1
|
Song Z, Xue C, Wang H, Gao L, Song H, Yang Y. Development of a centrosome amplification-associated signature in kidney renal clear cell carcinoma based on multiple machine learning models. Comput Biol Chem 2025; 115:108317. [PMID: 39675190 DOI: 10.1016/j.compbiolchem.2024.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Centrosome amplification (CA) has been shown to be capable of initiating tumorigenesis with metastatic potential and enhancing cell invasion. We were interested in discovering how centrosome amplification-associated signature affects the prediction of prognosis and response to therapy in kidney renal clear cell carcinoma (KIRC). METHODS AND MATERIALS The TCGA-KIRC dataset was used to construct a centrosome amplification-associated signature using the random survival forest analysis and Cox regression analysis, and the ICGC and GEO datasets were employed for signature validation. Mutation and immune landscapes were outlined and the response to immunotherapy was evaluated. The expression of the screened hub gene was profiled by analyzing single-cell RNA sequencing from GSE159115. RESULTS In the TCGA-KIRC cohort, 22 centrosome amplification-associated prognostic genes were discovered. According to the optimal consistency index (0.91), the random survival forest algorithm was selected to determine 7 hub prognostic genes, which were used to construct a centrosome amplification-associated prognostic index (CAAPI). It was discovered that it is connected to high mortality rates, high mutation rates, immunosuppressive cell infiltration, and immune dysfunction. For patients in the high CAAPI group, immunotherapy was not as effective. Single-cell RNA sequencing revealed a high expression of CDK5RAP3 in the tumor cells. CONCLUSION Centrosome amplification played a significant role in regulating tumor microenvironment and responding to immunotherapy, emphasizing its crucial importance in the development and treatment of KIRC. Patients with KIRC may benefit from using CAAPI as a biomarker to predict individual prognosis and assess a response to immunotherapy.
Collapse
Affiliation(s)
- Zhen Song
- Department of Pathology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Chunlei Xue
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Hui Wang
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Lijian Gao
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Haibin Song
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Yuanyuan Yang
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China.
| |
Collapse
|
2
|
Yan F, Guo Q, Zheng R, Ying J. Predictive performance of a centrosome-associated prognostic model in prognosis and immunotherapy of lung adenocarcinoma. Anal Biochem 2025; 698:115731. [PMID: 39617159 DOI: 10.1016/j.ab.2024.115731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/11/2024]
Abstract
In recent years, mounting investigations have highlighted the pivotal role of centrosomes in cancer progression. In this study, we employed bioinformatics and statistics to establish a 13-centrosome-associated gene prognostic model for lung adenocarcinoma (LUAD) utilizing transcriptomic data from TCGA. Based on the Riskscore, patients were stratified into high- and low-risk groups. Through survival analysis and receiver operating characteristic curve analysis, our model demonstrated a consistent and robust prognostic capacity, which was further validated using the GEO database. Univariate/multivariate Cox regression analyses identified our model as an independent prognostic factor for LUAD patients. Subsequently, immunoinfiltration analysis showed that immune cell infiltration levels of aDCs, iDCs, Mast cells, and Neutrophils, as well as immune functionalities such as HLA, Type I IFN Response and Type II IFN Response, were markedly reduced in the high-risk group compared to the low-risk group. Finally, we conducted a drug screening to identify potential treatments for patients with different prognoses. We utilized the GDSC database and molecular docking techniques to identify small molecule compounds targeting the prognostic genes. In conclusion, our prognostic model exhibits robust and reliable predictive capability, and it may have important clinical implications in guiding treatment decisions for LUAD patients.
Collapse
Affiliation(s)
- Feng Yan
- Department of Medical Oncology, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, Zhejiang Province, China
| | - Qian Guo
- Department of Medical Oncology, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, Zhejiang Province, China
| | - Rongbing Zheng
- Academician Expert Workstation of Zhejiang Luoxi Medical Technology Co., Ltd., Hangzhou, 311215, China; Zhejiang Luoxi Medical Technology Co., Ltd., Hangzhou, 311215, China.
| | - Jiongming Ying
- Department of Medical Oncology, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, Zhejiang Province, China.
| |
Collapse
|
3
|
Zhuo R, Zhang Z, Chen Y, Li G, Du S, Guo X, Yang R, Tao Y, Li X, Fang F, Xie Y, Wu D, Yang Y, Yang C, Yin H, Qian G, Wang H, Yu J, Jia S, Zhu F, Feng C, Wang J, Xu Y, Li Z, Shi L, Wang X, Pan J, Wang J. CDK5RAP3 is a novel super-enhancer-driven gene activated by master TFs and regulates ER-Phagy in neuroblastoma. Cancer Lett 2024; 591:216882. [PMID: 38636893 DOI: 10.1016/j.canlet.2024.216882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Super enhancers (SEs) are genomic regions comprising multiple closely spaced enhancers, typically occupied by a high density of cell-type-specific master transcription factors (TFs) and frequently enriched in key oncogenes in various tumors, including neuroblastoma (NB), one of the most prevalent malignant solid tumors in children originating from the neural crest. Cyclin-dependent kinase 5 regulatory subunit-associated protein 3 (CDK5RAP3) is a newly identified super-enhancer-driven gene regulated by master TFs in NB; however, its function in NB remains unclear. Through an integrated study of publicly available datasets and microarrays, we observed a significantly elevated CDK5RAP3 expression level in NB, associated with poor patient prognosis. Further research demonstrated that CDK5RAP3 promotes the growth of NB cells, both in vitro and in vivo. Mechanistically, defective CDK5RAP3 interfered with the UFMylation system, thereby triggering endoplasmic reticulum (ER) phagy. Additionally, we provide evidence that CDK5RAP3 maintains the stability of MEIS2, a master TF in NB, and in turn, contributes to the high expression of CDK5RAP3. Overall, our findings shed light on the molecular mechanisms by which CDK5RAP3 promotes tumor progression and suggest that its inhibition may represent a novel therapeutic strategy for NB.
Collapse
Affiliation(s)
- Ran Zhuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China; Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yanling Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Shibei Du
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xinyi Guo
- Department of Infection Management, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Randong Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China; Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yang Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Hairong Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Juanjuan Yu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Siqi Jia
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Frank Zhu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, China
| | - Chenxi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Jianwei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yunyun Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, China
| | - Xiaodong Wang
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China.
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China; Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China.
| |
Collapse
|
4
|
Qiu X, Xu H, Wang K, Gao F, Xu X, He H. P-21 Activated Kinases in Liver Disorders. Cancers (Basel) 2023; 15:cancers15020551. [PMID: 36672500 PMCID: PMC9857091 DOI: 10.3390/cancers15020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The p21 Activated Kinases (PAKs) are serine threonine kinases and play important roles in many biological processes, including cell growth, survival, cytoskeletal organization, migration, and morphology. Recently, PAKs have emerged in the process of liver disorders, including liver cancer, hepatic ischemia-reperfusion injury, hepatitis, and liver fibrosis, owing to their effects in multiple signaling pathways in various cell types. Activation of PAKs promotes liver cancer growth and metastasis and contributes to the resistance of liver cancer to radiotherapy and chemotherapy, leading to poor survival of patients. PAKs also play important roles in the development and progression of hepatitis and other pathological processes of the liver such as fibrosis and ischemia-reperfusion injury. In this review, we have summarized the currently available studies about the role of PAKs in liver disorders and the mechanisms involved, and further explored the potential therapeutic application of PAK inhibitors in liver disorders, with the aim to provide a comprehensive overview on current progress and perspectives of PAKs in liver disorders.
Collapse
Affiliation(s)
- Xun Qiu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hanzhi Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Correspondence: (K.W.); (H.H.)
| | - Fengqiang Gao
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, 145 Studley Rd., Heidelberg, VIC 3084, Australia
- Correspondence: (K.W.); (H.H.)
| |
Collapse
|
5
|
Mozibullah M, Junaid M. Biological Role of the PAK4 Signaling Pathway: A Prospective Therapeutic Target for Multivarious Cancers. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Jing Y, Mao Z, Chen F. UFMylation System: An Emerging Player in Tumorigenesis. Cancers (Basel) 2022; 14:3501. [PMID: 35884562 PMCID: PMC9323365 DOI: 10.3390/cancers14143501] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin-fold modifier 1 (UFM1), a newly identified ubiquitin-like molecule (UBLs), is evolutionarily expressed in multiple species except yeast. Similarly to ubiquitin, UFM1 is covalently attached to its substrates through a well-orchestrated three-step enzymatic reaction involving E1, the UFM1-activating enzyme (ubiquitin-like modifier-activating enzyme 5, UBA5); E2, the UFM1-conjugating enzyme 1 (UFC1); and E3, the UFM1-specific ligase 1 (UFL1). To date, numerous studies have shown that UFM1 modification is implicated in various cellular processes, including endoplasmic reticulum (ER) stress, DNA damage response and erythroid development. An abnormal UFM1 cascade is closely related to a variety of diseases, especially tumors. Herein, we summarize the process and functions of UFM1 modification, illustrating the relationship and mechanisms between aberrant UFMylation and diversified tumors, aiming to provide novel diagnostic biomarkers or therapeutic targets for cancer treatments.
Collapse
Affiliation(s)
| | | | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China; (Y.J.); (Z.M.)
| |
Collapse
|
7
|
Yuan Y, Zhang H, Li D, Li Y, Lin F, Wang Y, Song H, Liu X, Li F, Zhang J. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett 2022; 545:215813. [DOI: 10.1016/j.canlet.2022.215813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|
8
|
Yan H, Xu JJ, Ali I, Zhang W, Jiang M, Li G, Teng Y, Zhu G, Cai Y. CDK5RAP3, an essential regulator of checkpoint, interacts with RPL26 and maintains the stability of cell growth. Cell Prolif 2022; 55:e13240. [PMID: 35509151 PMCID: PMC9136512 DOI: 10.1111/cpr.13240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE AND MATERIALS CDK5RAP3 (CDK5 regulatory subunit associated protein 3) was originally identified as a binding protein of CDK5. It is a crucial gene controlling biological functions, such as cell proliferation, apoptosis, invasion, and metastasis. Although previous studies have also shown that CDK5RAP3 is involved in a variety of signalling pathways, however, the mechanism of CDK5RAP3 remains largely undefined. This study utilized MEFs from conditional knockout mice to inhibit CDK5RAP3 and knockdown CDK5RAP3 in MCF7 to explore the role of CDK5RAP3 in cell growth, mitosis, and cell death. RESULTS CDK5RAP3 was found to be widely distributed throughout the centrosome, spindle, and endoplasmic reticulum, indicating that it is involved in regulating a variety of cellular activities. CDK5RAP3 deficiency resulted in instability of cell growth. CDK5RAP3 deficiency partly blocks the cell cycle in G2 /M by downregulating CDK1 (Cyclin-dependent kinase 1) and CCNB1 (Cyclin B1) expression levels. The cell proliferation rate was decreased, thereby slowing down the cell growth rate. Furthermore, the results showed that CDK5RAP3 interacts with RPL26 (ribosome protein L26) to regulate the mTOR pathway. CDK5RAP3 and RPL26 deficiency inhibited mTOR/p-mTOR protein and induce autophagy, resulting in an upregulation of the percentage of apoptosis, and the upregulated percentage of apoptosis also slowed cell growth. CONCLUSIONS Our experiments show that CDK5RAP3 interacts with RPL26 and maintains the stability of cell growth. It shows that CDK5RAP3 plays an important role in cell growth and can be used as the target of gene medicine.
Collapse
Affiliation(s)
- Hongchen Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jun-Jie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ilyas Ali
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Jiang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiping Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Wang C, Xia J, Lei Y, Lu R, Zhang M, Lv H, Hong Q, Lu T, Chen Y, Li H. Synthesis and biological evaluation of 7H-pyrrolo [2,3-d] pyrimidine derivatives as potential p21-activated kinase 4 (PAK4) inhibitors. Bioorg Med Chem 2022; 60:116700. [PMID: 35272236 DOI: 10.1016/j.bmc.2022.116700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022]
Abstract
PAK4 has been validated as a crucial effector of various signal pathways and play an important role in driving tumor progression. Here, we developed a series of 7H-pyrrolo [2,3-d] pyrimidine derivatives as PAK4 inhibitors. Compounds 5n and 5o showed higher enzymatic inhibitory activities (IC50 = 2.7 and 20.2 nM, respectively) and potent activity (IC50 = 7.8 and 38.3 nM, respectively) against MV4-11 cell line. Further flow cytometry assay revealed that the compound 5n can arrest MV4-11 cells at G0/G1 phase and induce cell apoptosis. Molecular mechanism study indicated that compound 5n regulated the phosphorylation of PAK4 in vitro. The docking study supported that compound 5n binds to PAK4 through various hydrogen bonding interactions and hydrophobic interactions. Thus, compound 5n represents a promising lead for the discovery of PAK4 directed therapeutic agents and may be considered for further drug development.
Collapse
Affiliation(s)
- Cong Wang
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jiawei Xia
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yan Lei
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Rui Lu
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Mingliang Zhang
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - He Lv
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Qianqian Hong
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hongmei Li
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
10
|
ER-phagy in the Occurrence and Development of Cancer. Biomedicines 2022; 10:biomedicines10030707. [PMID: 35327508 PMCID: PMC8945671 DOI: 10.3390/biomedicines10030707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
As an organelle, the endoplasmic reticulum (ER) is closely related to protein synthesis and modification. When physiological or pathological stimuli induce disorders of ER function, misfolded proteins trigger ER-phagy, which is beneficial for restoring cell homeostasis or promoting cell apoptosis. As a double-edged sword, ER-phagy actively participates in various stages of development and progression in tumor cells, regulating tumorigenesis and maintaining tumor cell homeostasis. Through the unfolded protein response (UPR), the B cell lymphoma 2 (BCL-2) protein family, the Caspase signaling pathway, and others, ER-phagy plays an initiating role in tumor occurrence, migration, stemness, and proliferation. At the same time, many vital proteins strongly associated with ER-phagy, such as family with sequence similarity 134 member B (FAM134B), translocation protein SEC62 (SEC62), and C/EBP-homologous protein (CHOP), can produce a marked effect in many complex environments, which ultimately lead to entirely different tumor fates. Our article comprehensively focused on introducing the relationship and interaction between ER-phagy and cancers, as well as their molecular mechanism and regulatory pathways. Via these analyses, we tried to clarify the possibility of ER-phagy as a potential target for cancer therapy and provide ideas for further research.
Collapse
|
11
|
Feng X, Jiang J, Sun L, Zhou Q. CDK5RAP3 acts as a putative tumor inhibitor in papillary thyroid carcinoma via modulation of Akt/GSK-3β/Wnt/β-catenin signaling. Toxicol Appl Pharmacol 2022; 440:115940. [DOI: 10.1016/j.taap.2022.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
|
12
|
Zhou J, Ma X, Xu L, Liang Q, Mao J, Liu J, Wang M, Yuan J, Cong YS. Genomic profiling of the UFMylation family genes identifies UFSP2 as a potential tumour suppressor in colon cancer. Clin Transl Med 2021; 11:e642. [PMID: 34923774 PMCID: PMC8684770 DOI: 10.1002/ctm2.642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 01/16/2023] Open
Affiliation(s)
- Junzhi Zhou
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medicine, Hangzhou Normal University, 2318 Yu hang tang Rd, Hangzhou, Zhejiang, 311121, China
| | - Xiaohe Ma
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medicine, Hangzhou Normal University, 2318 Yu hang tang Rd, Hangzhou, Zhejiang, 311121, China
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medicine, Hangzhou Normal University, 2318 Yu hang tang Rd, Hangzhou, Zhejiang, 311121, China
| | - Qian Liang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medicine, Hangzhou Normal University, 2318 Yu hang tang Rd, Hangzhou, Zhejiang, 311121, China
| | - Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medicine, Hangzhou Normal University, 2318 Yu hang tang Rd, Hangzhou, Zhejiang, 311121, China
| | - Jiang Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medicine, Hangzhou Normal University, 2318 Yu hang tang Rd, Hangzhou, Zhejiang, 311121, China
| | - Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medicine, Hangzhou Normal University, 2318 Yu hang tang Rd, Hangzhou, Zhejiang, 311121, China
| | - Jiao Yuan
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medicine, Hangzhou Normal University, 2318 Yu hang tang Rd, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
13
|
Sheng L, Li J, Rao S, Yang Z, Huang Y. Cyclin-Dependent Kinase 5 Regulatory Subunit Associated Protein 3: Potential Functions and Implications for Development and Disease. Front Oncol 2021; 11:760429. [PMID: 34722315 PMCID: PMC8551632 DOI: 10.3389/fonc.2021.760429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) regulatory subunit associated protein 3 (CDK5RAP3, also named as C53 or LZAP) was initially identified as a binding protein of CDK5 activator p35. To date, CDK5RAP3 has been reported to interact with a range of proteins involved in cellular events ranging from cell cycle, apoptosis, and invasion to UFMylation modification and endoplasmic reticulum stress. Owing to its crucial roles in cellular processes, CDK5RAP3 is demonstrated to be not only an active participant in embryonic and mammalian tissue development, but also a key regulator in the onset and progress of human cancers such as head and neck squamous cell carcinoma, gastric cancer, hepatocellular cancer, lung cancer, kidney cancer and breast cancer. Notwithstanding, the detailed function of CDK5RAP3 and its mechanism remain poorly defined. Here, we briefly described a history of the discovery of CDK5RAP3, and systematically overviewed its gene structural and distribution features. We also focused on the known functions of this protein and its implications for embryogenesis and tissue development, as well as diseases especially carcinoma. This review may facilitate to understand the molecular and functional basis of CDK5RAP3 and its association with development and disease, and provide a reasonable idea for novel therapeutic opportunities targeting CDK5RAP3.
Collapse
Affiliation(s)
- Linna Sheng
- Department of Pathophysiology, Basic Medical College of Nanchang University, Nanchang, China.,Graduate College of Nanchang University, Nanchang, China
| | - Jiaxuan Li
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang, China
| | - Shengfang Rao
- Department of Nuclear Medicine, Nanchang University Hospital, Nanchang, China
| | - Zhijun Yang
- Department of Pathophysiology, Basic Medical College of Nanchang University, Nanchang, China
| | - Yonghong Huang
- Department of Pathophysiology, Basic Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
He L, Qian X, Cui Y. Advances in ER-Phagy and Its Diseases Relevance. Cells 2021; 10:cells10092328. [PMID: 34571977 PMCID: PMC8465915 DOI: 10.3390/cells10092328] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
As an important form of selective autophagy in cells, ER-phagy (endoplasmic reticulum-selective autophagy), the autophagic degradation of endoplasmic reticulum (ER), degrades ER membranes and proteins to maintain cellular homeostasis. The relationship between ER-phagy and human diseases, including neurodegenerative disorders, cancer, and other metabolic diseases has been unveiled by extensive research in recent years. Starting with the catabolic process of ER-phagy and key mediators in this pathway, this paper reviews the advances in the mechanism of ER-phagy and its diseases relevance. We hope to provide some enlightenment for further study on ER-phagy and the development of novel therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Lingang He
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (L.H.); (X.Q.)
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Xuehong Qian
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (L.H.); (X.Q.)
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yixian Cui
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (L.H.); (X.Q.)
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
- Correspondence: ; Tel.: +86-27-87267099
| |
Collapse
|
15
|
Jühling F, Saviano A, Ponsolles C, Heydmann L, Crouchet E, Durand SC, El Saghire H, Felli E, Lindner V, Pessaux P, Pochet N, Schuster C, Verrier ER, Baumert TF. Hepatitis B virus compartmentalization and single-cell differentiation in hepatocellular carcinoma. Life Sci Alliance 2021; 4:4/9/e202101036. [PMID: 34290079 PMCID: PMC8321681 DOI: 10.26508/lsa.202101036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023] Open
Abstract
Single-cell RNA-Seq unravels heterogeneity and compartmentalization of both hepatitis B virus and cancer identifying new candidate pathways for viral hepatocarcinogenesis. Chronic hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC) world-wide. The molecular mechanisms of viral hepatocarcinogenesis are still partially understood. Here, we applied two complementary single-cell RNA-sequencing protocols to investigate HBV–HCC host cell interactions at the single cell level of patient-derived HCC. Computational analyses revealed a marked HCC heterogeneity with a robust and significant correlation between HBV reads and cancer cell differentiation. Viral reads significantly correlated with the expression of HBV-dependency factors such as HLF in different tumor compartments. Analyses of virus-induced host responses identified previously undiscovered pathways mediating viral carcinogenesis, such as E2F- and MYC targets as well as adipogenesis. Mapping of fused HBV–host cell transcripts allowed the characterization of integration sites in individual cancer cells. Collectively, single-cell RNA-Seq unravels heterogeneity and compartmentalization of both, virus and cancer identifying new candidate pathways for viral hepatocarcinogenesis. The perturbation of pro-carcinogenic gene expression even at low HBV levels highlights the need of HBV cure to eliminate HCC risk.
Collapse
Affiliation(s)
- Frank Jühling
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Antonio Saviano
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Clara Ponsolles
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Laura Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Emilie Crouchet
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Sarah C Durand
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Houssein El Saghire
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Emanuele Felli
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Véronique Lindner
- Hôpitaux Universitaires de Strasbourg, Département de Pathologie, Strasbourg, France
| | - Patrick Pessaux
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Nathalie Pochet
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France .,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
16
|
Quintero M, Liu S, Xia Y, Huang Y, Zou Y, Li G, Hu L, Singh N, Blumberg R, Cai Y, Xu H, Li H. Cdk5rap3 is essential for intestinal Paneth cell development and maintenance. Cell Death Dis 2021; 12:131. [PMID: 33504792 PMCID: PMC7841144 DOI: 10.1038/s41419-021-03401-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Intestinal Paneth cells are professional exocrine cells that play crucial roles in maintenance of homeostatic microbiome, modulation of mucosal immunity, and support for stem cell self-renewal. Dysfunction of these cells may lead to the pathogenesis of human diseases such as inflammatory bowel disease (IBD). Cdk5 activator binding protein Cdk5rap3 (also known as C53 and LZAP) was originally identified as a binding protein of Cdk5 activator p35. Although previous studies have indicated its involvement in a wide range of signaling pathways, the physiological function of Cdk5rap3 remains largely undefined. In this study, we found that Cdk5rap3 deficiency resulted in very early embryonic lethality, indicating its indispensable role in embryogenesis. To further investigate its function in the adult tissues and organs, we generated intestinal epithelial cell (IEC)-specific knockout mouse model to examine its role in intestinal development and tissue homeostasis. IEC-specific deletion of Cdk5rap3 led to nearly complete loss of Paneth cells and increased susceptibility to experimentally induced colitis. Interestingly, Cdk5rap3 deficiency resulted in downregulation of key transcription factors Gfi1 and Sox9, indicating its crucial role in Paneth cell fate specification. Furthermore, Cdk5rap3 is highly expressed in mature Paneth cells. Paneth cell-specific knockout of Cdk5rap3 caused partial loss of Paneth cells, while inducible acute deletion of Cdk5rap3 resulted in disassembly of the rough endoplasmic reticulum (RER) and abnormal zymogen granules in the mature Paneth cells, as well as loss of Paneth cells. Together, our results provide definitive evidence for the essential role of Cdk5rap3 in Paneth cell development and maintenance.
Collapse
Affiliation(s)
- Michaela Quintero
- Department of Biochemistry & Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Siyang Liu
- Department of Biochemistry & Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yanhua Xia
- Faculty of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yonghong Huang
- Faculty of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Zou
- Department of Metabolic Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ge Li
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Ling Hu
- Department of Metabolic Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Nagendra Singh
- Department of Biochemistry & Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Richard Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hong Xu
- Faculty of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Honglin Li
- Department of Biochemistry & Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
17
|
Shen Y, Zou Y, Li J, Chen F, Li H, Cai Y. CDK5RAP3, a Novel Nucleoplasmic Shuttle, Deeply Regulates HSF1-Mediated Heat Stress Response and Protects Mammary Epithelial Cells from Heat Injury. Int J Mol Sci 2020; 21:E8400. [PMID: 33182370 PMCID: PMC7664939 DOI: 10.3390/ijms21218400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022] Open
Abstract
CDK5RAP3 was regarded as the most significant regulator of cellular responses against heat stress, which is associated with dysfunctions of the immune system and animal susceptibility to disease. Despite this, little known about how CDK5RAP3 regulates heat stress response. In this study, CDK5RAP3 conditional Knockout (CKO) mice, CDK5RAP3-/- mouse embryo fibroblasts (MEFs) and bovine mammary epithelial cells (BMECs) were used as an in vitro and in vivo model, respectively to reveal the role of CDK5RAP3 in regulating the heat stress response. The deletion of CDK5RAP3 unexpectedly caused animal lethality after 1.5-h heat stimulations. Furthermore, BMECs were re-cultured for eight hours after heat stress and was found that the expression of CDK5RAP3 and HSPs showed a similar fluctuating pattern of increase (0-2, 4-6 h) and decrease (2-4, 6-8 h). In addition to the remarkably enhanced expression of heat shock protein, apoptosis rate and endoplasmic reticulum stress, the deletion of CDK5RAP3 also affected nucleoplasmic translocation and trimer formation of heat shock factor 1 (HSF1). These programs were further confirmed in the mammary gland of CDK5RAP3 CKO mice and CDK5RAP3-/- MEFs as well. Interestingly, genetic silencing of HSF1 downregulated CDK5RAP3 expression in BMECs. Immunostaining and immunoprecipitation studies suggested a physical interaction between CDK5RAP3 and HSF1 being co-localized in the cytoplasm and nucleus. Besides, CDK5RAP3 also interacted with HSP90, suggesting an operative machinery at both transcriptional level and protein functionality of HSP90 per se. Together, our findings suggested that CDK5RAP3 works like a novel nucleoplasmic shuttle or molecular chaperone, deeply participating in HSF1-mediated heat stress response and protecting cells from heat injury.
Collapse
Affiliation(s)
- Yangyang Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (Y.Z.); (F.C.)
| | - Yan Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (Y.Z.); (F.C.)
| | - Jun Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China;
| | - Fanghui Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (Y.Z.); (F.C.)
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (Y.Z.); (F.C.)
| |
Collapse
|
18
|
Xu YY, Shen HB, Murphy RF. Learning complex subcellular distribution patterns of proteins via analysis of immunohistochemistry images. Bioinformatics 2020; 36:1908-1914. [PMID: 31722369 DOI: 10.1093/bioinformatics/btz844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/20/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION Systematic and comprehensive analysis of protein subcellular location as a critical part of proteomics ('location proteomics') has been studied for many years, but annotating protein subcellular locations and understanding variation of the location patterns across various cell types and states is still challenging. RESULTS In this work, we used immunohistochemistry images from the Human Protein Atlas as the source of subcellular location information, and built classification models for the complex protein spatial distribution in normal and cancerous tissues. The models can automatically estimate the fractions of protein in different subcellular locations, and can help to quantify the changes of protein distribution from normal to cancer tissues. In addition, we examined the extent to which different annotated protein pathways and complexes showed similarity in the locations of their member proteins, and then predicted new potential proteins for these networks. AVAILABILITY AND IMPLEMENTATION The dataset and code are available at: www.csbio.sjtu.edu.cn/bioinf/complexsubcellularpatterns. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ying-Ying Xu
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.,Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Robert F Murphy
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
19
|
Lin JX, Yoon C, Li P, Ryeom SW, Cho SJ, Zheng CH, Xie JW, Wang JB, Lu J, Chen QY, Yoon SS, Huang CM. CDK5RAP3 as tumour suppressor negatively regulates self-renewal and invasion and is regulated by ERK1/2 signalling in human gastric cancer. Br J Cancer 2020; 123:1131-1144. [PMID: 32606358 PMCID: PMC7525566 DOI: 10.1038/s41416-020-0963-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Toward identifying new strategies to target gastric cancer stem-like cells (CSCs), we evaluated the function of the tumour suppressor CDK5 regulatory subunit-associated protein 3 (CDK5RAP3) in gastric CSC maintenance. METHODS We examined the expression of CDK5RAP3 and CD44 in gastric cancer patients. The function and mechanisms of CDK5RAP3 were checked in human and mouse gastric cancer cell lines and in mouse xenograft. RESULTS We show that CDK5RAP3 is weakly expressed in gastric CSCs and is negatively correlated with the gastric CSC marker CD44. CDK5RAP3 overexpression decreased expression of CSC markers, spheroid formation, invasion and migration, and reversed chemoresistance in gastric CSCs in vitro and vivo. CDK5RAP3 expression was found to be regulated by extracellular-related kinase (ERK) signalling. ERK inhibitors decreased spheroid formation, migration and invasion, and the expression of epithelial-to-mesenchymal transition (EMT)-related proteins in both GA cells and organoids derived from a genetically engineered mouse model of GA. Finally, CDK5RAP3 expression was associated with reduced lymph-node metastasis and better prognosis, even in the presence of high expression of the EMT transcription factor Snail, among patients with CD44-positive GA. CONCLUSIONS Our results demonstrate that CDK5RAP3 is suppressed by ERK signalling and negatively regulates the self-renewal and EMT of gastric CSCs.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Changhwan Yoon
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Sandra W Ryeom
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Soo-Jeong Cho
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jian-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Sam S Yoon
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
20
|
Dai YF, Lin N, He DQ, Xu M, Zhong LY, He SQ, Guo DH, Li Y, Huang HL, Zheng XQ, Xu LP. LZAP promotes the proliferation and invasiveness of cervical carcinoma cells by targeting AKT and EMT. J Cancer 2020; 11:1625-1633. [PMID: 32047568 PMCID: PMC6995386 DOI: 10.7150/jca.39359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/01/2019] [Indexed: 11/25/2022] Open
Abstract
Objective: To explore the relationship and mechanism of LZAP in the occurrence and development of cervical cancer and to provide a new target and intervention method for the treatment of cervical cancer. Methods: Data mining and analysis of LZAP expression levels were performed using several online databases, including The Cancer Genome Atlas (TCGA). A cervical cancer cell line that stably overexpresses LZAP was established, and the effect of LZAP overexpression on cell proliferation, invasion, migration and tumor formation in vivo as well as its mechanism were explored. Results: Our study shows that the expression of LZAP is upregulated in cervical cancer. The overexpression of LZAP can significantly promote the proliferation, colony formation, and invasion and migration abilities of cervical cancer cells. The tumorigenesis test in nude mice showed that overexpression of LZAP could promote the tumorigenicity of cervical cancer cells in vivo. LZAP could also promote the phosphorylation of AKT at position 473 and the epithelial-mesenchymal transition (EMT). Conclusion: The expression of LAZP is increased in cervical cancer, which can enhance the invasion, metastasis, and EMT in cervical cancer cells by promoting AKT phosphorylation.
Collapse
Affiliation(s)
- Yi-Fang Dai
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Na Lin
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - De-Qin He
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Mu Xu
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Fuzhou 350001, China
| | - Li-Ying Zhong
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Fuzhou 350001, China
| | - Shu-Qiong He
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Dan-Hua Guo
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Ying Li
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Hai-Long Huang
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Xiang-Qing Zheng
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Fuzhou 350001, China
| | - Liang-Pu Xu
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| |
Collapse
|
21
|
Zhou Z, Li Y, Kuang M, Wang X, Jia Q, Cao J, Hu J, Wu S, Wang Z, Xiao J. The CD24 + cell subset promotes invasion and metastasis in human osteosarcoma. EBioMedicine 2020; 51:102598. [PMID: 31901872 PMCID: PMC6948162 DOI: 10.1016/j.ebiom.2019.102598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Osteosarcoma is the most common primary aggressive bone tumor affecting children and young adolescents. Metastases are often resistant to conventional chemotherapy and mean short-term survival. Development of valuable diagnostic indicators and targeting agents will have important implications for clinical diagnosis by the identification and characterization of molecules that contribute to its aggressive behavior. METHODS We examined differential expression levels of common stem cell markers in osteosarcoma parental and sphere cells. In addition, we further analyzed the changes of candidate common stem cell markers before and after in vitro chemotherapy of osteosarcoma cells. The biological functions of CD24+ subpopulation in osteosarcoma such as proliferation, migration, invasion, tumorigenesis and metastasis were systematically investigated, and the correlations of CD24 levels with prognosis in patients with osteosarcoma were analyzed. FINDINGS CD24+ Cells presented characteristics of TICs and resist drug-induced apoptosis. The prevention of tumor formation and metastasis by CD24 knockdown highlights the potential of CD24 as a therapeutic target for osteosarcoma. Moreover, the levels of CD24 in osteosarcoma samples were significantly correlated with the prognosis of patients. INTERPRETATION CD24+ cell subset played an important role in osteosarcoma invasion and metastasis. FUNDING National Natural Science Foundation of China (No.81772857); Shanghai Science and Technology Commission (18140902000); Shanghai Municipal Health Commission (2017ZZ01017; 17411950301).
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200003,China
| | - Yan Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032,China
| | - Muyu Kuang
- Huadong Hospital, Fudan University, Shanghai,200040, China
| | - Xudong Wang
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200003,China
| | - Qi Jia
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200003,China
| | - Jiashi Cao
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200003,China
| | - Jingjing Hu
- Clinical Research Center, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai 200433, China
| | - Sujia Wu
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Region, Nanjing, Jiangsu, 210002, China
| | - Zhiwei Wang
- Department of Orthopedics, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200433, China.
| | - Jianru Xiao
- Department of Orthopaedic Oncology, Changzheng Hospital, Naval Medical University (The Second Military Medical University), Shanghai, 200003,China.
| |
Collapse
|
22
|
Egusquiaguirre SP, Liu S, Tošić I, Jiang K, Walker SR, Nicolais M, Saw TY, Xiang M, Bartel K, Nelson EA, Frank DA. CDK5RAP3 is a co-factor for the oncogenic transcription factor STAT3. Neoplasia 2019; 22:47-59. [PMID: 31765941 PMCID: PMC6881650 DOI: 10.1016/j.neo.2019.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
The transcription factor STAT3 regulates genes governing critical cellular processes such as proliferation, survival, and self-renewal. While STAT3 transcriptional function is activated rapidly and transiently in response to physiologic signals, through a variety of mechanisms it can become constitutively activated in the pathogenesis of cancer. This leads to chronic expression of genes that underlie malignant cellular behavior. However, STAT3 is known to interact with other proteins, which may modulate its function. Understanding these interactions can provide insights into novel aspects of STAT3 function and may also suggest strategies to therapeutically target the large number of cancers driven by constitutively activated STAT3. To identify critical modulators of STAT3 transcriptional function, we performed an RNA-interference based screen in a cell-based system that allows quantitative measurement of STAT3 activity. From this approach, we identified CDK5 kinase regulatory-subunit associated protein 3 (CDK5RAP3) as an enhancer of STAT3-dependent gene expression. We found that STAT3 transcriptional function is modulated by CDK5RAP3 in cancer cells, and silencing CDK5RAP3 reduces STAT3-mediated tumorigenic phenotypes including clonogenesis and migration. Mechanistically, CDK5RAP3 binds to STAT3-regulated genomic loci, in a STAT3-dependent manner. In primary human breast cancers, the expression of CDK5RAP3 expression was associated with STAT3 gene expression signatures as well as the expression of individual STAT3 target genes. These findings reveal a novel aspect of STAT3 transcriptional function and potentially provide both a biomarker of enhanced STAT3-dependent gene expression as well as a unique mechanism to therapeutically target STAT3.
Collapse
Affiliation(s)
- Susana P Egusquiaguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Suhu Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Isidora Tošić
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Kevin Jiang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Sarah R Walker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Maria Nicolais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Tzuen Yih Saw
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Michael Xiang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Katarina Bartel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Erik A Nelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
23
|
Lin JX, Xie XS, Weng XF, Qiu SL, Xie JW, Wang JB, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Li P, Huang CM, Zheng CH. Overexpression of IC53d promotes the proliferation of gastric cancer cells by activating the AKT/GSK3β/cyclin D1 signaling pathway. Oncol Rep 2019; 41:2739-2752. [PMID: 30864700 PMCID: PMC6448126 DOI: 10.3892/or.2019.7042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
Cyclin‑dependent kinase 5 regulatory subunit‑associated protein 3 (CDK5RAP3 or C53) is involved in the development of various types of tumor, and alternative splicing of C53 results in numerous transcription variants that encode different isoforms. The present study aimed to clone human C53 isoform d (IC53d) and explore its role in the proliferation of gastric cancer cells. Reverse transcription‑quantitative polymerase chain reaction was used to detect the expression levels of IC53d in 80 primary gastric adenocarcinoma tissues and adjacent normal tissues. In addition, the association between IC53d and clinicopathological parameters was determined. Gastric cancer cell lines stably overexpressing IC53d were established to observe its effects on cell proliferation, invasion and migration, and on in vivo tumorigenicity, and the mechanism of action was explored. The results of the presen study demonstrated that IC53d was upregulated in gastric cancer tissues and was associated with tumor T‑stage. Furthermore, overexpression of IC53d promoted the proliferation, colony formation and G1/S phase transition of gastric cancer cells, leading to enhancement of tumorigenesis in vitro and in vivo. Overexpression of IC53d also promoted phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3β (GSK3β), which increased the expression of cyclin D1. In addition, high cyclin D1 expression was associated with a significantly worse prognosis for patients compared with in patients with low cyclin D1 expression. These results indicated that IC53d may promote the phosphorylation of AKT and GSK3β, which in turn may increase cyclin D1 expression, enhancing G1/S phase transition, accelerating cell cycle progression, promoting the proliferation of gastric cancer cells, and inducing a poor prognosis in patients with gastric cancer.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Xin-Sheng Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Xiong-Feng Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Sheng-Liang Qiu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
24
|
CDK5RAP3 Participates in Autophagy Regulation and Is Downregulated in Renal Cancer. DISEASE MARKERS 2019; 2019:6171782. [PMID: 31061682 PMCID: PMC6466961 DOI: 10.1155/2019/6171782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/05/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Abstract
Renal cancer is one of the most common malignant urological tumors; however, its diagnosis and treatment are not well established. In the present study, we identified that CDK5 regulatory subunit-associated protein 3 (CDK5RAP3), a putative tumor suppressor in many cancers, was downregulated in renal cancer tissues. Through loss- and gain-of-function experiments, we observed that the action of CDK5RAP3 in renal cancer cells was different in Caki-1 and 769-P cell lines. Knockdown of endogenous CDK5RAP3 in Caki-1 slightly increased cell viability, whereas overexpression of CDK5RAP3 in 769-P cells inhibited cell viability. In addition, we observed that CDK5RAP3 participated in the regulation of autophagy in renal cancer. Knockdown of CDK5RAP3 induced significant inhibition of autophagy in Caki-1 cells but not in 769-P cells. In contrast, overexpression of CDK5RAP3 significantly activated autophagy in 769-P cells, as evidenced by increased LC3-II levels. However, the LC3-II could not be altered by CDK5RAP3 overexpression in Caki-1 cells. These findings demonstrated that CDK5RAP3 is downregulated in renal cancer and may be associated with autophagy.
Collapse
|
25
|
Yang R, Wang H, Kang B, Chen B, Shi Y, Yang S, Sun L, Liu Y, Xiao W, Zhang T, Yang J, Zhang Y, Zhu M, Xu P, Chang Y, Jia Y, Huang Y. CDK5RAP3, a UFL1 substrate adaptor, is crucial for liver development. Development 2019; 146:dev.169235. [PMID: 30635284 DOI: 10.1242/dev.169235] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022]
Abstract
Protein modification by ubiquitin and ubiquitin-like proteins (UBLs) regulates numerous biological functions. The UFM1 system, a novel UBL conjugation system, is implicated in mouse development and hematopoiesis. However, its broad biological functions and working mechanisms remain largely elusive. CDK5RAP3, a possible ufmylation substrate, is essential for epiboly and gastrulation in zebrafish. Herein, we report a crucial role of CDK5RAP3 in liver development and hepatic functions. Cdk5rap3 knockout mice displayed prenatal lethality with severe liver hypoplasia, as characterized by delayed proliferation and compromised differentiation. Hepatocyte-specific Cdk5rap3 knockout mice suffered post-weaning lethality, owing to serious hypoglycemia and impaired lipid metabolism. Depletion of CDK5RAP3 triggered endoplasmic reticulum stress and activated unfolded protein responses in hepatocytes. We detected the in vivo interaction of CDK5RAP3 with UFL1, the defined E3 ligase in ufmylation. Notably, loss of CDK5RAP3 altered the ufmylation profile in liver cells, suggesting that CDK5RAP3 serves as a novel substrate adaptor for this UBL modification. Collectively, our study identifies CDK5RAP3 as an important regulator of ufmylation and suggests the involvement of ufmylation in mammalian development.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Huanmin Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Boxi Kang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Bin Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yaoyao Shi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100005, China
| | - Shuchun Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lihong Sun
- Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yufang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Weidi Xiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Juntao Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ye Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Mingzhao Zhu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100005, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yongsheng Chang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yuyan Jia
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China .,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China .,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
26
|
Lin JX, Xie XS, Weng XF, Zheng CH, Xie JW, Wang JB, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Li P, Huang CM. Low expression of CDK5RAP3 and DDRGK1 indicates a poor prognosis in patients with gastric cancer. World J Gastroenterol 2018; 24:3898-3907. [PMID: 30228783 PMCID: PMC6141336 DOI: 10.3748/wjg.v24.i34.3898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of different levels of expression of CDK5RAP3 and DDRGK1 on long-term survival of patients undergoing radical gastrectomy. METHODS The expression of CDK5RAP3 and DDRGK1 was detected by immunohistochemistry in 135 patients who received standard gastrectomy were enrolled in the study. Western Blot was used to detect the expression of CDK5RAP3 and DDRGK1 in gastric cancer and its adjacent tissues and cell lines. The correlations between the expression of CDK5RAP3 and DDRGK1 and clinicopathological factors were analyzed, and the value of each parameter to the prognosis of the patients was compared. Receiver operating characteristic analysis was used to compare the accuracy of the prediction of clinical outcome by the parameters. RESULTS CDK5RAP3 and DDRGK1 expression was down-regulated in the gastric cancer compared to its respective adjacent non-tumor tissues. The expression of CDK5RAP3 was closely related to the age of the patients (P = 0.035) and the T stage of the tumor (P = 0.017). The expression of DDRGK1 was correlated with the sex of the patients (P = 0.080), the degree of tumor differentiation (P = 0.036), the histological type (P = 0.036) and the N stage of the tumor (P = 0.014). Low expression CDK5RAP3 or DDRGK1 is a poor prognostic factor for gastric cancer patients. Prognostic analysis showed that the co-expression of CDK5RAP3 and DDRGK1 was an independent prognostic factor correlating with the overall survival of gastric cancer patients. Combined expression analysis of CDK5RAP3 and DDRGK1 may provide a more accurate prognostic value for overall survival. CONCLUSION The co-expression of CDK5RAP3 and DDRGK1 is an independent prognostic factor for gastric cancer, which can provide a more accurate model for the long-term prognosis.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Xin-Sheng Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Xiong-Feng Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| |
Collapse
|
27
|
Haworth S, Shungin D, van der Tas JT, Vucic S, Medina-Gomez C, Yakimov V, Feenstra B, Shaffer JR, Lee MK, Standl M, Thiering E, Wang C, Bønnelykke K, Waage J, Jessen LE, Nørrisgaard PE, Joro R, Seppälä I, Raitakari O, Dudding T, Grgic O, Ongkosuwito E, Vierola A, Eloranta AM, West NX, Thomas SJ, McNeil DW, Levy SM, Slayton R, Nohr EA, Lehtimäki T, Lakka T, Bisgaard H, Pennell C, Kühnisch J, Marazita ML, Melbye M, Geller F, Rivadeneira F, Wolvius EB, Franks PW, Johansson I, Timpson NJ. Consortium-based genome-wide meta-analysis for childhood dental caries traits. Hum Mol Genet 2018; 27:3113-3127. [PMID: 29931343 PMCID: PMC6097157 DOI: 10.1093/hmg/ddy237] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/29/2018] [Accepted: 06/14/2018] [Indexed: 12/26/2022] Open
Abstract
Prior studies suggest dental caries traits in children and adolescents are partially heritable, but there has been no large-scale consortium genome-wide association study (GWAS) to date. We therefore performed GWAS for caries in participants aged 2.5-18.0 years from nine contributing centres. Phenotype definitions were created for the presence or absence of treated or untreated caries, stratified by primary and permanent dentition. All studies tested for association between caries and genotype dosage and the results were combined using fixed-effects meta-analysis. Analysis included up to 19 003 individuals (7530 affected) for primary teeth and 13 353 individuals (5875 affected) for permanent teeth. Evidence for association with caries status was observed at rs1594318-C for primary teeth [intronic within ALLC, odds ratio (OR) 0.85, effect allele frequency (EAF) 0.60, P 4.13e-8] and rs7738851-A (intronic within NEDD9, OR 1.28, EAF 0.85, P 1.63e-8) for permanent teeth. Consortium-wide estimated heritability of caries was low [h2 of 1% (95% CI: 0%: 7%) and 6% (95% CI 0%: 13%) for primary and permanent dentitions, respectively] compared with corresponding within-study estimates [h2 of 28% (95% CI: 9%: 48%) and 17% (95% CI: 2%: 31%)] or previously published estimates. This study was designed to identify common genetic variants with modest effects which are consistent across different populations. We found few single variants associated with caries status under these assumptions. Phenotypic heterogeneity between cohorts and limited statistical power will have contributed; these findings could also reflect complexity not captured by our study design, such as genetic effects which are conditional on environmental exposure.
Collapse
Affiliation(s)
- Simon Haworth
- Medical Research Council Integrative Epidemiology Unit at Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Dmitry Shungin
- Department of Odontology, Umeå University, Umeå 901 87, Sweden
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Justin T van der Tas
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
| | - Strahinja Vucic
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
| | - Carolina Medina-Gomez
- The Generation R Study Group
- Department of Internal Medicine
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands
| | - Victor Yakimov
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | - John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Elisabeth Thiering
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Division of Metabolic and Nutritional Medicine, Dr von Hauner Children's Hospital, University of Munich Medical Center, Munich 80337, Germany
| | - Carol Wang
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth WA 6009, Australia
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Johannes Waage
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Leon Eyrich Jessen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Pia Elisabeth Nørrisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Raimo Joro
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere - Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33520, Finland
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland
| | - Tom Dudding
- Medical Research Council Integrative Epidemiology Unit at Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Olja Grgic
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
- The Generation R Study Group
| | | | - Anu Vierola
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
| | - Aino-Maija Eloranta
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
| | - Nicola X West
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK
| | - Steven J Thomas
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK
| | - Daniel W McNeil
- Department of Psychology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WA 26506-6286, USA
| | - Steven M Levy
- Department of Preventive and Community Dentistry, College of Dentistry, University of Iowa, Cedar Rapids, IA 52242-1010, USA
| | - Rebecca Slayton
- Department of Pediatric Dentistry (Retired), School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Ellen A Nohr
- Research Unit for Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere - Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33520, Finland
| | - Timo Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio 70210, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio 70100, Finland
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Craig Pennell
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth WA 6009, Australia
| | - Jan Kühnisch
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-Universität München, Munich 80336, Germany
| | - Mary L Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | - Fernando Rivadeneira
- The Generation R Study Group
- Department of Internal Medicine
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands
| | - Eppo B Wolvius
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö 202 13, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå 901 85, Sweden
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Nicholas J Timpson
- Medical Research Council Integrative Epidemiology Unit at Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| |
Collapse
|
28
|
|
29
|
Zheng CH, Wang JB, Lin MQ, Zhang PY, Liu LC, Lin JX, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Xie JW, Li P, Huang CM. CDK5RAP3 suppresses Wnt/β-catenin signaling by inhibiting AKT phosphorylation in gastric cancer. J Exp Clin Cancer Res 2018; 37:59. [PMID: 29540196 PMCID: PMC5852959 DOI: 10.1186/s13046-018-0716-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/21/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND CDK5RAP3 was initially isolated as a binding protein of the CDK5 activator p35. Although CDK5RAP3 has been shown to negatively regulate the Wnt/β-catenin signaling pathway in gastric cancer by repressing GSK-3β phosphorylation, its in-depth mechanism has not been determined. METHODS Following CDK5RAP3 overexpression or knock down, CDK5RAP3 signaling pathways were investigated in gastric cancer cells by Western Blotting. Cell growth, invasion and migration were also evaluated in gastric cancer cell lines. We analyzed CDK5RAP3, AKT, p-AKT (Ser473), GSK-3β and p-GSK-3β (Ser9) expression in gastric tumor samples and adjacent non-tumor tissues from 295 patients using immunohistochemistry and Western Blotting. The prognostic significance of CDK5RAP3 and p-AKT (Ser473) was confirmed by a Log-rank test. RESULTS Our study demonstrated that the expression of p-AKT (Ser473) and p-GSK-3β (Ser9) was negatively correlated with CDK5RAP3 in stable gastric cancer cell lines. CDK5RAP3 repressed AKT phosphorylation, which promoted GSK-3β phosphorylation, thereby suppressing β-catenin protein expression and, consequently, gastric cancer. The protein level of CDK5RAP3 was markedly decreased in most gastric tumor tissues compared with adjacent non-tumor tissues, and the levels of p-AKT (Ser473) and p-GSK-3β (Ser9) were also negatively correlated with those of CDK5RAP3. The prognostic value of CDK5RAP3 for overall survival was found to be dependent on AKT phosphorylation. CONCLUSION Our results demonstrated that CDK5RAP3 negatively regulates the Wnt/β-catenin signaling pathway by repressing AKT phosphorylation, which leads to better survival of patients with gastric cancer.
Collapse
Affiliation(s)
- Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Man-Qiang Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Peng-Yang Zhang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Li-Chao Liu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
30
|
Ren Y, Jia HH, Xu YQ, Zhou X, Zhao XH, Wang YF, Song X, Zhu ZY, Sun T, Dou Y, Tian WP, Zhao XL, Kang CS, Mei M. Paracrine and epigenetic control of CAF-induced metastasis: the role of HOTAIR stimulated by TGF-ß1 secretion. Mol Cancer 2018; 17:5. [PMID: 29325547 PMCID: PMC5765658 DOI: 10.1186/s12943-018-0758-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/02/2018] [Indexed: 01/05/2023] Open
Abstract
Background The communication between carcinoma associated fibroblasts (CAFs) and cancer cells facilitate tumor metastasis. In this study, we further underlying the epigenetic mechanisms of CAFs feed the cancer cells and the molecular mediators involved in these processes. Methods MCF-7 and MDA-MB-231 cells were treated with CAFs culture conditioned medium, respectively. Cytokine antibody array, enzyme-linked immunosorbent assay, western blotting and immunofluorescence were used to identify the key chemokines. Chromatin immunoprecipitation and luciferase reporter assay were performed to explore the transactivation of target LncRNA by CAFs. A series of in vitro assays was performed with RNAi-mediated knockdown to elucidate the function of LncRNA. An orthotopic mouse model of MDA-MB-231 was conducted to confirm the mechanism in vivo. Results Here we reported that TGF-β1 was top one highest level of cytokine secreted by CAFs as revealed by cytokine antibody array. Paracrine TGF-β1 was essential for CAFs induced EMT and metastasis in breast cancer cells, which is a crucial mediator of the interaction between stromal and cancer cells. CAF-CM significantly enhanced the HOTAIR expression to promote EMT, whereas treatment with small-molecule inhibitors of TGF-β1 attenuated the activation of HOTAIR. Most importantly, SMAD2/3/4 directly bound the promoter site of HOTAIR, located between nucleotides -386 and -398, -440 and -452, suggesting that HOTAIR was a directly transcriptional target of SMAD2/3/4. Additionally, CAFs mediated EMT by targeting CDK5 signaling through H3K27 tri-methylation. Depletion of HOTAIR inhibited CAFs-induced tumor growth and lung metastasis in MDA-MB-231 orthotopic animal model. Conclusions Our findings demonstrated that CAFs promoted the metastatic activity of breast cancer cells by activating the transcription of HOTAIR via TGF-β1 secretion, supporting the pursuit of the TGF-β1/HOTAIR axis as a target in breast cancer treatment. Electronic supplementary material The online version of this article (10.1186/s12943-018-0758-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Ren
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Huan-Huan Jia
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yi-Qi Xu
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xuan Zhou
- Department of Head and Neck, Tianjin Medical University Cancer Hospital, Tianjin, 300060, China
| | - Xiao-Hui Zhao
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yun-Fei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Lab of Neuro- oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Xin Song
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi-Yan Zhu
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ting Sun
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yan Dou
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wei-Ping Tian
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiu-Lan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Chun-Sheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Lab of Neuro- oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Mei Mei
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
31
|
Affiliation(s)
- Jialiang Wang
- a Department of Neurological Surgery, Cancer Biology and Pharmacology , Vanderbilt University Medical Center , Nashville , TN, USA
| |
Collapse
|
32
|
Zhao M, Spiess M, Johansson HJ, Olofsson H, Hu J, Lehtiö J, Strömblad S. Identification of the PAK4 interactome reveals PAK4 phosphorylation of N-WASP and promotion of Arp2/3-dependent actin polymerization. Oncotarget 2017; 8:77061-77074. [PMID: 29100370 PMCID: PMC5652764 DOI: 10.18632/oncotarget.20352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022] Open
Abstract
p21-activated kinase 4 (PAK4) regulates cell proliferation, apoptosis, cell motility and F-actin remodeling, but the PAK4 interactome has not been systematically analyzed. Here, we comprehensively characterized the human PAK4 interactome by iTRAQ quantitative mass spectrometry of PAK4-immunoprecipitations. Consistent with its multiple reported functions, the PAK4 interactome was enriched in diverse protein networks, including the 14-3-3, proteasome, replication fork, CCT and Arp2/3 complexes. Because PAK4 co-immunoprecipitated most subunits of the Arp2/3 complex, we hypothesized that PAK4 may play a role in Arp2/3 dependent actin regulation. Indeed, we found that PAK4 interacts with and phosphorylates the nucleation promoting factor N-WASP at Ser484/Ser485 and promotes Arp2/3-dependent actin polymerization in vitro. Also, PAK4 ablation in vivo reduced N-WASP Ser484/Ser485 phosphorylation and altered the cellular balance between G- and F-actin as well as the actin organization. By presenting the PAK4 interactome, we here provide a powerful resource for further investigations and as proof of principle, we also indicate a novel mechanism by which PAK4 regulates actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Miao Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Matthias Spiess
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Henrik J Johansson
- Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Helene Olofsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Jianjiang Hu
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Janne Lehtiö
- Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
He W, Zhao Z, Anees A, Li Y, Ashraf U, Chen Z, Song Y, Chen H, Cao S, Ye J. p21-Activated Kinase 4 Signaling Promotes Japanese Encephalitis Virus-Mediated Inflammation in Astrocytes. Front Cell Infect Microbiol 2017; 7:271. [PMID: 28680855 PMCID: PMC5478680 DOI: 10.3389/fcimb.2017.00271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/06/2017] [Indexed: 01/11/2023] Open
Abstract
Japanese encephalitis virus (JEV) targets central nervous system, resulting in neuroinflammation with typical features of neuronal death along with hyper activation of glial cells. Exploring the mechanisms responsible for the JEV-caused inflammatory response remains a pivotal area of research. In the present study, we have explored the function of p21-activated kinase 4 (PAK4) in JEV-mediated inflammatory response in human astrocytes. The results showed that JEV infection enhances the phosphorylation of PAK4 in U251 cells and mouse brain. Knockdown of PAK4 resulted in decreased expression of inflammatory cytokines that include tumor necrosis factor alpha, interleukin-6, interleukin-1β, and chemokine (C-C motif) ligand 5 and interferon β upon JEV infection, suggesting that PAK4 signaling promotes JEV-mediated inflammation. In addition, we found that knockdown of PAK4 led to the inhibition of MAPK signaling including ERK, p38 MAPK and JNK, and also resulted in the reduced nuclear translocation of NF-κB and phosphorylation of AP-1. These results demonstrate that PAK4 signaling actively promotes JEV-mediated inflammation in human astrocytes via MAPK-NF-κB/AP-1 pathway, which will provide a new insight into the molecular mechanism of the JEV-induced inflammatory response.
Collapse
Affiliation(s)
- Wen He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Zikai Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Awais Anees
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Yunchuan Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Zheng Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China.,College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
34
|
Sheng N, Tan G, You W, Chen H, Gong J, Chen D, Zhang H, Wang Z. MiR-145 inhibits human colorectal cancer cell migration and invasion via PAK4-dependent pathway. Cancer Med 2017; 6:1331-1340. [PMID: 28440035 PMCID: PMC5463071 DOI: 10.1002/cam4.1029] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 01/05/2023] Open
Abstract
MicroRNA-145 (miR-145), as a tumor-suppressive miRNA, has been demonstrated down-regulated in colorectal cancer (CRC) cells, and could inhibit CRC cells growth. However, the molecular pathway in which miR-145 modulates CRC malignant transformation has not been fully revealed. Here, we reported an intense correlation between the expressions of PAK4 and miR-145 in human CRC cell lines. Transwell assay verified overexpression of miR-145, as well as knockdown of PAK4, significantly suppressed cell migration and invasion ability. The impaired migration and invasion ability of SW1116 cells was affected through the down-regulation of phosphorylation level of LIMK1 and cofilin in a PAK4-dependent manner. Collectively, we have demonstrated that miR-145 suppressed CRC migration and invasion through PAK4 pathway, which provides an attractive microRNA-based therapeutic target for CRC.
Collapse
Affiliation(s)
- Nengquan Sheng
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Gewen Tan
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Weiqiang You
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Hongqi Chen
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Jianfeng Gong
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Di Chen
- National Key Laboratory of Science and Technology on Nano/Micro Fabrication TechnologyResearch Institute Micro/Nano Science and TechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Huizhen Zhang
- Department of PathologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Zhigang Wang
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| |
Collapse
|
35
|
Lu SX, Zhang CZ, Luo RZ, Wang CH, Liu LL, Fu J, Zhang L, Wang H, Xie D, Yun JP. Zic2 promotes tumor growth and metastasis via PAK4 in hepatocellular carcinoma. Cancer Lett 2017; 402:71-80. [PMID: 28577975 DOI: 10.1016/j.canlet.2017.05.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/04/2017] [Accepted: 05/24/2017] [Indexed: 12/26/2022]
Abstract
The dysregulation of transcription factors contributes to the unlimited growth of cancer cells. Zic2 has been shown to be crucial to the progression of human cancers. However, its role in hepatocellular carcinoma (HCC) remains unclear. Our data showed that Zic2 expression gradually increased from normal to cancer to metastatic tissues. Zic2 overexpression promoted, whereas Zic2 knockdown inhibited, cell proliferation and migration in vitro as well as tumor growth and metastasis in vivo. Gene microarray results indicated that PAK4 was a potential target of Zic2. The knockdown of Zic2 decreased, whereas Zic2 re-expression increased, the expression of PAK4. ChIP and luciferase assays indicated that Zic2 directly bound to the PAK4 promoter and modulated its activity. PAK4 interference attenuated Zic2-mediated cell growth via modulating the Raf/MEK/ERK pathway. In a cohort of 615 patients, Zic2 was positively correlated with PAK4 and associated with worse overall and disease-free survival. Multivariate analyses revealed that Zic2 and PAK4 were independent indicators of a poor outcome in HCC. In addition, Zic2 expression was inversely correlated with miR-1271 expression. Re-introduction of miR-1271 attenuated Zic2-promoted cell proliferation and migration. Taken together, our findings suggest that the newly identified miR-1271/Zic2/PAK4 axis plays an important role in HCC progression and may serve as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Shi-Xun Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chris Zhiyi Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rong-Zhen Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chun-Hua Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Li-Li Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jia Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Lanjing Zhang
- Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ, USA; Rutgers University, Newark, NJ, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jing-Ping Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
36
|
Wang JB, Wang ZW, Li Y, Huang CQ, Zheng CH, Li P, Xie JW, Lin JX, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Lin Y, Huang CM. CDK5RAP3 acts as a tumor suppressor in gastric cancer through inhibition of β-catenin signaling. Cancer Lett 2017; 385:188-197. [PMID: 27793695 DOI: 10.1016/j.canlet.2016.10.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
CDK5RAP3 was isolated as a binding protein of the Cdk5 activator p35. Although CDK5RAP3 has been implicated in cancer progression, its expression and function have not been investigated in gastric cancer. Our study demonstrated that the mRNA and protein levels of CDK5RAP3 were markedly decreased in gastric tumor tissues when compared with respective adjacent non-tumor tissues. CDK5RAP3 in gastric cancer cells significantly reduced cell proliferation, migration, invasion and tumor xenograft growth through inhibition of β-catenin. Secondly, CDK5RAP3 was found to suppress the phosphorylation of GSK-3β (Ser9), leading to the phosphorylation (Ser37/Thr41) and subsequent degradation of β-catenin. Lastly, the prognostic value of CDK5RAP3 for overall survival was found to be dependent on β-catenin cytoplasm/nucleus localization in human gastric cancer samples. Collectively, our results demonstrated that CDK5RAP3 negatively regulates the β-catenin signaling pathway by repressing GSK-3β phosphorylation and could be a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Zu-Wei Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Yun Li
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Chao-Qun Huang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, People's Republic of China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China
| | - Yao Lin
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, People's Republic of China.
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, Fujian Province, People's Republic of China.
| |
Collapse
|
37
|
Wamsley JJ, Issaeva N, An H, Lu X, Donehower LA, Yarbrough WG. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle 2016; 16:213-223. [PMID: 28027003 DOI: 10.1080/15384101.2016.1261767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The phosphatase Wip1 attenuates the DNA damage response (DDR) by removing phosphorylation marks from a number of DDR proteins (p53, MDM2, Chk1/2, p38). Wip1 also dephosphorylates and inactivates RelA. Notably, LZAP, a putative tumor suppressor, has been linked to dephosphorylation of several of these substrates, including RelA, p38, Chk1, and Chk2. LZAP has no known catalytic activity or functional motifs, suggesting that it exerts its effects through interaction with other proteins. Here we show that LZAP binds Wip1 and stimulates its phosphatase activity. LZAP had been previously shown to bind many Wip1 substrates (RelA, p38, Chk1/2), and our results show that LZAP also binds the previously identified Wip1 substrate, MDM2. This work identifies 2 novel Wip1 substrates, ERK1 and HuR, and demonstrates that HuR is a binding partner of LZAP. Pleasingly, LZAP potentiated Wip1 catalytic activity toward each substrate tested, regardless of whether full-length substrates or phosphopeptides were utilized. Since this effect was observed on ERK1, which does not bind LZAP, as well as for each of 7 peptides tested, we hypothesize that LZAP binding to the substrate is not required for this effect and that LZAP directly binds Wip1 to augment its phosphatase activity.
Collapse
Affiliation(s)
- J Jacob Wamsley
- a Department of Surgery, Division of Otolaryngology , Yale University , New Haven , CT , USA
| | - Natalia Issaeva
- a Department of Surgery, Division of Otolaryngology , Yale University , New Haven , CT , USA.,b Yale Cancer Center, Yale University , New Haven , CT , USA
| | - Hanbing An
- c Department of Surgery , Vanderbilt University , Nashville , TN , USA
| | - Xinyuan Lu
- d Department of Medicine , University of California San Francisco , San Francisco , CA , USA
| | - Lawrence A Donehower
- e Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA
| | - Wendell G Yarbrough
- a Department of Surgery, Division of Otolaryngology , Yale University , New Haven , CT , USA.,b Yale Cancer Center, Yale University , New Haven , CT , USA.,f Department of Pathology , Yale University , New Haven , CT , USA
| |
Collapse
|
38
|
Xu HT, Lai WL, Liu HF, Wong LLY, Ng IOL, Ching YP. PAK4 Phosphorylates p53 at Serine 215 to Promote Liver Cancer Metastasis. Cancer Res 2016; 76:5732-5742. [DOI: 10.1158/0008-5472.can-15-3373] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/13/2016] [Indexed: 11/16/2022]
|
39
|
Kumar R, Li DQ. PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv Cancer Res 2016; 130:137-209. [PMID: 27037753 DOI: 10.1016/bs.acr.2016.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the initial recognition of a mechanistic role of p21-activated kinase 1 (PAK1) in breast cancer invasion, PAK1 has emerged as one of the widely overexpressed or hyperactivated kinases in human cancer at-large, allowing the PAK family to make in-roads in cancer biology, tumorigenesis, and cancer therapeutics. Much of our current understanding of the PAK family in cancer progression relates to a central role of the PAK family in the integration of cancer-promoting signals from cell membrane receptors as well as function as a key nexus-modifier of complex, cytoplasmic signaling network. Another core aspect of PAK signaling that highlights its importance in cancer progression is through PAK's central role in the cross talk with signaling and interacting proteins, as well as PAK's position as a key player in the phosphorylation of effector substrates to engage downstream components that ultimately leads to the development cancerous phenotypes. Here we provide a comprehensive review of the recent advances in PAK cancer research and its downstream substrates in the context of invasion, nuclear signaling and localization, gene expression, and DNA damage response. We discuss how a deeper understanding of PAK1's pathobiology over the years has widened research interest to the PAK family and human cancer, and positioning the PAK family as a promising cancer therapeutic target either alone or in combination with other therapies. With many landmark findings and leaps in the progress of PAK cancer research since the infancy of this field nearly 20 years ago, we also discuss postulated advances in the coming decade as the PAK family continues to shape the future of oncobiology.
Collapse
Affiliation(s)
- R Kumar
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States; Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram, India.
| | - D-Q Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
40
|
Tyagi N, Marimuthu S, Bhardwaj A, Deshmukh SK, Srivastava SK, Singh AP, McClellan S, Carter JE, Singh S. p-21 activated kinase 4 (PAK4) maintains stem cell-like phenotypes in pancreatic cancer cells through activation of STAT3 signaling. Cancer Lett 2016; 370:260-267. [PMID: 26546043 PMCID: PMC4684758 DOI: 10.1016/j.canlet.2015.10.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) remains a highly lethal malignancy due to its unusual chemoresistance and high aggressiveness. A subpopulation of pancreatic tumor cells, known as cancer stem cells (CSCs), is considered responsible not only for tumor-maintenance, but also for its widespread metastasis and therapeutic failure. Here we investigated the role of p-21 activated kinase 4 (PAK4) in driving PC stemness properties. Our data demonstrate that triple-positive (CD24(+)/CD44(+)/EpCAM(+)) subpopulation of pancreatic CSCs exhibits greater level of PAK4 as compared to triple-negative (CD24(-)/CD44(-)/EpCAM(-)) cells. Moreover, PAK4 silencing in PC cells leads to diminished fraction of CD24, CD44, and EpCAM positive cells. Furthermore, we show that PAK4-silenced PC cells exhibit decreased sphere-forming ability and increased chemosensitivity to gemcitabine toxicity. PAK4 expression is also associated with enhanced levels of stemness-associated transcription factors (Oct4/Nanog/Sox2 and KLF4). Furthermore, our data show decreased nuclear accumulation and transcriptional activity of STAT3 in PAK4-silenced PC cells and restitution of its activity leads to restoration of stem cell phenotypes. Together, our findings deliver first experimental evidence for the involvement of PAK4 in PC stemness and support its clinical utility as a novel therapeutic target in PC.
Collapse
Affiliation(s)
- Nikhil Tyagi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Saravanakumar Marimuthu
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Sachin K Deshmukh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | - Steven McClellan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - James E Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA.
| |
Collapse
|
41
|
Shao YG, Ning K, Li F. Group II p21-activated kinases as therapeutic targets in gastrointestinal cancer. World J Gastroenterol 2016; 22:1224-1235. [PMID: 26811660 PMCID: PMC4716033 DOI: 10.3748/wjg.v22.i3.1224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/17/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
P21-activated kinases (PAKs) are central players in various oncogenic signaling pathways. The six PAK family members are classified into group I (PAK1-3) and group II (PAK4-6). Focus is currently shifting from group I PAKs to group II PAKs. Group II PAKs play important roles in many fundamental cellular processes, some of which have particular significance in the development and progression of cancer. Because of their important functions, group II PAKs have become popular potential drug target candidates. However, few group II PAKs inhibitors have been reported, and most do not exhibit satisfactory kinase selectivity and “drug-like” properties. Isoform- and kinase-selective PAK inhibitors remain to be developed. This review describes the biological activities of group II PAKs, the importance of group II PAKs in the development and progression of gastrointestinal cancer, and small-molecule inhibitors of group II PAKs for the treatment of cancer.
Collapse
|
42
|
PAK4 confers the malignance of cervical cancers and contributes to the cisplatin-resistance in cervical cancer cells via PI3K/AKT pathway. Diagn Pathol 2015; 10:177. [PMID: 26411419 PMCID: PMC4584462 DOI: 10.1186/s13000-015-0404-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/28/2015] [Indexed: 01/16/2023] Open
Abstract
Background Multiple protein or microRNA markers have been recognized to contribute to the progression and recurrence of cervical cancers. Particular those, which are associated with the chemo- or radio-resistance of cervical cancers, have been proposed to be promising and to facilitate the definition for cervical cancer treatment options. Methods This study was designed to explore the potential prognosis value of p21-activated kinase (PAK)-4 in cervical cancer, via the Kaplan–Meier analysis, log-rank test and Cox regression analysis, and then to investigate the regulatory role of PAK4 in the cisplatin resistance in cervical cancer cells, via the strategies of both PAK4 overexpression and PAK4 knockout. Results It was demonstrated that PAK4 was upregulated in cervical cancer tissues, in an association with the cancer’s malignance variables such as FIGO stage, lymph node or distant metastasis and the poor histological grade. The high PAK4 expression was also independently associated with poor prognosis to cervical cancer patients. Moreover, PAK4 confers cisplatin resistance in cervical cancer Hela or Caski cells. In addition, the PI3K/Akt pathway has been implicated in the PAK4-confered cisplatin resistance. And the PI3K/Akt inhibitor, LY294002, markedly deteriorated the cisplatin-mediated viability reduction of Hela or Caski cells, indicating the involvement of PI3K/Akt pathway in the cisplatin resistance in cervical cancer cells. Conclusion This study has confirmed the significant prognostic role of PAK4 level in cervical cancer patients and has recognized the regulatory role in cervical cancer progression. Moreover, our study has indicated that PAK4 also confers the chemoresistance of cervical cancer cells in a PI3K/Akt-dependent way. Thus, our study indicates PAK4 as a promising marker for cervical cancer treatment.
Collapse
|
43
|
Li SQ, Wang ZH, Mi XG, Liu L, Tan Y. MiR-199a/b-3p suppresses migration and invasion of breast cancer cells by downregulating PAK4/MEK/ERK signaling pathway. IUBMB Life 2015; 67:768-77. [PMID: 26399456 DOI: 10.1002/iub.1433] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/07/2015] [Indexed: 12/19/2022]
Abstract
MicroRNA-199a/b-3p is downregulated in several types of aggressive cancer, and its decrement significantly correlates with poor survival. Here, we aim to investigate the biological function of miR-199a/b-3p and its regulation of target genes in breast cancer cells with highly metastatic potential. In addition, we found that miR-199a/b-3p expression was much lower in MDA-MB-231, CAL120, and HCC1395 breast cancer cells with highly metastatic potential. Functional assays showed that restored miR-199a/b-3p expression inhibited MDA-MB-231 cell growth, cell-cycle progression, migration, and invasion. In addition, we experimentally demonstrated that PAK4 was the direct target of miR-199a/b-3p, hypo-expression of PAK4 suppressed proliferation, migration and invasion of MDA-MB-231 cells, and overexpression of PAK4 significantly rescued the inhibitory effect of miR-199a/b-3p on MDA-MB-231 cell growth, migration, and invasion. Further, we also observed that miR-199a/b-3p could inactivate the PAK4/MEK/ERK signaling pathway. Thus, miR-199a/b-3p functions as a tumor suppressor and has an important role in breast cancer metastasis through PAK4/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Shou-Qing Li
- Laboratory Center, The First Hospital of Jilin University, Changchun, China.,Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, China
| | - Zi-Hang Wang
- Medical College, Yanbian University, Yanbian, China
| | - Xu-Guang Mi
- Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, China
| | - Lei Liu
- Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, China
| | - Yan Tan
- Laboratory Center, The First Hospital of Jilin University, Changchun, China.,Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, China
| |
Collapse
|
44
|
El Ouaamari A, Zhou JY, Liew CW, Shirakawa J, Dirice E, Gedeon N, Kahraman S, De Jesus DF, Bhatt S, Kim JS, Clauss TR, Camp DG, Smith RD, Qian WJ, Kulkarni RN. Compensatory Islet Response to Insulin Resistance Revealed by Quantitative Proteomics. J Proteome Res 2015; 14:3111-3122. [PMID: 26151086 DOI: 10.1021/acs.jproteome.5b00587] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compensatory islet response is a distinct feature of the prediabetic insulin-resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from 5 month old male control, high-fat diet fed (HFD), or obese ob/ob mice by LC-MS/MS and quantified ~1100 islet proteins (at least two peptides) with a false discovery rate < 1%. Significant alterations in abundance were observed for ~350 proteins among groups. The majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selected reaction monitoring and western blots, respectively. The insulin-resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin-resistant models. In summary, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin-resistant rodent models that are not overtly diabetic. These data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing β-cell mass in patients with diabetes. The data are available via the MassIVE repository, under accession no. MSV000079093.
Collapse
Affiliation(s)
- Abdelfattah El Ouaamari
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Jian-Ying Zhou
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Chong Wee Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Shirakawa
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Ercument Dirice
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Nicholas Gedeon
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Sevim Kahraman
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Dario F De Jesus
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Shweta Bhatt
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Jong-Seo Kim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Therese Rw Clauss
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - David G Camp
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Rohit N Kulkarni
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
45
|
Li D, Zhang Y, Li Z, Wang X, Qu X, Liu Y. Activated Pak4 expression correlates with poor prognosis in human gastric cancer patients. Tumour Biol 2015; 36:9431-6. [PMID: 26124003 DOI: 10.1007/s13277-015-3368-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/24/2015] [Indexed: 01/23/2023] Open
Abstract
Despite considerable advances in gastrectomy and chemotherapy, the prognosis of gastric cancer (GC) has not noticeably improved due to lymph node or distant metastases. P21-activated serine/threonine kinase 4 (Pak4) plays an important role in cell morphology and cytoskeletal reorganization-both prerequisite steps for cell migration. However, it is still unclear if activated Pak4 (p-Pak4) is related to prognosis in GC patients. In our study, the level of p-Pak4 in 95 GC tissue specimens was examined by immunohistochemistry (IHC). We observed significant correlation between the level of p-Pak4 and grosstype (advanced stage GC vs. early stage GC, P = 0.04). Moreover, GC patients with higher p-Pak4 levels had a poorer prognosis than those with lower p-Pak4 levels (17 vs. 38 months, P = 0.001). Multivariate analysis showed that high phosphorylation level of Pak4, advanced stage GC, and lymph node metastasis were independent prognostic factors for GC patients (p-Pak4, P = 0.026; advanced stage GC, P = 0.030; lymph node metastasis, P = 0.016). In addition, in vitro assays indicated that knockdown of Pak4 accompanied with decreased p-Pak4, inhibited cell migration via downregulation of the traditional downstream signaling pathways of Pak4, LIMK1, and cofilin. In conclusion, this report reveals that high level of p-Pak4 correlates with poor prognosis in GC, thereby suggesting that p-Pak4 might be a potential prognostic marker for GC.
Collapse
Affiliation(s)
- Danni Li
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Ye Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Ximing Wang
- Department of Respiratory and Infectious disease of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
46
|
Cai S, Ye Z, Wang X, Pan Y, Weng Y, Lao S, Wei H, Li L. Overexpression of P21-activated kinase 4 is associated with poor prognosis in non-small cell lung cancer and promotes migration and invasion. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:48. [PMID: 25975262 PMCID: PMC4443662 DOI: 10.1186/s13046-015-0165-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/06/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND P21-activated kinase 4 (PAK4), an effector of the Rho family protein Cdc42, is an important oncogene whose expression is increased in many human cancers and is generally positively correlated with advanced disease and decreased survival. However, little is known about the expression and biological function of PAK4 in human non-small cell lung cancer (NSCLC). METHODS PAK4 expression in NSCLC tissues and adjacent non-tumor tissues were assessed by immunohistochemistry, real-time PCR, and western blotting. Prognostic value of PAK4 expression was evaluated by Kaplan-Meier analysis and Cox regression. siRNA-mediated gene silencing and protein kinase assay was applied to demonstrate the role and the mechanism of PAK4 in lung cancer cell migration, invasion. RESULTS The results showed that PAK4 was overexpressed in NSCLC cell lines and human NSCLC tissues. PAK4 expression was detected both in the membranes and cytoplasm of NSCLC cancer cells in vivo. Moreover, increased expression of PAK4 was associated with metastasis, shorter overall survival, advanced stage of NSCLC. Furthermore, PAK4 expression was positively correlated with phosphorylation of LIMK1 expression levels. Knockdown of PAK4 in NSCLC cell lines led to reduce the phosphorylation of LIMK1, which resulted in decrease of the cell migration and invasion. In addition, PAK4 bound to LIMK1 directly and activated it via phosphorylation. CONCLUSIONS These data demonstrate that PAK4 mediated LIMK1 phosphorylation regulates the migration and invasion in NSCLC. Therefore, PAK4 might be a significant prognostic marker and potential therapeutic molecular target in NSCLC.
Collapse
Affiliation(s)
- Songwang Cai
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhiqiang Ye
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xiaohong Wang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Yuhang Pan
- Department of Pathylogy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Yimin Weng
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Sen Lao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Lian Li
- State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou, Guangdong, China.
| |
Collapse
|
47
|
Ha BH, Morse EM, Turk BE, Boggon TJ. Signaling, Regulation, and Specificity of the Type II p21-activated Kinases. J Biol Chem 2015; 290:12975-83. [PMID: 25855792 DOI: 10.1074/jbc.r115.650416] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The p21-activated kinases (PAKs) are a family of six serine/threonine kinases that act as key effectors of RHO family GTPases in mammalian cells. PAKs are subdivided into two groups: type I PAKs (PAK1, PAK2, and PAK3) and type II PAKs (PAK4, PAK5, and PAK6). Although these groups are involved in common signaling pathways, recent work indicates that the two groups have distinct modes of regulation and have both unique and common substrates. Here, we review recent insights into the molecular level details that govern regulation of type II PAK signaling. We also consider mechanisms by which signal transduction is regulated at the level of substrate specificity. Finally, we discuss the implications of these studies for clinical targeting of these kinases.
Collapse
Affiliation(s)
| | - Elizabeth M Morse
- Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520
| | | | | |
Collapse
|
48
|
Wang J, Zuo Y, Liu L, Man Y, Tadesse MG, Ressom HW. Identification of functional modules by integration of multiple data sources using a Bayesian network classifier. ACTA ACUST UNITED AC 2015; 7:206-17. [PMID: 24736851 DOI: 10.1161/circgenetics.113.000087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Prediction of functional modules is indispensable for detecting protein deregulation in human complex diseases such as cancer. Bayesian network is one of the most commonly used models to integrate heterogeneous data from multiple sources such as protein domain, interactome, functional annotation, genome-wide gene expression, and the literature. METHODS AND RESULTS In this article, we present a Bayesian network classifier that is customized to (1) increase the ability to integrate diverse information from different sources, (2) effectively predict protein-protein interactions, (3) infer aberrant networks with scale-free and small-world properties, and (4) group molecules into functional modules or pathways based on the primary function and biological features. Application of this model in discovering protein biomarkers of hepatocellular carcinoma leads to the identification of functional modules that provide insights into the mechanism of the development and progression of hepatocellular carcinoma. These functional modules include cell cycle deregulation, increased angiogenesis (eg, vascular endothelial growth factor, blood vessel morphogenesis), oxidative metabolic alterations, and aberrant activation of signaling pathways involved in cellular proliferation, survival, and differentiation. CONCLUSIONS The discoveries and conclusions derived from our customized Bayesian network classifier are consistent with previously published results. The proposed approach for determining Bayesian network structure facilitates the integration of heterogeneous data from multiple sources to elucidate the mechanisms of complex diseases.
Collapse
Affiliation(s)
- Jinlian Wang
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | | | | | | | | | | |
Collapse
|
49
|
Xue J, Chen LZ, Li ZZ, Hu YY, Yan SP, Liu LY. MicroRNA-433 inhibits cell proliferation in hepatocellular carcinoma by targeting p21 activated kinase (PAK4). Mol Cell Biochem 2015; 399:77-86. [PMID: 25410752 DOI: 10.1007/s11010-014-2234-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/30/2014] [Indexed: 12/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. P21-activated kinase 4 (PAK4) has been identified as an oncogenic protein in a variety of cancers. However, the contribution and regulation of PAK4 in HCC remain poorly understood. In the present study, we found that inhibition of PAK4 expression by specific shRNA significantly attenuated HCC cell proliferation. Moreover, we show that microRNA-433 (miRNA-433) could directly target PAK4 through the miRNA-433 binding sequence at the 3'-UTR of PAK4 mRNA, and inhibit PAK4 protein expression. We further show that miRNA-433 expression was downregulated in HCC tissues and cell culture as well, which inversely correlated with PAK4 expression levels. Overexpression of miRNA-433 significantly suppressed the proliferation of HepG2 cells, while this effect was partially rescued by forced expression of PAK4 through restoring PI3K/AKT signaling in HepG2 cells. These findings will shed light on the roles and mechanisms of miRNA-433 in regulating HCC proliferation, and may benefit future development of therapeutics targeting miRNA-433 and PAK4 in HCC.
Collapse
Affiliation(s)
- Jing Xue
- Department of Epidemiology, Public Health School of Central South University, Changsha, 410078, China,
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
PAKs 4, 5 and 6 are members of the group B family of p21-activated kinases. Among this group, PAK4 has been most extensively studied. While it has essential roles in embryonic development, in adults high levels of PAK4 are frequently associated with cancer. PAK4 is overexpressed in a variety of cancers, and the Pak4 gene is amplified in some cancers. PAK4 overexpression is sufficient to cause oncogenic transformation in cells and in mouse models. The tight connection between PAK4 and cancer make it a promising diagnostic tool as well as a potential drug target. The group B PAKs also have important developmental functions. PAK4 is important for many early developmental processes, while PAK5 and PAK6 play roles in learning and memory in mice. This chapter provides an overview of the roles of the group B PAKs in cancer as well as development, and includes a discussion of PAK mediated signaling pathways and cellular functions.
Collapse
Affiliation(s)
- Audrey Minden
- Susan Lehman Cullman Laboratory for Cancer Research; Department of Chemical Biology; Ernest Mario School of Pharmacy; Rutgers, The State University of New Jersey; Piscataway, NJ USA
| |
Collapse
|