1
|
Gowda V, Sarkar R, Verma D, Das A. Probiotics in Dermatology: An Evidence-based Approach. Indian Dermatol Online J 2024; 15:571-583. [PMID: 39050079 PMCID: PMC11265726 DOI: 10.4103/idoj.idoj_614_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 07/27/2024] Open
Abstract
Probiotics are viable microorganisms that confer health benefits when administered to the host in adequate amounts. Over the past decade, there has been a growing demand for the use of oral and topical probiotics in several inflammatory conditions such as atopic dermatitis, psoriasis, acne vulgaris, etc., although their role in a few areas still remains controversial. The objective of this article is to shed light on understanding the origin and implications of microbiota in the pathophysiology of these dermatological conditions and the effect of probiotic usage. We have conducted a comprehensive search of the literature across multiple databases (PubMed, EMBASE, MEDLINE, and Google Scholar) on the role of probiotics in dermatological disorders. Commensal microbes of the skin and gastrointestinal tract play an important role in both health and disease. Increased use of probiotics has asserted a good safety profile, especially in this era of antibiotic resistance. With the advent of new products in the market, the indications, mechanism of action, efficacy, and safety profile of these agents need to be validated. Further studies are required. Oral and topical probiotics may be tried as a treatment or prevention modality in cutaneous inflammatory disorders, thus facilitating decreased requirement for topical or systemic steroids and antimicrobial agents. Tempering microbiota with probiotics is a safe and well-tolerated approach in this era of antimicrobial resistance.
Collapse
Affiliation(s)
- Vaishnavi Gowda
- Consultant at Department of Dermatology, Doctors Aesthetics Clinic, Kochi, Kerala, India
| | - Rashmi Sarkar
- Department of Dermatology, Lady Hardinge Medical College and Hospitals, New Delhi, India
| | - Damini Verma
- Department of Dermatology, Lady Hardinge Medical College and Hospitals, New Delhi, India
| | - Anupam Das
- Department of Dermatology, KPC Medical College, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Bermúdez-Humarán LG, Chassaing B, Langella P. Exploring the interaction and impact of probiotic and commensal bacteria on vitamins, minerals and short chain fatty acids metabolism. Microb Cell Fact 2024; 23:172. [PMID: 38867272 PMCID: PMC11167913 DOI: 10.1186/s12934-024-02449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
There is increasing evidence that probiotic and commensal bacteria play a role in substrate metabolism, energy harvesting and intestinal homeostasis, and may exert immunomodulatory activities on human health. In addition, recent research suggests that these microorganisms interact with vitamins and minerals, promoting intestinal and metabolic well-being while producing vital microbial metabolites such as short-chain fatty acids (SCFAs). In this regard, there is a flourishing field exploring the intricate dynamics between vitamins, minerals, SCFAs, and commensal/probiotic interactions. In this review, we summarize some of the major hypotheses beyond the mechanisms by which commensals/probiotics impact gut health and their additional effects on the absorption and metabolism of vitamins, minerals, and SCFAs. Our analysis includes comprehensive review of existing evidence from preclinical and clinical studies, with particular focus on the potential interaction between commensals/probiotics and micronutrients. Finally, we highlight knowledge gaps and outline directions for future research in this evolving field.
Collapse
Affiliation(s)
- Luis G Bermúdez-Humarán
- Laboratory of Commensals and Probiotics-Host Interactions, Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, AgroParisTech, 78350, France.
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- INSERM U1016, team Mucosal microbiota in chronic inflammatory diseases, CNRS UMR 8104, Université de Paris, Paris, France
| | - Philippe Langella
- Laboratory of Commensals and Probiotics-Host Interactions, Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, AgroParisTech, 78350, France.
| |
Collapse
|
3
|
Lee HJ, Choi BG, Joo YH, Baeg CH, Kim JY, Kim DH, Lee SS, Kim SC. The Effects of Microbial Additive Supplementation on Growth Performance, Blood Metabolites, Fecal Microflora, and Carcass Characteristics of Growing-Finishing Pigs. Animals (Basel) 2024; 14:1268. [PMID: 38731272 PMCID: PMC11083169 DOI: 10.3390/ani14091268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
This study aimed to assess the effects of microbial additives that produce antimicrobial and digestive enzymes on the growth performance, blood metabolites, fecal microflora, and carcass characteristics of growing-finishing pigs. A total of 180 growing-finishing pigs (Landrace × Yorkshire × Duroc; mixed sex; 14 weeks of age; 58.0 ± 1.00 kg) were then assigned to one of three groups with three repetitions (20 pigs) per treatment for 60 days of adaptation and 7 days of collection. Dietary treatments included 0, 0.5, and 1.0% microbial additives in the basal diet. For growth performance, no significant differences in the initial and final weights were observed among the dietary microbial additive treatments, except for the average daily feed intake, average daily gain, and feed efficiency. In terms of blood metabolites and fecal microflora, immunoglobulin G (IgG), blood urea nitrogen, blood glucose, and fecal lactic acid bacteria count increased linearly, and fecal E. coli counts decreased linearly with increasing levels of microbial additives but not growth hormones and Salmonella. Carcass quality grade was improved by the microbial additive. In addition, carcass characteristics were not influenced by dietary microbial additives. In conclusion, dietary supplementation with 1.0% microbial additive improved average daily gain, feed efficiency, IgG content, and fecal microflora in growing-finishing pigs.
Collapse
Affiliation(s)
- Hyuk-Jun Lee
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Bu-Gil Choi
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Young-Ho Joo
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Chang-Hyun Baeg
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Ji-Yoon Kim
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| | - Dong-Hyeon Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea;
| | - Seong-Shin Lee
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55356, Republic of Korea;
| | - Sam-Churl Kim
- Division of Applied Life Science (BK21Four, Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-J.L.); (B.-G.C.); (Y.-H.J.); (C.-H.B.); (J.-Y.K.)
| |
Collapse
|
4
|
Yang Y, Du H, Pan Y, Gong P, Yang Y, Wu F, Pan D, Xie W, Fu Z, Ni Y. Bifidobacterium animalis subsp. lactis LKM512 Alleviates Inflammatory Bowel Disease in Larval Zebrafish by Reshaping Microbiota. Biol Pharm Bull 2023; 46:1706-1713. [PMID: 37778980 DOI: 10.1248/bpb.b23-00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Inflammatory bowel disease (IBD) is a worldwide issue, and the increased incidence has brought a heavy burden to patients and society. Gut microbiota is involved in the pathogenesis of IBD, and targeting the microbiota, such as probiotics, has emerged as a potential therapy for the treatment of IBD. Here, the effect of Bifidobacterium animalis ssp. lactis LKM512 (LKM512), an anti-aging probiotic, on dextran sulfate sodium salt (DSS)-induced IBD in larval zebrafish was determined. Supplementation of LKM512 promoted the survival rate of the larvae, together with increased locomotor activities and body length. In addition, LKM512 treatment enhanced mucus secretion and alleviated intestinal injury, and these results were associated with the upregulation of mucin-related and downregulation of inflammatory markers. Moreover, LKM512 increased the diversity of the microbiota and ameliorated the dysbiosis by increasing the abundance of Bacteroidetes and Firmicutes and reducing the abundance of Proteobacteria. Specifically, the abundance of beneficial bacteria, including the short-chain fatty-acids (SCFAs)-producing genera Lachnospiraceae_NK4A136_group, Muribaculaceae, and Alloprevotella, was increased by LKM512, while the abundance of harmful genera, such as Pseudomonas, Halomonas, and Escherichia-Shigella, was reduced by LKM512. Consistent with these findings, the microbial functions related to metabolism were partly reversed by LKM512, and importantly, fermentation of short-chain fatty acids-related functions were enhanced by LKM512. Therefore, LKM512 might be one potential probiotic for the prevention and treatment of IBD, and further studies that clarify the mechanism of LKM512 would promote the application of LKM512.
Collapse
Affiliation(s)
- Yuru Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Haimei Du
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Yuxiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Ping Gong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Yi Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Fan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Dixin Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Weihao Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology
| |
Collapse
|
5
|
The Potential Therapeutic Role of Lactobacillaceae rhamnosus for Treatment of Inflammatory Bowel Disease. Foods 2023; 12:foods12040692. [PMID: 36832767 PMCID: PMC9955806 DOI: 10.3390/foods12040692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a heterogeneous group of diseases associated with chronic inflammation of the intestinal tract, and is highly prevalent worldwide. Although its origin is not yet fully understood, new evidence emphasizes that environmental factors, especially dietary factors and intestinal microbiota disorders are key triggers of IBD. Probiotics, such as Lactobacillaceae spp., play an essential role in human health as they exert beneficial effects on the composition of the human gastrointestinal microbial community and immune system. Probiotic-based therapies have been shown to be effective in alleviating IBD. Among these, Lactobacillaceae rhamnosus is one of the most widely used strains. L. rhamnosus is widely present in the intestines of healthy individuals; it regulates the intestinal immune system and reduces inflammation through a variety of mechanisms. The purpose of this study was to identify scientific evidence related to L. rhamnosus and IBD, review and summarize the results, and discuss the possible mechanisms of action as a starting point for future research on IBD treatment.
Collapse
|
6
|
Khan I, Wei J, Li A, Liu Z, Yang P, Jing Y, Chen X, Zhao T, Bai Y, Zha L, Li C, Ullah N, Che T, Zhang C. Lactobacillus plantarum strains attenuated DSS-induced colitis in mice by modulating the gut microbiota and immune response. Int Microbiol 2022; 25:587-603. [PMID: 35414032 DOI: 10.1007/s10123-022-00243-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Gut microbiota has become a new therapeutic target in the treatment of inflammatory Bowel Disease (IBD). Probiotics are known for their beneficial effects and have shown good efficacy in the clinical treatment of IBD and animal models of colitis. However, how these probiotics contribute to the amelioration of IBD is largely unknown. In the current study, the DSS-induced mouse colitis model was treated with oral administration of Lactobacillus plantarum strains to investigate their effects on colitis. The results indicated that the L. plantarum strains improved dysbiosis and enhanced the abundance of beneficial bacteria related to short-chain fatty acids (SCFAs) production. Moreover, L. plantarum strains decreased the level of pro-inflammatory cytokines, i.e., IL-17A, IL-17F, IL-6, IL-22, and TNF-α and increased the level of anti-inflammatory cytokines, i.e., TGF-β, IL-10. Our result suggests that L. plantarum strains possess probiotic effects and can ameliorate DSS colitis in mice by modulating the resident gut microbiota and immune response.
Collapse
Affiliation(s)
- Israr Khan
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Junshu Wei
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Anping Li
- Gansu Institute of Drug Control, Lanzhou, 730030, China
| | - Zhirong Liu
- Gansu Institute of Drug Control, Lanzhou, 730030, China
| | - Pingrong Yang
- Gansu Institute of Drug Control, Lanzhou, 730030, China
| | - Yaping Jing
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Xinjun Chen
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Tang Zhao
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Chenhui Li
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Naeem Ullah
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Tuanjie Che
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China. .,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China. .,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China. .,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Iqbal Z, Ahmed S, Tabassum N, Bhattacharya R, Bose D. Role of probiotics in prevention and treatment of enteric infections: a comprehensive review. 3 Biotech 2021; 11:242. [PMID: 33968585 PMCID: PMC8079594 DOI: 10.1007/s13205-021-02796-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Microorganisms that inhabits human digestive tract affect global health and enteric disorders. Previous studies have documented the effectiveness and mode of action of probiotics and classified as human-friendly biota and a competitor to enteric pathogens. Statistical studies reported more than 1.5 billion cases of gastrointestinal infections caused by enteric pathogens and their long-term exposure can lead to mental retardation, temporary or permanent physical weakness, and leaving the patient susceptible for opportunistic pathogens, which can cause fatality. We reviewed previous literature providing evidence about therapeutic approaches regarding probiotics to cure enteric infections efficiently by producing inhibitory substances, immune system modulation, improved barrier function. The therapeutic effects of probiotics have shown success against many foodborne pathogens and their therapeutic effectiveness has been exponentially increased using genetically engineered probiotics. The bioengineered probiotic strains are expected to provide a better and alternative approach than traditional antibiotic therapy against enteric pathogens, but the novelty of these strains also raise doubts about the possible untapped side effects, for which there is a need for further studies to eliminate the concerns relating to the use and safety of probiotics. Many such developments and optimization of the classical techniques will revolutionize the treatments for enteric infections.
Collapse
Affiliation(s)
- Zunaira Iqbal
- Department of Microbiology, University of Central Punjab, Johar Town, 1-Khayaban-e-Jinnah Road, Lahore, Pakistan
| | - Shahzaib Ahmed
- Department of Biotechnology, University of Central Punjab, Johar Town, 1-Khayaban-e-Jinnah Road, Lahore, Pakistan
| | - Natasha Tabassum
- Department of Biotechnology, University of Central Punjab, Johar Town, 1-Khayaban-e-Jinnah Road, Lahore, Pakistan
| | - Riya Bhattacharya
- Faculty of Applied Sciences and Biotechnology, School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh India
| | - Debajyoti Bose
- Faculty of Applied Sciences and Biotechnology, School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh India
| |
Collapse
|
8
|
van Zyl WF, Deane SM, Dicks LM. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes 2020; 12:1831339. [PMID: 33112695 PMCID: PMC7595611 DOI: 10.1080/19490976.2020.1831339] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) diseases, and in particular those caused by bacterial infections, are a major cause of morbidity and mortality worldwide. Treatment is becoming increasingly difficult due to the increase in number of species that have developed resistance to antibiotics. Probiotic lactic acid bacteria (LAB) have considerable potential as alternatives to antibiotics, both in prophylactic and therapeutic applications. Several studies have documented a reduction, or prevention, of GI diseases by probiotic bacteria. Since the activities of probiotic bacteria are closely linked with conditions in the host's GI-tract (GIT) and changes in the population of enteric microorganisms, a deeper understanding of gut-microbial interactions is required in the selection of the most suitable probiotic. This necessitates a deeper understanding of the molecular capabilities of probiotic bacteria. In this review, we explore how probiotic microorganisms interact with enteric pathogens in the GIT. The significance of probiotic colonization and persistence in the GIT is also addressed.
Collapse
Affiliation(s)
- Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Shelly M. Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M.T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa,CONTACT Leon M.T. Dicks; Department of Microbiology; Stellenbosch University, Stellenbosch7602, South Africa
| |
Collapse
|
9
|
Ren C, Faas MM, de Vos P. Disease managing capacities and mechanisms of host effects of lactic acid bacteria. Crit Rev Food Sci Nutr 2020; 61:1365-1393. [PMID: 32366110 DOI: 10.1080/10408398.2020.1758625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Consumption of lactic acid bacteria (LAB) has been suggested to confer health-promoting effects on the host. However, effects of LABs have been reported to be species- and strain-specific and the mechanisms involved are subjects of discussion. Here, the possible mechanisms by which LABs induce antipathogenic, gut barrier enhancing and immune modulating effects in consumers are reviewed. Specific strains for which it has been proven that health is improved by these mechanisms are discussed. However, most strains probably act via several or combinations of mechanisms depending on which effector molecules they express. Current insight is that these effector molecules are either present on the cell wall of LAB or are excreted. These molecules are reviewed as well as the ligand binding receptors in the host. Also postbiotics are discussed. Finally, we provide an overview of the efficacy of LABs in combating infections caused by Helicobacter pylori, Salmonella, Escherichia coli, Streptococcus pneumoniae, and influenza virus, in controlling gut inflammatory diseases, in managing allergic disorders, and in alleviating cancer.
Collapse
Affiliation(s)
- Chengcheng Ren
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Cordeiro BF, Lemos L, Oliveira ER, Silva SH, Savassi B, Figueiroa A, Faria AMC, Ferreira E, Esmerino EA, Rocha RS, Freitas MQ, Silva MC, Cruz AG, do Carmo FLR, Azevedo V. Prato cheese containing Lactobacillus casei 01 fails to prevent dextran sodium sulphate-induced colitis. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.104551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Abstract
Lactobacillus rhamnosus GG (LGG) was the first strain belonging to the genus Lactobacillus to be patented in 1989 thanks to its ability to survive and to proliferate at gastric acid pH and in medium containing bile, and to adhere to enterocytes. Furthermore LGG is able to produces both a biofilm that can mechanically protect the mucosa, and different soluble factors beneficial to the gut by enhancing intestinal crypt survival, diminishing apoptosis of the intestinal epithelium, and preserving cytoskeletal integrity. Moreover LGG thanks to its lectin-like protein 1 and 2 inhibits some pathogens such as Salmonella species. Finally LGG is able to promote type 1 immune-responsiveness by reducing the expression of several activation and inflammation markers on monocytes and by increasing the production of interleukin-10, interleukin-12 and tumor necrosis factor-α in macrophages. A large number of research data on Lactobacillus GG is the basis for the use of this probiotic for human health. In this review we have considered predominantly randomized controlled trials, meta-analysis, Cochrane Review, guide lines of Scientific Societies and anyway studies whose results were evaluated by means of relative risk, odds ratio, weighted mean difference 95% confidence interval. The effectiveness of LGG in gastrointestinal infections and diarrhea, antibiotic and Clostridium difficile associated diarrhea, irritable bowel syndrome, inflammatory bowel disease, respiratory tract infections, allergy, cardiovascular diseases, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, cystic fibrosis, cancer, elderly end sport were analyzed.
Collapse
|
12
|
Eshrati M, Amadei F, Van de Wiele T, Veschgini M, Kaufmann S, Tanaka M. Biopolymer-Based Minimal Formulations Boost Viability and Metabolic Functionality of Probiotics Lactobacillus rhamnosus GG through Gastrointestinal Passage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11167-11175. [PMID: 30130114 DOI: 10.1021/acs.langmuir.8b01915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The delivery of probiotic microorganisms as food additives via oral administration is a straightforward strategy to improve the intestinal microbiota. To protect probiotics from the harsh environments in the stomach and small intestine, it is necessary to formulate them in biocompatible carriers, which finally release them in the ileum and colon without losing their viability and functions. Despite major progresses in various polymer-based formulations, many of them are highly heterogeneous and too large in size and hence often "felt" by the tongue. In this study, we established a new formulation for probiotics Lactobacillus rhamnosus GG (LGG) and systematically correlated the physicochemical properties of formulations with the functions of probiotics after the delivery to different gastrointestinal compartments. By reducing the stirring speed by 1 order of magnitude during the emulsification of polyalginate in the presence of xanthan gum, we fabricated microparticles with a size well below the limit of human oral sensory systems. To improve the chemical stability, we deposited chitosan and polyalginate layers on particle surfaces and found that the deposition of a 20 nm-thick layer is already sufficient to perfectly sustain the viability of all LGG. Compared to free LGG, the colony-forming units of LGG in these formulations were by factors of 107 larger in stomach fluid and 104 larger in small intestine fluid. The metabolic functionality of LGG in polymer formulations was assessed by measuring the amount of lactate produced by LGG in a human gastrointestinal simulator, showing 5 orders of magnitude larger values compared to free LGG. The obtained results have demonstrated that the minimal formulation of LGG established here boosts not only the viability but also the metabolic functionality of probiotics throughout oral uptake, passage through the gastrointestinal tract, and delivery to the ileum and colon.
Collapse
Affiliation(s)
- Maryam Eshrati
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , 69120 Heidelberg , Germany
| | - Federico Amadei
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , 69120 Heidelberg , Germany
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering , Ghent University , 9000 Ghent , Belgium
| | - Mariam Veschgini
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , 69120 Heidelberg , Germany
| | - Stefan Kaufmann
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , 69120 Heidelberg , Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , 69120 Heidelberg , Germany
- Center for Integrative Medicine and Physics, Institute for Advanced Studies , Kyoto University , 606-8501 Kyoto , Japan
| |
Collapse
|
13
|
Hajavi J, Esmaeili SA, Varasteh AR, Vazini H, Atabati H, Mardani F, Momtazi-Borojeni AA, Hashemi M, Sankian M, Sahebkar A. The immunomodulatory role of probiotics in allergy therapy. J Cell Physiol 2018; 234:2386-2398. [PMID: 30192002 DOI: 10.1002/jcp.27263] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022]
Abstract
The increased incidence of allergic disorders may be the result of a relative fall in microbial induction in the intestinal immune system during infancy and early childhood. Probiotics have recently been proposed as viable microorganisms for the prevention and treatment of specific allergic diseases. Different mechanisms have been considered for this probiotic property, such as generation of cytokines from activated pro-T-helper type 1 after bacterial contact. However, the effects of its immunomodulatory potential require validation for clinical applications. This review will focus on the currently available data on the benefits of probiotics in allergy disease.
Collapse
Affiliation(s)
- Jafar Hajavi
- Department of Basic Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdol-Reza Varasteh
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Vazini
- Nursing Department, Basic Sciences Faculty, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Hadi Atabati
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Mardani
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir A Momtazi-Borojeni
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Nanotechnology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Lyu Y, Wu L, Wang F, Shen X, Lin D. Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis. Exp Biol Med (Maywood) 2018. [PMID: 29534601 DOI: 10.1177/1535370218763760] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dysbiosis, a broad spectrum of imbalance of the gut microbiota, may progress to microbiota dysfunction. Dysbiosis is linked to some human diseases, such as inflammation-related disorders and metabolic syndromes. However, the underlying mechanisms of the pathogenesis of dysbiosis remain elusive. Recent findings suggest that the microbiome and gut immune responses, like immunoglobulin A production, play critical roles in the gut homeostasis and function, and the progression of dysbiosis. In the past two decades, much progress has been made in better understanding of production of immunoglobulin A and its association with commensal microbiota. The present minireview summarizes the recent findings in the gut microbiota dysbiosis and dysfunction of immunoglobulin A induced by the imbalance of pathogenic bacteria and commensal microbiota. We also propose the potentials of dietary carotenoids, such as β-carotene and astaxanthin, in the improvement of the gut immune system maturation and immunoglobulin A production, and the consequent promotion of the gut health. Impact statement The concept of carotenoid metabolism in the gut health has not been well established in the literature. Here, we review and discuss the roles of retinoic acid and carotenoids, including pro-vitamin A carotenoids and xanthophylls in the maturation of the gut immune system and IgA production. This is the first review article about the carotenoid supplements and the metabolites in the regulation of the gut microbiome. We hope this review would provide a new direction for the management of the gut microbiota dysbiosis by application of bioactive carotenoids and the metabolites.
Collapse
Affiliation(s)
- Yi Lyu
- 1 College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, 12391 Nanjing University of Finance and Economics , Nanjing 210023, China
| | - Lei Wu
- 2 Department of Nutritional Sciences, 7618 Oklahoma State University, Stillwater , OK 74078, USA
| | - Fang Wang
- 1 College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, 12391 Nanjing University of Finance and Economics , Nanjing 210023, China
| | - Xinchun Shen
- 1 College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, 12391 Nanjing University of Finance and Economics , Nanjing 210023, China
| | - Dingbo Lin
- 2 Department of Nutritional Sciences, 7618 Oklahoma State University, Stillwater , OK 74078, USA
| |
Collapse
|
15
|
|
16
|
De Moreno De Leblanc A, Chaves S, Perdigón G. Effect of Yoghurt on the Cytokine Profile using a Murine Model of Intestinal Inflammation. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x0900700206] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, are important problems in industrialized countries. The complete aetiology of both diseases is still unknown but likely involves genetic, environmental and immunological factors. The aim of this work is to study the anti-inflammatory mechanisms reported for yoghurt in a colon cancer model in order to evaluate its usefulness in the treatment of intestinal inflammation such as Crohn's disease. A trinitrobenzenesulfonic acid (TNBS)-induced colitis model was used. The influence of yoghurt feeding was studied before and after TNBS inoculation. The effect on the intestinal microbiota and on the host immune response was evaluated. IgA-producing cells and cells positive for specific cytokines (IL-12, IL-17, IFNγ and IL-10) were analyzed. Yoghurt administration diminished the severity of inflammation in the TNBS-inoculated mice. This effect occurred mainly through IL-10, which was increased in the intestinal tissues throughout the study, and by the decrease observed in IL-17 and IL-12 levels. In addition to this immunomodulatory capacity, another mechanism by which yoghurt could exert the anti-inflammatory activity observed in our model would be through beneficial changes in the intestinal microbiota (increases in the bifidobacteria and lactobacilli populations). These changes in the intestinal microbiota could also be considered one of the causes of the intestinal inflammation reduction. These results show that yoghurt administration modulated the immune response, inducing down regulation of the inflammatory cytokines produced by the immune cells involved in the inflammatory process. The protective effect
Collapse
Affiliation(s)
| | - S. Chaves
- Centro de Referenda para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán
- Cátedra de Inmunología, Facultad de Bioquimíca, Química y Farmacia, Universidad Nacional de Tucumán, Argentina
| | - G. Perdigón
- Centro de Referenda para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán
- Cátedra de Inmunología, Facultad de Bioquimíca, Química y Farmacia, Universidad Nacional de Tucumán, Argentina
| |
Collapse
|
17
|
Affiliation(s)
- Daisy Jonkers
- Department of Gastroenterology and Hepatology, University Hospital Maastricht, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Reinhold Stockbrügger
- Department of Gastroenterology and Hepatology, University Hospital Maastricht, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
18
|
Wu YJ, Wu WF, Hung CW, Ku MS, Liao PF, Sun HL, Lu KH, Sheu JN, Lue KH. Evaluation of efficacy and safety of Lactobacillus rhamnosus in children aged 4–48 months with atopic dermatitis: An 8-week, double-blind, randomized, placebo-controlled study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:684-692. [DOI: 10.1016/j.jmii.2015.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 08/25/2015] [Accepted: 10/08/2015] [Indexed: 11/27/2022]
|
19
|
Mathipa MG, Thantsha MS. Probiotic engineering: towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut Pathog 2017; 9:28. [PMID: 28491143 PMCID: PMC5422995 DOI: 10.1186/s13099-017-0178-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/27/2017] [Indexed: 12/19/2022] Open
Abstract
There is a growing concern about the increase in human morbidity and mortality caused by foodborne pathogens. Antibiotics were and still are used as the first line of defense against these pathogens, but an increase in the development of bacterial antibiotic resistance has led to a need for alternative effective interventions. Probiotics are used as dietary supplements to promote gut health and for prevention or alleviation of enteric infections. They are currently used as generics, thus making them non-specific for different pathogens. A good understanding of the infection cycle of the foodborne pathogens as well as the virulence factors involved in causing an infection can offer an alternative treatment with specificity. This specificity is attained through the bioengineering of probiotics, a process by which the specific gene of a pathogen is incorporated into the probiotic. Such a process will subsequently result in the inhibition of the pathogen and hence its infection. Recombinant probiotics offer an alternative novel therapeutic approach in the treatment of foodborne infections. This review article focuses on various strategies of bioengineered probiotics, their successes, failures and potential future prospects for their applications.
Collapse
Affiliation(s)
- Moloko Gloria Mathipa
- Department of Microbiology and Plant Pathology, University of Pretoria, New Agricultural Sciences Building, Pretoria, 0002 South Africa
| | - Mapitsi Silvester Thantsha
- Department of Microbiology and Plant Pathology, University of Pretoria, New Agricultural Sciences Building, Pretoria, 0002 South Africa
| |
Collapse
|
20
|
Shadnoush M, Hosseini RS, Khalilnezhad A, Navai L, Goudarzi H, Vaezjalali M. Effects of Probiotics on Gut Microbiota in Patients with Inflammatory Bowel Disease: A Double-blind, Placebo-controlled Clinical Trial. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2017; 65:215-21. [PMID: 25896155 DOI: 10.4166/kjg.2015.65.4.215] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS Several clinical trials have revealed various advantages for probiotics in inflammatory bowel disease (IBD). The aim of this study was to further investigate the effects of probiotic yogurt consumption on gut microbiota in patients with this disease. METHODS A total of 305 participants were divided into three groups; group A (IBD patients receiving probiotic yogurt; n=105), group B (IBD patients receiving placebo; n=105), and control group (healthy individuals receiving probiotic yogurt; n=95). Stool samples were collected both before and after 8 weeks of intervention; and population of Lactobacillus, Bifidobacterium and Bacteroides in the stool specimens was measured by Taqman real-time PCR method. RESULTS By the end of the intervention, no significant variations in the mean weight and body mass index were observed between three groups (p>0.05). However, the mean numbers of Lactobacillus, Bifidobacterium, and Bacteroides in group A were significantly increased compared to group B (p<0.001, p<0.001, and p< 0.01, respectively). There were also significant differences in the mean numbers of either of three bacteria between group A and the healthy control group; however, these differences between two groups were observed both at baseline and the end of the intervention. CONCLUSIONS Consumption of probiotic yogurt by patients with IBD may help to improve intestinal function by increasing the number of probiotic bacteria in the intestine and colon. However, many more studies are required in order to prove the concept.
Collapse
|
21
|
Kumar M, Hemalatha R, Nagpal R, Singh B, Parasannanavar D, Verma V, Kumar A, Marotta F, Catanzaro R, Cuffari B, Jain S, Bissi L, Yadav H. PROBIOTIC APPROACHES FOR TARGETING INFLAMMATORY BOWEL DISEASE: AN UPDATE ON ADVANCES AND OPPORTUNITIES IN MANAGING THE DISEASE. INTERNATIONAL JOURNAL OF PROBIOTICS & PREBIOTICS 2016; 11:99-116. [PMID: 31452650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/28/2022]
Abstract
Various commensal enteric and pathogenic bacteria may be involved in the pathogenesis of inflammatory bowel diseases (IBDs), a chronic condition with a pathogenic background that involves both immunogenetic and environmental factors. IBDs comprising of Crohn's disease, and ulcerative colitis, and pauchitis are chronic inflammatory conditions, and known for causing disturbed homeostatic balance among the intestinal immune compartment, gut epithelium and microbiome. An increasing trend of IBDs in incidence, prevalence, and severity has been reported during recent years. Probiotic strains have been reported to manage the IBDs and related pathologies, and hence are current hot topics of research for their potential to manage metabolic diseases as well as various immunopathologies. However, the probiotics industry will need to undergo a transformation, with increased focus on stringent manufacturing guidelines and high-quality clinical trials. This article reviews the present state of art of role of probiotic bacteria in reducing inflammation and strengthening the host immune system with reference to the management of IBDs. We infer that t healthcare will move beyond its prevailing focus on human physiology, and embrace the superorganism as a paradigm to understand and ameliorate IBDs.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Microbiology and Immunology, National Institute of Nutrition, Hyderabad
| | - Rajkumar Hemalatha
- Department of Microbiology and Immunology, National Institute of Nutrition, Hyderabad
| | - Ravinder Nagpal
- Probiotics Research Laboratory, Graduate School of Medicine, Juntendo University, Tokyo
| | - Birbal Singh
- Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Devraj Parasannanavar
- Department of Microbiology and Immunology, National Institute of Nutrition, Hyderabad
| | - Vinod Verma
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - Ashok Kumar
- Department of Zoology, M.L.K. Post-Graduate College, Balrampur (U.P.), India
| | - Francesco Marotta
- ReGenera Research Group for Aging Intervention & MMC-Milano Medical, Milano, Italy
| | - Roberto Catanzaro
- Department of Internal Medicine, University of Catania, Catania, Italy
| | - Biagio Cuffari
- Department of Internal Medicine, University of Catania, Catania, Italy
| | - Shalini Jain
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura Bissi
- ReGenera Research Group for Aging Intervention & MMC-Milano Medical, Milano, Italy
| | - Hariom Yadav
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
|
23
|
Preventive effects of Escherichia coli strain Nissle 1917 with different courses and different doses on intestinal inflammation in murine model of colitis. Inflamm Res 2014; 63:873-83. [PMID: 25118782 DOI: 10.1007/s00011-014-0761-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 07/23/2014] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To analyze the in vivo effect of Escherichia coli Nissle 1917 (EcN) with different courses and different doses to Sprague-Dawley rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis. METHODS The probiotic was orally administered with different courses of treatment (with or without pre-administration) and different doses (10(7)-10(9) CFU/day) to Sprague-Dawley rats with TNBS-induced colitis. Therapeutic effects, levels of cytokine in serum, mRNA and protein expression were analyzed. RESULTS Oral EcN administration after TNBS-induced improved colitis dose dependently. In parallel, a reduction of disease activity index and colonic MPO activity together with a decreased level of TNF-α and a trend of increased IL-10 expression was detected. Pre-administration of 10(7)CFU/day EcN to TNBS-treated rats resulted in a significant protection against inflammatory response and colons isolated from these rats exhibited a more pronounced expression of ZO-1 than the other groups. In the group of pre-administration of 10(9)CFU/day, the condition was not improved but deteriorated. CONCLUSIONS This study convincingly demonstrates that pre-administration of probiotic EcN with low dose is able to protect colitis of rats and mediate up-regulation of ZO-1 expression, but long-term of high-dose EcN may do harm to colitis.
Collapse
|
24
|
Luerce TD, Gomes-Santos AC, Rocha CS, Moreira TG, Cruz DN, Lemos L, Sousa AL, Pereira VB, de Azevedo M, Moraes K, Cara DC, LeBlanc JG, Azevedo V, Faria AMC, Miyoshi A. Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis. Gut Pathog 2014; 6:33. [PMID: 25110521 PMCID: PMC4126083 DOI: 10.1186/1757-4749-6-33] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/20/2014] [Indexed: 02/07/2023] Open
Abstract
Background Many probiotic bacteria have been described as promising tools for the treatment and prevention of inflammatory bowel diseases (IBDs). Most of these bacteria are lactic acid bacteria, which are part of the healthy human microbiota. However, little is known about the effects of transient bacteria present in normal diets, including Lactococcus lactis. Methods In the present study, we analysed the immunomodulatory effects of three L. lactis strains in vitro using intestinal epithelial cells. L. lactis NCDO 2118 was administered for 4 days to C57BL/6 mice during the remission period of colitis induced by dextran sodium sulphate (DSS). Results Only one strain, L. lactis NCDO 2118, was able to reduce IL-1β-induced IL-8 secretion in Caco-2 cells, suggesting a potential anti-inflammatory effect. Oral treatment using L. lactis NCDO 2118 resulted in a milder form of recurrent colitis than that observed in control diseased mice. This protective effect was not attributable to changes in secretory IgA (sIgA); however, NCDO 2118 administration was associated with an early increase in IL-6 production and sustained IL-10 production in colonic tissue. Mice fed L. lactis NCDO 2118 had an increased number of regulatory CD4+ T cells (Tregs) bearing surface TGF-β in its latent form (Latency-associated peptide-LAP) in the mesenteric lymph nodes and spleen. Conclusions Here, we identified a new probiotic strain with a potential role in the treatment of IBD, and we elucidated some of the mechanisms underlying its anti-inflammatory effect.
Collapse
Affiliation(s)
- Tessalia Diniz Luerce
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - 31270-901 Belo Horizonte, MG, Brazil
| | - Ana Cristina Gomes-Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Clarissa Santos Rocha
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - 31270-901 Belo Horizonte, MG, Brazil
| | - Thais Garcias Moreira
- Departamento de Ciência de Alimentos, Faculdade de Farmácia, Belo Horizonte, MG, Brazil
| | - Déborah Nogueira Cruz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luísa Lemos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adna Luciana Sousa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vanessa Bastos Pereira
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - 31270-901 Belo Horizonte, MG, Brazil
| | - Marcela de Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - 31270-901 Belo Horizonte, MG, Brazil
| | - Kátia Moraes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - 31270-901 Belo Horizonte, MG, Brazil
| | - Denise Carmona Cara
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Vasco Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - 31270-901 Belo Horizonte, MG, Brazil
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anderson Miyoshi
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
25
|
Heo J, Kim SK, Park KS, Jung HK, Kwon JG, Jang BI. A Double-Blind, Randomized, Active Drug Comparative, Parallel-Group, Multi-Center Clinical Study to Evaluate the Safety and Efficacy of Probiotics (Bacillus licheniformis, Zhengchangsheng® capsule) in Patients with Diarrhea. Intest Res 2014; 12:236-44. [PMID: 25349598 PMCID: PMC4204727 DOI: 10.5217/ir.2014.12.3.236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/08/2014] [Accepted: 02/04/2014] [Indexed: 12/17/2022] Open
Abstract
Background/Aims Bacillus Licheniformis, a probiotic used in the treatment of diarrhea, has been shown to suppress the growth of pathologic bacteria. This study was performed to assess the therapeutic efficacy and safety of Zhengchangsheng® (Bacillus Licheniformis) in comparison with another probiotic, Bioflor® (Saccharomyces Boulardii) for the treatment of diarrhea. Methods Patients with diarrhea (n=158) were randomized to receive Zhengchangsheng® or Bioflor® for 5 days. The existence or non-existence of formed feces, changes in daily stool frequency, improvement of subjective symptoms, and changes in the severity of diarrhea were compared. Results Of the 158 full analysis set (FAS) patient population, 151 patients comprised the per protocol (PP) analysis. The rates of recovered to formed feces in the Bacillus and Saccharomyces groups were 91.0% vs. 95.0% in the FAS (P=0.326) and 90.5% vs. 96.1% in the PP analysis (P=0.169), respectively. The mean duration of diarrhea changing to formed feces was 3.15±1.10 days in the Bacillus group and 3.22±1.01 in the Saccharomyces group (P=0.695, FAS). The frequency of defecation, subjective symptoms, and degree of severe diarrhea were improved in both groups, however, there were no statistically significant differences between the 2 groups. Analysis of the 95% confidence intervals for the differences in the rate of recovery to formed feces between the 2 groups met the criteria for non-inferiority of Bacillus compared to Saccharomyces. No significant adverse events were observed during the study period. Conclusions Zhengchangsheng® is not inferior to Bioflor® in therapeutic efficacy and is a safe and useful therapeutic agent for the treatment of diarrhea.
Collapse
Affiliation(s)
- Jun Heo
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Sung Kook Kim
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Kyung Sik Park
- Department of Internal Medicine Division of Gastroenterology, Keimyung University School of Medicine, Daegu, Korea
| | - Hye Kyung Jung
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Joong Goo Kwon
- Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Byung Ik Jang
- Department of Internal Medicine, Yeungnam University, College of Medicine, Daegu, Korea
| |
Collapse
|
26
|
Santos Rocha C, Gomes-Santos AC, Garcias Moreira T, de Azevedo M, Diniz Luerce T, Mariadassou M, Longaray Delamare AP, Langella P, Maguin E, Azevedo V, Caetano de Faria AM, Miyoshi A, van de Guchte M. Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii. PLoS One 2014; 9:e85923. [PMID: 24465791 PMCID: PMC3897545 DOI: 10.1371/journal.pone.0085923] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/03/2013] [Indexed: 02/07/2023] Open
Abstract
Several probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD), showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp. lactis CNRZ327 (Lb CNRZ327), also possesses anti-inflammatory effects in vitro and in vivo, demonstrating that common dairy bacteria may be useful in the treatment or prevention of IBD. Here, we studied the mechanisms underlying the protective effects of Lb CNRZ327 in vivo, in a mouse dextran sodium sulfate (DSS) colitis model. During colitis, Lb CNRZ327 modulated the production of TGF-β, IL-6, and IL-12 in colonic tissue and of TGF-β and IL-6 in the spleen, and caused an expansion of CD4+Foxp3+ regulatory T cells in the cecal lymph nodes. Moreover, a strong tendency to CD4+Foxp3+ expansion was also observed in the spleen. The results of this study for the first time show that orally administered dairy lactobacilli can not only modulate mucosal but also systemic immune responses and constitute an effective treatment of IBD.
Collapse
Affiliation(s)
- Clarissa Santos Rocha
- Department of General Biology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Ana Cristina Gomes-Santos
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thais Garcias Moreira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcela de Azevedo
- Department of General Biology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tessalia Diniz Luerce
- Department of General Biology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Philippe Langella
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Emmanuelle Maguin
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Vasco Azevedo
- Department of General Biology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano de Faria
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson Miyoshi
- Department of General Biology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maarten van de Guchte
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
27
|
Heat-killed VSL#3 ameliorates dextran sulfate sodium (DSS)-induced acute experimental colitis in rats. Int J Mol Sci 2013; 15:15-28. [PMID: 24451125 PMCID: PMC3907795 DOI: 10.3390/ijms15010015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 12/12/2022] Open
Abstract
To determine the effects of heat-killed VSL#3 (B. breve, B. longum and B. infantis; L. plantarum, L. bulgaricus, L. casei and L. acidophilus; S. salivarius subsp. thermophilus) therapy in the dextran sulfate sodium (DSS)-induced acute experimental colitis in rats. Acute experimental colitis was induced in rats by 5% DSS and freely drink for seven days. Beginning on Day 8, rats underwent gavage once daily for seven days with heat-killed probiotic VSL#3 (0.6 g/kg/day), colonic damage was evaluated histologically and biochemically seven days after gavage. Expression of inflammatory related mediators (STAT3, P-STAT3) and cytokines (IL-6, IL-23, TGFβ) in colonic tissue were detected. The results revealed that heat-killed and live VSL#3 have identical anti-inflammatory properties by the assessed DAI (disease activity index), colon length, histological tissue and MPO activity. Heat-killed and live VSL#3 results in reduced IL-6, IL-23, TGFβ, STAT3 and P-STAT3 expression in colonic tissue. Heat-killed and live VSL#3 have showed the similar anti-inflammatory activity by inhibiting IL-6/STAT3 pathway in the DSS-induced acute experimental colitis in rats.
Collapse
|
28
|
Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BIOMED RESEARCH INTERNATIONAL 2013; 2013:620719. [PMID: 24027760 PMCID: PMC3763591 DOI: 10.1155/2013/620719] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/21/2013] [Indexed: 02/07/2023]
Abstract
The administration of probiotic bacteria for health benefit has rapidly expanded in recent years, with a global market worth $32.6 billion predicted by 2014. The oral administration of most of the probiotics results in the lack of ability to survive in a high proportion of the harsh conditions of acidity and bile concentration commonly encountered in the gastrointestinal tract of humans. Providing probiotic living cells with a physical barrier against adverse environmental conditions is therefore an approach currently receiving considerable interest. Probiotic encapsulation technology has the potential to protect microorganisms and to deliver them into the gut. However, there are still many challenges to overcome with respect to the microencapsulation process and the conditions prevailing in the gut. This review focuses mainly on the methodological approach of probiotic encapsulation including biomaterials selection and choice of appropriate technology in detailed manner.
Collapse
|
29
|
Probiotic Lactobacillus rhamnosus GG modulates the mucosal immune response in Giardia intestinalis-infected BALB/c mice. Dig Dis Sci 2013; 58:1218-25. [PMID: 23263901 DOI: 10.1007/s10620-012-2503-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/20/2012] [Indexed: 12/09/2022]
Abstract
BACKGROUND Gut homeostasis can be altered by the oral administration of health-promoting microorganisms, namely probiotics that are known to reinforce the host immune response. AIM The aim of this study was to elucidate the immunomodulatory effect of orally administered probiotic Lactobacillus rhamnosus GG (LGG) in Giardia-infected mice. METHODS BALB/c mice were fed orally with probiotic LGG either 7 days prior to or simultaneously with the challenge dose of Giardia trophozoites. The administration of the probiotic was continued for 25 days, and immunomodulatory potentials in terms of secretory immunoglobulin A (IgA) levels, CD8+ and CD4+ T lymphocytes, and expression of pro-inflammatory [tumor necrosis factor-alpha, interferon-gamma (INF-γ)] and anti-inflammatory cytokines [interleukin (IL)-4, IL-6, IL-10] were studied. RESULTS Oral feeding of LGG prior to or simultaneously with the test dose of Giardia seems to have modulated both arms (humoral and cellular) of the mucosal immune system since a significant increase in the levels of specific secretory IgA antibody, IgA+ cells, and CD4+ T lymphocytes were observed in contrast with the decreased percentage of cytotoxic CD8+ T lymphocytes. The stimulated mucosal immune response in probiotic fed Giardia-infected mice was further correlated with the enhanced levels of anti-inflammatory cytokines IL-6 and IL-10 and reduced levels of pro-inflammatory cytokine INF-γ. CONCLUSIONS This is the first study to show that oral administration of the effective probiotic LGG to Giardia infected mice could be used as a bacterio-therapy that restores the normal gut microflora and modulates the mucosal immune response.
Collapse
|
30
|
Removal of cholera toxin from aqueous solution by probiotic bacteria. Pharmaceuticals (Basel) 2012; 5:665-73. [PMID: 24281668 PMCID: PMC3763660 DOI: 10.3390/ph5060665] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 11/25/2022] Open
Abstract
Cholera remains a serious health problem, especially in developing countries where basic hygiene standards are not met. The symptoms of cholera are caused by cholera toxin, an enterotoxin, which is produced by the bacterium Vibrio cholerae. We have recently shown that human probiotic bacteria are capable of removing cyanobacterial toxins from aqueous solutions. In the present study we investigate the ability of the human probiotic bacteria, Lactobacillus rhamnosus strain GG (ATCC 53103) and Bifidobacteriumlongum 46 (DSM 14583), to remove cholera toxin from solution in vitro. Lactobacillus rhamnosus strain GG and Bifidobacteriumlongum 46 were able to remove 68% and 59% of cholera toxin from aqueous solutions during 18 h of incubation at 37 °C, respectively. The effect was dependent on bacterial concentration and L. rhamnosus GG was more effective at lower bacterial concentrations. No significant effect on cholera toxin concentration was observed when nonviable bacteria or bacterial supernatant was used.
Collapse
|
31
|
Potential Application of Probiotics in the Prevention and Treatment of Inflammatory Bowel Diseases. ACTA ACUST UNITED AC 2011. [DOI: 10.1155/2011/841651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lactic acid bacteria (LAB) represent a heterogeneous group of microorganisms that are naturally present in many foods and possess a wide range of therapeutic properties. The aim of this paper is to present an overview of the current expanding knowledge of the mechanisms by which LAB and other probiotic microorganisms participate in the prevention and treatment of inflammatory bowel diseases. These include changes in the gut microbiota, stimulation of the host immune responses, and reduction of the oxidative stress due to their antioxidant properties. A brief overview of the uses of genetically engineered LAB that produce either antioxidant enzymes (such as catalase and superoxide dismutase) or anti-inflammatory cytokines (such as IL-10) will also be discussed. This paper will show that probiotics should be considered in treatment protocols of IBD since they provide many beneficial effects and can enhance the effectiveness of traditional used medicines.
Collapse
|
32
|
Ueno N, Fujiya M, Segawa S, Nata T, Moriichi K, Tanabe H, Mizukami Y, Kobayashi N, Ito K, Kohgo Y. Heat-killed body of lactobacillus brevis SBC8803 ameliorates intestinal injury in a murine model of colitis by enhancing the intestinal barrier function. Inflamm Bowel Dis 2011; 17:2235-50. [PMID: 21987297 DOI: 10.1002/ibd.21597] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/02/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND Probiotics have been clinically administered to improve intestinal damage in some intestinal inflammations. However, probiotic treatments are not always effective for these intestinal disorders because live bacteria must colonize and maintain their activity under unfavorable conditions in the intestinal lumen when displaying their functions. This study investigated the physiological functions of a heat-killed body of a novel probiotic, Lactobacillus brevis SBC8803, on the protection of intestinal tissues, the regulation of cytokine production, the improvement of intestinal injury, and the survival rate of mice with dextran sodium sulfate (DSS)-induced colitis. METHODS Heat shock protein (Hsp) induction and mitogen-activated protein kinase (MAPK) phosphorylation in intestinal epithelia by heat-killed L. brevis SBC8803 were examined by Western blotting. The barrier function of intestinal epithelia was measured with [(3) H]-mannitol flux in the small intestine under oxidant stress. The effects of the bacteria on improving epithelial injury and cumulative survival rate were investigated with a DSS colitis model. RESULTS Heat-killed L. brevis SBC8803 induced Hsps, phosphorylated p38 MAPK, regulated the expression of tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β and IL-12, and improved the barrier function of intestinal epithelia under oxidant stress. The induction of Hsp and the protective effect were negated by p38 MAPK inhibitor. These functions relieve intestinal impairments and improve the survival rate in mice with lethal colitis. CONCLUSIONS The administration of heat-killed L. brevis SBC8803 helps to successfully maintain intestinal homeostasis, while also curing intestinal inflammation. A therapeutic strategy using heat-killed bacteria is expected to be beneficial for human health even in conditions unsuitable for live probiotics because the heat-killed body is able to exhibit its effects without the requirement of colonization.
Collapse
Affiliation(s)
- Nobuhiro Ueno
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical College, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Probable inflammatory bowel disease in a child: assessment and conservative management. J Chiropr Med 2011; 2:157-62. [PMID: 19674614 DOI: 10.1016/s0899-3467(07)60081-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 07/08/2003] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE This case presentation describes a method of evaluation and a conservative management plan for a child with probable inflammatory bowel disease (Crohn's Disease). Possible causes for this clinical presentation and a brief review of the literature are offered. CLINICAL FEATURES A 9-year-old female had a history of headaches, stomach ache, foulsmelling soft stools, canker and cold sores, dry skin, stuffy nose with postnasal drip, difficulty concentrating in school, mood swings and growing pains with leg cramps. She also had a trace of fecal blood. A Urine OrganiX Profile and the Food Antibody Assessment was ordered demonstrating metabolic changes and food sensitivities. INTERVENTION AND OUTCOME In this case, following a clinical laboratory assessment, treatment was initiated using nutrients and dietary changes. Fourteen months after consultation, the patient was symptom-free and her final laboratory assessment was essentially negative. She learned to work with her diet and the consequences resulting from breaking it. CONCLUSIONS There is the need for a conservative approach to evaluation and treatment of inflammatory bowel disease before considering other more aggressive and potentially hazardous approaches. The patient's signs and symptoms responded to a unique method of evaluation and conservative management when other approaches had failed.
Collapse
|
34
|
Saulnier N, Zocco MA, Di Caro S, Gasbarrini G, Gasbarrini A. Probiotics and small bowel mucosa: Molecular aspects of their interactions. GENES AND NUTRITION 2011; 1:107-15. [PMID: 18850204 DOI: 10.1007/bf02829952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 06/30/2006] [Indexed: 12/25/2022]
Abstract
Probiotics are described as "friendly bacteria" that could improve the intestine defense by interacting with the resident microflora. There is a large body of evidence suggesting that consumption of functional food containing probiotics exerts positive effects on human health. Several clinical trials have highlighted the efficiency of probiotics in the prevention and treatment of different gastrointestinal disorders including the prevention of antibiotic associated diarrhea, the remission in patients with inflammatory bowel disease, beneficial effects against Helicobacter pylori infection, positive effects in patients affected by allergies and atopic diseases. The clinical benefits of probiotics use are mainly attributed to their antimicrobial substances production and their positive interactions with the enterocytes to reinforce the intestinal epithelial barrier. Moreover, there is evidence suggesting that probiotics stimulate both specific and non-specific host immune responses. Recently, have been published some experiments performed with the DNA microarray technology which provided a global gene screening of the complex bacteria-host interplay. Nevertheless, the molecular mechanisms by which probiotics enhance the intestinal host defense are still not completely elucidated. Here, we review the experiments and clinical studies to date on the complex mechanisms regulating the communication between probiotics and their hosts.
Collapse
Affiliation(s)
- N Saulnier
- Department of Gastroenterology, Catholic University of Rome, Largo Gemelli 1, 00168, Rome, Italy
| | | | | | | | | |
Collapse
|
35
|
Edwards LA, Lucas M, Edwards EA, Torrente F, Heuschkel RB, Klein NJ, Murch SH, Bajaj-Elliott M, Phillips AD. Aberrant response to commensal Bacteroides thetaiotaomicron in Crohn's disease: an ex vivo human organ culture study. Inflamm Bowel Dis 2011; 17:1201-8. [PMID: 21484962 DOI: 10.1002/ibd.21501] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 08/23/2010] [Indexed: 12/15/2022]
Abstract
BACKGROUND Human ex vivo evidence indicating that an inappropriate immune response(s) to nonpathogenic bacteria contributes to disease pathogenesis in pediatric Crohn's disease (CD) is limited. The aim of the present study was to compare and contrast the early innate immune response of pediatric "healthy" versus CD mucosa to pathogenic, probiotic, and commensal bacteria. METHODS "Healthy control" and CD pediatric mucosal biopsies (terminal ileum and transverse colon) were cocultured for 8 hours with E. coli O42, Lactobacillus GG (LGG), Bacteroidesthetaiotaomicron (B. theta), or stimulated with interleukin (IL)-1β (positive control). Matched nonstimulated biopsies served as experimental controls. IL-8 was the immune marker of choice. IL-8 mRNA and protein levels were quantified by quantitative polymerase chain reaction and sandwich enzyme-linked immunosorbent assay, respectively. RESULTS IL-8 secretion was observed when control, ileal biopsies were exposed to pathogenic O42 and probiotic LGG, with no response noted to commensal B. theta. In comparison, Crohn's ileal biopsies showed impaired ability to induce IL-8 in response to O42 and LGG. Control colonic tissue showed a limited response to O42 or B. theta and LGG significantly reduced IL-8 secretion. Unlike control tissue, however, Crohn's ileal and colonic tissue did respond to B. theta, with more enhanced expression in the colon. CONCLUSIONS We provide the first ex vivo data to support the notion that aberrant mucosal recognition of commensal bacteria may contribute to pediatric CD. While IL-8 responses to O42 and LGG varied with disease status and anatomical location, B. theta consistently induced significant IL-8 both in ileal and colonic CD tissue, which was not seen in control, healthy tissue.
Collapse
Affiliation(s)
- L A Edwards
- Centre for Paediatric Gastroenterology, Lower Ground Floor, Royal Free Hospital, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Probiotic bacteria induced improvement of the mucosal integrity of enterocyte-like Caco-2 cells after exposure to Salmonella enteritidis 857. J Funct Foods 2010. [DOI: 10.1016/j.jff.2010.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Abstract
Lactic acid bacteria are present in many foods such as yoghurt and are frequently used as probiotics to improve some biological functions of the host. Many researchers have evaluated the effects of yoghurt and lactic acid bacteria against diseases such as cancer and intestinal inflammation. The preventive effect of probiotics on intestinal carcinogenesis may be associated with changes in the intestinal microbiota, suppressing the growth of bacteria that convert procarcinogens into carcinogens. Other mechanisms could be related to the immune response modulation and have been evaluated using milks fermented with lactic acid bacteria in chemically induced colon cancer and hormone-dependent breast cancer models. We demonstrated, using a murine colon cancer model, that yoghurt consumption inhibited tumour growth by decreasing the inflammatory response by increasing IL-10-secreting cells, cellular apoptosis and diminishing procarcinogenic enzymes. Milk fermented with Lactobacillus helveticus R389 delayed breast tumour growth by decreasing IL-6 and increasing IL-10 in serum and in the mammary glands and tumour-infiltrating immune cells. Previous results obtained with yoghurt administration in a colon cancer model led us to analyse its effect on a trinitrobenzenesulfonic acid-induced intestinal inflammation model in mice. Yoghurt was able to attenuate the symptoms of acute inflammation by reducing inflammatory cytokines, and increasing regulatory cytokine IL-10-producing cells, leading to desirable changes of the intestinal microbiota. It was demonstrated, by using murine models, that the consumption of fermented milks can modulate the immune system and can maintain it in a state of surveillance, which could affront different pathologies such as cancer and intestinal inflammation.
Collapse
|
38
|
Jung BG, Ko JH, Cho SJ, Koh HB, Yoon SR, Han DU, Lee BJ. Immune-enhancing effect of fermented Maesil (Prunus mume Siebold & Zucc.) with probiotics against Bordetella bronchiseptica in mice. J Vet Med Sci 2010; 72:1195-202. [PMID: 20453453 DOI: 10.1292/jvms.09-0555] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Maesil (Prunus mume) has long been used as a traditional drug and healthy food in East Asian countries. It possesses a number of beneficial biological activities including potential antimicrobial effects against pathogens. Probiotics also have antibacterial effects. Moreover, some probiotics have an important role in regulating the immune system. The present study evaluated the immune enhancing effects of fermented Maesil with probiotics (Saccharomyces cerevisiae, Bacillus subtilis and Lactobacillus acidophilus) in mice, especially against Bordetella bronchiseptica, as an initial step towards the development of feed supplements for the promotion of immune activity and prevention of disease, especially in pigs. Continuous ingestion of fermented Maesil with probiotics markedly increased the macrophage ratio in peripheral blood and the T lymphocyte ratio in the spleen. In addition, antibody production against formalin-killed B. bronchiseptica significantly increased in the mice fed fermented Maesil compared with the control group. The number of leukocytes was significantly higher in the bronchio-alveolar lavage obtained from the fermented Maesil-fed animals compared to it in the control group at day 3 (maximal peak time) after experimental B. bronchiseptica infection. Moreover, at 7 day post-infection, relative messenger RNA expression levels of tumor necrosis factor- α and interferon-γ were significantly increased in splenocytes of mice fed fermented Maesil compared with those in the control group. Taken together, these findings suggest that feed containing fermented Maesil with probiotics enhances immune activity in mice, especially against B. bronchiseptica, via the potent stimulation of non-specific immune responses.
Collapse
Affiliation(s)
- Bock-Gie Jung
- College of Veterinary Medicine, Chonnam National University, buk-gu, Gwangju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Shen J, Ran HZ, Yin MH, Zhou TX, Xiao DS. Meta-analysis: the effect and adverse events of Lactobacilli versus placebo in maintenance therapy for Crohn disease. Intern Med J 2010; 39:103-9. [PMID: 19220543 DOI: 10.1111/j.1445-5994.2008.01791.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lactobacilli are used in an attempt to maintain remission for Crohn disease. The aim of this study was to evaluate the efficacy and adverse events of Lactobacilli compared with placebo in maintenance therapy for Crohn disease. METHODS We searched MEDLINE, EMBASE, the Cochrane Controlled Trials Register, OVID and BIOSIS. All randomized trials comparing Lactobacilli with placebo in maintenance therapy for Crohn disease were included. RESULTS Six randomized controlled trials with a total of 359 participants met the inclusion criteria. From the meta-analyses, the relative risk (RR) of clinical relapse rate was 1.15 (95% confidence interval (CI) 0.90-1.48) comparing Lactobacilli with placebo and RR of endoscopic relapse rate was 1.31 (95%CI 0.57-3.00). Subgroup analyses showed RR for clinical relapse rates of Lactobacilli versus placebo was 0.99 (95%CI 0.76-1.29) in adults, 1.85 (95%CI 1.00-3.41) in children, 1.68 (95%CI 1.07-2.64) in Lactobacillus rhamnosus strain GG and 0.91 (95%CI 0.68-1.23) in Lactobacillus johnsonii respectively. The pooled RR of adverse events was 0.83 (95%CI 0.61-1.12). CONCLUSION Our meta-analysis suggests that compared with placebo, administration of L. rhamnosus strain GG as maintenance therapy may increase the relapse rates of Crohn disease. L. johnsonii is inefficacious in reducing the incidence of relapse.
Collapse
Affiliation(s)
- J Shen
- Department of Gastroenterology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai, China
| | | | | | | | | |
Collapse
|
40
|
Malin M, Verronen P, Korhonen H, Syväoja EL, Salminen S, Mykkänen H, Arvilommi H, Eerola E, Isolauri E. Dietary therapy with Lactobacillus GG, bovine colostrum or bovine immune colostrum in patients with juvenile chronic arthritis: evaluation of effect on gut defence mechanisms. Inflammopharmacology 2010; 5:219-36. [PMID: 17638132 DOI: 10.1007/s10787-997-0001-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/1997] [Accepted: 05/14/1997] [Indexed: 11/28/2022]
Abstract
The effect of dietary therapy with a human Lactobacillus strain GG (ATCC 53103), bovine colostrum, or bovine immune colostrum with specific antibodies against anaerobic intestinal bacteria on gut defence mechanisms were studied in juvenile chronic arthritis. Thirty patients with juvenile chronic arthritis were randomly allocated to receive a freeze-dried powder of Lactobacillus GG, or bovine colostrum, or bovine immune colostrum, for a two-week period. Immunologic and non-immunologic gut defence mechanisms were indirectly investigated in blood and faecal samples. In patients receiving Lactobacillus GG, the median (interquartile range) frequency of immunoglobulin-secreting cells, determined by enzyme-linked immunospot assay, increased in the IgA class from 1840 (690-2530) to 3480 (1030-13 170)/10(6) cells; p=0.02. Likewise the median (interquartile range) frequency of specific antibody-secreting cells against dietary antigens increased during the Lactobacillus GG therapy in the IgM class from 3.8 (1.4-5.0) to 11.2 (5.0-30.0)/10(6) cells; p=0.02. In addition, Lactobacillus GG therapy decreased the median (interquartile range) activity of faecal urease, which has been associated with mucosal tissue damage, from 40.3 (21.7-54.3) to 28.6 (24.5-49.4) nmol. min(-1) (mg protein)(-1); p=0.10, while, in patients receiving bovine colostrum, faecal urease activity increased (from 42.2 to 80.6; p=0.04). All findings were transient. We suggest that gut defence mechanisms are disturbed in juvenile chronic arthritis and we further suggest that orally administered Lactobacillus GG has a potential to reinforce the mucosal barrier mechanisms in juvenile chronic arthritis.
Collapse
Affiliation(s)
- M Malin
- Medical School, University of Tampere and Department of Paediatrics, Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Brandtzaeg LHP. Development and Function of Intestinal B and T Cells. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/089106000750060378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lars Helgeland, Per Brandtzaeg
- From the Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Institute of Pathology, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway
| |
Collapse
|
42
|
Famularo, Claudio De Simone, Paolo G. The Role of Digestive Microflora and Probiotics in Inflammatory Bowel Disease. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/089106000750060396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Giuseppe Famularo, Claudio De Simone, Paolo
- Department of Emergency Medicine San Camillo Hospital, Rome
- Department of Experimental Medicine, University of L'Aquila
- Department of Internal Medicine and Gastroenterology, University of Bologna, Italy
| |
Collapse
|
43
|
|
44
|
Lee DK, Jang S, Baek EH, Kim MJ, Lee KS, Shin HS, Chung MJ, Kim JE, Lee KO, Ha NJ. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content. Lipids Health Dis 2009; 8:21. [PMID: 19515264 PMCID: PMC2707375 DOI: 10.1186/1476-511x-8-21] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/11/2009] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. METHODS In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20 approximately 30 years old) to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108 approximately 109 CFU/ml) were orally administered to SD rats (fed a high-cholesterol diet) every day for 2 weeks. RESULTS B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p < 0.05), and slightly increased serum HDL. B. longum SPM1207 also increased fecal LAB levels and fecal water content, and reduced body weight and harmful intestinal enzyme activities. CONCLUSION Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation.
Collapse
Affiliation(s)
- Do Kyung Lee
- Department of Pharmacy, Sahmyook University, Seoul 139-742, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Huynh HQ, deBruyn J, Guan L, Diaz H, Li M, Girgis S, Turner J, Fedorak R, Madsen K. Probiotic preparation VSL#3 induces remission in children with mild to moderate acute ulcerative colitis: a pilot study. Inflamm Bowel Dis 2009; 15:760-8. [PMID: 19067432 DOI: 10.1002/ibd.20816] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is a form of inflammatory bowel disease (IBD) that has periods of exacerbated symptoms and periods that are symptom-free. The treatment of active UC with probiotic bacteria could possibly induce remission. We evaluated the clinical efficacy and safety profile of probiotic preparation VSL#3 in the treatment of mild to moderate acute UC in the pediatric population. METHODS Eighteen eligible patients between the ages of 3-17 with mild to moderate acute UC received open-label VSL#3 daily in 2 divided doses for 8 weeks. The disease activity pre- and post-VSL#3 therapy was assessed by the simple clinical colitis activity index (SCCAI); Mayo ulcerative colitis endoscopic score; inflammatory markers: erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP); serum cytokine profiling; and rectal tissue microbial profiling done at baseline and at week 8. RESULTS Thirteen patients completed 8 weeks of VSL#3 treatment and 5 patients were withdrawn due to lack of improvement. Remission (defined as SCCAI <or=3) was achieved in 56% of children (n = 10); response (decrease in SCCAI >or=2, but final score <or=5) in 6% (n = 1); and no change or worsening in 39% (n = 7). Post-VSL#3 treatments demonstrated a bacterial taxonomy change in rectal biopsy. The VSL#3 was well tolerated in clinical trials and no biochemical and clinical adverse effects attributed to VSL#3 were identified. CONCLUSIONS Treatment of pediatric patients diagnosed with mild to moderate UC with VSL#3 resulted in a remission rate of 56% and a combined remission/response rate of 61%.
Collapse
Affiliation(s)
- Hien Q Huynh
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, University of Alberta, Stollery Children's Hospital, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Macfarlane S, Steed H, Macfarlane GT. Intestinal bacteria and inflammatory bowel disease. Crit Rev Clin Lab Sci 2009; 46:25-54. [PMID: 19107650 DOI: 10.1080/10408360802485792] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are the two principal forms of inflammatory bowel disease (IBD). Animal studies show that bacteria are involved in the etiology of IBD, and much is now known about the inflammatory processes associated with CD and UC, as well as the underlying genetic, environmental, and lifestyle issues that can affect an individual's predisposition to these diseases. However, while a number of candidate microorganisms have been put forward as causative factors in IBD, the primary etiologic agents are unknown. This review discusses the potential role of luminal and mucosal microbial communities in the etiology of IBD, and outlines studies that have been made using a variety of biotherapeutic therapies, involving the use of antibiotics, probiotics, prebiotics, and synbiotics.
Collapse
Affiliation(s)
- Sandra Macfarlane
- Microbiology and Gut Biology Group, University of Dundee, Dundee, UK.
| | | | | |
Collapse
|
47
|
Lactobacilli facilitate maintenance of intestinal membrane integrity during Shigella dysenteriae 1 infection in rats. Nutrition 2008; 25:350-8. [PMID: 19036564 DOI: 10.1016/j.nut.2008.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 08/25/2008] [Accepted: 09/02/2008] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Lactobacilli are used in various dairy products and fermented foods for their potential health beneficial effects. Recently we reported the protective role of Lactobacillus rhamnosus and Lactobacillus acidophilus during Shigella dysenteriae 1 infection. Nevertheless, investigations on the membrane-stabilizing effect of L. rhamnosus and L. acidophilus have not been done. Hence, the present study evaluated the effect of L. rhamnosus and L. acidophilus on the maintenance of intestinal membrane integrity during S. dysenteriae 1-induced diarrhea in rats. METHODS Rats were divided into eight groups (n = 6 in each group). Induced rats received single oral dose of S. dysenteriae (12 x 10(8) colony-forming units [cfu]/mL). Treated rats received L. rhamnosus (1 x 10(7)cfu/mL) or L. acidophilus (1 x 10(7)cfu/mL) orally for 4 d, alone or in combination, followed by Shigella administration. At the end of the experimental period, animals were sacrificed and the assay of membrane-bound adenosine triphosphatases (Na(+)/K(+)-ATPase, Ca(2+)-ATPase, and total ATPase), immunoblot analysis of tight junctional proteins (claudin-1 and occludin), and transmission electron microscopic studies were performed. RESULTS Induced rats showed a significant (P < 0.05) reduction in the membrane-bound ATPases and reduced expression of tight junction proteins in the membrane, coupled with their increased expression in the cytosol, indicating membrane damage. Transmission electron microscopic studies correlated with biochemical parameters. Pretreatment with combination of L. rhamnosus and L. acidophilus significantly prevented these changes. CONCLUSION Lactobacillus rhamnosus and L. acidophilus synergistically offered better protection to the intestinal membrane when compared with individual treatments with these strains during S. dysenteriae 1 infection.
Collapse
|
48
|
Anti-inflammatory effect of yoghurt in an experimental inflammatory bowel disease in mouse. J DAIRY RES 2008; 75:497-504. [DOI: 10.1017/s0022029908003579] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflammatory bowel disease (IBD; Crohn′s disease and ulcerative colitis) is the clinical outcome of three interactive pathogenic factors: genetic susceptibility, environmental triggers and immune dis-regulation. At present, only the immune response is targeted by most therapeutic or preventive strategies. The beneficial effect of yoghurt on health as well as its immunomodulator effect on the gut immune system is well documented. The aim of this work was to study the possible beneficial effects of yoghurt consumption on an experimental model of IBD in mice. Balb/c mice were fed with yoghurt for 10 consecutive days. At the end of the feeding period the mice received three inoculations of 2, 4, 6-trinitrobenzene sulphonic acid (TNBS) solutions once a week for 3 consecutive weeks. After TNBS instillation the mice received yoghurt again for 10 consecutive days. IBD control received only TNBS. After treatments we analysed the number of IgA–secreting cells, CD4+, CD8+ T cells population and the number of apoptotic cells in the large intestine. The number of erythrocytes and leucocytes in peripheral blood mononuclear cells (PBMCs) was also determined. We demonstrated the antinflammatory effect of yoghurt in an experimental model of IBD induced by TNBS. The effect was mediated by an increase in the number of the IgA+cells, a decrease in CD8+ population and by the induction of apoptosis of the infiltrative cells in the large intestine.
Collapse
|
49
|
Probiotics, prebiotics, and synbiotics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 111:1-66. [PMID: 18461293 DOI: 10.1007/10_2008_097] [Citation(s) in RCA: 356] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
According to the German definition, probiotics are defined viable microorganisms, sufficient amounts of which reach the intestine in an active state and thus exert positive health effects. Numerous probiotic microorganisms (e.g. Lactobacillus rhamnosus GG, L. reuteri, bifidobacteria and certain strains of L. casei or the L. acidophilus-group) are used in probiotic food, particularly fermented milk products, or have been investigated--as well as Escherichia coli strain Nissle 1917, certain enterococci (Enterococcus faecium SF68) and the probiotic yeast Saccharomyces boulardii--with regard to their medicinal use. Among the numerous purported health benefits attributed to probiotic bacteria, the (transient) modulation of the intestinal microflora of the host and the capacity to interact with the immune system directly or mediated by the autochthonous microflora, are basic mechanisms. They are supported by an increasing number of in vitro and in vivo experiments using conventional and molecular biologic methods. In addition to these, a limited number of randomized, well-controlled human intervention trials have been reported. Well-established probiotic effects are: 1. Prevention and/or reduction of duration and complaints of rotavirus-induced or antibiotic-associated diarrhea as well as alleviation of complaints due to lactose intolerance. 2. Reduction of the concentration of cancer-promoting enzymes and/or putrefactive (bacterial) metabolites in the gut. 3. Prevention and alleviation of unspecific and irregular complaints of the gastrointestinal tracts in healthy people. 4. Beneficial effects on microbial aberrancies, inflammation and other complaints in connection with: inflammatory diseases of the gastrointestinal tract, Helicobacter pylori infection or bacterial overgrowth. 5. Normalization of passing stool and stool consistency in subjects suffering from obstipation or an irritable colon. 6. Prevention or alleviation of allergies and atopic diseases in infants. 7. Prevention of respiratory tract infections (common cold, influenza) and other infectious diseases as well as treatment of urogenital infections. Insufficient or at most preliminary evidence exists with respect to cancer prevention, a so-called hypocholesterolemic effect, improvement of the mouth flora and caries prevention or prevention or therapy of ischemic heart diseases or amelioration of autoimmune diseases (e.g. arthritis). A prebiotic is "a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well being and health", whereas synergistic combinations of pro- and prebiotics are called synbiotics. Today, only bifidogenic, non-digestible oligosaccharides (particularly inulin, its hydrolysis product oligofructose, and (trans)galactooligosaccharides), fulfill all the criteria for prebiotic classification. They are dietary fibers with a well-established positive impact on the intestinal microflora. Other health effects of prebiotics (prevention of diarrhoea or obstipation, modulation of the metabolism of the intestinal flora, cancer prevention, positive effects on lipid metabolism, stimulation of mineral adsorption and immunomodulatory properties) are indirect, i.e. mediated by the intestinal microflora, and therefore less-well proven. In the last years, successful attempts have been reported to make infant formula more breast milk-like by the addition of fructo- and (primarily) galactooligosaccharides.
Collapse
|
50
|
Regulat®.pro.kid BRAIN and mental and cognitive development of children ‐ Scientific substantiation of a health claim related to regulat®.pro.kid BRAIN and mental and cognitive developments of children pursuant to Article 14 of Regulation (EC) No 1924/2006 ‐ Scientific Opinion of the Panel on Dietetic Products, Nutrition and Allergies. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|