1
|
Kim HD, Jung S, Bang YH, Kim J, Kim HJ, Lee HE, Hyung J, Yoo C, Kim WT, Yoon MJ, Lee H, Ryou JH, Jeon H, Yanai H, Lee JS, Lee G, Ryu MH. Blood TCTP as a potential biomarker associated with immunosuppressive features and poor clinical outcomes in metastatic gastric cancer. J Immunother Cancer 2025; 13:e010455. [PMID: 40032602 DOI: 10.1136/jitc-2024-010455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND No established biomarker exists for specific myeloid cell populations or in gastric cancer. This study aimed to explore the prognostic and immunological relevance of plasma translationally controlled tumor protein (TCTP) in patients with advanced gastric cancer treated with an immune checkpoint inhibitor and/or cytotoxic chemotherapy. METHODS Plasma samples were prospectively collected from the cohorts of patients with gastric cancer treated with first-line fluoropyrimidine plus platinum chemotherapy (n=143, cohort 1) and third-line nivolumab (n=165, cohort 2). Plasma TCTP levels were quantified using ELISA, and multiplex proteomic analysis (Olink) was conducted to assess expression levels of immune-related proteins. External single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics datasets were employed to validate the findings. RESULTS Patients with high plasma TCTP levels (TCTP-high group) exhibited poor progression-free survival (PFS) and overall survival (OS) with first-line chemotherapy compared with those with low levels (TCTP-low group) in cohort 1 (HR: 1.73 for PFS; 1.77 for OS). In the TCTP-high group, proteins associated with immunosuppressive myeloid cells, angiogenesis, and immune exclusion of T/natural killer (NK) cell function were upregulated, whereas proteins involved in T-cell activation/exhaustion were significantly upregulated in the TCTP-low group. scRNA-seq analyses identified a myeloid subset with high TPT1 (encoding TCTP) expression and TCTP-related molecules, enriched with inhibitory myeloid inflammation gene signatures and providing inhibitory signals to T/NK cells (Macrophage-chemokine). Spatial transcriptomics analyses revealed a tumor-cell-enriched cluster co-localized with the Macrophage-chemokine subset, which exhibited the highest TPT1 expression and a positive correlation between its abundance and average TPT1 levels. In nivolumab-treated patients (cohort 2), the high TCTP group was associated with poor survival outcomes (HR: 1.39 for PFS; 1.47 for OS). CONCLUSIONS Plasma TCTP is a prognostic biomarker, reflecting clinically relevant immunosuppressive myeloid signals in patients with gastric cancer.
Collapse
Affiliation(s)
- Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Seyoung Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | - Yeong Hak Bang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Jiae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Hee Jeong Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Hyung Eun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Jaewon Hyung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | | | | | | | | | | | - Hideyuki Yanai
- Department of Inflammology, The University of Tokyo, Bunkyo-ku, Japan
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | | | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| |
Collapse
|
2
|
He J, Chai X, Zhang Q, Wang Y, Wang Y, Yang X, Wu J, Feng B, Sun J, Rui W, Ze S, Fu Y, Zhao Y, Zhang Y, Zhang Y, Liu M, Liu C, She M, Hu X, Ma X, Yang H, Li D, Zhao S, Li G, Zhang Z, Tian Z, Ma Y, Cao L, Yi B, Li D, Nussinov R, Eng C, Chan TA, Ruppin E, Gutkind JS, Cheng F, Liu M, Lu W. The lactate receptor HCAR1 drives the recruitment of immunosuppressive PMN-MDSCs in colorectal cancer. Nat Immunol 2025; 26:391-403. [PMID: 39905201 DOI: 10.1038/s41590-024-02068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025]
Abstract
Most patients with colorectal cancer do not achieve durable clinical benefits from immunotherapy, underscoring the existence of alternative immunosuppressive mechanisms. Here we found that activation of the lactate receptor HCAR1 signaling pathway induced the expression of chemokines CCL2 and CCL7 in colorectal tumor cells, leading to the recruitment of immunosuppressive CCR2+ polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) to the tumor microenvironment. Ablation of Hcar1 in mice with colorectal tumors significantly decreased the abundance of tumor-infiltrating CCR2+ PMN-MDSCs, enhanced the activation of CD8+ T cells and, consequently, reduced tumor burden. We detected immunosuppressive CCR2+ PMN-MDSCs in tumor specimens from individuals with colorectal and other cancers. The US Food and Drug Administration-approved drug reserpine suppressed lactate-mediated HCAR1 activation, impaired the recruitment of CCR2+ PMN-MDSCs, boosted CD8+ T cell-dependent antitumor immunity and sensitized immunotherapy-resistant tumors to programmed cell death protein 1 antibody therapy in mice with colorectal tumors. Altogether, we described HCAR1-driven recruitment of CCR2+ PMN-MDSCs as a mechanism of immunosuppression.
Collapse
Affiliation(s)
- Jiacheng He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaolei Chai
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yang Wang
- Department of Urology and Department of Pathology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yijie Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jingbo Wu
- Department of Urology and Department of Pathology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Bo Feng
- Department of General Surgery and Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of General Surgery and Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiwei Rui
- Department of General Surgery and Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuyin Ze
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuanyuan Fu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yumiao Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yao Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meizhen Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chuang Liu
- Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, China
| | - Meifu She
- Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiangfei Hu
- Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xueyun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dawei Li
- Department of Colorectal Surgery, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Senlin Zhao
- Department of Colorectal Surgery, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guichao Li
- Department of Colorectal Surgery, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Zhang
- Department of Colorectal Surgery, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhonghui Tian
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Lingyan Cao
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Yi
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Timothy A Chan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Eytan Ruppin
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California,San Diego, San Diego, CA, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, China.
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
- University Engineering Research Center of Oncolytic & Nanosystem Development, Guangxi, China.
| |
Collapse
|
3
|
Wu L, Zhi X, Xie S, Li K, Chen M, Li G, Wu Q, Jiao S, Wang J, Liu T. Immunological characteristics of peripheral T cells as prognostic markers for Camrelizumab and Apatinib combination therapy in advanced squamous non-small-cell lung cancer. Mol Immunol 2025; 178:87-96. [PMID: 39870014 DOI: 10.1016/j.molimm.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
PURPOSE To determine the characteristic changes of peripheral blood T cells and identify potential biomarkers that associated with the clinical efficacy of combined immunotherapy and anti-angiogenic therapy in patients with advanced squamous non-small cell lung cancer (NSCLC). METHODS We performed a comprehensive immunological assessment of peripheral blood mononuclear cell samples from advanced squamous NSCLC patients before and after combination of immunotherapy (Camrelizumab) and anti-angiogenic therapy (Apatinib) using spectral flow cytometry. Correlations between these immunological features and clinical efficacy were analyzed. RESULTS Our findings revealed that, following two treatment cycles, the concentration of type 1 T helper (Th1) cells in the peripheral circulation was significantly higher in the responder group than in the non-responder group, correlating with a statistically significant improvement in survival outcomes. Post-treatment, CD137 expression within Th1 cells in the responders, whereas TIM-3 expression was significantly reduced. In the validation cohort, elevated CD4+ CXCR3+ CD137+ cells in the peripheral blood were associated with a positive clinical reaction to the treatment and extended survival. CONCLUSIONS Our findings suggest that peripheral blood circulating CD4+ CXCR3+ CD137+ cells serve as biomarkers of response to combined immunotherapy and anti-angiogenic therapy in patients with advanced squamous NSCLC, providing potential guidance for improving clinical outcomes.
Collapse
Affiliation(s)
- Liangliang Wu
- Laboratory of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China; Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyu Zhi
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Shengzhi Xie
- Department of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Keren Li
- Hepato-Pancereato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Man Chen
- Department of laboratory medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Gong Li
- Department of Radiation Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qiyan Wu
- Laboratory of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China; Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shunchang Jiao
- Department of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Jinliang Wang
- Department of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Tianyi Liu
- Laboratory of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China; Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Qu F, Wu S, Yu W. Progress of Immune Checkpoint Inhibitors Therapy for pMMR/MSS Metastatic Colorectal Cancer. Onco Targets Ther 2024; 17:1223-1253. [PMID: 39735789 PMCID: PMC11681808 DOI: 10.2147/ott.s500281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 12/31/2024] Open
Abstract
Immunotherapy is one of the research hotspots in colorectal cancer field in recent years. The colorectal cancer patients with mismatch repair-deficient (dMMR) or high microsatellite instability (MSI-H) are the primary beneficiaries of immunotherapy. However, the vast majority of colorectal cancers are mismatch repair proficient (pMMR) or microsatellite stability (MSS), and their immune microenvironment is characterized by "cold tumors" that are generally insensitive to single immunotherapy based on immune checkpoint inhibitors (ICIs). Studies have shown that some pMMR/MSS colorectal cancer patients regulate the immune microenvironment by combining other treatments, such as multi-target tyrosine kinase inhibitors, anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, chemotherapy, radiotherapy, anti-epithelial growth factor receptor (EGFR) monoclonal antibodies, and mitogen-activated protein kinase (MAPK) signaling pathway inhibitors and oncolytic viruses, etc. to transform "cold tumor" into "hot tumor", thereby improving the response to immunotherapy. In addition, screening for potential prognostic biomarkers can also enrich the population benefiting from immunotherapy for microsatellite stable colorectal cancer. Therefore, in pMMR or MSS metastatic colorectal cancer (mCRC), the optimization of immunotherapy regimens and the search for effective efficacy prediction biomarkers are currently important research directions. In this paper, we review the progress of efficacy of immunotherapy (mainly ICIs) in pMMR /MSS mCRC, challenges and potential markers, in order to provide research ideas for the development of immunotherapy for mCRC.
Collapse
Affiliation(s)
- Fanjie Qu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| | - Shuang Wu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| | - WeiWei Yu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| |
Collapse
|
5
|
Abdalsalam NMF, Ibrahim A, Saliu MA, Liu TM, Wan X, Yan D. MDSC: a new potential breakthrough in CAR-T therapy for solid tumors. Cell Commun Signal 2024; 22:612. [PMID: 39702149 DOI: 10.1186/s12964-024-01995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has shown remarkable success in hematologic malignancies but has encountered challenges in effectively treating solid tumors. One major obstacle is the presence of the immunosuppressive tumor microenvironment (TME), which is mainly built by myeloid-derived suppressor cells (MDSCs). Recent studies have shown that MDSCs have a detrimental effect on CAR-T cells due to their potent immunosuppressive capabilities. Targeting MDSCs has shown promising results to enhance CAR-T immunotherapy in preclinical solid tumor models. In this review, we first highlight that MDSCs increase tumor proliferation, transition, angiogenesis and encourage circulating tumor cells (CTCs) extravasation leading to tumor progression and metastasis. Moreover, we describe the main characteristics of the immunosuppressive activities of MDSCs on T cells in TME. Most importantly, we summarize targeting therapeutic strategies of MDSCs in CAR-T therapies against solid tumors. These strategies include (1) therapeutic targeting of MDSCs through small molecule inhibitors and large molecule antibodies; (2) CAR-T targeting cancer cell antigen combination with MDSC modulatory agents; (3) cytokine receptor antigen-targeted CAR-T indirectly or directly targeting MDSCs reshapes TME; (4) modified natural killer (NK) cells expressing activating receptor directly targeting MDSCs; and (5) CAR-T directly targeting MDSC selective antigens. In the near future, we are expected to witness the improvement of CAR-T cell therapies for solid tumors by targeting MDSCs in clinical practice.
Collapse
Affiliation(s)
- Nada Mohamady Farouk Abdalsalam
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Abdulrahman Ibrahim
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Muhammad Auwal Saliu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, Taipa, China.
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100864, China.
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100864, China.
| |
Collapse
|
6
|
Rajkumari S, Singh J, Agrawal U, Agrawal S. Myeloid-derived suppressor cells in cancer: Current knowledge and future perspectives. Int Immunopharmacol 2024; 142:112949. [PMID: 39236460 DOI: 10.1016/j.intimp.2024.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
MDSCs (myeloid-derived suppressor cells) are crucial for immune system evasion in cancer. They accumulate in peripheral blood and tumor microenvironment, suppressing immune cells like T-cells, natural killer cells and dendritic cells. They promote tumor angiogenesis and metastasis by secreting cytokines and growth factors and contribute to a tumor-promoting environment. The accumulation of MDSCs in cancer patients has been linked to poor prognosis and resistance to various cancer therapies. Targeting MDSCs and their immunosuppressive mechanisms may improve treatment outcomes and enhance immune surveillance by developing drugs that inhibit MDSC function, by preventing their accumulation and by disrupting the tumor-promoting environment. This review presents a detailed overview of the MDSC research in cancer with regulation of their development and function. The relevance of MDSC as a prognostic and predictive biomarker in different types of cancers, along with recent advancements on the therapeutic approaches to target MDSCs are discussed in detail.
Collapse
Affiliation(s)
- Sunanda Rajkumari
- ICMR National Institute of Medical Statistics, Ansari Nagar, New Delhi 110029, India
| | - Jaspreet Singh
- ICMR National Institute of Pathology, Safdarjung Hospital Campus, Ansari Nagar, New Delhi 110029, India
| | - Usha Agrawal
- Asian Institute of Public Health University (AIPH) University, 1001 Haridamada, Jatani, Near IIT Bhubaneswar, Bhubaneswar 751002, India
| | - Sandeep Agrawal
- Discovery Research Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
7
|
Wang X, Ma X, Chen S, Fan M, Jin C, Chen Y, Wang S, Wang Z, Meng F, Zhang C, Yang L. Harnessing m1A modification: a new frontier in cancer immunotherapy. Front Immunol 2024; 15:1517604. [PMID: 39687616 PMCID: PMC11647001 DOI: 10.3389/fimmu.2024.1517604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
N1-methyladenosine (m1A) modification is an epigenetic change that occurs on RNA molecules, regulated by a suite of enzymes including methyltransferases (writers), demethylases (erasers), and m1A-recognizing proteins (readers). This modification significantly impacts the function of RNA and various biological processes by affecting the structure, stability, translation, metabolism, and gene expression of RNA. Thereby, m1A modification is closely associated with the occurrence and progression of cancer. This review aims to explore the role of m1A modification in tumor immunity. m1A affects tumor immune responses by directly regulating immune cells and indirectly modulating tumor microenvironment. Besides, we also discuss the implications of m1A-mediated metabolic reprogramming and its nexus with immune checkpoint inhibitors, unveiling promising avenues for immunotherapeutic intervention. Additionally, the m1AScore, established based on the expression patterns of m1A modification, can be used to predict tumor prognosis and guide personalized therapy. Our review underscores the significance of m1A modification as a burgeoning frontier in cancer biology and immuno-oncology, with the potential to revolutionize cancer treatment strategies.
Collapse
Affiliation(s)
- Xinru Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoqing Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Minyan Fan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chenying Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yushi Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shaodong Wang
- Affiliated Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Zhiying Wang
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Fei Meng
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chengwan Zhang
- Department of Central Laboratory, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Lin Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Chang CH, Yu CF, Chen FH, Chen YW, Chiang CS. The Level of Circulating M-MDSCs as an Indicator for the Therapeutic Outcome of BNCT in End-Stage Malignant Brain Tumor Patients. Int J Part Ther 2024; 14:100633. [PMID: 39582734 PMCID: PMC11585706 DOI: 10.1016/j.ijpt.2024.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Boron neutron capture therapy (BNCT) is a promising treatment modality for patients diagnosed with malignant brain tumors. It is currently used for emergency and compassionate purposes to treat end-stage malignant glioma or recurrent head and neck cancer patients in Taiwan. Understanding the factors influencing treatment response is crucial for optimizing patient care. This study aimed to investigate the association between tumor response and various parameters in end-stage malignant glioma patients following BNCT. Patients and Methods Fifteen patients with end-stage malignant brain tumors underwent a single fraction of BNCT. The treatment response was evaluated using cranial magnetic resonance imaging, and the association between treatment response and BNCT parameters was analyzed. Additionally, circulating myeloid-derived suppressor cell (MDSC) levels were measured by flow cytometry and correlated with patients' survival. Results BNCT exhibited significant therapeutic efficacy in reducing tumor volume of these end-stage glioma patients, with 3 patients achieving complete response and 10 patients achieving partial response within 1 month, resulting in an impressive objective response rate of 80%. The median overall survival is 9 (1.77, 12.47) months, and the progression-free survival is 1.34 (0.53, 9.53) months. Kaplan-Meier analysis showed that the patients with complete response and partial response displayed better survival than those with stable disease. Treatment response was not significantly associated with initial tumor size, blood boron concentration, tumor-to-normal tissue ratio, or tumor-to-blood ratio. The ROC curve revealed a cut-off value of 5% of circulating M-MDSCs with a sensitivity of 66.67% and specificity of 73.33%, respectively, for predicting the glioma patient's response to BNCT. Conclusion This clinical study demonstrates that BNCT can reduce tumor burden, improve disease control, and prolong survival in end-stage glioma patients. Circulating M-MDSCs may serve as a predictive indicator for the treatment response of these patients following BNCT.
Collapse
Affiliation(s)
- Chun-Hsiang Chang
- Department of Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Fang Yu
- Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Fang-Hsin Chen
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Wei Chen
- Department of Heavy Particles and Radiation Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan
- Center of Boron Neutron Capture Therapy, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
9
|
Ghosh S, Zanoni I. The Dark Knight: Functional Reprogramming of Neutrophils in the Pathogenesis of Colitis-Associated Cancer. Cancer Immunol Res 2024; 12:1311-1319. [PMID: 39270036 PMCID: PMC11444878 DOI: 10.1158/2326-6066.cir-23-0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/05/2024] [Accepted: 07/17/2024] [Indexed: 09/15/2024]
Abstract
Neutrophils are the primary myeloid cells that are recruited to inflamed tissues, and they are key players during colitis, being also present within the tumor microenvironment during the initiation and growth of colon cancer. Neutrophils fundamentally serve to protect the host against microorganism invasion, but during cancer development, they can become protumoral and lead to tumor initiation, growth, and eventually, metastasis-hence, playing a dichotomic role for the host. Protumoral neutrophils in cancer patients can be immunosuppressive and serve as markers for disease progression but their characteristics are not fully defined. In this review, we explore the current knowledge on how neutrophils in the gut fluctuate between an inflammatory or immunosuppressive state and how they contribute to tumor development. We describe neutrophils' antitumoral and protumoral effects during inflammatory bowel diseases and highlight their capacity to provoke the advent of inflammation-driven colorectal cancer. We present the functional ambivalence of the neutrophil populations within the colon tumor microenvironment, which can be potentially exploited to establish therapies that will prevent, or even reverse, inflammation-dependent colon cancer incidence in high-risk patients.
Collapse
Affiliation(s)
- Sreya Ghosh
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| |
Collapse
|
10
|
Sun J, Shi S, Sun C, Wang J, Yang X, Yang Z, Xu J, Zhang S. Predictive nomogram of the clinical outcomes of colorectal cancer based on methylated SEPT9 and intratumoral IL-10 + Tregs infiltration. J Transl Med 2024; 22:861. [PMID: 39334238 PMCID: PMC11430755 DOI: 10.1186/s12967-024-05635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Gene methylation and the immune-related tumor microenvironment (TME) are highly correlated in tumor progression and therapeutic efficacy. Although both of them can be used to predict the clinical outcomes of colorectal cancer (CRC) patients, their predictive value is still unsatisfactory. Whether a combination risk model comprising these two prediction parameters performs better predictive effectiveness than independent factor is still unclear. Methylated Septin9 (mSEPT9) is an early diagnosis biomarker of CRC, in this study, we aimed to investigate mSEPT9-related biomarkers of immunosuppressive TME and identify the value of the combination risk model in predicting the clinical outcomes of CRC. METHODS Immunofluorescence staining was performed to clarify the correlation between intratumoral IL-10+ Treg infiltration and mSEPT9 in peripheral blood. Survival time, response to 5-fluorouracil (5-FU)-based chemotherapy and PD-1 blockade, and the probability of recurrence or metastasis were analyzed in study (197 CRC samples) and validation (195 CRC samples) sets to evaluate the efficacy of combination risk model. Potential mechanisms were explored by mRNA sequencing. RESULTS Hypermethylated SEPT9 in the peripheral blood of patients with CRC (stage I-III, and stage IV with resectable M1) before radical resection was positively correlated with high intratumoral IL-10+ Treg infiltration. The high-risk model revealed poor overall survival and progression-free survival, inferior therapeutic response to 5-FU-based chemotherapy and PD-1 blockade, and high probability of recurrence or metastasis. The underlying mechanisms may be associated with the increase in mSEPT9 and mediation of IL-10 via methionine metabolic reprogramming-induced infiltration of IL-10+ Tregs in the TME, which promotes tumor progression and resistance to 5-FU-based chemotherapy and PD-1 blockade. CONCLUSIONS The combination risk model of peripheral mSETP9 and intratumoral IL-10+ Treg infiltration in CRC can effectively predict prognosis, responsiveness to 5-FU-based chemotherapy and PD-1 blockade, and the probability of recurrence or metastasis. Therefore, this model can be used for precision treatment of CRC.
Collapse
Affiliation(s)
- Jie Sun
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Songli Shi
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Chao Sun
- Department of Radiology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Jiangping Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300121, People's Republic of China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Zhengduo Yang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Jing Xu
- Department of General Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Department of General Surgery, Tianjin University Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China.
| |
Collapse
|
11
|
Vacca P, Bilotta MT, Moretta L, Tumino N. Myeloid-derived suppressor cells: Identification and function. Methods Cell Biol 2024; 190:151-169. [PMID: 39515878 DOI: 10.1016/bs.mcb.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are cells that play a regulatory role in immune responses and inflammation. They can have both positive and negative effects on various diseases, including cancer, infections, sepsis, and trauma. MDSCs inhibit immune cells by releasing immunosuppressive factors and can be categorized as monocytic (M) or polymorphonuclear (PMN) cell lineages. Most MDSCs are PMN-MDSC and are found in the peripheral blood (PB) and in the tissue microenvironment of tumor and inflamed patients, where they can directly inhibit immune cell activity and promote tumor progression. Various markers have been suggested for their identification, but in order to be defined as MDSC, their inhibitory capacity has to be certified. In this article, we summarize the identification and functional protocol for characterizing MDSCs, focusing on PMN-MDSC.
Collapse
Affiliation(s)
- Paola Vacca
- Innate lymphoid cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| | - Nicola Tumino
- Innate lymphoid cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|
12
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
13
|
Cui P, Wang H, Bai Z. Integrated single-cell and bulk RNA-seq analysis identifies a prognostic T-cell signature in colorectal cancer. Sci Rep 2024; 14:20177. [PMID: 39215032 PMCID: PMC11364821 DOI: 10.1038/s41598-024-70422-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Colorectal cancer (CRC) is a major contributor to global morbidity and mortality, necessitating more effective therapeutic approaches. T cells, prominent in the tumor microenvironment, exert a crucial role in modulating immunotherapeutic responses and clinical outcomes in CRC. This study introduces a pioneering method for characterizing the CRC immune microenvironment using single-cell sequencing data. Unlike previous approaches, which focused on individual T-cell signature genes, we utilized overall infiltration levels of colorectal cancer signature T-cells. Through weighted gene co-expression network analysis, Lasso regression, and StepCox analysis, we developed a prognostic risk model, TRGS (T-cell related genes signatures), based on six T cell-related genes. Multivariate Cox analysis identified TRGS as an independent prognostic factor for CRC, showcasing its superior predictive efficacy compared to existing immune-related prognostic models. Immunoreactivity analysis revealed higher Immunophenoscore and lower Tumor Immune Dysfunction and Exclusion scores in the low-risk group, indicating potential responsiveness to immune checkpoint inhibitor therapy. Additionally, patients in the low-risk group demonstrated heightened sensitivity to 5-fluorouracil-based chemotherapy regimens. In summary, TRGS emerges as a standalone prognostic biomarker for CRC, offering insights to optimize patient responses to immunotherapy and chemotherapy, thereby laying the groundwork for personalized tumor management strategies.
Collapse
Affiliation(s)
- Peng Cui
- Department of General Surgery, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, People's Republic of China
| | - Haibo Wang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, People's Republic of China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, People's Republic of China
| | - Zhigang Bai
- Department of General Surgery, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, People's Republic of China.
| |
Collapse
|
14
|
Chong X, Madeti Y, Cai J, Li W, Cong L, Lu J, Mo L, Liu H, He S, Yu C, Zhou Z, Wang B, Cao Y, Wang Z, Shen L, Wang Y, Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J Hematol Oncol 2024; 17:65. [PMID: 39123202 PMCID: PMC11316403 DOI: 10.1186/s13045-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
Collapse
Affiliation(s)
- Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yelizhati Madeti
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jieyuan Cai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Cong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jialin Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Liyang Mo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Huizhen Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Siyi He
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chao Yu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhiruo Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Boya Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
15
|
Lu Y, Zhu D, Hu B, Chen R, Wang X, Xu X, Wang W, Wu H, Wang Y. pH-Responsive, Self-Assembled Ruthenium Nanodrug: Dual Impact on Lysosomes and DNA for Synergistic Chemotherapy and Immunogenic Cell Death. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310636. [PMID: 38412413 DOI: 10.1002/smll.202310636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Several DNA-damaging antitumor agents, including ruthenium complexes, induce immunogenic cell death (ICD). In this study, an arginyl-glycyl-aspartic acid (RGD) peptide-modified carboline ruthenium complex (KS-Ru) is synthesized as a chemotherapeutic nanodrug and an ICD inducer. The RGD peptide, an integrin ligand, provides tumor-specific targeting and promotes self-assembly of the KS-Ru complex. The pH-responsive self-assembly is assessed through transmission and scanning electron microscopy. Additionally, in vitro cytotoxic activity and anti-metastasis ability are evaluated using MTT and Transwell assays, respectively, along with cellular immunofluorescence staining and imaging flow cytometry. The ability of the complex to inhibit primary tumor formation and lung metastasis in vivo is evaluated using Lewis lung cancer and A549 xenograft models. Furthermore, the tumor immune microenvironment is evaluated using single-cell flow mass cytometry. KS-Ru translocates to the nucleus, causing DNA damage and inducing ICD. Within the lysosomes, KS-Ru self-assembled into nanoflowers, leading to lysosomal swelling and apoptosis. Notably, the as-synthesized pH-dependent ruthenium nanomedicine achieves dual functionality-chemotherapy and immunotherapy. Moreover, the pH-responsive self-assembly of KS-Ru enables simultaneous mechanisms in the lysosome and nucleus, thereby lowering the likelihood of drug resistance. This study provides valuable insight for the design of novel ruthenium-based nanoantitumor drugs.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Bo Hu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Rong Chen
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Xin Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Xiaoxue Xu
- Department of Core Facility Center, Capital Medical University, Beijing, 100069, P. R. China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, P. R. China
| | - Hao Wu
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, P. R. China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, P. R. China
| |
Collapse
|
16
|
Wang K, Wang Y, Yin K. Role played by MDSC in colitis-associated colorectal cancer and potential therapeutic strategies. J Cancer Res Clin Oncol 2024; 150:243. [PMID: 38717677 PMCID: PMC11078801 DOI: 10.1007/s00432-024-05755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Colitis-associated colorectal cancer has been a hot topic in public health issues worldwide. Numerous studies have demonstrated the significance of myeloid-derived suppressor cells (MDSCs) in the progression of this ailment, but the specific mechanism of their role in the transformation of inflammation to cancer is unclear, and potential therapies targeting MDSC are also unclear. This paper outlines the possible involvement of MDSC to the development of colitis-associated colorectal cancer. It also explores the immune and other relevant roles played by MDSC, and collates relevant targeted therapies against MDSC. In addition, current targeted therapies for colorectal cancer are analyzed and summarized.
Collapse
Affiliation(s)
- Kang Wang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Jiangsu University, Jiefang Road No. 438, Zhenjiang, Jiangsu Province, 212000, China
| | - Yun Wang
- Department of Dermatology, The First People's Hospital of Changzhou, Juqian Street, Changzhou, Jiangsu Province, 213003, China
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Institute of Digestive Diseases, Jiangsu University, Jiefang Road No. 438, Zhenjiang, Jiangsu Province, 212000, China.
| |
Collapse
|
17
|
Guo Q, Zhou Y, Xie T, Yuan Y, Li H, Shi W, Zheng L, Li X, Zhang W. Tumor microenvironment of cancer stem cells: Perspectives on cancer stem cell targeting. Genes Dis 2024; 11:101043. [PMID: 38292177 PMCID: PMC10825311 DOI: 10.1016/j.gendis.2023.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/25/2023] [Indexed: 02/01/2024] Open
Abstract
There are few tumor cell subpopulations with stem cell characteristics in tumor tissue, defined as cancer stem cells (CSCs) or cancer stem-like cells (CSLCs), which can reconstruct neoplasms with malignant biological behaviors such as invasiveness via self-renewal and unlimited generation. The microenvironment that CSCs depend on consists of various cellular components and corresponding medium components. Among these factors existing at a variety of levels and forms, cytokine networks and numerous signal pathways play an important role in signaling transduction. These factors promote or maintain cancer cell stemness, and participate in cancer recurrence, metastasis, and resistance. This review aims to summarize the recent molecular data concerning the multilayered relationship between CSCs and CSC-favorable microenvironments. We also discuss the therapeutic implications of targeting this synergistic interplay, hoping to give an insight into targeting cancer cell stemness for tumor therapy and prognosis.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| | - Yi Zhou
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tianyuan Xie
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yin Yuan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Huilong Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Wanjin Shi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
18
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
19
|
Arshad J, Rao A, Repp ML, Rao R, Wu C, Merchant JL. Myeloid-Derived Suppressor Cells: Therapeutic Target for Gastrointestinal Cancers. Int J Mol Sci 2024; 25:2985. [PMID: 38474232 PMCID: PMC10931832 DOI: 10.3390/ijms25052985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Gastrointestinal cancers represent one of the more challenging cancers to treat. Current strategies to cure and control gastrointestinal (GI) cancers like surgery, radiation, chemotherapy, and immunotherapy have met with limited success, and research has turned towards further characterizing the tumor microenvironment to develop novel therapeutics. Myeloid-derived suppressor cells (MDSCs) have emerged as crucial drivers of pathogenesis and progression within the tumor microenvironment in GI malignancies. Many MDSCs clinical targets have been defined in preclinical models, that potentially play an integral role in blocking recruitment and expansion, promoting MDSC differentiation into mature myeloid cells, depleting existing MDSCs, altering MDSC metabolic pathways, and directly inhibiting MDSC function. This review article analyzes the role of MDSCs in GI cancers as viable therapeutic targets for gastrointestinal malignancies and reviews the existing clinical trial landscape of recently completed and ongoing clinical studies testing novel therapeutics in GI cancers.
Collapse
Affiliation(s)
- Junaid Arshad
- University of Arizona Cancer Center, GI Medical Oncology, Tucson, AZ 85724, USA;
| | - Amith Rao
- Banner University Medical Center—University of Arizona, Tucson, AZ 85719, USA; (A.R.)
| | - Matthew L. Repp
- College of Medicine, University of Arizona, Tucson, AZ 85719, USA;
| | - Rohit Rao
- University Hospitals Cleveland Medical Center, Case Western Reserve School of Medicine, Cleveland, OH 44106, USA;
| | - Clinton Wu
- Banner University Medical Center—University of Arizona, Tucson, AZ 85719, USA; (A.R.)
| | - Juanita L. Merchant
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
20
|
Jiang J, Lin C, Chang T, Lo L, Lin C, Lu R, Yang C. Decreased interleukin-17RA expression is associated with good prognosis in patients with colorectal cancer and inhibits tumor growth and vascularity in mice. Cancer Med 2024; 13:e7059. [PMID: 38491831 PMCID: PMC10943367 DOI: 10.1002/cam4.7059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Interleukin-17 (IL-17) is a pro-inflammatory cytokine that plays a vital role in the promotion of tumorigenesis in various cancers, including colorectal cancer (CRC). Based on current evidence, IL-17 binds to interleukin-17 receptor A (IL-17RA); however, the role of IL-17RA has not been elucidated in previous studies on CRC. In this study, we explored the role of IL-17RA in human CRC tissues and the progression of CRC in humans and mice. METHODS The expressions of IL-17RA and epithelial-mesenchymal transition (EMT)-related genes were examined in CRC cells and tissue samples by quantitative real-time polymerase chain reaction. The role of IL-17RA in pathogenesis and prognosis was evaluated using a Chi-squared test, Kaplan-Meier analysis, univariate, and multivariate Cox regression analysis in 133 CRC patients. A tumor-bearing mice model was executed to evaluate the role of IL-17RA in tumor growth, vascularity and population of infiltrating immune cells. RESULTS IL-17RA expression was found to be significantly higher in CRC tissues than in adjacent normal tissues. The expression of IL-17RA in Stage IV patients was significantly higher than that in Stages I and II patients. Patients with high IL-17RA expression exhibited significantly worse overall and CRC-specific survival than those with low IL-17RA expression. Functional assessment suggested that the knockdown of IL-17RA expression distinctly suppressed cellular proliferation, migration, invasion, and EMT-related gene expression. In a tumor-bearing mouse model, decreased IL-17RA expression significantly repressed tumor growth and vascularity and reduced the population of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). CONCLUSION Reduced IL-17RA expression also suppressed cellular proliferation, migration, and invasion, and the expression of EMT genes. Knockdown of IL-17RA inhibited tumor growth and vascularity and decreased the population of Tregs and MDSCs in mouse tumors. Overall, IL-17RA expression was identified to be independently associated with the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Jeng‐Kai Jiang
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Division of Colon and Rectal Surgery, Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
| | - Chi‐Hung Lin
- Institute of Microbiology and ImmunologyNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Biological Science and TechnologyNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Ting‐An Chang
- Department of Pathology, Ren‐Ai BranchTaipei City HospitalTaipeiTaiwan
| | - Liang‐Chuan Lo
- National Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chien‐Ping Lin
- Division of Colon and Rectal Surgery, Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
| | - Ruey‐Hwa Lu
- Department of Surgery, Zhongxing BranchTaipei City HospitalTaipeiTaiwan
| | - Chih‐Yung Yang
- Commission for General EducationNational United UniversityMiaoliTaiwan
- General Education CenterUniversity of TaipeiTaipeiTaiwan
- Department of Education and ResearchTaipei City HospitalTaipeiTaiwan
| |
Collapse
|
21
|
Luo W, Zeng Y, Song Q, Wang Y, Yuan F, Li Q, Liu Y, Li S, Jannatun N, Zhang G, Li Y. Strengthening the Combinational Immunotherapy from Modulating the Tumor Inflammatory Environment via Hypoxia-Responsive Nanogels. Adv Healthc Mater 2024; 13:e2302865. [PMID: 38062634 DOI: 10.1002/adhm.202302865] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Despite the success of immuno-oncology in clinical settings, the therapeutic efficacy is lower than the expectation due to the immunosuppressive inflammatory tumor microenvironment (TME) and the lack of functional lymphocytes caused by exhaustion. To enhance the efficacy of immuno-oncotherapy, a synergistic strategy should be used that can effectively improve the inflammatory TME and increase the tumor infiltration of cytotoxic T lymphocytes (CTLs). Herein, a TME hypoxia-responsive nanogel (NG) is developed to enhance the delivery and penetration of diacerein and (-)-epigallocatechin gallate (EGCG) in tumors. After systemic administration, diacerein effectively improves the tumor immunosuppressive condition through a reduction of MDSCs and Tregs in TME, and induces tumor cell apoptosis via the inhibition of IL-6/STAT3 signal pathway, realizing a strong antitumor effect. Additionally, EGCG can effectively inhibit the expression of PD-L1, restoring the tumor-killing function of CTLs. The infiltration of CTLs increases at the tumor site with activation of systemic immunity after the combination of TIM3 blockade therapy, ultimately resulting in a strong antitumor immune response. This study provides valuable insights for future research on eliciting effective antitumor immunity by suppressing adverse tumor inflammation. The feasible strategy proposed in this work may solve the urgent clinical concerns of the dissatisfactory checkpoint-based immuno-oncotherapy.
Collapse
Affiliation(s)
- Wenhe Luo
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yanqiao Zeng
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Qingle Song
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yu Wang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Feng Yuan
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Qi Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yingnan Liu
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Su Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Nahar Jannatun
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Guofang Zhang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yang Li
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
22
|
Kim HD, Yeh CY, Chang YC, Kim CH. Dawn era for revisited cancer therapy by innate immune system and immune checkpoint inhibitors. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167019. [PMID: 38211726 DOI: 10.1016/j.bbadis.2024.167019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Immunotherapy is a promising therapeutic strategy for cancer. However, it shows limited efficacy against certain tumor types. The activation of innate immunity can suppress tumors by mitigating inflammatory and malignant behaviors through immune surveillance. The tumor microenvironment, which is composed of immune cells and cancer cells, plays a crucial role in determining the outcomes of immunotherapy. Relying solely on immune checkpoint inhibitors is not an optimal approach. Instead, there is a need to consider the use of a combination of immune checkpoint inhibitors with other modulators of the innate immune system to improve the tumor microenvironment. This can be achieved through methods such as immune cell antigen presentation and recognition. In this review, we delve into the significance of innate immune cells in tumor regression, as well as the role of the interaction of tumor cells with innate immune cells in evading host immune surveillance. These findings pave the way for the next chapter in the field of immunotherapy.
Collapse
Affiliation(s)
- Hee-Do Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, Gyunggi-Do 16419, Republic of Korea
| | - Chia-Ying Yeh
- Department of Biomedicine Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Chan Chang
- Department of Biomedicine Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, Gyunggi-Do 16419, Republic of Korea; Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea.
| |
Collapse
|
23
|
Teisseire M, Giuliano S, Pagès G. Combination of Anti-Angiogenics and Immunotherapies in Renal Cell Carcinoma Show Their Limits: Targeting Fibrosis to Break through the Glass Ceiling? Biomedicines 2024; 12:385. [PMID: 38397987 PMCID: PMC10886484 DOI: 10.3390/biomedicines12020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
This review explores treating metastatic clear cell renal cell carcinoma (ccRCC) through current therapeutic modalities-anti-angiogenic therapies and immunotherapies. While these approaches represent the forefront, their limitations and variable patient responses highlight the need to comprehend underlying resistance mechanisms. We specifically investigate the role of fibrosis, prevalent in chronic kidney disease, influencing tumour growth and treatment resistance. Our focus extends to unravelling the intricate interplay between fibrosis, immunotherapy resistance, and the tumour microenvironment for effective therapy development. The analysis centres on connective tissue growth factor (CTGF), revealing its multifaceted role in ccRCC-promoting fibrosis, angiogenesis, and cancer progression. We discuss the potential of targeting CTGF to address the problem of fibrosis in ccRCC. Emphasising the crucial relationship between fibrosis and the immune system in ccRCC, we propose that targeting CTGF holds promise for overcoming obstacles to cancer treatment. However, we recognise that an in-depth understanding of the mechanisms and potential limitations is imperative and, therefore, advocate for further research. This is an essential prerequisite for the successful integration of CTGF-targeted therapies into the clinical landscape.
Collapse
Affiliation(s)
| | - Sandy Giuliano
- University Cote d’Azur (UCA), Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France;
| | - Gilles Pagès
- University Cote d’Azur (UCA), Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France;
| |
Collapse
|
24
|
Song Y, Mao Q, Zhou M, Liu CJ, Kong L, Hu T. Effectiveness of bevacizumab in the treatment of metastatic colorectal cancer: a systematic review and meta-analysis. BMC Gastroenterol 2024; 24:58. [PMID: 38302922 PMCID: PMC10832121 DOI: 10.1186/s12876-024-03134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVE To evaluate the benefit of bevacizumab under the comprehensive treatment strategy and its advantages over other drugs, so as to provide reference for the formulation of clinical plans. METHODS As of October 1, 2022, the randomized controlled clinical trials of bevacizumab in combination with metastatic colorectal cancer published in PubMed, Cochrane Library and Medline databases were searched. The odds ratio (OR) and its 95% confidence interval (CI) were used to evaluate the short-term disease control effect and long-term survival of the treatment strategy. RESULTS 21 RCTs (6665 patients; 3356 patients in the experimental group and 3309 patients in the control group; average age, 55-75 years) were treated with bevacizumab as the experimental group for metastatic colorectal cancer. BEV has stronger anti-tumor activity than the single treatment scheme (OR = 1.30, 95% CI: 1.11-1.52). And Benefits of the BEV group were 0.73 (0.55, 0.96), 1.26 (0.71, 2.24), 1.63 (0.92, 2.87) and 0.07 (0.02, 0.25) compared with CET, VAN, CED and PAN respectively. The disease control of BEV combined therapy was better (OR = 1.36, 95% CI: 1.04-1.78). The same as compared with cediranib (OR = 1.94, 95% CI: 1.06-3.55). However, the long-term prognosis of BEV, including the overall survival (HRs = 0.98, 95% CI: 0.84-1.15) and progression-free survival (HRs = 1.05,95% CI: 0.97-1.13) were not prolonged. The survival benefits of cetuximab and panitumumab were not reflected. CONCLUSION The addition of BEV can enhance the anti-tumor ability and disease control, while cetuximab and panitumumab may have stronger ability. However, it did not effectively improve the survival of patients. A more reasonable and effective treatment plan needs more clinical experimental support.
Collapse
Affiliation(s)
- Yu Song
- Department of Intensive Care Unit, the First Affiliated Hospital of Shandong Traditional Medical University, 250000, Jinan, China
| | - Qianqian Mao
- Department of Oncology, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, 210009, Nanjing, Jiangsu Province, China
| | - Manling Zhou
- Department of Oncology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Cheng-Jiang Liu
- Department of General Medicine, Affiliated Anqing First People's Hospital of Anhui Medical University, 246000, Anqing, AnHui, China.
| | - Li Kong
- Department of Intensive Care Unit, the First Affiliated Hospital of Shandong Traditional Medical University, 250000, Jinan, China.
| | - Ting Hu
- Department of General Practice, Anqing Municipal Hospital, 246000, Anqing, AnHui, China
| |
Collapse
|
25
|
Wang X, Chan S, Chen J, Xu Y, Dai L, Han Q, Wang Z, Zuo X, Yang Y, Zhao H, Wang M, Wang C, Li Z, Zhang H, Chen W. Robust machine-learning based prognostic index using cytotoxic T lymphocyte evasion genes highlights potential therapeutic targets in colorectal cancer. Cancer Cell Int 2024; 24:52. [PMID: 38297270 PMCID: PMC10829178 DOI: 10.1186/s12935-024-03239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND A minute fraction of patients stands to derive substantial benefits from immunotherapy, primarily attributable to immune evasion. Our objective was to formulate a predictive signature rooted in genes associated with cytotoxic T lymphocyte evasion (CERGs), with the aim of predicting outcomes and discerning immunotherapeutic response in colorectal cancer (CRC). METHODS 101 machine learning algorithm combinations were applied to calculate the CERGs prognostic index (CERPI) under the cross-validation framework, and patients with CRC were separated into high- and low-CERPI groups. Relationship between immune cell infiltration levels, immune-related scores, malignant phenotypes and CERPI were further analyzed. Various machine learning methods were used to identify key genes related to both patient survival and immunotherapy benefits. Expression of HOXC6, G0S2, and MX2 was evaluated and the effects of HOXC6 and G0S2 on the viability and migration of a CRC cell line were in-vitro verified. RESULTS The CERPI demonstrated robust prognostic efficacy in predicting the overall survival of CRC patients, establishing itself as an independent predictor of patient outcomes. The low-CERPI group exhibited elevated levels of immune cell infiltration and lower scores for tumor immune dysfunction and exclusion, indicative of a greater potential benefit from immunotherapy. Moreover, there was a positive correlation between CERPI levels and malignant tumor phenotypes, suggesting that heightened CERPI expression contributes to both the occurrence and progression of tumors. Thirteen key genes were identified, and their expression patterns were scrutinized through the analysis of single-cell datasets. Notably, HOXC6, G0S2, and MX2 exhibited upregulation in both CRC cell lines and tissues. Subsequent knockdown experiments targeting G0S2 and HOXC6 resulted in a significant suppression of CRC cell viability and migration. CONCLUSION We developed the CERPI for effectively predicting survival and response to immunotherapy in patients, and these results may provide guidance for CRC diagnosis and precise treatment.
Collapse
Affiliation(s)
- Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiajie Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yuanmin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Longfei Dai
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qijun Han
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhenglin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xiaomin Zuo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yang Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hu Zhao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ming Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Chen Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zichen Li
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui, China.
- The First Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, 239000, Anhui, China.
| | - Wei Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
26
|
Mo Z, Lv L, Mai Q, Li Q, He J, Zhang T, Xu J, Fang J, Shi N, Gou Q, Chen X, Zhang J, Zhuang W, Jin H. Prognostic model for unresectable hepatocellular carcinoma treated with dual PD-1 and angiogenesis blockade therapy. J Immunother Cancer 2024; 12:e008191. [PMID: 38290767 PMCID: PMC10828840 DOI: 10.1136/jitc-2023-008191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND AND AIMS Dual programmed death 1 (PD-1) and angiogenesis blockade therapy is a frontline treatment for hepatocellular carcinoma (HCC). An accepted model for survival prediction and risk stratification in individual patients receiving this treatment is lacking. Aimed to develop a simple prognostic model specific to these patients. APPROACH AND RESULTS Patients with unresectable HCC undergoing dual PD-1 and angiogenesis blockade therapy were included in training cohort (n=168) and validation cohort (n=72). We investigated the prognostic value of clinical variables on overall survival using a Cox model in the training set. A prognostic score model was then developed and validated. Predictive performance and discrimination were also evaluated. Largest tumor size and Alpha-fetoprotein concentration at baseline and Neutrophil count and Spleen volume change after 6 weeks of treatment were identified as independent predictors of overall survival in multivariable analysis and used to develop LANS score. Time-dependent receiver operating characteristic analysis, calibration curves, and C-index showed LANS score had favorable performance in survival prediction. Patients were divided into three risk categories based on LANS score. Median survival for patients with low, intermediate, and high LANS scores was 31.7, 23.5, and 11.5 months, respectively (p<0.0001). The disease control rates were 96.4%, 64.3%, and 32.1%, respectively (p<0.0001). The predictive performance and risk stratification ability of the LANS score were confirmed in validation and entire cohorts. CONCLUSION The LANS score model can provide individualized survival prediction and risk stratification in patients with unresectable HCC undergoing dual PD-1 and angiogenesis blockade therapy.
Collapse
Affiliation(s)
- Zhiqiang Mo
- Department of Minimally Invasive Intervention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ling Lv
- Department of Minimally Invasive Intervention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Discases; Guangdong Provincial Clinical Research Center for 0bstetricsc and Gynecology;The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qicong Mai
- Department of Minimally Invasive Intervention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qiao Li
- Department of General Surgery, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jian He
- Department of Interventional Radiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Tao Zhang
- Department of Radiology, Guangzhou Medical University Affiliated Cancer Hospital, Guangzhou, Guangdong, China
| | - Jingwu Xu
- Department of Oncology and Peripheral Interventional Radiology, People's Hospital of Huazhou, Maoming, China
| | - Jiayan Fang
- Department of Internal Medicine-Oncology, Dongguan Songshan Lake Central Hospital, Dongguan, China
| | - Ning Shi
- Department of General Surgery, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Gou
- Department of Minimally Invasive Intervention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiaoming Chen
- Department of Minimally Invasive Intervention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Department of Minimally Invasive Intervention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wenhang Zhuang
- Department of Minimally Invasive Intervention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Haosheng Jin
- Department of General Surgery, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Ding Y, Wang S, Qiu Z, Zhu C, Wang Y, Zhao S, Qiu W, Wang K, Lv J, Qi W. The worthy role of hepatic arterial infusion chemotherapy in combination with anti-programmed cell death protein 1 monoclonal antibody immunotherapy in advanced hepatocellular carcinoma. Front Immunol 2023; 14:1284937. [PMID: 38022559 PMCID: PMC10644007 DOI: 10.3389/fimmu.2023.1284937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Systemic therapy remains the primary therapeutic approach for advanced hepatocellular carcinoma (HCC). Nonetheless, its efficacy in achieving control of intrahepatic lesions is constrained. Hepatic arterial infusion chemotherapy (HAIC) is a therapeutic approach that combines localized treatment with systemic antitumor effects, which aim is to effectively manage the progression of cancerous lesions within the liver, particularly in patients with portal vein tumor thrombosis (PVTT). Combining HAIC with anti-programmed cell death protein 1 (anti-PD-1) monoclonal antibody (mAb) immunotherapy is anticipated to emerge as a novel therapeutic approach aimed at augmenting the response inside the localized tumor site and achieving prolonged survival advantages. In order to assess the effectiveness, safety, and applicability of various therapeutic modalities and to address potential molecular mechanisms underlying the efficacy of HAIC-sensitizing immunotherapy, we reviewed the literature about the combination of HAIC with anti-PD-1 mAb therapies.
Collapse
Affiliation(s)
- Yixin Ding
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhenkang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunyang Zhu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Shufen Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Kongjia Wang
- Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jing Lv
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Weiwei Qi
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Aslan V, Karabörk Kılıç AC, Özet A, Üner A, Günel N, Yazıcı O, Savaş G, Bayrak A, Eraslan E, Öksüzoğlu B, Kılıç HK, Özdemir N. The role of spleen volume change in predicting immunotherapy response in metastatic renal cell carcinoma. BMC Cancer 2023; 23:1045. [PMID: 37904131 PMCID: PMC10617093 DOI: 10.1186/s12885-023-11558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/22/2023] [Indexed: 11/01/2023] Open
Abstract
INTRODUCTION Resistance to immune checkpoint inhibitors (ICI) is a significant issue in metastatic renal cell carcinoma (mRCC), as it is in the majority of cancer types. An important deficiency in immunooncology today is the lack of a predictive factor to identify this patient group. Myeloid-derived suppressor cells (MDSC) are a type of cell that contributes to immunotherapy resistance by inhibiting T cell activity. While it accumulates in the tumor microenvironment and blood, it can also accumulate in lymphoid organs such as the spleen and cause splenomegaly. Therefore we aimed to evaluate the effect of increase in splenic volume, which can be considered as an indirect indicator of increased MDSC cells, on survival outcomes in mRCC patients. METHODS We analyzed 45 patients with mRCC who received nivolumab as a second-line or subsequent therapy. Splenic volume was analyzed from baseline imaging before starting nivolumab and from control imaging performed within the first 6 months of treatment initiation. Additionally, we analyzed how patients' body mass index (BMI), IMDC risk score, ECOG performance status, nephrectomy status, neutrophil-lymphocyte ratio (NLR), Platelet-to-lymphocyte ratio (PLR) and sites of metastasis. RESULTS Median splenic volume change was 10% (ranging from - 22% to + 117%) during follow-up. Change in splenic volume was found to be associated with overall survival (OS) and progression-free survival (PFS) (p = 0.025, 0.04). The median PFS in patients with increased splenic volume was 5 months, while it was 17 months in patients without increased splenic volume. (HR 2.1, 95% CI (1-4), p = 0.04). The median OS in patients with increased splenic volume was 9 months, while it was 35 months in patients without increased splenic volume (HR 2.7, 95% CI (1.1-6.2), p = 0.025). In four patients with decreased splenic volume, neither PFS nor OS could reach the median value. Log-rank p value in respectively (0.015, 0.035), The group in which an increase in volume was accompanied by a high NLR had the shortest survival rate. Basal splenic volume was analyzed separately. However, neither PFS nor OS differed significantly. CONCLUSION Our findings suggest that the change in splenic volume throughout immunotherapy regimens may be utilized to predict PFS and OS in mRCC patients undergoing treatment.
Collapse
Affiliation(s)
- Volkan Aslan
- Department of Medical Oncology, Gazi University, Ankara, Turkey.
| | | | - Ahmet Özet
- Department of Medical Oncology, Gazi University, Ankara, Turkey
| | - Aytuğ Üner
- Department of Medical Oncology, Gazi University, Ankara, Turkey
| | - Nazan Günel
- Department of Medical Oncology, Gazi University, Ankara, Turkey
| | - Ozan Yazıcı
- Department of Medical Oncology, Gazi University, Ankara, Turkey
| | - Gözde Savaş
- Department of Medical Oncology, Gazi University, Ankara, Turkey
| | - Ahmet Bayrak
- Department of Radiology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara, Turkey
| | - Emrah Eraslan
- Department of Radiology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara, Turkey
- Department of Medical Oncology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara, Turkey
| | - Berna Öksüzoğlu
- Department of Radiology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara, Turkey
- Department of Medical Oncology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Ankara, Turkey
| | | | - Nuriye Özdemir
- Department of Medical Oncology, Gazi University, Ankara, Turkey
| |
Collapse
|
29
|
Matteucci L, Bittoni A, Gallo G, Ridolfi L, Passardi A. Immunocheckpoint Inhibitors in Microsatellite-Stable or Proficient Mismatch Repair Metastatic Colorectal Cancer: Are We Entering a New Era? Cancers (Basel) 2023; 15:5189. [PMID: 37958363 PMCID: PMC10648369 DOI: 10.3390/cancers15215189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer and the second leading cause of cancer-related deaths in Europe. About 5% of metastatic CRC (mCRC) are characterized by high microsatellite instability (MSI) due to a deficient DNA mismatch repair (dMMR), and this condition has been related to a high sensitivity to immunotherapy, in particular to the Immune Checkpoint Inhibitors (ICIs). In fact, in MSI-H or dMMR mCRC, treatment with ICIs induced remarkable response rates and prolonged survival. However, the majority of mCRC cases are mismatch-repair-proficient (pMMR) and microsatellite-stable (MSS), and unfortunately these conditions involve resistance to ICIs. This review aims to provide an overview of the strategies implemented to overcome ICI resistance and/or define subgroups of patients with MSS or dMMR mCRC who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Laura Matteucci
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandro Bittoni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Graziana Gallo
- Operative Unit of Pathologic Anatomy, Azienda USL della Romagna, “Maurizio Bufalini” Hospital, 47521 Cesena, Italy
| | - Laura Ridolfi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
30
|
Remley VA, Linden J, Bauer TW, Dimastromatteo J. Unlocking antitumor immunity with adenosine receptor blockers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:748-767. [PMID: 38263981 PMCID: PMC10804392 DOI: 10.20517/cdr.2023.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 01/25/2024]
Abstract
Tumors survive by creating a tumor microenvironment (TME) that suppresses antitumor immunity. The TME suppresses the immune system by limiting antigen presentation, inhibiting lymphocyte and natural killer (NK) cell activation, and facilitating T cell exhaustion. Checkpoint inhibitors like anti-PD-1 and anti-CTLA4 are immunostimulatory antibodies, and their blockade extends the survival of some but not all cancer patients. Extracellular adenosine triphosphate (ATP) is abundant in inflamed tumors, and its metabolite, adenosine (ADO), is a driver of immunosuppression mediated by adenosine A2A receptors (A2AR) and adenosine A2B receptors (A2BR) found on tumor-associated lymphoid and myeloid cells. This review will focus on adenosine as a key checkpoint inhibitor-like immunosuppressive player in the TME and how reducing adenosine production or blocking A2AR and A2BR enhances antitumor immunity.
Collapse
Affiliation(s)
- Victoria A. Remley
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22903, USA
| | | | - Todd W. Bauer
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22903, USA
| | | |
Collapse
|
31
|
Yao S, Han Y, Yang M, Jin K, Lan H. It's high-time to re-evaluate the value of induced-chemotherapy for reinforcing immunotherapy in colorectal cancer. Front Immunol 2023; 14:1241208. [PMID: 37920463 PMCID: PMC10619163 DOI: 10.3389/fimmu.2023.1241208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Immunotherapy has made significant advances in the treatment of colorectal cancer (CRC), revolutionizing the therapeutic landscape and highlighting the indispensable role of the tumor immune microenvironment. However, some CRCs have shown poor response to immunotherapy, prompting investigation into the underlying reasons. It has been discovered that certain chemotherapeutic agents possess immune-stimulatory properties, including the induction of immunogenic cell death (ICD), the generation and processing of non-mutated neoantigens (NM-neoAgs), and the B cell follicle-driven T cell response. Based on these findings, the concept of inducing chemotherapy has been introduced, and the combination of inducing chemotherapy and immunotherapy has become a standard treatment option for certain cancers. Clinical trials have confirmed the feasibility and safety of this approach in CRC, offering a promising method for improving the efficacy of immunotherapy. Nevertheless, there are still many challenges and difficulties ahead, and further research is required to optimize its use.
Collapse
Affiliation(s)
- Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yuejun Han
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Mengxiang Yang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
He X, Lan H, Jin K, Liu F. Can immunotherapy reinforce chemotherapy efficacy? a new perspective on colorectal cancer treatment. Front Immunol 2023; 14:1237764. [PMID: 37790928 PMCID: PMC10543914 DOI: 10.3389/fimmu.2023.1237764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
As one of the main threats to human life (the fourth most dangerous and prevalent cancer), colorectal cancer affects many people yearly, decreases patients' quality of life, and causes irreparable financial and social damages. In addition, this type of cancer can metastasize and involve the liver in advanced stages. However, current treatments can't completely eradicate this disease. Chemotherapy and subsequent surgery can be mentioned among the current main treatments for this disease. Chemotherapy has many side effects, and regarding the treatment of this type of tumor, chemotherapy can lead to liver damage, such as steatohepatitis, steatosis, and sinus damage. These damages can eventually lead to liver failure and loss of its functions. Therefore, it seems that other treatments can be used in addition to chemotherapy to increase its efficiency and reduce its side effects. Biological therapies and immunotherapy are one of the leading suggestions for combined treatment. Antibodies (immune checkpoint blockers) and cell therapy (DC and CAR-T cells) are among the immune system-based treatments used to treat tumors. Immunotherapy targets various aspects of the tumor that may lead to 1) the recruitment of immune cells, 2) increasing the immunogenicity of tumor cells, and 3) leading to the elimination of inhibitory mechanisms established by the tumor. Therefore, immunotherapy can be used as a complementary treatment along with chemotherapy. This review will discuss different chemotherapy and immunotherapy methods for colorectal cancer. Then we will talk about the studies that have dealt with combined treatment.
Collapse
Affiliation(s)
- Xing He
- Department of Gastroenterology, Jinhua Wenrong Hospital, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fanlong Liu
- Department of Colorectal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Gu J, Lv X, Li W, Li G, He X, Zhang Y, Shi L, Zhang X. Deciphering the mechanism of Peptostreptococcus anaerobius-induced chemoresistance in colorectal cancer: the important roles of MDSC recruitment and EMT activation. Front Immunol 2023; 14:1230681. [PMID: 37781363 PMCID: PMC10533913 DOI: 10.3389/fimmu.2023.1230681] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Peptostreptococcus anaerobius (P. anaerobius, PA) in intestinal flora of patients with colorectal cancer (CRC) are associated with poor prognosis. Studies have shown that P. anaerobius could promote colorectal carcinogenesis and progression, but whether P. anaerobius could induce chemoresistance of colorectal cancer has not been clarified. Here, both in vitro and in vivo experiments showed that P. anaerobius specifically colonized the CRC lesion and enhanced chemoresistance of colorectal cancer to oxaliplatin by recruiting myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment. Furthermore, this study revealed that it was the increased secretion of IL-23 by MDSCs that subsequently facilitated the epithelial-mesenchymal transition (EMT) of tumor cells to induce chemoresistance of CRC by activating the Stat3-EMT pathway. Our results highlight that targeting P. anaerobius might be a novel therapeutic strategy to overcome chemoresistance in the treatment of CRC.
Collapse
Affiliation(s)
- Jinhua Gu
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaojun Lv
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Wenwen Li
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guangcai Li
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xialian He
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Ye Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Lihong Shi
- College of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Xiaoqian Zhang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
34
|
Tsamchoe M, Lazaris A, Kim D, Krzywon L, Bloom J, Mayer T, Petrillo SK, Dejgaard K, Gao ZH, Rak J, Metrakos P. Circulating extracellular vesicles containing S100A9 reflect histopathology, immunophenotype and therapeutic responses of liver metastasis in colorectal cancer patients. BJC REPORTS 2023; 1:8. [PMID: 39516397 PMCID: PMC11524068 DOI: 10.1038/s44276-023-00007-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 11/16/2024]
Abstract
BACKGROUND Metastasis is the principal cause of cancer treatment failure and an area of dire diagnostic needs. Colorectal cancer metastases to the liver (CRCLMs) are predominantly classified into desmoplastic and replacement based on their histological growth patterns (HGPs). Desmoplastic responds well to current treatments, while replacement HGP has a poor prognosis with low overall survival rates. METHODS We hypothesised that complex cellular response underlying HGPs may be reflected in the proteome of circulating extracellular vesicles (EVs). EV proteomics data was generated through LC-MS/MS and analysed with Maxquant and Perseus. To validate the S100A9 signature, ELISA was performed, and IHC and IF were conducted on tissue for marker detection and colocalization study. RESULTS Plasma EV proteome signature distinguished desmoplastic from the replacement in patients with 22 differentially expressed proteins, including immune related markers. Unsupervised PCA analysis revealed clear separation of the two lesions. The marker with the highest confidence level to stratify the two HGPs was S100A9, which was traced in CRCLM lesions and found to colocalize with macrophages and neutrophils. EV-associated S100A9 in plasma may reflect the innate immunity status of metastatic lesions and their differential therapeutic responses. CONCLUSION Plasma EV-derived S100A9 could be useful in personalising therapy in patients with CRCLM.
Collapse
Affiliation(s)
- Migmar Tsamchoe
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada
| | - Anthoula Lazaris
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada.
| | - Diane Kim
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada
| | - Lucyna Krzywon
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada
| | - Jessica Bloom
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada
| | - Thomas Mayer
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada
| | - Stephanie K Petrillo
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada
| | - Kurt Dejgaard
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Zu-Hua Gao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Janusz Rak
- McGill University, Montreal Children's Hospital, RI MUHC, Montreal, QC, Canada
| | - Peter Metrakos
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Research Institute of McGill University Health Center, Cancer Research Program, Montreal, QC, Canada.
- Department of Surgery, McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
35
|
Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, Pan Y, Chen D, Lin Y, Wang S, Kang W, To KF, Chen Z, Nie Y, He HH, Sung JJY, Yu J. ALKBH5 Drives Immune Suppression Via Targeting AXIN2 to Promote Colorectal Cancer and Is a Target for Boosting Immunotherapy. Gastroenterology 2023; 165:445-462. [DOI: https:/doi.org/10.1053/j.gastro.2023.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
|
36
|
Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, Pan Y, Chen D, Lin Y, Wang S, Kang W, To KF, Chen Z, Nie Y, He HH, Sung JJY, Yu J. ALKBH5 Drives Immune Suppression Via Targeting AXIN2 to Promote Colorectal Cancer and Is a Target for Boosting Immunotherapy. Gastroenterology 2023; 165:445-462. [PMID: 37169182 DOI: 10.1053/j.gastro.2023.04.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND & AIMS Immune checkpoint blockade therapy benefits only a small subset of patients with colorectal cancer (CRC), and identification of CRC-intrinsic events modulating immune checkpoint blockade efficacy is an unmet need. We found that AlkB homolog 5 (ALKBH5), an RNA N6-methyladenosine eraser, drives immunosuppression and is a molecular target to boost immune checkpoint blockade therapy in CRC. METHODS Clinical significance of ALKBH5 was evaluated in human samples (n = 205). Function of ALKBH5 was investigated in allografts, CD34+ humanized mice, and Alkbh5 knockin mice. Immunity change was determined by means of flow cytometry, immunofluorescence, and functional investigation. Methylated RNA immunoprecipitation sequencing and RNA sequencing were used to identify ALKBH5 targets. Vesicle-like nanoparticle-encapsulated ALKBH5-small interfering RNA was constructed for targeting ALKBH5 in vivo. RESULTS High ALKBH5 expression predicts poor prognosis in CRC. ALKBH5 induced myeloid-derived suppressor cell accumulation but reduced natural killer cells and cytotoxic CD8+ T cells to induce colorectal tumorigenesis in allografts, CD34+ humanized mice, and intestine-specific Alkbh5 knockin mice. Mechanistically, AXIN2, a Wnt suppressor, was identified as a target of ALKBH5. ALKBH5 binds and demethylates AXIN2 messenger RNA, which caused its dissociation from N6-methyladenosine reader IGF2BP1 and degradation, resulting in hyperactivated Wnt/β-catenin. Subsequently, Wnt/β-catenin targets, including Dickkopf-related protein 1 (DKK1) were induced by ALKBH5. ALKBH5-induced DKK1 recruited myeloid-derived suppressor cells to drive immunosuppression in CRC, and this effect was abolished by anti-DKK1 in vitro and in vivo. Finally, vesicle-like nanoparticle-encapsulated ALKBH5-small interfering RNA, or anti-DKK1 potentiated anti-PD1 treatment in suppressing CRC growth by enhancing antitumor immunity. CONCLUSIONS This study identified an ALKBH5-N6-methyladenosine-AXIN2-Wnt-DKK1 axis in CRC, which drives immune suppression to facilitate tumorigenesis. Targeting of ALKBH5 is a promising strategy for sensitizing CRC to immunotherapy.
Collapse
Affiliation(s)
- Jianning Zhai
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yao Peng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Gastroenterology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jingwan Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yasi Pan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Danyu Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yufeng Lin
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Shiyan Wang
- Princess Margaret Cancer Centre, University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Jao-Yiu Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
37
|
Sarkar OS, Donninger H, Al Rayyan N, Chew LC, Stamp B, Zhang X, Whitt A, Li C, Hall M, Mitchell RA, Zippelius A, Eaton J, Chesney JA, Yaddanapudi K. Monocytic MDSCs exhibit superior immune suppression via adenosine and depletion of adenosine improves efficacy of immunotherapy. SCIENCE ADVANCES 2023; 9:eadg3736. [PMID: 37390211 PMCID: PMC10313166 DOI: 10.1126/sciadv.adg3736] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy is effective against many cancers for a subset of patients; a large percentage of patients remain unresponsive to this therapy. One contributing factor to ICI resistance is accumulation of monocytic myeloid-derived suppressor cells (M-MDSCs), a subset of innate immune cells with potent immunosuppressive activity against T lymphocytes. Here, using lung, melanoma, and breast cancer mouse models, we show that CD73-expressing M-MDSCs in the tumor microenvironment (TME) exhibit superior T cell suppressor function. Tumor-derived PGE2, a prostaglandin, directly induces CD73 expression in M-MDSCs via both Stat3 and CREB. The resulting CD73 overexpression induces elevated levels of adenosine, a nucleoside with T cell-suppressive activity, culminating in suppression of antitumor CD8+ T cell activity. Depletion of adenosine in the TME by the repurposed drug PEGylated adenosine deaminase (PEG-ADA) increases CD8+ T cell activity and enhances response to ICI therapy. Use of PEG-ADA can therefore be a therapeutic option to overcome resistance to ICIs in cancer patients.
Collapse
Affiliation(s)
- Omar S. Sarkar
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Howard Donninger
- Department of Medicine, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Experimental Therapeutics Program, University of Louisville, Louisville, KY, USA
| | - Numan Al Rayyan
- Department of Medicine, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Natural Agricultural Research Center, P.O. Box 639, Baq'a 19381, Jordan
| | - Lewis C. Chew
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Bryce Stamp
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Aaron Whitt
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Chi Li
- Department of Medicine, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Experimental Therapeutics Program, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Melissa Hall
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Robert A. Mitchell
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
- Immuno-Oncology Group, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Alfred Zippelius
- Center for Immunotherapy, Cancer Center Medical Oncology, University Hospital Basel, Switzerland
| | - John Eaton
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Immuno-Oncology Group, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Jason A. Chesney
- Department of Medicine, University of Louisville, Louisville, KY, USA
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
- Immuno-Oncology Group, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Kavitha Yaddanapudi
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
- Immuno-Oncology Group, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
38
|
Zhu X, Li S. Nanomaterials in tumor immunotherapy: new strategies and challenges. Mol Cancer 2023; 22:94. [PMID: 37312116 DOI: 10.1186/s12943-023-01797-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Tumor immunotherapy exerts its anti-tumor effects by stimulating and enhancing immune responses of the body. It has become another important modality of anti-tumor therapy with significant clinical efficacy and advantages compared to chemotherapy, radiotherapy and targeted therapy. Although various kinds of tumor immunotherapeutic drugs have emerged, the challenges faced in the delivery of these drugs, such as poor tumor permeability and low tumor cell uptake rate, had prevented their widespread application. Recently, nanomaterials had emerged as a means for treatment of different diseases due to their targeting properties, biocompatibility and functionalities. Moreover, nanomaterials possess various characteristics that overcome the defects of traditional tumor immunotherapy, such as large drug loading capacity, precise tumor targeting and easy modification, thus leading to their wide application in tumor immunotherapy. There are two main classes of novel nanoparticles mentioned in this review: organic (polymeric nanomaterials, liposomes and lipid nanoparticles) and inorganic (non-metallic nanomaterials and metallic nanomaterials). Besides, the fabrication method for nanoparticles, Nanoemulsions, was also introduced. In summary, this review article mainly discussed the research progress of tumor immunotherapy based on nanomaterials in the past few years and offers a theoretical basis for exploring novel tumor immunotherapy strategies in the future.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China.
| |
Collapse
|
39
|
Piper M, Kluger H, Ruppin E, Hu-Lieskovan S. Immune Resistance Mechanisms and the Road to Personalized Immunotherapy. Am Soc Clin Oncol Educ Book 2023; 43:e390290. [PMID: 37459578 DOI: 10.1200/edbk_390290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
What does the future of cancer immunotherapy look like and how do we get there? Find out where we've been and where we're headed in A Report on Resistance: The Road to personalized immunotherapy.
Collapse
Affiliation(s)
- Miles Piper
- School of Medicine, University of Utah, Salt Lake City, UT
| | | | - Eytan Ruppin
- Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Siwen Hu-Lieskovan
- School of Medicine, University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
40
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|
41
|
Shin AE, Giancotti FG, Rustgi AK. Metastatic colorectal cancer: mechanisms and emerging therapeutics. Trends Pharmacol Sci 2023; 44:222-236. [PMID: 36828759 PMCID: PMC10365888 DOI: 10.1016/j.tips.2023.01.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/25/2023]
Abstract
Metastatic colorectal cancer (mCRC) remains a lethal disease with an approximately 14% 5-year survival rate. While early-stage colorectal cancer (CRC) can be cured by surgery with or without adjuvant chemotherapy, mCRC cannot be eradicated due to a large burden of disseminated cancer cells comprising therapy-resistant metastasis-competent cells. To address this gap, recent studies have focused on further elucidating the molecular mechanisms underlying colorectal metastasis and recognizing the limitations of available therapeutic interventions. In this review, we discuss newfound factors that regulate CRC cell dissemination and colonization of distant organs, such as genetic mutations, identification of metastasis-initiating cells (MICs), epithelial-mesenchymal transition (EMT), and the tumor microenvironment (TME). We also review current treatments for mCRC, therapeutic regimens undergoing clinical trials, and trending preclinical studies being investigated to target treatment-resistant mCRC.
Collapse
Affiliation(s)
- Alice E Shin
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Filippo G Giancotti
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
42
|
Yu SJ. Immunotherapy for hepatocellular carcinoma: Recent advances and future targets. Pharmacol Ther 2023; 244:108387. [PMID: 36948423 DOI: 10.1016/j.pharmthera.2023.108387] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/12/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Immunotherapy is a promising approach to treating various types of cancers, including hepatocellular carcinoma (HCC). While single immunotherapy drugs show limited effectiveness on a small subset of patients, the combination of the anti PD-L1 atezolizumab and anti-vascular endothelial growth factor bevacizumab has shown significant improvement in survival compared to sorafenib as a first-line treatment. However, the current treatment options still have a low success rate of about 30%. Thus, more effective treatments for HCC are urgently required. Several novel immunotherapeutic methods, including the use of novel immune checkpoint inhibitors, innovative immune cell therapies like chimeric antigen receptor T cells (CAR-T), TCR gene-modified T cells and stem cells, as well as combination strategies are being tested in clinical trials for the treatment of HCC. However, some crucial issues still exist such as the presence of heterogeneous antigens in solid tumors, the immune-suppressive environment within tumors, the risk of on-target/off-tumor, infiltrating CAR-T cells, immunosuppressive checkpoint molecules, and cytokines. Overall, immunotherapy is on the brink of major advancements in the fight against HCC.
Collapse
Affiliation(s)
- Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Role of myeloid-derived suppressor cells in tumor recurrence. Cancer Metastasis Rev 2023; 42:113-142. [PMID: 36640224 PMCID: PMC9840433 DOI: 10.1007/s10555-023-10079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The establishment of primary tumor cells in distant organs, termed metastasis, is the principal cause of cancer mortality and is a crucial therapeutic target in oncology. Thus, it is critical to establish a better understanding of metastatic progression for the future development of improved therapeutic approaches. Indeed, such development requires insight into the timing of tumor cell dissemination and seeding of distant organs resulting in occult lesions. Following dissemination of tumor cells from the primary tumor, they can reside in niches in distant organs for years or decades, following which they can emerge as an overt metastasis. This timeline of metastatic dormancy is regulated by interactions between the tumor, its microenvironment, angiogenesis, and tumor antigen-specific T-cell responses. An improved understanding of the mechanisms and interactions responsible for immune evasion and tumor cell release from dormancy would help identify and aid in the development of novel targeted therapeutics. One such mediator of dormancy is myeloid derived suppressor cells (MDSC), whose number in the peripheral blood (PB) or infiltrating tumors has been associated with cancer stage, grade, patient survival, and metastasis in a broad range of tumor pathologies. Thus, extensive studies have revealed a role for MDSCs in tumor escape from adoptive and innate immune responses, facilitating tumor progression and metastasis; however, few studies have considered their role in dormancy. We have posited that MDSCs may regulate disseminated tumor cells resulting in resurgence of senescent tumor cells. In this review, we discuss clinical studies that address mechanisms of tumor recurrence including from dormancy, the role of MDSCs in their escape from dormancy during recurrence, the development of occult metastases, and the potential for MDSC inhibition as an approach to prolong the survival of patients with advanced malignancies. We stress that assessing the impact of therapies on MDSCs versus other cellular targets is challenging within the multimodality interventions required clinically.
Collapse
|
44
|
Wang Q, Shen X, Chen G, Du J. How to overcome resistance to immune checkpoint inhibitors in colorectal cancer: From mechanisms to translation. Int J Cancer 2023. [PMID: 36752642 DOI: 10.1002/ijc.34464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Immunotherapy, especially with immune checkpoint inhibitors (ICIs), has shown advantages in cancer treatment and is a new hope for patients who have failed multiline therapy. However, in colorectal cancer (CRC), the benefit is limited to a small subset of patients with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) metastatic CRC (mCRC). In addition, 45% to 60% of dMMR/MSI-H mCRC patients showed primary or acquired resistance to ICIs. This means that these patients may have potential unknown pathways mediating immune escape. Almost all mismatch repair-proficient (pMMR) or microsatellite-stable (MSS) mCRC patients do not benefit from ICIs. In this review, we discuss the mechanisms of action of ICIs and their current status in CRC. We then discuss the mechanisms of primary and acquired resistance to ICIs in CRC. Finally, we discuss promising therapeutic strategies to overcome resistance to ICIs in the clinic.
Collapse
Affiliation(s)
- Qianyu Wang
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Gang Chen
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junfeng Du
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Iglesias-Escudero M, Arias-González N, Martínez-Cáceres E. Regulatory cells and the effect of cancer immunotherapy. Mol Cancer 2023; 22:26. [PMID: 36739406 PMCID: PMC9898962 DOI: 10.1186/s12943-023-01714-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/02/2023] [Indexed: 02/06/2023] Open
Abstract
Several mechanisms and cell types are involved in the regulation of the immune response. These include mostly regulatory T cells (Tregs), regulatory macrophages (Mregs), myeloid suppressor cells (MDSCs) and other regulatory cell types such as tolerogenic dendritic cells (tolDCs), regulatory B cells (Bregs), and mesenchymal stem cells (MSCs). These regulatory cells, known for their ability to suppress immune responses, can also suppress the anti-tumor immune response. The infiltration of many regulatory cells into tumor tissues is therefore associated with a poor prognosis. There is growing evidence that elimination of Tregs enhances anti-tumor immune responses. However, the systemic depletion of Treg cells can simultaneously cause deleterious autoimmunity. Furthermore, since regulatory cells are characterized by their high level of expression of immune checkpoints, it is also expected that immune checkpoint inhibitors perform part of their function by blocking these molecules and enhancing the immune response. This indicates that immunotherapy does not only act by activating specific effector T cells but can also directly or indirectly attenuate the suppressive activity of regulatory cells in tumor tissues. This review aims to draw together our current knowledge about the effect of immunotherapy on the various types of regulatory cells, and how these effects may be beneficial in the response to immunotherapy.
Collapse
Affiliation(s)
- María Iglesias-Escudero
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Noelia Arias-González
- grid.411438.b0000 0004 1767 6330Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
| | - Eva Martínez-Cáceres
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
46
|
Jiang X, Wu X, Xiao Y, Wang P, Zheng J, Wu X, Jin Z. The ectonucleotidases CD39 and CD73 on T cells: The new pillar of hematological malignancy. Front Immunol 2023; 14:1110325. [PMID: 36776866 PMCID: PMC9911447 DOI: 10.3389/fimmu.2023.1110325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Hematological malignancy develops and applies various mechanisms to induce immune escape, in part through an immunosuppressive microenvironment. Adenosine is an immunosuppressive metabolite produced at high levels within the tumor microenvironment (TME). Adenosine signaling through the A2A receptor expressed on immune cells, such as T cells, potently dampens immune responses. Extracellular adenosine generated by ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and ecto-5'-nucleotidase (CD73) molecules is a newly recognized 'immune checkpoint mediator' and leads to the identification of immunosuppressive adenosine as an essential regulator in hematological malignancies. In this Review, we provide an overview of the detailed distribution and function of CD39 and CD73 ectoenzymes in the TME and the effects of CD39 and CD73 inhibition on preclinical hematological malignancy data, which provides insights into the potential clinical applications for immunotherapy.
Collapse
Affiliation(s)
- Xuan Jiang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Wu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yuxi Xiao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Penglin Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiamian Zheng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuli Wu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China,*Correspondence: Xiuli Wu, ; Zhenyi Jin,
| | - Zhenyi Jin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China,*Correspondence: Xiuli Wu, ; Zhenyi Jin,
| |
Collapse
|
47
|
Barnestein R, Galland L, Kalfeist L, Ghiringhelli F, Ladoire S, Limagne E. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness. Oncoimmunology 2022; 11:2120676. [PMID: 36117524 PMCID: PMC9481153 DOI: 10.1080/2162402x.2022.2120676] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
With the rapid clinical development of immune checkpoint inhibitors (ICIs), the standard of care in cancer management has evolved rapidly. However, immunotherapy is not currently beneficial for all patients. In addition to intrinsic tumor factors, other etiologies of resistance to ICIs arise from the complex interplay between cancer and its microenvironment. Recognition of the essential role of the tumor microenvironment (TME) in cancer progression has led to a shift from a tumor-cell-centered view of cancer development, to the concept of a complex tumor ecosystem that supports tumor growth and metastatic dissemination. The expansion of immunosuppressive cells represents a cardinal strategy deployed by tumor cells to escape detection and elimination by the immune system. Regulatory T lymphocytes (Treg), myeloid-derived suppressor cells (MDSCs), and type-2 tumor-associated macrophages (TAM2) are major components of these inhibitory cellular networks, with the ability to suppress innate and adaptive anticancer immunity. They therefore represent major impediments to anticancer therapies, particularly immune-based interventions. Recent work has provided evidence that, beyond their direct cytotoxic effects on cancer cells, several conventional chemotherapeutic (CT) drugs and agents used in targeted therapies (TT) can promote the elimination or inactivation of suppressive immune cells, resulting in enhanced antitumor immunity. In this review, we will analyze findings pertaining to this concept, discuss the possible molecular bases underlying the selective targeting of these immunosuppressive cells by antineoplastic agents (CT and/or TT), and consider current challenges and future prospects related to the integration of these molecules into more efficient anticancer strategies, in the era of immunotherapy.
Collapse
Affiliation(s)
- Robby Barnestein
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
| | - Loïck Galland
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
| | - Laura Kalfeist
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - François Ghiringhelli
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Sylvain Ladoire
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| | - Emeric Limagne
- University of Burgundy, Dijon, France
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center, Dijon, France
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
| |
Collapse
|
48
|
Wang M, Wang Y, Liu R, Yu R, Gong T, Zhang Z, Fu Y. TLR4 Blockade Using Docosahexaenoic Acid Restores Vulnerability of Drug-Tolerant Tumor Cells and Prevents Breast Cancer Metastasis and Postsurgical Relapse. ACS BIO & MED CHEM AU 2022; 3:97-113. [PMID: 37101603 PMCID: PMC10125315 DOI: 10.1021/acsbiomedchemau.2c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
Nonmutational mechanisms were recently discovered leading to reversible drug tolerance. Despite the rapid elimination of a majority of tumor cells, a small subpopulation of "'drug-tolerant"' cells remain viable with lethal drug exposure, which may further lead to resistance or tumor relapse. Several signaling pathways are involved in the local or systemic inflammatory responses contributing to drug-induced phenotypic switch. Here, we report that Toll-like receptor 4 (TLR4)-interacting lipid docosahexaenoic acid (DHA) restores the cytotoxic effect of doxorubicin (DOX) in the lipopolysaccharide-treated breast tumor cell line 4T1, preventing the phenotypic switch to drug-tolerant cells, which significantly reduces primary tumor growth and lung metastasis in both 4T1 orthotopic and experimental metastasis models. Importantly, DHA in combination with DOX delays and inhibits tumor recurrence following surgical removal of the primary tumor. Furthermore, the coencapsulation of DHA and DOX in a nanoemulsion significantly prolongs the survival of mice in the postsurgical 4T1 tumor relapse model with significantly reduced systemic toxicity. The synergistic antitumor, antimetastasis, and antirecurrence effects of DHA + DOX combination are likely mediated by attenuating TLR4 activation, thus sensitizing tumor cells to standard chemotherapy.
Collapse
Affiliation(s)
- Mou Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Yuejing Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Renhe Liu
- The Scripps Research Institute, 10550 North Torrey Pines Road,
La Jolla, San Diego, California92037, United States
| | - Ruilian Yu
- Department of Oncology, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610072, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| |
Collapse
|
49
|
Saoudi González N, Castet F, Élez E, Macarulla T, Tabernero J. Current and emerging anti-angiogenic therapies in gastrointestinal and hepatobiliary cancers. Front Oncol 2022; 12:1021772. [PMID: 36300092 PMCID: PMC9589420 DOI: 10.3389/fonc.2022.1021772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 09/07/2024] Open
Abstract
Gastrointestinal tumours are a heterogeneous group of neoplasms that arise in the gastrointestinal tract and hepatobiliary system. Their incidence is rising globally and they currently represent the leading cause of cancer-related mortality worldwide. Anti-angiogenic agents have been incorporated into the treatment armamentarium of most of these malignancies and have improved survival outcomes, most notably in colorectal cancer and hepatocellular carcinoma. New treatment combinations with immunotherapies and other agents have led to unprecedented benefits and are revolutionising patient care. In this review, we detail the mechanisms of action of anti-angiogenic agents and the preclinical rationale underlying their combinations with immunotherapies. We review the clinical evidence supporting their use across all gastrointestinal tumours, with a particular emphasis on colorectal cancer and hepatocellular carcinoma. We discuss available biomarkers of response to these therapies and their utility in routine clinical practice. Finally, we summarise ongoing clinical trials in distinct settings and highlight the preclinical rationale supporting novel combinations.
Collapse
Affiliation(s)
| | | | | | - Teresa Macarulla
- Department of Medical Oncology, Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | |
Collapse
|
50
|
Chen H, Pan Y, Zhou Q, Liang C, Wong CC, Zhou Y, Huang D, Liu W, Zhai J, Gou H, Su H, Zhang X, Xu H, Wang Y, Kang W, Kei Wu WK, Yu J. METTL3 Inhibits Antitumor Immunity by Targeting m 6A-BHLHE41-CXCL1/CXCR2 Axis to Promote Colorectal Cancer. Gastroenterology 2022; 163:891-907. [PMID: 35700773 DOI: 10.1053/j.gastro.2022.06.024] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS N6-Methyladenosine (m6A) is the most prevalent RNA modification and recognized as an important epitranscriptomic mechanism in colorectal cancer (CRC). We aimed to exploit whether and how tumor-intrinsic m6A modification driven by methyltransferase like 3 (METTL3) can dictate the immune landscape of CRC. METHODS Mettl3 knockout mice, CD34+ humanized mice, and different syngeneic mice models were used. Immune cell composition and cytokine level were analyzed by flow cytometry and Cytokine 23-Plex immunoassay, respectively. M6A sequencing and RNA sequencing were performed to identify downstream targets and pathways of METTL3. Human CRC specimens (n = 176) were used to evaluate correlation between METTL3 expression and myeloid-derived suppressor cell (MDSC) infiltration. RESULTS We demonstrated that silencing of METTL3 in CRC cells reduced MDSC accumulation to sustain activation and proliferation of CD4+ and CD8+ T cells, and eventually suppressed CRC in ApcMin/+Mettl3+/- mice, CD34+ humanized mice, and syngeneic mice models. Mechanistically, METTL3 activated the m6A-BHLHE41-CXCL1 axis by analysis of m6A sequencing, RNA sequencing, and cytokine arrays. METTL3 promoted BHLHE41 expression in an m6A-dependent manner, which subsequently induced CXCL1 transcription to enhance MDSC migration in vitro. However, the effect was negligible on BHLHE41 depletion, CXCL1 protein or CXCR2 inhibitor SB265610 administration, inferring that METTL3 promotes MDSC migration via BHLHE41-CXCL1/CXCR2. Consistently, depletion of MDSCs by anti-Gr1 antibody or SB265610 blocked the tumor-promoting effect of METTL3 in vivo. Importantly, targeting METTL3 by METTL3-single guide RNA or specific inhibitor potentiated the effect of anti-programmed cell death protein 1 (anti-PD1) treatment. CONCLUSIONS Our study identifies METTL3 as a potential therapeutic target for CRC immunotherapy whose inhibition reverses immune suppression through the m6A-BHLHE41-CXCL1 axis. METTL3 inhibition plus anti-PD1 treatment shows promising antitumor efficacy against CRC.
Collapse
Affiliation(s)
- Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yasi Pan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Qiming Zhou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Cong Liang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, China
| | - Chi-Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yunfei Zhou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Dan Huang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jianning Zhai
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Hao Su
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Xiaoting Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Hongzhi Xu
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yifei Wang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - William Ka Kei Wu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|