1
|
Kostecki KL, Harmon RL, Iida M, Harris MA, Crossman BE, Bruce JY, Salgia R, Wheeler DL. Axl Regulation of NK Cell Activity Creates an Immunosuppressive Tumor Immune Microenvironment in Head and Neck Cancer. Cancers (Basel) 2025; 17:994. [PMID: 40149328 PMCID: PMC11940164 DOI: 10.3390/cancers17060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Head and neck cancer (HNC) evades immune responses by manipulating the tumor immune microenvironment (TIME). Tumor-bound Axl has been implicated in promoting an immunosuppressive TIME in HNC, though its precise role remains unclear. Understanding Axl's contribution to immune evasion in HNC could lead to the identification of new therapeutic targets; therapies directed at these targets could be combined with and thereby enhance immunotherapies. Results: Using Axl knockout (Axl KO) cell lines derived from the immunologically "cold" MOC2 mouse model, we found that Axl loss delayed tumor growth in immunocompetent mice. This was accompanied by reduced immunosuppressive cells, including MDSCs, Tregs, B cells, and neutrophils, and increased infiltration of cytotoxic CD8 T cells and NK cells. To identify the immune population(s) responsible for these changes, Axl KO tumors were implanted in immune-deficient mice. Axl KO tumor growth in athymic nude mice (which lack T cells) was unchanged, whereas tumor growth in NCG mice (which lack NK cells) was rescued, suggesting that NK cells mediate the Axl KO tumor growth delay. Further, Axl loss enhanced NK cell cytotoxicity in vitro and in vivo, and NK cell depletion reversed delayed Axl KO tumor growth. Mechanistically, Axl KO tumors showed decreased expression of CD73 and CCL2, which inhibit NK cells, and increased expression of CCL5 and CXCL10, which promote NK cell recruitment and activation. Conclusions: These novel findings suggest that tumor-bound Axl fosters an immunosuppressive TIME by inhibiting NK cell recruitment and function, thereby promoting tumor growth. Targeting Axl may enhance NK cell-mediated tumor killing and improve immunotherapy efficacy in HNC.
Collapse
Affiliation(s)
- Kourtney L. Kostecki
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
| | - Regan L. Harmon
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
| | - Mari Iida
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
| | - Madelyn A. Harris
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
| | - Bridget E. Crossman
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
| | - Justine Yang Bruce
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA;
- Carbone Cancer Center, University of Wisconsin, Madison, WI 43792, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Deric L. Wheeler
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; (K.L.K.); (R.L.H.); (M.I.); (M.A.H.); (B.E.C.)
- Carbone Cancer Center, University of Wisconsin, Madison, WI 43792, USA
| |
Collapse
|
2
|
Zhou C, Zhu Y, Zhang L, Zhao M, Zhang C. Axl deficiency promotes preeclampsia and vascular malformations in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102408. [PMID: 39759877 PMCID: PMC11699228 DOI: 10.1016/j.omtn.2024.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Preeclampsia (PE) is a significant complication of pregnancy, occurring in approximately 10% of pregnancies. However, the underlying mechanisms of this condition remain unclear. Placentation and tumorigenesis both share many characteristics, but PE is the result of insufficient placentation, in contrast to the overaggression of tumorigenesis. AXL is a biomarker and therapeutic target for multiple metastatic cancers. We hypothesized that its downregulation could play a crucial role in the development of PE. In our study, we demonstrated that pregnant Axl -/- mice exhibited typical PE symptoms, such as hypertension, proteinuria, and inadequate trophoblast invasion and spiral artery remodeling. Cross-mating and embryo transplantation experiments confirmed that these phenotypes were caused by the decidua. RNA sequencing results revealed the abnormal expression of several transcripts in the decidua, including Corin, which encodes a cardiac protease responsible for activating atrial natriuretic peptide (ANP). ANP is a cardiac hormone that regulates sodium homeostasis and blood pressure. Chromatin immunoprecipitation-qPCR analysis indicated that the decreased CORIN in Axl -/- decidua was due to reduced signal transducer and activator of transcription 3 (STAT3) binding. Treatment with ANP successfully alleviated the PE symptoms. Furthermore, we observed that in PE decidua, the level of AXL was significantly lower compared to normal pregnancies. These findings suggest that the dysregulation of decidua-derived AXL-CORIN-ANP signaling disrupts maternal-fetal crosstalk and contributes to the development of PE.
Collapse
Affiliation(s)
- Chan Zhou
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yunqing Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Liang Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Miaomiao Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
3
|
Yadav M, Sharma A, Patne K, Tabasum S, Suryavanshi J, Rawat L, Machaalani M, Eid M, Singh RP, Choueiri TK, Pal S, Sabarwal A. AXL signaling in cancer: from molecular insights to targeted therapies. Signal Transduct Target Ther 2025; 10:37. [PMID: 39924521 PMCID: PMC11808115 DOI: 10.1038/s41392-024-02121-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/02/2024] [Accepted: 12/19/2024] [Indexed: 02/11/2025] Open
Abstract
AXL, a member of the TAM receptor family, has emerged as a potential target for advanced-stage human malignancies. It is frequently overexpressed in different cancers and plays a significant role in various tumor-promoting pathways, including cancer cell proliferation, invasion, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, stemness, DNA damage response, acquired therapeutic resistance, immunosuppression, and inflammatory responses. Beyond oncology, AXL also facilitates viral infections, including SARS-CoV-2 and Zika highlighting its importance in both cancer and virology. In preclinical models, small-molecule kinase inhibitors targeting AXL have shown promising anti-tumorigenic potential. This review primarily focuses on the induction, regulation and biological functions of AXL in mediating these tumor-promoting pathways. We discuss a range of therapeutic strategies, including recently developed small-molecule tyrosine kinase inhibitors (TKIs), monoclonal antibodies, and antibody-drug conjugates (ADCs), anti-AXL-CAR, and combination therapies. These interventions are being examined in both preclinical and clinical studies, offering the potential for improved drug sensitivity and therapeutic efficacy. We further discuss the mechanisms of acquired therapeutic resistance, particularly the crosstalk between AXL and other critical receptor tyrosine kinases (RTKs) such as c-MET, EGFR, HER2/HER3, VEGFR, PDGFR, and FLT3. Finally, we highlight key research areas that require further exploration to enhance AXL-mediated therapeutic approaches for improved clinical outcomes.
Collapse
Affiliation(s)
- Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
- Laboratory of Nanotechnology and Chemical Biology, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Akansha Sharma
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ketki Patne
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saba Tabasum
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jyoti Suryavanshi
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Laxminarayan Rawat
- Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Marc Machaalani
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marc Eid
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Toni K Choueiri
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Soumitro Pal
- Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA.
| | - Akash Sabarwal
- Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Li F, Gong H, Jia X, Gao C, Jia P, Zhao X, Chen W, Wang L, Xue N. RNAi Screen Identifies AXL Inhibition Combined with Cannabinoid WIN55212-2 as a Potential Strategy for Cancer Treatment. Pharmaceuticals (Basel) 2024; 17:1465. [PMID: 39598377 PMCID: PMC11597789 DOI: 10.3390/ph17111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024] Open
Abstract
Background and objective: Cannabinoids are commonly used as adjuvant cancer drugs to overcome numerous adverse side effects for patients. The aim of this study was to identify the target genes that show a synergistic anti-tumor role in combination with the cannabinoid WIN55212-2 in vitro and in vivo. Methods: A human kinome RNAi library was used to screen the targeted gene that silencing plus WIN55212-2 treatment synergistically inhibited cancer cell growth in an INCELL Analyzer 2000. Cell viability, cell phase arrest and apoptosis were evaluated by MTT and flow cytometry assay. In vivo combined anti-tumor effects and regulatory mechanisms were detected in immunocompromised and immunocompetent mice. Results: Using RNAi screening, we identified the tyrosine receptor kinase AXL as a potential gene whose silencing plus WIN55212-2 treatment synergistically inhibited the proliferation of cancer cells in an INCELL Analyzer 2000. Subsequently, we demonstrated that inhibition of AXL by TP-0903 potentiated the inhibitory role of WIN55212-2 on cellular viability, colony formation and 3D tumor sphere in HCT-8 cells. Meanwhile, TP-0903 plus WIN55212-2 treatment promoted the apoptosis of HCT-8 cells. We then investigated the synergistic anti-tumor effect of TP-0903 and WIN55212-2 using colon cancer cell xenografts in immunocompromised and immunocompetent mice. The in vivo study demonstrated that combined administration of TP-0903 plus WIN55212-2 effectively reduced tumor volume and microvessel density and promoted apoptotic cells of tumor tissues in HCT-8 exogenous mice compared to either TP-0903 or WIN55212-2 treatment alone. Moreover, in addition to tumor suppression, the combination therapy of TP-0903 and WIN55212-2 induced the infiltration of cytotoxic CD8+ T cells and significantly reduced mTOR and STAT3 activation in tumor tissues of C57BL/6J mice bearing MC-38 cells. Conclusions: This study demonstrated that targeting AXL could sensitize cannabinoids to cancer therapy by interfering with tumor cells and tumor-infiltrating CD8+ T cells.
Collapse
Affiliation(s)
- Feifei Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; (F.L.); (X.J.); (P.J.)
| | - Hang Gong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (H.G.); (C.G.); (X.Z.); (W.C.)
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xinfei Jia
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; (F.L.); (X.J.); (P.J.)
| | - Chang Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (H.G.); (C.G.); (X.Z.); (W.C.)
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Peng Jia
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; (F.L.); (X.J.); (P.J.)
| | - Xin Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (H.G.); (C.G.); (X.Z.); (W.C.)
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxia Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (H.G.); (C.G.); (X.Z.); (W.C.)
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lili Wang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; (F.L.); (X.J.); (P.J.)
| | - Nina Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (H.G.); (C.G.); (X.Z.); (W.C.)
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Crossman BE, Harmon RL, Kostecki KL, McDaniel NK, Iida M, Corday LW, Glitchev CE, Crow MT, Harris MA, Lin CY, Adams JM, Longhurst CA, Nickel KP, Ong IM, Alexandridis RA, Yu M, Yang DT, Hu R, Morris ZS, Hartig GK, Glazer TA, Ramisetty S, Kulkarni P, Salgia R, Kimple RJ, Bruce JY, Harari PM, Wheeler DL. From Bench to Bedside: A Team's Approach to Multidisciplinary Strategies to Combat Therapeutic Resistance in Head and Neck Squamous Cell Carcinoma. J Clin Med 2024; 13:6036. [PMID: 39457986 PMCID: PMC11508784 DOI: 10.3390/jcm13206036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is diagnosed in more than 71,000 patients each year in the United States, with nearly 16,000 associated deaths. One significant hurdle in the treatment of HNSCC is acquired and intrinsic resistance to existing therapeutic agents. Over the past several decades, the University of Wisconsin has formed a multidisciplinary team to move basic scientific discovery along the translational spectrum to impact the lives of HNSCC patients. In this review, we outline key discoveries made throughout the years at the University of Wisconsin to deepen our understanding of therapeutic resistance in HNSCC and how a strong, interdisciplinary team can make significant advances toward improving the lives of these patients by combatting resistance to established therapeutic modalities. We are profoundly grateful to the many scientific teams worldwide whose groundbreaking discoveries, alongside evolving clinical paradigms in head and neck oncology, have been instrumental in making our work possible.
Collapse
Affiliation(s)
- Bridget E. Crossman
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Regan L. Harmon
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Kourtney L. Kostecki
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Nellie K. McDaniel
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Luke W. Corday
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Christine E. Glitchev
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Madisen T. Crow
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Madelyn A. Harris
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Candie Y. Lin
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Jillian M. Adams
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Colin A. Longhurst
- Departments of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53726, USA; (C.A.L.); (I.M.O.); (R.A.A.)
| | - Kwangok P. Nickel
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Irene M. Ong
- Departments of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53726, USA; (C.A.L.); (I.M.O.); (R.A.A.)
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, USA; (R.H.); (J.Y.B.)
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53705, USA
| | - Roxana A. Alexandridis
- Departments of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53726, USA; (C.A.L.); (I.M.O.); (R.A.A.)
| | - Menggang Yu
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - David T. Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA;
| | - Rong Hu
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, USA; (R.H.); (J.Y.B.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA;
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
| | - Gregory K. Hartig
- Department of Surgery, University of Wisconsin, Madison, WI 53705, USA; (G.K.H.); (T.A.G.)
| | - Tiffany A. Glazer
- Department of Surgery, University of Wisconsin, Madison, WI 53705, USA; (G.K.H.); (T.A.G.)
| | - Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.R.); (P.K.); (R.S.)
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.R.); (P.K.); (R.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.R.); (P.K.); (R.S.)
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, USA; (R.H.); (J.Y.B.)
| | - Justine Y. Bruce
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, USA; (R.H.); (J.Y.B.)
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, USA; (R.H.); (J.Y.B.)
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (B.E.C.); (R.L.H.); (M.I.); (M.A.H.); (C.Y.L.); (K.P.N.); (Z.S.M.); (R.J.K.); (P.M.H.)
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53792, USA; (R.H.); (J.Y.B.)
| |
Collapse
|
6
|
Liu X, Ping G, Ji D, Wen Z, Chen Y. Reclassify High-Grade Serous Ovarian Cancer Patients Into Different Molecular Subtypes With Discrepancy Prognoses and Therapeutic Responses Based on Cancer-Associated Fibroblast-Enriched Prognostic Genes. Biomed Eng Comput Biol 2024; 15:11795972241274024. [PMID: 39221174 PMCID: PMC11365035 DOI: 10.1177/11795972241274024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play critical roles in the metastasis and therapeutic response of high-grade serous ovarian cancer (HGSC). Our study intended to select HGSC patients with unfavorable prognoses and therapeutic responses based on CAF-enriched prognostic genes. The bulk RNA and single-cell RNA sequencing (scRNA-seq) data of tumor tissues were collected from the TCGA and GEO databases. The infiltrated levels of immune and stromal cells were estimated by multiple immune deconvolution algorithms and verified through immunohistochemical analysis. The univariate Cox regression analyses were used to identify prognostic genes. Gene Set Enrichment Analysis (GSEA) was conducted to annotate enriched gene sets. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to explore potential alternative drugs. We found the infiltered levels of CAFs were remarkedly elevated in advanced and metastatic HGSC tissues and identified hundreds of genes specifically enriched in CAFs. Then we selected 6 CAF-enriched prognostic genes based on which HGSC patients were reclassified into 2 subclusters with discrepancy prognoses. Further analysis revealed that the HGSC patients in cluster-2 tended to undergo poor responses to traditional chemotherapy and immunotherapy. Subsequently, we selected 24 novel potential therapeutic drugs for cluster-2 HGSC patients. Moreover, we discovered a positive correlation of infiltrated levels between CAFs and monocytes/macrophages in HGSC tissues. Collectively, our study successfully reclassified HGSC patients into 2 different subgroups that have discrepancy prognoses and responses to current therapeutic methods.
Collapse
Affiliation(s)
- Xiangxiang Liu
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, Jiangsu, China
| | - Guoqiang Ping
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongze Ji
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhifa Wen
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, Jiangsu, China
| | - Yajun Chen
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Kulkarni S, Gajjar K, Madhusudan S. Poly (ADP-ribose) polymerase inhibitor therapy and mechanisms of resistance in epithelial ovarian cancer. Front Oncol 2024; 14:1414112. [PMID: 39135999 PMCID: PMC11317305 DOI: 10.3389/fonc.2024.1414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Advanced epithelial ovarian cancer is the commonest cause of gynaecological cancer deaths. First-line treatment for advanced disease includes a combination of platinum-taxane chemotherapy (post-operatively or peri-operatively) and maximal debulking surgery whenever feasible. Initial response rate to chemotherapy is high (up to 80%) but most patients will develop recurrence (approximately 70-90%) and succumb to the disease. Recently, poly-ADP-ribose polymerase (PARP) inhibition (by drugs such as Olaparib, Niraparib or Rucaparib) directed synthetic lethality approach in BRCA germline mutant or platinum sensitive disease has generated real hope for patients. PARP inhibitor (PARPi) maintenance therapy can prolong survival but therapeutic response is not sustained due to intrinsic or acquired secondary resistance to PARPi therapy. Reversion of BRCA1/2 mutation can lead to clinical PARPi resistance in BRCA-germline mutated ovarian cancer. However, in the more common platinum sensitive sporadic HGSOC, the clinical mechanisms of development of PARPi resistance remains to be defined. Here we provide a comprehensive review of the current status of PARPi and the mechanisms of resistance to therapy.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham NHS Trust, West Bromwich, United Kingdom
| | - Ketankumar Gajjar
- Department of Gynaecological Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
8
|
Apostolo D, D’Onghia D, Nerviani A, Ghirardi GM, Sola D, Perazzi M, Tonello S, Colangelo D, Sainaghi PP, Bellan M. Could Gas6/TAM Axis Provide Valuable Insights into the Pathogenesis of Systemic Sclerosis? Curr Issues Mol Biol 2024; 46:7486-7504. [PMID: 39057085 PMCID: PMC11275301 DOI: 10.3390/cimb46070444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disorder characterized by microvascular injury, extracellular matrix deposition, autoimmunity, inflammation, and fibrosis. The clinical complexity and high heterogeneity of the disease make the discovery of potential therapeutic targets difficult. However, the recent progress in the comprehension of its pathogenesis is encouraging. Growth Arrest-Specific 6 (Gas6) and Tyro3, Axl, and MerTK (TAM) receptors are involved in multiple biological processes, including modulation of the immune response, phagocytosis, apoptosis, fibrosis, inflammation, cancer development, and autoimmune disorders. In the present manuscript, we review the current evidence regarding SSc pathogenesis and the role of the Gas6/TAM system in several human diseases, suggesting its likely contribution in SSc and highlighting areas where further research is necessary to fully comprehend the role of TAM receptors in this condition. Indeed, understanding the involvement of TAM receptors in SSc, which is currently unknown, could provide valuable insights for novel potential therapeutic targets.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Davide D’Onghia
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Giulia Maria Ghirardi
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Daniele Sola
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- IRCCS Istituto Auxologico Italiano, UO General Medicine, 28824 Oggebbio, Italy
| | - Mattia Perazzi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
| | - Donato Colangelo
- Department of Health Sciences, Pharmacology, University of Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
- Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
- Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
9
|
Liu Z, Chen L, Zhang J, Yang J, Xiao X, Shan L, Mao W. Recent discovery and development of AXL inhibitors as antitumor agents. Eur J Med Chem 2024; 272:116475. [PMID: 38714043 DOI: 10.1016/j.ejmech.2024.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
AXL, a receptor tyrosine kinase (RTK), plays a pivotal role in various cellular functions. It is primarily involved in processes such as epithelial-mesenchymal transition (EMT) in tumor cells, angiogenesis, apoptosis, immune regulation, and chemotherapy resistance mechanisms. Therefore, targeting AXL is a promising therapeutic approach for the treatment of cancer. AXL inhibitors that have entered clinical trials, such as BGB324(1), have shown promising efficacy in the treatment of melanoma and non-small cell lung cancer. Additionally, novel AXL-targeted drugs, such as AXL degraders, offer a potential solution to overcome the limitations of traditional small-molecule AXL inhibitors targeting single pathways. We provide an overview of the structure and biological functions of AXL, discusses its correlation with various cancers, and critically analyzes the structure-activity relationship of AXL small-molecule inhibitors in cellular contexts. Additionally, we summarize multiple research and development strategies, offering insights for the future development of innovative AXL inhibitors.
Collapse
Affiliation(s)
- Zihang Liu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Li Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jun Yang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xue Xiao
- Department of Obstetrics & Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Lianhai Shan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Danielli SG, Wurth J, Morice S, Kisele S, Surdez D, Delattre O, Bode PK, Wachtel M, Schäfer BW. Evaluation of the Role of AXL in Fusion-positive Pediatric Rhabdomyosarcoma Identifies the Small-molecule Inhibitor Bemcentinib (BGB324) as Potent Chemosensitizer. Mol Cancer Ther 2024; 23:864-876. [PMID: 38471796 PMCID: PMC11148551 DOI: 10.1158/1535-7163.mct-23-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/16/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Rhabdomyosarcoma (RMS) is a highly aggressive pediatric cancer with features of skeletal muscle differentiation. More than 80% of the high-risk patients ultimately fail to respond to chemotherapy treatment, leading to limited therapeutic options and dismal prognostic rates. The lack of response and subsequent tumor recurrence is driven in part by stem cell-like cells, the tumor subpopulation that is enriched after treatment, and characterized by expression of the AXL receptor tyrosine kinase (AXL). AXL mediates survival, migration, and therapy resistance in several cancer types; however, its function in RMS remains unclear. In this study, we investigated the role of AXL in RMS tumorigenesis, migration, and chemotherapy response, and whether targeting of AXL with small-molecule inhibitors could potentiate the efficacy of chemotherapy. We show that AXL is expressed in a heterogeneous manner in patient-derived xenografts (PDX), primary cultures and cell line models of RMS, consistent with its stem cell-state selectivity. By generating a CRISPR/Cas9 AXL knock-out and overexpressing models, we show that AXL contributes to the migratory phenotype of RMS, but not to chemotherapy resistance. Instead, pharmacologic blockade with the AXL inhibitors bemcentinib (BGB324), cabozantinib and NPS-1034 rapidly killed RMS cells in an AXL-independent manner and augmented the efficacy of the chemotherapeutics vincristine and cyclophosphamide. In vivo administration of the combination of bemcentinib and vincristine exerted strong antitumoral activity in a rapidly progressing PDX mouse model, significantly reducing tumor burden compared with single-agent treatment. Collectively, our data identify bemcentinib as a promising drug to improve chemotherapy efficacy in patients with RMS.
Collapse
Affiliation(s)
- Sara G. Danielli
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Jakob Wurth
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Sarah Morice
- Balgrist University Hospital, Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Samanta Kisele
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Peter K. Bode
- Department of Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Beat W. Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Yin H, Hua Y, Feng S, Xu Y, Ding Y, Liu S, Chen D, Du F, Liang G, Zhan W, Shen Y. In Situ Nanofiber Formation Blocks AXL and GAS6 Binding to Suppress Ovarian Cancer Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308504. [PMID: 38546279 DOI: 10.1002/adma.202308504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Anexelekto (AXL) is an attractive molecular target for ovarian cancer therapy because of its important role in ovarian cancer initiation and progression. To date, several AXL inhibitors have entered clinical trials for the treatment of ovarian cancer. However, the disadvantages of low AXL affinity and severe off-target toxicity of these inhibitors limit their further clinical applications. Herein, by rational design of a nonapeptide derivative Nap-Phe-Phe-Glu-Ile-Arg-Leu-Arg-Phe-Lys (Nap-IR), a strategy of in situ nanofiber formation is proposed to suppress ovarian cancer growth. After administration, Nap-IR specifically targets overexpressed AXL on ovarian cancer cell membranes and undergoes a receptor-instructed nanoparticle-to-nanofiber transition. In vivo and in vitro experiments demonstrate that in situ formed Nap-IR nanofibers efficiently induce apoptosis of ovarian cancer cells by blocking AXL activation and disrupting subsequent downstream signaling events. Remarkably, Nap-IR can synergistically enhance the anticancer effect of cisplatin against HO8910 ovarian tumors. It is anticipated that the Nap-IR can be applied in clinical ovarian cancer therapy in the near future.
Collapse
Affiliation(s)
- Han Yin
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| | - Yue Hua
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| | - Songwei Feng
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| | - Yi Xu
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| | - Yue Ding
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| | - Sicong Liu
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| | - Dongsheng Chen
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., 699-18 Xuanwu Avenue, Nanjing, Jiangsu, 210042, China
| | - Furong Du
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., 699-18 Xuanwu Avenue, Nanjing, Jiangsu, 210042, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu, 210096, China
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, Jiangsu, 210096, China
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
12
|
Breitenecker K, Heiden D, Demmer T, Weber G, Primorac AM, Hedrich V, Ortmayr G, Gruenberger T, Starlinger P, Herndler-Brandstetter D, Barozzi I, Mikulits W. Tumor-Extrinsic Axl Expression Shapes an Inflammatory Microenvironment Independent of Tumor Cell Promoting Axl Signaling in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:4202. [PMID: 38673795 PMCID: PMC11050718 DOI: 10.3390/ijms25084202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The activation of the receptor tyrosine kinase Axl by Gas6 is a major driver of tumorigenesis. Despite recent insights, tumor cell-intrinsic and -extrinsic Axl functions are poorly understood in hepatocellular carcinoma (HCC). Thus, we analyzed the cell-specific aspects of Axl in liver cancer cells and in the tumor microenvironment. We show that tumor-intrinsic Axl expression decreased the survival of mice and elevated the number of pulmonary metastases in a model of resection-based tumor recurrence. Axl expression increased the invasion of hepatospheres by the activation of Akt signaling and a partial epithelial-to-mesenchymal transition (EMT). However, the liver tumor burden of Axl+/+ mice induced by diethylnitrosamine plus carbon tetrachloride was reduced compared to systemic Axl-/- mice. Tumors of Axl+/+ mice were highly infiltrated with cytotoxic cells, suggesting a key immune-modulatory role of Axl. Interestingly, hepatocyte-specific Axl deficiency did not alter T cell infiltration, indicating that these changes are independent of tumor cell-intrinsic Axl. In this context, we observed an upregulation of multiple chemokines in Axl+/+ compared to Axl-/- tumors, correlating with HCC patient data. In line with this, Axl is associated with a cytotoxic immune signature in HCC patients. Together these data show that tumor-intrinsic Axl expression fosters progression, while tumor-extrinsic Axl expression shapes an inflammatory microenvironment.
Collapse
Affiliation(s)
- Kristina Breitenecker
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Denise Heiden
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Tobias Demmer
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Gerhard Weber
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Ana-Maria Primorac
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Viola Hedrich
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Gregor Ortmayr
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Thomas Gruenberger
- Department of Surgery, HPB Center, Viennese Health Network, Clinic Favoriten and Sigmund Freud Private University, 1100 Vienna, Austria
| | - Patrick Starlinger
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Centre of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dietmar Herndler-Brandstetter
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Iros Barozzi
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| |
Collapse
|
13
|
Miao YR, Rankin EB, Giaccia AJ. Therapeutic targeting of the functionally elusive TAM receptor family. Nat Rev Drug Discov 2024; 23:201-217. [PMID: 38092952 PMCID: PMC11335090 DOI: 10.1038/s41573-023-00846-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 03/07/2024]
Abstract
The TAM receptor family of TYRO3, AXL and MERTK regulates tissue and immune homeostasis. Aberrant TAM receptor signalling has been linked to a range of diseases, including cancer, fibrosis and viral infections. Specifically, the dysregulation of TAM receptors can enhance tumour growth and metastasis due to their involvement in multiple oncogenic pathways. For example, TAM receptors have been implicated in the epithelial-mesenchymal transition, maintaining the stem cell phenotype, immune modulation, proliferation, angiogenesis and resistance to conventional and targeted therapies. Therapeutically, multiple TAM receptor inhibitors are in preclinical and clinical development for cancers and other indications, with those targeting AXL being the most clinically advanced. Although there has been notable clinical advancement in recent years, challenges persist. This Review aims to provide both biological and clinical insights into the current therapeutic landscape of TAM receptor inhibitors, and evaluates their potential for the treatment of cancer and non-malignant diseases.
Collapse
Affiliation(s)
- Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
14
|
Repici A, Ardizzone A, De Luca F, Colarossi L, Prestifilippo A, Pizzino G, Paterniti I, Esposito E, Capra AP. Signaling Pathways of AXL Receptor Tyrosine Kinase Contribute to the Pathogenetic Mechanisms of Glioblastoma. Cells 2024; 13:361. [PMID: 38391974 PMCID: PMC10886920 DOI: 10.3390/cells13040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Brain tumors are a diverse collection of neoplasms affecting the brain with a high prevalence rate in people of all ages around the globe. In this pathological context, glioblastoma, a form of glioma that belongs to the IV-grade astrocytoma group, is the most common and most aggressive form of the primary brain tumors. Indeed, despite the best treatments available including surgery, radiotherapy or a pharmacological approach with Temozolomide, glioblastoma patients' mortality is still high, within a few months of diagnosis. Therefore, to increase the chances of these patients surviving, it is critical to keep finding novel treatment opportunities. In the past, efforts to treat glioblastoma have mostly concentrated on customized treatment plans that target specific mutations such as epidermal growth factor receptor (EGFR) mutations, Neurotrophic Tyrosine Receptor Kinase (NTRK) fusions, or multiple receptors using multi-kinase inhibitors like Sunitinib and Regorafenib, with varying degrees of success. Here, we focused on the receptor tyrosine kinase AXL that has been identified as a mediator for tumor progression and therapy resistance in various cancer types, including squamous cell tumors, small cell lung cancer, and breast cancer. Activated AXL leads to a significant increase in tumor proliferation, tumor cell migration, and angiogenesis in different in vitro and in vivo models of cancer since this receptor regulates interplay with apoptotic, angiogenic and inflammatory pathways. Based on these premises, in this review we mainly focused on the role of AXL in the course of glioblastoma, considering its primary biological mechanisms and as a possible target for the application of the most recent treatments.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Angela Prestifilippo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Gabriele Pizzino
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| |
Collapse
|
15
|
Zhuo L, Guo M, Zhang S, Wu J, Wang M, Shen Y, Peng X, Wang Z, Jiang W, Huang W. Structure-activity relationship study of 1,6-naphthyridinone derivatives as selective type II AXL inhibitors with potent antitumor efficacy. Eur J Med Chem 2024; 265:116090. [PMID: 38169272 DOI: 10.1016/j.ejmech.2023.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The role of AXL in various oncogenic processes has made it an attractive target for cancer therapy. Currently, kinase selectivity profiles, especially circumventing MET inhibition, remain a scientific issue of great interest in the discovery of selective type II AXL inhibitors. Starting from a dual MET/AXL-targeted lead structure from our previous work, we optimized a 1,6-naphthyridinone series using molecular modeling-assisted compound design to improve AXL potency and selectivity over MET, resulting in the potent and selective type II AXL-targeted compound 25c. This showed excellent AXL inhibitory activity (IC50 = 1.1 nM) and 343-fold selectivity over the highly homologous kinase MET in biochemical assays. Moreover, compound 25c significantly inhibited AXL-driven cell proliferation, dose-dependently suppressed 4T1 cell migration and invasion, and induced apoptosis. Compound 25c also showed noticeable antitumor efficacy in a BaF3/TEL-AXL xenograft model at well-tolerated doses. Overall, this study presented a potent and selective type II AXL-targeted lead compound for further drug discovery.
Collapse
Affiliation(s)
- Linsheng Zhuo
- Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Mengqin Guo
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Siyi Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Junbo Wu
- Department of Colorectal Surgery, Hengyang Central Hospital, Hengyang, Hunan, 421001, China
| | - Mingshu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yang Shen
- Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
16
|
Hirai S, Yamada T, Katayama Y, Ishida M, Kawachi H, Matsui Y, Nakamura R, Morimoto K, Horinaka M, Sakai T, Sekido Y, Tokuda S, Takayama K. Effects of Combined Therapeutic Targeting of AXL and ATR on Pleural Mesothelioma Cells. Mol Cancer Ther 2024; 23:212-222. [PMID: 37802502 PMCID: PMC10831449 DOI: 10.1158/1535-7163.mct-23-0138] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Few treatment options exist for pleural mesothelioma (PM), which is a progressive malignant tumor. However, the efficacy of molecular-targeted monotherapy is limited, and further therapeutic strategies are warranted to treat PM. Recently, the cancer cell-cycle checkpoint inhibitors have attracted attention because they disrupt cell-cycle regulation. Here, we aimed to establish a novel combinational therapeutic strategy to inhibit the cell-cycle checkpoint kinase, ATR in PM cells. The siRNA screening assay showed that anexelekto (AXL) knockdown enhanced cell growth inhibition when exposed to ATR inhibitors, demonstrating the synergistic effects of the ATR and AXL combination in some PM cells. The AXL and ATR inhibitor combination increased cell apoptosis via the Bim protein and suppressed cell migration when compared with each monotherapy. The combined therapeutic targeting of AXL and ATR significantly delayed regrowth compared with monotherapy. Thus, optimal AXL and ATR inhibition may potentially improve the PM outcome.
Collapse
Affiliation(s)
- Soichi Hirai
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Ishida
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Kawachi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Matsui
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryota Nakamura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
17
|
Widstrom NE, Andrianov GV, Heier JL, Heier C, Karanicolas J, Parker LL. Novel Substrate Prediction for the TAM Family of RTKs Using Phosphoproteomics and Structure-Based Modeling. ACS Chem Biol 2024; 19:117-128. [PMID: 38159292 PMCID: PMC10921923 DOI: 10.1021/acschembio.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The TAM family of receptor tyrosine kinases is implicated in multiple distinct oncogenic signaling pathways. However, to date, there are no FDA-approved small molecule inhibitors for the TAM kinases. Inhibitor design and screening rely on tools to study the kinase activity. Our goal was to address this gap by designing a set of synthetic peptide substrates for each of the TAM family members: Tyro3, Axl, and Mer. We used an in vitro phosphoproteomics workflow to determine the substrate profile of each TAM kinase and input the identified substrates into our data processing pipeline, KINATEST-ID, producing a position-specific scoring matrix for each target kinase and generating a list of candidate synthetic peptide substrates. We synthesized and characterized a set of those substrate candidates, systematically measuring their initial phosphorylation rate with each TAM kinase by LC-MS. We also used the multimer modeling function of AlphaFold2 (AF2) to predict peptide-kinase interactions at the active site for each of the novel candidate peptide sequences against each of the TAM family kinases and observed that, remarkably, every sequence for which it predicted a putative catalytically competent interaction was also demonstrated biochemically to be a substrate for one or more of the TAM kinases. This work shows that kinase substrate design can be achieved using a combination of preference motifs and structural modeling, and it provides the first demonstration of peptide-protein interaction modeling with AF2 for predicting the likelihood of constructive catalytic interactions.
Collapse
Affiliation(s)
- Naomi E. Widstrom
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota Twin Cities, Minneapolis, Minnesota, 55455 USA
| | - Grigorii V. Andrianov
- Cancer Signaling & Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111 USA
| | - Jason L. Heier
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota Twin Cities, Minneapolis, Minnesota, 55455 USA
| | - Celina Heier
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota Twin Cities, Minneapolis, Minnesota, 55455 USA
| | - John Karanicolas
- Cancer Signaling & Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111 USA
| | - Laurie L. Parker
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota Twin Cities, Minneapolis, Minnesota, 55455 USA
| |
Collapse
|
18
|
Szymanowski W, Szymanowska A, Bielawska A, Lopez-Berestein G, Rodriguez-Aguayo C, Amero P. Aptamers as Potential Therapeutic Tools for Ovarian Cancer: Advancements and Challenges. Cancers (Basel) 2023; 15:5300. [PMID: 37958473 PMCID: PMC10647731 DOI: 10.3390/cancers15215300] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Ovarian cancer (OC) is the most common lethal gynecologic cause of death in women worldwide, with a high mortality rate and increasing incidence. Despite advancements in the treatment, most OC patients still die from their disease due to late-stage diagnosis, the lack of effective diagnostic methods, and relapses. Aptamers, synthetic, short single-stranded oligonucleotides, have emerged as promising anticancer therapeutics. Their ability to selectively bind to target molecules, including cancer-related proteins and receptors, has revolutionized drug discovery and biomarker identification. Aptamers offer unique insights into the molecular pathways involved in cancer development and progression. Moreover, they show immense potential as drug delivery systems, enabling targeted delivery of therapeutic agents to cancer cells while minimizing off-target effects and reducing systemic toxicity. In the context of OC, the integration of aptamers with non-coding RNAs (ncRNAs) presents an opportunity for precise and efficient gene targeting. Additionally, the conjugation of aptamers with nanoparticles allows for accurate and targeted delivery of ncRNAs to specific cells, tissues, or organs. In this review, we will summarize the potential use and challenges associated with the use of aptamers alone or aptamer-ncRNA conjugates, nanoparticles, and multivalent aptamer-based therapeutics for the treatment of OC.
Collapse
Affiliation(s)
- Wojciech Szymanowski
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (W.S.); (A.B.)
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (W.S.); (A.B.)
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
| |
Collapse
|
19
|
DeRyckere D, Huelse JM, Earp HS, Graham DK. TAM family kinases as therapeutic targets at the interface of cancer and immunity. Nat Rev Clin Oncol 2023; 20:755-779. [PMID: 37667010 DOI: 10.1038/s41571-023-00813-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/06/2023]
Abstract
Novel treatment approaches are needed to overcome innate and acquired mechanisms of resistance to current anticancer therapies in cancer cells and the tumour immune microenvironment. The TAM (TYRO3, AXL and MERTK) family receptor tyrosine kinases (RTKs) are potential therapeutic targets in a wide range of cancers. In cancer cells, TAM RTKs activate signalling pathways that promote cell survival, metastasis and resistance to a variety of chemotherapeutic agents and targeted therapies. TAM RTKs also function in innate immune cells, contributing to various mechanisms that suppress antitumour immunity and promote resistance to immune-checkpoint inhibitors. Therefore, TAM antagonists provide an unprecedented opportunity for both direct and immune-mediated therapeutic activity provided by inhibition of a single target, and are likely to be particularly effective when used in combination with other cancer therapies. To exploit this potential, a variety of agents have been designed to selectively target TAM RTKs, many of which have now entered clinical testing. This Review provides an essential guide to the TAM RTKs for clinicians, including an overview of the rationale for therapeutic targeting of TAM RTKs in cancer cells and the tumour immune microenvironment, a description of the current preclinical and clinical experience with TAM inhibitors, and a perspective on strategies for continued development of TAM-targeted agents for oncology applications.
Collapse
Affiliation(s)
- Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Paediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Justus M Huelse
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Paediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - H Shelton Earp
- Department of Medicine, UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Paediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
20
|
Garg V, Oza AM. Treatment of Ovarian Cancer Beyond PARP Inhibition: Current and Future Options. Drugs 2023; 83:1365-1385. [PMID: 37737434 PMCID: PMC10581945 DOI: 10.1007/s40265-023-01934-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 09/23/2023]
Abstract
Ovarian cancer is the leading cause of gynecological cancer death. Improved understanding of the biologic pathways and introduction of poly (ADP-ribose) polymerase inhibitors (PARPi) during the last decade have changed the treatment landscape. This has improved outcomes, but unfortunately half the women with ovarian cancer still succumb to the disease within 5 years of diagnosis. Pathways of resistance to PARPi and chemotherapy have been studied extensively, but there is an unmet need to overcome treatment failure and improve outcome. Major mechanisms of PARPi resistance include restoration of homologous recombination repair activity, alteration of PARP function, stabilization of the replication fork, drug efflux, and activation of alternate pathways. These resistant mechanisms can be targeted to sensitize the resistant ovarian cancer cells either by rechallenging with PARPi, overcoming resistance mechanism or bypassing resistance pathways. Augmenting the PARPi activity by combining it with other targets in the DNA damage response pathway, antiangiogenic agents and immune checkpoint inhibitors can potentially overcome the resistance mechanisms. Methods to bypass resistance include targeting non-cross-resistant pathways acting independent of homologous recombination repair (HRR), modulating tumour microenvironment, and enhancing drug delivery systems such as antibody drug conjugates. In this review, we will discuss the first-line management of ovarian cancer, resistance mechanisms and potential strategies to overcome these.
Collapse
Affiliation(s)
- Vikas Garg
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
- , 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
21
|
Ji J, Ding Y, Kong Y, Fang M, Yu X, Lai X, Gu Q. Triple‑negative breast cancer cells that survive ionizing radiation exhibit an Axl‑dependent aggressive radioresistant phenotype. Exp Ther Med 2023; 26:448. [PMID: 37614420 PMCID: PMC10443063 DOI: 10.3892/etm.2023.12147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 08/25/2023] Open
Abstract
This study aimed to investigate the aggressive behavior of triple-negative breast cancer (TNBC) cells that had survived ionizing radiation and explore the potential targets of TNBC combination treatment. Consistent with the previous literature, Axl was highly expressed in TNBC and closely associated with the degree of malignancy based on immunohistochemical staining. Using a gradient irradiation method, the ionizing radiation-resistant mouse TNBC cell line 4T-1/IRR was established. It was found that Axl expression was upregulated in 4T-1/IRR cells. After irradiation by X-ray, the cell viability and colony formation ability of 4T-1/IRR cells were significantly increased when compared with the 4T-1 cells. Combined radiotherapy with Axl inhibition by treatment with R428 and small interfering RNA lentivirus targeting Axl infection significantly reduced cell viability, colony formation ability, DNA double-stranded break repair, and the invasive and migratory ability of 4T-1/IRR cells. In vivo, the small animal radiation research platform was applied to precisely administer radiotherapy of the tumor-bearing mice. R428 treatment combined with 6 Gy X-ray significantly inhibited the growth of 4T-1/IRR cells-derived xenograft tumors in the BALB/c mouse. The results of western blotting showed that the critical molecular mechanism involved in the radioresistance of TNBC cells was the PI3K/Akt/mTOR signaling pathway induced by Axl activation. Thus, it is hypothesized that targeted Axl therapy combined with radiotherapy may have significant potential for the treatment of TNBC.
Collapse
Affiliation(s)
- Jianfeng Ji
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Yuqin Ding
- Department of Breast Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Yue Kong
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Min Fang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiaofu Yu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiaojing Lai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Qing Gu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
22
|
Efthymiou V, Ding L, Balaz M, Sun W, Balazova L, Straub LG, Dong H, Simon E, Ghosh A, Perdikari A, Keller S, Ghoshdastider U, Horvath C, Moser C, Hamilton B, Neubauer H, Wolfrum C. Inhibition of AXL receptor tyrosine kinase enhances brown adipose tissue functionality in mice. Nat Commun 2023; 14:4162. [PMID: 37443109 PMCID: PMC10344962 DOI: 10.1038/s41467-023-39715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The current obesity epidemic and high prevalence of metabolic diseases necessitate efficacious and safe treatments. Brown adipose tissue in this context is a promising target with the potential to increase energy expenditure, however no pharmacological treatments activating brown adipose tissue are currently available. Here, we identify AXL receptor tyrosine kinase as a regulator of adipose function. Pharmacological and genetic inhibition of AXL enhance thermogenic capacity of brown and white adipocytes, in vitro and in vivo. Mechanistically, these effects are mediated through inhibition of PI3K/AKT/PDE signaling pathway, resulting in induction of nuclear FOXO1 localization and increased intracellular cAMP levels via PDE3/4 inhibition and subsequent stimulation of the PKA-ATF2 pathway. In line with this, both constitutive Axl deletion as well as inducible adipocyte-specific Axl deletion protect animals from diet-induced obesity concomitant with increases in energy expenditure. Based on these data, we propose AXL receptor as a target for the treatment of obesity.
Collapse
Affiliation(s)
- Vissarion Efthymiou
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
- Joslin Diabetes Center, Section of Integrative Physiology and Metabolism, Research Division, Harvard Medical School, Boston, MA, USA
| | - Lianggong Ding
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
| | - Miroslav Balaz
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
- Laboratory of Cellular and Molecular Metabolism, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wenfei Sun
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucia Balazova
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
- Laboratory of Cellular and Molecular Metabolism, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Leon G Straub
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Hua Dong
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric Simon
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Adhideb Ghosh
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
| | - Aliki Perdikari
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
| | - Svenja Keller
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
- Mechanisms of Inherited Kidney Diseases Group, Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | - Umesh Ghoshdastider
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
| | - Carla Horvath
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
| | - Caroline Moser
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland
| | - Bradford Hamilton
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Heike Neubauer
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Christian Wolfrum
- ETH Zürich - Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Schwerzenbach, Switzerland.
| |
Collapse
|
23
|
Yeo XH, Sundararajan V, Wu Z, Phua ZJC, Ho YY, Peh KLE, Chiu YC, Tan TZ, Kappei D, Ho YS, Tan DSP, Tam WL, Huang RYJ. The effect of inhibition of receptor tyrosine kinase AXL on DNA damage response in ovarian cancer. Commun Biol 2023; 6:660. [PMID: 37349576 PMCID: PMC10287694 DOI: 10.1038/s42003-023-05045-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
AXL is a receptor tyrosine kinase that is often overexpressed in cancers. It contributes to pathophysiology in cancer progression and therapeutic resistance, making it an emerging therapeutic target. The first-in-class AXL inhibitor bemcentinib (R428/BGB324) has been granted fast track designation by the U.S. Food and Drug Administration (FDA) in STK11-mutated advanced metastatic non-small cell lung cancer and was also reported to show selective sensitivity towards ovarian cancers (OC) with a Mesenchymal molecular subtype. In this study, we further explored AXL's role in mediating DNA damage responses by using OC as a disease model. AXL inhibition using R428 resulted in the increase of DNA damage with the concurrent upregulation of DNA damage response signalling molecules. Furthermore, AXL inhibition rendered cells more sensitive to the inhibition of ATR, a crucial mediator for replication stress. Combinatory use of AXL and ATR inhibitors showed additive effects in OC. Through SILAC co-immunoprecipitation mass spectrometry, we identified a novel binding partner of AXL, SAM68, whose loss in OC cells harboured phenotypes in DNA damage responses similar to AXL inhibition. In addition, AXL- and SAM68-deficiency or R428 treatment induced elevated levels of cholesterol and upregulated genes in the cholesterol biosynthesis pathway. There might be a protective role of cholesterol in shielding cancer cells against DNA damage induced by AXL inhibition or SMA68 deficiency.
Collapse
Affiliation(s)
- Xun Hui Yeo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Zhengwei Wu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Zi Jin Cheryl Phua
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Yin Ying Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore, 138668, Republic of Singapore
| | - Kai Lay Esther Peh
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore, 138668, Republic of Singapore
| | - Yi-Chia Chiu
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Republic of Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore, 138668, Republic of Singapore
| | - David Shao Peng Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Republic of Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Republic of Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Ruby Yun-Ju Huang
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
24
|
Riillo C, Polerà N, Di Martino MT, Juli G, Hokanson CA, Odineca T, Signorelli S, Grillone K, Ascrizzi S, Mancuso A, Staropoli N, Caparello B, Cerra M, Nisticò G, Tagliaferri P, Crea R, Caracciolo D, Tassone P. A Pronectin™ AXL-targeted first-in-class bispecific T cell engager (pAXLxCD3ε) for ovarian cancer. J Transl Med 2023; 21:301. [PMID: 37143061 PMCID: PMC10161629 DOI: 10.1186/s12967-023-04101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Pronectins™ are a new class of fibronectin-3-domain 14th-derived (14Fn3) antibody mimics that can be engineered as bispecific T cell engager (BTCE) to redirect immune effector cells against cancer. We describe here the in vitro and in vivo activity of a Pronectin™ AXL-targeted first-in-class bispecific T cell engager (pAXLxCD3ε) against Epithelial Ovarian Cancer (EOC). METHODS pAXLxCD3ε T-cell mediated cytotoxicity was evaluated by flow cytometry and bioluminescence. pAXLxCD3ε mediated T-cell infiltration, activation and proliferation were assessed by immunofluorescence microscopy and by flow cytometry. Activity of pAXLxCD3ε was also investigated in combination with poly-ADP ribose polymerase inhibitors (PARPi). In vivo antitumor activity of pAXLxCD3ε was evaluated in immunocompromised (NSG) mice bearing intraperitoneal or subcutaneous EOC xenografts and immunologically reconstituted with human peripheral blood mononuclear cells (PBMC). RESULTS pAXLxCD3ε induced dose-dependent cytotoxicity by activation of T lymphocytes against EOC cells, regardless of their histologic origin. The addition of PARPi to cell cultures enhanced pAXLxCD3ε cytotoxicity. Importantly, in vivo, pAXLxCD3ε was highly effective against EOC xenografts in two different NSG mouse models, by inhibiting the growth of tumor cells in ascites and subcutaneous xenografts. This effect translated into a significantly prolonged survival of treated animals. CONCLUSION pAXLxCD3ε is an active therapeutics against EOC cells providing a rational for its development as a novel agent in this still incurable disease. The preclinical validation of a first-in-class agent opens the way to the development of a new 14Fn3-based scaffold platform for the generation of innovative immune therapeutics against cancer.
Collapse
Affiliation(s)
- Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | | | - Stefania Signorelli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Serena Ascrizzi
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Nicoletta Staropoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Maria Cerra
- Giovanni Paolo II General Hospital, Lamezia Terme, Italy
| | | | | | - Roberto Crea
- Protelica, Inc, Hayward, CA, USA.
- Renato Dulbecco Institute, Lamezia Terme, Italy.
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy.
- S.H.R.O., College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Kim J, Nam G, Shin YK, Vilaplana-Lopera N, Jeung HC, Moon EJ, Lee IJ. Targeting AXL Using the AVB-500 Soluble Receptor and through Genetic Knockdown Inhibits Bile Duct Cancer Growth and Metastasis. Cancers (Basel) 2023; 15:cancers15061882. [PMID: 36980768 PMCID: PMC10047303 DOI: 10.3390/cancers15061882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Bile duct cancer, or cholangiocarcinoma, is a rare disease with limited treatment options that include surgery and cytotoxic chemotherapy. The high recurrence rate and poor prognosis of this type of cancer highlights the need to identify new and more effective therapeutic targets. In this study, we found that AXL, a receptor tyrosine kinase, is highly expressed in biliary cancer patients and significantly correlated with poor patient outcomes, including metastasis and low survival rates. We also demonstrated that targeting AXL inhibits tumor progression. In vitro studies with bile duct cancer cells (SNU1196 and HUCCT1) showed that genetic knockdown of AXL significantly reduced both tumor cell growth and invasion. In addition, in vivo studies using subcutaneous and orthotopic intrahepatic models demonstrated that genetic inhibition of AXL resulted in tumor-growth delay. To further examine the possible clinical translation of AXL inhibition in the clinic, we tested the efficacy of AVB-500, a soluble AXL receptor, in reducing AXL activation and tumor growth. AVB-500 was effective at inhibiting AXL activation and decreasing the growth and invasion of SNU1196 and HUCCT1 tumors which possess high AXL expression. Most importantly, AVB-500 was highly effective at decreasing tumor dissemination of bile duct tumor cells in the peritoneal cavity. This study strongly supports the idea of using the AXL receptor as a new therapeutic target to treat the growth and progression of biliary cancer.
Collapse
Affiliation(s)
- Jiyoung Kim
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Headington OX3 7DQ, UK
| | - Gilyeong Nam
- Department of Integrative Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - You Keun Shin
- Department of Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Nuria Vilaplana-Lopera
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Headington OX3 7DQ, UK
| | - Hei-Cheul Jeung
- Department of Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Eui Jung Moon
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Headington OX3 7DQ, UK
| | - Ik Jae Lee
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| |
Collapse
|
26
|
Fang Y, Imoukhuede PI. Axl and Vascular Endothelial Growth Factor Receptors Exhibit Variations in Membrane Localization and Heterogeneity Across Monolayer and Spheroid High-Grade Serous Ovarian Cancer Models. GEN BIOTECHNOLOGY 2023; 2:43-56. [PMID: 36873811 PMCID: PMC9976349 DOI: 10.1089/genbio.2022.0034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/05/2023] [Indexed: 02/18/2023]
Abstract
Vascular endothelial growth factor receptors (VEGFRs) and Axl are receptor tyrosine kinases (RTK) that are targeted in ovarian cancer therapy. Two-dimensional monolayer culture and three-dimensional spheroids are common models for RTK-targeted drug screening: monolayers are simple and economical while spheroids include several genetic and histological tumor features. RTK membrane localization dictates RTK signaling and drug response, however, it is not characterized in these models. We quantify plasma membrane RTK concentrations and show differential RTK abundance and heterogeneity in monolayers versus spheroids. We show VEGFR1 concentrations on the plasma membrane to be 10 times higher in OVCAR8 spheroids than in monolayers; OVCAR8 spheroids are more heterogeneous than monolayers, exhibiting a bimodal distribution of a low-Axl (6200/cell) and a high-Axl subpopulation (25,000/cell). In addition, plasma membrane Axl concentrations differ by 100 times between chemosensitive (OVCAR3) and chemoresistant (OVCAR8) cells and by 10 times between chemoresistant cell lines (OVCAR5 vs. OVCAR8). These systematic findings can guide ovarian cancer model selection for drug screening.
Collapse
Affiliation(s)
- Yingye Fang
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
27
|
Liao Y, Chuang Y, Lin H, Lin N, Hsu T, Hsieh S, Chen S, Hung J, Yang H, Liang J, Huang M, Huang J. GALNT2 promotes invasiveness of colorectal cancer cells partly through AXL. Mol Oncol 2022; 17:119-133. [PMID: 36409270 PMCID: PMC9812829 DOI: 10.1002/1878-0261.13347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
GalNAc-type O-glycosylation and its initiating GalNAc transferases (GALNTs) play crucial roles in a wide range of cellular behaviors. Among 20 GALNT members, GALNT2 is consistently associated with poor survival of patients with colorectal cancer in public databases. However, its clinicopathological significance in colorectal cancer remains unclear. In this study, immunohistochemistry showed that GALNT2 was overexpressed in colorectal tumors compared with the adjacent nontumor tissues. GALNT2 overexpression was associated with poor survival of colorectal cancer patients. Forced expression of GALNT2 promoted migration and invasion as well as peritoneal metastasis of colorectal cancer cells. In contrast, GALNT2 knockdown with siRNAs or knockout with CRISPR/Cas9 system suppressed these malignant properties. Interestingly, we found that GALNT2 modified O-glycans on AXL and determined AXL levels via the proteasome-dependent pathway. In addition, the GALNT2-promoted invasiveness was significantly reversed by AXL siRNAs. These findings suggest that GALNT2 promotes colorectal cancer invasion at least partly through AXL.
Collapse
Affiliation(s)
- Ying‐Yu Liao
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Ya‐Ting Chuang
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Hsuan‐Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Neng‐Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Tzu‐Wen Hsu
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Szu‐Chia Hsieh
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Syue‐Ting Chen
- Department of Anatomy, College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Ji‐Shiang Hung
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| | | | - Jin‐Tung Liang
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| | - Min‐Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - John Huang
- Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
28
|
Yoshimura A, Yamada T, Serizawa M, Uehara H, Tanimura K, Okuma Y, Fukuda A, Watanabe S, Nishioka N, Takeda T, Chihara Y, Takemoto S, Harada T, Hiranuma O, Shirai Y, Shukuya T, Nishiyama A, Goto Y, Shiotsu S, Kunimasa K, Morimoto K, Katayama Y, Suda K, Mitsudomi T, Yano S, Kenmotsu H, Takahashi T, Takayama K. High levels of AXL expression in untreated EGFR-mutated non-small cell lung cancer negatively impacts the use of osimertinib. Cancer Sci 2022; 114:606-618. [PMID: 36169649 PMCID: PMC9899603 DOI: 10.1111/cas.15608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
For non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations, the initial therapeutic interventions will have crucial impacts on their clinical outcomes. Drug tolerant factors reportedly have an impact on EGFR-tyrosine kinase inhibitor sensitivity. This prospective study investigated the impacts of drug tolerant-related protein expression in tumors based on the efficacy of osimertinib in the first-setting of EGFR-mutated advanced NSCLC patients. A total of 92 patients with EGFR-mutated advanced or postoperative recurrent NSCLC were analyzed and treated with osimertinib at 14 institutions in Japan. AXL, p53, and programmed death-ligand 1 (PD-L1) expression in patient tumors was determined using immunohistochemistry. The AXL signaling pathway was investigated using a cell line-based assay and AXL-related gene expression in The Cancer Genome Atlas (TCGA) database. High levels of AXL and positive-p53 expression were detected in 26.1% and 53.3% of the pretreatment EGFR-mutated NSCLC tumors, respectively. High AXL expression levels were significantly associated with a shorter progression-free survival compared with low AXL expression levels, irrespective of the EGFR activating mutation status (p = 0.026). Cell line-based assays indicated that the overexpression of AXL protein accelerated PD-L1 expression, which induced insensitivity to osimertinib. In the TCGA database, AXL RNA levels were positively correlated with PD-L1 expression in the lung adenocarcinoma cohort. The results show that high AXL expression levels in tumors impact clinical predictions when using osimertinib to treat EGFR-mutated NSCLC patients. Trial Registration: UMIN000043942.
Collapse
Affiliation(s)
- Akihiro Yoshimura
- Department of Pulmonary MedicineGraduate School of Medical Science, Kyoto Prefectural University of MedicineKyotoJapan
| | - Tadaaki Yamada
- Department of Pulmonary MedicineGraduate School of Medical Science, Kyoto Prefectural University of MedicineKyotoJapan
| | - Masakuni Serizawa
- Drug Discovery and Development DivisionShizuoka Cancer Center Research InstituteShizuokaJapan
| | - Hisanori Uehara
- Division of PathologyTokushima University HospitalTokushimaJapan
| | - Keiko Tanimura
- Department of Pulmonary MedicineGraduate School of Medical Science, Kyoto Prefectural University of MedicineKyotoJapan
| | - Yusuke Okuma
- Department of Thoracic Oncology and Respiratory MedicineTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalTokyoJapan,Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Akito Fukuda
- Department of Thoracic Oncology and Respiratory MedicineTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalTokyoJapan,Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious DiseasesNiigata University Graduate School of Medicine and Dental HospitalNiigataJapan
| | - Naoya Nishioka
- Division of Thoracic Oncology, Shizuoka Cancer CenterShizuokaJapan
| | - Takayuki Takeda
- Department of Respiratory MedicineJapanese Red Cross Kyoto Daini HospitalKyotoJapan
| | - Yusuke Chihara
- Department of Respiratory MedicineUji‐Tokushukai Medical CenterUjiJapan
| | - Shinnosuke Takemoto
- Department of Respiratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Taishi Harada
- Department of Medical OncologyFukuchiyama City HospitalKyotoJapan
| | - Osamu Hiranuma
- Department of Respiratory MedicineOtsu City HospitalOtsuJapan
| | - Yukina Shirai
- Department of Respiratory MedicineJuntendo UniversityTokyoJapan
| | | | - Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research InstituteKanazawa UniversityKanazawaJapan
| | - Yasuhiro Goto
- Department of Respiratory MedicineFujita Health University School of MedicineToyoakeJapan
| | - Shinsuke Shiotsu
- Department of Respiratory MedicineJapanese Red Cross Kyoto Daiichi HospitalKyotoJapan
| | - Kei Kunimasa
- Department of Thoracic OncologyOsaka International Cancer InstitutionOsakaJapan
| | - Kenji Morimoto
- Department of Pulmonary MedicineGraduate School of Medical Science, Kyoto Prefectural University of MedicineKyotoJapan
| | - Yuki Katayama
- Department of Pulmonary MedicineGraduate School of Medical Science, Kyoto Prefectural University of MedicineKyotoJapan
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of SurgeryKindai University Faculty of MedicineOsakaJapan
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of SurgeryKindai University Faculty of MedicineOsakaJapan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research InstituteKanazawa UniversityKanazawaJapan,Division of Thoracic Surgery, Department of SurgeryKindai University Faculty of MedicineOsakaJapan,Department of Respiratory Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical, and Health SciencesKanazawa UniversityKanazawaJapan,WPI Nano Lifebiomarker Science InstituteKanazawa UniversityKanazawaJapan
| | | | | | - Koichi Takayama
- Department of Pulmonary MedicineGraduate School of Medical Science, Kyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
29
|
Yoshimura A, Yamada T, Serizawa M, Uehara H, Tanimura K, Okuma Y, Fukuda A, Watanabe S, Nishioka N, Takeda T, Chihara Y, Takemoto S, Harada T, Hiranuma O, Shirai Y, Shukuya T, Nishiyama A, Goto Y, Shiotsu S, Kunimasa K, Morimoto K, Katayama Y, Suda K, Mitsudomi T, Yano S, Kenmotsu H, Takahashi T, Takayama K. High levels of
AXL
expression in untreated
EGFR
‐mutated non‐small cell lung cancer negatively impacts the use of osimertinib. Cancer Sci 2022. [DOI: 10.1111/cas.15608 10.1111/cas.15608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Akihiro Yoshimura
- Department of Pulmonary Medicine Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto Japan
| | - Masakuni Serizawa
- Drug Discovery and Development Division Shizuoka Cancer Center Research Institute Shizuoka Japan
| | - Hisanori Uehara
- Division of Pathology Tokushima University Hospital Tokushima Japan
| | - Keiko Tanimura
- Department of Pulmonary Medicine Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology and Respiratory Medicine Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital Tokyo Japan
- Department of Thoracic Oncology National Cancer Center Hospital Tokyo Japan
| | - Akito Fukuda
- Department of Thoracic Oncology and Respiratory Medicine Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital Tokyo Japan
- Department of Thoracic Oncology National Cancer Center Hospital Tokyo Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases Niigata University Graduate School of Medicine and Dental Hospital Niigata Japan
| | - Naoya Nishioka
- Division of Thoracic Oncology, Shizuoka Cancer Center Shizuoka Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine Japanese Red Cross Kyoto Daini Hospital Kyoto Japan
| | - Yusuke Chihara
- Department of Respiratory Medicine Uji‐Tokushukai Medical Center Uji Japan
| | - Shinnosuke Takemoto
- Department of Respiratory Medicine Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Taishi Harada
- Department of Medical Oncology Fukuchiyama City Hospital Kyoto Japan
| | - Osamu Hiranuma
- Department of Respiratory Medicine Otsu City Hospital Otsu Japan
| | - Yukina Shirai
- Department of Respiratory Medicine Juntendo University Tokyo Japan
| | - Takehito Shukuya
- Department of Respiratory Medicine Juntendo University Tokyo Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research Institute Kanazawa University Kanazawa Japan
| | - Yasuhiro Goto
- Department of Respiratory Medicine Fujita Health University School of Medicine Toyoake Japan
| | - Shinsuke Shiotsu
- Department of Respiratory Medicine Japanese Red Cross Kyoto Daiichi Hospital Kyoto Japan
| | - Kei Kunimasa
- Department of Thoracic Oncology Osaka International Cancer Institution Osaka Japan
| | - Kenji Morimoto
- Department of Pulmonary Medicine Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto Japan
| | - Yuki Katayama
- Department of Pulmonary Medicine Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto Japan
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery Kindai University Faculty of Medicine Osaka Japan
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery Kindai University Faculty of Medicine Osaka Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute Kanazawa University Kanazawa Japan
- Division of Thoracic Surgery, Department of Surgery Kindai University Faculty of Medicine Osaka Japan
- Department of Respiratory Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical, and Health Sciences Kanazawa University Kanazawa Japan
- WPI Nano Lifebiomarker Science Institute Kanazawa University Kanazawa Japan
| | | | | | - Koichi Takayama
- Department of Pulmonary Medicine Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto Japan
| |
Collapse
|
30
|
Ma YX, Liu FR, Zhang Y, Chen Q, Chen ZQ, Liu QW, Huang Y, Yang YP, Fang WF, Xi N, Kang N, Zhuang YL, Zhang Q, Jiang YZ, Zhang L, Zhao HY. Preclinical characterization and phase I clinical trial of CT053PTSA targets MET, AXL, and VEGFR2 in patients with advanced solid tumors. Front Immunol 2022; 13:1024755. [PMID: 36341335 PMCID: PMC9632963 DOI: 10.3389/fimmu.2022.1024755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND CT053PTSA is a novel tyrosine kinase inhibitor that targets MET, AXL, VEGFR2, FLT3 and MERTK. Here, we present preclinical data about CT053PTSA, and we conducted the first-in-human (FIH) study to evaluate the use of CT053PTSA in adult patients with pretreated advanced solid tumors. METHODS The selectivity and antitumor activity of CT053PTSA were assessed in cell lines in vitro through kinase and cellular screening panels and in cell line-derived tumor xenograft (CDX) and patient-derived xenograft (PDX) models in vivo. The FIH, phase I, single-center, single-arm, dose escalation (3 + 3 design) study was conducted, patients received at least one dose of CT053PTSA (15 mg QD, 30 mg QD, 60 mg QD, 100 mg QD, and 150 mg QD). The primary objectives were to assess safety and tolerability, to determine the maximum tolerated dose (MTD), dose-limiting toxicity (DLT), and the recommended dose of CT053PTSA for further study. Secondary objectives included pharmacokinetics, antitumor activity. RESULTS CT053 (free-base form of CT053PTSA) inhibited MET, AXL, VEGFR2, FLT3 and MERTK phosphorylation and suppressed tumor cell angiogenesis by blocking VEGF and HGF, respectively, in vitro. Moreover, cell lines with high MET expression exhibited strong sensitivity to CT053, and CT053 blocked the MET and AXL signaling pathways. In an in vivo study, CT053 significantly inhibited tumor growth in CDX and PDX models. Twenty eligible patients were enrolled in the FIH phase I trial. The most common treatment-related adverse events were transaminase elevation (65%), leukopenia (45%) and neutropenia (35%). DLTs occurred in 3 patients, 1/6 in the 100 mg group and 2/4 in the 150 mg group, so the MTD was set to 100 mg. CT053PTSA was rapidly absorbed after the oral administration of a single dose, and the Cmax and AUC increased proportionally as the dose increased. A total of 17 patients in this trial underwent tumor imaging evaluation, and 29.4% had stable disease. CONCLUSIONS CT053PTSA has potent antitumor and antiangiogenic activity in preclinical models. In this FIH phase I trial, CT053PTSA was well tolerated and had a satisfactory safety profile. Further trials evaluating the clinical activity of CT053PTSA are ongoing.
Collapse
Affiliation(s)
- Yu-Xiang Ma
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Fu-Rong Liu
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yang Zhang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qun Chen
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhi-Qiang Chen
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qian-Wen Liu
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yun-Peng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wen-Feng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ning Xi
- HEC R&D Center, Sunshine Lake Pharma Co., Ltd, Donggguan, China
| | - Ning Kang
- HEC R&D Center, Sunshine Lake Pharma Co., Ltd, Donggguan, China
| | - Yu-Lei Zhuang
- HEC R&D Center, Sunshine Lake Pharma Co., Ltd, Donggguan, China
| | - Qi Zhang
- HEC R&D Center, Sunshine Lake Pharma Co., Ltd, Donggguan, China
| | - Ying-Zhi Jiang
- HEC R&D Center, Sunshine Lake Pharma Co., Ltd, Donggguan, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hong-Yun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
31
|
Wu S, Liao M, Li M, Sun M, Xi N, Zeng Y. Structure-based discovery of potent inhibitors of Axl: design, synthesis, and biological evaluation. RSC Med Chem 2022; 13:1246-1264. [PMID: 36325401 PMCID: PMC9579923 DOI: 10.1039/d2md00153e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 07/22/2023] Open
Abstract
Commonly overexpressed in many cancers and associated with tumor growth, metastasis, drug resistance, and poor overall survival, Axl has emerged as a promising target for cancer therapy. However, the availability of new chemical forms for Axl inhibition is limited. Herein, we present the development and characterization of novel Axl inhibitors, including the design, synthesis, and structure-activity relationships (SARs) of a series of diphenylpyrimidine-diamine derivatives. Most of these compounds exhibited remarkable activity against the Axl kinase. In particular, the promising compound m16 showed the highest enzymatic inhibitory potency (IC50 = 5 nM) and blocked multiple tumor cells' proliferation potencies (the CC50 of 4 out of 42 cancer cell lines <100 nM). Furthermore, compound m16 also possessed preferable pharmacokinetic profiles and liver microsome stability. All these favorable results make m16 a good leading therapeutic candidate for further development.
Collapse
Affiliation(s)
- Shuang Wu
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University Changsha 410081 PR China
- Ningbo University School of Medicine 818 Fenghua Road Ningbo Zhejiang 315211 China
- Sunshine Lake Pharmaceutical Co. Ltd Dongyangguang Hi-tech Park Dongguan Guangdong 523871 China
| | - Min Liao
- Sunshine Lake Pharmaceutical Co. Ltd Dongyangguang Hi-tech Park Dongguan Guangdong 523871 China
- School of Chemistry & Chemical Engineering, Guangxi University Nanning 530004 China
| | - Minxiong Li
- Sunshine Lake Pharmaceutical Co. Ltd Dongyangguang Hi-tech Park Dongguan Guangdong 523871 China
| | - Mingming Sun
- Ningbo University School of Medicine 818 Fenghua Road Ningbo Zhejiang 315211 China
- Sunshine Lake Pharmaceutical Co. Ltd Dongyangguang Hi-tech Park Dongguan Guangdong 523871 China
| | - Ning Xi
- Ningbo University School of Medicine 818 Fenghua Road Ningbo Zhejiang 315211 China
- Sunshine Lake Pharmaceutical Co. Ltd Dongyangguang Hi-tech Park Dongguan Guangdong 523871 China
| | - Youlin Zeng
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University Changsha 410081 PR China
| |
Collapse
|
32
|
Expression and Role of TRIM2 in Human Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9430509. [PMID: 36051486 PMCID: PMC9427271 DOI: 10.1155/2022/9430509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
Tripartite motif (TRIM) protein family proteins contain more than 80 members in humans, and most of these proteins exhibit E3 ubiquitin ligase activity mediated through a RING finger domain. Their biological functions are very complex, and they perform diverse functions in cell evolution processes, such as intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis. Tripartite motif-containing protein 2 (TRIM2), a member of the TRIM superfamily, is an 81 kDa multidomain protein, also known as CMT2R or RNF86, located at 4q31.3. TRIM2 functions as an E3 ubiquitin ligase. Current studies have shown that TRIM2 can play roles in neuroprotection, neuronal rapid ischemic tolerance, antiviral responses, neurological diseases, etc. Moreover, based on some studies in tumors, TRIM2 regulates tumor proliferation, migration, invasion, apoptosis, and drug resistance through different mechanisms and plays a critical role in tumor occurrence and development. This review is aimed at providing a systematic and comprehensive summary of research on TRIM2 and at exploring the potential role of TRIM2 as a biomarker and therapeutic target in many kinds of human diseases.
Collapse
|
33
|
Bruce SF, Cho K, Noia H, Lomonosova E, Stock EC, Oplt A, Blachut B, Mullen MM, Kuroki LM, Hagemann AR, McCourt CK, Thaker PH, Khabele D, Powell MA, Mutch DG, Shriver LP, Patti GJ, Fuh KC. GAS6-AXL Inhibition by AVB-500 Overcomes Resistance to Paclitaxel in Endometrial Cancer by Decreasing Tumor Cell Glycolysis. Mol Cancer Ther 2022; 21:1348-1359. [PMID: 35588308 PMCID: PMC9370070 DOI: 10.1158/1535-7163.mct-21-0704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/19/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023]
Abstract
Chemotherapy is often ineffective in advanced-stage and aggressive histologic subtypes of endometrial cancer. Overexpression of the receptor tyrosine kinase AXL has been found to be associated with therapeutic resistance, metastasis, and poor prognosis. However, the mechanism of how inhibition of AXL improves response to chemotherapy is still largely unknown. Thus, we aimed to determine whether treatment with AVB-500, a selective inhibitor of GAS6-AXL, improves endometrial cancer cell sensitivity to chemotherapy particularly through metabolic changes. We found that both GAS6 and AXL expression were higher by immunohistochemistry in patient tumors with a poor response to chemotherapy compared with tumors with a good response to chemotherapy. We showed that chemotherapy-resistant endometrial cancer cells (ARK1, uterine serous carcinoma and PUC198, grade 3 endometrioid adenocarcinoma) had improved sensitivity and synergy with paclitaxel and carboplatin when treated in combination with AVB-500. We also found that in vivo intraperitoneal models with ARK1 and PUC198 cells had decreased tumor burden when treated with AVB-500 + paclitaxel compared with paclitaxel alone. Treatment with AVB-500 + paclitaxel decreased AKT signaling, which resulted in a decrease in basal glycolysis. Finally, multiple glycolytic metabolites were lower in the tumors treated with AVB-500 + paclitaxel than in tumors treated with paclitaxel alone. Our study provides strong preclinical rationale for combining AVB-500 with paclitaxel in aggressive endometrial cancer models.
Collapse
Affiliation(s)
- Shaina F. Bruce
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, Missouri
| | - Kevin Cho
- Center for Metabolomics and Isotope Tracing, Department of Chemistry, Department of Medicine, Washington University, St. Louis, Missouri
| | - Hollie Noia
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, Missouri
| | - Elena Lomonosova
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, Missouri
| | - Elizabeth C. Stock
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, Missouri
| | - Alyssa Oplt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, Missouri
| | - Barbara Blachut
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, Missouri
| | - Mary M. Mullen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, Missouri
| | - Lindsay M. Kuroki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, Missouri
| | - Andrea R. Hagemann
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, Missouri
| | - Carolyn K. McCourt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, Missouri
| | - Premal H. Thaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, Missouri
| | - Dineo Khabele
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, Missouri
| | - Matthew A. Powell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, Missouri
| | - David G. Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, Missouri
| | - Leah P. Shriver
- Center for Metabolomics and Isotope Tracing, Department of Chemistry, Department of Medicine, Washington University, St. Louis, Missouri
| | - Gary J. Patti
- Center for Metabolomics and Isotope Tracing, Department of Chemistry, Department of Medicine, Washington University, St. Louis, Missouri
| | - Katherine C. Fuh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, Missouri
| |
Collapse
|
34
|
Vanli N, Sheng J, Li S, Xu Z, Hu GF. Ribonuclease 4 is associated with aggressiveness and progression of prostate cancer. Commun Biol 2022; 5:625. [PMID: 35752711 PMCID: PMC9233706 DOI: 10.1038/s42003-022-03597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Prostate specific antigen screening has resulted in a decrease in prostate cancer-related deaths. However, it also has led to over-treatment affecting the quality of life of many patients. New biomarkers are needed to distinguish prostate cancer from benign prostate hyperplasia (BPH) and to predict aggressiveness of the disease. Here, we report that ribonuclease 4 (RNASE4) serves as such a biomarker as well as a therapeutic target. RNASE4 protein level in the plasma is elevated in prostate cancer patients and is positively correlated with disease stage, grade, and Gleason score. Plasma RNASE4 level can be used to predict biopsy outcome and to enhance diagnosis accuracy. RNASE4 protein in prostate cancer tissues is enhanced and can differentiate prostate cancer and BPH. RNASE4 stimulates prostate cancer cell proliferation, induces tumor angiogenesis, and activates receptor tyrosine kinase AXL as well as AKT and S6K. An RNASE4-specific monoclonal antibody inhibits the growth of xenograft human prostate cancer cell tumors in athymic mice.
Collapse
Affiliation(s)
- Nil Vanli
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Graduate Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Jinghao Sheng
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuping Li
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Zhengping Xu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guo-Fu Hu
- Divison of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA. .,Graduate Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
35
|
Endocytic trafficking of GAS6-AXL complexes is associated with sustained AKT activation. Cell Mol Life Sci 2022; 79:316. [PMID: 35622156 PMCID: PMC9135597 DOI: 10.1007/s00018-022-04312-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/27/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
AXL, a TAM receptor tyrosine kinase (RTK), and its ligand growth arrest-specific 6 (GAS6) are implicated in cancer metastasis and drug resistance, and cellular entry of viruses. Given this, AXL is an attractive therapeutic target, and its inhibitors are being tested in cancer and COVID-19 clinical trials. Still, astonishingly little is known about intracellular mechanisms that control its function. Here, we characterized endocytosis of AXL, a process known to regulate intracellular functions of RTKs. Consistent with the notion that AXL is a primary receptor for GAS6, its depletion was sufficient to block GAS6 internalization. We discovered that upon receptor ligation, GAS6–AXL complexes were rapidly internalized via several endocytic pathways including both clathrin-mediated and clathrin-independent routes, among the latter the CLIC/GEEC pathway and macropinocytosis. The internalization of AXL was strictly dependent on its kinase activity. In comparison to other RTKs, AXL was endocytosed faster and the majority of the internalized receptor was not degraded but rather recycled via SNX1-positive endosomes. This trafficking pattern coincided with sustained AKT activation upon GAS6 stimulation. Specifically, reduced internalization of GAS6–AXL upon the CLIC/GEEC downregulation intensified, whereas impaired recycling due to depletion of SNX1 and SNX2 attenuated AKT signaling. Altogether, our data uncover the coupling between AXL endocytic trafficking and AKT signaling upon GAS6 stimulation. Moreover, our study provides a rationale for pharmacological inhibition of AXL in antiviral therapy as viruses utilize GAS6–AXL-triggered endocytosis to enter cells.
Collapse
|
36
|
Tissue Microarray Analyses Suggest Axl as a Predictive Biomarker in HPV-Negative Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14071829. [PMID: 35406601 PMCID: PMC8997923 DOI: 10.3390/cancers14071829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Despite many efforts, no predictive biomarkers that could guide clinical decision making and personalized treatment have been established for patients with head and neck squamous cell carcinoma. We propose that high expression of the tyrosine kinase receptor Axl identifies patients as being at enhanced risk for treatment failure under surgery alone and, hence, should be treated by primary or adjuvant radiotherapy. Abstract The receptor tyrosine kinase Axl is described to promote migration, metastasis and resistance against molecular targeting, radiotherapy, and chemotherapy in various tumor entities, including head and neck squamous cell carcinoma (HNSCC). Since clinical data on Axl and its ligand Gas6 in HNSCC are sparse, we assessed the association of Axl and Gas6 expression with patient survival in a single center retrospective cohort in a tissue microarray format. Expression was evaluated manually using an established algorithm and correlated with clinicopathological parameters and patient survival. A number of 362 samples yielded interpretable staining, which did not correlate with T- and N-stage. Protein expression levels were not associated with the survival of patients with p16-positive oropharyngeal SCC. In HPV-negative tumors, Axl expression did not impact patients treated with primary or adjuvant radio(chemo)therapy, but was significantly associated with inferior overall and recurrence-free survival in patients treated with surgery alone. Gas6 was a positive predictor of survival in patients whose treatment included radiotherapy. Associations remained significant in multivariable analysis. Our data question a meaningful contribution of the Axl/Gas6 pathway to radio-resistance in HNSCC and instead suggest that strong Axl expression identifies tumors requiring adjuvant radio(chemo)therapy after surgery.
Collapse
|
37
|
Sidhanth C, Bindhya S, Krishnapriya S, Manasa P, Shabna A, Alifia J, Patole C, Kumar V, Garg M, Ganesan TS. Phosphoproteome of signaling by ErbB2 in ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140768. [PMID: 35158093 DOI: 10.1016/j.bbapap.2022.140768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/07/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The gene for receptor tyrosine kinase ErbB2 is amplified in breast and ovarian tumours. The linear pathway by which signals are transduced through ErbB2 are well known. However, second generation questions that address spatial aspects of signaling remain. To address this, we have undertaken a mass spectrometry approach to identify phosphoproteins specific for ErbB2 using the inhibitors Lapatinib and CP724714 in ovarian cancer cells. The ErbB2 specific proteins identified in SKOV-3 cells were Myristoylated alanine-rich C-kinase substrate, Protein capicua homolog, Protein peptidyl isomerase G, Protein PRRC2C, Chromobox homolog1 and PRP4 homolog. We have evaluated three phosphoproteins PKM2, Aldose reductase and MARCKS in SKOV-3 cells. We observed that PKM2 was phosphorylated by EGF but was not inhibited by Lapatinib and CP724714. The activity of aldose reductase in reducing NADPH as a substrate was significantly higher in EGF stimulated cells which was inhibited by Lapatinib and CP724714 but not by Geftinib (EGFR inhibitor). MARCKS was phosphorylated on stimulation of SKOV-3 cells with EGF that was inhibited by Lapatinib and CP724714 which was dependent on the kinase activity of ErbB2. These results have identified phosphoproteins that are specific to ErbB2 which have not been previously reported and sets the basis for future experiments.
Collapse
Affiliation(s)
- C Sidhanth
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - S Bindhya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - S Krishnapriya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - P Manasa
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - A Shabna
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - J Alifia
- Mass Spectrometry Facility Proteomics, National Centre for Biological Sciences (NCBS), Bangalore, India
| | - C Patole
- Mass Spectrometry Facility Proteomics, National Centre for Biological Sciences (NCBS), Bangalore, India
| | - V Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
| | - M Garg
- Amity Institute of Molecular Medicine & Stem cell Research, Amity University, Delhi, India
| | - T S Ganesan
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India.
| |
Collapse
|
38
|
Sang YB, Kim JH, Kim CG, Hong MH, Kim HR, Cho BC, Lim SM. The Development of AXL Inhibitors in Lung Cancer: Recent Progress and Challenges. Front Oncol 2022; 12:811247. [PMID: 35311091 PMCID: PMC8927964 DOI: 10.3389/fonc.2022.811247] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/08/2022] [Indexed: 01/01/2023] Open
Abstract
AXL, along with MER and TYRO3, is a receptor tyrosine kinase from the TAM family. Although AXL itself is not thought to be a potent oncogenic driver, overexpression of AXL is known to trigger tumor cell growth, survival, invasion, metastasis, angiogenesis, epithelial to mesenchymal transition, and immune suppression. Overexpression of AXL is associated with therapy resistance and poor prognosis. Therefore, it is being studied as a marker of prognosis in cancer treatment or as a target in various cancer types. Recently, many preclinical and clinical studies on agents with various mechanisms targeting AXL have been actively conducted. They include small molecule inhibitors, monoclonal antibodies, and antibody-drug conjugates. This article reviewed the fundamental role of AXL in solid tumors, and the development in research of AXL inhibitors in recent years. Emphasis was placed on the function of AXL in acquired therapy resistance in patients with non-small cell lung cancer (NSCLC). Since clinical needs increase in NSCLC patients with acquired resistance after initial therapy, recent research efforts have focused on a combination treatment with AXL inhibitors and tyrosine kinase inhibitors or immunotherapy to overcome resistance. Lastly, we deal with challenges and limitations encountered in the development of AXL inhibitors.
Collapse
Affiliation(s)
- Yun Beom Sang
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Joo-Hang Kim
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Chang-Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
39
|
Zdżalik-Bielecka D, Kozik K, Poświata A, Jastrzębski K, Jakubik M, Miączyńska M. Bemcentinib and Gilteritinib Inhibit Cell Growth and Impair the Endo-Lysosomal and Autophagy Systems in an AXL-Independent Manner. Mol Cancer Res 2022; 20:446-455. [PMID: 34782372 DOI: 10.1158/1541-7786.mcr-21-0444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
AXL, a receptor tyrosine kinase from the TAM (TYRO3 AXL and MER) subfamily, and its ligand growth arrest-specific 6 (GAS6) are implicated in pathogenesis of a wide array of cancers, acquisition of resistance to diverse anticancer therapies and cellular entry of viruses. The continuous development of AXL inhibitors for treatment of patients with cancer and COVID-19 underscores the need to better characterize the cellular effects of AXL targeting. In the present study, we compared the cellular phenotypes of CRISPR-Cas9-induced depletion of AXL and its pharmacological inhibition with bemcentinib, LDC1267 and gilteritinib. Specifically, we evaluated GAS6-AXL signaling, cell viability and invasion, the endo-lysosomal system and autophagy in glioblastoma cells. We showed that depletion of AXL but not of TYRO3 inhibited GAS6-induced phosphorylation of downstream signaling effectors, AKT and ERK1/2, indicating that AXL is a primary receptor for GAS6. AXL was also specifically required for GAS6-dependent increase in cell viability but was dispensable for viability of cells grown without exogenous addition of GAS6. Furthermore, we revealed that LDC1267 is the most potent and specific inhibitor of AXL activation among the tested compounds. Finally, we found that, in contrast to AXL depletion and its inhibition with LDC1267, cell treatment with bemcentinib and gilteritinib impaired the endo-lysosomal and autophagy systems in an AXL-independent manner. IMPLICATIONS Altogether, our findings are of high clinical importance as we discovered that two clinically advanced AXL inhibitors, bemcentinib and gilteritinib, may display AXL-independent cellular effects and toxicity.
Collapse
Affiliation(s)
- Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Kamila Kozik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agata Poświata
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marta Jakubik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
40
|
Jonasch E, Atkins MB, Chowdhury S, Mainwaring P. Combination of Anti-Angiogenics and Checkpoint Inhibitors for Renal Cell Carcinoma: Is the Whole Greater Than the Sum of Its Parts? Cancers (Basel) 2022; 14:cancers14030644. [PMID: 35158916 PMCID: PMC8833428 DOI: 10.3390/cancers14030644] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Checkpoint inhibitors and anti-angiogenic therapies are treatments that slow the progression of renal cell carcinoma, the most common type of kidney cancer. Checkpoint inhibitors and anti-angiogenic therapies work in different ways. Checkpoint inhibitors help to prevent tumors from hiding from the body’s immune system, while anti-angiogenic therapies slow the development of blood vessels that tumours need to help them to grow. Studies have shown that treatment with combination checkpoint inhibitor plus anti-angiogenic therapy can achieve better outcomes for patients with renal cell carcinoma than treatment with anti-angiogenic therapy alone. In this review, we consider how combination checkpoint inhibitor plus anti-angiogenic therapy works, and we review the current literature to identify evidence to inform clinicians as to the most effective way to use these different types of drugs, either one after the other, or together, for maximum patient benefit. Abstract Anti-angiogenic agents, such as vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitors and anti-VEGF antibodies, and immune checkpoint inhibitors (CPIs) are standard treatments for advanced renal cell carcinoma (aRCC). In the past, these agents were administered as sequential monotherapies. Recently, combinations of anti-angiogenic agents and CPIs have been approved for the treatment of aRCC, based on evidence that they provide superior efficacy when compared with sunitinib monotherapy. Here we explore the possible mechanisms of action of these combinations, including a review of relevant preclinical data and clinical evidence in patients with aRCC. We also ask whether the benefit is additive or synergistic, and, thus, whether concomitant administration is preferred over sequential monotherapy. Further research is needed to understand how combinations of anti-angiogenic agents with CPIs compare with CPI monotherapy or combination therapy (e.g., nivolumab and ipilimumab), and whether the long-term benefit observed in a subset of patients treated with CPI combinations will also be realised in patients treated with an anti-angiogenic therapy and a CPI. Additional research is also needed to establish whether other elements of the tumour microenvironment also need to be targeted to optimise treatment efficacy, and to identify biomarkers of response to inform personalised treatment using combination therapies.
Collapse
Affiliation(s)
- Eric Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1374, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-792-2830
| | - Michael B. Atkins
- Department of Oncology, School of Medicine, Georgetown University, Washington, DC 20007, USA;
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| | - Simon Chowdhury
- Department of Medical Oncology, Guy’s and St Thomas’ Hospitals, London SE1 9RT, UK;
- Sarah Cannon Research Institute, London W1G 6AD, UK
| | - Paul Mainwaring
- Centre for Personalised Nanomedicine, The University of Queensland, Brisbane, QLD 4072, Australia;
| |
Collapse
|
41
|
AXL Receptor Tyrosine Kinase as a Promising Therapeutic Target Directing Multiple Aspects of Cancer Progression and Metastasis. Cancers (Basel) 2022; 14:cancers14030466. [PMID: 35158733 PMCID: PMC8833413 DOI: 10.3390/cancers14030466] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Metastasis is a complex process that requires the acquisition of certain traits by cancer cells as well as the cooperation of several non-neoplastic cells that populate the stroma. Cancer-related deaths are predominantly associated with complications arising from metastases. Limiting metastasis therefore represents an important clinical challenge. The receptor tyrosine kinase AXL is required at many steps of the metastatic cascade and contributes to tumor microenvironment deregulation. In this review, we describe how AXL contributes to metastatic progression by governing various biological processes in cancer cells and in stromal cells, highlighting the potential of its inhibition. Abstract The receptor tyrosine kinase AXL is emerging as a key player in tumor progression and metastasis and its expression correlates with poor survival in a plethora of cancers. While studies have shown the benefits of AXL inhibition for the treatment of metastatic cancers, additional roles for AXL in cancer progression are still being explored. This review discusses recent advances in understanding AXL’s functions in different tumor compartments including cancer, vascular, and immune cells. AXL is required at multiple steps of the metastatic cascade where its activation in cancer cells leads to EMT, invasion, survival, proliferation and therapy resistance. AXL activation in cancer cells and various stromal cells also results in tumor microenvironment deregulation, leading to modulation of angiogenesis, fibrosis, immune response and hypoxia. A better understanding of AXL’s role in these processes could lead to new therapeutic approaches that would benefit patients suffering from metastatic diseases.
Collapse
|
42
|
Lotsberg ML, Davidsen KT, D’Mello Peters S, Haaland GS, Rayford A, Lorens JB, Engelsen AST. The Role of AXL Receptor Tyrosine Kinase in Cancer Cell Plasticity and Therapy Resistance. BIOMARKERS OF THE TUMOR MICROENVIRONMENT 2022:307-327. [DOI: 10.1007/978-3-030-98950-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Toboni MD, Lomonosova E, Bruce SF, Tankou JI, Mullen MM, Schab A, Oplt A, Noia H, Wilke D, Kuroki LM, Hagemann AR, McCourt CK, Thaker PH, Powell MA, Khabele D, Mutch DG, Fuh KC. Inhibition of AXL and VEGF-A Has Improved Therapeutic Efficacy in Uterine Serous Cancer. Cancers (Basel) 2021; 13:5877. [PMID: 34884986 PMCID: PMC8656641 DOI: 10.3390/cancers13235877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Endometrial cancer remains the most prevalent gynecologic cancer with continued rising incidence. A less common form of this cancer is uterine serous cancer, which represents 10% of endometrial cancer cases. However, this is the most aggressive cancer. The objective was to assess whether inhibiting the receptor tyrosine kinase AXL with AVB-500 in combination with bevacizumab would improve response in uterine serous cancer. To prove this, we conducted multiple angiogenesis assays including tube formation assays and angiogenesis invasion assays. In addition, we utilized mouse models with multiple cells lines and subsequently analyzed harvested tissue through immunohistochemistry CD31 staining to assess microvessel density. The combination treatment arms demonstrated decreased angiogenic potential in each assay. In addition, intraperitoneal mouse models demonstrated a significant decrease in tumor burden in two cell lines. The combination of AVB-500 and bevacizumab reduced tumor burden in vivo and reduced morphogenesis and migration in vitro which are vital to the process of angiogenesis.
Collapse
Affiliation(s)
- Michael D. Toboni
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
| | - Elena Lomonosova
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Shaina F. Bruce
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
| | - Jo’an I. Tankou
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
| | - Mary M. Mullen
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
| | - Angela Schab
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Alyssa Oplt
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Hollie Noia
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Danny Wilke
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Lindsay M. Kuroki
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
| | - Andrea R. Hagemann
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
| | - Carolyn K. McCourt
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
| | - Premal H. Thaker
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
| | - Matthew A. Powell
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
| | - Dineo Khabele
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
| | - David G. Mutch
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
| | - Katherine C. Fuh
- Barnes Jewish Hospital, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, MO 63110, USA; (M.D.T.); (E.L.); (S.F.B.); (J.I.T.); (M.M.M.); (A.S.); (A.O.); (H.N.); (D.W.); (L.M.K.); (A.R.H.); (C.K.M.); (P.H.T.); (M.A.P.); (D.K.); (D.G.M.)
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
44
|
Guo J, Zheng J, Zhang H, Tong J. RNA m6A methylation regulators in ovarian cancer. Cancer Cell Int 2021; 21:609. [PMID: 34794452 PMCID: PMC8600856 DOI: 10.1186/s12935-021-02318-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification of mammalian mRNAs and plays a vital role in many diseases, especially tumours. In recent years, m6A has become the topic of intense discussion in epigenetics. M6A modification is dynamically regulated by methyltransferases, demethylases and RNA-binding proteins. Ovarian cancer (OC) is a common but highly fatal malignancy in female. Increasing evidence shows that changes in m6A levels and the dysregulation of m6A regulators are associated with the occurrence, development or prognosis of OC. In this review, the latest studies on m6A and its regulators in OC have been summarized, and we focus on the key role of m6A modification in the development and progression of OC. Additionally, we also discuss the potential use of m6A modification and its regulators in the diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Jialu Guo
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jianfeng Zheng
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Affiliated Hangzhou Hospital, Nanjing Medical University, 310008, Hangzhou, Zhejiang Province, People's Republic of China
| | - Huizhi Zhang
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jinyi Tong
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China. .,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
45
|
Yan D, Earp HS, DeRyckere D, Graham DK. Targeting MERTK and AXL in EGFR Mutant Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:5639. [PMID: 34830794 PMCID: PMC8616094 DOI: 10.3390/cancers13225639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
MERTK and AXL are members of the TAM family of receptor tyrosine kinases and are abnormally expressed in 69% and 93% of non-small cell lung cancers (NSCLCs), respectively. Expression of MERTK and/or AXL provides a survival advantage for NSCLC cells and correlates with lymph node metastasis, drug resistance, and disease progression in patients with NSCLC. The TAM receptors on host tumor infiltrating cells also play important roles in the immunosuppressive tumor microenvironment. Thus, MERTK and AXL are attractive biologic targets for NSCLC treatment. Here, we will review physiologic and oncologic roles for MERTK and AXL with an emphasis on the potential to target these kinases in NSCLCs with activating EGFR mutations.
Collapse
Affiliation(s)
- Dan Yan
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| | - H. Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, Department of Medicine, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| |
Collapse
|
46
|
Fragment-based lead discovery of indazole-based compounds as AXL kinase inhibitors. Bioorg Med Chem 2021; 49:116437. [PMID: 34600239 DOI: 10.1016/j.bmc.2021.116437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 11/22/2022]
Abstract
AXL is a member of the TAM (TYRO3, AXL, MER) subfamily of receptor tyrosine kinases. It is upregulated in a variety of cancers and its overexpression is associated with poor disease prognosis and acquired drug resistance. Utilizing a fragment-based lead discovery approach, a new indazole-based AXL inhibitor was obtained. The indazole fragment hit 11, identified through a high concentration biochemical screen, was expeditiously improved to fragment 24 by screening our in-house expanded library of fragments (ELF) collection. Subsequent fragment optimization guided by docking studies provided potent inhibitor 54 with moderate exposure levels in mice. X-ray crystal structure of analog 50 complexed with the I650M mutated kinase domain of Mer revealed the key binding interactions for the scaffold. The good potency coupled with reasonable kinase selectivity, moderate in vivo exposure levels, and availability of structural information for the series makes it a suitable starting point for further optimization efforts.
Collapse
|
47
|
Mullen MM, Lomonosova E, Toboni MD, Oplt A, Cybulla E, Blachut B, Zhao P, Noia H, Wilke D, Rankin EB, Kuroki LM, Hagemann AR, Hagemann IS, McCourt CK, Thaker PH, Mutch DG, Powell MA, Mosammaparast N, Vindigni A, Fuh KC. GAS6/AXL Inhibition Enhances Ovarian Cancer Sensitivity to Chemotherapy and PARP Inhibition through Increased DNA Damage and Enhanced Replication Stress. Mol Cancer Res 2021; 20:265-279. [PMID: 34670865 DOI: 10.1158/1541-7786.mcr-21-0302] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Over 80% of women with high-grade serous ovarian cancer (HGSOC) develop tumor resistance to chemotherapy and die of their disease. There are currently no FDA-approved agents to improve sensitivity to first-line platinum- and taxane-based chemotherapy or to PARP inhibitors. Here, we tested the hypothesis that expression of growth arrest-specific 6 (GAS6), the ligand of receptor tyrosine kinase AXL, is associated with chemotherapy response and that sequestration of GAS6 with AVB-S6-500 (AVB-500) could improve tumor response to chemotherapy and PARP inhibitors. We found that GAS6 levels in patient tumor and serum samples collected before chemotherapy correlated with ovarian cancer chemoresponse and patient survival. Compared with chemotherapy alone, AVB-500 plus carboplatin and/or paclitaxel led to decreased ovarian cancer-cell survival in vitro and tumor burden in vivo. Cells treated with AVB-500 plus carboplatin had more DNA damage, slower DNA replication fork progression, and fewer RAD51 foci than cells treated with carboplatin alone, indicating AVB-500 impaired homologous recombination (HR). Finally, treatment with the PARP inhibitor olaparib plus AVB-500 led to decreased ovarian cancer-cell survival in vitro and less tumor burden in vivo. Importantly, this effect was seen in HR-proficient and HR-deficient ovarian cancer cells. Collectively, our findings suggest that GAS6 levels could be used to predict response to carboplatin and AVB-500 could be used to treat platinum-resistant, HR-proficient HGSOC. IMPLICATIONS: GAS6/AXL is a novel target to sensitize ovarian cancers to carboplatin and olaparib. Additionally, GAS6 levels can be associated with response to carboplatin treatment.
Collapse
Affiliation(s)
- Mary M Mullen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Elena Lomonosova
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Michael D Toboni
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Alyssa Oplt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Emily Cybulla
- Division of Hematology and Oncology, Department of Medicine, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri.,Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Barbara Blachut
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Peinan Zhao
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Hollie Noia
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Daniel Wilke
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Erinn B Rankin
- Department of Obstetrics and Gynecology, Stanford Medicine, Stanford University, Stanford, California. Department of Radiation Oncology, Stanford Medicine, Stanford University, Stanford, California
| | - Lindsay M Kuroki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Andrea R Hagemann
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Ian S Hagemann
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri.,Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Carolyn K McCourt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Premal H Thaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - David G Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Matthew A Powell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Nima Mosammaparast
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Alessandro Vindigni
- Division of Hematology and Oncology, Department of Medicine, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Katherine C Fuh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri.
| |
Collapse
|
48
|
Wang D, Bi L, Ran J, Zhang L, Xiao N, Li X. Gas6/Axl signaling pathway promotes proliferation, migration and invasion and inhibits apoptosis in A549 cells. Exp Ther Med 2021; 22:1321. [PMID: 34630675 DOI: 10.3892/etm.2021.10756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Several studies have demonstrated that growth arrest-specific protein 6 (Gas6) and Axl are highly expressed in various tumor tissues, such as renal cell and esophageal carcinoma. However, the effect of the Gas6/Axl signaling pathway on lung adenocarcinoma is still unclear. The aim of the present study was to investigate the effect of the Gas6/Axl signaling pathway on lung adenocarcinoma cells and its mechanism of action, which may provide a novel target for the clinical treatment of lung adenocarcinoma. Human lung adenocarcinoma tissues were used to examine the activation of the Gas6/Axl signaling pathway. In addition, the human lung adenocarcinoma cell line A549 was employed to study the effects of the Gas6/Axl signaling pathway on the proliferation, migration, invasion and apoptosis of lung adenocarcinoma cells. Recombinant human Gas6 protein and inhibitor TP-0903 were used to activate and inhibit the Gas6/Axl signaling pathway, respectively. The results revealed that Gas6 and Axl expression level was increased in human lung adenocarcinoma tissues compared with adjacent healthy tissues. After inhibition of the Gas6/Axl signaling pathway with TP-0903, p21, p53, caspase 3, caspase 8 and caspase 9 exhibited higher expression level in A549 cells. The opposite effect was observed when the Gas6/Axl signaling pathway was activated. In addition, the migratory and invasive ability of A549 cells was determined via wound-healing and Transwell invasion assays. The results indicated that the migratory and invasive ability of A549 cells was significantly increased when the Gas6/Axl signaling pathway was activated and inhibition of Gas6/Axl signaling pathway caused the opposite results. Activity of Gas6/Axl signaling pathway was shown to be positively associated with cell proliferation by Cell Counting Kit 8 and clone formation assays. In conclusion, the Gas6/Axl signaling pathway was revealed to promote the proliferation, migration and invasion and inhibit the apoptosis of lung adenocarcinoma cells, which serve important roles in the progression of lung adenocarcinoma.
Collapse
Affiliation(s)
- Dong Wang
- Department of Tuberculosis, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Lixin Bi
- Department of Tuberculosis, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Jingping Ran
- Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Lei Zhang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Na Xiao
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Xiaoli Li
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
49
|
AXL Receptor in Cancer Metastasis and Drug Resistance: When Normal Functions Go Askew. Cancers (Basel) 2021; 13:cancers13194864. [PMID: 34638349 PMCID: PMC8507788 DOI: 10.3390/cancers13194864] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary AXL is a member of the TAM (TYRO3, AXL, MER) family of receptor tyrosine kinases. In normal physiological conditions, AXL is involved in removing dead cells and their remains, and limiting the duration of immune responses. Both functions are utilized by cancers in the course of tumour progression. Cancer cells use the AXL pathway to detect toxic environments and to activate molecular mechanisms, thereby ensuring their survival or escape from the toxic zone. AXL is instrumental in controlling genetic programs of epithelial-mesenchymal and mesenchymal-epithelial transitions, enabling cancer cells to metastasize. Additionally, AXL signaling suppresses immune responses in tumour microenvironment and thereby helps cancer cells to evade immune surveillance. The broad role of AXL in tumour biology is the reason why its inhibition sensitizes tumours to a broad spectrum of anti-cancer drugs. In this review, we outline molecular mechanisms underlying AXL function in normal tissues, and discuss how these mechanisms are adopted by cancers to become metastatic and drug-resistant. Abstract The TAM proteins TYRO3, AXL, and MER are receptor tyrosine kinases implicated in the clearance of apoptotic debris and negative regulation of innate immune responses. AXL contributes to immunosuppression by terminating the Toll-like receptor signaling in dendritic cells, and suppressing natural killer cell activity. In recent years, AXL has been intensively studied in the context of cancer. Both molecules, the receptor, and its ligand GAS6, are commonly expressed in cancer cells, as well as stromal and infiltrating immune cells. In cancer cells, the activation of AXL signaling stimulates cell survival and increases migratory and invasive potential. In cells of the tumour microenvironment, AXL pathway potentiates immune evasion. AXL has been broadly implicated in the epithelial-mesenchymal plasticity of cancer cells, a key factor in drug resistance and metastasis. Several antibody-based and small molecule AXL inhibitors have been developed and used in preclinical studies. AXL inhibition in various mouse cancer models reduced metastatic spread and improved the survival of the animals. AXL inhibitors are currently being tested in several clinical trials as monotherapy or in combination with other drugs. Here, we give a brief overview of AXL structure and regulation and discuss the normal physiological functions of TAM receptors, focusing on AXL. We present a theory of how epithelial cancers exploit AXL signaling to resist cytotoxic insults, in order to disseminate and relapse.
Collapse
|
50
|
Therapeutic Targeting of the Gas6/Axl Signaling Pathway in Cancer. Int J Mol Sci 2021; 22:ijms22189953. [PMID: 34576116 PMCID: PMC8469858 DOI: 10.3390/ijms22189953] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/14/2022] Open
Abstract
Many signaling pathways are dysregulated in cancer cells and the host tumor microenvironment. Aberrant receptor tyrosine kinase (RTK) pathways promote cancer development, progression, and metastasis. Hence, numerous therapeutic interventions targeting RTKs have been actively pursued. Axl is an RTK that belongs to the Tyro3, Axl, MerTK (TAM) subfamily. Axl binds to a high affinity ligand growth arrest specific 6 (Gas6) that belongs to the vitamin K-dependent family of proteins. The Gas6/Axl signaling pathway has been implicated to promote progression, metastasis, immune evasion, and therapeutic resistance in many cancer types. Therapeutic agents targeting Gas6 and Axl have been developed, and promising results have been observed in both preclinical and clinical settings when such agents are used alone or in combination therapy. This review examines the current state of therapeutics targeting the Gas6/Axl pathway in cancer and discusses Gas6- and Axl-targeting agents that have been evaluated preclinically and clinically.
Collapse
|