative capacity and effector function of tumor-specific TIL. Here, we develop a platform for the efficient identification of tumor-specific TCR genes from diagnostic tumor biopsies, including core-needle biopsies frozen in a non-viable format, to enable engineered T cell therapy. Using a genetic screening approach that detects antigen-reactive TCRs with high sensitivity and specificity based on T cell activation, we show that high complexity TCR libraries can be efficiently screened against multiplexed antigen libraries to identify both HLA class I and II restricted TCRs. Through the identification of neoantigen-specific TCRs directly from melanoma as well as low tumor mutational burden microsatellite-stable colorectal carcinoma samples, we demonstrate the pan-cancer potential of this platform.
Collapse
Affiliation(s)
- Thomas Kuilman
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands.
| | - Deborah S Schrikkema
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Jules Gadiot
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Raquel Gomez-Eerland
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Laura Bies
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Julia Walker
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Robbert M Spaapen
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Hanna Kok
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Demi Houg
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Milena Viyacheva
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Yvonne B Claassen
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Manuel Saornil
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Bas Stringer
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Huiwen Ding
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Anou Geleijnse
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Anne C Meinema
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Bianca Weissbrich
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Melissa Lancee
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Carmen G Engele
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Marianna Sabatino
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Pei-Ling Chen
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kenneth Y Tsai
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - James J Mulé
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Immunology and Radiation Oncology Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Vernon K Sondak
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jitske van den Bulk
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Noel F de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge Jedema
- Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - John G Haanen
- Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ton N Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carsten Linnemann
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands
| | - Gavin M Bendle
- Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Biernacki MA, Bleakley M. Clinical trials, challenges, and changes in TCR-based therapeutics for hematologic malignancies. Expert Rev Hematol 2025; 18:21-31. [PMID: 39667756 DOI: 10.1080/17474086.2024.2441962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/14/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION T cells engineered to express antigen-specific T cell receptors (TCR; TCR-T) are a promising class of immunotherapeutic for patients with hematologic malignancies. Like chimeric antigen receptor-engineered T cells (CAR-T), TCR-T are cell products with defined specificity and composition. Unlike CAR-T, TCR-T can recognize targets arising both from intracellular and cell surface proteins and leverage the sensitivity of natural TCR signaling machinery. A growing number of TCR-T targeting various antigens in different hematologic malignancies are in early-phase clinical trials, and more are in preclinical development. AREAS COVERED This review covers results from early-phase TCR-T clinical trials for hematologic malignancies. Challenges in the field are reviewed, including identifying optimal targets, engaging CD4+ help for CD8+ T cells, and overcoming tumor-induced suppression; recent innovations to overcome these challenges are also highlighted. EXPERT OPINION In the future, TCR-T's promise for hematologic malignancies will be borne out in later-phase clinical trials and approvals for clinical use. Improved antigen discovery methods will help build the toolbox of targets needed for broadly applicable TCR-T. Rationally designed TCR-T modifications including incorporation of accessory receptors and gene editing will enhance TCR-T function. New hybrid receptors combining features of TCR and CAR will enter the clinic.
Collapse
MESH Headings
- Humans
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Clinical Trials as Topic
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Antigens, Neoplasm/immunology
- Animals
Collapse
Affiliation(s)
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Mazziotta F, Martin LE, Eagan DN, Bar M, Kinsella S, Paulson KG, Voillet V, Lahman MC, Hunter D, Schmitt TM, Duerkopp N, Yeung C, Tang TH, Gottardo R, Asano Y, Wilcox EC, Lee B, Zhang T, Lopedote P, Penter L, Wu CJ, Milano F, Greenberg PD, Chapuis AG. Acute Myeloid Leukemia Skews Therapeutic WT1-specific CD8 TCR-T Cells Towards an NK-like Phenotype that Compromises Function and Persistence. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.13.24318504. [PMID: 39763516 PMCID: PMC11702715 DOI: 10.1101/2024.12.13.24318504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Acute myeloid leukemia (AML) that is relapsed and/or refractory post-allogeneic hematopoietic cell transplantation (HCT) is usually fatal. In a prior study, we demonstrated that AML relapse in high-risk patients was prevented by post-HCT immunotherapy with Epstein-Barr virus (EBV)-specific donor CD8+ T cells engineered to express a high-affinity Wilms Tumor Antigen 1 (WT1)-specific T-cell receptor (TTCR-C4). However, in the present study, infusion of EBV- or Cytomegalovirus (CMV)-specific TTCR-C4 did not clearly improve outcomes in fifteen patients with active disease post-HCT. TCRC4-transduced EBV-specific T cells persisted longer post-transfer than CMV-specific T cells. Persisting TTCR-C4 skewed towards dysfunctional natural killer-like terminal differentiation, distinct from the dominant exhaustion programs reported for T-cell therapies targeting solid tumors. In one patient with active AML post-HCT, a sustained TTCR-C4 effector-memory profile correlated with long-term TTCR-C4 persistence and disease control. These findings reveal complex mechanisms underlying AML-induced T-cell dysfunction, informing future therapeutic strategies for addressing post-HCT relapse.
Collapse
Affiliation(s)
- Francesco Mazziotta
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Lauren E. Martin
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Daniel N. Eagan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Merav Bar
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Medical Oncology, University of Washington, Seattle, WA, USA
- Bristol Myers Squibb
| | - Sinéad Kinsella
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kelly G. Paulson
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | - Miranda C. Lahman
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Daniel Hunter
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Thomas M. Schmitt
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Natalie Duerkopp
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cecilia Yeung
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tzu-Hao Tang
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Raphael Gottardo
- Biomedical Data Science Center, Lausanne University Hospital
- University of Lausanne, Lausanne, Switzerland
- Agora Translational Research Center, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yuta Asano
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elise C. Wilcox
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Bo Lee
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tianzi Zhang
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Paolo Lopedote
- Department of Medicine, St. Elizabeth’s Medical Center, Boston University, Boston, MA, USA
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Filippo Milano
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Philip D. Greenberg
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Departments of Immunology and Medicine, University of Washington, Seattle, WA, USA
| | - Aude G. Chapuis
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutch Cancer Center, Seattle, WA, USA
- Division of Medical Oncology, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Chen S, Nguyen TD, Lee KZ, Liu D. Ex vivo T cell differentiation in adoptive immunotherapy manufacturing: Critical process parameters and analytical technologies. Biotechnol Adv 2024; 77:108434. [PMID: 39168355 DOI: 10.1016/j.biotechadv.2024.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/01/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Adoptive immunotherapy shows great promise as a treatment for cancer and other diseases. Recent evidence suggests that the therapeutic efficacy of these cell-based therapies can be enhanced by the enrichment of less-differentiated T cell subpopulations in the therapeutic product, giving rise to a need for advanced manufacturing technologies capable of enriching these subpopulations through regulation of T cell differentiation. Studies have shown that modifying certain critical process control parameters, such as cytokines, metabolites, amino acids, and culture environment, can effectively manipulate T cell differentiation in ex vivo cultures. Advanced process analytical technologies (PATs) are crucial for monitoring these parameters and the assessment of T cell differentiation during culture. In this review, we examine such critical process parameters and PATs, with an emphasis on their impact on enriching less-differentiated T cell population. We also discuss the limitations of current technologies and advocate for further efforts from the community to establish more stringent critical process parameters (CPPs) and develop more at-line/online PATs that are specific to T cell differentiation. These advancements will be essential to enable the manufacturing of more efficacious adoptive immunotherapy products.
Collapse
Affiliation(s)
- Sixun Chen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore
| | - Tan Dai Nguyen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore
| | - Kang-Zheng Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore
| | - Dan Liu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore.
| |
Collapse
|
17
|
Tsao ST, Gu M, Xiong Q, Deng Y, Deng T, Fu C, Zhao Z, Zhang H, Liu C, Zhong X, Xiang F, Huang F, Wang H. Rapidly Manufactured CAR-T with Conserved Cell Stemness and Distinctive Cytokine-Secreting Profile Shows Improved Anti-Tumor Efficacy. Vaccines (Basel) 2024; 12:1348. [PMID: 39772010 PMCID: PMC11680398 DOI: 10.3390/vaccines12121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The emergence of chimeric antigen receptor T-cell (CAR-T) immunotherapy holds great promise in treating hematologic malignancies. While advancements in CAR design have enhanced therapeutic efficacy, the time-consuming manufacturing process has not been improved in the commercial production of CAR-T cells. In this study, we developed a "DASH CAR-T" process to manufacture CAR-T cells in 72 h and found the excelling anti-tumor efficacy of DASH CAR-T cells over conventionally manufactured CAR-T cells. Methods: Four different CAR-T manufacturing processes were first proposed and examined by flow cytometry in regard to cell viability, T-cell purity and activation, CAR expression, and cell apoptosis. The selected two processes, 48H DASH CAR-T and 72H DASH CAR-T, were applied to the subsequent functional assessments, including T-cell differentiation, antigen-dependent cytotoxicity and expansion, cytokines secretion profile, and in vivo anti-tumor efficacy. Results: We demonstrated that rapidly manufactured CAR-T cells generated within 48-72 h was feasible and exhibited increased naïve and memory T-cell ratios, a distinctive secretory profile, superior expansion capacity, and enhanced in vitro and in vivo anti-tumor activity compared to conventionally manufactured CAR-T cells. Conclusions: Our findings suggest that "DASH CAR-T" process is a valuable platform in reducing CAR-T manufacturing time and producing high-efficacy CAR-T cells for future clinical application.
Collapse
Affiliation(s)
- Shih-Ting Tsao
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Mingyuan Gu
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Qinghui Xiong
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Yingzhi Deng
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Tian Deng
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Chengbing Fu
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Zihao Zhao
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Haoyu Zhang
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Cuicui Liu
- Department of Regulatory Affairs, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Xiong Zhong
- Department of Medical Research, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Fang Xiang
- Department of Medical Research, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Fei Huang
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Haiying Wang
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| |
Collapse
|
18
|
Rambaldi B, Rizzuto G, Rambaldi A, Introna M. Genetically modified and unmodified cellular approaches to enhance graft versus leukemia effect, without increasing graft versus host disease: the use of allogeneic cytokine-induced killer cells. Front Immunol 2024; 15:1459175. [PMID: 39512351 PMCID: PMC11540647 DOI: 10.3389/fimmu.2024.1459175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Although allogeneic hematopoietic cell transplantation (HCT) represents a curative approach for many patients with hematological diseases, post-transplantation relapse occurs in 20-50% of cases, representing the primary cause of treatment failure and mortality. Alloreactive donor T cells are responsible for the graft versus leukemia (GvL) effect, which represents the key mechanism for the long-term curative effect of HCT. However, the downside is represented by graft versus host disease (GvHD), largely contributing to transplant-related mortality (TRM). Multiple factors play a role in regulating the delicate balance between GvL and GvHD, such as the optimization of the donor HLA and KIR match, the type of graft source, and the adaptive use of post-transplant cellular therapy. In addition to the standard donor lymphocyte infusion (DLI), several attempts were made to favor the GvL effect without increasing the GvHD risk. Selected DLI, NK DLI, activated DLI and more sophisticated genetically engineered cells can be employed. In this scenario, cytokine-induced killer (CIK) cells represent a suitable tool to boost GvL while minimizing GvHD. CIK cells are T lymphocytes activated in culture in the presence of monoclonal antibodies against CD3 (OKT3), interferon-gamma (IFN-g), and interleukin-2 (IL-2), characterized by the expression of markers typical of NK cells and T cells (CD3+, CD56+, with a prevalent CD8+ phenotype). CIK cells can mediate cytotoxicity through both MHC and non-MHC restricted recognition, which is the so-called "dual-functional capability" and display minimum alloreactivity. Allogeneic CIK cells showed a favorable rate of response, especially in the setting of minimal residual disease, with a rate of GvHD not exceeding 25%. Finally, the CIK cell platform can be adapted for chimeric antigen receptor (CAR) cell strategy, showing promising results in both preclinical and clinical settings. In this review, we describe the main immunological basis for the development of the GvL and the possible cellular therapy approaches used to boost it, with a particular focus on the use of CIK cells.
Collapse
Affiliation(s)
- Benedetta Rambaldi
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Giuliana Rizzuto
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
- Molecular and Translational Medicine Doctoral Program (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Alessandro Rambaldi
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
- Department of Oncology and Hematology, Università degli Studi di Milano, Milan, Italy
| | - Martino Introna
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
19
|
Fiorenza S, Lim SY, Laszlo GS, Kimble EL, Phi TD, Lunn-Halbert MC, Kirchmeier DR, Huo J, Kiem HP, Turtle CJ, Walter RB. Targeting the membrane-proximal C2-set domain of CD33 for improved CAR T cell therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200854. [PMID: 39224504 PMCID: PMC11367471 DOI: 10.1016/j.omton.2024.200854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Current CD33-targeted immunotherapies typically recognize the membrane-distal V-set domain of CD33. Here, we show that decreasing the distance between T cell and leukemia cell membrane increases the efficacy of CD33 chimeric antigen receptor (CAR) T cells. We therefore generated and optimized second-generation CAR constructs containing single-chain variable fragments from antibodies raised against the membrane-proximal C2-set domain, which bind CD33 regardless of whether the V-set domain is present (CD33PAN antibodies). CD33PAN CAR T cells resulted in efficient tumor clearance and improved survival of immunodeficient mice bearing human AML cell xenografts and, in an AML model with limited CD33 expression, forced escape of CD33neg leukemia. Compared to CD33V-set CAR T cells, CD33PAN CAR T cells showed greater in vitro and in vivo efficacy against several human AML cell lines with differing levels of CD33 without increased expression of exhaustion markers. CD33PAN moieties were detected at a higher frequency on human leukemic stem cells, and CD33PAN CAR T cells had greater in vitro efficacy against primary human AML cells. Together, our studies demonstrate improved efficacy with CAR T cells binding CD33 close to the cell membrane, providing the rationale to investigate CD33PAN CAR T cells further toward possible clinical application.
Collapse
Affiliation(s)
- Salvatore Fiorenza
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Sheryl Y.T. Lim
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - George S. Laszlo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Erik L. Kimble
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA 98195, USA
| | - Tinh-Doan Phi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Margaret C. Lunn-Halbert
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Delaney R. Kirchmeier
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jenny Huo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hans-Peter Kiem
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Cameron J. Turtle
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Roland B. Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Krakow EF, Brault M, Summers C, Cunningham TM, Biernacki MA, Black RG, Woodward KB, Vartanian N, Kanaan SB, Yeh AC, Dossa RG, Bar M, Cassaday RD, Dahlberg A, Till BG, Denker AE, Yeung CCS, Gooley TA, Maloney DG, Riddell SR, Greenberg PD, Chapuis AG, Newell EW, Furlan SN, Bleakley M. HA-1-targeted T-cell receptor T-cell therapy for recurrent leukemia after hematopoietic stem cell transplantation. Blood 2024; 144:1069-1082. [PMID: 38683966 PMCID: PMC11406181 DOI: 10.1182/blood.2024024105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
ABSTRACT Relapse is the leading cause of death after allogeneic hematopoietic stem cell transplantation (HCT) for leukemia. T cells engineered by gene transfer to express T cell receptors (TCR; TCR-T) specific for hematopoietic-restricted minor histocompatibility (H) antigens may provide a potent selective antileukemic effect post-HCT. We conducted a phase 1 clinical trial using a novel TCR-T product targeting the minor H antigen, HA-1, to treat or consolidate treatment of persistent or recurrent leukemia and myeloid neoplasms. The primary objective was to evaluate the feasibility and safety of administration of HA-1 TCR-T after HCT. CD8+ and CD4+ T cells expressing the HA-1 TCR and a CD8 coreceptor were successfully manufactured from HA-1-disparate HCT donors. One or more infusions of HA-1 TCR-T following lymphodepleting chemotherapy were administered to 9 HCT recipients who had developed disease recurrence after HCT. TCR-T cells expanded and persisted in vivo after adoptive transfer. No dose-limiting toxicities occurred. Although the study was not designed to assess efficacy, 4 patients achieved or maintained complete remissions following lymphodepletion and HA-1 TCR-T, with 1 patient still in remission at >2 years. Single-cell RNA sequencing of relapsing/progressive leukemia after TCR-T therapy identified upregulated molecules associated with T-cell dysfunction or cancer cell survival. HA-1 TCR-T therapy appears feasible and safe and shows preliminary signals of efficacy. This clinical trial was registered at ClinicalTrials.gov as #NCT03326921.
Collapse
Affiliation(s)
- Elizabeth F. Krakow
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Michelle Brault
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Corinne Summers
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Tanya M. Cunningham
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Melinda A. Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - R. Graeme Black
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kyle B. Woodward
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Nicole Vartanian
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Sami B. Kanaan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Albert C. Yeh
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Robson G. Dossa
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Merav Bar
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ryan D. Cassaday
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Ann Dahlberg
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Brian G. Till
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Cecilia C. S. Yeung
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Ted A. Gooley
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - David G. Maloney
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Stanley R. Riddell
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Philip D. Greenberg
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Aude G. Chapuis
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Evan W. Newell
- Vaccine and Infection Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Scott N. Furlan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Marie Bleakley
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
21
|
WANG ZHENGYI, ZHOU LIANG, WU XIAOYING. Influencing factors and solution strategies of chimeric antigen receptor T-cell therapy (CAR-T) cell immunotherapy. Oncol Res 2024; 32:1479-1516. [PMID: 39220130 PMCID: PMC11361912 DOI: 10.32604/or.2024.048564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor T-cesll therapy (CAR-T) has achieved groundbreaking advancements in clinical application, ushering in a new era for innovative cancer treatment. However, the challenges associated with implementing this novel targeted cell therapy are increasingly significant. Particularly in the clinical management of solid tumors, obstacles such as the immunosuppressive effects of the tumor microenvironment, limited local tumor infiltration capability of CAR-T cells, heterogeneity of tumor targeting antigens, uncertainties surrounding CAR-T quality, control, and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy. These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach. In this paper, we comprehensively analyze recent preclinical and clinical reports on CAR-T therapy while summarizing crucial factors influencing its efficacy. Furthermore, we aim to identify existing solution strategies and explore their current research status. Through this review article, our objective is to broaden perspectives for further exploration into CAR-T therapy strategies and their clinical applications.
Collapse
Affiliation(s)
- ZHENGYI WANG
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - LIANG ZHOU
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - XIAOYING WU
- Ministry of Education and Training, Chengdu Second People’s Hospital, Chengdu, China
| |
Collapse
|
22
|
Cooper RS, Sutherland C, Smith LM, Cowan G, Barnett M, Mitchell D, McLean C, Imlach S, Hayes A, Zahra S, Manchanayake C, Vickers MA, Graham G, McGowan NWA, Turner ML, Campbell JDM, Fraser AR. EBV T-cell immunotherapy generated by peptide selection has enhanced effector functionality compared to LCL stimulation. Front Immunol 2024; 15:1412211. [PMID: 39011042 PMCID: PMC11246990 DOI: 10.3389/fimmu.2024.1412211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
Adoptive immunotherapy with Epstein-Barr virus (EBV)-specific T cells is an effective treatment for relapsed or refractory EBV-induced post-transplant lymphoproliferative disorders (PTLD) with overall survival rates of up to 69%. EBV-specific T cells have been conventionally made by repeated stimulation with EBV-transformed lymphoblastoid cell lines (LCL), which act as antigen-presenting cells. However, this process is expensive, takes many months, and has practical risks associated with live virus. We have developed a peptide-based, virus-free, serum-free closed system to manufacture a bank of virus-specific T cells (VST) for clinical use. We compared these with standard LCL-derived VST using comprehensive characterization and potency assays to determine differences that might influence clinical benefits. Multi-parameter flow cytometry revealed that peptide-derived VST had an expanded central memory population and less exhaustion marker expression than LCL-derived VST. A quantitative HLA-matched allogeneic cytotoxicity assay demonstrated similar specific killing of EBV-infected targets, though peptide-derived EBV T cells had a significantly higher expression of antiviral cytokines and degranulation markers after antigen recall. High-throughput T cell receptor-beta (TCRβ) sequencing demonstrated oligoclonal repertoires, with more matches to known EBV-binding complementary determining region 3 (CDR3) sequences in peptide-derived EBV T cells. Peptide-derived products showed broader and enhanced specificities to EBV nuclear antigens (EBNAs) in both CD8 and CD4 compartments, which may improve the targeting of highly expressed latency antigens in PTLD. Importantly, peptide-based isolation and expansion allows rapid manufacture and significantly increased product yield over conventional LCL-based approaches.
Collapse
Affiliation(s)
- Rachel S. Cooper
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, United Kingdom
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Catherine Sutherland
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Linda M. Smith
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, United Kingdom
| | - Graeme Cowan
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Barnett
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, United Kingdom
| | - Donna Mitchell
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, United Kingdom
| | - Colin McLean
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, United Kingdom
| | - Stuart Imlach
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, United Kingdom
| | - Alan Hayes
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Sharon Zahra
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, United Kingdom
| | - Champa Manchanayake
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, United Kingdom
| | - Mark A. Vickers
- Blood Transfusion Centre, Scottish National Blood Transfusion Service, Aberdeen, United Kingdom
- Microbiology and Immunity, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Gerry Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Neil W. A. McGowan
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, United Kingdom
| | - Marc L. Turner
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, United Kingdom
| | - John D. M. Campbell
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, United Kingdom
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Alasdair R. Fraser
- Tissues, Cells and Advanced Therapeutics, Scottish National Blood Transfusion Service, Jack Copland Centre, Heriot Watt Research Park, Edinburgh, United Kingdom
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
23
|
Yonezawa Ogusuku IE, Herbel V, Lennartz S, Brandes C, Argiro E, Fabian C, Hauck C, Hoogstraten C, Veld S, Hageman L, Teppert K, Koutsoumpli G, Griffioen M, Mockel-Tenbrinck N, Schaser T, de Groot R, Johnston IC, Lock D. Automated manufacture of ΔNPM1 TCR-engineered T cells for AML therapy. Mol Ther Methods Clin Dev 2024; 32:101224. [PMID: 38516690 PMCID: PMC10950868 DOI: 10.1016/j.omtm.2024.101224] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy that requires further therapeutic improvement, especially for the elderly and for subgroups with poor prognosis. A recently discovered T cell receptor (TCR) targeting mutant nucleophosmin 1 (ΔNPM1) presents an attractive option for the development of a cancer antigen-targeted cellular therapy. Manufacturing of TCR-modified T cells, however, is still limited by a complex, time-consuming, and laborious procedure. Therefore, this study specifically addressed the requirements for a scaled manufacture of ΔNPM1-specific T cells in an automated, closed, and good manufacturing practice-compliant process. Starting from cryopreserved leukapheresis, 2E8 CD8-positive T cells were enriched, activated, lentivirally transduced, expanded, and finally formulated. By adjusting and optimizing culture conditions, we additionally reduced the manufacturing time from 12 to 8 days while still achieving a clinically relevant yield of up to 5.5E9 ΔNPM1 TCR-engineered T cells. The cellular product mainly consisted of highly viable CD8-positive T cells with an early memory phenotype. ΔNPM1 TCR CD8 T cells manufactured with the optimized process showed specific killing of AML in vitro and in vivo. The process has been implemented in an upcoming phase 1/2 clinical trial for the treatment of NPM1-mutated AML.
Collapse
Affiliation(s)
| | - Vera Herbel
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Simon Lennartz
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | | | - Eva Argiro
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Caroline Fabian
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Carola Hauck
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Conny Hoogstraten
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Sabrina Veld
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Lois Hageman
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Karin Teppert
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Georgia Koutsoumpli
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | | | - Thomas Schaser
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Rosa de Groot
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | | | - Dominik Lock
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| |
Collapse
|
24
|
Zhang Q, Zheng F, Chen Y, Liang CL, Liu H, Qiu F, Liu Y, Huang H, Lu W, Dai Z. The TOPK Inhibitor HI-TOPK-032 Enhances CAR T-cell Therapy of Hepatocellular Carcinoma by Upregulating Memory T Cells. Cancer Immunol Res 2024; 12:631-643. [PMID: 38407902 DOI: 10.1158/2326-6066.cir-23-0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are emerging as an effective antitumoral therapy. However, their therapeutic effects on solid tumors are limited because of their short survival time and the immunosuppressive tumor microenvironment. Memory T cells respond more vigorously and persist longer than their naïve/effector counterparts. Therefore, promoting CAR T-cell development into memory T cells could further enhance their antitumoral effects. HI-TOPK-032 is a T-LAK cell-originated protein kinase (TOPK)-specific inhibitor that moderately represses some types of tumors. However, it is unknown whether HI-TOPK-032 works on hepatocellular carcinoma (HCC) and whether it impacts antitumoral immunity. Using both subcutaneous and orthotopic xenograft tumor models of two human HCC cell lines, Huh-7 and HepG2, we found that HI-TOPK-032 significantly improved proliferation/persistence of CD8+ CAR T cells, as evidenced by an increase in CAR T-cell counts or frequency of Ki-67+CD8+ cells and a decrease in PD-1+LAG-3+TIM-3+CD8+ CAR T cells in vivo. Although HI-TOPK-032 did not significantly suppress HCC growth, it enhanced the capacity of CAR T cells to inhibit tumor growth. Moreover, HI-TOPK-032 augmented central memory CD8+ T cell (TCM) frequency while increasing eomesodermin expression in CD8+ CAR T cells in tumor-bearing mice. Moreover, it augmented CD8+ CAR TCM cells in vitro and reduced their expression of immune checkpoint molecules. Finally, HI-TOPK-032 inhibited mTOR activation in CAR T cells in vitro and in tumors, whereas overactivation of mTOR reversed the effects of HI-TOPK-032 on CD8+ TCM cells and tumor growth. Thus, our studies have revealed mechanisms underlying the antitumoral effects of HI-TOPK-032 while advancing CAR T-cell immunotherapy.
Collapse
Affiliation(s)
- Qunfang Zhang
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Fang Zheng
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Yuchao Chen
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Chun-Ling Liang
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Huazhen Liu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Feifei Qiu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Yunshan Liu
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Hongfeng Huang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Weihui Lu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Zhenhua Dai
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
25
|
Chavez-Pineda OG, Rodriguez-Moncayo R, Gonzalez-Suarez AM, Guevara-Pantoja PE, Maravillas-Montero JL, Garcia-Cordero JL. Portable platform for leukocyte extraction from blood using sheath-free microfluidic DLD. LAB ON A CHIP 2024; 24:2575-2589. [PMID: 38646820 DOI: 10.1039/d4lc00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Leukocyte count is routinely performed for diagnostic purposes and is rapidly emerging as a significant biomarker for a wide array of diseases. Additionally, leukocytes have demonstrated considerable promise in novel cell-based immunotherapies. However, the direct retrieval of leukocytes from whole blood is a significant challenge due to their low abundance compared to erythrocytes. Here, we introduce a microfluidic-based platform that isolates and recovers leukocytes from diluted whole blood in a single step. Our platform utilizes a novel, sheathless method to initially sediment and focus blood cells into a dense stream while flowing through a tubing before entering the microfluidic device. A hexagonal-shaped structure, patterned at the device's inlet, directs all the blood cells against the channel's outer walls. The focused cells are then separated based on their size using the deterministic lateral displacement (DLD) microfluidic technique. We evaluated various parameters that could influence leukocyte separation, including different focusing structures (assessed both computationally and experimentally), the orientation of the tubing-chip interface, the effects of blood sample hematocrit (dilution), and flow rate. Our device demonstrated the ability to isolate leukocytes from diluted blood with a separation efficiency of 100%, a recovery rate of 76%, and a purity of 80%, while maintaining a cell viability of 98%. The device operates for over 30 min at a flow rate of 2 μL min-1. Furthermore, we developed a handheld pressure controller to drive fluid flow, enhancing the operability of our platform outside of central laboratories and enabling near-patient testing. Our platform can be integrated with downstream cell-based assays and analytical methods that require high leukocyte purity (80%), ranging from cell counting to diagnostics and cell culture applications.
Collapse
Affiliation(s)
- Oriana G Chavez-Pineda
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Roberto Rodriguez-Moncayo
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Alan M Gonzalez-Suarez
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Pablo E Guevara-Pantoja
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Jose L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City14080, Mexico
| | - Jose L Garcia-Cordero
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel 4058, Switzerland.
| |
Collapse
|
26
|
Pang Y, Ghosh N. Novel and multiple targets for chimeric antigen receptor-based therapies in lymphoma. Front Oncol 2024; 14:1396395. [PMID: 38711850 PMCID: PMC11070555 DOI: 10.3389/fonc.2024.1396395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy targeting CD19 in B-cell non-Hodgkin lymphoma (NHL) validates the utility of CAR-based therapy for lymphomatous malignancies. Despite the success, treatment failure due to CD19 antigen loss, mutation, or down-regulation remains the main obstacle to cure. On-target, off-tumor effect of CD19-CAR T leads to side effects such as prolonged B-cell aplasia, limiting the application of therapy in indolent diseases such as chronic lymphocytic leukemia (CLL). Alternative CAR targets and multi-specific CAR are potential solutions to improving cellular therapy outcomes in B-NHL. For Hodgkin lymphoma and T-cell lymphoma, several cell surface antigens have been studied as CAR targets, some of which already showed promising results in clinical trials. Some antigens are expressed by different lymphomas and could be used for designing tumor-agnostic CAR. Here, we reviewed the antigens that have been studied for novel CAR-based therapies, as well as CARs designed to target two or more antigens in the treatment of lymphoma.
Collapse
Affiliation(s)
- Yifan Pang
- Department of Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute, Wake Forest School of Medicine, Charlotte, NC, United States
| | | |
Collapse
|
27
|
Hou Q, Wang P, Kong X, Chen J, Yao C, Luo X, Li Y, Jin Z, Wu X. Higher TIGIT+ γδ T CM cells may predict poor prognosis in younger adult patients with non-acute promyelocytic AML. Front Immunol 2024; 15:1321126. [PMID: 38711501 PMCID: PMC11070478 DOI: 10.3389/fimmu.2024.1321126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction γδ T cells recognize and exert cytotoxicity against tumor cells. They are also considered potential immune cells for immunotherapy. Our previous study revealed that the altered expression of immune checkpoint T-cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) on γδ T cells may result in immunosuppression and is possibly associated with a poor overall survival in acute myeloid leukemia (AML). However, whether γδ T-cell memory subsets are predominantly involved and whether they have a relationship with clinical outcomes in patients with AML under the age of 65 remain unclear. Methods In this study, we developed a multicolor flow cytometry-based assay to monitor the frequency and distribution of γδ T-cell subsets, including central memory γδ T cells (TCM γδ), effector memory γδ T cells (TEM γδ), and TEM expressing CD45RA (TEMRA γδ), in peripheral blood from 30 young (≤65 years old) patients with newly diagnosed non-acute promyelocytic leukemia (also known as M3) AML (AMLy-DN), 14 young patients with AML in complete remission (AMLy-CR), and 30 healthy individuals (HIs). Results Compared with HIs, patients with AMLy-DN exhibited a significantly higher differentiation of γδ T cells, which was characterized by decreased TCM γδ cells and increased TEMRA γδ cells. A generally higher TIGIT expression was observed in γδ T cells and relative subsets in patients with AMLy-DN, which was partially recovered in patients with AMLy-CR. Furthermore, 17 paired bone marrow from patients with AMLy-DN contained higher percentages of γδ and TIGIT+ γδ T cells and a lower percentage of TCM γδ T cells. Multivariate logistic regression analyses revealed the association of high percentage of TIGIT+ TCM γδ T cells with an increased risk of poor induction chemotherapy response. Conclusions In this study, we investigated the distribution of γδ T cells and their memory subsets in patients with non-M3 AML and suggested TIGIT+ TCM γδ T cells as potential predictive markers of induction chemotherapy response.
Collapse
MESH Headings
- Humans
- Receptors, Immunologic/metabolism
- Male
- Female
- Adult
- Middle Aged
- Prognosis
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Young Adult
- Aged
- Memory T Cells/immunology
- Memory T Cells/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/diagnosis
- Immunologic Memory
- Leukemia, Promyelocytic, Acute/immunology
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/mortality
- Immunophenotyping
Collapse
Affiliation(s)
- Qi Hou
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Penglin Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xueting Kong
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Junjie Chen
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Chao Yao
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaodan Luo
- Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Zhenyi Jin
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuli Wu
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| |
Collapse
|
28
|
Ouyang W, Jin SW, Xu N, Liu WY, Zhao H, Zhang L, Kang L, Tao Y, Liu Y, Wang Y, Wang J, Liu F, Yu L, Liu Z, Mi JQ. PD-1 downregulation enhances CAR-T cell antitumor efficiency by preserving a cell memory phenotype and reducing exhaustion. J Immunother Cancer 2024; 12:e008429. [PMID: 38589248 PMCID: PMC11015237 DOI: 10.1136/jitc-2023-008429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Despite the encouraging outcome of chimeric antigen receptor T cell (CAR-T) targeting B cell maturation antigen (BCMA) in managing relapsed or refractory multiple myeloma (RRMM) patients, the therapeutic side effects and dysfunctions of CAR-T cells have limited the efficacy and clinical application of this promising approach. METHODS In this study, we incorporated a short hairpin RNA cassette targeting PD-1 into a BCMA-CAR with an OX-40 costimulatory domain. The transduced PD-1KD BCMA CAR-T cells were evaluated for surface CAR expression, T-cell proliferation, cytotoxicity, cytokine production, and subsets when they were exposed to a single or repetitive antigen stimulation. Safety and efficacy were initially observed in a phase I clinical trial for RRMM patients. RESULTS Compared with parental BCMA CAR-T cells, PD-1KD BCMA CAR-T cell therapy showed reduced T-cell exhaustion and increased percentage of memory T cells in vitro. Better antitumor activity in vivo was also observed in PD-1KD BCMA CAR-T group. In the phase I clinical trial of the CAR-T cell therapy for seven RRMM patients, safety and efficacy were initially observed in all seven patients, including four patients (4/7, 57.1%) with at least one extramedullary site and four patients (4/7, 57.1%) with high-risk cytogenetics. The overall response rate was 85.7% (6/7). Four patients had a stringent complete response (sCR), one patient had a CR, one patient had a partial response, and one patient had stable disease. Safety profile was also observed in these patients, with an incidence of manageable mild to moderate cytokine release syndrome and without the occurrence of neurological toxicity. CONCLUSIONS Our study demonstrates a design concept of CAR-T cells independent of antigen specificity and provides an alternative approach for improving the efficacy of CAR-T cell therapy.
Collapse
Affiliation(s)
- Wanyan Ouyang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Wei Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Xu
- Shanghai Unicar-Therapy Bio-medicine Technology Co Ltd, Shanghai, China
| | - Wei-Yang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liuqingqing Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liqing Kang
- Shanghai Unicar-Therapy Bio-medicine Technology Co Ltd, Shanghai, China
| | - Yi Tao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanfang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Yu
- Shanghai Unicar-Therapy Bio-medicine Technology Co Ltd, Shanghai, China
| | - Zhiqiang Liu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Shirane Y, Fujii Y, Ono A, Nakahara H, Hayes CN, Miura R, Murakami S, Sakamoto N, Uchikawa S, Fujino H, Nakahara T, Murakami E, Yamauchi M, Miki D, Kawaoka T, Arihiro K, Tsuge M, Oka S. Peripheral T Cell Subpopulations as a Potential Surrogate Biomarker during Atezolizumab plus Bevacizumab Treatment for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1328. [PMID: 38611007 PMCID: PMC11011052 DOI: 10.3390/cancers16071328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The therapeutic benefits of the immunotherapeutic combination of atezolizumab and bevacizumab (Atez/Bev) in hepatocellular carcinoma (HCC) vary. Therapeutic biomarkers might help improve outcomes for HCC patients receiving Atez/Bev therapy. The role of systemic immune profiles in HCC progression also remains unclear. This study aimed to evaluate the status and dynamics of peripheral T cell subpopulations in HCC patients receiving Atez/Bev treatment and to explore biomarkers predictive of a therapeutic response. We enrolled 83 unresectable advanced HCC patients who commenced Atez/Bev treatment at our hospital between October 2020 and June 2022. Peripheral T cell subpopulations in peripheral blood mononuclear cells at baseline and 3 weeks post-treatment were investigated using flow cytometry and compared with those in control samples from 18 healthy individuals. We retrospectively analyzed the association between peripheral T cell subpopulation profiles and clinical outcomes. Baseline peripheral T cell subpopulations could be profiled in 70 patients with sufficient cell counts, among whom 3-week subpopulations could be evaluated in 51 patients. Multivariate analysis showed that a high baseline proportion of CD8+ central memory T (TCM) cells was independently associated with longer progression-free survival (PFS). Further, overall survival (OS) was significantly prolonged in patients with increased CD8+ effector memory T (TEM) cell proportions. In conclusion, TCM proportion at baseline might be a good indicator of the efficacy of Atez/Bev therapy. Furthermore, observation of increasing TEM proportions might be an early predictor of the potential clinical benefits of treatment.
Collapse
Affiliation(s)
- Yuki Shirane
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Yasutoshi Fujii
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
- Department of Clinical Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Atsushi Ono
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Hikaru Nakahara
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Clair Nelson Hayes
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Ryoichi Miura
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Serami Murakami
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Naoya Sakamoto
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan;
| | - Shinsuke Uchikawa
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Hatsue Fujino
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Takashi Nakahara
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Eisuke Murakami
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Masami Yamauchi
- Department of Clinical Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Daiki Miki
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Tomokazu Kawaoka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima 734-8551, Japan;
| | - Masataka Tsuge
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (Y.S.); (Y.F.); (H.N.); (C.N.H.); (R.M.); (S.M.); (S.U.); (H.F.); (T.N.); (E.M.); (D.M.); (T.K.); (M.T.); (S.O.)
| |
Collapse
|
30
|
Hardtke-Wolenski M, Landwehr-Kenzel S. Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both? Mol Cell Pediatr 2024; 11:3. [PMID: 38507159 PMCID: PMC10954601 DOI: 10.1186/s40348-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Collapse
Affiliation(s)
- Matthias Hardtke-Wolenski
- Hannover Medical School, Department of Gastroenterology Hepatology, Infectious Diseases and Endocrinology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- University Hospital Essen, Institute of Medical Microbiology, University Duisburg-Essen, Hufelandstraße 55, Essen, 45122, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Department of Pediatric Pneumology, Allergology and Neonatology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| |
Collapse
|
31
|
Chang CY, Chang SC, Wei YF, Tseng YT, Chou CH, Chen YY, Chen CY, Ye YL. Exploring the evolution of T cell function and diversity across different stages of non-small cell lung cancer. Am J Cancer Res 2024; 14:1243-1257. [PMID: 38590421 PMCID: PMC10998748 DOI: 10.62347/aryh6451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
The immune system plays a key role in detecting and fighting cancerous tumors. T cells are a crucial component in both natural and therapeutic cancer immunoediting responses, but it is unclear if they are the primary agents of these processes. In this study, patients with lung lesions detected by CT scan were selected, and their peripheral blood samples were analyzed for T cell population and serum cytokines/chemokines. T cell subtypes (CD3, CD4, CD8, CD27, CD28, CD45, CD45RA, CD57, CCR7, and PD1) and serum cytokines/chemokines (IL-2, IL-6, IL-10, IFN-γ, TGF-β, TNFα, CXCL1, CXCL9, and CXCL12) were measured by flow cytometry and analysis before surgical resection or other cancer treatments. The frequency of T cell subpopulations in patients with lung cancer (n = 111) corresponded to those seen in patients with T cell exhaustion. As lung cancer progressed, the proportion of effector memory T cells decreased, while the proportion of naive T cells, PD-1, CD57+, CD28+CD27+, CD45RA+, and CD3+CD4+CCR7 increased. Circulating CD8+PD1+ T cells were positively correlated with intra-tumoral PD-L1 expression. Concurrently, serum levels of IL-2, TGF-β, and CXCL9 decreased, while IL-6, IL-10, IFN-γ, and CXCL12 increased during the progression of lung cancer. In conclusion, T cell dysfunction is associated with cancer progression, particularly in advanced-stage lung cancer, and cancer immunoediting will provide early-stage cancer detection and further therapeutic strategies.
Collapse
Affiliation(s)
- Cheng-Yu Chang
- Division of Chest Medicine, Department of Internal Medicine, Far Eastern Memorial HospitalNew Taipei City, Taiwan
- Department of Nursing, Cardinal Tien Junior College of Healthcare and ManagementNew Taipei, Taiwan
| | - Shih-Chieh Chang
- Division of Chest Medicine, Department of Internal Medicine, National Yang-Ming Chiao Tung University HospitalYilan City, Yilan County, Taiwan
| | - Yu-Feng Wei
- School of Medicine for International Students, College of Medicine, I-Shou UniversityKaohsiung, Taiwan
- Department of Internal Medicine, E-Da Cancer Hospital, I-Shou UniversityKaohsiung, Taiwan
| | - Yu-Ting Tseng
- Department of Surgery, National Taiwan University Hospital Yunlin BranchDouliu City, Yunlin County, Taiwan
| | - Chien-Hong Chou
- Department of Internal Medicine, National Taiwan University Hospital Yunlin BranchDouliu City, Yunlin County, Taiwan
| | - Ying-Yin Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin BranchDouliu City, Yunlin County, Taiwan
| | - Chung-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin BranchDouliu City, Yunlin County, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan UniversityTaipei City, Taiwan
| | - Yi-Ling Ye
- Department of Biotechnology, National Formosa UniversityHuwei City, Yunlin County, Taiwan
| |
Collapse
|
32
|
Ashraf H, Heydarnejad M, Kosari F. The Confounding Role of Graft-Versus-Host Disease in Animal Models of Cancer Immunotherapy: A Systematic Review. ARCHIVES OF IRANIAN MEDICINE 2024; 27:159-167. [PMID: 38685841 PMCID: PMC11097315 DOI: 10.34172/aim.2024.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/14/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Cancer immunotherapy has emerged as a transformative approach for treating various malignancies, including melanoma, lung cancer, breast cancer, and leukemia. Animal models have been instrumental in elucidating the mechanisms and potential of these therapies. However, graft-versus-host disease (GVHD) is an inherent challenge in these studies, primarily because the introduction of foreign immune cells or tissues often triggers immune responses. METHODS A detailed systematic search was conducted across various scientific databases, including PubMed, Scopus, Embase, and Web of Science. The search aimed to identify peer-reviewed articles published in English from January 2000 to September 2023. Keywords and phrases used in the search included "Graft-versus-Host Disease", "GVHD", "animal models", "cancer immunotherapy", and combinations thereof. Boolean operators (AND/OR) were employed to refine the search. Finally, 6 articles were included in this systematic review, which is registered on PROSPERO (ID number CRD42024488544). RESULTS Our systematic review identified several mechanisms employed in animal studies to mitigate the confounding effects of GVHD. These included genetically modified mouse models, immunosuppressive drugs, and humanized mice. Furthermore, the review highlights innovative approaches such as selective T-cell depletion and the use of specific cytokine inhibitors. CONCLUSION By systematically identifying and mitigating the confounding effects of GVHD, we can significantly improve the predictive validity of preclinical trials, obtain broadly applicable findings, improve the efficiency of drugs, enhance safety profiling, and develop better therapeutic strategies. This approach is crucial in ensuring that the immunotherapeutic strategies developed in the laboratory are reflective of the human physiological response, thereby bridging a critical translational gap in oncological research.
Collapse
Affiliation(s)
- Hami Ashraf
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heydarnejad
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Kosari
- Department of Pathology, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Ayala Ceja M, Khericha M, Harris CM, Puig-Saus C, Chen YY. CAR-T cell manufacturing: Major process parameters and next-generation strategies. J Exp Med 2024; 221:e20230903. [PMID: 38226974 PMCID: PMC10791545 DOI: 10.1084/jem.20230903] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have demonstrated strong curative potential and become a critical component in the array of B-cell malignancy treatments. Successful deployment of CAR-T cell therapies to treat hematologic and solid cancers, as well as other indications such as autoimmune diseases, is dependent on effective CAR-T cell manufacturing that impacts not only product safety and efficacy but also overall accessibility to patients in need. In this review, we discuss the major process parameters of autologous CAR-T cell manufacturing, as well as regulatory considerations and ongoing developments that will enable the next generation of CAR-T cell therapies.
Collapse
Affiliation(s)
- Melanie Ayala Ceja
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
| | - Mobina Khericha
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
| | - Caitlin M. Harris
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
| | - Cristina Puig-Saus
- Department of Medicine, University of California−Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California−Los Angeles, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at University of California−Los Angeles, Los Angeles, CA, USA
| | - Yvonne Y. Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California−Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California−Los Angeles, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at University of California−Los Angeles, Los Angeles, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California−Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
34
|
Ligon JA, Ramakrishna S, Ceppi F, Calkoen FGJ, Diorio C, Davis KL, Jacoby E, Gottschalk S, Schultz LM, Capitini CM. INSPIRED Symposium Part 4B: Chimeric Antigen Receptor T Cell Correlative Studies-Established Findings and Future Priorities. Transplant Cell Ther 2024; 30:155-170. [PMID: 37863355 PMCID: PMC12047531 DOI: 10.1016/j.jtct.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of B cell malignancies, with multiple CAR T cell products approved for numerous indications by regulatory agencies worldwide. However, significant work remains to be done to enhance these treatments. In March 2023, a group of experts in CAR T cell therapy assembled at the National Institutes of Health in Bethesda, Maryland at the Insights in Pediatric CAR T Cell Immunotherapy: Recent Advances and Future Directions (INSPIRED) Symposium to identify key areas for research for the coming years. In session 4B, correlative studies to be incorporated into future clinical trials and real-world settings were discussed. Active areas of research identified included (1) optimizing CAR T cell product manufacturing; (2) ensuring adequate lymphodepletion prior to CAR T cell administration; (3) overcoming immunoregulatory cells and tumor stroma present in the tumor microenvironment, particularly in solid tumors; (4) understanding tumor intrinsic properties that lead to CAR T cell immunotherapy resistance; and (5) uncovering biomarkers predictive of treatment resistance, treatment durability, or immune-related adverse events. Here we review the results of previously published clinical trials and real-world studies to summarize what is currently known about each of these topics. We then outline priorities for future research that we believe will be important for improving our understanding of CAR T cell therapy and ultimately leading to better outcomes for patients.
Collapse
Affiliation(s)
- John A Ligon
- Department of Pediatrics, Division of Hematology/Oncology, University of Florida, Gainesville, Florida; University of Florida Health Cancer Center, Gainesville, Florida.
| | - Sneha Ramakrishna
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Francesco Ceppi
- Division of Pediatrics, Department of Woman-Mother-Child, Pediatric Hematology-Oncology Unit, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Friso G J Calkoen
- Division of Pediatric Oncology, Princess Maxima Center, Utrecht, The Netherlands
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kara L Davis
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Elad Jacoby
- Pediatric Hemato-Oncology, Sheba Medical Center and Tel Aviv University, Tel Aviv, Israel
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Liora M Schultz
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
35
|
Mishra AK, Schmidt TM, Martell EB, Chen AS, Dogru RE, Hematti P, Callander NS. PD1 +TIGIT +2B4 +KLRG1 + Cells Might Underlie T Cell Dysfunction in Patients Treated with BCMA-Directed Chimeric Antigen Receptor T Cell Therapy. Transplant Cell Ther 2024; 30:191-202. [PMID: 37967650 DOI: 10.1016/j.jtct.2023.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/07/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has shown rapid, frequent, and deep responses in patients with relapsed/refractory multiple myeloma (RRMM). However, relapse frequently occurs following CAR-T therapy, and the cause of this resistance is not well defined. Among the potential mechanisms of resistance, T cell intrinsic factors may be an important source of failure. Here we used spectral flow cytometry to identify the changes in T cell phenotypes in bone marrow aspirates at different stages of multiple myeloma progression, including cases that relapsed after anti-BCMA CAR-T therapy. We identified completely different T cell phenotypes in RRMM and post CAR-T relapse cases compared to healthy donors and earlier stages of multiple myeloma, novel double-negative CD3+ T cells in RRMM and CAR-T relapsed cases, and differences in CD8 T cell phenotype at the baseline between peripheral blood and bone marrow from healthy donors. We found that the majority of T cells in RRMM patients and significant T cell subsets in post-CAR-T relapsed patients expressed multiple coinhibitory markers, including PD1, TIGIT, 2B4, and KLRG1.
Collapse
Affiliation(s)
- Ameet K Mishra
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.
| | - Timothy M Schmidt
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Ella B Martell
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Alex S Chen
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Reyna E Dogru
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Peiman Hematti
- Department of Medicine, Froedtert Hospital and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Natalie S Callander
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
36
|
Bal S, Costa LJ. Bridging treatment prior to chimeric antigen receptor T-cell therapy in multiple myeloma. Br J Haematol 2024; 204:449-454. [PMID: 38036424 DOI: 10.1111/bjh.19227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
Autologous patient-derived adoptive T-cell therapies have revolutionized the management of relapsed multiple myeloma (MM). However, the current manufacturing and quality control processes result in lengthy vein-to-vein time, making bridging therapy necessary for most patients. Yet the decision and choice of optimal bridging therapy are complex in the heavily pretreated relapsed MM patient. In this perspective piece, the authors provide their approach and considerations while selecting an optimal bridging regimen before autologous chimeric antigen receptor T-cell therapy.
Collapse
Affiliation(s)
- Susan Bal
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Luciano J Costa
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
37
|
Hu X, Cao D, Zhou Z, Wang Z, Zeng J, Hong WX. Single-cell transcriptomic profiling reveals immune cell heterogeneity in acute myeloid leukaemia peripheral blood mononuclear cells after chemotherapy. Cell Oncol (Dordr) 2024; 47:97-112. [PMID: 37615858 PMCID: PMC10899424 DOI: 10.1007/s13402-023-00853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
PURPOSE Acute myeloid leukaemia (AML) is a heterogeneous disease characterised by the rapid clonal expansion of abnormally differentiated myeloid progenitor cells residing in a complex microenvironment. However, the immune cell types, status, and genome profile of the peripheral blood mononuclear cell (PBMC) microenvironment in AML patients after chemotherapy are poorly understood. In order to explore the immune microenvironment of AML patients after chemotherapy, we conducted this study for providing insights into precision medicine and immunotherapy of AML. METHODS In this study, we used single-cell RNA sequencing (scRNA-seq) to analyse the PBMC microenvironment from five AML patients treated with different chemotherapy regimens and six healthy donors. We compared the cell compositions in AML patients and healthy donors, and performed gene set enrichment analysis (GSEA), CellPhoneDB, and copy number variation (CNV) analysis. RESULTS Using scRNA-seq technology, 91,772 high quality cells of 44,950 PBMCs from AML patients and 46,822 PBMCs from healthy donors were classified as 14 major cell clusters. Our study revealed the sub-cluster diversity of T cells, natural killer (NK) cells, monocytes, dendritic cells (DCs), and haematopoietic stem cell progenitors (HSC-Prog) in AML patients under chemotherapy. NK cells and monocyte-DCs showed significant changes in transcription factor expression and chromosome copy number variation (CNV). We also observed significant heterogeneity in CNV and intercellular interaction networks in HSC-Prog cells. CONCLUSION Our results elucidated the PBMC single-cell landscape and provided insights into precision medicine and immunotherapy for treating AML.
Collapse
Affiliation(s)
- Xuqiao Hu
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen Institute of Dermatology, Shenzhen, China.
- Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China.
| | - Dongyan Cao
- Department of Biliary-Pancreatic Surgery, the Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenru Zhou
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen Institute of Dermatology, Shenzhen, China
- Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Zhaoyang Wang
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen Institute of Dermatology, Shenzhen, China
- Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Jieying Zeng
- Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Wen-Xu Hong
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen Institute of Dermatology, Shenzhen, China.
| |
Collapse
|
38
|
Joslyn LR, Huang W, Miles D, Hosseini I, Ramanujan S. "Digital twins elucidate critical role of T scm in clinical persistence of TCR-engineered cell therapy". NPJ Syst Biol Appl 2024; 10:11. [PMID: 38278838 PMCID: PMC10817974 DOI: 10.1038/s41540-024-00335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Despite recent progress in adoptive T cell therapy for cancer, understanding and predicting the kinetics of infused T cells remains a challenge. Multiple factors can impact the distribution, expansion, and decay or persistence of infused T cells in patients. We have developed a novel quantitative systems pharmacology (QSP) model of TCR-transgenic T cell therapy in patients with solid tumors to describe the kinetics of endogenous T cells and multiple memory subsets of engineered T cells after infusion. These T cells undergo lymphodepletion, proliferation, trafficking, differentiation, and apoptosis in blood, lymph nodes, tumor site, and other peripheral tissues. Using the model, we generated patient-matched digital twins that recapitulate the circulating T cell kinetics reported from a clinical trial of TCR-engineered T cells targeting E7 in patients with metastatic HPV-associated epithelial cancers. Analyses of key parameters influencing cell kinetics and differences among digital twins identify stem cell-like memory T cells (Tscm) cells as an important determinant of both expansion and persistence and suggest that Tscm-related differences contribute significantly to the observed variability in cellular kinetics among patients. We simulated in silico clinical trials using digital twins and predict that Tscm enrichment in the infused product improves persistence of the engineered T cells and could enable administration of a lower dose. Finally, we verified the broader relevance of the QSP model, the digital twins, and findings on the importance of Tscm enrichment by predicting kinetics for two patients with pancreatic cancer treated with KRAS G12D targeting T cell therapy. This work offers insight into the key role of Tscm biology on T cell kinetics and provides a quantitative framework to evaluate cellular kinetics for future efforts in the development and clinical application of TCR-engineered T cell therapies.
Collapse
Affiliation(s)
| | - Weize Huang
- Genentech Inc., South San Francisco, CA, USA
| | - Dale Miles
- Genentech Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|
39
|
Gammelgaard OL, Terp MG, Kirkin AF, Johansen S, Traynor S, Vever H, Guldberg P, Kodahl AR, Gjerstorff MF, Ditzel HJ. Adoptive cell transfer therapy with ex vivo primed peripheral lymphocytes in combination with anti-PDL1 therapy effectively inhibits triple-negative breast cancer growth and metastasis. Mol Cancer 2024; 23:6. [PMID: 38184565 PMCID: PMC10770996 DOI: 10.1186/s12943-023-01914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Adoptive cell transfer cancer immunotherapy holds promise for treating disseminated disease, yet generating sufficient numbers of lymphocytes with anti-cancer activity against diverse specificities remains a major challenge. We recently developed a novel procedure (ALECSAT) for selecting, expanding and maturating polyclonal lymphocytes from peripheral blood with the capacity to target malignant cells. METHODS Immunodeficient mice were challenged with triple-negative breast cancer cell lines or patient-derived xenografts (PDX) and treated with allogeneic or autologous ALECSAT cells with and without anti-PDL1 therapy to assess the capacity of ALECSAT cells to inhibit primary tumor growth and metastasis. RESULTS ALECSAT mono therapy inhibited metastasis, but did not inhibit primary tumor growth or prolong survival of tumor-bearing mice. In contrast, combined ALECSAT and anti-PDL1 therapy significantly inhibited primary tumor growth, nearly completely blocked metastasis, and prolonged survival of tumor-bearing mice. CONCLUSIONS Combined ALECSAT and anti-PDL1 therapy results in favorable anti-cancer responses in both cell line-derived xenograft and autologous PDX models of advanced triple-negative breast cancer.
Collapse
Affiliation(s)
- Odd L Gammelgaard
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark.
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
| | | | - Simone Johansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
| | - Sofie Traynor
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
| | - Henriette Vever
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
| | - Per Guldberg
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
- Danish Cancer Institute (DCI), Copenhagen, Denmark
| | - Annette R Kodahl
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark.
- Department of Oncology, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark.
| |
Collapse
|
40
|
Ventin M, Cattaneo G, Maggs L, Arya S, Wang X, Ferrone CR. Implications of High Tumor Burden on Chimeric Antigen Receptor T-Cell Immunotherapy: A Review. JAMA Oncol 2024; 10:115-121. [PMID: 37943567 DOI: 10.1001/jamaoncol.2023.4504] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Importance Chimeric antigen receptor (CAR) T-cell therapy has redefined the therapeutic landscape of several hematologic malignant tumors. Despite its clinical efficacy, many patients with cancer experience nonresponse to CAR T-cell treatment, disease relapse within months, or severe adverse events. Furthermore, CAR T-cell therapy has demonstrated minimal to no clinical efficacy in the treatment of solid tumors in clinical trials. Observations A complex interplay between high tumor burden and the systemic and local tumor microenvironment on clinical outcomes of CAR T-cell therapy is emerging from preclinical and clinical data. The hallmarks of advanced cancers-namely, inflammation and immune dysregulation-sustain cancer progression. They negatively affect the production, expansion, antitumor activity, and persistence of CAR T-cell products. Understanding of CAR T-cell therapy, mechanisms underlying its failure, and adverse events under conditions of high tumor burden is critical for realizing the full potential of this novel treatment approach. Conclusions and Relevance This review focuses on linking the efficacy and safety of CAR T-cell therapy with tumor burden. Its limitations relative to high tumor burden, systemic inflammation, and immune dysregulation are discussed. Emerging clinical approaches to overcome these obstacles and more effectively incorporate this therapeutic strategy into the treatment paradigm of patients with solid malignant tumors are also described.
Collapse
Affiliation(s)
- Marco Ventin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Giulia Cattaneo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Luke Maggs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Shahrzad Arya
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Xinhui Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Cristina R Ferrone
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
41
|
Tang L, Huang ZP, Mei H, Hu Y. Insights gained from single-cell analysis of chimeric antigen receptor T-cell immunotherapy in cancer. Mil Med Res 2023; 10:52. [PMID: 37941075 PMCID: PMC10631149 DOI: 10.1186/s40779-023-00486-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Advances in chimeric antigen receptor (CAR)-T cell therapy have significantly improved clinical outcomes of patients with relapsed or refractory hematologic malignancies. However, progress is still hindered as clinical benefit is only available for a fraction of patients. A lack of understanding of CAR-T cell behaviors in vivo at the single-cell level impedes their more extensive application in clinical practice. Mounting evidence suggests that single-cell sequencing techniques can help perfect the receptor design, guide gene-based T cell modification, and optimize the CAR-T manufacturing conditions, and all of them are essential for long-term immunosurveillance and more favorable clinical outcomes. The information generated by employing these methods also potentially informs our understanding of the numerous complex factors that dictate therapeutic efficacy and toxicities. In this review, we discuss the reasons why CAR-T immunotherapy fails in clinical practice and what this field has learned since the milestone of single-cell sequencing technologies. We further outline recent advances in the application of single-cell analyses in CAR-T immunotherapy. Specifically, we provide an overview of single-cell studies focusing on target antigens, CAR-transgene integration, and preclinical research and clinical applications, and then discuss how it will affect the future of CAR-T cell therapy.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Zhong-Pei Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
42
|
Timpanaro A, Piccand C, Dzhumashev D, Anton-Joseph S, Robbi A, Moser J, Rössler J, Bernasconi M. CD276-CAR T cells and Dual-CAR T cells targeting CD276/FGFR4 promote rhabdomyosarcoma clearance in orthotopic mouse models. J Exp Clin Cancer Res 2023; 42:293. [PMID: 37924157 PMCID: PMC10625270 DOI: 10.1186/s13046-023-02838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/21/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood, whose prognosis is still poor especially for metastatic, high-grade, and relapsed RMS. New treatments are urgently needed, especially systemic therapies. Chimeric Antigen Receptor T cells (CAR Ts) are very effective against hematological malignancies, but their efficacy against solid tumors needs to be improved. CD276 (B7-H3) is a target upregulated in RMS and detected at low levels in normal tissues. FGFR4 is a very specific target for RMS. Here, we optimized CAR Ts for these two targets, alone or in combination, and tested their anti-tumor activity in vitro and in vivo. METHODS Four different single-domain antibodies were used to select the most specific FGFR4-CAR construct. RMS cell killing and cytokine production by CD276- and FGFR4-CAR Ts expressing CD8α or CD28 HD/TM domains in combination with 4-1BB and/or CD28 co-stimulatory domains were tested in vitro. The most effective CD276- and FGFR4-CAR Ts were used to generate Dual-CAR Ts. Tumor killing was evaluated in vivo in three orthotopic RMS mouse models. RESULTS CD276.V-CAR Ts (276.MG.CD28HD/TM.CD28CSD.3ζ) showed the strongest killing of RMS cells, and the highest release of IFN-γ and Granzyme B in vitro. FGFR4.V-CAR Ts (F8-FR4.CD28HD/TM.CD28CSD.3ζ) showed the most specific killing. CD276-CAR Ts successfully eradicated RD- and Rh4-derived RMS tumors in vivo, achieving complete remission in 3/5 and 5/5 mice, respectively. In CD276low JR-tumors, however, they achieved complete remission in only 1/5 mice. FGFR4 CAR Ts instead delayed Rh4 tumor growth. Dual-CAR Ts promoted Rh4-tumors clearance in 5/5 mice. CONCLUSIONS CD276- and CD276/FGFR4-directed CAR Ts showed effective RMS cell killing in vitro and eradication of CD276high RMS tumors in vivo. CD276low tumors escaped the therapy highlighting a correlation between antigen density and effectiveness. FGFR4-CAR Ts showed specific killing in vitro but could only delay RMS growth in vivo. Our results demonstrate that combined expression of CD276-CAR with other CAR does not reduce its benefit. Introducing immunotherapy with CD276-CAR Ts in RMS seems to be feasible and promising, although CAR constructs design and target combinations have to be further improved to eradicate tumors with low target expression.
Collapse
Affiliation(s)
- Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Caroline Piccand
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Stenija Anton-Joseph
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Andrea Robbi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Janine Moser
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland.
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland.
| |
Collapse
|
43
|
Kirouac DC, Zmurchok C, Deyati A, Sicherman J, Bond C, Zandstra PW. Deconvolution of clinical variance in CAR-T cell pharmacology and response. Nat Biotechnol 2023; 41:1606-1617. [PMID: 36849828 PMCID: PMC10635825 DOI: 10.1038/s41587-023-01687-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/20/2023] [Indexed: 03/01/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) expansion and persistence vary widely among patients and predict both efficacy and toxicity. However, the mechanisms underlying clinical outcomes and patient variability are poorly defined. In this study, we developed a mathematical description of T cell responses wherein transitions among memory, effector and exhausted T cell states are coordinately regulated by tumor antigen engagement. The model is trained using clinical data from CAR-T products in different hematological malignancies and identifies cell-intrinsic differences in the turnover rate of memory cells and cytotoxic potency of effectors as the primary determinants of clinical response. Using a machine learning workflow, we demonstrate that product-intrinsic differences can accurately predict patient outcomes based on pre-infusion transcriptomes, and additional pharmacological variance arises from cellular interactions with patient tumors. We found that transcriptional signatures outperform T cell immunophenotyping as predictive of clinical response for two CD19-targeted CAR-T products in three indications, enabling a new phase of predictive CAR-T product development.
Collapse
Affiliation(s)
| | | | | | | | - Chris Bond
- Notch Therapeutics, Vancouver, BC, Canada
| | - Peter W Zandstra
- Notch Therapeutics, Vancouver, BC, Canada
- School of Biomedical Engineering and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
44
|
Wu T, Tan JHL, Sin W, Luah YH, Tan SY, Goh M, Birnbaum ME, Chen Q, Cheow LF. Cell Granularity Reflects Immune Cell Function and Enables Selection of Lymphocytes with Superior Attributes for Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302175. [PMID: 37544893 PMCID: PMC10558660 DOI: 10.1002/advs.202302175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Indexed: 08/08/2023]
Abstract
In keeping with the rule of "form follows function", morphological aspects of a cell can reflect its role. Here, it is shown that the cellular granularity of a lymphocyte, represented by its intrinsic side scatter (SSC), is a potent indicator of its cell state and function. The granularity of a lymphocyte increases from naïve to terminal effector state. High-throughput cell-sorting yields a SSChigh population that can mediate immediate effector functions, and a highly prolific SSClow population that can give rise to the replenishment of the memory pool. CAR-T cells derived from the younger SSClow population possess desirable attributes for immunotherapy, manifested by increased naïve-like cells and stem cell memory (TSCM )-like cells together with a balanced CD4/CD8 ratio, as well as enhanced target-killing in vitro and in vivo. Altogether, lymphocyte segregation based on biophysical properties is an effective approach for label-free selection of cells that share collective functions and can have important applications for cell-based immunotherapies.
Collapse
Affiliation(s)
- Tongjin Wu
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Joel Heng Loong Tan
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Wei‐Xiang Sin
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
| | - Yen Hoon Luah
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Myra Goh
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Michael E. Birnbaum
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Lih Feng Cheow
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
| |
Collapse
|
45
|
Mittra S, Harding SM, Kaech SM. Memory T Cells in the Immunoprevention of Cancer: A Switch from Therapeutic to Prophylactic Approaches. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:907-916. [PMID: 37669503 PMCID: PMC10491418 DOI: 10.4049/jimmunol.2300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/24/2023] [Indexed: 09/07/2023]
Abstract
Cancer immunoprevention, the engagement of the immune system to prevent cancer, is largely overshadowed by therapeutic approaches to treating cancer after detection. Vaccines or, alternatively, the utilization of genetically engineered memory T cells could be methods of engaging and creating cancer-specific T cells with superb memory, lenient activation requirements, potent antitumor cytotoxicity, tumor surveillance, and resilience against immunosuppressive factors in the tumor microenvironment. In this review we analyze memory T cell subtypes based on their potential utility in cancer immunoprevention with regard to longevity, localization, activation requirements, and efficacy in fighting cancers. A particular focus is on how both tissue-resident memory T cells and stem memory T cells could be promising subtypes for engaging in immunoprevention.
Collapse
Affiliation(s)
- Siddhesh Mittra
- University of Toronto Schools, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shane M. Harding
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Departments of Radiation Oncology and Immunology, University of Toronto; Toronto, Canada
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
46
|
Roger L, Miners KL, Leonard L, Grimstead JW, Price DA, Baird DM, Ladell K. T cell memory revisited using single telomere length analysis. Front Immunol 2023; 14:1100535. [PMID: 37781376 PMCID: PMC10536158 DOI: 10.3389/fimmu.2023.1100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/09/2023] [Indexed: 10/03/2023] Open
Abstract
The fundamental basis of T cell memory remains elusive. It is established that antigen stimulation drives clonal proliferation and differentiation, but the relationship between cellular phenotype, replicative history, and longevity, which is likely essential for durable memory, has proven difficult to elucidate. To address these issues, we used conventional markers of differentiation to identify and isolate various subsets of CD8+ memory T cells and measured telomere lengths in these phenotypically defined populations using the most sensitive technique developed to date, namely single telomere length analysis (STELA). Naive cells were excluded on the basis of dual expression of CCR7 and CD45RA. Memory subsets were sorted as CD27+CD45RA+, CD27intCD45RA+, CD27-CD45RA+, CD27+CD45RAint, CD27-CD45RAint, CD27+CD45RA-, and CD27-CD45RA- at >98% purity. The shortest median telomere lengths were detected among subsets that lacked expression of CD45RA, and the longest median telomere lengths were detected among subsets that expressed CD45RA. Longer median telomere lengths were also a feature of subsets that expressed CD27 in compartments defined by the absence or presence of CD45RA. Collectively, these data suggested a disconnect between replicative history and CD8+ memory T cell differentiation, which is classically thought to be a linear process that culminates with revertant expression of CD45RA.
Collapse
Affiliation(s)
- Laureline Roger
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Kelly L. Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Louise Leonard
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Julia W. Grimstead
- Division of Cancer and Genetics, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Duncan M. Baird
- Division of Cancer and Genetics, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| |
Collapse
|
47
|
Wang M. Express Delivery of Next-Generation CAR T Cells with Preserved Naive and Stemness Phenotypes for the Treatment of Aggressive Lymphomas. Cancer Discov 2023; 13:1961-1963. [PMID: 37671474 DOI: 10.1158/2159-8290.cd-23-0735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
SUMMARY In this issue of Cancer Discovery, Dickinson and colleagues present clinical data from a first-in-human study of YTB323, a novel autologous CD19-directed chimeric antigen receptor T-cell therapy generated on the T-Charge platform with preserved naive state and stemness phenotypes. Treatment with YTB323 achieved high overall response rates, durable complete remissions, and good overall safety. Their cell doses are up to 25-fold lower than with tisagenlecleucel. See related article by Dickinson et al., p. 1982 (10).
Collapse
Affiliation(s)
- Michael Wang
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
48
|
Zawidzka EM, Biavati L, Thomas A, Zanettini C, Marchionni L, Leone R, Borrello I. Tumor-Specific CD8 + T Cells from the Bone Marrow Resist Exhaustion and Exhibit Increased Persistence in Tumor-Bearing Hosts as Compared to Tumor Infiltrating Lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555119. [PMID: 37693379 PMCID: PMC10491133 DOI: 10.1101/2023.08.28.555119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Immunotherapy is now an integral aspect of cancer therapy. Strategies employing adoptive cell therapy (ACT) have seen the establishment of chimeric antigen receptor (CAR)-T cells using peripheral blood lymphocytes as well as tumor infiltrating lymphocytes (TILs) with significant clinical results. Despite these successes, the limitations of the current strategies are also emerging and novel approaches are needed. The bone marrow (BM) is an immunological niche that houses T cells with specificity for previously encountered antigens, including tumor-associated antigens from certain solid cancers. This study sought to improve our understanding of tumor-specific BM T cells in the context of solid tumors by comparing them with TILs, and to assess whether there is a rationale for using the BM as a source of T cells for ACT against solid malignancies. Herein, we demonstrate that T cells from the BM appear superior to TILs as a source of cells for cellular therapy. Specifically, they possess a memory-enriched phenotype and exhibit improved effector function, greater persistence within a tumor-bearing host, and the capacity for increased tumor infiltration. Taken together, these data provide a foundation for further exploring the BM as a source of tumor-specific T cells for ACT in solid malignancies.
Collapse
Affiliation(s)
- Elizabeth M. Zawidzka
- Johns Hopkins University School of Medicine, Bloomberg Kimmel Institute for Cancer Immunotherapy
| | - Luca Biavati
- Johns Hopkins University School of Medicine, Bloomberg Kimmel Institute for Cancer Immunotherapy
| | - Amy Thomas
- Johns Hopkins University School of Medicine, Bloomberg Kimmel Institute for Cancer Immunotherapy
| | | | | | - Robert Leone
- Johns Hopkins University School of Medicine, Bloomberg Kimmel Institute for Cancer Immunotherapy
| | - Ivan Borrello
- Johns Hopkins University School of Medicine, Bloomberg Kimmel Institute for Cancer Immunotherapy
- Current Address: Tampa General Hospital Cancer Institute
| |
Collapse
|
49
|
Sakuma M, Mimura K, Nakajima S, Kaneta A, Kikuchi T, Nirei A, Tada T, Hanayama H, Okayama H, Sakamoto W, Saito M, Momma T, Saze Z, Kono K. A Potential Biomarker of Dynamic Change in Peripheral CD45RA -CD27 +CD127 + Central Memory T Cells for Anti-PD-1 Therapy in Patients with Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:3641. [PMID: 37509302 PMCID: PMC10377516 DOI: 10.3390/cancers15143641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
In order to develop a biomarker predicting the efficacy of treatments for patients with esophageal squamous cell carcinoma (ESCC), we evaluated the subpopulation of T cells in ESCC patients treated with chemotherapy (CT), chemoradiotherapy (CRT), and nivolumab therapy (NT). Fifty-five ESCC patients were enrolled in this study, and peripheral blood samples were collected before and after CT or CRT and during NT. Frequencies of memory, differentiated, and exhausted T cells were evaluated using flow cytometry among cStages, treatment strategies, pathological responses of CT/CRT, and during NT. The frequencies of PD-1+ or TIM-3+CD4+ T cells were significantly higher in patients with cStage IV. PD-1+CD4+ and TIM-3+CD8+ T-cell populations were significantly higher in patients treated with CRT but were not associated with treatment response. The frequencies of both CD4+ and CD8+ CD45RA-CD27+CD127+ central memory T cells (TCM) were significantly decreased during the course of NT in the progressive disease group. Taken together, the alteration in frequency of CD45RA-CD27+CD127+ TCM during NT may be a biomarker to predict its therapeutic response in ESCC patients.
Collapse
Affiliation(s)
- Mei Sakuma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Akinao Kaneta
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomohiro Kikuchi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Azuma Nirei
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Takeshi Tada
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hiroyuki Hanayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
50
|
Chen H, Xie H, Zhang Y, Wang G. Construction of a prognostic signature of RFC5 immune-related genes in patients with cervical cancer. Cancer Biomark 2023:CBM220347. [PMID: 37302025 DOI: 10.3233/cbm-220347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cervical cancer (CC) is a malignant tumor threatening women's health. Replication factor C (RFC) 5 is significantly highly expressed in CC tissues, and the immune microenvironment plays a crucial role in tumor initiation, progression, and metastasis. OBJECTIVE To determine the prognostic role of RFC5 in CC, analyze the immune genes significantly associated with RFC5, and establish a nomogram to evaluate the prognosis of patients with CC. METHODS High RFC5 expression in patients with CC was analyzed and verified through TCGA GEO, TIMER2.0, and HPA databases. A risk score model was constructed using RFC5-related immune genes identified using R packages. Combining the risk score model and clinical information of patients with CC, a nomogram was constructed to evaluate the prognosis of patients with CC. RESULTS Comprehensive analysis showed that the risk score was a prognostic factor for CC. The nomogram could predict the 3-year overall survival of patients with CC. CONCLUSIONS RFC5 was validated as a biomarker for CC. The RFC5 related immune genes were used to establish a new prognostic model of CC.
Collapse
Affiliation(s)
- Huaqiu Chen
- School of Clinical Medicine, Dali University, Dali, Yunnan, China
- Xichang People's Hospital, Xichang, Sichuan, China
- Affiliated Hospital of Xichang College, Xichang, Sichuan, China
| | - Huanyu Xie
- Xichang People's Hospital, Xichang, Sichuan, China
- Affiliated Hospital of Xichang College, Xichang, Sichuan, China
| | - Yuanyuan Zhang
- School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Guangming Wang
- School of Clinical Medicine, Dali University, Dali, Yunnan, China
| |
Collapse
|