1
|
Mauriello A, Correra A, Maratea AC, Caturano A, Liccardo B, Perrone MA, Giordano A, Nigro G, D’Andrea A, Russo V. Serum Lipids, Inflammation, and the Risk of Atrial Fibrillation: Pathophysiological Links and Clinical Evidence. J Clin Med 2025; 14:1652. [PMID: 40095683 PMCID: PMC11899858 DOI: 10.3390/jcm14051652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Dyslipidemia is a metabolic disorder characterized by quantitative and/or qualitative abnormalities in serum lipid levels. Elevated serum cholesterol levels can modify the turnover and recruitment of ionic channels in myocytes and cellular homeostasis, including those of inflammatory cells. Experimental and clinical data indicate that inflammation is implicated in the pathophysiology of atrial remodeling, which is the substrate of atrial fibrillation (AF). Data about the association between increased lipid serum levels and AF are few and contrasting. Lipoprotein (a), adiposity, and inflammation seem to be the main drivers of AF; in contrast, low-density lipoproteins, high-density lipoproteins and triglycerides are not directly involved in AF onset. The present review aimed to describe the pathophysiological link between dyslipidemia and AF, the efficacy of lipid-lowering therapies in atherosclerotic cardiovascular disease (ASCVD) patients with and without AF, and the impact of lipid-lowering therapies on AF incidence.
Collapse
Affiliation(s)
- Alfredo Mauriello
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (A.C.M.); (B.L.); (G.N.)
- Cardiology and Intensive Care Unit, Department of Cardiology, “Umberto I” Hospital, 84014 Nocera Inferiore, Italy;
- Intensive Cardiac Care Unit, “San Giuseppe Moscati” Hospital, ASL Caserta 81031 Aversa, Italy;
| | - Adriana Correra
- Intensive Cardiac Care Unit, “San Giuseppe Moscati” Hospital, ASL Caserta 81031 Aversa, Italy;
| | - Anna Chiara Maratea
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (A.C.M.); (B.L.); (G.N.)
| | - Alfredo Caturano
- Internal Medicine Unit, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy;
| | - Biagio Liccardo
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (A.C.M.); (B.L.); (G.N.)
| | - Marco Alfonso Perrone
- Department of Cardiology and CardioLab, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Gerardo Nigro
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (A.C.M.); (B.L.); (G.N.)
| | - Antonello D’Andrea
- Cardiology and Intensive Care Unit, Department of Cardiology, “Umberto I” Hospital, 84014 Nocera Inferiore, Italy;
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical and Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (A.M.); (A.C.M.); (B.L.); (G.N.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| |
Collapse
|
2
|
Lian PA, Zhu WQ, Zhao WX, Huang PP, Ran JL, Tang YX, Huang XS, Li R. Lipoprotein(a) in atherosclerotic cardiovascular disease and proprotein convertase subtilisin/kexin-type 9 inhibitors. Clin Chim Acta 2025; 565:119982. [PMID: 39366516 DOI: 10.1016/j.cca.2024.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
High plasma lipoprotein(a) (Lp(a)) levels increase the cardiovascular risk in populations with atherosclerotic cardiovascular disease (ASCVD). Apolipoprotein (a) [apo(a)], a unique protein component of Lp(a), plays an important role in the pathogenesis of atherosclerosis. Statins, the primary medication in managing ASCVD, lower low-density lipoprotein cholesterol (LDL-C) but concurrently elevate plasma Lp(a) levels, contributing to an increased residual cardiovascular risk. In turn, proprotein convertase subtilisin/kexin-type 9 (PCSK9) inhibitors, a novel class of LDL-C lowering drugs, effectively reduce plasma Lp(a) levels, which is believed to decrease residual cardiovascular risk. However, the mechanism by which PCSK9 inhibitors reduce Lp(a) levels remains unknown. In addition, there are some clinical limitations of PCSK9 inhibitors. Here, we systematically review the past, present, and prospects of studies pertaining to Lp(a), PCSK9 inhibitors, and ASCVD.
Collapse
Affiliation(s)
- Ping-An Lian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen-Qiang Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei-Xin Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Piao-Piao Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan-Li Ran
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Xin Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xian-Sheng Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cardiovascular Medicine, Guilin Hospital of The Second Xiangya Hospital, Central South University, Guilin, China
| | - Rong Li
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Stomatology, Guilin Hospital of The Second Xiangya Hospital, Central South University, Guilin, China.
| |
Collapse
|
3
|
Qin T, Ma TY, Huang K, Lu SJ, Zhong JH, Li JJ. Lipoprotein (a)-Related Inflammatory Imbalance: A Novel Horizon for the Development of Atherosclerosis. Curr Atheroscler Rep 2024; 26:383-394. [PMID: 38878139 PMCID: PMC11236888 DOI: 10.1007/s11883-024-01215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE OF REVIEW The primary objective of this review is to explore the pathophysiological roles and clinical implications of lipoprotein(a) [Lp(a)] in the context of atherosclerotic cardiovascular disease (ASCVD). We seek to understand how Lp(a) contributes to inflammation and arteriosclerosis, aiming to provide new insights into the mechanisms of ASCVD progression. RECENT FINDINGS Recent research highlights Lp(a) as an independent risk factor for ASCVD. Studies show that Lp(a) not only promotes the inflammatory processes but also interacts with various cellular components, leading to endothelial dysfunction and smooth muscle cell proliferation. The dual role of Lp(a) in both instigating and, under certain conditions, mitigating inflammation is particularly noteworthy. This review finds that Lp(a) plays a complex role in the development of ASCVD through its involvement in inflammatory pathways. The interplay between Lp(a) levels and inflammatory responses highlights its potential as a target for therapeutic intervention. These insights could pave the way for novel approaches in managing and preventing ASCVD, urging further investigation into Lp(a) as a therapeutic target.
Collapse
Affiliation(s)
- Ting Qin
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan, 570208, China
| | - Tian-Yi Ma
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan, 570208, China
| | - Kang Huang
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan, 570208, China
| | - Shi-Juan Lu
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan, 570208, China.
| | - Jiang-Hua Zhong
- Department of Cardiology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan, 570208, China.
| | - Jian-Jun Li
- Cadiometabolic Center, State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
4
|
Pavlatos N, Kalra DK. The Role of Lipoprotein(a) in Peripheral Artery Disease. Biomedicines 2024; 12:1229. [PMID: 38927436 PMCID: PMC11200468 DOI: 10.3390/biomedicines12061229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Lipoprotein(a) is a low-density-lipoprotein-like particle that consists of apolipoprotein(a) bound to apolipoprotein(b). It has emerged as an established causal risk factor for atherosclerotic cardiovascular disease, stroke, and aortic valve stenosis through multifactorial pathogenic mechanisms that include inflammation, atherogenesis, and thrombosis. Despite an estimated 20% of the global population having elevated lipoprotein(a) levels, testing remains underutilized due to poor awareness and a historical lack of effective and safe therapies. Although lipoprotein(a) has a strong association with coronary artery disease and cerebrovascular disease, its relationship with peripheral artery disease is less well established. In this article, we review the epidemiology, biology, and pathogenesis of lipoprotein(a) as it relates to peripheral artery disease. We also discuss emerging treatment options to help mitigate major adverse cardiac and limb events in this population.
Collapse
Affiliation(s)
- Nicholas Pavlatos
- Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Dinesh K. Kalra
- Division of Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Groenen AG, Matveyenko A, Matienzo N, Halmos B, Zhang H, Westerterp M, Reyes-Soffer G. Apolipoprotein(a) production and clearance are associated with plasma IL-6 and IL-18 levels, dependent on ethnicity. Atherosclerosis 2024; 391:117474. [PMID: 38428286 DOI: 10.1016/j.atherosclerosis.2024.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND AND AIMS High plasma lipoprotein (a) [Lp(a)] levels are associated with increased atherosclerotic cardiovascular disease (ASCVD), in part attributed to elevated inflammation. High plasma Lp(a) levels inversely correlate with apolipoprotein (a) [(APO(a)] isoform size. APO(a) isoform size is negatively associated with APO(a) production rate (PR) and positively associated with APO(a) fractional catabolic rate (FCR). We asked whether APO(a) PR and FCR (kinetics) are associated with plasma levels of interleukin (IL)-6 and IL-18, pro-inflammatory interleukins that promote ASCVD. METHODS We used samples from existing data of APO(a) kinetic studies from an ethnically diverse cohort (n = 25: 10 Black, 9 Hispanic, and 6 White subjects) and assessed IL-6 and IL-18 plasma levels. We performed multivariate linear regression analyses to examine the relationships between predictors APO(a) PR or APO(a) FCR, and outcome variables IL-6 or IL-18. In these analyses, we adjusted for parameters known to affect Lp(a) levels and APO(a) PR and FCR, including race/ethnicity and APO(a) isoform size. RESULTS APO(a) PR and FCR were positively associated with plasma IL-6, independent of isoform size, and dependent on race/ethnicity. APO(a) PR was positively associated with plasma IL-18, independent of isoform size and race/ethnicity. APO(a) FCR was not associated with plasma IL-18. CONCLUSIONS Our studies demonstrate a relationship between APO(a) PR and FCR and plasma IL-6 or IL-18, interleukins that promote ASCVD. These studies provide new insights into Lp(a) pro-inflammatory properties and are especially relevant in view of therapies targeting APO(a) to decrease cardiovascular risk.
Collapse
Affiliation(s)
- Anouk G Groenen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anastasiya Matveyenko
- Columbia University Irving Medical Center, College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, New York, NY, USA
| | - Nelsa Matienzo
- Columbia University Irving Medical Center, College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, New York, NY, USA
| | - Benedek Halmos
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hanrui Zhang
- Columbia University Irving Medical Center, Division of Cardiology, New York, NY, USA
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Gissette Reyes-Soffer
- Columbia University Irving Medical Center, College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, New York, NY, USA.
| |
Collapse
|
6
|
Liu Y, Wang R, Li S, Zhang C, Lip GYH, Thabane L, Li G. Relationship Between Lipoprotein(a), Renal Function Indicators, and Chronic Kidney Disease: Evidence From a Large Prospective Cohort Study. JMIR Public Health Surveill 2024; 10:e50415. [PMID: 38294877 PMCID: PMC10867749 DOI: 10.2196/50415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) poses a significant global public health challenge. While lipoprotein(a) (Lp[a]) has been established as a significant factor in cardiovascular disease, its connection to CKD risk remains a topic of debate. Existing evidence indicates diverse risks of kidney disease among individuals with various renal function indicators, even when within the normal range. OBJECTIVE This study aims to investigate the joint associations between different renal function indicators and Lp(a) regarding the risks of incident CKD in the general population. METHODS The analysis involved a cohort of 329,415 participants without prior CKD who were enrolled in the UK Biobank between 2006 and 2010. The participants, with an average age of 56 (SD 8.1) years, included 154,298/329,415 (46.84%) males. At baseline, Lp(a) levels were measured using an immunoturbidimetric assay and classified into 2 groups: low (<75 nmol/L) and high (≥75 nmol/L). To assess participants' baseline renal function, we used the baseline urine albumin-to-creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR). The relationship between Lp(a), renal function indicators, and the risk of CKD was evaluated using multivariable Cox regression models. These models were adjusted for various factors, including sociodemographic variables, lifestyle factors, comorbidities, and laboratory measures. RESULTS A total of 6003 incident CKD events were documented over a median follow-up period of 12.5 years. The association between elevated Lp(a) levels and CKD risk did not achieve statistical significance among all participants, with a hazard ratio (HR) of 1.05 and a 95% CI ranging from 0.98 to 1.13 (P=.16). However, a notable interaction was identified between Lp(a) and UACR in relation to CKD risk (P for interaction=.04), whereas no significant interaction was observed between Lp(a) and eGFR (P for interaction=.96). When compared with the reference group with low Lp(a) and low-normal UACR (<10 mg/g), the group with high Lp(a) and low-normal UACR exhibited a nonsignificant association with CKD risk (HR 0.98, 95% CI 0.90-1.08; P=.74). By contrast, both the low Lp(a) and high-normal UACR (≥10 mg/g) group (HR 1.16, 95% CI 1.08-1.24; P<.001) and the high Lp(a) and high-normal UACR group (HR 1.32, 95% CI 1.19-1.46; P<.001) demonstrated significant associations with increased CKD risks. In individuals with high-normal UACR, elevated Lp(a) was linked to a significant increase in CKD risk, with an HR of 1.14 and a 95% CI ranging from 1.03 to 1.26 (P=.01). Subgroup analyses and sensitivity analyses consistently produced results that were largely in line with the main findings. CONCLUSIONS The analysis revealed a significant interaction between Lp(a) and UACR in relation to CKD risk. This implies that Lp(a) may act as a risk factor for CKD even when considering UACR. Our findings have the potential to provide valuable insights into the assessment and prevention of CKD, emphasizing the combined impact of Lp(a) and UACR from a public health perspective within the general population. This could contribute to enhancing public awareness regarding the management of Lp(a) for the prevention of CKD.
Collapse
Affiliation(s)
- Yingxin Liu
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ruoting Wang
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Changfa Zhang
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Lehana Thabane
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
- Father Sean O'Sullivan Research Centre, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
7
|
Brosolo G, Da Porto A, Marcante S, Picci A, Capilupi F, Capilupi P, Bulfone L, Vacca A, Bertin N, Vivarelli C, Comand J, Catena C, Sechi LA. Lipoprotein(a): Just an Innocent Bystander in Arterial Hypertension? Int J Mol Sci 2023; 24:13363. [PMID: 37686169 PMCID: PMC10487946 DOI: 10.3390/ijms241713363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Elevated plasma lipoprotein(a) [Lp(a)] is a relatively common and highly heritable trait conferring individuals time-dependent risk of developing atherosclerotic cardiovascular disease (CVD). Following its first description, Lp(a) triggered enormous scientific interest in the late 1980s, subsequently dampened in the mid-1990s by controversial findings of some prospective studies. It was only in the last decade that a large body of evidence has provided strong arguments for a causal and independent association between elevated Lp(a) levels and CVD, causing renewed interest in this lipoprotein as an emerging risk factor with a likely contribution to cardiovascular residual risk. Accordingly, the 2022 consensus statement of the European Atherosclerosis Society has suggested inclusion of Lp(a) measurement in global risk estimation. The development of highly effective Lp(a)-lowering drugs (e.g., antisense oligonucleotides and small interfering RNA, both blocking LPA gene expression) which are still under assessment in phase 3 trials, will provide a unique opportunity to reduce "residual cardiovascular risk" in high-risk populations, including patients with arterial hypertension. The current evidence in support of a specific role of Lp(a) in hypertension is somehow controversial and this narrative review aims to overview the general mechanisms relating Lp(a) to blood pressure regulation and hypertension-related cardiovascular and renal damage.
Collapse
Affiliation(s)
- Gabriele Brosolo
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Andrea Da Porto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Stefano Marcante
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Alessandro Picci
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Filippo Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Patrizio Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Luca Bulfone
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Antonio Vacca
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Nicole Bertin
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cinzia Vivarelli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
| | - Jacopo Comand
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cristiana Catena
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Leonardo A. Sechi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| |
Collapse
|
8
|
Mechanism of oxidized phospholipid-related inflammatory response in vascular ageing. Ageing Res Rev 2023; 86:101888. [PMID: 36806379 DOI: 10.1016/j.arr.2023.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/20/2023]
Abstract
Vascular ageing is an important factor in the morbidity and mortality of the elderly. Atherosclerosis is a characteristic disease of vascular ageing, which is closely related to the enhancement of vascular inflammation. Phospholipid oxidation products are important factors in inducing cellular inflammation. Through interactions with vascular cells and immune cells, they regulate intracellular signaling pathways, activate the expression of various cytokines, and affect cell behavior, such as metabolic level, proliferation, apoptosis, etc. Intervention in lipid metabolism and anti-inflammation are the two key pathways of drugs for the treatment of atherosclerosis. This review aims to sort out the signaling pathway of oxidized phospholipids-induced inflammatory factors in vascular cells and immune cells and the mechanism leading to changes in cell behavior, and summarize the therapeutic targets in the inflammatory signaling pathway for the development of atherosclerosis drugs.
Collapse
|
9
|
Lampsas S, Xenou M, Oikonomou E, Pantelidis P, Lysandrou A, Sarantos S, Goliopoulou A, Kalogeras K, Tsigkou V, Kalpis A, Paschou SA, Theofilis P, Vavuranakis M, Tousoulis D, Siasos G. Lipoprotein(a) in Atherosclerotic Diseases: From Pathophysiology to Diagnosis and Treatment. Molecules 2023; 28:969. [PMID: 36770634 PMCID: PMC9918959 DOI: 10.3390/molecules28030969] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL) cholesterol-like particle bound to apolipoprotein(a). Increased Lp(a) levels are an independent, heritable causal risk factor for atherosclerotic cardiovascular disease (ASCVD) as they are largely determined by variations in the Lp(a) gene (LPA) locus encoding apo(a). Lp(a) is the preferential lipoprotein carrier for oxidized phospholipids (OxPL), and its role adversely affects vascular inflammation, atherosclerotic lesions, endothelial function and thrombogenicity, which pathophysiologically leads to cardiovascular (CV) events. Despite this crucial role of Lp(a), its measurement lacks a globally unified method, and, between different laboratories, results need standardization. Standard antilipidemic therapies, such as statins, fibrates and ezetimibe, have a mediocre effect on Lp(a) levels, although it is not yet clear whether such treatments can affect CV events and prognosis. This narrative review aims to summarize knowledge regarding the mechanisms mediating the effect of Lp(a) on inflammation, atherosclerosis and thrombosis and discuss current diagnostic and therapeutic potentials.
Collapse
Affiliation(s)
- Stamatios Lampsas
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Xenou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Panteleimon Pantelidis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Antonios Lysandrou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Savvas Sarantos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Athina Goliopoulou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration General Hospital, 11527 Athens, Greece
| | - Vasiliki Tsigkou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Athanasios Kalpis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Stavroula A. Paschou
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration General Hospital, 11527 Athens, Greece
| | - Panagiotis Theofilis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration General Hospital, 11527 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Dimitroglou Y, Aggeli C, Theofilis P, Tsioufis P, Oikonomou E, Tsioufis K, Tousoulis D. Lipoprotein(a) as a Predictive Biomarker and Therapeutic Target for Acute Coronary Syndromes. Curr Pharm Des 2023; 29:1835-1843. [PMID: 37264657 DOI: 10.2174/1381612829666230601155001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/05/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Coronary artery disease (CAD) is the leading cause of morbidity and mortality in Western societies, despite the significant advances that have improved primary and secondary prevention. Hence, several novel biomarkers have been identified as potential diagnostic and therapeutic targets which could improve outcomes even when traditional risk factors are well-controlled. Lipoprotein (a) [Lp(a)] has pro-atherogenic, pro-thrombotic, and pro-inflammatory properties, and its levels are relatively constant and genetically predetermined. Several epidemiological studies have associated high Lp(a) with increased risk for acute coronary syndromes (ACS) even when other CAD risk factors are included in the multivariate analysis. However, until recently, specific therapeutic options targeting Lp(a) were not associated, and thus, Lp(a) is currently used as a risk and treatment modifying biomarker with guidelines suggesting the intensified treatment of low-density lipoprotein in intermediate- to-high-risk patients with increased Lp(a) levels. Lately, specific treatment options targeting Lp(a) have become available and include antisense oligonucleotides and small-interfering RNA, which induce a robust reduction of Lp(a). Results of ongoing phase-3 trials will answer whether Lp(a) will become a biomarker specifically treated to reduce the burden of cardiovascular mortality. The scope of this review article is to present the current evidence regarding the use of Lp(a) as a biomarker, predictive of increased CAD risk, and to discuss the future perspectives on pharmaceutical reduction of Lp(a) as a therapeutic target in high-risk patients.
Collapse
Affiliation(s)
- Yannis Dimitroglou
- 1st Cardiology Clinic, 'Hippokration' General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantina Aggeli
- 1st Cardiology Clinic, 'Hippokration' General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Theofilis
- 1st Cardiology Clinic, 'Hippokration' General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsioufis
- 1st Cardiology Clinic, 'Hippokration' General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Clinic, 'Hippokration' General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Clinic, 'Hippokration' General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Clinic, 'Hippokration' General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Simantiris S, Antonopoulos AS, Papastamos C, Benetos G, Koumallos N, Tsioufis K, Tousoulis D. Lipoprotein(a) and inflammation- pathophysiological links and clinical implications for cardiovascular disease. J Clin Lipidol 2023; 17:55-63. [PMID: 36333256 DOI: 10.1016/j.jacl.2022.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
The role of lipoprotein(a) (Lp[a]) as a significant and possibly causal cardiovascular disease (CVD) risk factor has been well established. Many studies, mostly experimental, have supported inflammation as a mediator of Lp(a)-induced increase in CVD risk. Lp(a), mainly through oxidized phospholipids bound to its apolipoprotein(a) part, leads to monocyte activation and endothelial dysfunction. The relationship between Lp(a) and inflammation is bidirectional as Lp(a) levels, besides being associated with inflammatory properties, are regulated by inflammatory stimuli or anti-inflammatory treatment. Reduction of Lp(a) concentration, especially by potent siRNA agents, contributes to partial reversion of the Lp(a) related inflammatory profile. This review aims to present the current pathophysiological and clinical evidence of the relationship between Lp(a) and inflammation.
Collapse
Affiliation(s)
- Spyridon Simantiris
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, Athens 11527, Greece (Drs Simantiris, Antonopoulos, Papastamos, Benetos, Tsioufis, and Tousoulis)
| | - Alexios S Antonopoulos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, Athens 11527, Greece (Drs Simantiris, Antonopoulos, Papastamos, Benetos, Tsioufis, and Tousoulis)
| | - Charalampos Papastamos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, Athens 11527, Greece (Drs Simantiris, Antonopoulos, Papastamos, Benetos, Tsioufis, and Tousoulis)
| | - Georgios Benetos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, Athens 11527, Greece (Drs Simantiris, Antonopoulos, Papastamos, Benetos, Tsioufis, and Tousoulis)
| | - Nikolaos Koumallos
- Department of Cardiothoracic Surgery, Hippokration Hospital, Athens, Greece (Dr Koumallos)
| | - Konstantinos Tsioufis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, Athens 11527, Greece (Drs Simantiris, Antonopoulos, Papastamos, Benetos, Tsioufis, and Tousoulis)
| | - Dimitris Tousoulis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Vas. Sofias Avenue 114, Athens 11527, Greece (Drs Simantiris, Antonopoulos, Papastamos, Benetos, Tsioufis, and Tousoulis).
| |
Collapse
|
12
|
Wang A, Zhang S, Li Y, Zhu F, Xie B. Study on the relationship between lipoprotein (a) and diabetic kidney disease. J Diabetes Complications 2023; 37:108378. [PMID: 36549039 DOI: 10.1016/j.jdiacomp.2022.108378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Little is currently known about the role of lipid metabolism in diabetic kidney disease (DKD), warranting further study. The present study sought to investigate the correlation between lipid metabolism and renal function as well as renal pathological grade/score in DKD patients. METHODS A total of 224 patients diagnosed with DKD by pathological examination were retrospectively analyzed, of which 74 patients were further evaluated by DKD pathological grade/score. ANOVA was used to investigate serum lipoprotein (a) [Lp (a)] levels in DKD patients with different chronic kidney disease (CKD) stages. Spearman correlation analysis was used to evaluate the relationship between Lp (a) and renal function-related indicators. The DKD pathological grade/score was also evaluated with this method. The receiver operating characteristic (ROC) curve was used to analyze the value of Lp (a) in assessing renal function and pathological changes. RESULTS There were significant differences in Lp (a) levels among different CKD stages (H = 17.063, p = 0.002) and glomerular grades (H = 12.965, p = 0.005). Lp (a) levels correlated with serum creatinine (p = 0.000), blood urea nitrogen (p = 0.000), estimated glomerular filtration rate (p = 0.000), 24-h proteinuria (24hUPro, p = 0.000), urine microalbumin (p = 0.000), urine albumin creatinine ratio (p = 0.000), glomerular basement membrane thickness (p = 0.003), and glomerular grade (p = 0.039). ROC curve demonstrated good performance of Lp (a) as an indicator to assess CKD stage 4-5 (AUC = 0.684, p = 0.000), 24hUPro > 3.5 g (AUC = 0.720, p = 0.000), and glomerular grade III-IV (AUC = 0.695, p = 0.012). CONCLUSIONS Elevated levels of Lp (a) are associated with decreased GFR, increased proteinuria, and renal pathological progression, suggesting they could be used to monitor changes in DKD patients.
Collapse
Affiliation(s)
- Anni Wang
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Rd 453, Hangzhou 310007, People's Republic of China.
| | - Shaojie Zhang
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Rd 453, Hangzhou 310007, People's Republic of China
| | - Yayu Li
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Rd 453, Hangzhou 310007, People's Republic of China
| | - Fenggui Zhu
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Rd 453, Hangzhou 310007, People's Republic of China
| | - Bo Xie
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Rd 453, Hangzhou 310007, People's Republic of China; Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Westlake Ave 38, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
13
|
Naito R, Daida H, Masuda D, Harada-Shiba M, Arai H, Bujo H, Ishibashi S, Koga N, Oikawa S, Yamashita S. Relation of Serum Lipoprotein(a) Levels to Lipoprotein and Apolipoprotein Profiles and Atherosclerotic Diseases in Japanese Patients with Heterozygous Familial Hypercholesterolemia: Familial Hypercholesterolemia Expert Forum (FAME) Study. J Atheroscler Thromb 2022; 29:1188-1200. [PMID: 34456199 PMCID: PMC9371754 DOI: 10.5551/jat.63019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/27/2021] [Indexed: 11/11/2022] Open
Abstract
AIMS Lipoprotein(a) [Lp(a)] is a plasma lipoprotein consisting of a low-density lipoprotein (LDL)-like particle with apolipoprotein (Apo)(a), attached via a disulfide bond to Apo B100. Previous studies have shown that high Lp(a) levels are associated with an increased risk of cardiovascular disease in patients with familial hypercholesterolemia (FH). To date, limited data are available as to distribution of Lp(a) in FH and associations of Lp(a) with other lipid profiles and cardiovascular disease. Our study aimed to investigate serum Lp(a) levels in relation to other lipid profiles and clinical conditions in the national largest-ever cohort of Japanese FH patients. METHODS This study is a secondary analysis of the Familial Hypercholesterolemia Expert Forum (FAME) Study that includes a Japanese nationwide cohort of FH patients. In 399 patients under treatment for heterozygous FH who had a baseline measurement of serum Lp(a), the present study examined the distribution of Lp(a) levels and associations of Lp(a) with other lipid profiles and clinical conditions including coronary artery disease (CAD). RESULTS The distribution of Lp(a) was skewed to the right with a median of 20.8 mg/dL, showing a log-normal distribution. Serum Apo B and Apo E levels were positively associated with Lp(a) levels. Age-adjusted mean of Apo B was 8.77 mg/dL higher and that of Apo E was 0.39 mg/dL higher in the highest category (40+ mg/dL) of Lp(a) than in the lowest category (<20 mg/dL). LDL-C levels did not show such an association with Lp(a) levels. A tendency towards a positive relationship between Lp(a) and prevalent CAD was observed in men. CONCLUSION Our study demonstrated a distribution pattern of Lp(a) in Japanese FH patients and positive relationships of Lp(a) with Apo B and Apo E levels.
Collapse
Affiliation(s)
- Ryo Naito
- Department of Cardiovascular Biology and Medicine, Juntendo University, Tokyo, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Biology and Medicine, Juntendo University, Tokyo, Japan
| | - Daisaku Masuda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Hidenori Arai
- The National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Hideaki Bujo
- Department of Clinical Laboratory and Experimental Research Medicine, Toho University, Sakura Medical Center, Chiba, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | | | - Shinichi Oikawa
- Director of Diabetes and Lifestyle-related Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association (JATA), Tokyo, Japan
| | - Shizuya Yamashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Community Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
14
|
Dzobo KE, Kraaijenhof JM, Stroes ES, Nurmohamed NS, Kroon J. Lipoprotein(a): An underestimated inflammatory mastermind. Atherosclerosis 2022; 349:101-109. [DOI: 10.1016/j.atherosclerosis.2022.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/09/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
|
15
|
Abstract
PURPOSE OF REVIEW Lipid-mediated atherogenesis is hallmarked by a chronic inflammatory state. Low-density lipoprotein cholesterol (LDL-C), triglyceride rich lipoproteins (TRLs), and lipoprotein(a) [Lp(a)] are causally related to atherosclerosis. Within the paradigm of endothelial activation and subendothelial lipid deposition, these lipoproteins induce numerous pro-inflammatory pathways. In this review, we will outline the effects of lipoproteins on systemic inflammatory pathways in atherosclerosis. RECENT FINDINGS Apolipoprotein B-containing lipoproteins exert a variety of pro-inflammatory effects, ranging from the local artery to systemic immune cell activation. LDL-C, TRLs, and Lp(a) induce endothelial dysfunction with concomitant activation of circulating monocytes through enhanced lipid accumulation. The process of trained immunity of the innate immune system, predominantly induced by LDL-C particles, hallmarks the propagation of the low-grade inflammatory response. In concert, bone marrow activation induces myeloid skewing, further contributing to immune cell mobilization and plaque progression. SUMMARY Lipoproteins and inflammation are intertwined in atherogenesis. Elucidating the inflammatory pathways will provide new opportunities for therapeutic agents.
Collapse
Affiliation(s)
- Jordan M. Kraaijenhof
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - G. Kees Hovingh
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - Jeffrey Kroon
- Amsterdam UMC, University of Amsterdam, Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Beyond Lipoprotein(a) plasma measurements: Lipoprotein(a) and inflammation. Pharmacol Res 2021; 169:105689. [PMID: 34033878 PMCID: PMC9247870 DOI: 10.1016/j.phrs.2021.105689] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022]
Abstract
Genome wide association, epidemiological, and clinical studies have established high lipoprotein(a) [Lp(a)] as a causal risk factor for atherosclerotic cardiovascular disease (ASCVD). Lp(a) is an apoB100 containing lipoprotein covalently bound to apolipoprotein(a) [apo(a)], a glycoprotein. Plasma Lp(a) levels are to a large extent determined by genetics. Its link to cardiovascular disease (CVD) may be driven by its pro-inflammatory effects, of which its association with oxidized phospholipids (oxPL) bound to Lp(a) is the most studied. Various inflammatory conditions, such as rheumatoid arthritis (RA), systemic lupus erythematosus, acquired immunodeficiency syndrome, and chronic renal failure are associated with high Lp(a) levels. In cases of RA, high Lp(a) levels are reversed by interleukin-6 receptor (IL-6R) blockade by tocilizumab, suggesting a potential role for IL-6 in regulating Lp(a) plasma levels. Elevated levels of IL-6 and IL-6R polymorphisms are associated with CVD. Therapies aimed at lowering apo(a) and thereby reducing plasma Lp(a) levels are in clinical trials. Their results will determine if reductions in apo(a) and Lp(a) decrease cardiovascular outcomes. As we enter this new arena of available treatments, there is a need to improve our understanding of mechanisms. This review will focus on the role of Lp(a) in inflammation and CVD.
Collapse
|
17
|
Chang NC, Yeh CT, Lin YK, Kuo KT, Fong IH, Kounis NG, Hu P, Hung MY. Garcinol Attenuates Lipoprotein(a)-Induced Oxidative Stress and Inflammatory Cytokine Production in Ventricular Cardiomyocyte through α7-Nicotinic Acetylcholine Receptor-Mediated Inhibition of the p38 MAPK and NF-κB Signaling Pathways. Antioxidants (Basel) 2021; 10:antiox10030461. [PMID: 33809417 PMCID: PMC8000018 DOI: 10.3390/antiox10030461] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Garcinol, a nicotinic acetylcholine receptor (nAChR) antagonist, has recently been established as an anti-inflammation agent. However, the molecular mechanism by which garcinol suppresses inflammation in the context of acute myocardial infarction (AMI) remains unclear. Hypothesis: We hypothesized that the administration of physiological doses of garcinol in mice with isoproterenol-induced AMI decreased the effect of lipoprotein(a) (Lp(a))-induced inflammation both in vivo and in vitro via the α7-nAChRs mediated p38 mitogen-activated protein kinase (MAPK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling pathway. We analyzed altered reactive oxygen species (ROS) generation, the production of superoxide by mitochondria, cytokine expression patterns, and the role of the p38 MAPK/NF-κB signaling pathway after Lp(a)-stimulated human ventricular cardiomyocyte AC16 cells were treated with increasing doses of garcinol. C-reactive protein (CRP), interleukin (IL)-1β, IL-6, or tumor necrosis factor (TNF)-α production were detected by enzyme-linked immunosorbent assay. The Cell Counting Kit-8 assay was used to evaluate drug cytotoxicity. Western blots and confocal fluorescence microscopy were used to determine altered expression patterns of inflammatory biomarkers. We also examined whether the therapeutic effect of garcinol in AMI was mediated in part by α7-nAChR. Lp(a)-induced inflammatory cardiomyocytes had increased expression of membrane-bound α7-nAChRs in vitro and in vivo. Low-dose garcinol did not affect cardiomyocyte viability but significantly reduced mitochondrial ROS, CRP, IL-1β, IL-6, and TNF-α production in Lp(a)-stimulated cardiomyocytes (p < 0.05). The Lp(a)-induced phosphorylation of p38 MAPKs, CamKII, and NFκB, as well as NFκB-p65 nuclear translocation, was also suppressed (p < 0.05) by garcinol, while the inhibition of p38 MAPK by the inhibitor SB203580 decreased the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAPK. Garcinol protected cardiomyocytes by inhibiting apoptosis and inflammation in mice with AMI. Furthermore, garcinol also enhanced the expression of microRNA-205 that suppressed the α7-nAChR-induced p38 MAPK/NF-κB signaling pathway. Garcinol suppresses Lp(a)-induced oxidative stress and inflammatory cytokines by α7-nAChR-mediated inhibition of p38 MAPK/NF-κB signaling in cardiomyocyte AC16 cells and isoproterenol-induced AMI mice.
Collapse
Affiliation(s)
- Nen-Chung Chang
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City 23561, Taiwan; (C.-T.Y.); (I.-H.F.)
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City 30015, Taiwan
| | - Yen-Kuang Lin
- Biostatistics Center, Office of Data Science, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Data Science, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Big Data, College of Management, Taipei Medical University, Taipei 110, Taiwan;
| | - Kuang-Tai Kuo
- Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Division of Thoracic Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Iat-Hang Fong
- Department of Medical Research and Education, Taipei Medical University—Shuang Ho Hospital, New Taipei City 23561, Taiwan; (C.-T.Y.); (I.-H.F.)
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City 30015, Taiwan
| | - Nicholas G. Kounis
- Department of Internal Medicine, Division of Cardiology, University of Patras Medical School, 26221 Patras, Greece;
| | - Patrick Hu
- Department of Cardiology, University of California, Riverside, CA 92521, USA;
- Department of Cardiology, Riverside Medical Clinic, Riverside, CA 92506, USA
| | - Ming-Yow Hung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: ; Tel.: +886-2-22490088
| |
Collapse
|
18
|
Huded CP, Shah NP, Puri R, Nicholls SJ, Wolski K, Nissen SE, Cho L. Association of Serum Lipoprotein (a) Levels and Coronary Atheroma Volume by Intravascular Ultrasound. J Am Heart Assoc 2020; 9:e018023. [PMID: 33222598 PMCID: PMC7763761 DOI: 10.1161/jaha.120.018023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Lp(a) (lipoprotein (a)) is a risk factor for cardiovascular events, but the mechanism of increased risk is uncertain. This study evaluated the relationship between Lp(a) and coronary atheroma volume by intravascular ultrasound. Methods and Results This was a post hoc analysis of 6 randomized trials of coronary atheroma by intravascular ultrasound. The population was stratified into high (≥60 mg/dL) and low (<60 mg/dL) baseline serum Lp(a). The primary outcome was baseline coronary percent atheroma volume. A mixed model adjusted for baseline low density lipoprotein, ApoB (apoliporotein B100), non‐high density lipoprotein, sex, age, race, history of myocardial infarction, statin use, and intravascular ultrasound study was used to provide estimates of baseline plaque burden. Of 3943 patients, 17.3% (683) had Lp(a) ≥ 60 mg/dL and 82.7% (3260) had Lp(a) < 60 mg/dL. At baseline, uncorrected low density lipoprotein level (107.7 ± 32.0 versus 99.1 ± 31.5) and statin therapy (99.0% versus 97.0%) were higher in patients with high Lp(a) levels, but low density lipoprotein corrected for Lp(a) was lower (80.6 ± 32.0 versus 94.0 ± 31.4) in patients with high Lp(a) levels. Percent atheroma volume was significantly higher in the high Lp(a) group in unadjusted (38.2% [32.8, 43.6] versus 37.1% [31.4, 43.1], P=0.01) and risk‐adjusted analyses (38.7%±0.5 versus 37.5%±0.5, P<0.001). There was a significant association of increasing risk‐adjusted percent atheroma volume across quintiles of Lp(a) (Lp(a) quintiles 1‐5; 37.3 ± 0.5%, 37.2 ± 0.5%, 37.3 ± 0.5%, 38.0 ± 0.5%, 38.5 ± 0.5%, P=0.002). Conclusions Elevated Lp(a) is independently associated with increased percent atheroma volume. Further work is needed to clarify the relationship of Lp(a)‐lowering treatment with cardiovascular outcomes.
Collapse
|
19
|
Geng J, Fu W, Yu X, Lu Z, Liu Y, Sun M, Yu P, Li X, Fu L, Xu H, Sui D. Ginsenoside Rg3 Alleviates ox-LDL Induced Endothelial Dysfunction and Prevents Atherosclerosis in ApoE -/- Mice by Regulating PPARγ/FAK Signaling Pathway. Front Pharmacol 2020; 11:500. [PMID: 32390845 PMCID: PMC7188907 DOI: 10.3389/fphar.2020.00500] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
The initiation of atherosclerosis (AS) induced by dyslipidemia is accompanied by endothelial dysfunction, including decreased healing ability and increased recruitment of monocytes. Studies showed ginsenoside Rg3 has potential to treat diseases associated with endothelial dysfunction which can protects against antineoplastic drugs induced cardiotoxicity by repairing endothelial function, while the effect and mechanism of Rg3 on dyslipidemia induced endothelial dysfunction and AS are not clear. Therefore, we investigated the effects of Rg3 on oxidized low-density lipoprotein (ox-LDL) induced human umbilical vein endothelial cells (HUVECs) dysfunction and high-fat diets (HFD) induced atherosclerosis in ApoE−/− mice, as well as the mechanism. For in vitro assay, Rg3 enhanced healing of HUVECs and inhibited human monocytes (THP-1) adhesion to HUVECs disturbed by ox-LDL, down-regulated focal adhesion kinase (FAK)-mediated expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1); restrained the FAK-mediated non-adherent dependent pathway containing matrix metalloproteinase (MMP)-2/9 expression, activation of nuclear factor-kappa B (NF-κB), high mRNA levels of monocyte chemotactic protein 1 (MCP-1) and interleukin 6 (IL-6), besides Rg3 up-regulated peroxisome proliferators-activated receptor γ (PPARγ) in ox-LDL-stimulated HUVECs. GW9662, the PPARγ-specific inhibitor, can repressed the effects of Rg3 on ox-LDL-stimulated HUVECs. For in vivo assay, Rg3 significantly reduced atherosclerotic pathological changes in ApoE−/− mice fed with HFD, up-regulated PPARγ, and inhibited activation FAK in aorta, thus inhibited expression of VCAM-1, ICAM-1 in intima. We conclude that Rg3 may protect endothelial cells and inhibit atherosclerosis by up-regulating PPARγ via repressing FAK-mediated pathways, indicating that Rg3 have good potential in preventing dyslipidemia induced atherosclerosis.
Collapse
Affiliation(s)
- Jianan Geng
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zeyuan Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yanzhe Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Mingyang Sun
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Ping Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xin Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Li Fu
- Institute of Traditional Chinese Medicine Innovation, Jilin Yatai Pharmaceutical Co., Ltd., Changchun, China.,Institute of Dalian Fusheng Natural Medicine, Dalian Fusheng Pharmaceutical Co., Ltd., Dalian, China
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
20
|
Jawi MM, Frohlich J, Chan SY. Lipoprotein(a) the Insurgent: A New Insight into the Structure, Function, Metabolism, Pathogenicity, and Medications Affecting Lipoprotein(a) Molecule. J Lipids 2020; 2020:3491764. [PMID: 32099678 PMCID: PMC7016456 DOI: 10.1155/2020/3491764] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022] Open
Abstract
Lipoprotein(a) [Lp(a)], aka "Lp little a", was discovered in the 1960s in the lab of the Norwegian physician Kåre Berg. Since then, we have greatly improved our knowledge of lipids and cardiovascular disease (CVD). Lp(a) is an enigmatic class of lipoprotein that is exclusively formed in the liver and comprises two main components, a single copy of apolipoprotein (apo) B-100 (apo-B100) tethered to a single copy of a protein denoted as apolipoprotein(a) apo(a). Plasma levels of Lp(a) increase soon after birth to a steady concentration within a few months of life. In adults, Lp(a) levels range widely from <2 to 2500 mg/L. Evidence that elevated Lp(a) levels >300 mg/L contribute to CVD is significant. The improvement of isoform-independent assays, together with the insight from epidemiologic studies, meta-analyses, genome-wide association studies, and Mendelian randomization studies, has established Lp(a) as the single most common independent genetically inherited causal risk factor for CVD. This breakthrough elevated Lp(a) from a biomarker of atherosclerotic risk to a target of therapy. With the emergence of promising second-generation antisense therapy, we hope that we can answer the question of whether Lp(a) is ready for prime-time clinic use. In this review, we present an update on the metabolism, pathophysiology, and current/future medical interventions for high levels of Lp(a).
Collapse
Affiliation(s)
- Motasim M. Jawi
- Healthy Heart Program, St. Paul's Hospital, Vancouver V6Z 1Y6, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver V5Z 1M9, Canada
- Department of Clinical PhysiologyCorrection: Department of Physiology, University of Jeddah, P.O. Box: 24, Jeddah 21959, Saudi Arabia
| | - Jiri Frohlich
- Healthy Heart Program, St. Paul's Hospital, Vancouver V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Sammy Y. Chan
- Healthy Heart Program, St. Paul's Hospital, Vancouver V6Z 1Y6, Canada
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver V5Z 1M9, Canada
| |
Collapse
|
21
|
Ward NC, Kostner KM, Sullivan DR, Nestel P, Watts GF. Molecular, Population, and Clinical Aspects of Lipoprotein(a): A Bridge Too Far? J Clin Med 2019; 8:E2073. [PMID: 31783529 PMCID: PMC6947201 DOI: 10.3390/jcm8122073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022] Open
Abstract
There is now significant evidence to support an independent causal role for lipoprotein(a) (Lp(a)) as a risk factor for atherosclerotic cardiovascular disease. Plasma Lp(a) concentrations are predominantly determined by genetic factors. However, research into Lp(a) has been hampered by incomplete understanding of its metabolism and proatherogeneic properties and by a lack of suitable animal models. Furthermore, a lack of standardized assays to measure Lp(a) and no universal consensus on optimal plasma levels remain significant obstacles. In addition, there are currently no approved specific therapies that target and lower elevated plasma Lp(a), although there are recent but limited clinical outcome data suggesting benefits of such reduction. Despite this, international guidelines now recognize elevated Lp(a) as a risk enhancing factor for risk reclassification. This review summarises the current literature on Lp(a), including its discovery and recognition as an atherosclerotic cardiovascular disease risk factor, attempts to standardise analytical measurement, interpopulation studies, and emerging therapies for lowering elevated Lp(a) levels.
Collapse
Affiliation(s)
- Natalie C. Ward
- School of Public Health, Curtin University, Perth 6102, Australia;
- School of Medicine, University of Western Australia, Perth 6009, Australia
| | - Karam M. Kostner
- Department of Cardiology, Mater Hospital, Brisbane 4104, Australia;
- School of Medicine University of Queensland, Brisbane 4072, Australia
| | - David R. Sullivan
- Medical School, The University of Sydney, Sydney 2006, Australia;
- Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
- Department of Biochemistry, Royal Prince Alfred Hospital, Sydney 2050, Australia
| | - Paul Nestel
- Baker Heart & Diabetes Institute, Melbourne 3004, Australia;
- Department of Cardiology, The Alfred Hospital, Melbourne 3004, Australia
| | - Gerald F. Watts
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth 6000, Australia
| |
Collapse
|
22
|
Van den Hof M, Klein Haneveld MJ, Blokhuis C, Scherpbier HJ, Jansen HPG, Kootstra NA, Dallinga-Thie GM, Van Deventer SJH, Tsimikas S, Pajkrt D. Elevated Lipoprotein(a) in Perinatally HIV-Infected Children Compared With Healthy Ethnicity-Matched Controls. Open Forum Infect Dis 2019; 6:ofz301. [PMID: 31660394 PMCID: PMC6736182 DOI: 10.1093/ofid/ofz301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Indexed: 01/06/2023] Open
Abstract
Background HIV-associated cardiovascular disease (CVD) risk in combination antiretroviral therapy (cART)-treated perinatally HIV-infected patients (PHIV+) remains unknown due to the young age of this population. Lipoprotein(a) (Lp(a)) has been established as an independent causal risk factor for CVD in the general population but has not been well established in the population of PHIV+. Methods We cross-sectionally compared lipid profiles, including nonfasting Lp(a), together with total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides between 35 cART-treated PHIV+ children aged 8-18 years and 37 controls who were matched for age, sex, ethnicity, and socioeconomic status. We explored associations between Lp(a) and disease- and treatment-related factors (inflammation, monocyte activation, and vascular), biomarkers, and neuroimaging outcomes using linear regression models. Results PHIV+ children had significantly higher levels of Lp(a) compared with controls (median, 43.6 [21.6-82.4] vs 21.8 [16.8-46.6] mg/dL; P = .033). Other lipid levels were comparable between groups. Additional assessment of apolipoprotein B, apolipoprotein CIII, apolipoprotein E, and APOE genotype revealed no significant differences. Higher Lp(a) levels were associated with higher plasma apoB levels and with lower monocyte chemoattractant protein-1 and TG levels in PHIV+ children. Lp(a) was not associated with HIV- or cART-related variables or with neuroimaging outcomes. Conclusions cART-treated PHIV+ children appear to have higher levels of Lp(a) compared with ethnicity-matched controls, which may implicate higher CVD risk in this population. Future research should focus on the association between Lp(a) and (sub)clinical CVD measurements in cART-treated PHIV+ patients. Dutch Trial Register number NRT4074.
Collapse
Affiliation(s)
- Malon Van den Hof
- Pediatric Infectious Diseases, Emma Children's Hospital, Amsterdam, the Netherlands
| | | | - Charlotte Blokhuis
- Pediatric Infectious Diseases, Emma Children's Hospital, Amsterdam, the Netherlands
| | | | - Hans P G Jansen
- Department of Experimental Vascular Medicine and Vascular Medicine, Amsterdam, the Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands
| | - Geesje M Dallinga-Thie
- Department of Experimental Vascular Medicine and Vascular Medicine, Amsterdam, the Netherlands
| | | | - Sotirios Tsimikas
- Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine, University California San Diego, La Jolla, California
| | - Dasja Pajkrt
- Pediatric Infectious Diseases, Emma Children's Hospital, Amsterdam, the Netherlands
| | | |
Collapse
|
23
|
Tada H, Takamura M, Kawashiri MA. Lipoprotein(a) as an Old and New Causal Risk Factor of Atherosclerotic Cardiovascular Disease. J Atheroscler Thromb 2019; 26:583-591. [PMID: 31061262 PMCID: PMC6629747 DOI: 10.5551/jat.rv17034] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Lipoprotein(a) [Lp(a)], discovered in 1963, has been associated with atherosclerotic cardiovascular disease (ASCVD) independent of other traditional risk factors, including LDL cholesterol. Lp(a) is an apolipoprotein B (apoB)-containing lipoprotein, which contains an LDL-like particle. Unlike LDL, which is a primary therapeutic target to decrease ASCVD, current guidelines recommend measuring Lp(a) for risk assessments because there is no clear evidence demonstrating the clinical benefit of decreasing Lp(a) using classical drugs such as niacin. However, recent Mendelian randomization studies indicate that Lp(a) causally correlates with ASCVD. In addition, novel drugs, including PCSK9 inhibitors, as well as antisense oligonucleotide for apo(a), have exhibited efficacy in decreasing Lp(a) substantially, invigorating a discussion whether Lp(a) could be a novel therapeutic target for further ASCVD risk reduction. This review aims to provide current understanding, and future perspectives, of Lp(a), which is currently considered a mere biomarker but may emerge as a novel therapeutic target in future clinical settings.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masa-aki Kawashiri
- Department of Cardiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
24
|
Schnitzler JG, Dallinga-Thie GM, Kroon J. The Role of (Modified) Lipoproteins in Vascular Function: A Duet Between Monocytes and the Endothelium. Curr Med Chem 2019; 26:1594-1609. [PMID: 29546830 DOI: 10.2174/0929867325666180316121015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/24/2022]
Abstract
Over the last century, many studies have demonstrated that low-density lipoprotein (LDL) is a key risk factor of cardiovascular diseases (CVD) related to atherosclerosis. Thus, for these CVD patients, LDL lowering agents are commonly used in the clinic to reduce the risk for CVD. LDL, upon modification, will develop distinct inflammatory and proatherogenic potential, leading to impaired endothelial integrity, influx of immune cells and subsequent increased foam cell formation. LDL can also directly affect peripheral monocyte composition, rendering them in a more favorable position to migrate and accumulate in the subendothelial space. It has become apparent that other lipoprotein particles, such as triglyceride- rich lipoproteins or remnants (TRL) and lipoprotein(a) [Lp(a)] may also impact on atherogenic pathways. Evidence is accumulating that Lp(a) can promote peripheral monocyte activation, eventually leading to increased transmigration through the endothelium. Similarly, remnant cholesterol has been identified to play a key role in endothelial dysfunction and monocyte behavior. In this review, we will discuss recent developments in understanding the role of different lipoproteins in the context of inflammation at both the level of the monocyte and the endothelium.
Collapse
Affiliation(s)
- Johan G Schnitzler
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Geesje M Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Tuten A, Gungor Z, Ekmekci H, Ekmekci OB, Kucur M, Yilmaz N, Donma O, Sonmez H, Acıkgoz A, Madazlı R. Relationship between LPA SNPs and inflammatory burden in patients with preeclampsia to address future cardiovascular risk. J Matern Fetal Neonatal Med 2019; 34:898-906. [PMID: 31113255 DOI: 10.1080/14767058.2019.1622667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The study tested whether cardiovascular corresponding LPA risk genotypes improve pre-eclampsia and coronary heart disease (CHD) risk prediction beyond conventional risk factors. BACKGROUND Studies have shown that women specific risk factors for cardiovascular disease (CVD) have taken an attention recently. It might be possible to identify women who have the highest risk in developing CVD in their further lives. It is well-known that Lp(a) levels have an impact on increased risk of CVD which is affected by LPA gene. Further, LPA risk genotypes are not considered in cardiovascular risk prediction. METHODS We have included 200 pregnant Turkish women into the study. We stratified the preeclamptic (PE) group: early (EOP) (28.7 ± 3.0 weeks) and late onset (LOP) (36.0 ± 1.4 weeks). 14 LPA SNPs were evaluated in the study. Rs9355296 and rs3798220 were found as independent risk factors for preeclampsia by logistic regression analysis. A positive correlation was found between rs9355296 and the diagnostic criteria of preeclampsia. Further rs9355296 G/* carriers have higher vascular inflammation rather than AA carriers. CONCLUSIONS The findings reveal that LPA genetic variability with high inflammatory response might be an indication of future cardiovascular events.
Collapse
Affiliation(s)
- Abdullah Tuten
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Zeynep Gungor
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Hakan Ekmekci
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Ozlem Balci Ekmekci
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Mine Kucur
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Nevin Yilmaz
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Orkide Donma
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Huseyin Sonmez
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Abdullah Acıkgoz
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| | - Rıza Madazlı
- Faculty of Medicine, University of Istanbul, Cerrahpasa Medical School, Istanbul, Turkey
| |
Collapse
|
26
|
Sáez T, de Vos P, Kuipers J, Sobrevia L, Faas MM. Exosomes derived from monocytes and from endothelial cells mediate monocyte and endothelial cell activation under high d-glucose conditions. Immunobiology 2019; 224:325-333. [PMID: 30827721 DOI: 10.1016/j.imbio.2019.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/04/2018] [Accepted: 02/04/2019] [Indexed: 01/22/2023]
Abstract
Diabetes mellitus type 2 (DMT2) is characterized by hyperglycemia and associated with low grade inflammation affecting both endothelial cells and monocytes. Exosomes are nanovesicles, allow communication between endothelial cells and monocytes and have been associated with diabetic complications. In this study we evaluated whether high glucose can activate monocytes and endothelial cells and whether exosomes play a role in this activation. Moreover, we studied whether endothelial cells and monocytes communicate with each other via exosomes under high and basal glncubation. In the first experiment, monomac 6 cells (MM6) were exposed to high glucose (HG; 25 mmol/L) or to exosomes from MM6 exposed to HG (exoMM6-HG) or basal glucose (5.5 mmol/L) (exoMM6-BG). In the second experiment, MM6 were exposed to exosomes from human umbilical vein endothelial cells (HUVECs) and HUVECs to exosomes from MM6. In the third experiment, MM6 and HUVECs were exposed to a mixture of exosomes from MM6 and HUVECs (exoMix). Cell activation was evaluated by measuring the protein surface expression of intracellular adhesion molecule-1 (ICAM-1) by flow cytometry. HG increased ICAM-1 expression in MM6 and monocytic exosomes from HG or BG shown similar effect in HG and BG MM6 cells. Exosomes from HUVECs increased ICAM-1 expression in MM6 cells, incubated under HG or BG, while also exosomes from MM6 increased ICAM-1 expression in HUVECs incubated under HG or BG. The combination of exosomes from both cell types (exoMixHG or exoMixBG) also increased ICAM-1 expression in both type cells in most conditions. However, the exoMixBG reversed the effect of HG in both MM6 and HUVECs. Our results show that HG activated monocytes and endothelial cells and that exosomes play a role in this HG-induced cell ICAM-1 expression. We hypothesize that during DMT2, exosomes may act as a communication mechanism between monocytes and endothelial cells, inducing and maintaining activating of both cell types in the presence of high glucose.
Collapse
Affiliation(s)
- Tamara Sáez
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Jeroen Kuipers
- Molecular Imaging and Electron Microscopy Department of Cell Biology, University of Groningen, University Medical Center Groningen (UMCG), 9713 AZ, Groningen, the Netherlands
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, 4029, Australia.
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
27
|
Scipione CA, Koschinsky ML, Boffa MB. Lipoprotein(a) in clinical practice: New perspectives from basic and translational science. Crit Rev Clin Lab Sci 2017; 55:33-54. [PMID: 29262744 DOI: 10.1080/10408363.2017.1415866] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are a causal risk factor for coronary heart disease (CHD) and calcific aortic valve stenosis (CAVS). Genetic, epidemiological and in vitro data provide strong evidence for a pathogenic role for Lp(a) in the progression of atherothrombotic disease. Despite these advancements and a race to develop new Lp(a) lowering therapies, there are still many unanswered and emerging questions about the metabolism and pathophysiology of Lp(a). New studies have drawn attention to Lp(a) as a contributor to novel pathogenic processes, yet the mechanisms underlying the contribution of Lp(a) to CVD remain enigmatic. New therapeutics show promise in lowering plasma Lp(a) levels, although the complete mechanisms of Lp(a) lowering are not fully understood. Specific agents targeted to apolipoprotein(a) (apo(a)), namely antisense oligonucleotide therapy, demonstrate potential to decrease Lp(a) to levels below the 30-50 mg/dL (75-150 nmol/L) CVD risk threshold. This therapeutic approach should aid in assessing the benefit of lowering Lp(a) in a clinical setting.
Collapse
Affiliation(s)
- Corey A Scipione
- a Department of Advanced Diagnostics , Toronto General Hospital Research Institute, UHN , Toronto , Canada
| | - Marlys L Koschinsky
- b Robarts Research Institute , Western University , London , Canada.,c Department of Physiology & Pharmacology , Schulich School of Medicine & Dentistry, Western University , London , Canada
| | - Michael B Boffa
- d Department of Biochemistry , Western University , London , Canada
| |
Collapse
|
28
|
Ellis KL, Boffa MB, Sahebkar A, Koschinsky ML, Watts GF. The renaissance of lipoprotein(a): Brave new world for preventive cardiology? Prog Lipid Res 2017; 68:57-82. [DOI: 10.1016/j.plipres.2017.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/24/2022]
|
29
|
Ferretti G, Bacchetti T, Johnston TP, Banach M, Pirro M, Sahebkar A. Lipoprotein(a): A missing culprit in the management of athero-thrombosis? J Cell Physiol 2017; 233:2966-2981. [DOI: 10.1002/jcp.26050] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Gianna Ferretti
- Department of Clinical Sciences (DISCO); Polytechnic University of Marche; Marche Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences (DISVA); Polytechnic University of Marche; Marche Italy
| | - Thomas P. Johnston
- Division of Pharmaceutical Sciences; School of Pharmacy; University of Missouri-Kansas City; Kansas City Missouri
| | - Maciej Banach
- Department of Hypertension; WAM University Hospital in Lodz; Medical University of Lodz; Lodz Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI); Lodz Poland
| | - Matteo Pirro
- Unit of Internal Medicine; Angiology and Arteriosclerosis Diseases; Department of Medicine; University of Perugia; Perugia Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Neurogenic Inflammation Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
30
|
Pirro M, Bianconi V, Paciullo F, Mannarino MR, Bagaglia F, Sahebkar A. Lipoprotein(a) and inflammation: A dangerous duet leading to endothelial loss of integrity. Pharmacol Res 2017; 119:178-187. [DOI: 10.1016/j.phrs.2017.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/08/2017] [Accepted: 02/02/2017] [Indexed: 12/15/2022]
|
31
|
Abstract
The prevalence of thrombophilia and dyslipidemia among young survivors of acute coronary syndrome has not been clearly defined. The purpose of the current study was to investigate the prevalence of multiple markers of thrombophilia and dyslipidemia in a cohort of consecutive young survivors of acute coronary syndrome. The study cohort included 156 consecutive young patients (men <45 and women <50 years), admitted to the intensive cardiac care unit with newly diagnosed acute coronary syndrome. Analysis included baseline, clinical and epidemiological characteristics, angiographic coronary anatomy, echocardiographic evaluation, extensive lipid and thrombophilia laboratory profiles, and in-hospital and 1-year clinical outcomes for all patients. Acute myocardial infarction was diagnosed in 142 (92 %) patients, of whom 108 (72 %) had ST-segment elevation. Eighteen (12 %) patients had no traditional risk factors. Low levels of high-density lipoprotein (<40 mg/dL) were found in 101 (65 %) patients, and 49 (34 %) patients had elevated levels of lipoprotein(a) (Lp(a)) (>30 mg/dL). Eighteen (12 %) patients were diagnosed with antiphospholipid antibody syndrome (APS), and 73 (47 %) had at least one laboratory finding consistent with thrombophilia. Patients with APS had significantly higher levels of Lp(a) (46 ± 32 vs. 29 ± 31 mg/dL, p = 0.005). APS is a common prothrombotic state found in young survivors of acute coronary syndrome. Lp(a) levels are elevated among APS patients who present with premature acute coronary syndrome.
Collapse
|
32
|
Scipione CA, Sayegh SE, Romagnuolo R, Tsimikas S, Marcovina SM, Boffa MB, Koschinsky ML. Mechanistic insights into Lp(a)-induced IL-8 expression: a role for oxidized phospholipid modification of apo(a). J Lipid Res 2015; 56:2273-85. [PMID: 26474593 DOI: 10.1194/jlr.m060210] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 12/14/2022] Open
Abstract
Elevated lipoprotein (a) [Lp(a)] levels are a causal risk factor for coronary heart disease. Accumulating evidence suggests that Lp(a) can stimulate cellular inflammatory responses through the kringle-containing apolipoprotein (a) [apo(a)] component. Here, we report that recombinant apo(a) containing 17 kringle (17K) IV domains elicits a dose-dependent increase in interleukin (IL)-8 mRNA and protein expression in THP-1 and U937 macrophages. This effect was blunted by mutation of the lysine binding site in apo(a) kringle IV type 10, which resulted in the loss of oxidized phospholipid (oxPL) on apo(a). Trypsin-digested 17K had the same stimulatory effect on IL-8 expression as intact apo(a), while enzymatic removal of oxPL from apo(a) significantly blunted this effect. Using siRNA to assess candidate receptors, we found that CD36 and TLR2 may play roles in apo(a)-mediated IL-8 stimulation. Downstream of these receptors, inhibitors of MAPKs, Jun N-terminal kinase and ERK1/2, abolished the effect of apo(a) on IL-8 gene expression. To assess the roles of downstream transcription factors, luciferase reporter gene experiments were conducted using an IL-8 promoter fragment. The apo(a)-induced expression of this reporter construct was eliminated by mutation of IL-8 promoter binding sites for either NF-κB or AP-1. Our results provide a mechanistic link between oxPL modification of apo(a) and stimulation of proinflammatory intracellular signaling pathways.
Collapse
Affiliation(s)
- Corey A Scipione
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Sera E Sayegh
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Rocco Romagnuolo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Sotirios Tsimikas
- Vascular Medicine Program, University of California San Diego, La Jolla, CA
| | - Santica M Marcovina
- Department of Medicine, Northwest Lipid Research Laboratories, University of Washington, Seattle, WA
| | - Michael B Boffa
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Marlys L Koschinsky
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
33
|
Kassimatis TI, Goldsmith DJA. Statins in chronic kidney disease and kidney transplantation. Pharmacol Res 2014; 88:62-73. [PMID: 24995940 DOI: 10.1016/j.phrs.2014.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/15/2022]
Abstract
HMG-CoA reductase inhibitors (statins) have been shown to improve cardiovascular (CV) outcomes in the general population as well as in patients with cardiovascular disease (CVD). Statins' beneficial effects have been attributed to both cholesterol-lowering and cholesterol-independent "pleiotropic" properties. By their pleiotropic effects statins have been shown to reduce inflammation, alleviate oxidative stress, modify the immunologic responses, improve endothelial function and suppress platelet aggregation. Patients with chronic kidney disease (CKD) exhibit an enormous increase in CVD rates even from early CKD stages. As considerable differences exist in dyslipidemia characteristics and the pathogenesis of CVD in CKD, statins' CV benefits in CKD patients (including those with a kidney graft) should not be considered unequivocal. Indeed, accumulating clinical evidence suggests that statins exert diverse effects on dialysis and non-dialysis CKD patients. Therefore, it seems that statins improve CV outcomes in non-dialysis patients whereas exert little (if any) benefit in the dialysis population. It has also been proposed that dyslipidemia might play a causative role or even accelerate renal injury. Moreover, ample experimental evidence suggests that statins ameliorate renal damage. However, a high quality randomized controlled trial (RCT) and metaanalyses do not support a beneficial role of statins in renal outcomes in terms of proteinuria reduction or retardation of glomerular filtration rate (GFR) decline.
Collapse
|
34
|
Hesperidin inhibits inflammatory response induced by Aeromonas hydrophila infection and alters CD4+/CD8+ T cell ratio. Mediators Inflamm 2014; 2014:393217. [PMID: 24891765 PMCID: PMC4033591 DOI: 10.1155/2014/393217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/21/2014] [Indexed: 12/26/2022] Open
Abstract
Background. Aeromonas hydrophila is an opportunistic bacterial pathogen that is associated with a number of human diseases. Hesperidin (HES) has been reported to exert antioxidant and anti-inflammatory activities. Objectives. The aim of this study was to investigate the potential effect of HES treatment on inflammatory response induced by A. hydrophila infection in murine. Methods. A. hydrophila-infected mice were treated with HES at 250 mg/kg b.wt./week for 4 consecutive weeks. Phagocytosis, reactive oxygen species production, CD4+/CD8+ T cell ratio, and CD14 expression on intestinal infiltrating monocytes were evaluated. The expression of E-selectin and intercellular adhesion molecule 1 on stimulated HUVECs and RAW macrophage was evaluated. Results. Percentage of CD4+ T cells in the intestinal tissues of infected treated mice was highly significantly increased; however, phagocytic index, ROS production, CD8+ T cells percentage, and CD14 expression on monocytes were significantly reduced. On the other hand, HES significantly inhibited A-LPS- and A-ECP-induced E-selectin and ICAM-1 expression on HUVECs and ICAM-1 expression on RAW macrophage. Conclusion. Present data indicated that HES has a potential role in the suppression of inflammatory response induced by A. hydrophila toxins through downmodulation of ROS production and CD14 and adhesion molecules expression, as well as increase of CD4+/CD8+ cell ratio.
Collapse
|
35
|
Assessment of plasma prothrombotic factors in patients with Buerger's disease. Blood Coagul Fibrinolysis 2013; 24:133-9. [PMID: 23358197 DOI: 10.1097/mbc.0b013e32835b7272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pathogenesis of Buerger' disease (thrombangiitis obliterans; TAO) remains unknown, although a strong association with tobacco use has been established. Blood coagulation and fibrinolytic factors as well as selected clinical chemistry parameters have been evaluated in 37 patients with Buerger's disease. Median levels of prothrombotic factors were higher in patients with TAO than in healthy control: annexin V (P < 0.0003), factor VII (P < 0.0001), factor VIII (P < 0.0000001), factor XI (P < 0.000003), homocysteine (P < 0.014) and fibrinogen (P = 0.00007). Patients with Buerger's disease also showed higher median plasma levels of urokinase type plasminogen activator (uPA) (P < 0.000004), its receptor (uPAR) (P < 0.0008) and uPA complex with plasminogen activator inhibitor 1 (uPA-PAI-1) P < 0.000006). In contrast, plasma concentrations of apolipoprotein A and folic acid were lower in patients with TAO than in control (P < 0.004 and P < 0.0006; respectively). Higher plasminogen (P < 0.05) and cholesterol (P < 0.003), as well as lower folic acid (P < .0.05) levels were noted in the smokers group than in nonsmoking patients. We found higher plasminogen (P < 0.05), factor VII (P < 0.05), total lipids (P < 0.003), cholesterol (P < 0.05) and triglycerides (P < 0.002) levels in patients requiring surgical treatment for limb-threatening ischaemia than the patients treated only conservatively. These findings suggest an important role of haemostatic risk factors in the pathogenesis of Buerger's disease, with special regard to hyperhomocysteinemia that might be aggravated by low serum folic acid level. In patients with aggressive clinical course, disturbances in serum lipids were more pronounced. Further studies are warranted to establish whether diet supplementation of folic acid as well as normalization of lipids balance might influence the clinical course of TAO.
Collapse
|
36
|
Lipoprotein(a) in cardiovascular diseases. BIOMED RESEARCH INTERNATIONAL 2012; 2013:650989. [PMID: 23484137 PMCID: PMC3591100 DOI: 10.1155/2013/650989] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 11/18/2022]
Abstract
Lipoprotein(a) (Lp(a)) is an LDL-like molecule consisting of an apolipoprotein B-100 (apo(B-100)) particle attached by a disulphide bridge to apo(a). Many observations have pointed out that Lp(a) levels may be a risk factor for cardiovascular diseases. Lp(a) inhibits the activation of transforming growth factor (TGF) and contributes to the growth of arterial atherosclerotic lesions by promoting the proliferation of vascular smooth muscle cells and the migration of smooth muscle cells to endothelial cells. Moreover Lp(a) inhibits plasminogen binding to the surfaces of endothelial cells and decreases the activity of fibrin-dependent tissue-type plasminogen activator. Lp(a) may act as a proinflammatory mediator that augments the lesion formation in atherosclerotic plaques. Elevated serum Lp(a) is an independent predictor of coronary artery disease and myocardial infarction. Furthermore, Lp(a) levels should be a marker of restenosis after percutaneous transluminal coronary angioplasty, saphenous vein bypass graft atherosclerosis, and accelerated coronary atherosclerosis of cardiac transplantation. Finally, the possibility that Lp(a) may be a risk factor for ischemic stroke has been assessed in several studies. Recent findings suggest that Lp(a)-lowering therapy might be beneficial in patients with high Lp(a) levels. A future therapeutic approach could include apheresis in high-risk patients in order to reduce major coronary events.
Collapse
|
37
|
Lipoprotein(a): Cellular Effects and Molecular Mechanisms. CHOLESTEROL 2012; 2012:923289. [PMID: 22991657 PMCID: PMC3443569 DOI: 10.1155/2012/923289] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/24/2012] [Indexed: 01/31/2023]
Abstract
Lipoprotein(a) (Lp(a)) is an independent risk factor for the development of cardiovascular disease (CVD). Indeed, individuals with plasma concentrations >20 mg/dL carry a 2-fold increased risk of developing CVD, accounting for ~25% of the population. Circulating levels of Lp(a) are remarkably resistant to common lipid lowering therapies, and there are currently no robust treatments available for reduction of Lp(a) apart from plasma apheresis, which is costly and labour intensive. The Lp(a) molecule is composed of two parts, an LDL/apoB-100 core and a unique glycoprotein, apolipoprotein(a) (apo(a)), both of which can interact with components of the coagulation cascade, inflammatory pathways, and cells of the blood vessel wall (smooth muscle cells (SMC) and endothelial cells (EC)). Therefore, it is of key importance to determine the molecular pathways by which Lp(a) exerts its influence on the vascular system in order to design therapeutics to target its cellular effects. This paper will summarise the role of Lp(a) in modulating cell behaviour in all aspects of the vascular system including platelets, monocytes, SMC, and EC.
Collapse
|
38
|
McAuley AK, Sanfilippo PG, Connell PP, Wang JJ, Dirani M, Lamoureux E, Hewitt AW. Circulating biomarkers of diabetic retinopathy: a systematic review and meta-analysis. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/dmt.12.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Balogh E, Bereczky Z, Katona E, Koszegi Z, Edes I, Muszbek L, Czuriga I. Interaction between homocysteine and lipoprotein(a) increases the prevalence of coronary artery disease/myocardial infarction in women: a case-control study. Thromb Res 2011; 129:133-8. [PMID: 21803402 DOI: 10.1016/j.thromres.2011.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Our aim was to investigate the association of elevated homocysteine (Hcy) and lipoprotein(a) Lp(a) with the prevalence of coronary artery disease (CAD) and myocardial infarction (MI) and to investigate their interaction in both genders. MATERIALS AND METHODS 955 (male/female: 578/377) consecutive patients admitted for coronary angiography were enrolled in the study. Lp(a), Hcy, vitamin B12, folic acid, MTHFR C677T polymorphism and traditional risk factors were determined. RESULTS 619 patients had significant (≥50%) stenosis (CAD+) and 341 had MI (MI+). CAD-MI- cases (n=302) were considered as controls. Adjusted Hcy levels were significantly elevated only in the female CAD+MI+group that was related to decreased vitamin B12 levels. Lp(a) was elevated in the CAD+MI+group of both genders. Folic acid levels and MTHFR T677 allele frequency did not show significant difference. Moderate hyperhomocysteinemia (Hcy >15μmol/L) or elevated Lp(a) (>300mg/L) increased the risk of CAD (OR 2.27, CI 1.36-3.80 and OR 1.64, CI 1.03-2.61, respectively) and MI (OR 2.52, CI 1.36-4.67 and OR 1.89, CI 1.06-3.38, respectively) only in women. Only simultaneous but not isolated elevation of Hcy and Lp(a) conferred a significant, 3.6-fold risk of CAD in females and even higher (11-fold) risk in young females, which suggested an interactive effect. CONCLUSIONS Moderate hyperhomocysteinemia or elevated Lp(a) level associated with a risk of CAD and MI only in women. While isolated elevation of one of the two parameters represented a mild risk of CAD, their combined elevation highly increased the risk in females. No such effect was observed in males.
Collapse
Affiliation(s)
- Emilia Balogh
- Department of Cardiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | |
Collapse
|
40
|
Gaeta G, Lanero S, Barra S, Silvestri N, Cuomo V, Materazzi C, Vitagliano G. Sex hormones and lipoprotein(a) concentration. Expert Opin Investig Drugs 2011; 20:221-38. [DOI: 10.1517/13543784.2011.548804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Shin SK, Kwon JH, Jeong YJ, Jeon SM, Choi JY, Choi MS. Supplementation of cheonggukjang and red ginseng cheonggukjang can improve plasma lipid profile and fasting blood glucose concentration in subjects with impaired fasting glucose. J Med Food 2010; 14:108-13. [PMID: 21128827 DOI: 10.1089/jmf.2009.1366] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to investigate the plasma lipid profile and blood glucose-lowering effects of cheonggukjang (CH) and red ginseng CH (RGCH) in 45 subjects (men:women = 27:18; mean age, 44.9 ± 3.1 years) with impaired fasting glucose (IFG). Subjects were randomly divided into three groups: control (starch, 2 g/day), CH (20 g/day), and RGCH (20 g/day). Each volunteer received his or her daily doses for 8 weeks. The supplementation with CH and RGCH significantly decreased the plasma total cholesterol about 30.0 mg/mL and 37.7 mg/mL, respectively, compared to the initial value. The plasma low-density lipoprotein-cholesterol concentration was also significantly reduced by 29.66% and 23.42% in the CH and RGCH groups, respectively, compared to the initial value. The concentration of plasma non-high-density lipoprotein-cholesterol (107.9 mg/mL) was significantly lowered in the RGCH group compared to the initial value (139.1 mg/mL). The level of erythrocyte thiobarbituric acid-reactive substances was significantly lowered in the CH (6.5 nmol/mL) and RGCH (6.6 nmol/mL) groups compared to the initial value (7.9 nmol/mL and 8.0 nmol/mL, respectively). The ratio of apolipoprotein B and apolipoprotein A-1 concentrations (2.5) was significantly reduced in the CH group compared to the initial value (3.0). The concentration of fasting blood glucose (FBG) was significantly lower in the CH- and RGCH-supplemented groups compared to the initial value. These results suggest that CH and RGCH can lower the FBG concentration and improve the plasma lipid profile in subjects with IFG.
Collapse
Affiliation(s)
- Su-Kyung Shin
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
42
|
Nakagami F, Nakagami H, Osako MK, Iwabayashi M, Taniyama Y, Doi T, Shimizu H, Shimamura M, Rakugi H, Morishita R. Estrogen attenuates vascular remodeling in Lp(a) transgenic mice. Atherosclerosis 2010; 211:41-7. [DOI: 10.1016/j.atherosclerosis.2010.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 11/25/2022]
|
43
|
The role of lipoprotein-associated phospholipase A2 in atherosclerosis may depend on its lipoprotein carrier in plasma. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:327-38. [PMID: 19272461 DOI: 10.1016/j.bbalip.2009.02.015] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/06/2009] [Accepted: 02/19/2009] [Indexed: 01/28/2023]
Abstract
Platelet-activating factor (PAF) acetylhydrolase exhibits a Ca(2+)-independent phospholipase A2 activity and degrades PAFas well as oxidized phospholipids (oxPL). Such phospholipids are accumulated in the artery wall and may play key roles in vascular inflammation and atherosclerosis. PAF-acetylhydrolase in plasma is complexed to lipoproteins; thus it is also referred to as lipoprotein-associated phospholipase A2 (Lp-PLA2). Lp-PLA2 is primarily associated with low-density lipoprotein (LDL), whereas a small proportion of circulating enzyme activity is also associated with high-density lipoprotein (HDL). The majority of the LDL-associated Lp-PLA2 (LDL-Lp-PLA2) activity is bound to atherogenic small-dense LDL particles and it is a potential marker of these particles in plasma. The distribution of Lp-PLA2 between LDL and HDL is altered in various types of dyslipidemias. It can be also influenced by the presence of lipoprotein (a) [Lp(a)] when plasma levels of this lipoprotein exceed 30 mg/dl. Several lines of evidence suggest that the role of plasma Lp-PLA2 in atherosclerosis may depend on the type of lipoprotein particle with which this enzyme is associated. In this regard, data from large Caucasian population studies have shown an independent association between the plasma Lp-PLA2 levels (which are mainly influenced by the levels of LDL-Lp-PLA2) and the risk of future cardiovascular events. On the contrary, several lines of evidence suggest that HDL-associated Lp-PLA2 may substantially contribute to the HDL antiatherogenic activities. Recent studies have provided evidence that oxPL are preferentially sequestered on Lp(a) thus subjected to degradation by the Lp(a)-associated Lp-PLA2. These data suggest that Lp(a) may be a potential scavenger of oxPL and provide new insights into the functional role of Lp(a) and the Lp(a)-associated Lp-PLA2 in normal physiology as well as in inflammation and atherosclerosis. The present review is focused on recent advances concerning the Lp-PLA2 structural characteristics, the molecular basis of the enzyme association with distinct lipoprotein subspecies, as well as the potential role of Lp-PLA2 associated with different lipoprotein classes in atherosclerosis and cardiovascular disease.
Collapse
|
44
|
Funatsu H, Shimizu E, Noma H, Mimura T, Hori S. Association between serum lipoprotein (a) level and progression of non-proliferative diabetic retinopathy in Type 2 diabetes. Acta Ophthalmol 2009; 87:501-5. [PMID: 18700887 DOI: 10.1111/j.1755-3768.2008.01298.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate independent risk factors related to the progression of non-proliferative diabetic retinopathy (NPDR) for Japanese Type 2 diabetic patients. METHODS One hundred and six patients with NPDR were followed up for 2 years. Diabetic retinopathy (DR) was determined by colour fundus photography. Multivariate logistic regression analysis was performed to assess variables independently associated with the progression of NPDR. Serum concentrations of novel risk factors for atherosclerotic vascular disease, including lipoprotein (a) [Lp(a)] and fibrinogen, were measured. RESULTS Thirty-three patients (31%) had progressed by two scale steps or more in 2 years. The progression of NPDR was significantly associated with HbA(1c) [odds ratio (OR) 2.12; 95% confidence interval (CI) 1.14-4.87], systolic blood pressure (OR 1.72; 95% CI 1.14-2.91), Lp(a) (OR 2.70; 95% CI 1.09-5.12) and fibrinogen (OR 1.68; 95% CI 1.03-3.08). Multivariate logistic regression analysis showed that HbA(1c) (OR 1.74; 95% CI 1.12-3.21) and Lp(a) level (OR 1.90; 95% CI 1.06-4.33) were significant and independent predictors of the progression of NPDR. CONCLUSION These data suggest that serum Lp(a) level is an independent risk factor for the progression of NPDR in Type 2 diabetes patients. We recommend that further prospective validation of our findings be undertaken to confirm these observations.
Collapse
Affiliation(s)
- Hideharu Funatsu
- Department of Ophthalmology, Yachiyo Medical Centre, Tokyo Women's Medical University, Japan.
| | | | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW To provide an update of the literature describing the link between lipoprotein a and vascular disease. RECENT FINDINGS There is evidence that elevated plasma lipoprotein a levels are associated with coronary heart disease, stroke and other manifestations of atherosclerosis. Several mechanisms may be implicated, including proinflammatory actions and impaired fibrinolysis. SUMMARY Lipoprotein a potentially represents a useful tool for risk stratification in the primary and secondary prevention setting. However, there are still unresolved methodological issues regarding the measurement of lipoprotein a levels. Targeting lipoprotein a in order to reduce vascular risk is hampered by the lack of well tolerated and effective pharmacological interventions. Moreover, it has not yet been established whether such a reduction will result in fewer vascular events. The risk attributed to lipoprotein a may be reduced by aggressively tackling other vascular risk factors, such as low-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Konstantinos Tziomalos
- Department of Clinical Biochemistry (Vascular Prevention Clinic), Royal Free Hospital Campus, University College Medical School, University College London, London, UK
| | | | | | | |
Collapse
|
46
|
Cho T, Jung Y, Koschinsky ML. Apolipoprotein(a), through its strong lysine-binding site in KIV(10'), mediates increased endothelial cell contraction and permeability via a Rho/Rho kinase/MYPT1-dependent pathway. J Biol Chem 2008; 283:30503-12. [PMID: 18776185 DOI: 10.1074/jbc.m802648200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substantial evidence indicates that endothelial dysfunction plays a critical role in atherogenesis. We previously demonstrated that apolipoprotein(a) (apo(a); the distinguishing protein component of the atherothrombotic risk factor lipoprotein(a)) elicits rearrangement of the actin cytoskeleton in human umbilical vein endothelial cells, characterized by increased myosin light chain (MLC) phosphorylation via a Rho/Rho kinase-dependent signaling pathway. Apo(a) contains kringle (K)IV and KV domains similar to those in plasminogen: apo(a) contains 10 types of plasminogen KIV-like sequences, followed by sequences homologous to the plasminogen KV and protease domains. Several of the apo(a) kringles contain lysine-binding sites (LBS) that have been proposed to contribute to the pathogenicity of Lp(a). Here we demonstrate that apo(a)-induced endothelial barrier dysfunction is mediated via a Rho/Rho kinase-dependent signaling pathway that results in increased MYPT1 phosphorylation and hence decreased MLC phosphatase activity, thus leading to an increase in MLC phosphorylation, stress fiber formation, cell contraction, and permeability. In addition, studies using recombinant apo(a) variants indicated that these effects of apo(a) are dependent on sequences within the C-terminal half of the apo(a) molecule, specifically, the strong LBS in KIV(10). In parallel experiments, the apo(a)-induced effects were completely abolished by treatment of the cells with the lysine analogue epsilon-aminocaproic acid and the Rho kinase inhibitor Y27632. Taken together, our findings indicate that the strong LBS in apo(a) KIV(10) mediates all of our observed effects of apo(a) on human umbilical vein endothelial cell barrier dysfunction. Studies are ongoing to further dissect the molecular basis of these findings.
Collapse
Affiliation(s)
- Taewoo Cho
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
47
|
Abstract
AIM To assess (i) the association between lipoprotein(a) [Lp(a)] with the likelihood of coronary heart disease and metabolic syndrome (MS) and (ii) its covariates in Turkish adults. METHODS Cross-sectional evaluation of 1309 adults, who had serum Lp(a) determinations by Behring nephelometry, and followed for a mean 1.0 year. MS was defined by ATPIII criteria modified for male abdominal obesity. RESULTS Mean age of the sample was 56.8+/-11.3 years. After adjustment for sex, age, and smoking status, log-transformed Lp(a) levels were associated significantly with coronary heart disease likelihood in both sexes combined [odds ratio: 1.53 (95% confidence interval: 1.06; 2.20)]. This association persisted after additional adjustment for MS [odds ratio: 1.57 (95% confidence interval: 1.09; 2.26)]. The Lp(a) mid-tertile (5-17 mg/dl), accompanied by significantly lower serum triglycerides than the two remaining tertiles, was inversely associated significantly with MS in either sex; in women, this association was independent of waist circumference. In a linear regression comprising seven variables, excepting total cholesterol, only gamma-glutamyltransferase in women (P=0.002) and waist circumference (P=0.057) in men were inverse covariates of modest magnitude of Lp(a). CONCLUSION Coronary heart disease likelihood, significantly associated with Lp(a) concentrations, is independent of MS and insulin resistance. Suggestive evidence was provided that intermediary Lp(a) concentrations, when accompanied by the presence of MS, could accelerate progression of vascular disease, especially in women.
Collapse
|
48
|
Rodbard HW, Blonde L, Braithwaite SS, Brett EM, Cobin RH, Handelsman Y, Hellman R, Jellinger PS, Jovanovic LG, Levy P, Mechanick JI, Zangeneh F. American Association of Clinical Endocrinologists medical guidelines for clinical practice for the management of diabetes mellitus. Endocr Pract 2007; 13 Suppl 1:1-68. [PMID: 17613449 DOI: 10.4158/ep.13.s1.1] [Citation(s) in RCA: 431] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Enas EA, Chacko V, Senthilkumar A, Puthumana N, Mohan V. Elevated lipoprotein(a)--a genetic risk factor for premature vascular disease in people with and without standard risk factors: a review. Dis Mon 2006; 52:5-50. [PMID: 16549089 DOI: 10.1016/j.disamonth.2006.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Enas A Enas
- CADI Research Foundation, Lisle, Illinois, USA
| | | | | | | | | |
Collapse
|
50
|
Catena C, Novello M, Lapenna R, Baroselli S, Colussi G, Nadalini E, Favret G, Cavarape A, Soardo G, Sechi LA. New risk factors for atherosclerosis in hypertension: focus on the prothrombotic state and lipoprotein(a). J Hypertens 2005; 23:1617-31. [PMID: 16093903 DOI: 10.1097/01.hjh.0000178835.33976.e7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although adequate control of blood pressure is of basic importance in cardiovascular prevention in hypertensive patients, correction of additional risk factors is an integral part of their management. In addition to classical risk factors, epidemiological research has identified a number of other conditions that might significantly contribute to cardiovascular risk in the general population and might achieve specific relevance in patients with high blood pressure. In fact, more than 20% of patients with premature cardiovascular events do not have any of the traditional risk factors and, although effective intervention on blood pressure and additional risk factors has significantly reduced cardiovascular morbidity and mortality, the contribution to stroke, coronary artery disease and renal failure is still unacceptably high. Evaluation of new risk factors may further expand our capacity to predict atherothrombotic events when these factors are included along with the traditional ones in the assessment of global cardiovascular risk in hypertensive patients. Because it could be anticipated that the role of these novel factors will become increasingly evident in the future, researchers with an interest in hypertension and physicians dealing with problems related to cardiovascular prevention should give them appropriate consideration. This review summarizes the basic biology and clinical evidence of two emerging risk factors that are reciprocally related and contribute to the development and progression of organ damage in hypertension: the prothrombotic state and lipoprotein(a).
Collapse
Affiliation(s)
- Cristiana Catena
- Internal Medicine and Hypertension Unit, Department of Experimental and Clinical Pathology and Medicine, University of Udine, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|