1
|
Hamza M, Wang S, Liu Y, Li K, Zhu M, Chen L. Unraveling the potential of bioengineered microbiome-based strategies to enhance cancer immunotherapy. Microbiol Res 2025; 296:128156. [PMID: 40158322 DOI: 10.1016/j.micres.2025.128156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
The human microbiome plays a pivotal role in the field of cancer immunotherapy. The microbial communities that inhabit the gastrointestinal tract, as well as the bacterial populations within tumors, have been identified as key modulators of therapeutic outcomes, affecting immune responses and reprogramming the tumor microenvironment. Advances in synthetic biology have made it possible to reprogram and engineer these microorganisms to improve antitumor activity, enhance T-cell function, and enable targeted delivery of therapies to neoplasms. This review discusses the role of the microbiome in modulating both innate and adaptive immune mechanisms-ranging from the initiation of cytokine production and antigen presentation to the regulation of immune checkpoints-and discusses how these mechanisms improve the efficacy of immune checkpoint inhibitors. We highlight significant advances with bioengineered strains like Escherichia coli Nissle 1917, Lactococcus lactis, Bifidobacterium, and Bacteroides, which have shown promising antitumor efficacy in preclinical models. These engineered microorganisms not only efficiently colonize tumor tissues but also help overcome resistance to standard therapies by reprogramming the local immune environment. Nevertheless, several challenges remain, such as the requirement for genetic stability, effective tumor colonization, and the control of potential safety issues. In the future, the ongoing development of genetic engineering tools and the optimization of bacterial delivery systems are crucial for the translation of microbiome-based therapies into the clinic. This review highlights the potential of bioengineered microbiota as an innovative, personalized approach in cancer immunotherapy, bringing hope for more effective and personalized treatment options for patients with advanced malignancies.
Collapse
Affiliation(s)
- Muhammad Hamza
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
| | - Yike Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Motao Zhu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Wang X, Hu Y. High‑dose sodium propionate contributes to tumor immune escape through the IGF2BP3/PD‑L1 axis in colorectal cancer. Oncol Lett 2025; 29:303. [PMID: 40291473 PMCID: PMC12023025 DOI: 10.3892/ol.2025.15049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
The understanding of how gut microbiota metabolites modulate immune escape mechanisms in colorectal cancer (CRC) remains limited. In the present study, the impact of gut microbiota metabolites on the efficacy of programmed cell death protein 1 (PD-1) and programmed cell death ligand-1 (PD-L1) immunotherapy in CRC was explored, with a particular focus on the short-chain fatty acid, sodium propionate (SP), as they key metabolite. The results of the present study, determined by CCK-8 and flow cytometry, demonstrated that 10 mM SP significantly suppressed CRC cell proliferation and induced apoptosis. By contrast, 40 mM SP, but not 10 mM, markedly increased the PD-L1 mRNA and protein expression levels. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression, analyzed via bioinformatics using The Cancer Genoma Atlas datasets, was significantly higher in CRC tissues compared with healthy tissues. Additionally, survival analysis uncovered that elevated IGF2BP3 levels in tumor tissues were strongly associated with poor clinical outcomes. Moreover, 40 mM SP significantly induced the expression of IGF2BP3 mRNA and protein in CRC cells. The actinomycin D assay was conducted to assess mRNA stability, whereas methylated RNA immunoprecipitation coupled with quantitative polymerase chain reaction (qPCR) and RNA immunoprecipitation-qPCR were utilized to confirm the interaction between IGF2BP3 and PD-L1 mRNA. These results indicated that IGF2BP3 served as an N6-methyladenosine (m6A) reader for PD-L1, stabilizing its mRNA in an m6A-dependent manner, thereby upregulating the PD-L1 mRNA and protein expression levels. Therefore, high-dose SP may promote tumor immune escape via the IGF2BP3/PD-L1 axis in CRC. As such, high-dose SP may synergize with PD-1/PD-L1 blockade therapies to improve clinical outcomes in patients with CRC, particularly by upregulating PD-L1 expression.
Collapse
Affiliation(s)
- Xun Wang
- Department of Gastroenterology, Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430063, P.R. China
| | - Yikui Hu
- Department of Neurology, Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430063, P.R. China
| |
Collapse
|
3
|
Cai J, Zhang W, Zhu S, Lin T, Mao R, Wu N, Zhang P, Kang M. Gut and Intratumoral microbiota: Key to lung Cancer development and immunotherapy. Int Immunopharmacol 2025; 156:114677. [PMID: 40279944 DOI: 10.1016/j.intimp.2025.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Lung cancer is a common malignant tumor worldwide with high incidence and mortality rates. Previous studies have claimed that the microbial community plays an integral role in the development and progression of lung cancer. Emerging evidence reveals that gut flora plays a key role in cancer formation and evolution by participating in mechanisms such as metabolism, regulation of inflammation and immune response. Not only the gut flora, but also the presence of intratumoral microbiota may influence lung cancer progression through multiple mechanisms. These research advances suggest that intestinal flora and intratumoral microbiota may not only serve as potential biomarkers for lung cancer, but may also be targets for therapy. However, current studies on both in lung cancer are still limited. Given this, this study aimed to systematically review the latest findings on the major bacterial species of the intestinal flora and their possible protective or harmful roles in the formation, progression, and metastasis of lung cancer. In addition, we analyzed the potential mechanisms by which the intratumoral microbiota affected lung cancer and elaborated on the potential roles of the gut flora and its metabolites, as well as the intratumoral microbiota, in modulating the efficacy of immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Junlan Cai
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Shujing Zhu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tianxin Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Renyan Mao
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ningzi Wu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China.
| |
Collapse
|
4
|
Wekking D, Silva CAC, Viscò R, Denaro N, Lambertini M, Maccioni A, Loddo E, Willard-Gallo K, Scartozzi M, Derosa L, Solinas C. The interplay between gut microbiota, antibiotics, and immune checkpoint inhibitors in patients with cancer: A narrative review with biological and clinical aspects. Crit Rev Oncol Hematol 2025; 212:104767. [PMID: 40414545 DOI: 10.1016/j.critrevonc.2025.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/11/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting the programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) pathways have revolutionized cancer therapy. However, primary and secondary resistance to ICI pose significant challenges. Recent studies underscore the critical role of gut microbiota (GM) in modulating ICI efficacy by shaping host immune responses and regulating the tumor microenvironment (TME). The composition of the GM has been linked to ICI treatment outcomes, with certain microbial taxa, such as Faecalibacterium spp., Bifidobacterium spp., Eubacterium spp., Roseburia spp., and Akkermansia muciniphila, associated with favorable responses. Mechanistically, the GM affects immune responses via multiple pathways, including induction of T cell differentiation, promotion of anti- or proinflammatory cytokine environments, and enhancement of T cell priming and effector functions. Moreover, microbial-derived metabolites play a role in shaping tumor immune responses and influencing ICI efficacy. Antibiotic treatment can disrupt GM diversity and composition (gut dysbiosis), potentially diminishing ICI effectiveness. A deeper understanding of the interplay between GM, antibiotic treatment, and ICI efficacy is crucial for developing personalized therapeutic strategies to improve patient outcomes. Herein, we review current evidence on the association between specific microbial taxa and tumor immunosurveillance, the impact of antibiotics on the GM composition and immune modulation, and its implications for ICI therapy efficacy.
Collapse
Affiliation(s)
- Demi Wekking
- Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Roberto Viscò
- Ospedale Sant'Antonio Abate, Patologica Clinica, ASP Trapani, Italy
| | - Nerina Denaro
- Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genova, Genova, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Antonio Maccioni
- Medical Oncology AOU Cagliari Policlinico Duilio Casula, Monserrato (CA) Italy
| | - Erica Loddo
- Gastroenterology University Hospital, Cagliari, Italy
| | | | - Mario Scartozzi
- Medical Oncology AOU Cagliari Policlinico Duilio Casula, Monserrato (CA) Italy; University Hospital of Cagliari, Italy
| | - Lisa Derosa
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Cinzia Solinas
- Medical Oncology AOU Cagliari Policlinico Duilio Casula, Monserrato (CA) Italy
| |
Collapse
|
5
|
Okazawa-Sakai M, Sakai SA, Hyodo I, Horasawa S, Sawada K, Fujisawa T, Yamamoto Y, Boku S, Hayasaki Y, Isobe M, Shintani D, Hasegawa K, Egawa-Takata T, Ito K, Ihira K, Watari H, Takehara K, Yagi H, Kato K, Chiyoda T, Harano K, Nakamura Y, Yamashita R, Yoshino T, Aoki D. Gut microbiome associated with PARP inhibitor efficacy in patients with ovarian cancer. J Gynecol Oncol 2025; 36:e38. [PMID: 39453391 PMCID: PMC12099047 DOI: 10.3802/jgo.2025.36.e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVE To investigate an association between the gut microbiome and efficacy of poly(ADP-ribose) polymerase inhibitors (PARPi) in ovarian cancer. METHODS This study conducted fecal microbiome analysis (16S rRNA gene sequencing) and circulating tumor DNA (ctDNA) profiling for ovarian cancer patients who underwent PARPi maintenance therapy. Fecal and blood samples were collected at the baseline and the progressive disease (PD) or last follow-up. The relative abundance of gut microbes and progression-free survival (PFS) were analyzed using linear discriminant analysis of effect size and the Cox proportional hazard model according to BRCA1/2 mutation (BRCA1/2mut) status detected by ctDNA sequencing. RESULTS Baseline samples were available from 23 BRCA1/2mut-positive patients and 33 BRCA1/2mut-negative patients. The microbes enriched in the baseline samples with long PFS were Bifidobacterium, Roseburia, Dialister, Butyricicoccus, and Bilophila for BRCA1/2mut-positive patients and Phascolarctobacterium for BRCA1/2mut-negative patients. In multivariate analyses dividing patients by the median values of relative abundances, no bacteria were associated with PFS in BRCA1/2mut-positive patients, whereas high Phascolarctobacterium abundances (≥1.11%) was significantly associated with longer PFS in BRCA1/2mut-negative patients (median 14.0 vs. 5.9 months, hazard ratio=0.28; 95% confidence interval=0.11-0.69; p=0.014). In the last samples, the relative abundances of Phascolarctobacterium were significantly higher in patients without PD (n=5) than those with PD (n=15) (median 1.25% vs. 0.06%; p=0.016). CONCLUSION High fecal composition of Phascolarctobacterium was associated with prolonged PFS in patients with BRCA1/2mut-negative ovarian cancer receiving PARPi therapy. Our results would provide new insights for future research.
Collapse
Affiliation(s)
- Mika Okazawa-Sakai
- Department of Gynecologic Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
- Department of Cancer Genomic Medicine, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Shunsuke A Sakai
- Department of Integrated Biosciences, Graduate School of Frontier Science, University of Tokyo, Kashiwa, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Ichinosuke Hyodo
- Department of Gastrointestinal Medical Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Satoshi Horasawa
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kentaro Sawada
- Department of Medical Oncology, Kushiro Rosai Hospital, Kushiro, Japan
| | - Takao Fujisawa
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yasuko Yamamoto
- Department of Hereditary Tumors, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Shogen Boku
- Cancer Treatment Center, Kansai Medical University Hospital, Hirakata, Japan
| | - Yoh Hayasaki
- Department of Obstetrics and Gynecology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masanori Isobe
- Department of Obstetrics and Gynecology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daisuke Shintani
- Department of Gynecology Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Kosei Hasegawa
- Department of Gynecology Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Tomomi Egawa-Takata
- Department of Obstetrics and Gynecology, Kansai Rosai Hospital, Amagasaki, Japan
| | - Kimihiko Ito
- Department of Obstetrics and Gynecology, Kansai Rosai Hospital, Amagasaki, Japan
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University Hospital, Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University Hospital, Sapporo, Japan
| | - Kazuhiro Takehara
- Department of Gynecologic Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuyuki Chiyoda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kenichi Harano
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshiaki Nakamura
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
- International Research Promotion Office, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, University of Tokyo, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
- International University of Health and Welfare Graduate School, Otawara, Japan.
| |
Collapse
|
6
|
Chai X, Zhang Y, Shi Z, Yang R, Liu X, Zhou Y, Li C, Li Z. An Overview of Predictive Biomarkers and Detection Approaches for Immunotherapy Response in GI Malignancies. J Gastroenterol Hepatol 2025; 40:1059-1069. [PMID: 40074558 DOI: 10.1111/jgh.16930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
This review provides an in-depth exploration of the evolving role of immunotherapy in gastrointestinal (GI) cancers, with a particular focus on immune checkpoint inhibitors (ICIs) and their associated predictive biomarkers. We present a detailed analysis of established biomarkers, such as PD-L1, microsatellite instability (MSI), tumor mutational burden (TMB), and the tumor microenvironment (TME), as well as emerging biomarkers, including gut microbiota and Epstein-Barr virus (EBV). The predictive value of these biomarkers in guiding clinical decision-making and optimizing immunotherapy outcomes is thoroughly discussed. Additionally, we highlight recent advancements in biomarker evaluation technologies, including next-generation sequencing (NGS), multiplex immunohistochemistry, and artificial intelligence (AI)-driven models. These technologies are instrumental in advancing precision medicine by enhancing the accuracy and efficiency of biomarker detection and facilitating personalized treatment approaches. The integration of these predictive biomarkers with advanced detection technologies has significantly improved the clinical efficacy of immunotherapy in GI cancers by addressing challenges such as tumor heterogeneity, immune evasion, and variable patient responses. By providing a deeper understanding of tumor biology and patient-specific factors, these tools offer the potential to optimize patient selection, treatment regimens, and, ultimately, clinical outcomes. This review underscores the transformative impact of combining predictive biomarkers with cutting-edge technologies, marking a significant step forward in the field of precision oncology for GI cancer treatment.
Collapse
Affiliation(s)
- Xinyu Chai
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiwen Zhang
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhihui Shi
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruiling Yang
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xumin Liu
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yueting Zhou
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Caiyang Li
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhenhui Li
- Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Rahimi A, Baghernejadan Z, Hazrati A, Malekpour K, Samimi LN, Najafi A, Falak R, Khorramdelazad H. Combination therapy with immune checkpoint inhibitors in colorectal cancer: Challenges, resistance mechanisms, and the role of microbiota. Biomed Pharmacother 2025; 186:118014. [PMID: 40157004 DOI: 10.1016/j.biopha.2025.118014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Colorectal cancer (CRC) is still one of the leading causes of cancer deaths worldwide. Even though there has been progress in cancer immunotherapy, the results of applying immune checkpoint inhibitors (ICIs) have been unsatisfactory, especially in microsatellite stable (MSS) CRC. Single-agent ICIs that target programmed cell death-1 (PD-1)/ PD-L1, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell Ig- and mucin-domain-containing molecule-3 (TIM-3), and lymphocyte activation gene (LAG)-3 have emerged as having specific benefits. However, many primary and secondary resistance mechanisms are available in the tumor microenvironment (TME) that prevent it from happening. Combination strategies, such as the use of anti-PD-1 and anti-CTLA-4, can be effective in overcoming these resistance pathways, but toxicities remain a significant concern. Moreover, ICIs have been integrated with various treatment modalities, including chemotherapy, radiotherapy, antibiotics, virotherapy, polyadenosine diphosphate-ribose polymerase (PARP) inhibitors, and heat shock protein 90 (HSP90) inhibitors. The outcomes observed in both preclinical and clinical settings have been encouraging. Interestingly, manipulating gut microbiota via fecal microbiota transplantation (FMT) has been identified as a new strategy to increase the efficacy of immunotherapy in CRC patients. Therefore, integrating ICIs with other treatment approaches holds promise in enhancing the prognosis of CRC patients. This review focuses on the unmet need for new biomarkers to select patients for combination therapies and the ongoing work to overcome resistance and immune checkpoint blockade.
Collapse
Affiliation(s)
- Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
8
|
Adlakha YK, Chhabra R. The human microbiome: redefining cancer pathogenesis and therapy. Cancer Cell Int 2025; 25:165. [PMID: 40296128 PMCID: PMC12039184 DOI: 10.1186/s12935-025-03787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
The human microbiome has always been an important determinant of health and recently, its role has also been described in cancer. The altered microbiome could aid cancer progression, modulate chemoresistance and significantly alter drug efficacy. The broad implications of microbes in cancer have prompted researchers to investigate the microbe-cancer axis and identify whether modifying the microbiome could sensitize cancer cells for therapy and improve the survival outcome of cancer patients. The preclinical data has shown that enhancing the number of specific microbial species could restore the patients' response to cancer drugs and the microbial biomarkers may play a vital role in cancer diagnostics. The elucidation of detailed interactions of the human microbiota with cancer would not only help identify the novel drug targets but would also enhance the efficacy of existing drugs. The field exploring the emerging roles of microbiome in cancer is at a nascent stage and an in-depth scientific perspective on this topic would make it more accessible to a wider audience. In this review, we discuss the scientific evidence connecting the human microbiome to the origin and progression of cancer. We also discuss the potential mechanisms by which microbiota affects initiation of cancer, metastasis and chemoresistance. We highlight the significance of the microbiome in therapeutic outcome and evaluate the potential of microbe-based cancer therapy.
Collapse
Affiliation(s)
- Yogita K Adlakha
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh, 201303, India.
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
9
|
Hu M, Zhu X, Huang X, Hua L, Lin X, Zhang H, Hu Y, Tong T, Li L, Xuan B, Zhao Y, Zhou Y, Ding J, Ma Y, Jiang Y, Ning L, Zhang Y, Wang Z, Fang JY, Zhang Y, Xiao X, Hong J, Chen H, Li J, Chen H. Optimizing anti-PD-1/PD-L1 therapy efficacy and fecal microbiota transplantation donor selection through gut mycobiome-based enterotype. Cell Rep 2025; 44:115589. [PMID: 40257861 DOI: 10.1016/j.celrep.2025.115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/06/2025] [Accepted: 03/28/2025] [Indexed: 04/23/2025] Open
Abstract
Immunotherapy has revolutionized cancer treatment, but response variability remains a challenge. The gut microbiome's role in therapeutic efficacy is well established, but the impact of the gut mycobiome is less understood. Using unsupervised clustering, we identify two gut mycobiome-based enterotypes, favorable type and unfavorable type, characterized by distinct microbial compositions linked to immunotherapy outcomes. Favorable-type enterotypes exhibit higher fungal and bacterial alpha diversity, enriched butyrate-producing bacteria, and metabolic pathways related to butyric acid and sugar/starch metabolism. External validation confirms their predictive value in assessing immunotherapy efficacy. Multi-omics analysis reveals increased CD8+ T cell infiltration in the tumor microenvironment of favorable-type patients. Fecal microbiota transplantation (FMT) from favorable-type donors enhances anti-PD-1 sensitivity, promotes CD8+ T cell infiltration, and boosts butyrate production in vivo. These findings highlight the gut mycobiome's role in immunotherapy response and support FMT from favorable-type donors as a potential strategy for improving treatment outcomes and patient stratification.
Collapse
Affiliation(s)
- Muni Hu
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China
| | - Xiaoqiang Zhu
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China; Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China
| | - Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China
| | - Li Hua
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaolin Lin
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hangyu Zhang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ye Hu
- Department of Gastroenterology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Tianying Tong
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China
| | - Lingxi Li
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China
| | - Baoqin Xuan
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China
| | - Ying Zhao
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China
| | - Yilu Zhou
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China
| | - Jinmei Ding
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China
| | - Yanru Ma
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China
| | - Yi Jiang
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China
| | - Lijun Ning
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China
| | - Yue Zhang
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China
| | - Zhenyu Wang
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China
| | - Jing-Yuan Fang
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou 221009, China
| | - Xiuying Xiao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Hong
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China
| | - Huimin Chen
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China.
| | - Jiantao Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai 200001, China.
| |
Collapse
|
10
|
Cai X, Cho JY, Chen L, Liu Y, Ji F, Salgado K, Ge S, Yang D, Yu H, Shao J, Futreal PA, Sepesi B, Gibbons D, Chen Y, Wang G, Cheng C, Wu M, Zhang J, Hsiao A, Xia T. Enriched pathways in gut microbiome predict response to immune checkpoint inhibitor treatment across demographic regions and various cancer types. iScience 2025; 28:112162. [PMID: 40151642 PMCID: PMC11937697 DOI: 10.1016/j.isci.2025.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/16/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Understanding the effect of gut microbiota function on immune checkpoint inhibitor (ICI) responses is urgently needed. Here, we integrated 821 fecal metagenomes from 12 datasets to identify differentially abundant genes and construct random forest models to predict ICI response. Gene markers demonstrated excellent predictive performance, with an average area under the curve (AUC) of 0.810. Pathway analyses revealed that quorum sensing (QS), ABC transporters, flagellar assembly, and amino acid biosynthesis pathways were enriched between responders (R) and non-responders (NRs) across 12 datasets. Furthermore, luxS, manA, fliC, and trpB exhibited consistent changes between R and NR across 12 datasets. Follow-up microbiota transplant experiments showed that inter-species signaling by different QS autoinducer-2 (AI-2) molecules (synthesized by luxS) can act on overall community function to promote the colonization of Akkermansia muciniphila, which is associated with superior ICI responses. Together, our data highlight the role of gut microbiota function in modulating the microbiome and antitumor immunity.
Collapse
Affiliation(s)
- Xunhui Cai
- Institute of Pathology, Tongji Hospital, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jennifer Y. Cho
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Lijun Chen
- Institute of Pathology, Tongji Hospital, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Liu
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Fenghu Ji
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Katia Salgado
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Siyi Ge
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hui Yu
- Clinical Laboratory, Wuhan Children’s Hospital, Wuhan, China
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Shao
- Clinical Laboratory, Wuhan Children’s Hospital, Wuhan, China
| | - P. Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don Gibbons
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yaobing Chen
- Institute of Pathology, Tongji Hospital, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoping Wang
- Institute of Pathology, Tongji Hospital, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Meng Wu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Jianjun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Tian Xia
- Institute of Pathology, Tongji Hospital, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Ionescu VA, Diaconu CC, Gheorghe G, Mihai MM, Diaconu CC, Bostan M, Bleotu C. Gut Microbiota and Colorectal Cancer: A Balance Between Risk and Protection. Int J Mol Sci 2025; 26:3733. [PMID: 40332367 PMCID: PMC12028331 DOI: 10.3390/ijms26083733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
The gut microbiome, a complex community of microorganisms residing in the intestinal tract, plays a dual role in colorectal cancer (CRC) development, acting both as a contributing risk factor and as a protective element. This review explores the mechanisms by which gut microbiota contribute to CRC, emphasizing inflammation, oxidative stress, immune evasion, and the production of genotoxins and microbial metabolites. Fusobacterium nucleatum, Escherichia coli (pks+), and Bacteroides fragilis promote tumorigenesis by inducing chronic inflammation, generating reactive oxygen species, and producing virulence factors that damage host DNA. These microorganisms can also evade the antitumor immune response by suppressing cytotoxic T cell activity and increasing regulatory T cell populations. Additionally, microbial-derived metabolites such as secondary bile acids and trimethylamine-N-oxide (TMAO) have been linked to carcinogenic processes. Conversely, protective microbiota, including Lactobacillus, Bifidobacterium, and Faecalibacterium prausnitzii, contribute to intestinal homeostasis by producing short-chain fatty acids (SCFAs) like butyrate, which exhibit anti-inflammatory and anti-carcinogenic properties. These beneficial microbes enhance gut barrier integrity, modulate immune responses, and inhibit tumor cell proliferation. Understanding the dynamic interplay between pathogenic and protective microbiota is essential for developing microbiome-based interventions, such as probiotics, prebiotics, and fecal microbiota transplantation, to prevent or treat CRC. Future research should focus on identifying microbial biomarkers for early CRC detection and exploring personalized microbiome-targeted therapies. A deeper understanding of host-microbiota interactions may lead to innovative strategies for CRC management and improved patient outcomes.
Collapse
Affiliation(s)
- Vlad Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Camelia Cristina Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Academy of Romanian Scientists, 050085 Bucharest, Romania;
| | - Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Mara-Madalina Mihai
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Department of Oncologic Dermathology, “Elias” University Emergency Hospital, 010024 Bucharest, Romania
| | - Carmen Cristina Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.C.D.); (M.B.)
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.C.D.); (M.B.)
- Department of Immunology, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| | - Coralia Bleotu
- Academy of Romanian Scientists, 050085 Bucharest, Romania;
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.C.D.); (M.B.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
| |
Collapse
|
12
|
Kim K, Lee M, Shin Y, Lee Y, Kim TJ. Optimizing Cancer Treatment Through Gut Microbiome Modulation. Cancers (Basel) 2025; 17:1252. [PMID: 40227841 PMCID: PMC11988035 DOI: 10.3390/cancers17071252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiome plays a pivotal role in modulating cancer therapies, including immunotherapy and chemotherapy. Emerging evidence demonstrates its influence on treatment efficacy, immune response, and resistance mechanisms. Specific microbial taxa enhance immune checkpoint inhibitor efficacy, while dysbiosis can contribute to adverse outcomes. Chemotherapy effectiveness is also influenced by microbiome composition, with engineered probiotics and prebiotics offering promising strategies to enhance drug delivery and reduce toxicity. Moreover, microbial metabolites, such as short-chain fatty acids, and engineered microbial systems have shown potential to improve therapeutic responses. These findings underscore the importance of personalized microbiome-based approaches in optimizing cancer treatments.
Collapse
Affiliation(s)
- Kyuri Kim
- College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul 03760, Republic of Korea;
| | - Mingyu Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Yoojin Shin
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Yoonji Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| |
Collapse
|
13
|
Song J, Zhu J, Jiang Y, Guo Y, Liu S, Qiao Y, Du Y, Li J. Advancements in immunotherapy for gastric cancer: Unveiling the potential of immune checkpoint inhibitors and emerging strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189277. [PMID: 39938663 DOI: 10.1016/j.bbcan.2025.189277] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Gastric cancer (GC) is linked to high morbidity and mortality rates. Approximately two-thirds of GC patients are diagnosed at an advanced or metastatic stage. Conventional treatments for GC, including surgery, radiotherapy, and chemotherapy, offer limited prognostic improvement. Recently, immunotherapy has gained attention for its promising therapeutic effects in various tumors. Immunotherapy functions by activating and regulating the patient's immune cells to target and eliminate tumor cells, thereby reducing the tumor burden in the body. Among immunotherapies, immune checkpoint inhibitors (ICIs) are the most advanced. ICIs disrupt the inhibitory protein-small molecule (PD-L1, CTLA4, VISTA, TIM-3 and LAG3) interactions produced by immune cells, reactivating these cells to recognize and attack tumor cells. However, adverse reactions and resistance to ICIs hinder their further clinical and experimental development. Therefore, a comprehensive understanding of the advancements in ICIs for GC is crucial. This article discusses the latest developments in clinical trials of ICIs for GC and examines combination therapies involving ICIs (targeted therapy, chemotherapy, radiotherapy), alongside ongoing clinical trials. Additionally, the review investigates the tumor immune microenvironment and its role in non-responsiveness to ICIs, highlighting the function of tumor immune cells in ICI efficacy. Finally, the article explores the prospects and limitations of new immunotherapy-related technologies, such as tumor vaccines, nanotechnologies, and emerging therapeutic strategies, aiming to advance research into personalized and optimized immunotherapy for patients with locally advanced gastric cancer.
Collapse
Affiliation(s)
- Jiawei Song
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China
| | - Jun Zhu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yu Jiang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yajie Guo
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Shuai Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yihuan Qiao
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yongtao Du
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Jipeng Li
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China.
| |
Collapse
|
14
|
Shiota M, Nemoto S, Ikegami R, Tanegashima T, Blas L, Miyake H, Takahashi M, Oya M, Tsuchiya N, Masumori N, Kobayashi K, Obara W, Shinohara N, Fujimoto K, Nozawa M, Ohba K, Ohyama C, Hashine K, Akamatsu S, Motoshima T, Mita K, Gotoh M, Tatarano S, Fujisawa M, Tomita Y, Mukai S, Ito K, Eto M. Predictive Model of Objective Response to Nivolumab Monotherapy for Advanced Renal Cell Carcinoma by Machine Learning Using Genetic and Clinical Data: The SNiP-RCC Study. JCO Clin Cancer Inform 2025; 9:e2400167. [PMID: 40279530 DOI: 10.1200/cci-24-00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/10/2024] [Accepted: 02/24/2025] [Indexed: 04/27/2025] Open
Abstract
PURPOSE Anti-PD-1 antibodies are widely used for cancer treatment, including in advanced renal cell carcinoma (RCC). However, the therapeutic response varies among patients. This study aimed to predict tumor response to nivolumab anti-PD-1 antibody treatment for advanced RCC by integrating genetic and clinical data using machine learning (ML). METHODS Clinical and single-nucleotide polymorphism (SNP) data obtained in the SNPs in nivolumab PD-1 inhibitor for RCC study, which enrolled Japanese patients treated with nivolumab monotherapy for advanced clear cell RCC, were used. A point-wise linear (PWL) algorithm, logistic regression with elastic-net regularization, and eXtreme Gradient Boosting were used in this study. AUC values for objective response and C-indices for progression-free survival (PFS) were calculated to evaluate the utility of the models. RESULTS Among the three ML algorithms, the AUC values to predict objective response were highest for the PWL algorithm among all the data sets. Three predictive models (clinical model, small SNP model, and large SNP model) were created by the PWL algorithm using the clinical data alone and using eight and 49 SNPs in addition to the clinical data. C-indices for PFS by the clinical model, small SNP model, and large SNP model were 0.522, 0.600, and 0.635, respectively. CONCLUSION The results demonstrated that the SNP models created by ML produced excellent predictions of tumor response to nivolumab monotherapy for advanced clear cell RCC and will be helpful in treatment decisions.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shota Nemoto
- Industrial & Digital Business Unit, Hitachi, Ltd, Tokyo, Japan
| | - Ryo Ikegami
- Industrial & Digital Business Unit, Hitachi, Ltd, Tokyo, Japan
| | - Tokiyoshi Tanegashima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Leandro Blas
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Miyake
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masayuki Takahashi
- Department of Urology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keita Kobayashi
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Wataru Obara
- Department of Urology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | - Masahiro Nozawa
- Department of Urology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kojiro Ohba
- Department of Urology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Katsuyoshi Hashine
- Department of Urology, National Hospital Organization Shikoku Cancer Center, Ehime, Japan
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takanobu Motoshima
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koji Mita
- Department of Urology, Hiroshima City Asa Citizens Hospital, Hiroshima, Japan
| | - Momokazu Gotoh
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiko Tomita
- Department of Urology and Molecular Oncology, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Shoichiro Mukai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Keiichi Ito
- Department of Urology, National Defense Medical College, Saitama, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Zhu X, Hu M, Huang X, Li L, Lin X, Shao X, Li J, Du X, Zhang X, Sun R, Tong T, Ma Y, Ning L, Jiang Y, Zhang Y, Shao Y, Wang Z, Zhou Y, Ding J, Zhao Y, Xuan B, Zhang H, Zhang Y, Hong J, Fang JY, Xiao X, Shen B, He S, Chen H. Interplay between gut microbial communities and metabolites modulates pan-cancer immunotherapy responses. Cell Metab 2025; 37:806-823.e6. [PMID: 39909032 DOI: 10.1016/j.cmet.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/20/2024] [Accepted: 12/21/2024] [Indexed: 02/07/2025]
Abstract
Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment but remains effective in only a subset of patients. Emerging evidence suggests that the gut microbiome and its metabolites critically influence ICB efficacy. In this study, we performed a multi-omics analysis of fecal microbiomes and metabolomes from 165 patients undergoing anti-programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) therapy, identifying microbial and metabolic entities associated with treatment response. Integration of data from four public metagenomic datasets (n = 568) uncovered cross-cohort microbial and metabolic signatures, validated in an independent cohort (n = 138). An integrated predictive model incorporating these features demonstrated robust performance. Notably, we characterized five response-associated enterotypes, each linked to specific bacterial taxa and metabolites. Among these, the metabolite phenylacetylglutamine (PAGln) was negatively correlated with response and shown to attenuate anti-PD-1 efficacy in vivo. This study sheds light on the interplay among the gut microbiome, the gut metabolome, and immunotherapy response, identifying potential biomarkers to improve treatment outcomes.
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Gastroenterology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Muni Hu
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxi Li
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolin Lin
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Shao
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Jiantao Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyue Du
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xinjia Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Rongrong Sun
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Tianying Tong
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanru Ma
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijun Ning
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Jiang
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqi Shao
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyu Wang
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yilu Zhou
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinmei Ding
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhao
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baoqin Xuan
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyang Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Youwei Zhang
- Department of Medical Oncology, Xuzhou Central Hospital, Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Jie Hong
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuying Xiao
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bo Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Shibano M, Takahashi M, Nakatsukasa H, Ishigami Y, Toyokawa T, Taira K, Kawaguchi T, Nakamura Y, Kaneda H. Proton pump inhibitors reduce nivolumab efficacy in unresectable advanced or recurrent gastric cancer. Immunotherapy 2025; 17:331-338. [PMID: 40228034 PMCID: PMC12045562 DOI: 10.1080/1750743x.2025.2491300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Proton pump inhibitors (PPI) have been shown to decrease the efficacy of immune checkpoint inhibitors in patients with various cancer types. However, there are few reports on their effect on patients with gastric cancer (GC). Therefore, we investigated the efficacy of nivolumab in patients with GC receiving PPI. METHODS This retrospective study analyzed data of patients who received nivolumab monotherapy for unresectable advanced or recurrent GC at Osaka Metropolitan University Hospital between September 2017 and December 2021. The primary and secondary endpoints were progression-free survival (PFS) and overall survival (OS), respectively. PPI use was defined as within 30 days before and after initiation of nivolumab monotherapy. RESULTS Seventy-seven eligible patients were included in this analysis. PPIs were used in 33 patients, while 36 patients had a previous gastrectomy. Multivariate analysis revealed that only PPI use was an independent predictor of PFS (hazard ratio [HR] 1.93, 95% confidence interval [CI] 1.03-3.64, p = 0.042). Contrastingly, PPI use was not an independent predictor of OS. CONCLUSION PPIs may reduce the efficacy of nivolumab, and their use should be carefully considered in patients receiving nivolumab.
Collapse
Affiliation(s)
- Masahito Shibano
- Department of Pharmacy, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Masaya Takahashi
- Department of Pharmacy, Osaka Metropolitan University Hospital, Osaka, Japan
- Department of Quality and Safety Management, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Hitomi Nakatsukasa
- Department of Pharmacy, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Yusuke Ishigami
- Department of Pharmacy, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Koichi Taira
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tomoya Kawaguchi
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yasutaka Nakamura
- Department of Pharmacy, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Hiroyasu Kaneda
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
17
|
Ziogou A, Giannakodimos A, Giannakodimos I, Schizas D, Charalampakis N. Effect of Helicobacter Pylori infection on immunotherapy for gastrointestinal cancer: a narrative review. Immunotherapy 2025; 17:355-368. [PMID: 40087147 PMCID: PMC12045566 DOI: 10.1080/1750743x.2025.2479410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/11/2025] [Indexed: 03/16/2025] Open
Abstract
Immunotherapy for gastrointestinal cancers has elicited considerable amount of attention as a viable therapeutic option for several cancer types. Gut microbiome as a whole plays a critical role in shaping immune responses and influencing cancer progression. Recent evidence suggests that Helicobacter pylori (H. pylori), may influence immunotherapy efficacy by modulating the tumor microenvironment. Infection with H. pylori is common as it affects approximately 50% of the global population and remains the leading risk factor for gastric cancer. Interestingly, recent clinical and preclinical data has associated H. pylori with colorectal cancer carcinogenesis. Gut microbiome appears to be a modulator of the relationship between the immune system, gastrointestinal cancer development and existing therapies. Infection with H. pylori may affect immunotherapy results in both gastroesophageal and colorectal cancer; favorable results were noticed in H. pylori positive patients with gastric cancer, while in colorectal cancer patients the pathogen seemed to impede immunotherapy's action. This article aims to review current data on the role of H. pylori in triggering gastric inflammation and cancer, as well as its potential involvement in colorectal cancer development. Additionally, it seeks to highlight the impact of H. pylori infection on the response to immunotherapy in gastrointestinal cancers.
Collapse
Affiliation(s)
- Afroditi Ziogou
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, Piraeus, Greece
| | | | - Ilias Giannakodimos
- Departement of Urology, Attikon University Hospital of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
18
|
Yan W, Shi X, Zhao Y, Liu X, Jia X, Gao L, Yuan J, Liao A, Yasui H, Wang X, Wang X, Zhang R, Wang H. Microbiota-reprogrammed phosphatidylcholine inactivates cytotoxic CD8 T cells through UFMylation via exosomal SerpinB9 in multiple myeloma. Nat Commun 2025; 16:2863. [PMID: 40128181 PMCID: PMC11933704 DOI: 10.1038/s41467-025-57966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/09/2025] [Indexed: 03/26/2025] Open
Abstract
Gut microbiome influences tumorigenesis and tumor progression through regulating the tumor microenvironment (TME) and modifying blood metabolites. However, the mechanisms by which gut microbiome and blood metabolites regulate the TME in multiple myeloma (MM) remain unclear. By employing16S rRNA gene sequencing coupled with metagenomics and ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, we find that Lachnospiraceae are high and phosphatidylcholine (PC) are low in MM patients. We further show that Lachnospiraceae inhibits PC production from MM cells and enhances cytotoxic CD8 T cell function. Mechanistically, PC promotes Sb9 mRNA maturation in MM cells by LIN28A/B via lysophosphatidic acid, thus enhances exosamal Sb9 production. Exosamal Sb9 then reduces GZMB expression by suppressing tumor protein p53 (TP53) UFMylation via the competitive binding of TP53 with the ubiquitin-fold modifier conjugating enzyme 1 in CD8 T cells. We thus show that Lachnospiraceae and PC may be potential therapeutic targets for MM treatment.
Collapse
Affiliation(s)
- Wei Yan
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xue Shi
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yun Zhao
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaoyu Liu
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xueming Jia
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Le Gao
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jiahe Yuan
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hiroshi Yasui
- Department of Hematology and Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Xiaobin Wang
- Center for Reproductive Medicine, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Xiaotian Wang
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Rui Zhang
- Department of Hematology, The First Affiliated Hospital, China Medical University, Shenyang, China.
| | - Huihan Wang
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
19
|
Imyanitov EN, Preobrazhenskaya EV, Mitiushkina NV. Overview on biomarkers for immune oncology drugs. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002298. [PMID: 40135049 PMCID: PMC11933888 DOI: 10.37349/etat.2025.1002298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) are widely used in clinical oncology, less than half of treated cancer patients derive benefit from this therapy. Both tumor- and host-related variables are implicated in response to ICIs. The predictive value of PD-L1 expression is confined only to several cancer types, so this molecule is not an agnostic biomarker. Highly elevated tumor mutation burden (TMB) caused either by excessive carcinogenic exposure or by a deficiency in DNA repair is a reliable indicator for ICI efficacy, as exemplified by tumors with high-level microsatellite instability (MSI-H). Other potentially relevant tumor-related characteristics include gene expression signatures, pattern of tumor infiltration by immune cells, and, perhaps, some immune-response modifying somatic mutations. Host-related factors have not yet been comprehensively considered in relevant clinical trials. Microbiome composition, markers of systemic inflammation [e.g., neutrophil-to-lymphocyte ratio (NLR)], and human leucocyte antigen (HLA) diversity may influence the efficacy of ICIs. Studies on ICI biomarkers are likely to reveal modifiable tumor or host characteristics, which can be utilized to direct the antitumor immune defense. Examples of the latter approach include tumor priming to immune therapy by cytotoxic drugs and elevation of ICI efficacy by microbiome modification.
Collapse
Affiliation(s)
- Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Elena V. Preobrazhenskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Natalia V. Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| |
Collapse
|
20
|
Chen XX, Ju Q, Qiu D, Zhou Y, Wang Y, Zhang XX, Li JG, Wang M, Chang N, Xu XR, Zhang YB, Zhao T, Wang K, Zhang Y, Zhang J. Microbial dysbiosis with tryptophan metabolites alteration in lower respiratory tract is associated with clinical responses to anti-PD-1 immunotherapy in advanced non-small cell lung cancer. Cancer Immunol Immunother 2025; 74:140. [PMID: 40056186 PMCID: PMC11890711 DOI: 10.1007/s00262-025-03996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/22/2025] [Indexed: 03/10/2025]
Abstract
Lower respiratory tract microbiome constitutes a unique immune microenvironment for advanced non-small cell lung cancer as one of dominant localized microbial components. However, there exists little knowledge on the associations between this regional microbiome and clinical responses to anti-PD-1 immunotherapy from clinical perspectives. Here, we equivalently collected bronchoalveolar lavage fluids from 56 advanced NSCLC participants treated with none (untreated, n = 28) or anti-PD-1 immunotherapy (treated, n = 28), which was further divided into responder (n = 17) and non-responder (n = 11) subgroups according to clinical responses, aiming to compare their microbial discrepancy by performing metagenomic sequencing and targeted metabolic alterations by tryptophan sequencing. Correspondingly, microbial diversities transformed significantly after receiving immunotherapeutic agents, where Gammaproteobacteria and Campylobacter enriched, but Escherichia, Streptococcus, Chlamydia, and Staphylococcus reduced at the genus level, differences of which failed to be achieved among subgroups with various clinical responses (responder or non-responder; LDA > 2, P < 0.05*). And the relative abundance of Staphylococcus and Streptomyces was escalated in response subgroup to anti-PD-1 immunotherapy by microbial compositional analysis (as relative abundance ≥ 3%, P < 0.05*), no significance of which was achieved among treated and untreated groups. In addition, relative abundances of bacterial tryptophan metabolites and its derivatives were also higher in the responder subgroup, distinctively being associated with divergent genera (VIP > 1, P < 0.05*). Our study revealed predictive performance of lower respiratory tract microbiome to antitumoral immunotherapy and further suggested that anti-PD-1 immunotherapy may alter lower respiratory tract microbiome composition and interact with its tryptophan metabolites to regulate therapeutic efficacy in advanced NSCLC, performing as potential biomarkers to prognosis and interventional strategies.
Collapse
Affiliation(s)
- Xiang-Xiang Chen
- Department of Pulmonary Medicine, Chest Hospital in Xi'an People's Hospital, Xi'an, 710100, Shaanxi Province, China
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, and State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, 710032, Shaanxi Province, China
| | - Qing Ju
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Dan Qiu
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ying Zhou
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yuan Wang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xin-Xin Zhang
- College of Pulmonary and Critical Care Medicine, The 8th Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Jing-Geng Li
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Min Wang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ning Chang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xiang-Rui Xu
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yi-Bo Zhang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Tong Zhao
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ke Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, and State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, 710032, Shaanxi Province, China.
| | - Yong Zhang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, and State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, 710032, Shaanxi Province, China.
| | - Jian Zhang
- Department of Pulmonary Medicine, Chest Hospital in Xi'an People's Hospital, Xi'an, 710100, Shaanxi Province, China.
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
21
|
Liu Y, Li F, Wang J, Yang R. Exploring effects of gut microbiota on tertiary lymphoid structure formation for tumor immunotherapy. Front Immunol 2025; 15:1518779. [PMID: 40124706 PMCID: PMC11925796 DOI: 10.3389/fimmu.2024.1518779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/20/2024] [Indexed: 03/25/2025] Open
Abstract
Anti-tumor immunity, including innate and adaptive immunity is critical in inhibiting tumorigenesis and development of tumor. The adaptive immunity needs specific lymph organs such as tertiary lymphoid structures (TLSs), which are highly correlated with improved survival outcomes in many cancers. In recent years, with increasing attention on the TLS in tumor microenvironment, TLSs have emerged as a novel target for anti-tumor therapy. Excitingly, studies have shown the contribution of TLSs to the adaptive immune responses. However, it is unclear how TLSs to form and how to more effectively defense against tumor through TLS formation. Recent studies have shown that the inflammation plays a critical role in TLS formation. Interestingly, studies have also found that gut microbiota can regulate the occurrence and development of inflammation. Therefore, we here summarize the potential effects of gut microbiota- mediated inflammation or immunosuppression on the TLS formation in tumor environments. Meanwhile, this review also explores how to manipulate mature TLS formation through regulating gut microbiota/metabolites or gut microbiota associated signal pathways for anti-tumor immunity, which potentially lead to a next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Fan Li
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
| |
Collapse
|
22
|
Gazzaniga FS, Kasper DL. The gut microbiome and cancer response to immune checkpoint inhibitors. J Clin Invest 2025; 135:e184321. [PMID: 39895632 PMCID: PMC11785914 DOI: 10.1172/jci184321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) are widely used for cancer immunotherapy, yet only a fraction of patients respond. Remarkably, gut bacteria impact the efficacy of ICIs in fighting tumors outside of the gut. Certain strains of commensal gut bacteria promote antitumor responses to ICIs in a variety of preclinical mouse tumor models. Patients with cancer who respond to ICIs have a different microbiome compared with that of patients who don't respond. Fecal microbiota transplants (FMTs) from patients into mice phenocopy the patient tumor responses: FMTs from responders promote response to ICIs, whereas FMTs from nonresponders do not promote a response. In patients, FMTs from patients who have had a complete response to ICIs can overcome resistance in patients who progress on treatment. However, the responses to FMTs are variable. Though emerging studies indicate that gut bacteria can promote antitumor immunity in the absence of ICIs, this Review will focus on studies that demonstrate relationships between the gut microbiome and response to ICIs. We will explore studies investigating which bacteria promote response to ICIs in preclinical models, which bacteria are associated with response in patients with cancer receiving ICIs, the mechanisms by which gut bacteria promote antitumor immunity, and how microbiome-based therapies can be translated to the clinic.
Collapse
Affiliation(s)
- Francesca S. Gazzaniga
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis L. Kasper
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Ye Y, Bin B, Chen P, Chen J, Meng A, Yu L, Yang F, Cui H. Advances in the study of the role of gastric microbiota in the progression of gastric cancer. Microb Pathog 2025; 199:107240. [PMID: 39708981 DOI: 10.1016/j.micpath.2024.107240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Gastric cancer (GC) is a common malignant tumor and the third most common cancer in China in terms of mortality. Stomach microorganisms play complex roles in the development of GC. The carcinogenic mechanism of Helicobacter pylori has been elucidated, and there is much evidence that other microorganisms in the gastric mucosa are also heavily involved in the disease progression of this cancer. However, their carcinogenic mechanisms have not yet been fully elucidated. The microbial compositions associated with the normal stomach, precancerous lesions, and GC are distinctly different and have a complex evolutionary mechanism. The dysregulation of gastric microbiota may play a key role in the oncogenic process from precancerous lesions to malignant gastric tumors. In this review, we explore the potential translational and clinical implications of intragastric microbes in the diagnosis, prognosis, and treatment of GC. Finally, we summarize the research dilemmas and solutions concerning intragastric microbes, emphasizing that they should be at the forefront of strategies for GC prevention and treatment.
Collapse
Affiliation(s)
- Yu Ye
- Inner Mongolia Medical University, No 60, Xi Lin Guo Le South Road, Hohhot, 010020, Inner Mongolia Autonomous Region, PR China
| | - Ba Bin
- Department of Oncology, Ordos Hospital of Traditional Chinese Medicine, No 5, Yongning Street, Kangbashi District, Ordos City, Inner Mongolia Autonomous Region, PR China
| | - Pengfei Chen
- The Affiliated Hospital of Inner Mongolia Medical University, PR China
| | - Jing Chen
- Medical Department of Ordos College of Applied Technology, PR China
| | - Aruna Meng
- Inner Mongolia Medical University, No 60, Xi Lin Guo Le South Road, Hohhot, 010020, Inner Mongolia Autonomous Region, PR China
| | - Lei Yu
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, 010020, PR China
| | - Fan Yang
- Inner Mongolia Autonomous Region Blood Central, PR China.
| | - Hongwei Cui
- Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No 42, Zhao Wu Da Road, Hohhot, 010020, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
24
|
Jiang SS, Kang ZR, Chen YX, Fang JY. The gut microbiome modulate response to immunotherapy in cancer. SCIENCE CHINA. LIFE SCIENCES 2025; 68:381-396. [PMID: 39235561 DOI: 10.1007/s11427-023-2634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 09/06/2024]
Abstract
Gut microbiota have been reported to play an important role in the occurrence and development of malignant tumors. Currently, clinical studies have identified specific gut microbiota and its metabolites associated with efficacy of immunotherapy in multiple types of cancers. Preclinical investigations have elucidated that gut microbiota modulate the antitumor immunity and affect the efficacy of cancer immunotherapy. Certain microbiota and its metabolites may favorably remodel the tumor microenvironment by engaging innate and/or adaptive immune cells. Understanding how the gut microbiome interacts with cancer immunotherapy opens new avenues for improving treatment strategies. Fecal microbial transplants, probiotics, dietary interventions, and other strategies targeting the microbiota have shown promise in preclinical studies to enhance the immunotherapy. Ongoing clinical trials are evaluating these approaches. This review presents the recent advancements in understanding the dynamic interplay among the host immunity, the microbiome, and cancer immunotherapy, as well as strategies for modulating the microbiome, with a view to translating into clinical applications.
Collapse
Affiliation(s)
- Shan-Shan Jiang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Zi-Ran Kang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China.
| |
Collapse
|
25
|
Fanijavadi S, Jensen LH. Dysbiosis-NK Cell Crosstalk in Pancreatic Cancer: Toward a Unified Biomarker Signature for Improved Clinical Outcomes. Int J Mol Sci 2025; 26:730. [PMID: 39859442 PMCID: PMC11765696 DOI: 10.3390/ijms26020730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, primarily due to its immunosuppressive tumor microenvironment (TME), which contributes to treatment resistance. Recent research shows that the microbiome, including microbial communities in the oral cavity, gut, bile duct, and intratumoral environments, plays a key role in PDAC development, with microbial imbalances (dysbiosis) promoting inflammation, cancer progression, therapy resistance, and treatment side effects. Microbial metabolites can also affect immune cells, especially natural killer (NK) cells, which are vital for tumor surveillance, therapy response and treatment-related side effects. Dysbiosis can affect NK cell function, leading to resistance and side effects. We propose that a combined biomarker approach, integrating microbiome composition and NK cell profiles, can help predict treatment resistance and side effects, enabling more personalized therapies. This review examines how dysbiosis contributes to NK cell dysfunction in PDAC and discusses strategies (e.g., antibiotics, probiotics, vaccines) to modulate the microbiome and enhance NK cell function. Targeting dysbiosis could modulate NK cell activity, improve the effectiveness of PDAC treatments, and reduce side effects. However, further research is needed to develop unified NK cell-microbiome interaction-based biomarkers for more precise and effective patient outcomes.
Collapse
Affiliation(s)
- Sara Fanijavadi
- Cancer Polyclinic, Levanger Hospital, 7601 Levanger, Trøndelag, Norway
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
| | - Lars Henrik Jensen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Department of Oncology, Institute of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| |
Collapse
|
26
|
Al-Matouq J, Al-Ghafli H, Alibrahim NN, Alsaffar N, Radwan Z, Ali MD. Unveiling the Interplay Between the Human Microbiome and Gastric Cancer: A Review of the Complex Relationships and Therapeutic Avenues. Cancers (Basel) 2025; 17:226. [PMID: 39858007 PMCID: PMC11763844 DOI: 10.3390/cancers17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The human microbiota plays a crucial role in maintaining overall health and well-being. The gut microbiota has been implicated in developing and progressing various diseases, including cancer. This review highlights the related mechanisms and the compositions that influence cancer pathogenesis with a highlight on gastric cancer. We provide a comprehensive overview of the mechanisms by which the microbiome influences cancer development, progression, and response to treatment, with a focus on identifying potential biomarkers for early detection, prevention strategies, and novel therapeutic interventions that leverage microbiome modulation. This comprehensive review can guide future research and clinical practices in understanding and harnessing the microbiome to optimize gastric cancer therapies.
Collapse
Affiliation(s)
- Jenan Al-Matouq
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Hawra Al-Ghafli
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Noura N. Alibrahim
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Nida Alsaffar
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Zaheda Radwan
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Mohammad Daud Ali
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia;
| |
Collapse
|
27
|
Gallucci G, Larocca M, Navazio A, Turazza FM, Inno A, Canale ML, Oliva S, Besutti G, Tedeschi A, Aschieri D, Russo A, Gori S, Silvestris N, Pinto C, Tarantini L. Atherosclerosis and the Bidirectional Relationship Between Cancer and Cardiovascular Disease: From Bench to Bedside, Part 2 Management. Int J Mol Sci 2025; 26:334. [PMID: 39796190 PMCID: PMC11719480 DOI: 10.3390/ijms26010334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
The first part of this review highlighted the evolving landscape of atherosclerosis, noting emerging cardiometabolic risk factors, the growing impact of exposomes, and social determinants of health. The prominent role of atherosclerosis in the bidirectional relationship between cardiovascular disease and cancer was also discussed. In this second part, we examine the complex interplay between multimorbid cardio-oncologic patients, cardiometabolic risk factors, and the harmful environments that lend a "syndemic" nature to these chronic diseases. We summarize management strategies targeting disordered cardiometabolic factors to mitigate cardiovascular disease and explore molecular mechanisms enabling more tailored therapies. Importantly, we emphasize the early interception of atherosclerosis through multifactorial interventions that detect subclinical signs (via biomarkers and imaging) to treat modifiable risk factors and prevent clinical events. A concerted preventive effort-referred to by some as a "preventome"-is essential to reduce the burden of atherosclerosis-driven chronic diseases, shifting from mere chronic disease management to the proactive promotion of "chronic health".
Collapse
Affiliation(s)
| | - Mario Larocca
- Provincial Medical Oncology, Department of Oncology and Advanced Technologies, AUSL—IRCCS in Tecnologie Avanzate e Modelli Assistenziali in Oncologia, 42100 Reggio Emilia, Italy; (M.L.); (C.P.)
| | - Alessandro Navazio
- Cardiologia Ospedaliera, Department of Specialized Medicine, AUSL—IRCCS in Tecnologie Avanzate e Modelli Assistenziali in Oncologia, 42100 Reggio Emilia, Italy;
| | | | - Alessandro Inno
- Oncologia Medica, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar di Valpolicella, Italy; (A.I.)
| | - Maria Laura Canale
- Division of Cardiology, Azienda USL Toscana Nord-Ovest, Versilia Hospital, 55041 Lido di Camaiore, Italy;
| | - Stefano Oliva
- UOSD Cardiologia di Interesse Oncologico IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Giulia Besutti
- Radiology Unit, Department of Imaging and Laboratory Medicine, AUSL—IRCCS di Reggio Emilia, 42100 Reggio Emilia, Italy;
- Department of Surgical and Medical Sciences of Children and Adults, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Andrea Tedeschi
- Cardiology Unit of Emergency Department, Guglielmo da Saliceto Hospital, 29100 Piacenza, Italy; (A.T.); (D.A.)
| | - Daniela Aschieri
- Cardiology Unit of Emergency Department, Guglielmo da Saliceto Hospital, 29100 Piacenza, Italy; (A.T.); (D.A.)
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Stefania Gori
- Oncologia Medica, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar di Valpolicella, Italy; (A.I.)
| | - Nicola Silvestris
- Medical Oncology Department, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Carmine Pinto
- Provincial Medical Oncology, Department of Oncology and Advanced Technologies, AUSL—IRCCS in Tecnologie Avanzate e Modelli Assistenziali in Oncologia, 42100 Reggio Emilia, Italy; (M.L.); (C.P.)
| | - Luigi Tarantini
- Cardiologia Ospedaliera, Department of Specialized Medicine, AUSL—IRCCS in Tecnologie Avanzate e Modelli Assistenziali in Oncologia, 42100 Reggio Emilia, Italy;
| |
Collapse
|
28
|
Wu Y, Jiang X, Yu Z, Xing Z, Ma Y, Qing H. Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms. Recent Pat Anticancer Drug Discov 2025; 20:1-25. [PMID: 38305306 PMCID: PMC11865675 DOI: 10.2174/0115748928269276231120103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 02/03/2024]
Abstract
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
29
|
Gamrath L, Pedersen TB, Møller MV, Volmer LM, Holst-Christensen L, Vestermark LW, Donskov F. Role of the Microbiome and Diet for Response to Cancer Checkpoint Immunotherapy: A Narrative Review of Clinical Trials. Curr Oncol Rep 2025; 27:45-58. [PMID: 39753816 PMCID: PMC11762419 DOI: 10.1007/s11912-024-01622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2024] [Indexed: 01/26/2025]
Abstract
PURPOSE OF REVIEW The advent of checkpoint immunotherapy has dramatically changed the outcomes for patients with cancer. However, a considerable number of patients have little or no response to therapy. We review recent findings on the connection between the gut microbiota and the immune system, exploring whether this link could enhance the effectiveness of immunotherapy. RECENT FINDINGS Clinical studies have reported specific types of bacteria in larger quantities at baseline in responders than in non-responders, especially Akkermansia mucinifila, Ruminococcaceae, Faecalibacterium, and Lachnospiraceae. Following the consumption of a high-fiber diet, bacteria in the gut ferment dietary fiber to short-chain fatty acids (SCFAs), like acetate, propionate, and butyrate. Some of the SCFAs nurture intestinal epithelial cells, and some enter the bloodstream. Here SCFAs can activate DC8 + cytotoxic T-cells to induce cancer cell death. High fiber intake in the diet was associated with a reduced risk of progression or death during checkpoint immunotherapy. Recent findings demonstrate that high-fiber plant-based diets such as the Mediterranean Diet positively influence the gut microbiota whereas antibiotics and proton pump inhibitors can negatively influence outcomes of cancer immunotherapy by changing the gut microbiota. This narrative review provides evidence of an association between types of bacteria and their metabolites and favorable responses to checkpoint immunotherapy. Prospective clinical trials are needed to determine if diet interventions can improve treatment outcomes.
Collapse
Affiliation(s)
- Lone Gamrath
- Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark
| | - Tobias Bruun Pedersen
- Department of Clinical Diagnostics, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Martin Vad Møller
- Department of Clinical Diagnostics, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Lone Marie Volmer
- Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark
- Department of Oncology, University Hospital of Southern Denmark, Vejle, Denmark
| | - Linda Holst-Christensen
- Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark
| | - Lene Weber Vestermark
- Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark
| | - Frede Donskov
- Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark.
- Department of Regional Health Science, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
30
|
Ma J, Sun S, Cheng X, Meng C, Zhao H, Fu W, Gao Y, Ma L, Yang Z, Yao H, Su J. Unraveling the role of gut microbiome in predicting adverse events in neoadjuvant therapy for rectal cancer. Hum Vaccin Immunother 2024; 20:2430087. [PMID: 39623529 PMCID: PMC11622589 DOI: 10.1080/21645515.2024.2430087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 12/08/2024] Open
Abstract
Some patients may develop adverse events during neoadjuvant chemoradiotherapy combined with immunotherapy, influencing response rates. The roles of intestinal microbiome and its metabolites in therapeutic adverse events remain unclear. We collected baseline fecal samples from 21 patients with adverse events (AE group) and 11 patients without adverse events (Non-AE group). Their microbiota and metabolome were characterized using metagenomic shotgun sequencing and untargeted metabolomics. At the species level, the gut microbiota in the Non-AE group exhibits significantly higher abundance of Clostridium sp. Alistipes sp. and lower abundance of Lachnoclostridium sp. Weissella cibaria, Weissella confusa, compared to the AE group (p < .05). A total of 58 discriminative metabolites were identified between groups. Beta-alanine metabolism was scattered. Boc-beta-cyano-L-alanine and CoQ9 were significantly increased in patients without adverse events, while linoleic acid increased in patients with adverse events. The increased Alistipes sp. in the Non-AE group was positively correlated with Boc-beta-cyano-L-alanine and negatively correlated with linoleic acid (p < .05). We constructed a combined microbiome-metabolite model to distinguish Non-AE and AE patients with an AUC of 0.963 via the random forest algorithm. Our findings provided a novel insight into the interplay of multispecies microbial cluster and metabolites of rectal patients with adverse events in neoadjuvant chemoradiotherapy combined with immunotherapy. These microbiota and metabolites deserve further investigations to reveal their roles in adverse events, providing clues for better treatment scenarios.Trial registration number: ClinicalTrials.gov identifier: NCT05368051.
Collapse
Affiliation(s)
- Jingxin Ma
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shengbo Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Xin Cheng
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Cong Meng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, People’s Republic of China
| | - Hanzheng Zhao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, People’s Republic of China
| | - Wentao Fu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, People’s Republic of China
| | - Yan Gao
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Liyan Ma
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, People’s Republic of China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, People’s Republic of China
| | - Jianrong Su
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
31
|
Kim CY, Park DJ, Ahn BC, Baek S, Hong MH, Nguyen LT, Hwang SH, Kim N, Podlesny D, Orakov A, Schudoma C, Robbani SM, Shim HS, Yoon HI, Lee CY, Park SY, Yong D, Han M, Bork P, Kim BC, Ha SJ, Kim HR, Lee I. A conserved pilin from uncultured gut bacterial clade TANB77 enhances cancer immunotherapy. Nat Commun 2024; 15:10726. [PMID: 39730328 PMCID: PMC11680825 DOI: 10.1038/s41467-024-55388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024] Open
Abstract
Immune checkpoint blockade (ICB) has become a standard anti-cancer treatment, offering durable clinical benefits. However, the limited response rate of ICB necessitates biomarkers to predict and modulate the efficacy of the therapy. The gut microbiome's influence on ICB efficacy is of particular interest due to its modifiability through various interventions. However, gut microbiome biomarkers for ICB response have been inconsistent across different studies. Here, we identify TANB77, an uncultured and distinct bacterial clade, as the most consistent responder-enriched taxon through meta-analysis of ten independent ICB recipient cohorts. Traditional taxonomy fails to distinguish TANB77 from unrelated taxa, leading to its oversight. Mice with higher gut TANB77 abundance, either naturally or through transplantation, show improved response to anti-PD-1 therapy. Additionally, mice injected with TANB77-derived pilin-like protein exhibit improved anti-PD-1 therapy response, providing in vivo evidence for the beneficial role of the pilin-like protein. These findings suggest that pilins from the TANB77 order may enhance responses to ICB therapy across diverse cohorts of cancer patients.
Collapse
Affiliation(s)
- Chan Yeong Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, 69117, Heidelberg, Germany
| | - Dong Jin Park
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Beung Chul Ahn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Center for Lung Cancer, Division of Hematology and Oncology, Department of Internal Medicine, Research Institute and Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Seungbyn Baek
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Linh Thanh Nguyen
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sun Ha Hwang
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Nayeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Daniel Podlesny
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, 69117, Heidelberg, Germany
| | - Askarbek Orakov
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, 69117, Heidelberg, Germany
| | - Christian Schudoma
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, 69117, Heidelberg, Germany
| | - Shahriyar Mahdi Robbani
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, 69117, Heidelberg, Germany
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chang Young Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Mina Han
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Peer Bork
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, 69117, Heidelberg, Germany
| | - Byoung Choul Kim
- Department of Nano-bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| | - Sang-Jun Ha
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea.
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
32
|
Qu F, Wu S, Yu W. Progress of Immune Checkpoint Inhibitors Therapy for pMMR/MSS Metastatic Colorectal Cancer. Onco Targets Ther 2024; 17:1223-1253. [PMID: 39735789 PMCID: PMC11681808 DOI: 10.2147/ott.s500281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 12/31/2024] Open
Abstract
Immunotherapy is one of the research hotspots in colorectal cancer field in recent years. The colorectal cancer patients with mismatch repair-deficient (dMMR) or high microsatellite instability (MSI-H) are the primary beneficiaries of immunotherapy. However, the vast majority of colorectal cancers are mismatch repair proficient (pMMR) or microsatellite stability (MSS), and their immune microenvironment is characterized by "cold tumors" that are generally insensitive to single immunotherapy based on immune checkpoint inhibitors (ICIs). Studies have shown that some pMMR/MSS colorectal cancer patients regulate the immune microenvironment by combining other treatments, such as multi-target tyrosine kinase inhibitors, anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, chemotherapy, radiotherapy, anti-epithelial growth factor receptor (EGFR) monoclonal antibodies, and mitogen-activated protein kinase (MAPK) signaling pathway inhibitors and oncolytic viruses, etc. to transform "cold tumor" into "hot tumor", thereby improving the response to immunotherapy. In addition, screening for potential prognostic biomarkers can also enrich the population benefiting from immunotherapy for microsatellite stable colorectal cancer. Therefore, in pMMR or MSS metastatic colorectal cancer (mCRC), the optimization of immunotherapy regimens and the search for effective efficacy prediction biomarkers are currently important research directions. In this paper, we review the progress of efficacy of immunotherapy (mainly ICIs) in pMMR /MSS mCRC, challenges and potential markers, in order to provide research ideas for the development of immunotherapy for mCRC.
Collapse
Affiliation(s)
- Fanjie Qu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| | - Shuang Wu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| | - WeiWei Yu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| |
Collapse
|
33
|
Shi X, Jiang A, Qiu Z, Lin A, Liu Z, Zhu L, Mou W, Cheng Q, Zhang J, Miao K, Luo P. Novel perspectives on the link between obesity and cancer risk: from mechanisms to clinical implications. Front Med 2024; 18:945-968. [PMID: 39542988 DOI: 10.1007/s11684-024-1094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/07/2024] [Indexed: 11/17/2024]
Abstract
Existing epidemiologic and clinical studies have demonstrated that obesity is associated with the risk of a variety of cancers. In recent years, an increasing number of experimental and clinical studies have unraveled the complex relationship between obesity and cancer risk and the underlying mechanisms. Obesity-induced abnormalities in immunity and biochemical metabolism, including chronic inflammation, hormonal disorders, dysregulation of adipokines, and microbial dysbiosis, may be important contributors to cancer development and progression. These contributors play different roles in cancer development and progression at different sites. Lifestyle changes, weight loss medications, and bariatric surgery are key approaches for weight-centered, obesity-related cancer prevention. Treatment of obesity-related inflammation and hormonal or metabolic dysregulation with medications has also shown promise in preventing obesity-related cancers. In this review, we summarize the mechanisms through which obesity affects the risk of cancer at different sites and explore intervention strategies for the prevention of obesity-associated cancers, concluding with unresolved questions and future directions regarding the link between obesity and cancer. The aim is to provide valuable theoretical foundations and insights for the in-depth exploration of the complex relationship between obesity and cancer risk and its clinical applications.
Collapse
Affiliation(s)
- Xiaoye Shi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Zhengang Qiu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zaoqu Liu
- Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Kai Miao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
34
|
Kapoor S, Gupta M, Sapra L, Kaur T, Srivastava RK. Delineating the nexus between gut-intratumoral microbiome and osteo-immune system in bone metastases. Bone Rep 2024; 23:101809. [PMID: 39497943 PMCID: PMC11532283 DOI: 10.1016/j.bonr.2024.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 10/06/2024] [Indexed: 11/07/2024] Open
Abstract
Emerging insights in osteoimmunology have enabled researchers to explore in depth the role of immune modulation in regulating bone health. Bone is one of the common sites of metastasis notably in case of breast cancer, prostate cancer and several other cancer types. High calcium ion concentration and presence of several factors within the mineralized bone matrix including TGF-β, BMP etc., aid in tumor growth and proliferation. Accumulating evidence has substantiated the role of the gut-microbiota (GM) in tumorigenesis, further providing a strong impetus for the growing "immune-cancer-gut microbiota" relationship. Recent advancements in research further highlight the importance of the intra-tumor microbiota in conjunction with GM in cancer metastasis. Intratumoral microbiota owing to their ability to cause genetic instability, mutations, and epigenetic modifications within the tumor microenvironment, has been recognized to affect cancer cell physiology. The host microbiota and immune system crosstalk shapes the innate and adaptive arms of the immune system, which is the key player in cancer progression. In this review, we aim to decipher the role of microorganisms mediating bone metastasis by shedding light on the immuno-onco-microbiome (IOM) axis. We discussed the feasible cancer therapeutic interventions based on the modulation of the microbiome-immune cell axis which includes prebiotics, probiotics, and postbiotics. Here, we leverage the conceptual framework based on the published articles on microbiota-based therapies to target bone metastases. Understanding this complicated nexus will provide insights into fundamental factors governing bone metastases which will subsequently help in managing this malignancy with better efficacy.
Collapse
Affiliation(s)
- Shreya Kapoor
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | | | | - Taranjeet Kaur
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
35
|
Ma Y, Li W, Liu X, Peng W, Qing B, Ren S, Liu W, Chen X. PTPRZ1 dephosphorylates and stabilizes RNF26 to reduce the efficacy of TKIs and PD-1 blockade in ccRCC. Oncogene 2024; 43:3633-3644. [PMID: 39443724 DOI: 10.1038/s41388-024-03198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell carcinoma, often exhibits resistance to tyrosine kinase inhibitors (TKIs) when used as monotherapy. However, the integration of PD-1 blockade with TKIs has significantly improved patient survival, making it a leading therapeutic strategy for ccRCC. Despite these advancements, the efficacy of this combined therapy remains suboptimal, necessitating a deeper understanding of the underlying regulatory mechanisms. Through comprehensive analyses, including mass spectrometry, RNA sequencing, lipidomic profiling, immunohistochemical staining, and ex vivo experiments, we explored the interaction between PTPRZ1 and RNF26 and its impact on ccRCC cell behavior. Our results revealed a unique interaction where PTPRZ1 stabilized RNF26 protein expression by dephosphorylating it at the Y432 site. The modulation of RNF26 levels by PTPRZ1 was found to be mediated through the proteasome pathway. Additionally, PTPRZ1, via its interaction with RNF26, activated the TNF/NF-κB signaling pathway, thereby promoting cell proliferation, angiogenesis, and lipid metabolism in ccRCC cells. Importantly, inhibiting PTPRZ1 enhanced the sensitivity of ccRCC to TKIs and PD-1 blockade, an effect that was attenuated when RNF26 was simultaneously knocked down. These findings highlight the critical role of the PTPRZ1-RNF26 axis in ccRCC and suggest that combining PTPRZ1 inhibitors with current TKIs and PD-1 blockade therapies could significantly improve treatment outcomes for ccRCC patients.
Collapse
Affiliation(s)
- Yongkang Ma
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China
| | - Xinlin Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bei Qing
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shangqing Ren
- Robotic Minimally Invasive Surgery Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Wentao Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
- Hunan Engineering Research Center of Smart and Precise Medicine, Changsha, Hunan, 410011, China.
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China.
- Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China.
- Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China.
| |
Collapse
|
36
|
Ciernikova S, Sevcikova A, Mego M. Targeting the gut and tumor microbiome in cancer treatment resistance. Am J Physiol Cell Physiol 2024; 327:C1433-C1450. [PMID: 39437444 DOI: 10.1152/ajpcell.00201.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Therapy resistance represents a significant challenge in oncology, occurring in various therapeutic approaches. Recently, animal models and an increasing set of clinical trials highlight the crucial impact of the gut and tumor microbiome on treatment response. The intestinal microbiome contributes to cancer initiation, progression, and formation of distant metastasis. In addition, tumor-associated microbiota is considered a critical player in influencing tumor microenvironments and regulating local immune processes. Intriguingly, numerous studies have successfully identified pathogens within the gut and tumor microbiome that might be linked to a poor response to different therapeutic modalities. The unfavorable microbial composition with the presence of specific microbes participates in cancer resistance and progression via several mechanisms, including upregulation of oncogenic pathways, macrophage polarization reprogramming, metabolism of chemotherapeutic compounds, autophagy pathway modulation, enhanced DNA damage repair, inactivation of a proapoptotic cascade, and bacterial secretion of extracellular vesicles, promoting the processes in the metastatic cascade. Targeted elimination of specific intratumoral bacteria appears to enhance treatment response. However, broad-spectrum antibiotic pretreatment is mostly connected to reduced efficacy due to gut dysbiosis and lower diversity. Mounting evidence supports the potential of microbiota modulation by probiotics and fecal microbiota transplantation to improve intestinal dysbiosis and increase microbial diversity, leading to enhanced treatment efficacy while mitigating adverse effects. In this context, further research concerning the identification of clinically relevant microbiome signatures followed by microbiota-targeted strategies presents a promising approach to overcoming immunotherapy and chemotherapy resistance in refractory patients, improving their outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
37
|
Yan J, Yang L, Ren Q, Zhu C, Du H, Wang Z, Qi Y, Xian X, Chen D. Gut microbiota as a biomarker and modulator of anti-tumor immunotherapy outcomes. Front Immunol 2024; 15:1471273. [PMID: 39669573 PMCID: PMC11634861 DOI: 10.3389/fimmu.2024.1471273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Although immune-checkpoint inhibitors (ICIs) have significantly improved cancer treatment, their effectiveness is limited by primary or acquired resistance in many patients. The gut microbiota, through its production of metabolites and regulation of immune cell functions, plays a vital role in maintaining immune balance and influencing the response to cancer immunotherapies. This review highlights evidence linking specific gut microbial characteristics to increased therapeutic efficacy in a variety of cancers, such as gastrointestinal cancers, melanoma, lung cancer, urinary system cancers, and reproductive system cancers, suggesting the gut microbiota's potential as a predictive biomarker for ICI responsiveness. It also explores the possibility of enhancing ICI effectiveness through fecal microbiota transplantation, probiotics, prebiotics, synbiotics, postbiotics, and dietary modifications. Moreover, the review underscores the need for extensive randomized controlled trials to confirm the gut microbiota's predictive value and to establish guidelines for microbiota-targeted interventions in immunotherapy. In summary, the article suggests that a balanced gut microbiota is key to maximizing immunotherapy benefits and calls for further research to optimize microbiota modulation strategies for cancer treatment. It advocates for a deeper comprehension of the complex interactions between gut microbiota, host immunity, and cancer therapy, aiming for more personalized and effective treatment options.
Collapse
Affiliation(s)
- Jiexi Yan
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lu Yang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Qingmiao Ren
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chan Zhu
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Haiyun Du
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhouyu Wang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Yaya Qi
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohong Xian
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Vij P, Hussain MS, Satapathy SK, Cobos E, Tripathi MK. The Emerging Role of Long Noncoding RNAs in Sorafenib Resistance Within Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3904. [PMID: 39682093 PMCID: PMC11639815 DOI: 10.3390/cancers16233904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a liver cancer originating from hepatocytes, is a major health concern and among the most common malignancies worldwide. Sorafenib, approved by the U.S. F.D.A., is the primary first-line treatment for patients with advanced HCC. While the preferred first-line systemic regimen for HCC is immunotherapy with Atezolizumab plus bevacizumab or Tremelimumab-actl + durvalumab, Sorafenib is still an alternative recommended regimen. While some patients with advanced HCC may benefit from Sorafenib treatment, most eventually develop resistance, leading to poor prognosis. Long noncoding RNAs (lncRNAs) have been found to play a critical role in tumorigenesis and the development of HCC, as well as other cancers. They are also key players in tumor drug resistance, though the mechanisms of lncRNAs in Sorafenib resistance in HCC remain poorly understood. This review summarizes the molecular mechanisms contributing to Sorafenib resistance in HCC with their potential correlation with lncRNAs, including the roles of transporters, receptors, cell death regulation, and other influencing factors.
Collapse
Affiliation(s)
- Puneet Vij
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA;
| | - Mohammad Shabir Hussain
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.H.); (E.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sanjaya K. Satapathy
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health Center for Liver Diseases & Transplantation, Northshore University Hospital, Manhasset, NY 11030, USA;
| | - Everardo Cobos
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.H.); (E.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Manish K. Tripathi
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.H.); (E.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
39
|
Cao L, Wang X, Ma X, Xu M, Li J. Potential of natural products and gut microbiome in tumor immunotherapy. Chin Med 2024; 19:161. [PMID: 39567970 PMCID: PMC11580227 DOI: 10.1186/s13020-024-01032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Immunotherapy is a novel treatment approach for malignant tumors, which has opened a new journey of anti-tumor therapy. Although some patients will show a positive response to immunotherapy, unfortunately, most patients and cancer types do not achieve an ideal response to immunotherapy. Therefore, it is urgent to search for the pathogenesis of sensitized immunotherapy. This review indicates that Fusobacterium nucleatum, Coprobacillus cateniformis, Akkermansia muciniphila, Bifidobacterium, among others, as well as intestinal microbial metabolites are closely associated with resistance to anti-tumor immunotherapy. While natural products of pectin, inulin, jujube, anthocyanins, ginseng polysaccharides, diosgenin, camu-camu, and Inonotus hispidus (Bull).Fr. P. Karst, Icariside I, Safflower yellow, Ganoderma lucidum, and Ginsenoside Rk3, and other Chinese native medicinal compound prescriptions to boost their efficacy of anti-tumor immunotherapy through the regulation of microbiota and microbiota metabolites. However, current research mainly focuses on intestinal, liver, and lung cancer. In the future, natural products could be a viable option for treating malignant tumors, such as pancreatic, esophageal, and gastric malignancies, via sensitizing immunotherapy. Besides, the application characteristics of different types, sources and efficacy of natural products in different immune resistance scenarios also need to be further clarified through the development of future immunotherapy-related studies.
Collapse
Affiliation(s)
- Luchang Cao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixian'ge Street, Xicheng District, Beijing, China
| | - Xinmiao Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixian'ge Street, Xicheng District, Beijing, China
| | - Xinyi Ma
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixian'ge Street, Xicheng District, Beijing, China
| | - Manman Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixian'ge Street, Xicheng District, Beijing, China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5, Beixian'ge Street, Xicheng District, Beijing, China.
| |
Collapse
|
40
|
Dora D, Kiraly P, Somodi C, Ligeti B, Dulka E, Galffy G, Lohinai Z. Gut metatranscriptomics based de novo assembly reveals microbial signatures predicting immunotherapy outcomes in non-small cell lung cancer. J Transl Med 2024; 22:1044. [PMID: 39563352 DOI: 10.1186/s12967-024-05835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Advanced-stage non-small cell lung cancer (NSCLC) poses treatment challenges, with immune checkpoint inhibitors (ICIs) as the main therapy. Emerging evidence suggests the gut microbiome significantly influences ICI efficacy. This study explores the link between the gut microbiome and ICI outcomes in NSCLC patients, using metatranscriptomic (MTR) signatures. METHODS We utilized a de novo assembly-based MTR analysis on fecal samples from 29 NSCLC patients undergoing ICI therapy, segmented according to progression-free survival (PFS) into long (> 6 months) and short (≤ 6 months) PFS groups. Through RNA sequencing, we employed the Trinity pipeline for assembly, MMSeqs2 for taxonomic classification, DESeq2 for differential expression (DE) analysis. We constructed Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) machine learning (ML) algorithms and comprehensive microbial profiles. RESULTS We detected no significant differences concerning alpha-diversity, but we revealed a biologically relevant separation between the two patient groups in beta-diversity. Actinomycetota was significantly overrepresented in patients with short PFS (vs long PFS, 36.7% vs. 5.4%, p < 0.001), as was Euryarchaeota (1.3% vs. 0.002%, p = 0.009), while Bacillota showed higher prevalence in the long PFS group (66.2% vs. 42.3%, p = 0.007), when comparing the abundance of corresponding RNA reads. Among the 120 significant DEGs identified, cluster analysis clearly separated a large set of genes more active in patients with short PFS and a smaller set of genes more active in long PFS patients. Protein Domain Families (PFAMs) were analyzed to identify pathways enriched in patient groups. Pathways related to DNA synthesis and Translesion were more enriched in short PFS patients, while metabolism-related pathways were more enriched in long PFS patients. E. coli-derived PFAMs dominated in patients with long PFS. RF, SVM and XGBoost ML models all confirmed the predictive power of our selected RNA-based microbial signature, with ROC AUCs all greater than 0.84. Multivariate Cox regression tested with clinical confounders PD-L1 expression and chemotherapy history underscored the influence of n = 6 key RNA biomarkers on PFS. CONCLUSION According to ML models specific gut microbiome MTR signatures' associate with ICI treated NSCLC outcomes. Specific gene clusters and taxa MTR gene expression might differentiate long vs short PFS.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Peter Kiraly
- Pulmonology Hospital of Torokbalint, Torokbalint, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Tűzoltó Utca 37-47, 1094, Budapest, Hungary
| | - Balazs Ligeti
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Edit Dulka
- Pulmonology Hospital of Torokbalint, Torokbalint, Hungary
| | | | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Tűzoltó Utca 37-47, 1094, Budapest, Hungary.
| |
Collapse
|
41
|
Liu X, Li B, Liang L, Han J, Mai S, Liu L. From microbes to medicine: harnessing the power of the microbiome in esophageal cancer. Front Immunol 2024; 15:1450927. [PMID: 39600698 PMCID: PMC11588724 DOI: 10.3389/fimmu.2024.1450927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Esophageal cancer (EC) is a malignancy with a high incidence and poor prognosis, significantly influenced by dysbiosis in the esophageal, oral, and gut microbiota. This review provides an overview of the roles of microbiota dysbiosis in EC pathogenesis, emphasizing their impact on tumor progression, drug efficacy, biomarker discovery, and therapeutic interventions. Lifestyle factors like smoking, alcohol consumption, and betel nut use are major contributors to dysbiosis and EC development. Recent studies utilizing advanced sequencing have revealed complex interactions between microbiota dysbiosis and EC, with oral pathogens such as Porphyromonas gingivalis and Fusobacterium nucleatum promoting inflammation and suppressing immune responses, thereby driving carcinogenesis. Altered esophageal microbiota, characterized by reduced beneficial bacteria and increased pathogenic species, further exacerbate local inflammation and tumor growth. Gut microbiota dysbiosis also affects systemic immunity, influencing chemotherapy and immunotherapy efficacy, with certain bacteria enhancing or inhibiting treatment responses. Microbiota composition shows potential as a non-invasive biomarker for early detection, prognosis, and personalized therapy. Novel therapeutic strategies targeting the microbiota-such as probiotics, dietary modifications, and fecal microbiota transplantation-offer promising avenues to restore balance and improve treatment efficacy, potentially enhancing patient outcomes. Integrating microbiome-focused strategies into current therapeutic frameworks could improve EC management, reduce adverse effects, and enhance patient survival. These findings highlight the need for further research into microbiota-tumor interactions and microbial interventions to transform EC treatment and prevention, particularly in cases of late-stage diagnosis and poor treatment response.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bang Li
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Liang
- Department of Gastroenterology and Hepatology, Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jimin Han
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shijie Mai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Le Liu
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
42
|
Lou J, Xiang Z, Zhu X, Fan Y, Li J, Jin G, Cui S, Huang N, Le X. A two-step, two-sample Mendelian randomization analysis investigating the interplay between gut microbiota, immune cells, and melanoma skin cancer. Medicine (Baltimore) 2024; 103:e40432. [PMID: 39533622 PMCID: PMC11557063 DOI: 10.1097/md.0000000000040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
This study aims to rigorously explore the potential causal relationships among gut microbiota (GM), immune cells, and melanoma skin cancer among participants from Europe, where this disease exhibits significant prevalence and profound societal impact. Using the genome-wide association analysis database, a double-sample Mendelian randomization (MR) analysis was drawn upon to investigate GM, immune cells, and melanoma skin cancer. The inverse variance weighted approach was applied to estimate the causal connections among these variables. A two-step MR analysis was employed to quantitatively gauge the impact of immune cells mediated GM on melanoma skin cancer. To address potential sources of bias, such as pleiotropy and heterogeneity, multiple analytical techniques were integrated. The MR analysis pinpointed 6 GM taxa related to either an augmented or declined risk of late-stage melanoma skin cancer. In the same vein, 32 immune cell phenotypes were noticed as correlates with modified risk of melanoma skin cancer. Our study also implies that the probable association between GM and melanoma could be facilitated by 5 immune cell phenotypes. The findings of our study underline certain GM taxa and immune cells as potential influencers on the onset and development of melanoma skin cancer. Importantly, our results spotlight 5 immune cell phenotypes as potential agents mediating this association.
Collapse
Affiliation(s)
- Jiaqi Lou
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Ziyi Xiang
- Department of Psychiatry and Psychotherapy, Section of Medical Psychology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Xiaoyu Zhu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Youfen Fan
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Jiliang Li
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Guoying Jin
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Shengyong Cui
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Neng Huang
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Xin Le
- Burn Department, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| |
Collapse
|
43
|
Yang Z, Ma J, Han J, Li A, Liu G, Sun Y, Zheng J, Zhang J, Chen G, Xu R, Sun L, Meng C, Gao J, Bai Z, Deng W, Zhang C, Su J, Yao H, Zhang Z. Gut microbiome model predicts response to neoadjuvant immunotherapy plus chemoradiotherapy in rectal cancer. MED 2024; 5:1293-1306.e4. [PMID: 39047732 DOI: 10.1016/j.medj.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/18/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Accurate evaluation of the response to preoperative treatment enables the provision of a more appropriate personalized therapeutic schedule for locally advanced rectal cancer (LARC), which remains an enormous challenge, especially neoadjuvant immunotherapy plus chemoradiotherapy (nICRT). METHODS This prospective, multicenter cohort study enrolled patients with LARC from 6 centers who received nICRT. The dynamic variation in the gut microbiome during nICRT was evaluated. A species-level gut microbiome prediction (SPEED) model was developed and validated to predict the pathological complete response (pCR) to nICRT. FINDINGS A total of 50 patients were enrolled, 75 fecal samples were collected from 33 patients at different time points, and the pCR rate reached 42.4% (14/33). Lactobacillus and Eubacterium were observed to increase after nICRT. Additionally, significant differences in the gut microbiome were observed between responders and non-responders at baseline. Significantly higher abundances of Lachnospiraceae bacterium and Blautia wexlerae were found in responders, while Bacteroides, Prevotella, and Porphyromonas were found in non-responders. The SPEED model showcased a superior predictive performance with areas under the curve of 98.80% (95% confidence interval [CI]: 95.67%-100%) in the training cohort and 77.78% (95% CI: 65.42%-88.29%) in the validation cohort. CONCLUSIONS Programmed death 1 (PD-1) blockade plus concurrent long-course CRT showed a favorable pCR rate and is well tolerated in microsatellite-stable (MSS)/mismatch repair-proficient (pMMR) patients with LARC. The SPEED model can be used to predict the pCR to nICRT based on the baseline gut microbiome with high robustness and accuracy, thereby assisting clinical physicians in providing individualized management for patients with LARC. FUNDING This research was funded by the China National Natural Science Foundation (82202884).
Collapse
Affiliation(s)
- Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jingxin Ma
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiagang Han
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Department of General Surgery, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Sun
- Department of Anorectal, Tianjin People's Hospital, Tianjin, China
| | - Jianyong Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jie Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guangyong Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Xu
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liting Sun
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Cong Meng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jiale Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei Deng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Chenlin Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jianrong Su
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
44
|
González-Montero J, Rojas CI, Burotto M. Predictors of response to immunotherapy in colorectal cancer. Oncologist 2024; 29:824-832. [PMID: 38920285 PMCID: PMC11449076 DOI: 10.1093/oncolo/oyae152] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related deaths globally. While treatment advancements have improved survival rates, primarily through targeted therapies based on KRAS, NRAS, and BRAF mutations, personalized treatment strategies for CRC remain limited. Immunotherapy, mainly immune checkpoint blockade, has shown efficacy in various cancers but is effective in only a small subset of patients with CRC with deficient mismatch repair (dMMR) proteins or high microsatellite instability (MSI). Recent research has challenged the notion that CRC is immunologically inert, revealing subsets with high immunogenicity and diverse lymphocytic infiltration. Identifying precise biomarkers beyond dMMR and MSI is crucial to expanding immunotherapy benefits. Hence, exploration has extended to various biomarker sources, such as the tumor microenvironment, genomic markers, and gut microbiota. Recent studies have introduced a novel classification system, consensus molecular subtypes, that aids in identifying patients with CRC with an immunogenic profile. These findings underscore the necessity of moving beyond single biomarkers and toward a comprehensive understanding of the immunological landscape in CRC, facilitating the development of more effective, personalized therapies.
Collapse
Affiliation(s)
- Jaime González-Montero
- Bradford Hill Clinical Research Center, Santiago 8420383, Chile
- Basic and Clinical Oncology Department, University of Chile, Santiago 838045, Chile
| | - Carlos I Rojas
- Bradford Hill Clinical Research Center, Santiago 8420383, Chile
| | | |
Collapse
|
45
|
Xin Y, Peng G, Song W, Zhou X, Huang X, Cao X. Gut microbiota as a prognostic biomarker for unresectable hepatocellular carcinoma treated with anti-PD-1 therapy. Front Genet 2024; 15:1366131. [PMID: 39421302 PMCID: PMC11484251 DOI: 10.3389/fgene.2024.1366131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Objective To investigate the relationship between the gut microbiome and the response to anti-PD-1-based combination therapy in unresectable hepatocellular carcinoma (HCC). We aimed to identify potential non-invasive biomarkers and new strategies to modulate immunotherapy in HCC. Methods In this study, fresh stool samples and clinical data were collected from unresectable HCC patients treated with anti-PD-1-based combination therapy at the Cancer Hospital of the Chinese Academy of Medical Sciences between January 2020 and December 2021. The patients were divided into two groups based on their response to treatment: the treatment responder group (R group) and the treatment non-responder group (NR group). The composition and diversity of the gut microbiome were bioinformatically analyzed by using the Whole Genome Shotgun strategy, including taxonomic composition analysis, Alpha diversity analysis, Beta diversity analysis, and differentially enriched bacterial taxa analysis. Differentially enriched bacterial taxa between R and NR groups were identified based on the magnitude of the linear discriminant analysis effect size (LEfSe) and analyzed for their impact on the survival of the patient. Results A total of 45 eligible patients with unresectable HCC treated with anti-PD-1-based combination therapy participated in this study. The gut microbiological composition and Alpha diversity of patients were not statistically different, but there was a statistically significant difference in Beta diversity between the R and NR groups. (PERMANOVA tests, P = 0.006). We further identified 56 enriched bacterial taxa in the R group and 44 enriched bacterial taxa in the NR group based on the LEfSe analysis (LDA >2.66, P< 0.05). Patients with a high abundance of Collinsella genus, Ruminococcus_AM4211, and Ruminococcus_AF25_28AC had a longer median PFS and median OS compared to those with low abundance (P < 0.05). On the contrary, the median PFS and OS of patients with a high abundance of Bacteroides_AF20_13LB and Veillonella_atypica were significantly shorter than those of patients with low abundance (P < 0.05). The multivariate analysis showed that the abundance of Bacteroides_AF20_13LB and Ruminococcus_ AF25_28AC was independent related factors for PFS, and the abundance of Bacteroides_AF20_13LB was an independent related factor of OS. Conclusion The enrichment of specific gut microbiota affected clinical efficacy and survival benefits in HCC treated with anti-PD-1 therapy and may be a promising non-invasive gut microbial biomarker and a new strategy for modulating immunotherapy in HCC.
Collapse
Affiliation(s)
- Yujing Xin
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Gang Peng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiang Zhou
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyu Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaojing Cao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Li Y, Peng J, Meng X. Gut bacteria, host immunity, and colorectal cancer: From pathogenesis to therapy. Eur J Immunol 2024; 54:e2451022. [PMID: 38980275 DOI: 10.1002/eji.202451022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
The emergence of 16S rRNA and metagenomic sequencing has gradually revealed the close relationship between dysbiosis and colorectal cancer (CRC). Recent studies have confirmed that intestinal dysbiosis plays various roles in the occurrence, development, and therapeutic response of CRC. Perturbation of host immunity is one of the key mechanisms involved. The intestinal microbiota, or specific bacteria and their metabolites, can modulate the progression of CRC through pathogen recognition receptor signaling or via the recruitment, polarization, and activation of both innate and adaptive immune cells to reshape the protumor/antitumor microenvironment. Therefore, the administration of gut bacteria to enhance immune homeostasis represents a new strategy for the treatment of CRC. In this review, we cover recent studies that illuminate the role of gut bacteria in the progression and treatment of CRC through orchestrating the immune response, which potentially offers insights for subsequent transformative research.
Collapse
Affiliation(s)
- Yuyi Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinjin Peng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Endale HT, Tesfaye W, Hassen FS, Asrat WB, Temesgen EY, Shibabaw YY, Asefa T. Harmony unveiled: Intricate the interplay of dietary factor, gut microbiota, and colorectal cancer-A narrative review. SAGE Open Med 2024; 12:20503121241274724. [PMID: 39224896 PMCID: PMC11367611 DOI: 10.1177/20503121241274724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Diet plays a critical role in shaping the gut microbiome, which in turn regulates molecular activities in the colonic mucosa. The state and composition of the gut microbiome are key factors in the development of colorectal cancer. An altered gut microbiome, linked to weakened immune responses and the production of carcinogenic substances, is a significant contributor to colorectal cancer pathogenesis. Dietary changes that involve low-fiber and phytomolecule intake, coupled with higher consumption of red meat, can raise the risk of colorectal cancer. Salutary filaments, which reach the colon undigested, are metabolized by the gut microbiome, producing short-chain fatty acids. Short-chain fatty acids possess beneficial anti-inflammatory and antiproliferative properties that promote colon health. A well-balanced microbiome, supported by beneficial fibers and phytochemicals, can regulate the activation of proto-oncogenes and oncogenic pathways, thereby reducing cell proliferation. Recent research suggests that an overabundance of specific microbes, such as Fusobacterium nucleatum, may contribute to adverse changes in the colonic mucosa. Positive lifestyle adjustments have been demonstrated to effectively inhibit the growth of harmful opportunistic organisms. Synbiotics, which combine probiotics and prebiotics, can protect the intestinal mucosa by enhancing immune responses and decreasing the production of harmful metabolites, oxidative stress, and cell proliferation. This narrative review provides a concise understanding of evolving evidence regarding how diet influences the gut microbiome, leading to the restoration of the colonic epithelium. It underscores the importance of a healthy, plant-based diet and associated supplements in preventing colorectal cancer by enhancing gut microbiome health.
Collapse
Affiliation(s)
- Hiwot Tezera Endale
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Winta Tesfaye
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Fethiya Seid Hassen
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Wastina Bitewlign Asrat
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | | | - Yadelew Yimer Shibabaw
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tseganesh Asefa
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
48
|
Xia L, Zhu X, Wang Y, Lu S. The gut microbiota improves the efficacy of immune-checkpoint inhibitor immunotherapy against tumors: From association to cause and effect. Cancer Lett 2024; 598:217123. [PMID: 39033797 DOI: 10.1016/j.canlet.2024.217123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Immune-checkpoint inhibitors (ICIs), including anti-PD-1/PD-L1 therapeutic antibodies, have markedly enhanced survival across numerous cancer types. However, the limited number of patients with durable benefits creates an urgent need to identify response biomarkers and to develop novel strategies so as to improve response. It is widely recognized that the gut microbiome is a key mediator in shaping immunity. Additionally, the gut microbiome shows significant potential in predicting the response to and enhancing the efficacy of ICI immunotherapy against cancer. Recent studies encompassing mechanistic analyses and clinical trials of microbiome-based therapy have shown a cause-and-effect relationship between the gut microbiome and the modulation of the ICI immunotherapeutic response, greatly contributing to the establishment of novel strategies that will improve response and overcome resistance to ICI treatment. In this review, we outline the current state of research advances and discuss the future directions of utilizing the gut microbiome to enhance the efficacy of ICI immunotherapy against tumors.
Collapse
Affiliation(s)
- Liliang Xia
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Xiaokuan Zhu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China.
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China.
| |
Collapse
|
49
|
Shakhpazyan NK, Mikhaleva LM, Bedzhanyan AL, Gioeva ZV, Mikhalev AI, Midiber KY, Pechnikova VV, Biryukov AE. Exploring the Role of the Gut Microbiota in Modulating Colorectal Cancer Immunity. Cells 2024; 13:1437. [PMID: 39273009 PMCID: PMC11394638 DOI: 10.3390/cells13171437] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The gut microbiota plays an essential role in maintaining immune homeostasis and influencing the immune landscape within the tumor microenvironment. This review aims to elucidate the interactions between gut microbiota and tumor immune dynamics, with a focus on colorectal cancer (CRC). The review spans foundational concepts of immuno-microbial interplay, factors influencing microbiome composition, and evidence linking gut microbiota to cancer immunotherapy outcomes. Gut microbiota modulates anti-cancer immunity through several mechanisms, including enhancement of immune surveillance and modulation of inflammatory responses. Specific microbial species and their metabolic byproducts can significantly influence the efficacy of cancer immunotherapies. Furthermore, microbial diversity within the gut microbiota correlates with clinical outcomes in CRC, suggesting potential as a valuable biomarker for predicting response to immunotherapy. Conclusions: Understanding the relationship between gut microbiota and tumor immune responses offers potential for novel therapeutic strategies and biomarker development. The gut microbiota not only influences the natural history and treatment response of CRC but also serves as a critical modulator of immune homeostasis and anti-cancer activity. Further exploration into the microbiome's role could enhance the effectiveness of existing treatments and guide the development of new therapeutic modalities.
Collapse
Affiliation(s)
- Nikolay K. Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (Z.V.G.); (K.Y.M.); (V.V.P.); (A.E.B.)
| | - Liudmila M. Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (Z.V.G.); (K.Y.M.); (V.V.P.); (A.E.B.)
| | - Arkady L. Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Zarina V. Gioeva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (Z.V.G.); (K.Y.M.); (V.V.P.); (A.E.B.)
| | - Alexander I. Mikhalev
- Department of Hospital Surgery No. 2, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Konstantin Y. Midiber
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (Z.V.G.); (K.Y.M.); (V.V.P.); (A.E.B.)
- Institute of Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Valentina V. Pechnikova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (Z.V.G.); (K.Y.M.); (V.V.P.); (A.E.B.)
| | - Andrey E. Biryukov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (L.M.M.); (Z.V.G.); (K.Y.M.); (V.V.P.); (A.E.B.)
| |
Collapse
|
50
|
Yiyong H, Ying H, Xiaodie L, Lin Z, Yue Z, Zijian G. Independent risk factor of drug eruption in immune checkpoint inhibitors treated liver cancer patients: high systemic immune-inflammation index. Cutan Ocul Toxicol 2024:1-6. [PMID: 39180354 DOI: 10.1080/15569527.2024.2387597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE The clinical application of immune checkpoint inhibitors (ICIs) has significantly improved the prognosis of liver cancer patients. However, drug eruption associated with ICI monotherapy or combination therapy not only impacts the quality of life and treatment progress of liver cancer patients but also poses a potential threat to their lives. The study aims to investigate the risk factors of drug eruption in liver cancer patients undergoing ICIs in real-world settings. METHODS We retrospectively collected data from liver cancer patients who underwent ICI therapies at the Third Affiliated Hospital of Sun Yat-sen University between 2021 and 2022. A propensity score matching (PSM) method was employed to match 31 liver cancer patients with ICI-related drug eruption (drug eruption group) to 228 liver cancer patients without immune-related adverse reactions (control group) in a 1:2 ratio, creating two groups of patients with comparable baseline characteristics. Subsequently, logistic regression analysis was then conducted to analyze the clinical risk factors associated with drug eruption caused by ICIs. RESULTS Before PSM, there were statistically significant differences between the drug eruption group (31 cases) and the control group (228 cases) in two variables: Child-Pugh liver function classification and presence of vascular invasion (both p < 0.05). However, after PSM, no statistically significant differences were found in the clinical variables between the drug eruption group (28 cases) and the control group (52 cases). Univariate analysis revealed significantly higher levels of aspartate amino-transferase, alanine aminotransferase, glutamyl transpeptidase, and systemic immune-inflammation index (SII) and a significantly lower rate of liver cancer resection surgery before immunotherapy in liver cancer patients with drug eruption compared to the control group (p < 0.05). Multivariate analysis indicated that an elevated SII level before immunotherapy was significantly associated with the occurrence of drug eruption in liver cancer patients treated with ICIs (p < 0.05). The predictive performance of SII before immunotherapy in liver cancer patients for ICI-related drug eruption yielded an area under the receiver operator characteristic curve of 0.852, with a critical value of 749.189. Sensitivity and specificity were determined as 85.7% and 75%, respectively (p < 0.05). CONCLUSIONS Elevated systemic immune-inflammation index is identified as a risk factor for drug eruption occurrence in liver cancer patients treated with ICI therapies.
Collapse
Affiliation(s)
- Hong Yiyong
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huang Ying
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Xiaodie
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhu Lin
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zheng Yue
- Department of Dermatology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Gong Zijian
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|