1
|
Perfilyeva YV, Kali A, Aben DS, Abdusattarova YR, Lushova AV, Ostapchuk YO, Tleulieva R, Perfilyeva AV, Sharipov KO, Davlyatshin TI, Abdolla N. Effect of calcitriol on myeloid-derived suppressor cells in physiological aging. J Steroid Biochem Mol Biol 2025; 251:106768. [PMID: 40316223 DOI: 10.1016/j.jsbmb.2025.106768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/17/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The active hormonal form of vitamin D, 1,25(OH)2D, regulates many components of the immune system and previous research shows that 1,25(OH)2D reduces the number and suppressive activity of MDSCs in tumors. This study aimed to evaluate the effects of calcitriol treatment on MDSCs in aged mice. We showed that aged BALB/c and CD1 mice exhibited increased levels of CD11b+Gr1+ cells in both the spleen and bone marrow compared to young mice. These cells displayed a less mature phenotype marked by reduced F4/80 expression and demonstrated robust T cell suppressive activity, as evidenced by their ability to inhibit the production of IFNγ and TNFα. Treatment of aged mice with calcitriol, administered twice weekly at a dose equivalent to 1 µg/kg for 4 weeks, significantly increased the population of CD11b+Gr1+ cells in the spleen, but not in the bone marrow of the animals, and promoted their differentiation into a more mature phenotype characterized by elevated F4/80 expression. In addition, calcitriol-treated aged mice exhibited significantly improved T cell responses, as indicated by increased IFNγ production upon specific antigen stimulation compared to the control group of mice. In vitro, calcitriol treatment of bone marrow-derived MDSCs similarly enhanced F4/80 expression without altering other markers such as CD11b, CD11c, or MHCII, and led to reduced expression of reactive oxygen species by these cells. Our study highlights the consistency of MDSC expansion across inbred and outbred mouse strains and supports the immunomodulatory role of calcitriol in promoting MDSC maturation and alleviating immune suppression in aging.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Aikyn Kali
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Diana S Aben
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Yulduz R Abdusattarova
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Anzhelika V Lushova
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Yekaterina O Ostapchuk
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Raikhan Tleulieva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | | | - Kamalidin O Sharipov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
| | - Timur I Davlyatshin
- Clinical diagnostic laboratory 'Omikron 3D', 24 Amanzhol St., Almaty 050052, Kazakhstan
| | - Nurshat Abdolla
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan; Almaty Branch of the National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty 050054, Kazakhstan.
| |
Collapse
|
2
|
Sabit H, Adel A, Abdelfattah MM, Ramadan RM, Nazih M, Abdel-Ghany S, El-Hashash A, Arneth B. The Role of Tumor Microenvironment and Immune Cell Crosstalk in Triple-Negative Breast Cancer (TNBC): Emerging Therapeutic Opportunities. Cancer Lett 2025; 628:217865. [PMID: 40516902 DOI: 10.1016/j.canlet.2025.217865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 06/03/2025] [Accepted: 06/07/2025] [Indexed: 06/16/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by its lack of estrogen, progesterone, and HER2 receptors, leading to limited treatment options and poor prognosis. This review synthesizes current research on the tumor microenvironment (TME) and immune cell crosstalk in TNBC to identify emerging therapeutic opportunities. The TME in TNBC is a complex ecosystem comprising immune cells, fibroblasts, and extracellular matrix components, which significantly influence tumor growth and metastasis. Single-cell RNA sequencing reveals T-cell heterogeneity and identifies prognostic genes. Regulatory T cells (Tregs) play a key role in immunosuppression, with thymidine kinase-1 (TK1) identified as a potential therapeutic target. MUC1-C and CXCL9 modulate the TME, impacting T-cell depletion and macrophage differentiation. Spatial analysis highlights the importance of cell-to-cell interactions in predicting recurrence. Epithelial-mesenchymal transition (EMT) and thermogenesis also influence the TME, while epigenetic modifications, such as HDAC inhibition, can induce pyroptosis and enhance immune cell recruitment. Integrating genomic information with TME analysis is crucial for developing personalized treatments, considering racial disparities in immune infiltration. Emerging therapies targeting immune checkpoints, modulating Treg activity, and inducing pyroptosis hold promise for improving TNBC patient outcomes. Future research should focus on multi-omics data, spatial transcriptomics, and patient-derived models to refine therapeutic interventions.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt.
| | - Amro Adel
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Mariam M Abdelfattah
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Rehab M Ramadan
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Mahmoud Nazih
- Al Ryada University for Science and Technology (RST), ElMehwar ElMarkazy-2, Cairo - Alex desert RD K92, Sadat City, 16504, Egypt; Scientific Office, Egyptian Society of Pharmacogenomics and Personalized Medicine (ESPM), Cairo, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Ahmed El-Hashash
- Elizabeth City State campus of the University of North Carolina (UNC), NC, 27909, USA
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldingerstr. 1, Marburg, 35043 Germany; Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr 12, Giessen, 35392 Germany.
| |
Collapse
|
3
|
Bakrim S, Fessikh ME, Elhrech H, Omari NE, Amanullah M, Ming LC, Moshawih S, Bouyahya A. Targeting inflammation in cancer therapy: from mechanistic insights to emerging therapeutic approaches. J Transl Med 2025; 23:588. [PMID: 40420174 DOI: 10.1186/s12967-025-06583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Inflammation is a complex and finely tuned component of the host defense mechanism, responding sensitively to a range of physical, chemical, and biological stressors. Current research is advancing our grasp of both cellular and molecular mechanisms that initiate and regulate interactions within inflammatory pathways. Substantial evidence now indicates a profound link between inflammation, innate immunity, and cancer. Dysregulation of inflammatory pathways is known to be a pivotal factor in the induction, growth, and metastasis of tumors through multiple mechanistic pathways. Basically, the tumor microenvironment (TME), characterized by dynamic interplay between cancerous cells and surrounding inflammatory and stromal cells, plays a central role in these processes. Increasingly, controlled acute inflammation is being explored as a promising therapeutic tool in certain types of cancer. However, inflammatory cells in the TME exhibit remarkable plasticity, with shifting phenotypic and functional roles that facilitate cancer cell survival, proliferation, and migration, especially under chronic inflammatory conditions. Additionally, signaling molecules associated with the innate immune system, like chemokines, are co-opted by malignant cells to support invasion, migration, and metastasis. These findings underscore the need for deeper insights into the mechanisms connecting inflammation to cancer pathology, which could pave the way for innovative diagnostic approaches and targeted anti-inflammatory therapies to counter tumor development. The current review underlines the critical involvement of inflammation in cancer development, examining the connection between the immune system, key inflammatory mediators, biomarkers, and their associated pathways in cancer. We also discuss the impact of inflammation-targeted therapies on anticancer signaling pathways. Furthermore, we review major anti-inflammatory drugs with potential applications in oncology, assessing how inflammation is modulated in cancer management. Lastly, we outline an overview of ongoing discoveries in the field, highlighting both the challenges and the therapeutic promise of targeting inflammation in cancer therapy.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, 80000, Morocco
| | - Meriem El Fessikh
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Hamza Elhrech
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Mohammed Amanullah
- Department of clinical Biochemistry, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Long Chiau Ming
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India
- Faculty of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Said Moshawih
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan.
| |
Collapse
|
4
|
Roscigno G, Jacobs S, Toledo B, Borea R, Russo G, Pepe F, Serrano MJ, Calabrò V, Troncone G, Giovannoni R, Giovannetti E, Malapelle U. The potential application of stroma modulation in targeting tumor cells: focus on pancreatic cancer and breast cancer models. Semin Cancer Biol 2025:S1044-579X(25)00060-4. [PMID: 40373890 DOI: 10.1016/j.semcancer.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/08/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer development and spreading being considered as "the dark side of the tumor". Within this term tumor cells, immune components, supporting cells, extracellular matrix and a myriad of bioactive molecules that synergistically promote tumor development and therapeutic resistance, are included. Recent findings revealed the profound impacts of TME on cancer development, serving as physical support, critical mediator and biodynamic matrix in cancer evolution, immune modulation, and treatment outcomes. TME targeting strategies built on vasculature, immune checkpoints, and immuno-cell therapies, have paved the way for revolutionary clinical interventions. On this basis, the relevance of pre-clinical and clinical investigations has rapidly become fundamental for implementing novel therapeutical strategies breaking cell-cell and cell -mediators' interactions between TME components and tumor cells. This review summarizes the key players in the breast and pancreatic TME, elucidating the intricate interactions among cancer cells and their essential role for cancer progression and therapeutic resistance. Different tumors such breast and pancreatic cancer have both different and similar stroma features, that might affect therapeutic strategies. Therefore, this review aims to comprehensively evaluate recent findings for refining breast and pancreatic cancer therapies and improve patient prognoses by exploiting the TME's complexity in the next future.
Collapse
Affiliation(s)
- Giuseppina Roscigno
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Sacha Jacobs
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| | - Belen Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain.
| | - Roberto Borea
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy.
| | - Gianluca Russo
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pepe
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Maria Jose Serrano
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain.
| | - Viola Calabrò
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Roberto Giovannoni
- Department of Biology, Genetic Unit, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy.
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
5
|
Patysheva MR, Fedorenko AA, Khozyainova AA, Denisov EV, Gerashchenko TS. Immune Evasion in Cancer Metastasis: An Unappreciated Role of Monocytes. Cancers (Basel) 2025; 17:1638. [PMID: 40427136 PMCID: PMC12110646 DOI: 10.3390/cancers17101638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/02/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Metastasis is the leading cause of cancer-related deaths. During the metastatic cascade, cancer cells tightly interact with immune cells influencing each other in the tumor microenvironment and systemically. Monocytes are important components of immune evasion and critical regulators of cancer progression. They circulate through the bloodstream and contribute to the formation of a pro-tumor microenvironment both in the tumor and pre-metastatic niche. Whereas monocyte participation in cancer development and response to therapy has been described extensively, its impact on metastasis remains a completely uncovered area. This review first summarizes data concerning the influence of monocytes on metastasis formation during their presence in the circulation, primary tumor, and pre-metastatic niche. We also highlight the latest examinations into the clinical relevance of targeting monocytes to prevent metastasis.
Collapse
Affiliation(s)
- Marina R. Patysheva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia (E.V.D.); (T.S.G.)
| | - Anastasya A. Fedorenko
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia (E.V.D.); (T.S.G.)
| | - Anna A. Khozyainova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia (E.V.D.); (T.S.G.)
| | - Evgeny V. Denisov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia (E.V.D.); (T.S.G.)
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, Moscow 115093, Russia
| | - Tatiana S. Gerashchenko
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk 634009, Russia (E.V.D.); (T.S.G.)
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, Moscow 115093, Russia
| |
Collapse
|
6
|
Ding C, Li Z, Zheng Y, Li K, Yu W, Kong L, Zhang Z. Effects of albumin-bound paclitaxel combined with Sophora subprostrate polysaccharide on inflammatory factors and immune function in breast cancer rats. Discov Oncol 2025; 16:716. [PMID: 40347365 PMCID: PMC12065689 DOI: 10.1007/s12672-025-02539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/30/2025] [Indexed: 05/12/2025] Open
Abstract
BACKGROUND Tumor occurrence and growth are highly correlated with the degree of inflammation and immunological activity. Reducing the level of inflammation in tumor-bearing body to relieve immune suppression and enhance anti-tumor immune function has become an important strategy for tumor treatment. OBJECTIVE To investigate the effect of albumin-bound paclitaxel combined with Sophora subprostrate polysaccharide (SSP) on inhibiting inflammation, reducing immunosuppression, enhancing anti-tumor immune function and slowing the progression of tumor in tumor-bearing rats, and to provide certain scientific basis for the clinical application of combined drugs in tumor. METHODS The rats were put into three groups at random: normal control, model group, and drug treatment group. After the end of drug intervention, the tumor was taken out and weighed to observe the tumor growth of the rats. Tumor necrosis factor (TNF-α), interleukin (IL) 1β, IL-10, perforin, and granzyme B were found by Western blot in the local tumor tissues of experimental rats. The protein expression levels of Arginase-1 (Arg-1) and Cyclooxygenase 2 (COX-2) were determined. HE staining was used to observe the inflammatory infiltration of the tumor. Using flow cytometry, the proportions of anti-tumor immune cells-CD8 + T cells, NK cells, and immunosuppressive cells-in local tumor tissues were evaluated. In addition, spleen T cells isolated from normal rats were co-cultured with spleen myeloid derived suppressor cells (MDSC) from tumor-bearing rats in the model group and the combined treatment group. Cell Trace Far Red was used to identify T cell proliferation, flow cytometry was used to determine the level of T cell activation from CD25 expression, and in vivo immunosuppression in tumor-bearing rats was examined. RESULTS The combined therapy group experienced a considerable decrease in tumor weight as compared to the model group. TNF-α and IL-1p levels in the vicinity of the tumor tissues reduced following intervention, although IL-10 levels, which are anti-inflammatory cytokines, did not significantly change. The results of the HE staining revealed that the intervention group's tumor had less inflammatory infiltration than the model group did. After intervention, the percentages of CD8 + T cells and NK cells in local tumor tissues increased. Additionally, the intervention group's levels of protein expression for perforin and granzyme B were considerably higher than those of the model group. In the nearby tumor tissues, there were lots of MDSC. Following the intervention, the proportion of MDSC in the local tumor tissues was significantly reduced, and the expansion of MDSC was reduced. Additionally, the intervention group's COX-2 and Arg-1 protein expression levels in the tumor-specific tissues were significantly lower than those of the model group. The outcomes of in vitro co-culture demonstrated that rats in the combination group had higher levels of T cell proliferation and activation than animals in the model group. CONCLUSIONS Albumin-bound paclitaxel combined with Sophora subprostrate polysaccharide can reduce the local inflammation level, promote the proportion of CDB + T cells and NK cells and cell killing function, reduce the proportion of MDSC and immunosuppressive level, enhance the anti-tumor immune function of tumor-bearing mice, and slow the growth of tumors.
Collapse
Affiliation(s)
- Changli Ding
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China
| | - Zhuolin Li
- Department of Oncology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zheng
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China
| | - Wenyan Yu
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China
| | - Lingzhijie Kong
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China
| | - Zhiyong Zhang
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated to Tongji University, 1279 Sanmen Road, Hongkou District, Shanghai, China.
| |
Collapse
|
7
|
Li N, Li Y, Li J, Tang S, Gao H, Li Y. Correlation of the abundance of MDSCs, Tregs, PD-1, and PD-L1 with the efficacy of chemotherapy and prognosis in gastric cancer. Lab Med 2025; 56:259-270. [PMID: 39566022 DOI: 10.1093/labmed/lmae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the relationship between tumor microenvironment markers (myeloid-derived suppressor cells [MDSCs], regulatory T cells [Tregs], programmed cell death 1 [PD-1], and programmed death ligand 1 [PD-L1]) and chemotherapy efficacy and prognosis in advanced gastric cancer, identifying potential monitoring indicators. METHODS Advanced gastric cancer patients' MDSC and Treg expression was measured by flow cytometry pre- and postchemotherapy; PD-1 and PD-L1 expression in cancer tissues was assessed by immunohistochemistry. Correlations with chemotherapy outcomes and prognosis were analyzed. RESULTS Postchemotherapy reductions in MDSC and Treg levels correlated with chemotherapy efficacy (P <.01). Negative PD-1 and PD-L1 expression in cancer tissues predicted better chemotherapy responses (P <.01). Patients with lower MDSC and Treg levels and negative PD-1 and PD-L1 had significantly longer median progression-free survival (PFS) and overall survival (OS) (P <.05). CONCLUSION In advanced gastric cancer, reduced peripheral blood MDSC and Treg levels postchemotherapy and negative PD-1 and PD-L1 expression in tissues are associated with improved chemotherapy efficacy and are independent prognostic factors for PFS and OS.
Collapse
Affiliation(s)
- Na Li
- Cancer Center of Suining Central Hospital, Suining 629000, China
- Department of Medical Oncology, First Affiliated Hospital of Medical College of Shihezi University, Shihezi 832000, China
| | - Yun Li
- Radionuclide Diagnosis and Treatment Center, Beijing Nuclear Industry Hospital, Beijing 102413, China
| | - Jing Li
- Department of Medical Oncology, First Affiliated Hospital of Medical College of Shihezi University, Shihezi 832000, China
| | - Shimin Tang
- Cancer Center of Suining Central Hospital, Suining 629000, China
| | - Hongbo Gao
- Radionuclide Diagnosis and Treatment Center, Beijing Nuclear Industry Hospital, Beijing 102413, China
| | - Yong Li
- Department of Radiology, Suining Central Hospital, Suining 629000, China
| |
Collapse
|
8
|
Wang W, Cao C, Pandian VD, Ye H, Chen H, Zhang L. Mac-1 regulates disease stage-specific immunosuppression via the nitric oxide pathway in autoimmune disease. SCIENCE ADVANCES 2025; 11:eads3728. [PMID: 40344054 PMCID: PMC12063669 DOI: 10.1126/sciadv.ads3728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 04/03/2025] [Indexed: 05/11/2025]
Abstract
Integrin Mac-1 plays a critical role in the development of multiple sclerosis (MS); however, the underlying mechanism is not fully understood. Here, we developed a myeloid-specific Mac-1-deficient mouse. Using an experimental autoimmune encephalomyelitis (EAE) mouse model of MS, we report that Mac-1 on myeloid cells is key to disease development. Our data reveal that myeloid-specific Mac-1 significantly increases EAE severity and hinders disease regression. Loss of Mac-1 increases Gr-1+ cells in peripheral tissues and the CNS and preferably accelerates the transition of Ly6Chi monocytes from a pro-inflammatory to an immunosuppressive phenotype in a disease stage-dependent manner. Mechanistically, our results demonstrate that Mac-1 suppresses interferon-γ production and prevents monocytes from acquiring immunosuppressive functions by reducing the expression of iNOS, IDO, and CD84. Administration of a NOS-specific inhibitor in Mac-1-deficient EAE mice abolishes disease regression. These insights could help develop Mac-1-targeting strategies for better treatment of MS.
Collapse
MESH Headings
- Animals
- Mice
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Nitric Oxide/metabolism
- Macrophage-1 Antigen/metabolism
- Macrophage-1 Antigen/genetics
- Disease Models, Animal
- Mice, Knockout
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Signal Transduction
- Monocytes/metabolism
- Monocytes/immunology
- Mice, Inbred C57BL
- Immune Tolerance
- Female
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
Collapse
Affiliation(s)
- Wei Wang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Chunzhang Cao
- Department of Physiology, Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Vishnuprabu Durairaj Pandian
- Department of Physiology, Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Haofeng Ye
- Johns Hopkins Advanced Academic Programs, Johns Hopkins University of Arts and Sciences, Baltimore, MD, USA
| | - Hongxia Chen
- Department of Physiology, Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Li Zhang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| |
Collapse
|
9
|
Moghaddasnejad MR, Keshavarz A, Mardi A, Sherafat NS, Aghebati-Maleki L, Mohammadi MH. LncRNAs as behind-the-scenes molecules in cancer progression through regulating tumor-associated innate immune system cells. Mol Biol Rep 2025; 52:449. [PMID: 40338353 DOI: 10.1007/s11033-025-10513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators in cancer biology, particularly in the modulation of innate immune cells within the tumor microenvironment. These lncRNAs significantly influence the phenotype and function of immune cells, such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), natural killer cells (NK), neutrophils, and γδT cells. Thus, lncRNAs emerge as pivotal molecules in cancer development due to their capacity to modulate the innate immune system. Understanding the intricate mechanisms by which lncRNAs influence tumor-associated immune cells can pave the way for novel therapeutic strategies to restore effective anti-tumor immunity. This review highlights the diverse roles of lncRNAs in regulating the differentiation, activation, and effector functions of innate immune cells within the complex tumor microenvironment.
Collapse
Affiliation(s)
| | - Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O.Box: 15468-15514, Tehran, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Negar Sadat Sherafat
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O.Box: 15468-15514, Tehran, Iran.
| |
Collapse
|
10
|
Zhu B, Chen P, Aminu M, Li JR, Fujimoto J, Tian Y, Hong L, Chen H, Hu X, Li C, Vokes N, Moreira AL, Gibbons DL, Solis Soto LM, Parra Cuentas ER, Shi O, Diao S, Ye J, Rojas FR, Vilar E, Maitra A, Chen K, Navin N, Nilsson M, Huang B, Heeke S, Zhang J, Haymaker CL, Velcheti V, Sterman DH, Kochat V, Padron WI, Alexandrov LB, Wei Z, Le X, Wang L, Fukuoka J, Lee JJ, Wistuba II, Pass HI, Davis M, Hanash S, Cheng C, Dubinett S, Spira A, Rai K, Lippman SM, Futreal PA, Heymach JV, Reuben A, Wu J, Zhang J. Spatial and multiomics analysis of human and mouse lung adenocarcinoma precursors reveals TIM-3 as a putative target for precancer interception. Cancer Cell 2025:S1535-6108(25)00162-X. [PMID: 40345189 DOI: 10.1016/j.ccell.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/31/2024] [Accepted: 04/08/2025] [Indexed: 05/11/2025]
Abstract
How tumor microenvironment shapes lung adenocarcinoma (LUAD) precancer evolution remains poorly understood. Spatial immune profiling of 114 human LUAD and LUAD precursors reveals a progressive increase of adaptive response and a relative decrease of innate immune response as LUAD precursors progress. The immune evasion features align the immune response patterns at various stages. TIM-3-high features are enriched in LUAD precancers, which decrease in later stages. Furthermore, single-cell RNA sequencing (scRNA-seq) and spatial immune and transcriptomics profiling of LUAD and LUAD precursor specimens from 5 mouse models validate high TIM-3 features in LUAD precancers. In vivo TIM-3 blockade at precancer stage, but not at advanced cancer stage, decreases tumor burden. Anti-TIM-3 treatment is associated with enhanced antigen presentation, T cell activation, and increased M1/M2 macrophage ratio. These results highlight the coordination of innate and adaptive immune response/evasion during LUAD precancer evolution and suggest TIM-3 as a potential target for LUAD precancer interception.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pingjun Chen
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muhammad Aminu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian-Rong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Junya Fujimoto
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, Hiroshima, Japan
| | - Yanhua Tian
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lingzhi Hong
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Hu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chenyang Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andre L Moreira
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin Roger Parra Cuentas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ou Shi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Songhui Diao
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Ye
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank R Rojas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology and Sheikn Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicolas Navin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monique Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beibei Huang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cara L Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vamsidhar Velcheti
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Daniel H Sterman
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA; Cardiothoracic Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Veena Kochat
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William I Padron
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
| | - Zhubo Wei
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junya Fukuoka
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, USA
| | - Mark Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, CA, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Steven Dubinett
- Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Avrum Spira
- Pathology & Laboratory Medicine, and Bioinformatics, Boston University, Boston, MA, USA
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Cao L, Leclercq-Cohen G, Klein C, Sorrentino A, Bacac M. Mechanistic insights into resistance mechanisms to T cell engagers. Front Immunol 2025; 16:1583044. [PMID: 40330489 PMCID: PMC12053166 DOI: 10.3389/fimmu.2025.1583044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
T cell engagers (TCEs) represent a groundbreaking advancement in the treatment of B and plasma cell malignancies and are emerging as a promising therapeutic approach for the treatment of solid tumors. These molecules harness T cells to bind to and eliminate cancer cells, effectively bypassing the need for antigen-specific T cell recognition. Despite their established clinical efficacy, a subset of patients is either refractory to TCE treatment (e.g. primary resistance) or develops resistance during the course of TCE therapy (e.g. acquired or treatment-induced resistance). In this review we comprehensively describe the resistance mechanisms to TCEs, occurring in both preclinical models and clinical trials with a particular emphasis on cellular and molecular pathways underlying the resistance process. We classify these mechanisms into tumor intrinsic and tumor extrinsic ones. Tumor intrinsic mechanisms encompass changes within tumor cells that impact the T cell-mediated cytotoxicity, including tumor antigen loss, the expression of immune checkpoint inhibitory ligands and intracellular pathways that render tumor cells resistant to killing. Tumor extrinsic mechanisms involve factors external to tumor cells, including the presence of an immunosuppressive tumor microenvironment (TME) and reduced T cell functionality. We further propose actionable strategies to overcome resistance offering potential avenues for enhancing TCE efficacy in the clinic.
Collapse
Affiliation(s)
- Linlin Cao
- Roche Innovation Center, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Liang YN, Chen L, Huang QY, Song YT, Fan YJ, Chen TQ, Ni JH, Wang D, Shen XY, Wang YM, You Y. Immune cells in systemic lupus erythematosus: biology and traditional Chinese medicine therapy. Acta Pharmacol Sin 2025:10.1038/s41401-025-01554-2. [PMID: 40247040 DOI: 10.1038/s41401-025-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/30/2025] [Indexed: 04/19/2025]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by a progressive breakdown of immune tolerance to self-antigens, resulting in multiple tissue damage and clinical symptoms. Innate and adaptive immune cells including dendritic cells, macrophages, myeloid-derived suppressor cells (MDSCs), T cells and B cells are the key drivers in perpetuating and amplifying of this systemic disease. In this review we offer a comprehensive overview of recent advances in understanding the immune-pathogenesis of SLE with particular emphasis on regulatory immune cells exhibiting immunosuppressive properties, as well as newly identified factors influencing immune cell function and lineage differentiation. Furthermore, we discuss traditional Chinese medicine and natural extracts that have shown therapeutic effects on SLE by modulating immune cell differentiation and function, which may provide insights into their clinical applications.
Collapse
Affiliation(s)
- Ya-Nan Liang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Luo Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qing-Yu Huang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Yu-Ting Song
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yu-Juan Fan
- Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Tong-Qing Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jia-Hui Ni
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Dong Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xiao-Yan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Yi-Ming Wang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 201203, China.
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
13
|
Angell CD, Sun SH, Lapurga G, Benner B, Quiroga D, Savardekar H, DiVincenzo MJ, Abood D, Stiff A, Duggan M, Handley D, Nagle E, Harrison Howard J, Shah H, Kendra KL, Carson WE. A comparison of myeloid-derived suppressor cell populations in patients with ulcerated vs non-ulcerated melanoma receiving immune checkpoint blockade. Melanoma Res 2025; 35:102-108. [PMID: 39883562 PMCID: PMC11867852 DOI: 10.1097/cmr.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) are expanded in cancer patients, have an intrinsic immunosuppressive function, and thus may play a role in resistance to immunotherapy. Ulceration of the melanoma primary is associated with more aggressive disease and is an independent prognostic factor for melanoma-specific survival. However, the underlying factors contributing to this more aggressive phenotype are not completely understood. The current study aims to correlate changes in circulating MDSC during immunotherapy in patients with ulcerated vs non-ulcerated melanoma primary tumors. Longitudinal changes in levels of circulating MDSCs were analyzed via flow cytometry in melanoma patients receiving immune checkpoint inhibitors (ICIs) and stratified by ulceration status. Following the initiation of therapy, the percentage of total MDSCs increased significantly in patients with both ulcerated ( P = 0.003) and non-ulcerated ( P < 0.001) tumors. When MDSCs were stratified by subset, the proportion of granulocytic MDSC (PMN-MDSC) decreased in patients with non-ulcerated tumors ( P = 0.023), while the proportion remained stable in patients with ulcerated tumors ( P = 0.121). The reduction in the proportion PMN-MDSC in non-ulcerated patients coincided with a statistically significant increase in the proportion of CD14 + /CD15 + MDSC ( P = 0.008), resulting in a greater proportion of CD14 + /CD15 + MDSC in non-ulcerated patients as compared to ulcerated melanoma patients following two infusions of ICIs (27.3 ± 19.2% vs 16.1 ± 19.2%; P = 0.008). The trajectories of the MDSC populations described here provide insight into the altered tumor microenvironment in ulcerated melanoma and highlight key changes in a cell population that could contribute to immunotherapy resistance.
Collapse
Affiliation(s)
- Colin D Angell
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Steven H Sun
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, Ohio
| | - Gabriella Lapurga
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Brooke Benner
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Dionisia Quiroga
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | | | | | - David Abood
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Andrew Stiff
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Megan Duggan
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Demond Handley
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Erin Nagle
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - J Harrison Howard
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Hiral Shah
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kari L Kendra
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - William E Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
14
|
Santibanez JF. Myeloid-Derived Suppressor Cells: Implications in Cancer Immunology and Immunotherapy. FRONT BIOSCI-LANDMRK 2025; 30:25203. [PMID: 40152373 DOI: 10.31083/fbl25203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 03/29/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) are believed to be key promoters of tumor development and are recognized as a hallmark of cancer cells' ability to evade the immune system evasion. MDSC levels often increase in peripheral blood and the tumor microenvironment (TME). These cells exert immunosuppressive functions, weakening the anticancer immune surveillance system, in part by repressing T-cell immunity. Moreover, MDSCs may promote tumor progression and interact with cancer cells, increasing MDSC expansion and favoring an immunotolerant TME. This review analyzes the primary roles of MDSCs in cancer and T-cell immunity, discusses the urgent need to develop effective MDSC-targeted therapies, and highlights the potential synergistic combination of MDSC targeting with chimeric antigen receptors and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
- Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, 8370993 Santiago, Chile
| |
Collapse
|
15
|
Park SY, Pylaeva E, Bhuria V, Gambardella AR, Schiavoni G, Mougiakakos D, Kim SH, Jablonska J. Harnessing myeloid cells in cancer. Mol Cancer 2025; 24:69. [PMID: 40050933 PMCID: PMC11887392 DOI: 10.1186/s12943-025-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer-associated myeloid cells due to their plasticity play dual roles in both promoting and inhibiting tumor progression. Myeloid cells with immunosuppressive properties play a critical role in anti-cancer immune regulation. Cells of different origin, such as tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), myeloid derived suppressor cells (also called MDSCs) and eosinophils are often expanded in cancer patients and significantly influence their survival, but also the outcome of anti-cancer therapies. For this reason, the variety of preclinical and clinical studies to modulate the activity of these cells have been conducted, however without successful outcome to date. In this review, pro-tumor activity of myeloid cells, myeloid cell-specific therapeutic targets, in vivo studies on myeloid cell re-polarization and the impact of myeloid cells on immunotherapies/genetic engineering are addressed. This paper also summarizes ongoing clinical trials and the concept of chimeric antigen receptor macrophage (CAR-M) therapies, and suggests future research perspectives, offering new opportunities in the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Su-Yeon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany
| | - Vikas Bhuria
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany.
| |
Collapse
|
16
|
Xu Q, Liu X, Heng H, Wang H, Chen K, Chan EWC, Yang G, Chen S. Myeloid-derived suppressor cell inhibits T-cell-based defense against Klebsiella pneumoniae infection via IDO1 production. PLoS Pathog 2025; 21:e1012979. [PMID: 40096073 PMCID: PMC11957394 DOI: 10.1371/journal.ppat.1012979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/31/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Klebsiella pneumoniae (Kp) is responsible for a wide range of infections, including pneumonia, sepsis, and urinary tract infections. However, the treatment options are limited due to the continuous evolution of drug-resistant and hypervirulent variants. It is crucial to investigate the mechanisms behind the high mortality rate of hypervirulent Kp (hvKp) strains to develop new strategies for preventing hvKp from evading the host's defenses and improving treatment effectiveness for these fatal infections. In this study, we used a hvKp-induced mouse bacteremia model and performed single-cell RNA sequencing to investigate the effects of hvKp infection. Our findings demonstrated that hvKp infection led to a decrease in lymphocytes (lymphopenia), attributed to impaired proliferation and apoptosis. The infiltration of myeloid-derived suppressor cells (MDSCs) in the infected lungs was confirmed to suppress T cell proliferation, leading to lymphopenia. We further identified that hvKp promotes tryptophan metabolism in infected lungs, enhancing the immunosuppressive activity of MDSCs by inducing the production of the enzyme IDO1. Our ex vivo inhibition experiment revealed that L-kynurenine, a product of tryptophan metabolism, inhibits T-cell proliferation and induces T-cell apoptosis, further suppressing T-cell mediated responses against bacteria. Importantly, when we knocked out the Ido1 gene or inhibited IDO1 expression using a specific inhibitor 1-MT in mice, we observed a significant enhancement in T-cell mediated responses against hvKp. These findings highlight the crucial role of MDSCs in hvKp-induced bacteremia and suggest a promising immunotherapeutic approach by inhibiting IDO1 production to combat infectious diseases.
Collapse
Affiliation(s)
- Qi Xu
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Xiaoxuan Liu
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Heng Heng
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Han Wang
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Kaichao Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People’s Republic of China
| |
Collapse
|
17
|
Bu X, Wang L. Iron metabolism and the tumor microenvironment: A new perspective on cancer intervention and therapy (Review). Int J Mol Med 2025; 55:39. [PMID: 39749705 PMCID: PMC11722052 DOI: 10.3892/ijmm.2024.5480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/29/2024] [Indexed: 01/04/2025] Open
Abstract
Iron metabolism plays a crucial role in the tumor microenvironment, influencing various aspects of cancer cell biology and tumor progression. This review discusses the regulatory mechanisms of iron metabolism within the tumor microenvironment and highlights how tumor cells and associated stromal cells manage iron uptake, accumulation and regulation. The sources of iron within tumors and the biological importance of ferroptosis in cancer were explored, focusing on its mechanisms, biological effects and, in particular, its tumor‑suppressive properties. Furthermore, the protective strategies employed by cancer cells to evade ferroptosis were examined. This review also delves into the intricate relationship between iron metabolism and immune modulation within the tumor microenvironment, detailing the impact on tumor‑associated immune cells and immune evasion. The interplay between ferroptosis and immunotherapy is discussed and potential strategies to enhance cancer immunotherapy by modulating iron metabolism are presented. Finally, the current ferroptosis‑based cancer therapeutic approaches were summarized and future directions for therapies that target iron metabolism were proposed.
Collapse
Affiliation(s)
- Xiaorui Bu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lufang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
18
|
Shrestha P, Ghoreyshi ZS, George JT. How modulation of the tumor microenvironment drives cancer immune escape dynamics. Sci Rep 2025; 15:7308. [PMID: 40025156 PMCID: PMC11873109 DOI: 10.1038/s41598-025-91396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
Metastatic disease is the leading cause of cancer-related death, despite recent advances in therapeutic interventions. Prior modeling approaches have accounted for the adaptive immune system's role in combating tumors, which has led to the development of stochastic models that explain cancer immunoediting and tumor-immune co-evolution. However, cancer immune-mediated dormancy, wherein the adaptive immune system maintains a micrometastatic population by keeping its growth in check, remains poorly understood. Immune-mediated dormancy can significantly delay the emergence (and therefore detection) of metastasis. An improved quantitative understanding of this process will thereby improve our ability to identify and treat cancer during the micrometastatic period. Here, we introduce a generalized stochastic model that incorporates the dynamic effects of immunomodulation within the tumor microenvironment on T cell-mediated cancer killing. This broad class of nonlinear birth-death model can account for a variety of cytotoxic T cell immunosuppressive effects, including regulatory T cells, cancer-associated fibroblasts, and myeloid-derived suppressor cells. We develop analytic expressions for the likelihood and mean time of immune escape. We also develop a method for identifying a corresponding diffusion approximation applicable to estimating population dynamics across a wide range of nonlinear birth-death processes. Lastly, we apply our model to estimate the nature and extent of immunomodulation that best explains the timing of disease recurrence in bladder and breast cancer patients. Our findings quantify the effects that stochastic tumor-immune interaction dynamics can play in the timing and likelihood of disease progression. Our analytical approximations provide a method of studying population escape in other ecological contexts involving nonlinear transition rates.
Collapse
Affiliation(s)
- Pujan Shrestha
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Translational Medical Sciences, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Zahra S Ghoreyshi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Translational Medical Sciences, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Jason T George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
- Translational Medical Sciences, Texas A&M Health Science Center, Houston, TX, 77030, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
19
|
Yang H, Li J, Niu Y, Zhou T, Zhang P, Liu Y, Li Y. Interactions between the metabolic reprogramming of liver cancer and tumor microenvironment. Front Immunol 2025; 16:1494788. [PMID: 40028341 PMCID: PMC11868052 DOI: 10.3389/fimmu.2025.1494788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Metabolic reprogramming is one of the major biological features of malignant tumors, playing a crucial role in the initiation and progression of cancer. The tumor microenvironment consists of various non-cancer cells, such as hepatic stellate cells, cancer-associated fibroblasts (CAFs), immune cells, as well as extracellular matrix and soluble substances. In liver cancer, metabolic reprogramming not only affects its own growth and survival but also interacts with other non-cancer cells by influencing the expression and release of metabolites and cytokines (such as lactate, PGE2, arginine). This interaction leads to acidification of the microenvironment and restricts the uptake of nutrients by other non-cancer cells, resulting in metabolic competition and symbiosis. At the same time, metabolic reprogramming in neighboring cells during proliferation and differentiation processes also impacts tumor immunity. This article provides a comprehensive overview of the metabolic crosstalk between liver cancer cells and their tumor microenvironment, deepening our understanding of relevant findings and pathways. This contributes to further understanding the regulation of cancer development and immune evasion mechanisms while providing assistance in advancing personalized therapies targeting metabolic pathways for anti-cancer treatment.
Collapse
Affiliation(s)
- Haoqiang Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jinghui Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yiting Niu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Tao Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pengyu Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanjun Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, TongjiShanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
20
|
Wang Y, Dong Q, Yuan M, Hu J, Lin P, Yan Y, Wang Y, Wang Y. Effects of metabolism upon immunity: Targeting myeloid-derived suppressor cells for the treatment of breast cancer is a promising area of study. Int Immunopharmacol 2025; 147:113892. [PMID: 39740506 DOI: 10.1016/j.intimp.2024.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
Breast cancer (BC) ranks among the most prevalent malignancies affecting women, with advanced-stage patients facing an increased mortality risk. Myeloid-derived suppressor cells (MDSCs) contribute significantly to poor prognostic outcomes. Research has concentrated predominantly on the immunological mechanisms underlying MDSC functions, but a comprehensive investigation into the metabolic interactions between BC cells and MDSCs is lacking. In a hypoxic tumor microenvironment (TME), BC cells can enhance aerobic-glycolysis rates, upregulate expression of key lipid metabolism enzymes such as cluster of differentiation (CD) 36 and 5-lipoxygenase (5-LOX), accelerate glutamine (Gln) uptake, and elevate extracellular adenosine (eADO) levels, thereby fostering MDSC proliferation and amplifying immune suppression. Concurrently, alterations in the metabolic state of MDSCs also influence BC progression. To ensure adequate proliferative resources, MDSCs upregulate the pentose phosphate pathway and expedite glycolysis for energy supply while increasing the expression of fatty acid transport proteins (FATPs) such as CD36 and fatty acid transporter 2 (FATP2) to maintain intracellular lipid availability, thereby enhancing their adaptability within the TME. Furthermore, MDSCs undermine T-cell anti-tumor efficacy by depleting essential amino acids (AAs), such as arginine (Arg), tryptophan (Trp), and cysteine (Cys), required for T-cell function. This review elucidates how pharmacological agents such as metformin, liver X receptor (LXR) agonists, and 6-diazo-5-oxo-L-norleucine (DON) can augment anti-cancer treatment efficacy by targeting metabolic pathways in MDSCs. We systematically delineate the mechanisms governing interactions between BC cells and MDSCs from a metabolic standpoint while summarizing therapeutic strategies to modulate metabolism within MDSCs. Our review provides a framework for optimizing MDSC applications in BC immunotherapy.
Collapse
Affiliation(s)
- Yulin Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiutong Dong
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Menghan Yuan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingxian Hu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peizhe Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yijing Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanyan Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
21
|
Pan J, Lin Y, Liu X, Zhang X, Liang T, Bai X. Harnessing amino acid pathways to influence myeloid cell function in tumor immunity. Mol Med 2025; 31:44. [PMID: 39905317 PMCID: PMC11796060 DOI: 10.1186/s10020-025-01099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Amino acids are pivotal regulators of immune cell metabolism, signaling pathways, and gene expression. In myeloid cells, these processes underlie their functional plasticity, enabling shifts between pro-inflammatory, anti-inflammatory, pro-tumor, and anti-tumor activities. Within the tumor microenvironment, amino acid metabolism plays a crucial role in mediating the immunosuppressive functions of myeloid cells, contributing to tumor progression. This review delves into the mechanisms by which specific amino acids-glutamine, serine, arginine, and tryptophan-regulate myeloid cell function and polarization. Furthermore, we explore the therapeutic potential of targeting amino acid metabolism to enhance anti-tumor immunity, offering insights into novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jiongli Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Lin
- Health Science Center, Ningbo University, Ningbo, China
| | - Xinyuan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
22
|
Li C, Xue Y, Yinwang E, Ye Z. The Recruitment and Immune Suppression Mechanisms of Myeloid-Derived Suppressor Cells and Their Impact on Bone Metastatic Cancer. Cancer Rep (Hoboken) 2025; 8:e70044. [PMID: 39947253 PMCID: PMC11825175 DOI: 10.1002/cnr2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND MDSCs are immature neutrophils and monocytes with immunosuppressive potentials, involving mononuclear MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs). RECENT FINDINGS They are significant components of the tumor microenvironment (TME). Besides, recent studies also verified that MDSCs also facilitated the progression of bone metastasis by regulating the network of cytokines and the function of immune cells. CONCLUSION It is necessary to summarize the mechanisms of MDSC recruitment and immunosuppression, and their impact on bone metastasis.
Collapse
Affiliation(s)
- Chengyuan Li
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yucheng Xue
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Eloy Yinwang
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhaoming Ye
- Department of Orthopedic Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
23
|
Jang N, Kim IK, Jung D, Chung Y, Kang YP. Regulation of Ferroptosis in Cancer and Immune Cells. Immune Netw 2025; 25:e6. [PMID: 40078787 PMCID: PMC11896659 DOI: 10.4110/in.2025.25.e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 03/14/2025] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, is driven by lipid peroxidation and shaped by metabolic and antioxidant pathways. In immune cells, ferroptosis susceptibility varies by cell types, lipid composition, and metabolic demands, influencing immune responses in cancer, infections, and autoimmune diseases. Therapeutically, targeting ferroptosis holds promise in cancer immunotherapy by enhancing antitumor immunity or inhibiting immunosuppressive cells. This review highlights the metabolic pathways underlying ferroptosis, its regulation in immune cells, its dual role in tumor progression and antitumor immunity, and its context-dependent therapeutic implications for optimizing cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Yeonseok Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
24
|
Li Z, Feng Z, Chen M, Shi X, Cui B, Sun Y, Zhang H, Li Y, Chen C, Feng Y, Han J, Xing X, Liu H, Sun T. Rbfox3 Promotes Transformation of MDSC-Like Tumor Cells to Shape Immunosuppressive Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404585. [PMID: 39777898 PMCID: PMC11848546 DOI: 10.1002/advs.202404585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/30/2024] [Indexed: 01/11/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) within the tumor microenvironment (TME) contribute to the malignant progression of tumors by exerting immunosuppressive effects. Bacterial lipopolysaccharides (LPS) have been widely demonstrated in various types of solid tumors. LPS can promote the malignant progression of tumors, which mechanism has not yet been fully elucidated. In this study, a type of MDSC-like tumor cells (MLTCs) is found in tumor tissues induced by low-dose and long-term LPS stimulation. MLTCs can simultaneously express tumor cell and MDSCs markers. Similar to MDSCs, MLTCs can produce arginine, nitric oxide, and reactive oxygen species and inhibit the activity of NK and T cells to promote the formation of an immunosuppressive microenvironment. MLTCs can also promote tumor cell proliferation and vasculogenic mimicry formation. CRISPR-Cas9 activity screening studies identified RNA-binding Fox-1 homolog 3 (Rbfox3) as a critical protein for MLTCs formation after LPS treatment. Rbfox3 can transcriptionally regulate the expression of Ass1 in the form of phase-separated particles. Crocin can inhibit the generation of MLTCs by disrupting phase-separated particles of Rbfox3 and enhance the anti-tumor effects of immune checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
- Zhiyang Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin International Joint Academy of BiomedicineTianjin300457China
| | - Zhuangzhuang Feng
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Mengzhan Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Xinxiu Shi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Bijia Cui
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Yujie Sun
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin International Joint Academy of BiomedicineTianjin300457China
| | - Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Caihong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Yiqian Feng
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Xuewu Xing
- Department of OrthopedicsTianjin First Central HospitalTianjin300190China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| |
Collapse
|
25
|
He N, Yuan D, Luo M, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Ferroptosis contributes to immunosuppression. Front Med 2025; 19:1-22. [PMID: 39560919 DOI: 10.1007/s11684-024-1080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/18/2024] [Indexed: 11/20/2024]
Abstract
As a novel form of cell death, ferroptosis is mainly regulated by the accumulation of soluble iron ions in the cytoplasm and the production of lipid peroxides and is closely associated with several diseases, including acute kidney injury, ischemic reperfusion injury, neurodegenerative diseases, and cancer. The term "immunosuppression" refers to various factors that can directly harm immune cells' structure and function and affect the synthesis, release, and biological activity of immune molecules, leading to the insufficient response of the immune system to antigen production, failure to successfully resist the invasion of foreign pathogens, and even organ damage and metabolic disorders. An immunosuppressive phase commonly occurs in the progression of many ferroptosis-related diseases, and ferroptosis can directly inhibit immune cell function. However, the relationship between ferroptosis and immunosuppression has not yet been published due to their complicated interactions in various diseases. Therefore, this review deeply discusses the contribution of ferroptosis to immunosuppression in specific cases. In addition to offering new therapeutic targets for ferroptosis-related diseases, the findings will help clarify the issues on how ferroptosis contributes to immunosuppression.
Collapse
Affiliation(s)
- Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Dun Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China.
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China.
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China.
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China.
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China.
| |
Collapse
|
26
|
Bhange M, Telange D. Convergence of nanotechnology and artificial intelligence in the fight against liver cancer: a comprehensive review. Discov Oncol 2025; 16:77. [PMID: 39841330 PMCID: PMC11754566 DOI: 10.1007/s12672-025-01821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
Liver cancer is one of the most challenging malignancies, often associated with poor prognosis and limited treatment options. Recent advancements in nanotechnology and artificial intelligence (AI) have opened new frontiers in the fight against this disease. Nanotechnology enables precise, targeted drug delivery, enhancing the efficacy of therapeutics while minimizing off-target effects. Simultaneously, AI contributes to improved diagnostic accuracy, predictive modeling, and the development of personalized treatment strategies. This review explores the convergence of nanotechnology and AI in liver cancer treatment, evaluating current progress, identifying existing research gaps, and discussing future directions. We highlight how AI-powered algorithms can optimize nanocarrier design, facilitate real-time monitoring of treatment efficacy, and enhance clinical decision-making. By integrating AI with nanotechnology, clinicians can achieve more accurate patient stratification and treatment personalization, ultimately improving patient outcomes. This convergence holds significant promise for transforming liver cancer therapy into a more precise, individualized, and efficient process. However, data privacy, regulatory hurdles, and the need for large-scale clinical validation remain. Addressing these issues will be essential to fully realizing the potential of these technologies in oncology.
Collapse
Affiliation(s)
- Manjusha Bhange
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi Meghe, Wardha, Maharashtra, 442001, India.
| | - Darshan Telange
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi Meghe, Wardha, Maharashtra, 442001, India
| |
Collapse
|
27
|
Clay R, Li K, Jin L. Metabolic Signaling in the Tumor Microenvironment. Cancers (Basel) 2025; 17:155. [PMID: 39796781 PMCID: PMC11719658 DOI: 10.3390/cancers17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation. In recent years, the focus of cancer metabolic research has shifted from the regulation and utilization of cancer cell-intrinsic pathways to studying how the metabolic landscape of the tumor affects the anti-tumor immune response. Recent discoveries point to the role that secreted metabolites within the TME play in crosstalk between tumor cell types to promote tumorigenesis and hinder the anti-tumor immune response. In this review, we will explore how crosstalk between metabolites of cancer cells, immune cells, and stromal cells drives tumorigenesis and what effects the competition for resources and metabolic crosstalk has on immune cell function.
Collapse
Affiliation(s)
| | | | - Lingtao Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (R.C.); (K.L.)
| |
Collapse
|
28
|
Zheng DX, Bozym DJ, Tarantino G, Sullivan RJ, Liu D, Jenkins RW. Overcoming Resistance Mechanisms to Melanoma Immunotherapy. Am J Clin Dermatol 2025; 26:77-96. [PMID: 39636504 DOI: 10.1007/s40257-024-00907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
The advent of immune checkpoint inhibition has revolutionized treatment of advanced melanoma. While most patients derive survival benefit from established immunotherapies, notably monoclonal antibodies blocking cytotoxic T-lymphocyte antigen 4 and programmed cell death protein 1, a subset does not optimally respond due to the manifestation of innate or acquired resistance to these therapies. Combination regimens have proven efficacious relative to single-agent blockade, but also yield high-grade treatment toxicities that are often dose-limiting for patients. In this review, we discuss the significant strides made in the past half-decade toward expanding the melanoma immunotherapy treatment paradigm. These include newly approved therapies, adoption of neoadjuvant immunotherapy, and studies in the clinical trials pipeline targeting alternative immune checkpoints and key immunoregulatory molecules. We then review how developments in molecular and functional diagnostics have furthered our understanding of the tumor-intrinsic and -extrinsic mechanisms driving immunotherapy resistance, as well as highlight novel biomarkers for predicting treatment response. Throughout, we discuss potential approaches for targeting these resistance mechanisms in rational combination with established immunotherapies to improve outcomes for patients with melanoma.
Collapse
Affiliation(s)
- David X Zheng
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David J Bozym
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giuseppe Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ryan J Sullivan
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Russell W Jenkins
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
29
|
Hu Y, Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Nanoformula Design for Inducing Non-Apoptotic Cell Death Regulation: A Powerful Booster for Cancer Immunotherapy. Adv Healthc Mater 2025; 14:e2403493. [PMID: 39632361 DOI: 10.1002/adhm.202403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Indexed: 12/07/2024]
Abstract
Cancer treatment has witnessed revolutionary advancements marked by the emergence of immunotherapy, specifically immune checkpoint blockade (ICB). However, the inherent low immunogenicity of tumor cells and the intricate immunosuppressive network within the tumor microenvironment (TME) pose significant challenges to the further development of immunotherapy. Nanotechnology has ushered in unprecedented opportunities and vast prospects for tumor immunotherapy. Nevertheless, traditional nano-formulations often rely on inducing apoptosis to kill cancer cells, which encounters the issue of immune silencing, hindering effective tumor immune activation. The non-apoptotic modes of regulated cell death (RCD), including pyroptosis, ferroptosis, autophagy, necroptosis, and cuproptosis, have gradually garnered attention. These non-apoptotic cell death pathways can induce effective immunogenic cell death (ICD), enhancing cancer immunotherapy. This review comprehensively explores advanced nano-formulation design strategies and their applications in enhancing cancer immunotherapy by promoting non-apoptotic RCD in recent years. It also discusses the potential advantages of these strategies in inducing tumor-specific non-apoptotic RCD. By deeply understanding the significance of non-apoptotic RCD in synergistic cancer immunotherapy, this article provides valuable insights for developing more advanced nano-delivery systems that can robustly induce highly immunogenic non-apoptotic modes, offering novel research and development avenues to address the clinical challenges encountered by immunotherapy represented by ICB.
Collapse
Affiliation(s)
- Yi Hu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Qing Yu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
30
|
Ward MB, Jones AB, Krenciute G. Therapeutic advantage of combinatorial chimeric antigen receptor T cell and chemotherapies. Pharmacol Rev 2025; 77:100011. [PMID: 39952691 DOI: 10.1124/pharmrev.124.001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have transformed outcomes for many patients with hematological malignancies. However, some patients do not respond to CAR T cell treatment, and adapting CAR T cells for treatment of solid and brain tumors has been met with many challenges, including a hostile tumor microenvironment and poor CAR T cell persistence. Thus, it is unlikely that CAR T cell therapy alone will be sufficient for consistent, complete tumor clearance across patients with cancer. Combinatorial therapies of CAR T cells and chemotherapeutics are a promising approach for overcoming this because chemotherapeutics could augment CAR T cells for improved antitumor activity or work in tandem with CAR T cells to clear tumors. Herein, we review efforts toward achieving successful CAR T cell and chemical drug combination therapies. We focus on combination therapies with approved chemotherapeutics because these will be more easily translated to the clinic but also review nonapproved chemotherapeutics and drug screens designed to reveal promising new CAR T cell and chemical drug combinations. Overall, this review highlights the promise of CAR T cell and chemotherapy combinations with a specific focus on how combinatorial therapy overcomes challenges faced by either monotherapy and supports the potential of this therapeutic strategy to improve outcomes for patients with cancer. SIGNIFICANCE STATEMENT: Improving currently available CAR T cell products via combinatorial therapy with chemotherapeutics has the potential to drastically expand the types of cancers and number of patients that could benefit from these therapies when neither alone has been sufficient to achieve tumor clearance. Herein, we provide a thorough review of the current efforts toward studying CAR T and chemotherapy combinatorial therapies and offer perspectives on optimal ways to identify new and effective combinations moving forward.
Collapse
Affiliation(s)
- Meghan B Ward
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Amber B Jones
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
31
|
Santoso A, Levink I, Pihlak R, Chau I. The Immune Landscape and Its Potential for Immunotherapy in Advanced Biliary Tract Cancer. Curr Oncol 2024; 32:24. [PMID: 39851940 PMCID: PMC11763487 DOI: 10.3390/curroncol32010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Biliary tract cancers (BTC) are a highly heterogeneous group of cancers at the genomic, epigenetic and molecular levels. The vast majority of patients initially present at an advanced (unresectable) disease stage due to a lack of symptoms and an aggressive tumour biology. Chemotherapy has been the mainstay of treatment in patients with advanced BTC but the survival outcomes and prognosis remain poor. The addition of immune checkpoint inhibitors (ICI) to chemotherapy have shown only a marginal benefit over chemotherapy alone due to the complex tumour immune microenvironment of these cancers. This review appraises our current understanding of the immune landscape of advanced BTC, including emerging transcriptome-based classifications, highlighting the mechanisms of immune evasion and resistance to ICI and their therapeutic implications. It describes the shifting treatment paradigm from traditional chemotherapy to immunotherapy combinations as well as the potential biomarkers for predicting response to ICI.
Collapse
Affiliation(s)
- Andry Santoso
- Gastrointestinal Unit, The Royal Marsden Hospital, London SW3 6JJ, UK; (A.S.); (I.L.)
| | - Iris Levink
- Gastrointestinal Unit, The Royal Marsden Hospital, London SW3 6JJ, UK; (A.S.); (I.L.)
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Rille Pihlak
- University Hospitals Sussex NHS Foundation Trust, Brighton BN1 9RW, UK;
| | - Ian Chau
- Gastrointestinal Unit, The Royal Marsden Hospital, London SW3 6JJ, UK; (A.S.); (I.L.)
| |
Collapse
|
32
|
Dyachenko EI, Bel’skaya LV. Transmembrane Amino Acid Transporters in Shaping the Metabolic Profile of Breast Cancer Cell Lines: The Focus on Molecular Biological Subtype. Curr Issues Mol Biol 2024; 47:4. [PMID: 39852119 PMCID: PMC11763447 DOI: 10.3390/cimb47010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Amino acid metabolism in breast cancer cells is unique for each molecular biological subtype of breast cancer. In this review, the features of breast cancer cell metabolism are considered in terms of changes in the amino acid composition due to the activity of transmembrane amino acid transporters. In addition to the main signaling pathway PI3K/Akt/mTOR, the activity of the oncogene c-Myc, HIF, p53, GATA2, NF-kB and MAT2A have a direct effect on the amino acid metabolism of cancer cells, their growth and proliferation, as well as the maintenance of homeostatic equilibrium. A distinctive feature of luminal subtypes of breast cancer from TNBC is the ability to perform gluconeogenesis. Breast cancers with a positive expression of the HER2 receptor, in contrast to TNBC and luminal A subtype, have a distinctive active synthesis and consumption of fatty acids. It is interesting to note that amino acid transporters exhibit their activity depending on the pH level inside the cell. In the most aggressive forms of breast cancer or with the gradual progression of the disease, pH will also change, which will directly affect the metabolism of amino acids. Using the cell lines presented in this review, we can trace the characteristic features inherent in each of the molecular biological subtypes of breast cancer and develop the most optimal therapeutic targets.
Collapse
Affiliation(s)
| | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| |
Collapse
|
33
|
Perfilyeva YV, Aquino AD, Borodin MA, Kali A, Abdolla N, Ostapchuk YO, Tleulieva R, Perfilyeva AV, Jainakbayev NT, Sharipov KO, Belyaev NN. Can interventions targeting MDSCs improve the outcome of vaccination in vulnerable populations? Int Rev Immunol 2024:1-17. [PMID: 39707917 DOI: 10.1080/08830185.2024.2443423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/26/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Preventive vaccination is a crucial strategy for controlling and preventing infectious diseases, offering both effectiveness and cost-efficiency. However, despite the widespread success of vaccination programs, there are still certain population groups who struggle to mount adequate responses to immunization. These at-risk groups include but are not restricted to the elderly, overweight individuals, individuals with chronic infections and cancer patients. All of these groups are characterized by persistent chronic inflammation. Recent studies have demonstrated that one of the key players in immune regulation and the promotion of chronic inflammation are myeloid-derived suppressor cells (MDSCs). These cells possess a wide range of immunosuppressive mechanisms and are able to dampen immune responses in both antigen-specific and antigen-nonspecific manner, thus contributing to the establishment and maintenance of an inflammatory environment. Given their pivotal role in immune modulation, there is growing interest in understanding how MDSCs may influence the efficacy of vaccines, particularly in vulnerable populations. In this narrative review, we discuss whether MDSCs are able to regulate vaccine-induced immunity and whether their suppression can potentially enhance vaccine efficacy in vulnerable populations.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Arthur D Aquino
- Almazov National Medical Research Center, St. Petersburg, Russia
| | - Maxim A Borodin
- Almazov National Medical Research Center, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Aikyn Kali
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Nurshat Abdolla
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Al-Farabi, Kazakh National University, Almaty, Kazakhstan
| | | | - Raikhan Tleulieva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | | | - Kamalidin O Sharipov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | |
Collapse
|
34
|
Abdalsalam NMF, Ibrahim A, Saliu MA, Liu TM, Wan X, Yan D. MDSC: a new potential breakthrough in CAR-T therapy for solid tumors. Cell Commun Signal 2024; 22:612. [PMID: 39702149 DOI: 10.1186/s12964-024-01995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has shown remarkable success in hematologic malignancies but has encountered challenges in effectively treating solid tumors. One major obstacle is the presence of the immunosuppressive tumor microenvironment (TME), which is mainly built by myeloid-derived suppressor cells (MDSCs). Recent studies have shown that MDSCs have a detrimental effect on CAR-T cells due to their potent immunosuppressive capabilities. Targeting MDSCs has shown promising results to enhance CAR-T immunotherapy in preclinical solid tumor models. In this review, we first highlight that MDSCs increase tumor proliferation, transition, angiogenesis and encourage circulating tumor cells (CTCs) extravasation leading to tumor progression and metastasis. Moreover, we describe the main characteristics of the immunosuppressive activities of MDSCs on T cells in TME. Most importantly, we summarize targeting therapeutic strategies of MDSCs in CAR-T therapies against solid tumors. These strategies include (1) therapeutic targeting of MDSCs through small molecule inhibitors and large molecule antibodies; (2) CAR-T targeting cancer cell antigen combination with MDSC modulatory agents; (3) cytokine receptor antigen-targeted CAR-T indirectly or directly targeting MDSCs reshapes TME; (4) modified natural killer (NK) cells expressing activating receptor directly targeting MDSCs; and (5) CAR-T directly targeting MDSC selective antigens. In the near future, we are expected to witness the improvement of CAR-T cell therapies for solid tumors by targeting MDSCs in clinical practice.
Collapse
Affiliation(s)
- Nada Mohamady Farouk Abdalsalam
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Abdulrahman Ibrahim
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Muhammad Auwal Saliu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, Taipa, China.
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100864, China.
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100864, China.
| |
Collapse
|
35
|
Gao C, Zhang H, Wang X. Current advances on the role of ferroptosis in tumor immune evasion. Discov Oncol 2024; 15:736. [PMID: 39621177 PMCID: PMC11612115 DOI: 10.1007/s12672-024-01573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Cancer immunotherapy, especially immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1, has been considered a breakthrough in cancer treatment, achieving encouraging clinical anti-tumor effects in a variety of cancers. However, tumor immune evasion is indispensable to immunotherapy failure. The mechanisms of tumor immune evasion are quite complex, and its occurrence is inseparable from the ferroptosis in tumor microenvironment (TME). Thus, a comprehensive understanding of the role of ferroptosis in tumor immune evasion is crucial to enhance the efficacy of immunotherapy. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms and interactions with the TME. We also summarize the potential applications of ferroptosis induction in immunotherapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis as a double-edged sword, including the current challenges and future directions regarding its potential for cancer treatment.
Collapse
Affiliation(s)
- Changlin Gao
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Haoran Zhang
- Central Hospital Affiliated to Dalian University of Technology, Dalian, 116000, Liaoning, China
- Graduate School of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Xianwei Wang
- Central Hospital Affiliated to Dalian University of Technology, Dalian, 116000, Liaoning, China.
| |
Collapse
|
36
|
Seo Y, Zhang S, Jang J, Ko KP, Kim KB, Huang Y, Kim DW, Kim B, Zou G, Zhang J, Jun S, Chu W, Kirk NA, Hwang YE, Ban YH, Dhar SS, Chan JM, Lee MG, Rudin CM, Park KS, Park JI. Actin Dysregulation Induces Neuroendocrine Plasticity and Immune Evasion: A Vulnerability of Small Cell Lung Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.15.528365. [PMID: 36824957 PMCID: PMC9949038 DOI: 10.1101/2023.02.15.528365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Small cell lung cancer (SCLC) is aggressive with limited therapeutic options. Despite recent advances in targeted therapies and immunotherapies, therapy resistance is a recurring issue, which might be partly due to tumor cell plasticity, a change in cell fate. Nonetheless, the mechanisms underlying tumor cell plasticity and immune evasion in SCLC remain elusive. CRACD, a capping protein inhibitor that promotes actin polymerization, is frequently inactivated in SCLC. Cracd knockout (KO) transforms preneoplastic cells into SCLC tumor-like cells and promotes in vivo SCLC development driven by Rb1, Trp53, and Rbl2 triple KO. Cracd KO induces neuroendocrine (NE) plasticity and increases tumor cell heterogeneity of SCLC tumor cells via dysregulated NOTCH1 signaling by actin cytoskeleton disruption. CRACD depletion also reduces nuclear actin and induces EZH2-mediated H3K27 methylation. This nuclear event suppresses the MHC-I genes and thereby depletes intratumoral CD8+ T cells for accelerated SCLC tumorigenesis. Pharmacological blockade of EZH2 inhibits CRACD-negative SCLC tumorigenesis by restoring MHC-I expression and immune surveillance. Unsupervised single-cell transcriptomics identifies SCLC patient tumors with concomitant inactivation of CRACD and downregulated MHC-I pathway. This study defines CRACD, an actin regulator, as a tumor suppressor that limits cell plasticity and immune evasion and proposes EZH2 blockade as a viable therapeutic option for CRACD-negative SCLC.
Collapse
Affiliation(s)
- Yoojeong Seo
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinho Jang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyung-Pil Ko
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kee-Beom Kim
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dong-Wook Kim
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Bongjun Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gengyi Zou
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wonhong Chu
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicole A. Kirk
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ye Eun Hwang
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Young Ho Ban
- Hamatovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Shilpa S. Dhar
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph M. Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
37
|
Huang S, Chung JYF, Li C, Wu Y, Qiao G, To KF, Tang PMK. Cellular dynamics of tumor microenvironment driving immunotherapy resistance in non-small-cell lung carcinoma. Cancer Lett 2024; 604:217272. [PMID: 39326553 DOI: 10.1016/j.canlet.2024.217272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have profoundly reshaped the treatment paradigm for non-small cell lung cancer (NSCLC). Despite these advancements, primary and secondary resistance to ICIs remain prevalent challenges in managing advanced NSCLC. Recent studies have highlighted the significant role of the tumor microenvironment (TME) in modulating treatment responses. This review aims to comprehensively examine the interactive roles of immune/stromal cells-such as T cells, B cells, neutrophils, macrophages, and CAFs within the TME, elucidating how these diverse cellular interactions contribute to immunotherapy resistance. It focuses on the dynamic interactions among diverse cell types such as the varying states of T cells under the influence of TME constituents like immune cells and cancer-associated fibroblasts (CAFs). By exploring the mechanisms involved in the complex cellular interactions, we highlight novel therapeutic targets and strategies aimed at overcoming resistance, thereby enhancing the efficacy of ICIs in NSCLC. Our synthesis of recent research provides critical insights into the multifaceted mechanisms of resistance and paves the way for the development of more effective, personalized treatment approaches.
Collapse
Affiliation(s)
- Shujie Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
38
|
Ajoolabady A, Pratico D, Tang D, Zhou S, Franceschi C, Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res Rev 2024; 101:102540. [PMID: 39395575 DOI: 10.1016/j.arr.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Age-related changes initiate a cascade of cellular and molecular alterations that lead to immune system dysfunction or abnormal activation, predisposing individuals to age-related diseases. This phenomenon, commonly referred to as immunosenescence, highlighting aging-associated progressive decline of the immune system. Moreover, mounting evidence suggests that immunosenescence contributes to a related pathological phenomenon known as inflammaging. Inflammaging refers to chronic, low-grade, and systemic inflammation associated with aging, occurring despite the absence of overt stimuli. In the body, inflammation is typically activated in response to overt stimuli such as bacterial/microbial invasion or a pathological state, however, inflammaging occurrence and its underpinning mechanisms seem to be independent and in the absence of such stimuli. Despite recent advancements in molecular characterization and the scrutiny of disease relevance, these two interconnected concepts have remained largely unexplored and unrecognized. In this comprehensive review, we aim to shed light on the mechanistic and cellular aspects of immunosenescence and inflammaging, as well as their pivotal roles in the pathogenesis of aging-related diseases, including cancer, infections, dementia, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuqin Zhou
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
39
|
Wang S, Zhang Z, Wang J, Lou Y, Zhu Y, You J, Liu P, Xu LX. Neutrophils promote the activation of monocytes via ROS to boost systemic antitumor immunity after cryo-thermal therapy. Front Immunol 2024; 15:1445513. [PMID: 39555061 PMCID: PMC11563809 DOI: 10.3389/fimmu.2024.1445513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Background The characteristics of the tumor immunosuppressive microenvironment represent a major challenge that limits the efficacy of immunotherapy. Our previous results suggested that cryo-thermal therapy, a tumor ablation system developed in our laboratory, promotes macrophage M1-type polarization and the complete maturation of DCs to remodel the immunosuppressive environment. However, the cells that respond promptly to CTT have not yet been identified. CTT can cause extensive cell death and the release of danger-associated molecular patterns and antigens. Neutrophils are the first white blood cells recruited to sites of damage and acute inflammation. Therefore, we hypothesized that neutrophils are the initial cells that respond to CTT and are involved in the subsequent establishment of antitumor immunity. Methods In this study, we examined the kinetics of neutrophil recruitment after CTT via flow cytometry and immunofluorescence staining and explored the effect of neutrophils on the establishment of systemic antitumor immunity by in vivo neutrophil depletion and in vitro co-culture assays. Results We found that CTT led to a rapid and strong proinflammatory neutrophil response, which was essential for the long-term survival of mice. CTT-induced neutrophils promoted the activation of monocytes via reactive oxygen species and further upregulated the expression of IFN-γ and cytotoxic molecules in T and NK cells. Adoptive neutrophil transfer further enhanced the antitumor efficacy of CTT in tumor models of spontaneous and experimental metastasis. Conclusion These results reveal the important role of neutrophil‒monocyte interactions in the development of anti-tumor immunity and highlight that CTT could be used as an immunotherapy for targeting neutrophils and monocytes to enhance antitumor immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lisa X. Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Xiao W, Xu C. Cystine/cysteine metabolism regulates the progression and response to treatment of triple‑negative breast cancer (Review). Oncol Lett 2024; 28:521. [PMID: 39268159 PMCID: PMC11391256 DOI: 10.3892/ol.2024.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/04/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer is the most prevalent neoplasm affecting women globally, of which a notable proportion of cases are triple-negative breast cancer (TNBC). However, there are limited curative treatment options for patients with TNBC, despite advancements in the field. Amino acids and amino acid transporters serve vital roles in the regulation of tumor metabolism. Notably, cystine and cysteine can interconvert via a redox reaction, with cysteine exerting control on cell survival and growth and exogenous cystine serving a crucial role in the proliferation of numerous types of cancers. Breast cancer has been reported to disrupt the cystine/cysteine metabolism pathway, as cystine and cysteine transporters affect the development and growth of tumors. The present review aims to provide a comprehensive overview of the metabolic pathways involving cystine and cysteine in normal and TNBC cells. Furthermore, the roles of cystine and cysteine transporters in TNBC progression and metastasis and their potential as therapeutic targets for treatment of TNBC are evaluated.
Collapse
Affiliation(s)
- Wanting Xiao
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Chaoyang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
41
|
Qi Y, Zhang L, Liu Y, Li Y, Liu Y, Zhang Z. Targeted modulation of myeloid-derived suppressor cells in the tumor microenvironment: Implications for cancer therapy. Biomed Pharmacother 2024; 180:117590. [PMID: 39423752 DOI: 10.1016/j.biopha.2024.117590] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells originating from the bone marrow, known for their potent immunosuppressive functions that contribute to tumor immune evasion and progression. This paper provides a comprehensive analysis of the multifaceted interactions between MDSCs and tumors, exploring their distinct phenotypes and immunosuppressive mechanisms. Key roles of MDSCs in tumor biology are discussed, including their involvement in the formation of the pre-metastatic niche, facilitation of angiogenesis, enhancement of vascular permeability, suppression of tumor cell apoptosis, and promotion of resistance to cancer therapies. Additionally, the review highlights recent advances in the development of MDSC-targeting therapies, with a focus on their potential to enhance anti-tumor immunity. The therapeutic potential of Traditional Chinese Medicine (TCM) in modulating MDSC quantity and function is also explored, suggesting a novel approach to cancer treatment by integrating traditional and modern therapeutic strategies.
Collapse
Affiliation(s)
- Yafeng Qi
- Clinical School of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Liying Zhang
- School of Integrative Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Yeyuan Liu
- Clinical School of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Yangyang Li
- Clinical School of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Yongqi Liu
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Zhiming Zhang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu 730000, China.
| |
Collapse
|
42
|
Nicholson T, Belli A, Lord JM, Hazeldine J. The impact of trauma relevant concentrations of prostaglandin E 2 on the anti-microbial activity of the innate immune system. Front Immunol 2024; 15:1401185. [PMID: 39502706 PMCID: PMC11535544 DOI: 10.3389/fimmu.2024.1401185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 11/08/2024] Open
Abstract
Background The mechanisms underlying the state of systemic immune suppression that develops following major trauma are poorly understood. A post-injury increase in circulating levels of prostaglandin E2 (PGE2) has been proposed as a contributory factor, yet few studies have addressed how trauma influences PGE2 biology. Methods Blood samples from 95 traumatically-injured patients (injury severity score ≥8) were collected across the pre-hospital (≤2 hours), acute (4-12 hours) and subacute (48-72 hours) post-injury settings. Alongside ex vivo assessments of lipopolysaccharide (LPS)-induced cytokine production by monocytes, neutrophil reactive oxygen species production and phagocytosis, serum concentrations of PGE2 and its scavenger albumin were measured, and the expression of enzymes and receptors involved in PGE2 synthesis and signalling analysed. Leukocytes from trauma patients were treated with cyclooxygenase (COX) inhibitors (indomethacin or NS-398), or the protein kinase A inhibitor H89, to determine whether injury-induced immune suppression could be reversed by targeting the PGE2 pathway. The effect that trauma relevant concentrations of PGE2 had on the anti-microbial functions of neutrophils, monocytes and monocyte-derived macrophages (MDMs) from healthy controls (HC) was examined, as was the effect of PGE2 on efferocytosis. To identify factors that may trigger PGE2 production post-trauma, leukocytes from HC were treated with mitochondrial-derived damage associated molecular patterns (mtDAMPs) and COX-2 expression and PGE2 generation measured. Results PGE2 concentrations peaked in blood samples acquired ≤2 hours post-injury and coincided with significantly reduced levels of albumin and impaired LPS-induced cytokine production by monocytes. Significantly higher COX-2 and phospholipase A2 expression was detected in neutrophils and/or peripheral blood mononuclear cells isolated from trauma patients. Treatment of patient leukocytes with indomethacin, NS-398 or H89 enhanced LPS-induced cytokine production and neutrophil extracellular trap generation. Exposure to physiological concentrations of PGE2 suppressed the anti-microbial activity of monocytes, neutrophils and MDMs of HC, but did not influence efferocytosis. In a formyl-peptide receptor-1 dependent manner, mtDAMP treatment significantly increased COX-2 protein expression in neutrophils and monocytes, which resulted in increased PGE2 production. Conclusions Physiological concentrations of PGE2 suppress the anti-microbial activities of neutrophils, monocytes and MDMs. Targeting the PGE2 pathway could be a therapeutic approach by which to enhance innate immune function post-injury.
Collapse
Affiliation(s)
- Thomas Nicholson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Antonio Belli
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Medical Research Council (MRC)-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
43
|
Ricci AD, Rizzo A, Schirizzi A, D’Alessandro R, Frega G, Brandi G, Shahini E, Cozzolongo R, Lotesoriere C, Giannelli G. Tumor Immune Microenvironment in Intrahepatic Cholangiocarcinoma: Regulatory Mechanisms, Functions, and Therapeutic Implications. Cancers (Basel) 2024; 16:3542. [PMID: 39456636 PMCID: PMC11505966 DOI: 10.3390/cancers16203542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Treatment options for intrahepatic cholangiocarcinoma (iCCA), a highly malignant tumor with poor prognosis, are limited. Recent developments in immunotherapy and immune checkpoint inhibitors (ICIs) have offered new hope for treating iCCA. However, several issues remain, including the identification of reliable biomarkers of response to ICIs and immune-based combinations. Tumor immune microenvironment (TIME) of these hepatobiliary tumors has been evaluated and is under assessment in this setting in order to boost the efficacy of ICIs and to convert these immunologically "cold" tumors to "hot" tumors. Herein, the review TIME of ICCA and its critical function in immunotherapy. Moreover, this paper also discusses potential avenues for future research, including novel targets for immunotherapy and emerging treatment plans aimed to increase the effectiveness of immunotherapy and survival rates for iCCA patients.
Collapse
Affiliation(s)
- Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Rosalba D’Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Giorgio Frega
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy
| | - Raffaele Cozzolongo
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| |
Collapse
|
44
|
Kapor S, Radojković M, Santibanez JF. Myeloid-derived suppressor cells: Implication in myeloid malignancies and immunotherapy. Acta Histochem 2024; 126:152183. [PMID: 39029317 DOI: 10.1016/j.acthis.2024.152183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Myeloid malignancies stem from a modified hematopoietic stem cell and predominantly include acute myeloid leukemia, myelodysplastic neoplasms, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory properties by governing the innate and adaptive immune systems, creating a permissive and supportive environment for neoplasm growth. This review examines the key characteristics of MDSCs in myeloid malignancies, highlighting that an increased MDSC count corresponds to heightened immunosuppressive capabilities, fostering an immune-tolerant neoplasm microenvironment. Also, this review analyzes and describes the potential of combined cancer therapies, focusing on targeting MDSC generation, expansion, and their inherent immunosuppressive activities to enhance the efficacy of current cancer immunotherapies. A comprehensive understanding of the implications of myeloid malignancies may enhance the exploration of immunotherapeutic strategies for their potential application.
Collapse
Affiliation(s)
- Suncica Kapor
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia
| | - Milica Radojković
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia; Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, Belgrade 11000, Serbia
| | - Juan F Santibanez
- Molecular Oncology group, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, Belgrade 11129, Serbia; Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, General Gana 1780, Santiago 8370854, Chile.
| |
Collapse
|
45
|
Bellotti P, Ladd Z, Leroy V, Su G, Sharma S, Hartman JB, Krebs J, Viscardi C, Maile R, Moldawer LL, Efron PA, Sharma AK, Upchurch GR. Resolvin D2/GPR18 signaling enhances monocytic myeloid-derived suppressor cell function to mitigate abdominal aortic aneurysm formation. FASEB J 2024; 38:e70067. [PMID: 39320982 PMCID: PMC11433576 DOI: 10.1096/fj.202400414rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Abdominal aortic aneurysm (AAA) formation is a chronic vascular pathology characterized by inflammation, leukocyte infiltration, and vascular remodeling. The aim of this study was to delineate the protective role of Resolvin D2 (RvD2), a bioactive isoform of specialized pro-resolving lipid mediators, via G-protein-coupled receptor 18 (GPR18) receptor signaling in attenuating AAAs. Importantly, RvD2 and GPR18 levels were significantly decreased in aortic tissue of AAA patients compared with controls. Furthermore, using an established murine model of AAA in C57BL/6 (WT) mice, we observed that treatment with RvD2 significantly attenuated aortic diameter, pro-inflammatory cytokine production, immune cell infiltration (neutrophils and macrophages), elastic fiber disruption, and increased smooth muscle cell α-actin expression as well as increased TGF-β2 and IL-10 expressions compared to untreated mice. Moreover, the RvD2-mediated protection from vascular remodeling and AAA formation was blocked when mice were previously treated with siRNA for GPR18 signifying the importance of RvD2/GPR18 signaling in vascular inflammation. Mechanistically, RvD2-mediated protection significantly enhanced infiltration and activation of monocytic myeloid-derived suppressor cells (M-MDSCs) by increasing TGF-β2 and IL-10 secretions in a GPR18-dependent manner to attenuate aortic inflammation and vascular remodeling. Collectively, this study demonstrates that RvD2 treatment induces an expansion of myeloid-lineage committed progenitors, such as M-MDSCs, activates GPR18-dependent signaling to enhance TGF-β2 and IL-10 secretion, and mitigates SMC activation that contributes to resolution of aortic inflammation and remodeling during AAA formation.
Collapse
Affiliation(s)
- Paolo Bellotti
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Zachary Ladd
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Victoria Leroy
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Gang Su
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Shiven Sharma
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Joseph B. Hartman
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Jonathan Krebs
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Chelsea Viscardi
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Robert Maile
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Lyle L. Moldawer
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Phillip A. Efron
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Ashish K. Sharma
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Gilbert R. Upchurch
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
46
|
Ju Y, Xu D, Liao MM, Sun Y, Bao WD, Yao F, Ma L. Barriers and opportunities in pancreatic cancer immunotherapy. NPJ Precis Oncol 2024; 8:199. [PMID: 39266715 PMCID: PMC11393360 DOI: 10.1038/s41698-024-00681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a fatal clinical challenge characterized by a dismal 5-year overall survival rate, primarily due to the lack of early diagnosis and limited therapeutic efficacy. Immunotherapy, a proven success in multiple cancers, has yet to demonstrate significant benefits in PDAC. Recent studies have revealed the immunosuppressive characteristics of the PDAC tumor microenvironment (TME), including immune cells with suppressive properties, desmoplastic stroma, microbiome influences, and PDAC-specific signaling pathways. In this article, we review recent advances in understanding the immunosuppressive TME of PDAC, TME differences among various mouse models of pancreatic cancer, and the mechanisms underlying resistance to immunotherapeutic interventions. Furthermore, we discuss the potential of targeting cancer cell-intrinsic pathways and TME components to sensitize PDAC to immune therapies, providing insights into strategies and future perspectives to break through the barriers in improving pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yixin Ju
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Dongzhi Xu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Miao-Miao Liao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen-Dai Bao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518000, China.
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
47
|
Kumar D, Da Silva VC, Chaves NL. Myeloid‑derived suppressor cells as targets of emerging therapies and nanotherapies (Review). MEDICINE INTERNATIONAL 2024; 4:46. [PMID: 38983795 PMCID: PMC11228699 DOI: 10.3892/mi.2024.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality among women worldwide. Immunotherapies are a promising approach in cancer treatment, particularly for aggressive forms of BC with high mortality rates. However, the current eligibility for immunotherapy remains limited to a limited fraction of patients with BC. Myeloid-derived suppressor cells (MDSCs), originating from myeloid cells, are known for their dual role in immunosuppression and tumor promotion, significantly affecting patient outcomes by fostering the formation of premetastatic niches. Consequently, targeting MDSCs has emerged as a promising avenue for further exploration in therapeutic interventions. Leveraging nanotechnology-based drug delivery systems, which excel in accumulating drugs within tumors via passive or active targeting mechanisms, are a promising strategy for the use of MDSCs in the treatment of BC. The present review discusses the immunosuppressive functions of MDSCs, their role in BC, and the diverse strategies for targeting them in cancer therapy. Additionally, the present review discusses future advancements in BC treatments focusing on MDSCs. Furthermore, it elucidates the mechanisms underlying MDSC activation, recruitment and differentiation in BC progression, highlighting the clinical characteristics that render MDSCs suitable candidates for the therapy and targeted nanotherapy of BC.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Genetics and Morphology, Institutes of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Victor Carlos Da Silva
- Microscopy and Microanalysis Laboratory, Institutes of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Natalia Lemos Chaves
- Department of Genetics and Morphology, Institutes of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| |
Collapse
|
48
|
Tao Q, Liu N, Chen J, Wu J, Li J, Chen X, Peng C. Ferroptosis and tumor immunity. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1309-1315. [PMID: 39788519 PMCID: PMC11628223 DOI: 10.11817/j.issn.1672-7347.2024.240389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Indexed: 01/12/2025]
Abstract
Ferroptosis is a unique form of cell death driven by iron-dependent lipid peroxidation, with regulatory mechanisms involving metabolic dysregulation and imbalance in redox systems. Ferroptosis is closely related to various immune cells in the tumor immune microenvironment, including both anti-tumor and pro-tumor immune cells, and it demonstrates significant potential in tumor immunotherapy. A systematic review of the regulatory mechanisms of ferroptosis and its relationship with immune cells can provide deeper insights into its application prospects in tumor immunotherapy.
Collapse
Affiliation(s)
- Qian Tao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha 410008.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha 410008.
- Furong Laboratory, Changsha 410078.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Nian Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha 410008
- Hunan Engineering Research Center of Skin Health and Disease, Changsha 410008
- Furong Laboratory, Changsha 410078
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha 410008
- Hunan Engineering Research Center of Skin Health and Disease, Changsha 410008
- Furong Laboratory, Changsha 410078
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha 410008
- Hunan Engineering Research Center of Skin Health and Disease, Changsha 410008
- Furong Laboratory, Changsha 410078
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha 410008
- Hunan Engineering Research Center of Skin Health and Disease, Changsha 410008
- Furong Laboratory, Changsha 410078
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha 410008
- Hunan Engineering Research Center of Skin Health and Disease, Changsha 410008
- Furong Laboratory, Changsha 410078
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha 410008.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha 410008.
- Furong Laboratory, Changsha 410078.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
49
|
Fu Y, Guo X, Sun L, Cui T, Wu C, Wang J, Liu Y, Liu L. Exploring the role of the immune microenvironment in hepatocellular carcinoma: Implications for immunotherapy and drug resistance. eLife 2024; 13:e95009. [PMID: 39146202 PMCID: PMC11326777 DOI: 10.7554/elife.95009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.
Collapse
Affiliation(s)
- Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Xinyu Guo
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| |
Collapse
|
50
|
Guo K, Lu M, Bi J, Yao T, Gao J, Ren F, Zhu L. Ferroptosis: mechanism, immunotherapy and role in ovarian cancer. Front Immunol 2024; 15:1410018. [PMID: 39192972 PMCID: PMC11347334 DOI: 10.3389/fimmu.2024.1410018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Ovarian cancer is currently the second most common malignant tumor among gynecological cancers worldwide, primarily due to challenges in early diagnosis, high recurrence rates, and resistance to existing treatments. Current therapeutic options are inadequate for addressing the needs of ovarian cancer patients. Ferroptosis, a novel form of regulated cell death with demonstrated tumor-suppressive properties, has gained increasing attention in ovarian malignancy research. A growing body of evidence suggests that ferroptosis plays a significant role in the onset, progression, and incidence of ovarian cancer. Additionally, it has been found that immunotherapy, an emerging frontier in tumor treatment, synergizes with ferroptosis in the context of ovarian cancer. Consequently, ferroptosis is likely to become a critical target in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ke Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao Lu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianlei Bi
- Department of Obstetrics and Gynecology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tianyu Yao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fang Ren
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|