1
|
Han G, Yao M, Ni J. Recent Advances in Genetics of Moyamoya Disease: Insights into the Different Pathogenic Pathways. Int J Mol Sci 2025; 26:5241. [PMID: 40508049 PMCID: PMC12154784 DOI: 10.3390/ijms26115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/19/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
Moyamoya disease (MMD) is a rare yet clinically significant cerebrovascular disorder characterized by progressive stenosis of the distal internal carotid artery and/or its principal branches, accompanied by the development of characteristic collateral vessel networks. This disease demonstrates a complex multifactorial etiology with strong genetic determinants, as evidenced by its distinct geographical distribution patterns and familial clustering. Recent genetic researches have identified multiple pathogenic mutations contributing to MMD development through three principal mechanisms: progressive vascular stenosis, abnormal angiogenesis, and dysregulated inflammatory responses. Furthermore, moyamoya syndrome frequently occurs as a secondary vascular complication in various monogenic disorders. This review provides a comprehensive analysis of recent genetic advances in MMD in view of diverse pathogenic pathways, offering valuable perspectives on the molecular mechanisms underlying disease development and potential therapeutic targets.
Collapse
Affiliation(s)
| | - Ming Yao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Jun Ni
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China;
| |
Collapse
|
2
|
Sharma P, Abbey D. Alagille Syndrome: Unraveling the Complexities of Genotype-Phenotype Relationships and Exploring Avenues for Improved Diagnosis and Treatment. Cell Biol Int 2025; 49:435-471. [PMID: 40042123 DOI: 10.1002/cbin.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 04/15/2025]
Abstract
Alagille syndrome (ALGS) is a rare genetic disorder caused by mutations in the JAG1 and NOTCH2 genes, leading to a wide range of clinical manifestations. This review explores the complex genetic and clinical landscape of ALGS, emphasizing the challenges in understanding genotype-phenotype relationships due to its rarity and the lack of suitable research models. The review projects a clinical overview of the disease, emphasizing the influence of potential gene modifiers on its clinical presentation and the lack of mechanistic studies for over 100 mutations identified in the last 24 years from various populations, representing a significant gap in our current knowledge and advocating for further exploration. The review addresses the diagnostic challenges posed by the variable expressivity and overlapping symptoms of ALGS. It summarizes current treatment options and discusses emerging approaches such as antisense oligonucleotides (ASOs) and gene therapies. Further, the need for improved diagnostic tools, a deeper understanding of the underlying mechanisms, and the development of targeted therapies are emphasized using zebrafish and mice models, as well as genome editing for variant analysis and stem cell organoid models for disease modeling and drug discovery. The importance of cohort-based studies in understanding the natural history and outcomes of ALGS in diverse populations is highlighted. The review concludes by emphasizing the need for multi-disciplinary collaborative research to address the challenges in ALGS diagnosis, prognosis, and treatment, particularly for underrepresented populations.
Collapse
Affiliation(s)
- Priya Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Delhi, India
| | - Deepti Abbey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Delhi, India
| |
Collapse
|
3
|
Ranchin B, Meaux MN, Freppel M, Ruiz M, De Mul A. Kidney and vascular involvement in Alagille syndrome. Pediatr Nephrol 2025; 40:891-899. [PMID: 39446153 PMCID: PMC11885393 DOI: 10.1007/s00467-024-06562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Alagille syndrome (ALGS) is an autosomal dominant, multisystemic disease with a high interindividual variability. The two causative genes JAG1 and NOTCH2 are expressed during kidney development, can be reactivated during adulthood kidney disease, and Notch signalling is essential for vascular morphogenesis and remodelling in mice. Liver disease is the most frequent and severe involvement; neonatal cholestasis occurs in 85% of cases, pruritus in 74%, xanthomas in 24% of cases, and the cumulative incidences of portal hypertension and liver transplantation are 66% and 50% respectively at 18 years of age. Stenosis/hypoplasia of the branch pulmonary arteries is the most frequent vascular abnormality reported in ALGS. Kidney involvement is present in 38% of patients, and can reveal the disease. Congenital anomalies of the kidney and urinary tract is reported in 22% of patients, hyperchloremic acidosis in 9%, and glomerulopathy and/or proteinuria in 6%. A decreased glomerular filtration rate is reported in 10% of patients and is more frequent after liver transplantation for ALGS than for biliary atresia. Kidney failure has been frequently reported in childhood and adulthood. Renal artery stenosis and mid aortic syndrome have also frequently been reported, often associated with hypertension and stenosis and/or aneurysm of other large arteries. ALGS patients require kidney assessment at diagnosis, long-term monitoring of kidney function and early detection of vascular complications, notably if they have undergone liver transplantation, to prevent progression of chronic kidney disease and vascular complications, which account for 15% of deaths at a median age of 2.2 years in the most recent series.
Collapse
Affiliation(s)
- Bruno Ranchin
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.
| | - Marie-Noelle Meaux
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
| | - Malo Freppel
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
| | - Mathias Ruiz
- Service d'Hépato-gastroentérologie pédiatrique, Centre de Référence de l'atrésie des voies biliaires et des cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Aurelie De Mul
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
| |
Collapse
|
4
|
Tang Y, Zhang J, Fang Y, Zhu K, Zhu J, Huang C, Xie Z, Zhang S, Ma W, Yan G, Liu S, Liu X, Han W, Xin Y, Yang C, Abudupataer M, Zhou P, He C, Lai H, Wang C, Liu Y, Lan F, Ye D, Yu FX, Xu Y, Zhang W. Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice. NATURE CARDIOVASCULAR RESEARCH 2025; 4:235-247. [PMID: 39809927 DOI: 10.1038/s44161-024-00603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection. These changes are accompanied by decreased expression of MFN1/2 and TFAM, mirroring findings in human patients. SMC-specific deletion of Mfn1 and/or Mfn2 genes recapitulates the aortopathy seen in Notch1-deficient mice. Prophylactic or therapeutic approaches aimed at increasing mitochondrial DNA copy number, either through AAV-mediated overexpression of Mfn1/2 or oral treatment with mitofusion activators teriflunomide or leflunomide, help mitigate or slow the progression of aortopathy in SMC-Notch1-/- mice. Our findings provide a molecular framework for exploring pharmacological interventions to restore mitochondrial function in NOTCH1-related aortopathy.
Collapse
MESH Headings
- Animals
- Receptor, Notch1/genetics
- Receptor, Notch1/deficiency
- Receptor, Notch1/metabolism
- Mice, Knockout
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondria/drug effects
- Mitochondria/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Disease Models, Animal
- DNA, Mitochondrial/metabolism
- DNA, Mitochondrial/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Mitochondrial Dynamics/drug effects
- Leflunomide/pharmacology
- Aortic Dissection/metabolism
- Aortic Dissection/genetics
- Aortic Dissection/pathology
- Aortic Dissection/prevention & control
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- Mice
- High Mobility Group Proteins/metabolism
- High Mobility Group Proteins/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/prevention & control
- Mice, Inbred C57BL
- Male
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/drug effects
- Humans
- Organelle Biogenesis
- Cells, Cultured
Collapse
Affiliation(s)
- Yuyi Tang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingjing Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yixuan Fang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingqiao Zhu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ce Huang
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhuxin Xie
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shan Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenrui Ma
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoquan Yan
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaowen Liu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Liu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjing Han
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Xin
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenxi Yang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Peiyun Zhou
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenxi He
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Lan
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Ye
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanhui Xu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijia Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Law C, Pattathil N, Simpson H, Ward MJ, Lampen S, Kamath B, Aleman TS. Intraretinal hemorrhages and detailed retinal phenotype of three patients with Alagille syndrome. Ophthalmic Genet 2024; 45:522-531. [PMID: 38956866 DOI: 10.1080/13816810.2024.2362214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 04/01/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE To explore patterns of disease expression in Alagille syndrome (ALGS). METHODS Patients underwent ophthalmic examination, optical coherence tomography (OCT) imaging, fundus intravenous fluorescein angiography (IVFA), perimetry and full-field electroretinograms (ffERGs). An adult ALGS patient had multimodal imaging and specialized perimetry. RESULTS The proband (P1) had a heterozygous pathogenic variant in JAG1; (p.Gln410Ter) and was incidentally diagnosed at age 7 with a superficial retinal hemorrhage, vascular tortuosity, and midperipheral pigmentary changes. The hemorrhage recurred 15 months later. Her monozygotic twin sister (P2) had a retinal hemorrhage at the same location at age 11. Visual acuities for both patients were 20/30 in each eye. IVFA was normal. OCT showed thinning of the outer nuclear in the peripapillary retina. A ffERG showed normal cone-mediated responses in P1 (rod-mediated ERGs not documented), normal ffERGs in P2. Coagulation and liver function were normal. An unrelated 42-year-old woman with a de-novo pathogenic variant (p. Gly386Arg) in JAG1 showed a similar pigmentary retinopathy and hepatic vascular anomalies; rod and cone function was normal across large expanses of structurally normal retina that sharply transitioned to a blind atrophic peripheral retina. CONCLUSION Nearly identical recurrent intraretinal hemorrhages in monozygotic twins with ALGS suggest a shared subclinical microvascular abnormality. We hypothesize that the presence of large areas of functionally and structurally intact retina surrounded by severe chorioretinal degeneration, is against a predominant involvement of JAG1 in the function of the neurosensory retina, and that instead, primary abnormalities of chorioretinal vascular development and/or homeostasis may drive the peculiar phenotypes.
Collapse
Affiliation(s)
- Christine Law
- Queen's University School of Medicine, Kingston, Ontario, Canada
- Department of Ophthalmology, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
| | | | - Hailey Simpson
- Department of Ophthalmology, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
| | - Michael J Ward
- Division of Ophthalmology, Department of Surgery, Chester County Hospital and Chester County Eye Care Associates, West Chester, Pennsylvania, USA
| | - Shaun Lampen
- Queen's University School of Medicine, Kingston, Ontario, Canada
| | - Binita Kamath
- Division of Gastroenterology, Hepatology and Nutrition, Sick Kids Hospital, Toronto, Ontario, Canada
| | - Tomas S Aleman
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Nawaz K, Alifah N, Hussain T, Hameed H, Ali H, Hamayun S, Mir A, Wahab A, Naeem M, Zakria M, Pakki E, Hasan N. From genes to therapy: A comprehensive exploration of congenital heart disease through the lens of genetics and emerging technologies. Curr Probl Cardiol 2024; 49:102726. [PMID: 38944223 DOI: 10.1016/j.cpcardiol.2024.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Congenital heart disease (CHD) affects approximately 1 % of live births worldwide, making it the most common congenital anomaly in newborns. Recent advancements in genetics and genomics have significantly deepened our understanding of the genetics of CHDs. While the majority of CHD etiology remains unclear, evidence consistently indicates that genetics play a significant role in its development. CHD etiology holds promise for enhancing diagnosis and developing novel therapies to improve patient outcomes. In this review, we explore the contributions of both monogenic and polygenic factors of CHDs and highlight the transformative impact of emerging technologies on these fields. We also summarized the state-of-the-art techniques, including targeted next-generation sequencing (NGS), whole genome and whole exome sequencing (WGS, WES), single-cell RNA sequencing (scRNA-seq), human induced pluripotent stem cells (hiPSCs) and others, that have revolutionized our understanding of cardiovascular disease genetics both from diagnosis perspective and from disease mechanism perspective in children and young adults. These molecular diagnostic techniques have identified new genes and chromosomal regions involved in syndromic and non-syndromic CHD, enabling a more defined explanation of the underlying pathogenetic mechanisms. As our knowledge and technologies continue to evolve, they promise to enhance clinical outcomes and reduce the CHD burden worldwide.
Collapse
Affiliation(s)
- Khalid Nawaz
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Nur Alifah
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Talib Hussain
- Women Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | - Hamza Hameed
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Haider Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Awal Mir
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Mohammad Zakria
- Advanced Center for Genomic Technologies, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Ermina Pakki
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia.
| |
Collapse
|
7
|
Cerron-Vela CR, Tierradentro-García LO, Rimba ZL, Andronikou S. Evolution of cerebrovascular imaging and associated clinical findings in children with Alagille syndrome. Neuroradiology 2024; 66:1325-1334. [PMID: 38400955 DOI: 10.1007/s00234-024-03316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Alagille syndrome (ALGS) is a multisystem autosomal dominant disorder with highly variable expression. Intracranial arterial and venous anomalies have a reported prevalence of 30-40% and can increase the risk of stroke by 16%. Few reports document the frequency and evolution of cerebrovascular abnormalities (CVAs) in children with ALGS. We aimed to define the spectrum, frequency, and evolution of CVAs in a series of children with ALGS using magnetic resonance angiography (MRA). METHODS We conducted a single-center, retrospective study in a large tertiary pediatric hospital. CVAs were grouped into 4 categories: 1) Stenosis or narrowing; 2) Aneurysms and ectasias; 3) Tortuosity; and 4) Vascular anomalies and anatomical variants. RESULTS Thirty-two children met the inclusion criteria. The median age at initial diagnosis was 6 (3.8-10.3) years. Thirteen (40%) had follow-up MRI at a mean of 55 (31.5-66) months. Eighteen (56%) had CVAs; the most frequent fell into group 1 (n = 12, 37.5%). CVAs were stable over time, except for one patient with Moyamoya arteriopathy (MMA). One patient developed a transient ischemic attack secondary to an embolic event. Three (9.3%) had microhemorrhages at the initial diagnosis secondary to Tetralogy of Fallot. Another patient had recurrent subdural hematomas of unknown cause. CONCLUSION CVAs were stable except in the presence of MMA. Vascular strokes, which are reported in older patients with ALGS, were not a common feature in children under 16 years of age, either at presentation or over the 31.5-66 month follow-up period.
Collapse
Affiliation(s)
- Carmen Rosa Cerron-Vela
- Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | | | - Zekordavar Lavadka Rimba
- Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Savvas Andronikou
- Department of Radiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
8
|
Hausman-Kedem M, Krishnan P, Dlamini N. Cerebral arteriopathies of childhood and stroke - A focus on systemic arteriopathies and pediatric fibromuscular dysplasia (FMD). Vasc Med 2024; 29:328-341. [PMID: 38898630 PMCID: PMC11188572 DOI: 10.1177/1358863x241254796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Systemic vascular involvement in children with cerebral arteriopathies is increasingly recognized and often highly morbid. Fibromuscular dysplasia (FMD) represents a cerebral arteriopathy with systemic involvement, commonly affecting the renal and carotid arteries. In adults, FMD diagnosis and classification typically relies on angiographic features, like the 'string-of-beads' appearance, following exclusion of other diseases. Pediatric FMD (pFMD) is considered equivalent to adult FMD although robust evidence for similarities is lacking. We conducted a comprehensive literature review on pFMD and revealed inherent differences between pediatric and adult-onset FMD across various domains including epidemiology, natural history, histopathophysiology, clinical, and radiological features. Although focal arterial lesions are often described in children with FMD, the radiological appearance of 'string-of-beads' is highly nonspecific in children. Furthermore, children predominantly exhibit intimal-type fibroplasia, common in other childhood monogenic arteriopathies. Our findings lend support to the notion that pFMD broadly reflects an undefined heterogenous group of monogenic systemic medium-or-large vessel steno-occlusive arteriopathies rather than a single entity. Recognizing the challenges in categorizing complex morphologies of cerebral arteriopathy using current classifications, we propose a novel term for describing children with cerebral and systemic vascular involvement: 'cerebral and systemic arteriopathy of childhood' (CSA-c). This term aims to streamline patient categorization and, when coupled with advanced vascular imaging and high-throughput genomics, will enhance our comprehension of etiology, and accelerate mechanism-targeted therapeutic developments. Lastly, in light of the high morbidity in children with cerebral and systemic arteriopathies, we suggest that investigating for systemic vascular involvement is important in children with cerebral arteriopathies.
Collapse
Affiliation(s)
- Moran Hausman-Kedem
- Pediatric Neurology Institute, Tel Aviv Medical Center, Tel Aviv, affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pradeep Krishnan
- Department of Pediatric Neuroradiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nomazulu Dlamini
- Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
9
|
Chatzi D, Kyriakoudi SA, Dermitzakis I, Manthou ME, Meditskou S, Theotokis P. Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap. J Clin Med 2024; 13:2223. [PMID: 38673496 PMCID: PMC11050951 DOI: 10.3390/jcm13082223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neurocristopathies (NCPs) encompass a spectrum of disorders arising from issues during the formation and migration of neural crest cells (NCCs). NCCs undergo epithelial-mesenchymal transition (EMT) and upon key developmental gene deregulation, fetuses and neonates are prone to exhibit diverse manifestations depending on the affected area. These conditions are generally rare and often have a genetic basis, with many following Mendelian inheritance patterns, thus making them perfect candidates for precision medicine. Examples include cranial NCPs, like Goldenhar syndrome and Axenfeld-Rieger syndrome; cardiac-vagal NCPs, such as DiGeorge syndrome; truncal NCPs, like congenital central hypoventilation syndrome and Waardenburg syndrome; and enteric NCPs, such as Hirschsprung disease. Additionally, NCCs' migratory and differentiating nature makes their derivatives prone to tumors, with various cancer types categorized based on their NCC origin. Representative examples include schwannomas and pheochromocytomas. This review summarizes current knowledge of diseases arising from defects in NCCs' specification and highlights the potential of precision medicine to remedy a clinical phenotype by targeting the genotype, particularly important given that those affected are primarily infants and young children.
Collapse
Affiliation(s)
| | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (S.A.K.); (I.D.); (M.E.M.); (S.M.)
| |
Collapse
|
10
|
Herrera JL, Komatsu M. Akt3 activation by R-Ras in an endothelial cell enforces quiescence and barrier stability of neighboring endothelial cells via Jagged1. Cell Rep 2024; 43:113837. [PMID: 38402584 PMCID: PMC11056028 DOI: 10.1016/j.celrep.2024.113837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Communication between adjacent endothelial cells is important for the homeostasis of blood vessels. We show that quiescent endothelial cells use Jagged1 to instruct neighboring endothelial cells to assume a quiescent phenotype and secure the endothelial barrier. This phenotype enforcement by neighboring cells is operated by R-Ras through activation of Akt3, which results in upregulation of a Notch ligand Jagged1 and consequential upregulation of Notch target genes, such as UNC5B, and VE-cadherin accumulation in the neighboring cells. These signaling events lead to the stable interaction between neighboring endothelial cells to continue to fortify juxtacrine signaling via Jagged1-Notch. This mode of intercellular signaling provides a positive feedback regulation of endothelial cell-cell interactions and cellular quiescence required for the stabilization of the endothelium.
Collapse
Affiliation(s)
- Jose Luis Herrera
- Cancer and Blood Disorders Institute, Institute for Fundamental Biomedical Research, and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA; Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Masanobu Komatsu
- Cancer and Blood Disorders Institute, Institute for Fundamental Biomedical Research, and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA; Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
11
|
Eiamkulbutr S, Tubjareon C, Sanpavat A, Phewplung T, Srisan N, Sintusek P. Diseases of bile duct in children. World J Gastroenterol 2024; 30:1043-1072. [PMID: 38577180 PMCID: PMC10989494 DOI: 10.3748/wjg.v30.i9.1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/26/2023] [Accepted: 02/04/2024] [Indexed: 03/06/2024] Open
Abstract
Several diseases originate from bile duct pathology. Despite studies on these diseases, certain etiologies of some of them still cannot be concluded. The most common disease of the bile duct in newborns is biliary atresia, whose prognosis varies according to the age of surgical correction. Other diseases such as Alagille syndrome, inspissated bile duct syndrome, and choledochal cysts are also time-sensitive because they can cause severe liver damage due to obstruction. The majority of these diseases present with cholestatic jaundice in the newborn or infant period, which is quite difficult to differentiate regarding clinical acumen and initial investigations. Intraoperative cholangiography is potentially necessary to make an accurate diagnosis, and further treatment will be performed synchronously or planned as findings suggest. This article provides a concise review of bile duct diseases, with interesting cases.
Collapse
Affiliation(s)
- Sutha Eiamkulbutr
- Department of Pediatrics, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Chomchanat Tubjareon
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Anapat Sanpavat
- Department of Pathology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Teerasak Phewplung
- Department of Radiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nimmita Srisan
- Department of Surgery, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Palittiya Sintusek
- Center of Excellence in Thai Pediatric Gastroenterology, Hepatology and Immunology, Division of Gastroenterology, Department of Pediatrics, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Mašek J, Andersson ER. Jagged-mediated development and disease: Mechanistic insights and therapeutic implications for Alagille syndrome. Curr Opin Cell Biol 2024; 86:102302. [PMID: 38194749 DOI: 10.1016/j.ceb.2023.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024]
Abstract
Notch signaling controls multiple aspects of embryonic development and adult homeostasis. Alagille syndrome is usually caused by a single mutation in the jagged canonical Notch ligand 1 (JAG1), and manifests with liver disease and cardiovascular symptoms that are a direct consequence of JAG1 haploinsufficiency. Recent insights into Jag1/Notch-controlled developmental and homeostatic processes explain how pathology develops in the hepatic and cardiovascular systems and, together with recent elucidation of mechanisms modulating liver regeneration, provide a basis for therapeutic efforts. Importantly, disease presentation can be regulated by genetic modifiers, that may also be therapeutically leverageable. Here, we summarize recent insights into how Jag1 controls processes of relevance to Alagille syndrome, focused on Jag1/Notch functions in hepatic and cardiovascular development and homeostasis.
Collapse
Affiliation(s)
- Jan Mašek
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic. https://twitter.com/JanMasekLab
| | - Emma R Andersson
- Dept of Cell and Molecular Biology, Karolinska Institutet, Sweden.
| |
Collapse
|
13
|
Çekmen N, Uslu A, Torgay A, Araz C, Karakaya E, Yildirim S, Tokel K, Haberal M. Successful Anesthesia Management of Pediatric Living Donor Liver Transplant With Mild Bilateral Pulmonary Artery Stenosis Due to Alagille Syndrome: A Case Report. EXP CLIN TRANSPLANT 2024; 22:160-164. [PMID: 38511987 DOI: 10.6002/ect.2023.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Alagille syndrome is an autosomal-dominantinherited disease characterized by intrahepatic bile duct involvement, congenital heart disease, eye anomalies, skeletal and central nervous system involvement, kidney anomalies, and facial appearance. Liver transplant is the only treatment option for patients with end-stage liver disease and Alagille syndrome. Bilateral peripheral pulmonary artery stenosis is a contraindication for liver transplant due to high mortality, and the decision for liver transplant in patients with bilateral peripheral pulmonary artery stenosis is extremely challenging for anesthesiologists andtransplant surgeons.Wepresent a 2-year-oldfemale patient with successful anesthetic management of a pediatric living donor liver transplant with mild bilateral pulmonary artery stenosis, mild aortic stenosis, and mitral regurgitation due to Alagille syndrome. Anesthesiologists should know the underlying pathophysiological condition and perform a comprehensive preoperative evaluation to determine the correct anesthesia plan in patients with Alagille syndrome who will undergo liver transplants to treat multiple system disorders. Successful perioperative management of Alagille syndrome requires effective communication and collaboration between specialists through a multidisciplinary team approach.
Collapse
Affiliation(s)
- Nedim Çekmen
- From the Department of Anesthesiology and Intensive Care Unit, Faculty of Medicine, Baskent University, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Prapa M, Ho SY. Human Genetics of Semilunar Valve and Aortic Arch Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:761-775. [PMID: 38884747 DOI: 10.1007/978-3-031-44087-8_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt-Oram syndrome.
Collapse
Affiliation(s)
- Matina Prapa
- Department of Clinical Genetics, St George's University Hospitals NHS Foundation Trust, London, UK.
| | - Siew Yen Ho
- Cardiac Morphology, Royal Brompton & Harefield Hospitals, London, UK
| |
Collapse
|
15
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
16
|
Cheng K, Rosenthal P. Diagnosis and management of Alagille and progressive familial intrahepatic cholestasis. Hepatol Commun 2023; 7:e0314. [PMID: 38055640 PMCID: PMC10984671 DOI: 10.1097/hc9.0000000000000314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/12/2023] [Indexed: 12/08/2023] Open
Abstract
Alagille syndrome and progressive familial intrahepatic cholestasis are conditions that can affect multiple organs. Advancements in molecular testing have aided in the diagnosis of both. The impairment of normal bile flow and secretion leads to the various hepatic manifestations of these diseases. Medical management of Alagille syndrome and progressive familial intrahepatic cholestasis remains mostly targeted on supportive care focusing on quality of life, cholestasis, and fat-soluble vitamin deficiency. The most difficult therapeutic issue is typically related to pruritus, which can be managed by various medications such as ursodeoxycholic acid, rifampin, cholestyramine, and antihistamines. Surgical operations were previously used to disrupt enterohepatic recirculation, but recent medical advancements in the use of ileal bile acid transport inhibitors have shown great efficacy for the treatment of pruritus in both Alagille syndrome and progressive familial intrahepatic cholestasis.
Collapse
Affiliation(s)
- Katherine Cheng
- Department of Pediatrics Gastroenterology, Hepatology and Nutrition, University of California San Francisco, San Francisco, California, USA
| | - Philip Rosenthal
- Department of Pediatrics Gastroenterology, Hepatology and Nutrition, University of California San Francisco, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
Arora A, George M. The Curious Case of Alagille Syndrome: A Case Report With NANDA-I Classification, NIC, and NOC Linkage to the Patient Care Plan. Gastroenterol Nurs 2023; 46:436-444. [PMID: 37581873 DOI: 10.1097/sga.0000000000000755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/01/2023] [Indexed: 08/16/2023] Open
Abstract
Alagille syndrome is a rare and complex pleiotropic multisystem disorder caused by an autosomal dominant genetic mutation of JAG1 (90%) and NOTCH2 (1%-2%) genes located on the short arm of chromosome 20. This case is reported as per the CA se RE ports (CARE) guidelines (2013). A 14-year-old boy who is a known case of chronic cholestatic liver disease of neonatal onset, was diagnosed with Alagille syndrome as evident from a NOTCH 2 mutation in genetic analysis and paucity of intrahepatic bile ducts on biopsy. He presented with portal hypertension, growth failure, and persistent hyperbilirubinemia. This case highlights the gamut of multisystem dysfunctions faced by this child. He is currently on conservative management and worked up for liver transplantation. The condition is often rare and challenging due to the multisystem pathogenesis. Thus, the nursing care is also multifaceted. This case study identified relevant North American Nursing Diagnosis Association (NANDA) Classification, Nursing Interventions Classification (NIC), and Nursing Outcomes Classification (NOC) concepts to describe care of children with Alagille syndrome based on actual patient data.
Collapse
Affiliation(s)
- Anjali Arora
- Anjali Arora, MSc(N), is Masters Student from College of Nursing, Institute of Liver and Biliary Sciences, New Delhi, India
- Mini George, PhD, is Principal, College of Nursing, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Mini George
- Anjali Arora, MSc(N), is Masters Student from College of Nursing, Institute of Liver and Biliary Sciences, New Delhi, India
- Mini George, PhD, is Principal, College of Nursing, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
18
|
Ayoub MD, Bakhsh AA, Vandriel SM, Keitel V, Kamath BM. Management of adults with Alagille syndrome. Hepatol Int 2023; 17:1098-1112. [PMID: 37584849 PMCID: PMC10522532 DOI: 10.1007/s12072-023-10578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/30/2023] [Indexed: 08/17/2023]
Abstract
Alagille syndrome (ALGS) is a complex rare genetic disorder that involves multiple organ systems and is historically regarded as a disease of childhood. Since it is inherited in an autosomal dominant manner in 40% of patients, it carries many implications for genetic counselling of patients and screening of family members. In addition, the considerable variable expression and absence of a clear genotype-phenotype correlation, results in a diverse range of clinical manifestations, even in affected individuals within the same family. With recent therapeutic advancements in cholestasis treatment and the improved survival rates with liver transplantation (LT), many patients with ALGS survive into adulthood. Although LT is curative for liver disease secondary to ALGS, complications secondary to extrahepatic involvement remain problematic lifelong. This review is aimed at providing a comprehensive review of ALGS to adult clinicians who will take over the medical care of these patients following transition, with particular focus on certain aspects of the condition that require lifelong surveillance. We also provide a diagnostic framework for adult patients with suspected ALGS and highlight key aspects to consider when determining eligibility for LT in patients with this syndrome.
Collapse
Affiliation(s)
- Mohammed D Ayoub
- Department of Pediatrics, Faculty of Medicine, Rabigh Branch, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Ahmad A Bakhsh
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Pediatrics, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Shannon M Vandriel
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Binita M Kamath
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
19
|
Craven PA, Wycoco V, Prentice D. Adult William's Syndrome: The Cause of an Unusual Vasculopathy and Biliary Abnormalities. Cureus 2023; 15:e47695. [PMID: 38022355 PMCID: PMC10674085 DOI: 10.7759/cureus.47695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
A man in his 50s was diagnosed with William's syndrome (WS) following the investigation of severe vasculopathy and bile duct abnormalities. The vascular lesions included: right carotid artery hypoplasia, tortuous dilated left carotid artery, severe aortic hypoplasia, and pulmonary branch arterial stenoses. The bile ducts were dilated with damaged and inflamed intrahepatic ducts. The patient had been labeled with fetal alcohol syndrome as a consequence of his mother's alcohol addiction. The etiology is thought to be the combined effects and his genetic condition and prenatal alcohol exposure.
Collapse
Affiliation(s)
- Philip A Craven
- Gastroenterology and Hepatology, Royal Perth Hospital, Perth, AUS
| | - Victor Wycoco
- Radiology, The Neurological Intervention & Imaging Service of Western Australia (NIISWA), Perth, AUS
| | - David Prentice
- Neurosciences, Perron Institute for Neurological and Translational Science, Nedlands, AUS
| |
Collapse
|
20
|
Lee PS, Silva Sepulveda JA, Del Campo M, Leibel SL, Hildreth A, Marc-Aurele KL. A neonatal case of vascular ring with Alagille syndrome. SAGE Open Med Case Rep 2023; 11:2050313X231197321. [PMID: 37667743 PMCID: PMC10475254 DOI: 10.1177/2050313x231197321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023] Open
Abstract
A female infant, born at 37 week 5 days to a mother via induced vaginal delivery for preeclampsia, was prenatally diagnosed with a right aortic arch with vascular ring. On the third day of life, the infant exhibited a bronze-gray coloration, and a direct bilirubin of 1.7 mg/dL was detected. The abdominal ultrasound did not visualize the gallbladder. Clinically, the infant displayed features consistent with Alagille syndrome, including unusual facial appearance, butterfly vertebrae, cardiovascular defects, and cholestasis. The geneticist noted that the mother of the patient also exhibited similar features. Both the infant and the mother were diagnosed with Alagille syndrome, both having the same heterozygous JAG1 gene (NM_000214.2) variant (c.1890_1893del, p.Ile630Metfs*112). We believe that the vascular ring observed in our patient is the first reported instance of a vascular ring associated with Alagille syndrome.
Collapse
Affiliation(s)
- Pei-Shan Lee
- Department of Pediatrics, UC San Diego, La Jolla, CA, USA
- Department of Pediatrics, Rady Children’s Hospital, San Diego, CA, USA
| | - Jose A Silva Sepulveda
- Department of Pediatrics, UC San Diego, La Jolla, CA, USA
- Department of Pediatrics, Rady Children’s Hospital, San Diego, CA, USA
| | - Miguel Del Campo
- Department of Pediatrics, UC San Diego, La Jolla, CA, USA
- Department of Pediatrics, Rady Children’s Hospital, San Diego, CA, USA
| | - Sandra L Leibel
- Department of Pediatrics, UC San Diego, La Jolla, CA, USA
- Department of Pediatrics, Rady Children’s Hospital, San Diego, CA, USA
| | - Amber Hildreth
- Department of Pediatrics, UC San Diego, La Jolla, CA, USA
- Department of Pediatrics, Rady Children’s Hospital, San Diego, CA, USA
| | - Krishelle L Marc-Aurele
- Department of Pediatrics, UC San Diego, La Jolla, CA, USA
- Department of Pediatrics, Rady Children’s Hospital, San Diego, CA, USA
| |
Collapse
|
21
|
Halma J, Lin HC. Alagille syndrome: understanding the genotype-phenotype relationship and its potential therapeutic impact. Expert Rev Gastroenterol Hepatol 2023; 17:883-892. [PMID: 37668532 DOI: 10.1080/17474124.2023.2255518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Alagille syndrome (ALGS) is an autosomal dominant, multisystem genetic disorder with wide phenotypic variability caused by mutations in the Notch signaling pathway, specifically from mutations in either the Jagged1 (JAG1) or NOTCH2 gene. The range of clinical features in ALGS can involve various organ systems including the liver, heart, eyes, skeleton, kidney, and vasculature. Despite the genetic mutations being well-defined, there is variable expressivity and individuals with the same mutation may have different clinical phenotypes. AREAS COVERED While no clear genotype-phenotype correlation has been identified in ALGS, this review will summarize what is currently known about the genotype-phenotype relationship and how this relationship influences the treatment of the multisystemic disorder. This review includes discussion of numerous studies which have focused on describing the genotype-phenotype relationship of different organ systems in ALGS as well as relevant basic science and population studies of ALGS. A thorough literature search was completed via the PubMed and National Library of Medicine GeneReviews databases including dates from 1969, when ALGS was first identified, to February 2023. EXPERT OPINION The genetics of ALGS are well defined; however, ongoing investigation to identify genotype-phenotype relationships as well as genetic modifiers as potential therapeutic targets is needed. Clinicians and patients alike would benefit from identification of a correlation to aid in diagnostic evaluation and management.
Collapse
Affiliation(s)
- Jennifer Halma
- Division of Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Henry C Lin
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
22
|
Leung DH, Devaraj S, Goodrich NP, Chen X, Rajapakshe D, Ye W, Andreev V, Minard CG, Guffey D, Molleston JP, Bass LM, Karpen SJ, Kamath BM, Wang KS, Sundaram SS, Rosenthal P, McKiernan P, Loomes KM, Jensen MK, Horslen SP, Bezerra JA, Magee JC, Merion RM, Sokol RJ, Shneider BL, Alonso E, Bass L, Kelly S, Riordan M, Melin-Aldana H, Bezerra J, Bove K, Heubi J, Miethke A, Tiao G, Denlinger J, Chapman E, Sokol R, Feldman A, Mack C, Narkewicz M, Suchy F, Sundaram SS, Van Hove J, Garcia B, Kauma M, Kocher K, Steinbeiss M, Lovell M, Loomes KM, Piccoli D, Rand E, Russo P, Spinner N, Erlichman J, Stalford S, Pakstis D, King S, Squires R, Sindhi R, Venkat V, Bukauskas K, McKiernan P, Haberstroh L, Squires J, Rosenthal P, Bull L, Curry J, Langlois C, Kim G, Teckman J, Kociela V, Nagy R, Patel S, Cerkoski J, Molleston JP, Bozic M, Subbarao G, Klipsch A, Sawyers C, Cummings O, Horslen SP, Murray K, Hsu E, Cooper K, Young M, Finn L, Kamath BM, Ng V, Quammie C, Putra J, Sharma D, Parmar A, Guthery S, Jensen K, Rutherford A, Lowichik A, Book L, Meyers R, Hall T, et alLeung DH, Devaraj S, Goodrich NP, Chen X, Rajapakshe D, Ye W, Andreev V, Minard CG, Guffey D, Molleston JP, Bass LM, Karpen SJ, Kamath BM, Wang KS, Sundaram SS, Rosenthal P, McKiernan P, Loomes KM, Jensen MK, Horslen SP, Bezerra JA, Magee JC, Merion RM, Sokol RJ, Shneider BL, Alonso E, Bass L, Kelly S, Riordan M, Melin-Aldana H, Bezerra J, Bove K, Heubi J, Miethke A, Tiao G, Denlinger J, Chapman E, Sokol R, Feldman A, Mack C, Narkewicz M, Suchy F, Sundaram SS, Van Hove J, Garcia B, Kauma M, Kocher K, Steinbeiss M, Lovell M, Loomes KM, Piccoli D, Rand E, Russo P, Spinner N, Erlichman J, Stalford S, Pakstis D, King S, Squires R, Sindhi R, Venkat V, Bukauskas K, McKiernan P, Haberstroh L, Squires J, Rosenthal P, Bull L, Curry J, Langlois C, Kim G, Teckman J, Kociela V, Nagy R, Patel S, Cerkoski J, Molleston JP, Bozic M, Subbarao G, Klipsch A, Sawyers C, Cummings O, Horslen SP, Murray K, Hsu E, Cooper K, Young M, Finn L, Kamath BM, Ng V, Quammie C, Putra J, Sharma D, Parmar A, Guthery S, Jensen K, Rutherford A, Lowichik A, Book L, Meyers R, Hall T, Wang KS, Michail S, Thomas D, Goodhue C, Kohli R, Wang L, Soufi N, Thomas D, Karpen S, Gupta N, Romero R, Vos MB, Tory R, Berauer JP, Abramowsky C, McFall J, Shneider BL, Harpavat S, Hertel P, Leung D, Tessier M, Schady D, Cavallo L, Olvera D, Banks C, Tsai C, Thompson R, Doo E, Hoofnagle J, Sherker A, Torrance R, Hall S, Magee J, Merion R, Spino C, Ye W. Serum biomarkers correlated with liver stiffness assessed in a multicenter study of pediatric cholestatic liver disease. Hepatology 2023; 77:530-545. [PMID: 36069569 PMCID: PMC10151059 DOI: 10.1002/hep.32777] [Show More Authors] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Detailed investigation of the biological pathways leading to hepatic fibrosis and identification of liver fibrosis biomarkers may facilitate early interventions for pediatric cholestasis. APPROACH AND RESULTS A targeted enzyme-linked immunosorbent assay-based panel of nine biomarkers (lysyl oxidase, tissue inhibitor matrix metalloproteinase (MMP) 1, connective tissue growth factor [CTGF], IL-8, endoglin, periostin, Mac-2-binding protein, MMP-3, and MMP-7) was examined in children with biliary atresia (BA; n = 187), alpha-1 antitrypsin deficiency (A1AT; n = 78), and Alagille syndrome (ALGS; n = 65) and correlated with liver stiffness (LSM) and biochemical measures of liver disease. Median age and LSM were 9 years and 9.5 kPa. After adjusting for covariates, there were positive correlations among LSM and endoglin ( p = 0.04) and IL-8 ( p < 0.001) and MMP-7 ( p < 0.001) in participants with BA. The best prediction model for LSM in BA using clinical and lab measurements had an R2 = 0.437; adding IL-8 and MMP-7 improved R2 to 0.523 and 0.526 (both p < 0.0001). In participants with A1AT, CTGF and LSM were negatively correlated ( p = 0.004); adding CTGF to an LSM prediction model improved R2 from 0.524 to 0.577 ( p = 0.0033). Biomarkers did not correlate with LSM in ALGS. A significant number of biomarker/lab correlations were found in participants with BA but not those with A1AT or ALGS. CONCLUSIONS Endoglin, IL-8, and MMP-7 significantly correlate with increased LSM in children with BA, whereas CTGF inversely correlates with LSM in participants with A1AT; these biomarkers appear to enhance prediction of LSM beyond clinical tests. Future disease-specific investigations of change in these biomarkers over time and as predictors of clinical outcomes will be important.
Collapse
Affiliation(s)
- Daniel H Leung
- Division of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Department of Pediatrics , Baylor College of Medicine , Houston , Texas , USA
| | - Sridevi Devaraj
- Department of Pathology and Immunology , Texas Children's Hospital, Baylor College of Medicine , Houston , Texas , USA
| | - Nathan P Goodrich
- Arbor Research Collaborative for Health , Ann Arbor , Michigan , USA
| | - Xinpu Chen
- Department of Pathology and Immunology , Texas Children's Hospital, Baylor College of Medicine , Houston , Texas , USA
| | - Deepthi Rajapakshe
- Department of Pathology and Immunology , Texas Children's Hospital, Baylor College of Medicine , Houston , Texas , USA
| | - Wen Ye
- Department of Biostatistics , University of Michigan , Ann Arbor , Michigan , USA
| | - Victor Andreev
- Arbor Research Collaborative for Health , Ann Arbor , Michigan , USA
| | - Charles G Minard
- Institute for Clinical and Translational Research , Baylor College of Medicine , Houston , Texas , USA
| | - Danielle Guffey
- Institute for Clinical and Translational Research , Baylor College of Medicine , Houston , Texas , USA
| | - Jean P Molleston
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics , Riley Hospital for Children , Indiana University , Indianapolis , Indiana , USA
| | - Lee M Bass
- Department of Pediatrics , Ann & Robert H. Lurie Children's Hospital of Chicago , Northwestern University Feinberg School of Medicine , Chicago , Illinois , USA
| | - Saul J Karpen
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Healthcare of Atlanta, Department of Pediatrics , Emory University School of Medicine , Atlanta , Georgia , USA
| | - Binita M Kamath
- Division of Gastroenterology, Hepatology and Nutrition , Hospital for Sick Children, University of Toronto , Toronto , Ontario , Canada
| | - Kasper S Wang
- Department of Pediatric Surgery , Children's Hospital Los Angeles , Los Angeles , California , USA
| | - Shikha S Sundaram
- Pediatric Gastroenterology, Hepatology and Nutrition , Children's Hospital Colorado, University of Colorado School of Medicine , Aurora , Colorado , USA
| | - Philip Rosenthal
- Department of Pediatrics , University of California, San Francisco , San Francisco , California , USA
| | - Patrick McKiernan
- Pediatric Gastroenterology, Hepatology and Nutrition , Children's Hospital of Pittsburgh , Pittsburg , Pennsylvania , USA
| | - Kathleen M Loomes
- Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics , The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - M Kyle Jensen
- Pediatric Gastroenterology, Hepatology and Nutrition , University of Utah School of Medicine , Salt Lake City , Utah , USA
| | - Simon P Horslen
- Pediatric Gastroenterology, Hepatology and Nutrition , Seattle Children's Hospital, University of Washington School of Medicine , Seattle , Washington , USA
| | - Jorge A Bezerra
- Pediatric Gastroenterology, Hepatology and Nutrition , Cincinnati Children's Medical Center, University of Cincinnati School of Medicine , Cincinnati , Ohio , USA
| | - John C Magee
- University of Michigan Hospitals and Health Centers , Ann Arbor , Michigan , USA
| | - Robert M Merion
- Arbor Research Collaborative for Health , Ann Arbor , Michigan , USA
| | - Ronald J Sokol
- Pediatric Gastroenterology, Hepatology and Nutrition , Children's Hospital Colorado, University of Colorado School of Medicine , Aurora , Colorado , USA
| | - Benjamin L Shneider
- Division of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Department of Pediatrics , Baylor College of Medicine , Houston , Texas , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hankeova S, Van Hul N, Laznovsky J, Verboven E, Mangold K, Hensens N, Adori C, Verhoef E, Zikmund T, Dawit F, Kavkova M, Salplachta J, Sjöqvist M, Johansson BR, Hassan MG, Fredriksson L, Baumgärtel K, Bryja V, Lendahl U, Jheon A, Alten F, Fahnehjelm KT, Fischler B, Kaiser J, Andersson ER. Sex differences and risk factors for bleeding in Alagille syndrome. EMBO Mol Med 2022; 14:e15809. [PMID: 36345711 PMCID: PMC9728057 DOI: 10.15252/emmm.202215809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
Spontaneous bleeds are a leading cause of death in the pediatric JAG1-related liver disease Alagille syndrome (ALGS). We asked whether there are sex differences in bleeding events in patients, whether Jag1Ndr/Ndr mice display bleeds or vascular defects, and whether discovered vascular pathology can be confirmed in patients non-invasively. We performed a systematic review of patients with ALGS and vascular events following PRISMA guidelines, in the context of patient sex, and found significantly more girls than boys reported with spontaneous intracranial hemorrhage. We investigated vascular development, homeostasis, and bleeding in Jag1Ndr/Ndr mice, using retina as a model. Jag1Ndr/Ndr mice displayed sporadic brain bleeds, a thin skull, tortuous blood vessels, sparse arterial smooth muscle cell coverage in multiple organs, which could be aggravated by hypertension, and sex-specific venous defects. Importantly, we demonstrated that retinographs from patients display similar characteristics with significantly increased vascular tortuosity. In conclusion, there are clinically important sex differences in vascular disease in ALGS, and retinography allows non-invasive vascular analysis in patients. Finally, Jag1Ndr/Ndr mice represent a new model for vascular compromise in ALGS.
Collapse
Affiliation(s)
- Simona Hankeova
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
| | - Noemi Van Hul
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Jakub Laznovsky
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
| | - Elisabeth Verboven
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Katrin Mangold
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Naomi Hensens
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- University of Applied Sciences UtrechtUtrechtThe Netherlands
| | - Csaba Adori
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Elvira Verhoef
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- University of Applied Sciences UtrechtUtrechtThe Netherlands
| | - Tomas Zikmund
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
| | - Feven Dawit
- Department of Pediatrics, Clinical Science, Intervention and Technology (CLINTEC)Karolinska Institutet and Karolinska University HospitalHuddingeSweden
| | - Michaela Kavkova
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
| | - Jakub Salplachta
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
| | - Marika Sjöqvist
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Bengt R Johansson
- EM Unit, Institute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Mohamed G Hassan
- University of San FranciscoSan FranciscoCAUSA
- Department of OrthodonticsFaculty of DentistryAssiut UniversityAssiutEgypt
| | - Linda Fredriksson
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | | | - Vitezslav Bryja
- Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
| | - Urban Lendahl
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | | | - Florian Alten
- Department of OphthalmologyUniversity of Muenster Medical CenterMünsterGermany
| | - Kristina Teär Fahnehjelm
- Department of Pediatric Ophthalmology, Strabismus, Electrophysiology and Ocular Oncology, St. Erik Eye HospitalKarolinska InstitutetStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Björn Fischler
- Department of Pediatrics, Clinical Science, Intervention and Technology (CLINTEC)Karolinska Institutet and Karolinska University HospitalHuddingeSweden
| | - Jozef Kaiser
- CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
| | - Emma R Andersson
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
24
|
Rodrigues Bento J, Krebsová A, Van Gucht I, Valdivia Callejon I, Van Berendoncks A, Votypka P, Luyckx I, Peldova P, Laga S, Havelka M, Van Laer L, Trunecka P, Boeckx N, Verstraeten A, Macek M, Meester JAN, Loeys B. Isolated aneurysmal disease as an underestimated finding in individuals with JAG1 pathogenic variants. Hum Mutat 2022; 43:1824-1828. [PMID: 35819173 PMCID: PMC10084246 DOI: 10.1002/humu.24433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 01/24/2023]
Abstract
Pathogenic variants in JAG1 are known to cause Alagille syndrome (ALGS), a disorder that primarily affects the liver, lung, kidney, and skeleton. Whereas cardiac symptoms are also frequently observed in ALGS, thoracic aortic aneurysms have only been reported sporadically in postmortem autopsies. We here report two families with segregating JAG1 variants that present with isolated aneurysmal disease, as well as the first histological evaluation of aortic aneurysm tissue of a JAG1 variant carrier. Our observations shed more light on the pathomechanisms behind aneurysm formation in JAG1 variant harboring individuals and underline the importance of cardiovascular imaging in the clinical follow-up of such individuals.
Collapse
Affiliation(s)
- Jotte Rodrigues Bento
- Centre of Medical Genetics, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
| | - Alice Krebsová
- Department of Cardiology, Center for Inherited Cardiovascular Disorders, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Ilse Van Gucht
- Centre of Medical Genetics, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
| | - Irene Valdivia Callejon
- Centre of Medical Genetics, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
| | - An Van Berendoncks
- Department of Cardiology, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
| | - Pavel Votypka
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Ilse Luyckx
- Centre of Medical Genetics, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Petra Peldova
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Steven Laga
- Department of Cardiac Surgery, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
| | - Marek Havelka
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Lut Van Laer
- Centre of Medical Genetics, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
| | - Pavel Trunecka
- Department of Hepatology and Gastroenterology, Transplant Center of Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Nele Boeckx
- Centre of Medical Genetics, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
| | - Aline Verstraeten
- Centre of Medical Genetics, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
| | - Milan Macek
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Josephina A N Meester
- Centre of Medical Genetics, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
| | - Bart Loeys
- Centre of Medical Genetics, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Chiang C, Jeng Y, Ho M, Lai M, Li H, Chen P, Lee N, Wu J, Chiu Y, Liou B, Ni Y, Hsu H, Chang M, Chen H. Different clinical and genetic features of Alagille patients with progressive disease versus a jaundice-free course. JGH Open 2022; 6:839-845. [PMID: 36514505 PMCID: PMC9730729 DOI: 10.1002/jgh3.12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 12/14/2022]
Abstract
Background and Aim Alagille syndrome (ALGS) is a multisystem disorder with variable clinical courses. This study investigated the clinical and genetic features of ALGS patients with different outcomes and analyzed the liver pathology at liver transplantation (LT) compared with that in biliary atresia (BA). Methods We report the clinical characteristics, outcomes, and genetic mutations of 25 children with ALGS followed for a median of 7.3 years. Patients were classified into (i) jaundice-free (JF) group (resolving jaundice after 2 years of age); (ii) progressive disease (PD) group (persistent jaundice or progressive cholestasis). In addition, we analyzed the explant liver in 10 ALGS patients compared with 20 age-matched BA patients at the time of LT. Results Nine patients (36%) in the JF group had a favorable outcome, with longer native liver survival than patients with PD (n = 16, P < 0.001). Fourteen of the PD group patients received LT or died. We identified 18 different JAG1 mutations in 22 patients. Three unrelated probands in the JF group had the same de novo mutation in JAG1, c.2122-2125delCAGT. Compared with BA children, ALGS patients had lower METAVIR scores in liver pathology, higher serum albumin levels, and lower weight-for-age z-scores when receiving LT. Conclusion One-third of ALGS patients had JF and a favorable course. Children with ALGS presenting with persistent jaundice beyond 2 years of age should be cautioned for poor prognosis. ALGS patients tend to have a lesser extent of cirrhosis, and more growth problems than BA patients at the time of LT.
Collapse
Affiliation(s)
- Che‐Ming Chiang
- Department of PediatricsNational Taiwan University HospitalTaipeiTaiwan,Department of Pediatrics, Tri‐Service General HospitalNational Defense Medical CenterTaipeiTaiwan
| | - Yung‐Ming Jeng
- Department of PathologyNational Taiwan University HospitalTaipeiTaiwan
| | - Ming‐Chih Ho
- Department of SurgeryNational Taiwan University Hospital Hsin‐Chu BranchHsinchuTaiwan
| | - Ming‐Wei Lai
- Division of Pediatric Gastroenterology, Department of Pediatrics, Liver Research Center, Chang Gung Memorial HospitalLinkou, Chang Gung University College of MedicineTaoyuanTaiwan
| | - Huei‐Ying Li
- Medical Microbiome CenterNational Taiwan University College of MedicineTaipeiTaiwan
| | - Pei‐Lung Chen
- Department of Medical GeneticsNational Taiwan University HospitalTaipeiTaiwan,Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwan,Graduate Institute of Medical Genomics and ProteomicsNational Taiwan UniversityTaipeiTaiwan
| | - Ni‐Chung Lee
- Department of PediatricsNational Taiwan University HospitalTaipeiTaiwan,Department of Medical GeneticsNational Taiwan University HospitalTaipeiTaiwan
| | - Jia‐Feng Wu
- Department of PediatricsNational Taiwan University HospitalTaipeiTaiwan
| | - Yu‐Chun Chiu
- Department of PediatricsNational Taiwan University HospitalTaipeiTaiwan
| | - Bang‐Yu Liou
- Department of PediatricsNational Taiwan University HospitalTaipeiTaiwan
| | - Yen‐Hsuan Ni
- Department of PediatricsNational Taiwan University HospitalTaipeiTaiwan
| | - Hong‐Yuan Hsu
- Department of PediatricsNational Taiwan University HospitalTaipeiTaiwan
| | - Mei‐Hwei Chang
- Department of PediatricsNational Taiwan University HospitalTaipeiTaiwan
| | - Huey‐Ling Chen
- Department of PediatricsNational Taiwan University HospitalTaipeiTaiwan,Department of Medical Education and Bioethics, Graduate Institute of Medical Education and BioethicsNational Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
26
|
Ayoub MD, Kamath BM. Alagille Syndrome: Current Understanding of Pathogenesis, and Challenges in Diagnosis and Management. Clin Liver Dis 2022; 26:355-370. [PMID: 35868679 DOI: 10.1016/j.cld.2022.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alagille syndrome (ALGS) is a complex heterogenous disease with a wide array of clinical manifestations in association with cholestatic liver disease. Major clinical and genetic advancements have taken place since its first description in 1969. However, clinicians continue to face considerable challenges in the management of ALGS, particularly in the absence of targeted molecular therapies. In this article, we provide an overview of the broad ALGS phenotype, current approaches to diagnosis and with particular focus on key clinical challenges encountered in the management of these patients.
Collapse
Affiliation(s)
- Mohammed D Ayoub
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Department of Pediatrics, Rabigh Branch, King Abdulaziz University, PO Box 80205, Jeddah 21589, Saudi Arabia
| | - Binita M Kamath
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
27
|
Breikaa RM, Denman K, Ueyama Y, McCallinhart PE, Khan AQ, Agarwal G, Trask AJ, Garg V, Lilly B. Loss of Jagged1 in mature endothelial cells causes vascular dysfunction with alterations in smooth muscle phenotypes. Vascul Pharmacol 2022; 145:107087. [PMID: 35792302 DOI: 10.1016/j.vph.2022.107087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Notch signaling is an evolutionarily conserved pathway that functions via direct cell-cell contact. The Notch ligand Jagged1 (Jag1) has been extensively studied in vascular development, particularly for its role in smooth muscle cell maturation. Endothelial cell-expressed Jag1 is essential for blood vessel formation by signaling to nascent vascular smooth muscle cells and promoting their differentiation. Given the established importance of Jag1 in endothelial cell/smooth muscle crosstalk during development, we sought to determine the extent of this communication in the adult vasculature for blood vessel function and homeostasis. METHODS We conditionally deleted Jag1 in endothelial cells of adult mice and examined the phenotypic consequences on smooth muscle cells of the vasculature. RESULTS Our results show that genetic loss of Jag1 in endothelial cells has a significant impact on Notch signaling and vascular smooth muscle function in mature blood vessels. Endothelial cell-specific deletion of Jag1 causes a concomitant loss of JAG1 and NOTCH3 expression in vascular smooth muscle cells, resulting in a transition to a less differentiated state. Aortic vascular smooth muscle cells isolated from the endothelial cell-specific Jag1 deficient mice retain an altered phenotype in culture with fixed changes in gene expression and reduced Notch signaling. Utilizing comparative RNA-sequence analysis, we found that Jag1 deficiency preferentially affects extracellular matrix and adhesion protein gene expression. Vasoreactivity studies revealed a reduced contractile response and impaired agonist-induced relaxation in endothelial cell Jag1-deficient aortas compared to controls. CONCLUSIONS These data are the first to demonstrate that Jag1 in adult endothelial cells is required for the regulation and homeostasis of smooth muscle cell function in arterial vessels partially through the autoregulation of Notch signaling and cell matrix/adhesion components in smooth muscle cells.
Collapse
Affiliation(s)
- Randa M Breikaa
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA; Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Kimberly Denman
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
| | - Yukie Ueyama
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Patricia E McCallinhart
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Aiman Q Khan
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Gunjan Agarwal
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
| | - Aaron J Trask
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Brenda Lilly
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
28
|
Vittorio J. CAQ Corner: Pediatric indications for liver transplantation. Liver Transpl 2022; 28:1245-1253. [PMID: 35377539 DOI: 10.1002/lt.26468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/19/2022] [Accepted: 03/07/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Jennifer Vittorio
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
29
|
Pulmonary artery pathologies in Alagille syndrome: a meta-analysis. Adv Cardiol 2022; 18:111-117. [PMID: 36051836 PMCID: PMC9421510 DOI: 10.5114/aic.2022.118526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
Alagille syndrome, caused by mutations in the gene encoding Jagged1 (JAG1), a ligand in the Notch signaling pathway, is an autosomal dominant disorder with developmental abnormalities affecting the liver, heart, eyes, face and skeleton. The aim of the present study is try to disclose the clinical features, management and outcomes of pulmonary artery stenosis associated with Alagille syndrome. By comprehensive literature retrieval, 38 articles involving 401 patients were recruited for this study. The pertinent variables closely related to pulmonary artery stenosis in patients with Alagille syndrome were comprehensively analyzed by following the PRISMA guidelines. The management of pulmonary artery pathologies, especially a severe type of pulmonary artery stenosis in Alagille syndrome, is a concerned matter. Publications of literature retrieval of recent 3 decades were the study material of this article. The pulmonary artery pathologies, especially the severe type of pulmonary artery stenosis in Alagille syndrome, warrant surgical or interventional treatments. After the procedures, the right ventricular to left ventricular pressure ratio was reduced by 25%. There were no intergroup differences in terms of recovery, reintervention and mortality rates between interventionally and surgically treated patients. Transcatheter treatment is preferable due to less trauma. Surgical treatment of pulmonary artery stenosis can be performed currently with intracardiac defect repair.
Collapse
|
30
|
Ibrahim SH, Kamath BM, Loomes KM, Karpen SJ. Cholestatic liver diseases of genetic etiology: Advances and controversies. Hepatology 2022; 75:1627-1646. [PMID: 35229330 DOI: 10.1002/hep.32437] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
With the application of modern investigative technologies, cholestatic liver diseases of genetic etiology are increasingly identified as the root cause of previously designated "idiopathic" adult and pediatric liver diseases. Here, we review advances in the field enhanced by a deeper understanding of the phenotypes associated with specific gene defects that lead to cholestatic liver diseases. There are evolving areas for clinicians in the current era specifically regarding the role for biopsy and opportunities for a "sequencing first" approach. Risk stratification based on the severity of the genetic defect holds promise to guide the decision to pursue primary liver transplantation versus medical therapy or nontransplant surgery, as well as early screening for HCC. In the present era, the expanding toolbox of recently approved therapies for hepatologists has real potential to help many of our patients with genetic causes of cholestasis. In addition, there are promising agents under study in the pipeline. Relevant to the current era, there are still gaps in knowledge of causation and pathogenesis and lack of fully accepted biomarkers of disease progression and pruritus. We discuss strategies to overcome the challenges of genotype-phenotype correlation and draw attention to the extrahepatic manifestations of these diseases. Finally, with attention to identifying causes and treatments of genetic cholestatic disorders, we anticipate a vibrant future of this dynamic field which builds upon current and future therapies, real-world evaluations of individual and combined therapeutics, and the potential incorporation of effective gene editing and gene additive technologies.
Collapse
Affiliation(s)
- Samar H Ibrahim
- Division of Pediatric GastroenterologyMayo ClinicRochesterMinnesotaUSA
| | - Binita M Kamath
- The Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Kathleen M Loomes
- The Children's Hospital of Philadelphia and Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Saul J Karpen
- Emory University School of Medicine and Children's Healthcare of AtlantaAtlantaGeorgiaUSA
| |
Collapse
|
31
|
O'Hare M, Arboleda-Velasquez JF. Notch Signaling in Vascular Endothelial and Mural Cell Communications. Cold Spring Harb Perspect Med 2022; 12:a041159. [PMID: 35534207 PMCID: PMC9435572 DOI: 10.1101/cshperspect.a041159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Notch signaling pathway is a highly versatile and evolutionarily conserved mechanism with an important role in cell fate determination. Notch signaling plays a vital role in vascular development, regulating several fundamental processes such as angiogenesis, arterial/venous differentiation, and mural cell investment. Aberrant Notch signaling can result in severe vascular phenotypes as observed in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and Alagille syndrome. It is known that vascular endothelial cells and mural cells interact to regulate vessel formation, cell maturation, and stability of the vascular network. Defective endothelial-mural cell interactions are a common phenotype in diseases characterized by impaired vascular integrity. Further refinement of the role of Notch signaling in the vascular junctions will be critical to attempts to modulate Notch in the context of human vascular disease. In this review, we aim to consolidate and summarize our current understanding of Notch signaling in the vascular endothelial and mural cells during development and in the adult vasculature.
Collapse
Affiliation(s)
- Michael O'Hare
- Department of Ophthalmology at Harvard Medical School, Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts 02114, USA
| | - Joseph F Arboleda-Velasquez
- Department of Ophthalmology at Harvard Medical School, Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts 02114, USA
| |
Collapse
|
32
|
Zhang Y, Yang Y, Ju H, He X, Sun P, Tian Y, Yang P, Song XX, Yu T, Jiang Z. Comprehensive profile of circRNAs in formaldehyde induced heart development. Food Chem Toxicol 2022; 162:112899. [PMID: 35231573 DOI: 10.1016/j.fct.2022.112899] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/17/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are a novel type of long non-coding RNAs that can regulate gene expression in heart development and heart disease. However, the expression pattern of circRNAs in congenital heart disease (CHD) induced by formaldehyde exposure is still unknown. We detected circRNAs expression profiles in heart tissue taken from six neonatal rat pups with formaldehyde exposure group and normal group using RNA-sequencing. Results revealed that a total of 54 circRNAs were dysregulated in the formaldehyde exposure group compared to the normal group. Among them, 31 were upregulated and 23 were downregulated (fold change = 2.0, p < 0.0 5). The qRT-qPCR results showed that expressions of 12:628708|632694, 18:77477060|77520779, 5:167486001|167526275 were significantly upregulated, while that of 7:41167312|4116775 and 20:50659751|5068786 were notably downregulated; the expression pattern was consistent with the RNA sequencing data. Bioinformatics analysis shows that the pathogenesis of formaldehyde exposure-induced CHD may involve Hippo-YAP pathway、Notch signaling pathway and other pathways. A key miRNA (rno-miR-665) was identified by constructing a circRNA-miRNA-mRNA co-expression network. In summary, the study illustrated that circRNAs differentially expressed in fetal heart tissues during formaldehyde exposure has potential biological functions and may be a biomarker or therapeutic target for CHD.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Hui Ju
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Road No. 16 Jiangsu, Qingdao, 266000, Shandong, People's Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China
| | - Pin Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China
| | - Xiao-Xia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Road No. 38 Dengzhou, Qingdao, 266021, People's Republic of China.
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, People's Republic of China.
| |
Collapse
|
33
|
Vertebrobasilar dolichoectasia in CADASIL: A new aspect that needs consideration. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2021.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Lazea C, Al-Khzouz C, Sufana C, Miclea D, Asavoaie C, Filimon I, Fufezan O. Diagnosis and Management of Genetic Causes of Middle Aortic Syndrome in Children: A Comprehensive Literature Review. Ther Clin Risk Manag 2022; 18:233-248. [PMID: 35330917 PMCID: PMC8938167 DOI: 10.2147/tcrm.s348366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Cecilia Lazea
- Department Mother and Child, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
- Department of Pediatrics I, Emergency Pediatric Hospital, Cluj-Napoca, Romania
- Correspondence: Cecilia Lazea, Department Mother and Child, University of Medicine and Pharmacy “Iuliu Hatieganu”, 68, Motilor Street, Cluj-Napoca, 400370, Romania, Tel +40 744353764, Email ;
| | - Camelia Al-Khzouz
- Department Mother and Child, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
- Department of Medical Genetics, Emergency Pediatric Hospital, Cluj-Napoca, Romania
| | - Crina Sufana
- Department of Pediatrics I, Emergency Pediatric Hospital, Cluj-Napoca, Romania
| | - Diana Miclea
- Department of Medical Genetics, Emergency Pediatric Hospital, Cluj-Napoca, Romania
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Carmen Asavoaie
- Department of Radiology and Medical Imaging, Emergency Pediatric Hospital, Cluj-Napoca, Romania
| | - Ioana Filimon
- Department of Radiology and Medical Imaging, Emergency Pediatric Hospital, Cluj-Napoca, Romania
| | - Otilia Fufezan
- Department of Radiology and Medical Imaging, Emergency Pediatric Hospital, Cluj-Napoca, Romania
| |
Collapse
|
35
|
Menon J, Shanmugam N, Vij M, Rammohan A, Rela M. Multidisciplinary Management of Alagille Syndrome. J Multidiscip Healthc 2022; 15:353-364. [PMID: 35237041 PMCID: PMC8883402 DOI: 10.2147/jmdh.s295441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
Alagille syndrome (ALGS) is an autosomal dominant disorder characterized by involvement of various organ systems. It predominantly affects the liver, skeleton, heart, kidneys, eyes and major blood vessels. With myriads of presentations across different age groups, ALGS is usually suspected in infants presenting with high gamma glutamyl transpeptidase cholestasis and/or congenital heart disease. In children it may present with decompensated cirrhosis, intellectual disability or short stature, and in adults vascular events like stroke or ruptured berry aneurysm are more commonly noted. Liver transplantation (LT) is indicated in children with cholestasis progressing to cirrhosis with decompensation. Other indications for LT include intractable pruritus, recurrent fractures, hepatocellular carcinoma and disfiguring xanthomas. Due to an increased risk of renal impairment noted in ALGS, these patients would require optimized renal sparing immunosuppression in the post-transplant period. As the systemic manifestations of ALGS are protean and a wider spectrum is being increasingly elucidated, a multidisciplinary team needs to be involved in managing these patients. Moreover, many basic-science and clinical questions especially with regard to its presentation and management remain unanswered. The aim of this review is to provide updated insights into the management of the multi-system involvement of ALGS.
Collapse
Affiliation(s)
- Jagadeesh Menon
- Department of Pediatric Gastroenterology & Hepatology, Dr Rela Institute & Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Naresh Shanmugam
- Department of Pediatric Gastroenterology & Hepatology, Dr Rela Institute & Medical Centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Mukul Vij
- Department of Histopathology, Dr Rela Institute & Medical Centre, Bharath Institute of Higher Education & Research, Chennai, India
| | - Ashwin Rammohan
- Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical centre, Bharath Institute of Higher Education and Research, Chennai, India
| | - Mohamed Rela
- Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical centre, Bharath Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
36
|
Kuribara T, Akiyama Y, Mikami T, Komatsu K, Kimura Y, Takahashi Y, Sakashita K, Chiba R, Mikuni N. Macrohistory of Moyamoya Disease Analyzed Using Artificial Intelligence. Cerebrovasc Dis 2022; 51:413-426. [PMID: 35104814 DOI: 10.1159/000520099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Moyamoya disease is characterized by progressive stenotic changes in the terminal segment of the internal carotid artery and the development of abnormal vascular networks called moyamoya vessels. The objective of this review was to provide a holistic view of the epidemiology, etiology, clinical findings, treatment, and pathogenesis of moyamoya disease. A literature search was performed in PubMed using the term "moyamoya disease," for articles published until 2021. RESULTS Artificial intelligence (AI) clustering was used to classify the articles into 5 clusters: (1) pathophysiology (23.5%); (2) clinical background (37.3%); (3) imaging (13.2%); (4) treatment (17.3%); and (5) genetics (8.7%). Many articles in the "clinical background" cluster were published from the 1970s. However, in the "treatment" and "genetics" clusters, the articles were published from the 2010s through 2021. In 2011, it was confirmed that a gene called Ringin protein 213 (RNF213) is a susceptibility gene for moyamoya disease. Since then, tremendous progress in genomic, transcriptomic, and epigenetic profiling (e.g., methylation profiling) has resulted in new concepts for classifying moyamoya disease. Our literature survey revealed that the pathogenesis involves aberrations of multiple signaling pathways through genetic mutations and altered gene expression. CONCLUSION We analyzed the content vectors in abstracts using AI, and reviewed the pathophysiology, clinical background, radiological features, treatments, and genetic peculiarity of moyamoya disease.
Collapse
Affiliation(s)
| | - Yukinori Akiyama
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Takeshi Mikami
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Katsuya Komatsu
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Yusuke Kimura
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | | | - Kyoya Sakashita
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Ryohei Chiba
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
37
|
D'Amico A, Perillo T, Cuocolo R, Ugga L, Di Dato F, Caranci F, Iorio R. Neuroradiological findings in Alagille syndrome. Br J Radiol 2022; 95:20201241. [PMID: 34609904 PMCID: PMC8722249 DOI: 10.1259/bjr.20201241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Alagille syndrome (ALGS) is a multisystemic disease caused by mutations in genes of Notch pathway, which regulates embryonic cell differentiation and angiogenesis. Clinically, ALGS is characterized by cholestasis, cardiac defects, characteristic facial features, skeletal and ophthalmologic abnormalities. The aim of this review is to illustrate neuroradiological findings in ALGS, which are less well-known and prevalent, including cerebrovascular anomalies (such as aneurysms, dolichoectasia, Moyamoya syndrome and venous peculiarities), Chiari 1 malformation, craniosynostosis, intracranial hypertension, and vertebral anomalies (namely butterfly vertebra, hemivertebra, and craniocervical junction anomalies). Rarer cerebral midline malformations and temporal bone anomalies have also been described.
Collapse
Affiliation(s)
| | - Teresa Perillo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Fabiola Di Dato
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Ferdinando Caranci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raffaele Iorio
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
38
|
Keith KA, Reed LK, Nguyen A, Qaiser R. Neurovascular Syndromes. Neurosurg Clin N Am 2021; 33:135-148. [PMID: 34801137 DOI: 10.1016/j.nec.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Patients with cerebrovascular syndromes are at risk for additional concerns associated with their syndrome. A wide variety of syndromes are associated with cerebrovascular diseases. Multidisciplinary care is helpful to ensure comprehensive evaluation and management. Precise diagnosis and appreciation for the underlying syndrome is critical for effective cerebrovascular and broader care. This text focuses on these conditions with a focus on underlying pathophysiology and associated genetics, presentation, diagnosis, and management of each disease.
Collapse
Affiliation(s)
- Kristin A Keith
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA
| | - Laura K Reed
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA
| | - Anthony Nguyen
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA
| | - Rabia Qaiser
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA.
| |
Collapse
|
39
|
Kohut TJ, Gilbert MA, Loomes KM. Alagille Syndrome: A Focused Review on Clinical Features, Genetics, and Treatment. Semin Liver Dis 2021; 41:525-537. [PMID: 34215014 DOI: 10.1055/s-0041-1730951] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alagille syndrome (ALGS) is an autosomal dominant disorder caused by pathogenic variants in JAG1 or NOTCH2, which encode fundamental components of the Notch signaling pathway. Clinical features span multiple organ systems including hepatic, cardiac, vascular, renal, skeletal, craniofacial, and ocular, and occur with variable phenotypic penetrance. Genotype-phenotype correlation studies have not yet shown associations between mutation type and clinical manifestations or severity, and it has been hypothesized that modifier genes may modulate the effects of JAG1 and NOTCH2 pathogenic variants. Medical management is supportive, focusing on clinical manifestations of disease, with liver transplant indicated for severe pruritus, liver synthetic dysfunction, portal hypertension, bone fractures, and/or growth failure. New therapeutic approaches are under investigation, including ileal bile acid transporter (IBAT) inhibitors and other approaches that may involve targeted interventions to augment the Notch signaling pathway in involved tissues.
Collapse
Affiliation(s)
- Taisa J Kohut
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Melissa A Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kathleen M Loomes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Bhende VV, Majmudar HP, Sharma TS, Pathan SR, Mehta DV. Nonhepatic Alagille Syndrome Associated With Predominant Cardioskeletal Anomalies: A Rare Case. Cureus 2021; 13:e17429. [PMID: 34589338 PMCID: PMC8460555 DOI: 10.7759/cureus.17429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 11/21/2022] Open
Abstract
Alagille syndrome (ALGS) is a rare autosomal dominant genetic disorder with multisystem involvement including the liver, heart, skeleton, eyes, kidneys, and other organ systems, along with characteristic facial abnormalities. Some patients with ALGS may have isolated involvement of a particular system, such as a heart defect like the tetralogy of Fallot, an atrial septal defect (ASD), a characteristic facial appearance, or an isolated vertebral body anomaly. These individuals may or may not have liver anomalies or other features typically seen in the disorder. We report the case of a four-year-old female child with moderate ostium secundum ASD and branch pulmonary artery stenosis diagnosed since three months of age who presented with classical features of facial dysmorphism, posterior embryotoxon in the right eye, butterfly presentation of the T5 vertebra, delayed mental development, and history of recurrent infections. Bilateral branch pulmonary artery plasty with glutaraldehyde-treated pericardial patch and direct closure of the ASD leaving a patent foramen ovale was performed to correct the cardiac malformations. The surgery was uneventful without any postoperative complications. Currently, as no curative management of the disorder is available, the syndromic medical and surgical approach remains the mainstay in managing this condition.
Collapse
Affiliation(s)
- Vishal V Bhende
- Pediatric Cardiac Surgery, Bhanubhai and Madhuben Patel Cardiac Centre, Shree Krishna Hospital, Anand, IND
| | - Hardil P Majmudar
- Pediatrics, Bhanubhai and Madhuben Patel Cardiac Centre, Shree Krishna Hospital, Anand, IND
| | | | - Sohilkhan R Pathan
- Clinical Research, Bhanubhai and Madhuben Patel Cardiac Centre, Shree Krishna Hospital, Anand, IND
| | - Deepakkumar V Mehta
- Radiodiagnosis & Imaging, Pramukhswami Medical College, Karamsad, IND.,Radiodiagnosis & Imaging, Shree Krishna Hospital, Anand, IND.,Radiodiagnosis & Imaging, Bhaikaka University, Karamsad, IND
| |
Collapse
|
41
|
Persu A, Canning C, Prejbisz A, Dobrowolski P, Amar L, Chrysochou C, Kądziela J, Litwin M, van Twist D, Van der Niepen P, Wuerzner G, de Leeuw P, Azizi M, Januszewicz M, Januszewicz A. Beyond Atherosclerosis and Fibromuscular Dysplasia: Rare Causes of Renovascular Hypertension. Hypertension 2021. [DOI: 10.1161/hypertensionaha.121.17004
bcc:009247.186-127034.186.dbf92.19420.2@bxss.me] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Renovascular hypertension is one of the most common forms of secondary hypertension. Over 95% of cases of renovascular hypertension are due either to atherosclerosis of the main renal artery trunks or to fibromuscular dysplasia. These two causes of renal artery stenosis have been extensively discussed in recent reviews and consensus. The aim of the current article is to provide comprehensive and up-to-date information on the remaining causes. While these causes are rare or extremely rare, etiologic and differential diagnosis matters both for prognosis and management. Therefore, the clinician cannot ignore them. For didactic reasons, we have grouped these different entities into stenotic lesions (neurofibromatosis type 1 and other rare syndromes, dissection, arteritis, and segmental arterial mediolysis) often associated with aortic coarctation and other arterial abnormalities, and nonstenotic lesions, where hypertension is secondary to compression of adjacent arteries and changes in arterial pulsatility (aneurysm) or to the formation of a shunt, leading to kidney ischemia (arteriovenous fistula). Finally, thrombotic disorders of the renal artery may also be responsible for renovascular hypertension. Although thrombotic/embolic lesions do not represent primary vessel wall disease, they are characterized by frequent macrovascular involvement. In this review, we illustrate the most characteristic aspects of these different entities responsible for renovascular hypertension and discuss their prevalence, pathophysiology, clinical presentation, management, and prognosis.
Collapse
Affiliation(s)
- Alexandre Persu
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique and Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium (A.P.)
| | - Caitriona Canning
- Department of Vascular Medicine and Surgery, St. James’s Hospital, Dublin, Ireland (C.C.)
| | - Aleksander Prejbisz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.)
| | - Piotr Dobrowolski
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.)
| | - Laurence Amar
- Université de Paris, INSERM CIC1418, France (L.A., M.A.)
- AP-HP, Hôpital Européen Georges-Pompidou, Hypertension Department and DMU CARTE, Reference Centre for Rare Vascular Disease, Paris, France (L.A., M.A.)
| | | | - Jacek Kądziela
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland (J.K.)
| | - Mieczysław Litwin
- Department of Nephrology and Arterial Hypertension, The Children’s Memorial Health Institute, Warsaw, Poland (M.L.)
| | - Daan van Twist
- Zuyderland Medical Centre, Sittard/Heerlen, the Netherlands (D.v.T.)
| | - Patricia Van der Niepen
- Department of Nephrology and Hypertension, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Belgium (P.V.d.N.)
| | - Gregoire Wuerzner
- Service of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Switzerland (G.W.)
| | - Peter de Leeuw
- Department of Internal Medicine and Gastroenterology, Zuyderland Medical Center, Heerlen, the Netherlands (P.d.L.)
- Department of Internal Medicine, Division of General Internal Medicine (P.d.L.), Maastricht University Medical Center, Maastricht University, the Netherlands
- CARIM School for Cardiovascular Diseases (P.d.L.), Maastricht University Medical Center, Maastricht University, the Netherlands
| | - Michel Azizi
- Université de Paris, INSERM CIC1418, France (L.A., M.A.)
- AP-HP, Hôpital Européen Georges-Pompidou, Hypertension Department and DMU CARTE, Reference Centre for Rare Vascular Disease, Paris, France (L.A., M.A.)
| | - Magda Januszewicz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.)
- II Department of Clinical Radiology, Medical University of Warsaw, Poland (M.J.)
| | - Andrzej Januszewicz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.)
| |
Collapse
|
42
|
Persu A, Canning C, Prejbisz A, Dobrowolski P, Amar L, Chrysochou C, Kądziela J, Litwin M, van Twist D, Van der Niepen P, Wuerzner G, de Leeuw P, Azizi M, Januszewicz M, Januszewicz A. Beyond Atherosclerosis and Fibromuscular Dysplasia: Rare Causes of Renovascular Hypertension. Hypertension 2021. [PMID: 34455817 DOI: ./10.1161/hypertensionaha.121.17004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Renovascular hypertension is one of the most common forms of secondary hypertension. Over 95% of cases of renovascular hypertension are due either to atherosclerosis of the main renal artery trunks or to fibromuscular dysplasia. These two causes of renal artery stenosis have been extensively discussed in recent reviews and consensus. The aim of the current article is to provide comprehensive and up-to-date information on the remaining causes. While these causes are rare or extremely rare, etiologic and differential diagnosis matters both for prognosis and management. Therefore, the clinician cannot ignore them. For didactic reasons, we have grouped these different entities into stenotic lesions (neurofibromatosis type 1 and other rare syndromes, dissection, arteritis, and segmental arterial mediolysis) often associated with aortic coarctation and other arterial abnormalities, and nonstenotic lesions, where hypertension is secondary to compression of adjacent arteries and changes in arterial pulsatility (aneurysm) or to the formation of a shunt, leading to kidney ischemia (arteriovenous fistula). Finally, thrombotic disorders of the renal artery may also be responsible for renovascular hypertension. Although thrombotic/embolic lesions do not represent primary vessel wall disease, they are characterized by frequent macrovascular involvement. In this review, we illustrate the most characteristic aspects of these different entities responsible for renovascular hypertension and discuss their prevalence, pathophysiology, clinical presentation, management, and prognosis.
Collapse
Affiliation(s)
- Alexandre Persu
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique and Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium (A.P.)
| | - Caitriona Canning
- Department of Vascular Medicine and Surgery, St. James’s Hospital, Dublin, Ireland (C.C.)
| | - Aleksander Prejbisz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.)
| | - Piotr Dobrowolski
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.)
| | - Laurence Amar
- Université de Paris, INSERM CIC1418, France (L.A., M.A.)
- AP-HP, Hôpital Européen Georges-Pompidou, Hypertension Department and DMU CARTE, Reference Centre for Rare Vascular Disease, Paris, France (L.A., M.A.)
| | | | - Jacek Kądziela
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland (J.K.)
| | - Mieczysław Litwin
- Department of Nephrology and Arterial Hypertension, The Children’s Memorial Health Institute, Warsaw, Poland (M.L.)
| | - Daan van Twist
- Zuyderland Medical Centre, Sittard/Heerlen, the Netherlands (D.v.T.)
| | - Patricia Van der Niepen
- Department of Nephrology and Hypertension, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Belgium (P.V.d.N.)
| | - Gregoire Wuerzner
- Service of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Switzerland (G.W.)
| | - Peter de Leeuw
- Department of Internal Medicine and Gastroenterology, Zuyderland Medical Center, Heerlen, the Netherlands (P.d.L.)
- Department of Internal Medicine, Division of General Internal Medicine (P.d.L.), Maastricht University Medical Center, Maastricht University, the Netherlands
- CARIM School for Cardiovascular Diseases (P.d.L.), Maastricht University Medical Center, Maastricht University, the Netherlands
| | - Michel Azizi
- Université de Paris, INSERM CIC1418, France (L.A., M.A.)
- AP-HP, Hôpital Européen Georges-Pompidou, Hypertension Department and DMU CARTE, Reference Centre for Rare Vascular Disease, Paris, France (L.A., M.A.)
| | - Magda Januszewicz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.)
- II Department of Clinical Radiology, Medical University of Warsaw, Poland (M.J.)
| | - Andrzej Januszewicz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.)
| |
Collapse
|
43
|
Fox BM, Dorschel KB, Lawton MT, Wanebo JE. Pathophysiology of Vascular Stenosis and Remodeling in Moyamoya Disease. Front Neurol 2021; 12:661578. [PMID: 34539540 PMCID: PMC8446194 DOI: 10.3389/fneur.2021.661578] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/09/2021] [Indexed: 12/04/2022] Open
Abstract
Moyamoya disease (MMD) and moyamoya syndrome (MMS) are progressive vascular pathologies unique to the cerebrovasculature that are important causes of stroke in both children and adults. The natural history of MMD is characterized by primary progressive stenosis of the supraclinoid internal carotid artery, followed by the formation of fragile collateral vascular networks. In MMS, stenosis and collateralization occur in patients with an associated disease or condition. The pathological features of the stenosis associated with MMD include neointimal hyperplasia, disruption of the internal elastic lamina, and medial attenuation, which ultimately lead to progressive decreases in both luminal and external arterial diameter. Several molecular pathways have been implicated in the pathophysiology of stenosis in MMD with functions in cellular proliferation and migration, extracellular matrix remodeling, apoptosis, and vascular inflammation. Importantly, several of these molecular pathways overlap with those known to contribute to diseases of systemic arterial stenosis, such as atherosclerosis and fibromuscular dysplasia (FMD). Despite these possible shared mechanisms of stenosis, the contrast of MMD with other stenotic pathologies highlights the central questions underlying its pathogenesis. These questions include why the stenosis that is associated with MMD occurs in such a specific and limited anatomic location and what process initiates this stenosis. Further investigation of these questions is critical to developing an understanding of MMD that may lead to disease-modifying medical therapies. This review may be of interest to scientists, neurosurgeons, and neurologists involved in both moyamoya research and treatment and provides a review of pathophysiologic processes relevant to diseases of arterial stenosis on a broader scale.
Collapse
Affiliation(s)
- Brandon M Fox
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Kirsten B Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Michael T Lawton
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - John E Wanebo
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
44
|
Persu A, Canning C, Prejbisz A, Dobrowolski P, Amar L, Chrysochou C, Kądziela J, Litwin M, van Twist D, Van der Niepen P, Wuerzner G, de Leeuw P, Azizi M, Januszewicz M, Januszewicz A. Beyond Atherosclerosis and Fibromuscular Dysplasia: Rare Causes of Renovascular Hypertension. Hypertension 2021; 78:898-911. [PMID: 34455817 PMCID: PMC8415524 DOI: 10.1161/hypertensionaha.121.17004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Renovascular hypertension is one of the most common forms of secondary hypertension. Over 95% of cases of renovascular hypertension are due either to atherosclerosis of the main renal artery trunks or to fibromuscular dysplasia. These two causes of renal artery stenosis have been extensively discussed in recent reviews and consensus. The aim of the current article is to provide comprehensive and up-to-date information on the remaining causes. While these causes are rare or extremely rare, etiologic and differential diagnosis matters both for prognosis and management. Therefore, the clinician cannot ignore them. For didactic reasons, we have grouped these different entities into stenotic lesions (neurofibromatosis type 1 and other rare syndromes, dissection, arteritis, and segmental arterial mediolysis) often associated with aortic coarctation and other arterial abnormalities, and nonstenotic lesions, where hypertension is secondary to compression of adjacent arteries and changes in arterial pulsatility (aneurysm) or to the formation of a shunt, leading to kidney ischemia (arteriovenous fistula). Finally, thrombotic disorders of the renal artery may also be responsible for renovascular hypertension. Although thrombotic/embolic lesions do not represent primary vessel wall disease, they are characterized by frequent macrovascular involvement. In this review, we illustrate the most characteristic aspects of these different entities responsible for renovascular hypertension and discuss their prevalence, pathophysiology, clinical presentation, management, and prognosis.
Collapse
Affiliation(s)
- Alexandre Persu
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique and Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium (A.P.)
| | - Caitriona Canning
- Department of Vascular Medicine and Surgery, St. James’s Hospital, Dublin, Ireland (C.C.)
| | - Aleksander Prejbisz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.)
| | - Piotr Dobrowolski
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.)
| | - Laurence Amar
- Université de Paris, INSERM CIC1418, France (L.A., M.A.)
- AP-HP, Hôpital Européen Georges-Pompidou, Hypertension Department and DMU CARTE, Reference Centre for Rare Vascular Disease, Paris, France (L.A., M.A.)
| | | | - Jacek Kądziela
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland (J.K.)
| | - Mieczysław Litwin
- Department of Nephrology and Arterial Hypertension, The Children’s Memorial Health Institute, Warsaw, Poland (M.L.)
| | - Daan van Twist
- Zuyderland Medical Centre, Sittard/Heerlen, the Netherlands (D.v.T.)
| | - Patricia Van der Niepen
- Department of Nephrology and Hypertension, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Belgium (P.V.d.N.)
| | - Gregoire Wuerzner
- Service of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Switzerland (G.W.)
| | - Peter de Leeuw
- Department of Internal Medicine and Gastroenterology, Zuyderland Medical Center, Heerlen, the Netherlands (P.d.L.)
- Department of Internal Medicine, Division of General Internal Medicine (P.d.L.), Maastricht University Medical Center, Maastricht University, the Netherlands
- CARIM School for Cardiovascular Diseases (P.d.L.), Maastricht University Medical Center, Maastricht University, the Netherlands
| | - Michel Azizi
- Université de Paris, INSERM CIC1418, France (L.A., M.A.)
- AP-HP, Hôpital Européen Georges-Pompidou, Hypertension Department and DMU CARTE, Reference Centre for Rare Vascular Disease, Paris, France (L.A., M.A.)
| | - Magda Januszewicz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.)
- II Department of Clinical Radiology, Medical University of Warsaw, Poland (M.J.)
| | - Andrzej Januszewicz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.)
| |
Collapse
|
45
|
Persu A, Canning C, Prejbisz A, Dobrowolski P, Amar L, Chrysochou C, Kądziela J, Litwin M, van Twist D, Van der Niepen P, Wuerzner G, de Leeuw P, Azizi M, Januszewicz M, Januszewicz A. Beyond Atherosclerosis and Fibromuscular Dysplasia: Rare Causes of Renovascular Hypertension. Hypertension 2021. [PMID: 34455817 DOI: 10.1161/hypertensionaha.121.17004
bcc:009247.186-127706.186.264be.19420.2@bxss.me] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Renovascular hypertension is one of the most common forms of secondary hypertension. Over 95% of cases of renovascular hypertension are due either to atherosclerosis of the main renal artery trunks or to fibromuscular dysplasia. These two causes of renal artery stenosis have been extensively discussed in recent reviews and consensus. The aim of the current article is to provide comprehensive and up-to-date information on the remaining causes. While these causes are rare or extremely rare, etiologic and differential diagnosis matters both for prognosis and management. Therefore, the clinician cannot ignore them. For didactic reasons, we have grouped these different entities into stenotic lesions (neurofibromatosis type 1 and other rare syndromes, dissection, arteritis, and segmental arterial mediolysis) often associated with aortic coarctation and other arterial abnormalities, and nonstenotic lesions, where hypertension is secondary to compression of adjacent arteries and changes in arterial pulsatility (aneurysm) or to the formation of a shunt, leading to kidney ischemia (arteriovenous fistula). Finally, thrombotic disorders of the renal artery may also be responsible for renovascular hypertension. Although thrombotic/embolic lesions do not represent primary vessel wall disease, they are characterized by frequent macrovascular involvement. In this review, we illustrate the most characteristic aspects of these different entities responsible for renovascular hypertension and discuss their prevalence, pathophysiology, clinical presentation, management, and prognosis.
Collapse
Affiliation(s)
- Alexandre Persu
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique and Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium (A.P.)
| | - Caitriona Canning
- Department of Vascular Medicine and Surgery, St. James's Hospital, Dublin, Ireland (C.C.)
| | - Aleksander Prejbisz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.)
| | - Piotr Dobrowolski
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.)
| | - Laurence Amar
- Université de Paris, INSERM CIC1418, France (L.A., M.A.).,AP-HP, Hôpital Européen Georges-Pompidou, Hypertension Department and DMU CARTE, Reference Centre for Rare Vascular Disease, Paris, France (L.A., M.A.)
| | | | - Jacek Kądziela
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland (J.K.)
| | - Mieczysław Litwin
- Department of Nephrology and Arterial Hypertension, The Children's Memorial Health Institute, Warsaw, Poland (M.L.)
| | - Daan van Twist
- Zuyderland Medical Centre, Sittard/Heerlen, the Netherlands (D.v.T.)
| | - Patricia Van der Niepen
- Department of Nephrology and Hypertension, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Belgium (P.V.d.N.)
| | - Gregoire Wuerzner
- Service of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Switzerland (G.W.)
| | - Peter de Leeuw
- Department of Internal Medicine and Gastroenterology, Zuyderland Medical Center, Heerlen, the Netherlands (P.d.L.).,Department of Internal Medicine, Division of General Internal Medicine (P.d.L.), Maastricht University Medical Center, Maastricht University, the Netherlands.,CARIM School for Cardiovascular Diseases (P.d.L.), Maastricht University Medical Center, Maastricht University, the Netherlands
| | - Michel Azizi
- Université de Paris, INSERM CIC1418, France (L.A., M.A.).,AP-HP, Hôpital Européen Georges-Pompidou, Hypertension Department and DMU CARTE, Reference Centre for Rare Vascular Disease, Paris, France (L.A., M.A.)
| | - Magda Januszewicz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.).,II Department of Clinical Radiology, Medical University of Warsaw, Poland (M.J.)
| | - Andrzej Januszewicz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland (A.P., P.D., M.J., A.J.)
| |
Collapse
|
46
|
Liu A, Li B, Yang M, Gu Y, Qi L, Su J. RNA sequencing analyses in infants patients with coarctation of the aorta. Hereditas 2021; 158:32. [PMID: 34425910 PMCID: PMC8381523 DOI: 10.1186/s41065-021-00194-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coarctation of the aorta (CoA) is a serious innate heart disease. Although surgery results are generally good, some complications such as recoarctation and aortic aneurysm or persistent hypertension were serious threats to patient's health. To better understand the pathology of CoA and its underlying molecular mechanism is particularly important for early diagnosis and preventing the occurrence of its complications. However, the mechanisms of CoA remain unclear, especially for infants. METHODS RNA sequencing (RNA-seq) was used to identify the differentially expressed genes (DEGs) in vascular tissues of 12 patients with CoA and 10 normal participants form 3- to 34-month-old infants. The characteristic of DEGs were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunochemical staining (IHC) in vessels of patients with CoA and normal infants. RESULTS A total of 2491 DEGs with the false discovery rate less than 0.05(> 1.5-fold, P < 0.05 change) were identified, including 443 upregulated genes and 2048 downregulated genes. The Gene Ontology enrichment analysis showed that 26 out of the 2491 DEGs identified were associated with cardiovascular diseases. These 26 genes were mainly associated with extracellular matrix (ECM) and smooth muscle cells (SMCs) differentiation. Three DEGs, that is, CNN1 (calponin), α-actinin1 and myosin heavy chain 11 MYH11, were validated using qRT-PCR and Western blot analysis. In addition, immunochemical staining showed that calponin and MYH11 were highly expressed on the surface and in the deep layers of the thickened intima respectively. CONCLUSION This study comprehensively characterized the CoA transcriptome. Migration of extracellular matrix (ECM) and smooth muscle cells (SMCs) to the subendothelial space may be the major characteristic of CoA in infants.
Collapse
Affiliation(s)
- Aijun Liu
- Department of Pediatric Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, An Zhen Rd, Beijing, 100029, China
| | - Bin Li
- Department of Pediatric Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, An Zhen Rd, Beijing, 100029, China
| | - Ming Yang
- Department of Pediatric Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, An Zhen Rd, Beijing, 100029, China
| | - Yan Gu
- Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Lihua Qi
- Department of Human Anatomy, Histology and Embryology, Peking University Health Science Center, No. 38, Xue Yuan Rd., Beijing, 100191, China.
| | - Junwu Su
- Department of Pediatric Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, An Zhen Rd, Beijing, 100029, China.
| |
Collapse
|
47
|
Long-term follow-up of a patient with JAG1-associated retinopathy. Doc Ophthalmol 2021; 143:237-247. [PMID: 33877487 DOI: 10.1007/s10633-021-09836-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/02/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE To report the long-term structural and functional changes in the posterior segments of an adult with an unusual retinal dystrophy caused by a novel mutation in JAG1. METHODS A 33-year-old female underwent comprehensive ophthalmic examination, including best corrected visual acuity (BCVA) measurement, dilated fundus imaging (wide-angle fundus colour and short wavelength autofluorescence imaging), macular and peripheral spectral-domain optical coherence tomography (SD-OCT) and electroretinography (ERG) at baseline and 10 years later at the age of 43. The patient also underwent systemic review with detailed cardiac, brain and renal investigations. During follow-up, genetic analysis using whole-exome sequencing was performed on the patient and her parents to identify disease-causing variants. RESULTS The patient's main complaint was of a recent onset of bilateral photophobia and blurred vision in the left eye. On examination, the most striking retinal finding was of bilateral well-demarcated, anterior circumferential chorioretinal atrophy with scattered pigment clumping from the mid periphery to the ora. In addition, she had posterior pole RPE hypopigmentation, peripapillary chorioretinal atrophy, left macular choroidal folds and retinal vasculature tortuosity with atypical branching. Her retinal electrophysiology was consistent with a cone rod photoreceptor dystrophy and left macular dysfunction. Ten years later, her BCVA, the anterior circumferential chorioretinal atrophy and her visual field constriction all remained stable. Her retinal electrophysiology demonstrated deterioration of left rod function, while cone dysfunction remained stable. Macular function deteriorated in both eyes. During follow-up, she was also noted to have progressive aortic root dilatation, posterior embryotoxon and an x ray diagnosis of butterfly vertebrae. Whole-exome sequencing revealed a novel c.2412C > A p.(Tyr804Ter) truncating mutation in JAG1 that was predicted to be pathogenic and suggested a diagnosis of Alagille syndrome. CONCLUSION This is the first report of the long-term detailed follow-up of a patient with Alagille syndrome whose most striking ophthalmic finding was bilateral well-demarcated, anterior circumferential chorioretinal atrophy. During follow-up, this finding remained stable, suggesting that this may be developmental in origin. This is in contrast with the progressive deterioration in the posterior pole retinal and macular function.
Collapse
|
48
|
Saito J, Kojima T, Tanifuji S, Kato Y, Oka S, Ichikawa Y, Miyagi E, Tachibana T, Asou T, Yokoyama U. Transcriptome Analysis Reveals Differential Gene Expression between the Closing Ductus Arteriosus and the Patent Ductus Arteriosus in Humans. J Cardiovasc Dev Dis 2021; 8:jcdd8040045. [PMID: 33923468 PMCID: PMC8073410 DOI: 10.3390/jcdd8040045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
The ductus arteriosus (DA) immediately starts closing after birth. This dynamic process involves DA-specific properties, including highly differentiated smooth muscle, sparse elastic fibers, and intimal thickening (IT). Although several studies have demonstrated DA-specific gene expressions using animal tissues and human fetuses, the transcriptional profiles of the closing DA and the patent DA remain largely unknown. We performed transcriptome analysis using four human DA samples. The three closing DA samples exhibited typical DA morphology, but the patent DA exhibited aorta-like elastic lamellae and poorly formed IT. A cluster analysis revealed that samples were clearly divided into two major clusters, the closing DA and patent DA clusters, and showed distinct gene expression profiles in IT and the tunica media of the closing DA samples. Cardiac neural crest-related genes such as JAG1 were highly expressed in the tunica media and IT of the closing DA samples compared to the patent DA sample. Abundant protein expressions of jagged 1 and the differentiated smooth muscle marker calponin were observed in the closing DA samples but not in the patent DA sample. Second heart field-related genes such as ISL1 were enriched in the patent DA sample. These data indicate that the patent DA may have different cell lineages compared to the closing DA.
Collapse
Affiliation(s)
- Junichi Saito
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (J.S.); (T.K.); (S.T.); (Y.K.); (S.O.)
| | - Tomoyuki Kojima
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (J.S.); (T.K.); (S.T.); (Y.K.); (S.O.)
- Department of Obstetrics and Gynecology, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan;
| | - Shota Tanifuji
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (J.S.); (T.K.); (S.T.); (Y.K.); (S.O.)
| | - Yuko Kato
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (J.S.); (T.K.); (S.T.); (Y.K.); (S.O.)
| | - Sayuki Oka
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (J.S.); (T.K.); (S.T.); (Y.K.); (S.O.)
| | - Yasuhiro Ichikawa
- Department of Cardiovascular Surgery, Kanagawa Children’s Medical Center, 2-138-4 Mutsukawa, Minami-ku, Yokohama, Kanagawa 232-8555, Japan; (Y.I.); (T.T.); (T.A.)
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan;
| | - Tsuyoshi Tachibana
- Department of Cardiovascular Surgery, Kanagawa Children’s Medical Center, 2-138-4 Mutsukawa, Minami-ku, Yokohama, Kanagawa 232-8555, Japan; (Y.I.); (T.T.); (T.A.)
| | - Toshihide Asou
- Department of Cardiovascular Surgery, Kanagawa Children’s Medical Center, 2-138-4 Mutsukawa, Minami-ku, Yokohama, Kanagawa 232-8555, Japan; (Y.I.); (T.T.); (T.A.)
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (J.S.); (T.K.); (S.T.); (Y.K.); (S.O.)
- Correspondence: ; Tel.: +81-3-3351-6141
| |
Collapse
|
49
|
Dorschel KB, Wanebo JE. Genetic and Proteomic Contributions to the Pathophysiology of Moyamoya Angiopathy and Related Vascular Diseases. Appl Clin Genet 2021; 14:145-171. [PMID: 33776470 PMCID: PMC7987310 DOI: 10.2147/tacg.s252736] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/26/2020] [Indexed: 12/13/2022] Open
Abstract
RATIONALE This literature review describes the pathophysiological mechanisms of the current classes of proteins, cells, genes, and signaling pathways relevant to moyamoya angiopathy (MA), along with future research directions and implementation of current knowledge in clinical practice. OBJECTIVE This article is intended for physicians diagnosing, treating, and researching MA. METHODS AND RESULTS References were identified using a PubMed/Medline systematic computerized search of the medical literature from January 1, 1957, through August 4, 2020, conducted by the authors, using the key words and various combinations of the key words "moyamoya disease," "moyamoya syndrome," "biomarker," "proteome," "genetics," "stroke," "angiogenesis," "cerebral arteriopathy," "pathophysiology," and "etiology." Relevant articles and supplemental basic science articles published in English were included. Intimal hyperplasia, medial thinning, irregular elastic lamina, and creation of moyamoya vessels are the end pathologies of many distinct molecular and genetic processes. Currently, 8 primary classes of proteins are implicated in the pathophysiology of MA: gene-mutation products, enzymes, growth factors, transcription factors, adhesion molecules, inflammatory/coagulation peptides, immune-related factors, and novel biomarker candidate proteins. We anticipate that this article will need to be updated in 5 years. CONCLUSION It is increasingly apparent that MA encompasses a variety of distinct pathophysiologic conditions. Continued research into biomarkers, genetics, and signaling pathways associated with MA will improve and refine our understanding of moyamoya's complex pathophysiology. Future efforts will benefit from multicenter studies, family-based analyses, comparative trials, and close collaboration between the clinical setting and laboratory research.
Collapse
Affiliation(s)
- Kirsten B Dorschel
- Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, USA
| |
Collapse
|
50
|
Reichrath J, Reichrath S. The Impact of Notch Signaling for Carcinogenesis and Progression of Nonmelanoma Skin Cancer: Lessons Learned from Cancer Stem Cells, Tumor Angiogenesis, and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:123-154. [PMID: 33034030 DOI: 10.1007/978-3-030-55031-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since many decades, nonmelanoma skin cancer (NMSCs) is the most common malignancy worldwide. Basal cell carcinomas (BCC) and squamous cell carcinomas (SCC) are the major types of NMSCs, representing approximately 70% and 25% of these neoplasias, respectively. Because of their continuously rising incidence rates, NMSCs represent a constantly increasing global challenge for healthcare, although they are in most cases nonlethal and curable (e.g., by surgery). While at present, carcinogenesis of NMSC is still not fully understood, the relevance of genetic and molecular alterations in several pathways, including evolutionary highly conserved Notch signaling, has now been shown convincingly. The Notch pathway, which was first developed during evolution in metazoans and that was first discovered in fruit flies (Drosophila melanogaster), governs cell fate decisions and many other fundamental processes that are of high relevance not only for embryonic development, but also for initiation, promotion, and progression of cancer. Choosing NMSC as a model, we give in this review a brief overview on the interaction of Notch signaling with important oncogenic and tumor suppressor pathways and on its role for several hallmarks of carcinogenesis and cancer progression, including the regulation of cancer stem cells, tumor angiogenesis, and senescence.
Collapse
Affiliation(s)
- Jörg Reichrath
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany.
| | - Sandra Reichrath
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany.,School of Health Professions, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|