1
|
van Bentum M, Klinger B, Sieber A, Naghiloo S, Zauber H, Lehmann N, Haji M, Niquet S, Mertins P, Blüthgen N, Selbach M. Spike-in enhanced phosphoproteomics uncovers synergistic signaling responses to MEK inhibition in colon cancer cells. Nat Commun 2025; 16:4884. [PMID: 40419504 PMCID: PMC12106795 DOI: 10.1038/s41467-025-59404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 04/23/2025] [Indexed: 05/28/2025] Open
Abstract
Targeted kinase inhibitors are a cornerstone of cancer therapy, but their success is often hindered by the complexity of cellular signaling networks that can lead to resistance. Overcoming this challenge necessitates a deep understanding of cellular signaling responses. While standard global phosphoproteomics offers extensive insights, lengthy processing times, the complexity of data interpretation, and frequent omission of crucial phosphorylation sites limit its utility. Here, we combine data-independent acquisition (DIA) with spike-in of synthetic heavy stable isotope-labeled phosphopeptides to facilitate the targeted detection of particularly informative phosphorylation sites. Our spike-in enhanced detection in DIA (SPIED-DIA) approach integrates the improved sensitivity of spike-in-based targeted detection with the discovery potential of global phosphoproteomics into a simple workflow. We employed this method to investigate synergistic signaling responses in colorectal cancer cell lines following MEK inhibition. Our findings highlight that combining MEK inhibition with growth factor stimulation synergistically activates JNK signaling in HCT116 cells. This synergy emphasizes the therapeutic potential of concurrently targeting MEK and JNK pathways, as evidenced by the significantly impaired growth of HCT116 cells when treated with both inhibitors. Our results demonstrate that SPIED-DIA effectively identifies synergistic signaling responses in colorectal cancer cells, presenting a valuable tool for uncovering new therapeutic targets and strategies in cancer treatment.
Collapse
Affiliation(s)
- Mirjam van Bentum
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092, Berlin, Germany
- Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Bertram Klinger
- Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Anja Sieber
- Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sheyda Naghiloo
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Henrik Zauber
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Nadine Lehmann
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Mohamed Haji
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Sylvia Niquet
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Nils Blüthgen
- Institute for Theoretical Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
2
|
Zhao B, Fang R, Schürmann H, Hemmer EJ, Mayer GL, Trajkovic-Arsic M, Althoff K, Yang J, Godfrey L, Liffers ST, Savvatakis K, Dorsch M, Grüner BM, Hahn S, Remke M, Lueong SS, Siveke JT. PLK1 blockade enhances the anti-tumor effect of MAPK inhibition in pancreatic ductal adenocarcinoma. Cell Rep 2025; 44:115541. [PMID: 40188436 DOI: 10.1016/j.celrep.2025.115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/04/2025] [Accepted: 03/19/2025] [Indexed: 04/08/2025] Open
Abstract
Despite constitutive Ras/Raf/MAPK pathway activation in most pancreatic ductal adenocarcinomas (PDACs), treatment approaches targeting this pathway have primarily been unsuccessful. We conduct a drug library screen on an MEK inhibitor (MEKi)-resistant PDAC model and perform complementary pathway analysis to identify cellular resistance phenotypes. We use syngeneic models to investigate the molecular determinants of identified drug synergism. Our study reveals an enrichment for the hallmarks of G2/M checkpoints in MEKi-resistant phenotypes from all investigated models. We find overexpression of Polo-like kinase 1 (PLK1) and other G2/M checkpoint-related proteins in MEKi-resistant cells. We identify synergistic activity between MEK and PLK1 inhibition both in vitro and in vivo and mechanistically show that dual inhibition of the PLK1 and MEK pathways activates the JNK/c-JUN pathway. This causes the accumulation of DNA damage, ultimately leading to apoptotic cell death. Dual PLK1/MEK inhibition emerges as a promising targeted approach in PDAC.
Collapse
Affiliation(s)
- Ben Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Rui Fang
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Hendrik Schürmann
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany; Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Erik Jan Hemmer
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Gina Lauren Mayer
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Kristina Althoff
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Jiajin Yang
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Laura Godfrey
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Sven T Liffers
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Konstantinos Savvatakis
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany
| | - Madeleine Dorsch
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany; Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Barbara M Grüner
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany; Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Stephan Hahn
- Department of Molecular GI Oncology, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany; Department of Internal Medicine, Ruhr University Bochum, Knappschaftskrankenhaus, 44780 Bochum, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, 40225 Düsseldorf, Germany; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 40225 Düsseldorf, Germany
| | - Smiths S Lueong
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany.
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, 45147 Essen, Germany.
| |
Collapse
|
3
|
Liu Z, Lenz HJ, Yu J, Zhang L. Differential Response and Resistance to KRAS-Targeted Therapy. Mol Carcinog 2025. [PMID: 40256920 DOI: 10.1002/mc.23908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/10/2025] [Indexed: 04/22/2025]
Abstract
KRAS is the most frequently mutated oncogene. In epithelial malignancies such as lung, colorectal, and pancreatic tumors, KRAS is mutated in 25 to above 90% cases. KRAS was considered undruggable for over three decades until the recent development of covalent inhibitors targeting the KRAS G12C mutant. The recent approval of the KRAS G12C inhibitors sotorasib and adagrasib has ushered in a new era of KRAS-targeted therapy. Despite this success, a major challenge in KRAS-targeted therapy is intrinsic and acquired resistance to KRAS inhibitors. Clinical studies have shown that many patients with KRAS G12C cancers did not respond to sotorasib and adagrasib. Colorectal cancer, in particular, has a markedly lower response rate to KRAS G12C inhibitors compared to non-small cell lung cancer. Furthermore, the therapeutic response to KRAS G12C inhibition was short-lived, with quick emergence of acquired resistance. In this review, we summarize several major themes that have emerged from recent clinical and preclinical studies on the mechanisms of intrinsic and acquired resistance to KRAS-targeted therapy in colorectal, lung, and pancreatic cancers. We also discuss various combination strategies for targeting these mechanisms to overcome resistance to KRAS inhibitors.
Collapse
Affiliation(s)
- Zhaojin Liu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, California, USA
- Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Heinz-Josef Lenz
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, California, USA
- Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Jian Yu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, California, USA
- Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Lin Zhang
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, California, USA
- Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| |
Collapse
|
4
|
Carr A, Coulter JA, Workman J, Fay J, Farrelly A, Eustace AJ, Bennie L, Grogan L, Breathnach O, Morris PG, McNamara DA, Cremona M, O'Neill BDP, Hennessy BT, Toomey S. Targeting the phosphatidylinositol-3-kinase (PI3K) and mitogen activated protein kinase (MAPK) signalling pathways to enhance chemoradiotherapy in locally advanced rectal cancer. Cancer Treat Res Commun 2025; 43:100926. [PMID: 40245445 DOI: 10.1016/j.ctarc.2025.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/04/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Responses to neoadjuvant chemoradiotherapy for locally advanced rectal cancer are not uniform. The phosphatidylinositol-3 kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways are involved in tumorigenesis and treatment resistance in many cancers; therefore, targeting these pathways could enhance response to chemoradiotherapy. A panel of colorectal cancer (CRC) cell lines (n = 10) with varying PI3K and MAPK mutational backgrounds were treated with combinations of 5-Flourouracil (5-FU), radiation, the PI3K inhibitor copanlisib, and/or the MEK inhibitor refametinib, and their effects on proliferation in vitro were measured. BALB/c SCID mice were implanted with CRC cell lines representative of each mutational background, treated with copanlisib and/or chemoradiotherapy, and monitored for tumor growth. In vitro, PIK3CA mutated cell lines were most sensitive to copanlisib (IC50=28 nM) and KRAS mutated cell lines were most sensitive to refametinib (IC50 = 36 nM), while the combination of copanlisib and refametinib was synergistic in 9/10 cell lines tested. The addition of copanlisib to 5-FU chemoradiotherapy inhibited cell growth compared to 5-FU chemoradiotherapy alone, an effect that was most notable in LS-1034 (KRAS mutated) and Caco-2 (PIK3CA/KRAS wild-type) cell lines. In vivo copanlisib and 5-FU chemoradiotherapy reduced tumor growth in all xenograft models and increased overall survival in LS-1034 and Caco-2 xenografts. Our results suggest that activation of the kinase signalling pathway may modulate PI3K/MEK inhibitor responsiveness in colorectal cancer. Furthermore, the addition of copanlisib to 5-FU chemoradiotherapy resulted in an enhanced anti-proliferative cytotoxic effect compared to 5-FU chemoradiotherapy alone, regardless of the background mutational status, and supports further clinical development of this regimen.
Collapse
Affiliation(s)
- Aoife Carr
- Department of Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | | | - Julie Workman
- Department of Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Joanna Fay
- Department of Pathology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Angela Farrelly
- Department of Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Alex J Eustace
- Department of Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Lindsey Bennie
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Liam Grogan
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland; Beaumont RCSI Cancer Centre, Dublin, Ireland
| | - Oscar Breathnach
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland; Beaumont RCSI Cancer Centre, Dublin, Ireland
| | - Patrick G Morris
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland; Beaumont RCSI Cancer Centre, Dublin, Ireland
| | - Deborah A McNamara
- Beaumont RCSI Cancer Centre, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Mattia Cremona
- Department of Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Brian D P O'Neill
- Beaumont RCSI Cancer Centre, Dublin, Ireland; St. Luke's Radiation Oncology Network, Dublin, Ireland
| | - Bryan T Hennessy
- Department of Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland; Beaumont RCSI Cancer Centre, Dublin, Ireland
| | - Sinead Toomey
- Department of Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Beaumont RCSI Cancer Centre, Dublin, Ireland.
| |
Collapse
|
5
|
Špiljak B, Sauerborn D, Tomas M, Gregorić Butina B, Mahovne I, Erić S, Vidaković B, Lešić S. Aggressive Squamoid Eccrine Ductal Carcinoma of the Face: A Rare and Challenging Diagnosis-Case Report and Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:612. [PMID: 40282903 PMCID: PMC12028541 DOI: 10.3390/medicina61040612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025]
Abstract
Background: Squamoid eccrine ductal carcinoma (SEDC) is an exceedingly rare and aggressive cutaneous adnexal malignancy, with fewer than 100 reported cases. Its histopathologic overlap with squamous cell carcinoma (SCC) frequently leads to misdiagnosis, delaying appropriate management. Unlike SCC, SEDC exhibits biphasic differentiation, deep infiltration, and a high rate of perineural invasion, contributing to significant morbidity and poor long-term outcomes. Given the absence of standardized treatment protocols, managing SEDC remains a challenge. Case Presentation: We report an unusual case of an 80-year-old female presenting with progressive numbness, nasal deviation, and a subcutaneous indurated lesion in the left nasofacial region. The early neurological symptoms were an atypical feature, suggesting perineural invasion (PNI) before visible tumor progression. Initial histopathologic evaluation was inconclusive, raising suspicion of SCC, necessitating immunohistochemical analysis, which confirmed ductal differentiation, leading to the final diagnosis of SEDC. The patient underwent radical resection with intraoperative margin assessment (Mohs micrographic surgery; MMS) followed by adjuvant radiotherapy (62 Gy/31 fractions) due to high-risk features, including perineural and perivascular invasion. Despite initial disease control, a local recurrence involving the left orbit and nasal bone occurred 20 months postoperatively, demonstrating the aggressive nature of SEDC despite clear surgical margins and adjuvant therapy. Due to disease progression and refusal of further surgery, only palliative care was provided. During follow-up, the patient contracted COVID-19, further complicating her clinical status and contributing to her demise. While COVID-19 was not directly linked to SEDC progression, its impact on patient management was significant. Conclusions: This case underscores the diagnostic and therapeutic challenges of SEDC, emphasizing the need for early suspicion, extensive histopathologic assessment, and aggressive multimodal treatment. The importance of multidisciplinary management-particularly in elderly and immunocompromised patients-and long-term surveillance due to high recurrence risk and PNI is crucial.
Collapse
Affiliation(s)
- Bruno Špiljak
- Department of Oral Medicine, University of Zagreb School of Dental Medicine, 10000 Zagreb, Croatia;
| | - Damir Sauerborn
- Department of Otorhinolaryngology and Head and Neck Surgery, General Hospital “Dr. Josip Benčević”, 35000 Slavonski Brod, Croatia; (D.S.); (B.G.B.)
| | - Matej Tomas
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Brankica Gregorić Butina
- Department of Otorhinolaryngology and Head and Neck Surgery, General Hospital “Dr. Josip Benčević”, 35000 Slavonski Brod, Croatia; (D.S.); (B.G.B.)
| | - Ivana Mahovne
- Department of Pathology and Cytology, General Hospital “Dr. Josip Benčević”, 35000 Slavonski Brod, Croatia;
| | - Suzana Erić
- Department of Oncology, Clinical Hospital Centre, 31000 Osijek, Croatia;
| | - Bruno Vidaković
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Stjepanka Lešić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| |
Collapse
|
6
|
Song D, Lim SH, Kim Y, Lee H, Kim T, Lim H, Min DS, Han G. Development and Evaluation of Indole-Based Phospholipase D Inhibitors for Lung Cancer Immunotherapy. J Med Chem 2025; 68:5170-5189. [PMID: 39405365 PMCID: PMC11913021 DOI: 10.1021/acs.jmedchem.4c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This study explored novel immunomodulatory approaches for cancer treatment, with a specific focus on lung cancer, the leading cause of cancer-related deaths worldwide. We synthesized indole-based phospholipase D (PLD) inhibitors with various substituents to improve anticancer efficacy. Through structure-activity relationship studies, the key compound was identified that significantly inhibiting PLD, suppressing cell growth, viability, and migration in vitro, while inducing apoptosis of lung cancer cells. In silico docking studies confirmed its binding to the PLD1 active site, highlighting the role of specific residues in inhibiting PLD1 activity. The inhibitor modulated oncogenic pathways and immune evasion in lung cancer cells, showing potential for immunotherapy. In vivo experiments in a mouse model showed tumor reduction and immune response alteration. Combining these inhibitors with gemcitabine, an anticancer drug, synergistically enhanced inhibition of lung cancer cell apoptosis and proliferation. This research offers new insights into PLD inhibitor as potential cancer therapeutics.
Collapse
Affiliation(s)
- Doona Song
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seong Hun Lim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Yeji Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyesung Lee
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Taehyun Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Hocheol Lim
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea
| | - Do Sik Min
- Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Gyoonhee Han
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Postech Biotech Center, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Korea 37673
| |
Collapse
|
7
|
Wu Y, Chen M, Qin Y. Anticancer drug response prediction integrating multi-omics pathway-based difference features and multiple deep learning techniques. PLoS Comput Biol 2025; 21:e1012905. [PMID: 40163555 PMCID: PMC11978092 DOI: 10.1371/journal.pcbi.1012905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 04/08/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Individualized prediction of cancer drug sensitivity is of vital importance in precision medicine. While numerous predictive methodologies for cancer drug response have been proposed, the precise prediction of an individual patient's response to drug and a thorough understanding of differences in drug responses among individuals continue to pose significant challenges. This study introduced a deep learning model PASO, which integrated transformer encoder, multi-scale convolutional networks and attention mechanisms to predict the sensitivity of cell lines to anticancer drugs, based on the omics data of cell lines and the SMILES representations of drug molecules. First, we use statistical methods to compute the differences in gene expression, gene mutation, and gene copy number variations between within and outside biological pathways, and utilized these pathway difference values as cell line features, combined with the drugs' SMILES chemical structure information as inputs to the model. Then the model integrates various deep learning technologies multi-scale convolutional networks and transformer encoder to extract the properties of drug molecules from different perspectives, while an attention network is devoted to learning complex interactions between the omics features of cell lines and the aforementioned properties of drug molecules. Finally, a multilayer perceptron (MLP) outputs the final predictions of drug response. Our model exhibits higher accuracy in predicting the sensitivity to anticancer drugs comparing with other methods proposed recently. It is found that PARP inhibitors, and Topoisomerase I inhibitors were particularly sensitive to SCLC when analyzing the drug response predictions for lung cancer cell lines. Additionally, the model is capable of highlighting biological pathways related to cancer and accurately capturing critical parts of the drug's chemical structure. We also validated the model's clinical utility using clinical data from The Cancer Genome Atlas. In summary, the PASO model suggests potential as a robust support in individualized cancer treatment. Our methods are implemented in Python and are freely available from GitHub (https://github.com/queryang/PASO).
Collapse
Affiliation(s)
- Yang Wu
- College of Information Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Fisheries Information Ministry of Agriculture, Shanghai, China
| | - Ming Chen
- College of Information Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Fisheries Information Ministry of Agriculture, Shanghai, China
| | - Yufang Qin
- College of Information Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Fisheries Information Ministry of Agriculture, Shanghai, China
| |
Collapse
|
8
|
Haynes J, Manogaran P. Mechanisms and Strategies to Overcome Drug Resistance in Colorectal Cancer. Int J Mol Sci 2025; 26:1988. [PMID: 40076613 PMCID: PMC11901061 DOI: 10.3390/ijms26051988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related mortality worldwide, with a significant impact on public health. Current treatment options include surgery, chemotherapy, radiotherapy, molecular-targeted therapy, and immunotherapy. Despite advancements in these therapeutic modalities, resistance remains a significant challenge, often leading to treatment failure, poor progression-free survival, and cancer recurrence. Mechanisms of resistance in CRC are multifaceted, involving genetic mutations, epigenetic alterations, tumor heterogeneity, and the tumor microenvironment. Understanding these mechanisms at the molecular level is crucial for identifying novel therapeutic targets and developing strategies to overcome resistance. This review provides an overview of the diverse mechanisms driving drug resistance in sporadic CRC and discusses strategies currently under investigation to counteract this resistance. Several promising strategies are being explored, including targeting drug transport, key signaling pathways, DNA damage response, cell death pathways, epigenetic modifications, cancer stem cells, and the tumor microenvironment. The integration of emerging therapeutic approaches that target resistance mechanisms aims to enhance the efficacy of current CRC treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Jennifer Haynes
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA;
| | | |
Collapse
|
9
|
Doron-Mandel E, Bokor BJ, Ma Y, Street LA, Tang LC, Abdou AA, Shah NH, Rosenberger G, Jovanovic M. SEC-MX: an approach to systematically study the interplay between protein assembly states and phosphorylation. Nat Commun 2025; 16:1176. [PMID: 39885126 PMCID: PMC11782603 DOI: 10.1038/s41467-025-56303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
A protein's molecular interactions and post-translational modifications (PTMs), such as phosphorylation, can be co-dependent and reciprocally co-regulate each other. Although this interplay is central for many biological processes, a systematic method to simultaneously study assembly states and PTMs from the same sample is critically missing. Here, we introduce SEC-MX (Size Exclusion Chromatography fractions MultipleXed), a global quantitative method combining Size Exclusion Chromatography and PTM-enrichment for simultaneous characterization of PTMs and assembly states. SEC-MX enhances throughput, allows phosphopeptide enrichment, and facilitates quantitative differential comparisons between biological conditions. Conducting SEC-MX on HEK293 and HCT116 cells, we generate a proof-of-concept dataset, mapping thousands of phosphopeptides and their assembly states. Our analysis reveals intricate relationships between phosphorylation events and assembly states and generates testable hypotheses for follow-up studies. Overall, we establish SEC-MX as a valuable tool for exploring protein functions and regulation beyond abundance changes.
Collapse
Affiliation(s)
- Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Benjamin J Bokor
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yanzhe Ma
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lauren C Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ahmed A Abdou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Neel H Shah
- Department of Chemistry, Columbia University, New York, NY, USA
| | | | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Leguay K, Kent OA. Dynamic Coupling of MAPK Signaling to the Guanine Nucleotide Exchange Factor GEF-H1. Onco Targets Ther 2025; 18:147-159. [PMID: 39882405 PMCID: PMC11776410 DOI: 10.2147/ott.s496228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
The KRAS gene is nearly ubiquitously subjected to activating mutation in pancreatic adenocarcinomas (PDAC), occurring at a frequency of over 90% in tumors. Mutant KRAS drives sustained signaling through the MAPK pathway to affect frequently disrupted cancer phenotypes including transcription, proliferation and cell survival. Recent research has shown that PDAC tumor growth and survival required a guanine nucleotide exchange factor for RAS homolog family member A (RhoA) called GEF-H1. The GEF-H1 protein, encoded by the ARHGEF2 gene, is a microtubule-associated GEF for RhoA that promotes invasion-migration of PDAC cells via activation of RhoA. Unexpectedly, independent of its RhoGEF activity, GEF-H1 was found to potentiate MAPK signaling by scaffolding protein phosphatase 2A (PP2A) to the kinase suppressor of Ras 1 (KSR-1). In a feedback-dependent manner, enhanced MAPK activity drives expression of ARHGEF2 via regulation of transcription factors ETS and SP, and the RAS responsive element-binding protein 1 (RREB1). RREB1 a negative regulator of ARHGEF2 expression, is downregulated in PDAC cells, which permits sustained expression of GEF-H1 for PDAC tumor survival and subsequent MAPK pathway activation. Given that MAPK targeted therapies show limited clinical efficacy, highlights the need for novel targets. This review describes the unexpected complexity of GEF-H1 function leading to positive feedback that potentiates RAS-MAPK signaling and suggests inhibition of GEF-H1 as a therapeutic strategy for RAS-driven cancers.
Collapse
Affiliation(s)
- Kévin Leguay
- Department of Pharmacology, adMare BioInnovations, Montréal, Quebec, H4S 1Z9, Canada
| | - Oliver A Kent
- Department of Pharmacology, adMare BioInnovations, Montréal, Quebec, H4S 1Z9, Canada
| |
Collapse
|
11
|
Huang P, Wang J, Yu Z, Lu J, Sun Z, Chen Z. Redefining bladder cancer treatment: innovations in overcoming drug resistance and immune evasion. Front Immunol 2025; 16:1537808. [PMID: 39911393 PMCID: PMC11794230 DOI: 10.3389/fimmu.2025.1537808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
Bladder cancer is one of the most common malignancies of the urinary system and has always presented great challenges in treatment due to its intricate biological features and high recurrence rates. Although great developments were achieved in immunotherapy and targeted therapies within the last decade, therapeutic outcomes for a great number of patients remain unsatisfactory, particularly as to long-term efficacy. Review discusses the molecular mechanisms developed during the process of bladder cancer progression: genetic and epigenetic alterations, dynamics of the tumor microenvironment (TME), and dysregulation and abnormal activation of various signaling pathways-all contributing to therapeutic resistance. It is genetic mutation, especially in both low- and high-grade tumors, that, alongside epigenetic modifications, plays a considerable role in tumor aggressiveness and drug resistance. TME, comprising cancer-associated fibroblasts (CAFs), immunosuppressive cells, and different components of the extracellular matrix (ECM), orchestrates a setting that fosters tumor growth and immune evasion and confers resistance on any therapeutic regime that might be used. The review also provides an overview of PI3K/AKT and MAPK signaling pathways in the progression of bladder cancer and the development of targeted therapies against them. Further, it discusses the challenges and mechanisms of resistance to immunotherapy, including those involving immune checkpoint inhibitors. Other promising approaches include the development of new therapeutic strategies that target not only the signaling pathways but also immune checkpoints in combination therapies. This review aims to contribute to the elaboration of more effective and personalized treatment strategies by fully understanding the underlying mechanisms involved in bladder cancer.
Collapse
Affiliation(s)
- Peng Huang
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China
| | - Jie Wang
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China
| | - Zongze Yu
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China
| | - Jiaan Lu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhou Sun
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhigui Chen
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China
| |
Collapse
|
12
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Espona-Fiedler M, Patthey C, Lindblad S, Sarró I, Öhlund D. Overcoming therapy resistance in pancreatic cancer: New insights and future directions. Biochem Pharmacol 2024; 229:116492. [PMID: 39153553 DOI: 10.1016/j.bcp.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is predicted to become the second leading cause of cancer deaths by 2030 and this is mostly due to therapy failure. Limited treatment options and resistance to standard-of-care (SoC) therapies makes PDAC one of the cancer types with poorest prognosis and survival rates [1,2]. Pancreatic tumors are renowned for their poor response to therapeutic interventions including targeted therapies, chemotherapy and radiotherapy. Herein, we review hallmarks of therapy resistance in PDAC and current strategies aiming to tackle escape mechanisms and to re-sensitize cancer cells to therapy. We will further provide insights on recent advances in the field of drug discovery, nanomedicine, and disease models that are setting the ground for future research.
Collapse
Affiliation(s)
- Margarita Espona-Fiedler
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| | - Cedric Patthey
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden
| | - Stina Lindblad
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden
| | - Irina Sarró
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Universitat de Barcelona, Barcelona, Spain
| | - Daniel Öhlund
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| |
Collapse
|
14
|
Wang H, Tang R, Jiang L, Jia Y. The role of PIK3CA gene mutations in colorectal cancer and the selection of treatment strategies. Front Pharmacol 2024; 15:1494802. [PMID: 39555098 PMCID: PMC11565213 DOI: 10.3389/fphar.2024.1494802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
PIK3CA gene encodes the p110α catalytic subunit of PI3K, which regulates the PI3K/AKT/mTOR signaling pathway. PIK3CA gene mutation is one of the most common mutations in colorectal cancer (CRC), affecting about 15%-20% of CRC patients. PIK3CA gene mutation leads to the persistent activation of the PI3K/AKT/mTOR signaling pathway, which promotes the proliferation, invasion, metastasis, and drug resistance of CRC. This article provides a summary of the key detection methods for PIK3CA gene mutation, and provides an introduction to the existing colorectal cancer treatments and their practical applications in the clinic. Besides, this article summarizes the role and mechanism of PIK3CA gene mutation in the occurrence and development of CRC. It also explores the relationship between PIK3CA gene mutation and the clinical features and prognosis of CRC. This article focuses on the influence and mechanism of PIK3CA gene mutation on the targeted therapy and immunotherapy of CRC, and discusses the potential value and future direction of PIK3CA gene mutation in the personalized therapy of CRC. We aim to provide new perspectives and ideas for the precise diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Tang
- Chengdu Anorectal Hospital, Chengdu, China
| | - Ling Jiang
- Chengdu Anorectal Hospital, Chengdu, China
| | - Yingtian Jia
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Naskar S, Sriraman N, Sarkar A, Mahajan N, Sarkar K. Tumor antigen presentation and the associated signal transduction during carcinogenesis. Pathol Res Pract 2024; 261:155485. [PMID: 39088877 DOI: 10.1016/j.prp.2024.155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Numerous developments have been achieved in the study and treatment of cancer throughout the decades that it has been common. After decades of research, about 100 different kinds of cancer have been found, each with unique subgroups within certain organs. This has significantly expanded our understanding of the illness. A mix of genetic, environmental, and behavioral variables contribute to the complicated and diverse process of cancer formation. Mutations, or changes in the DNA sequence, are crucial to the development of cancer. These mutations have the ability to downregulate the expression and function of Major Histocompatibility Complex class I (MHC I) and MHCII receptors, as well as activate oncogenes and inactivate tumor suppressor genes. Cancer cells use this tactic to avoid being recognized by cytotoxic CD8+T lymphocytes, which causes issues with antigen presentation and processing. This review goes into great length into the PI3K pathway, changes to MHC I, and positive impacts of tsMHC-II on disease-free survival and overall survival and the involvement of dendritic cells (DCs) in different tumor microenvironments. The vital functions that the PI3K pathway and its link to the mTOR pathway are highlighted and difficulties in developing effective cancer targeted therapies and feedback systems has also been mentioned, where resistance mechanisms include RAS-mediated oncogenic changes and active PI3K signalling.
Collapse
Affiliation(s)
- Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
16
|
Whitehead CE, Ziemke EK, Frankowski-McGregor CL, Mumby RA, Chung J, Li J, Osher N, Coker O, Baladandayuthapani V, Kopetz S, Sebolt-Leopold JS. A first-in-class selective inhibitor of EGFR and PI3K offers a single-molecule approach to targeting adaptive resistance. NATURE CANCER 2024; 5:1250-1266. [PMID: 38992135 PMCID: PMC11357990 DOI: 10.1038/s43018-024-00781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/09/2024] [Indexed: 07/13/2024]
Abstract
Despite tremendous progress in precision oncology, adaptive resistance mechanisms limit the long-term effectiveness of molecularly targeted agents. Here we evaluated the pharmacological profile of MTX-531 that was computationally designed to selectively target two key resistance drivers, epidermal growth factor receptor and phosphatidylinositol 3-OH kinase (PI3K). MTX-531 exhibits low-nanomolar potency against both targets with a high degree of specificity predicted by cocrystal structural analyses. MTX-531 monotherapy uniformly resulted in tumor regressions of squamous head and neck patient-derived xenograft (PDX) models. The combination of MTX-531 with mitogen-activated protein kinase kinase or KRAS-G12C inhibitors led to durable regressions of BRAF-mutant or KRAS-mutant colorectal cancer PDX models, resulting in striking increases in median survival. MTX-531 is exceptionally well tolerated in mice and uniquely does not lead to the hyperglycemia commonly seen with PI3K inhibitors. Here, we show that MTX-531 acts as a weak agonist of peroxisome proliferator-activated receptor-γ, an attribute that likely mitigates hyperglycemia induced by PI3K inhibition. This unique feature of MTX-531 confers a favorable therapeutic index not typically seen with PI3K inhibitors.
Collapse
Affiliation(s)
- Christopher E Whitehead
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- MEKanistic Therapeutics, Inc., Ann Arbor, MI, USA
| | | | | | - Rachel A Mumby
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - June Chung
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Jinju Li
- Department of Biostatistics, The University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Nathaniel Osher
- Department of Biostatistics, The University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Oluwadara Coker
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Veerabhadran Baladandayuthapani
- Department of Biostatistics, The University of Michigan School of Public Health, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Scott Kopetz
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judith S Sebolt-Leopold
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
- MEKanistic Therapeutics, Inc., Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Zahmatyar M, Kharaz L, Abiri Jahromi N, Jahanian A, Shokri P, Nejadghaderi SA. The safety and efficacy of binimetinib for lung cancer: a systematic review. BMC Pulm Med 2024; 24:379. [PMID: 39090580 PMCID: PMC11295668 DOI: 10.1186/s12890-024-03178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Lung cancer, accounting for a significant proportion of global cancer cases and deaths, poses a considerable health burden. Non-small cell lung cancer (NSCLC) patients have a poor prognosis and limited treatment options due to late-stage diagnosis and drug resistance. Dysregulated of the mitogen-activated protein kinase (MAPK) pathway, which is implicated in NSCLC pathogenesis, underscores the potential of MEK inhibitors such as binimetinib. Despite promising results in other cancers, comprehensive studies evaluating the safety and efficacy of binimetinib in lung cancer are lacking. This systematic review aimed to investigate the safety and efficacy of binimetinib for lung cancer treatment. METHODS We searched PubMed, Scopus, Web of Science, and Google Scholar until September 2023. Clinical trials evaluating the efficacy or safety of binimetinib for lung cancer treatment were included. Studies were excluded if they included individuals with conditions unrelated to lung cancer, investigated other treatments, or had different types of designs. The quality assessment was conducted utilizing the National Institutes of Health tool. RESULTS Seven studies with 228 participants overall were included. Four had good quality judgments, and three had fair quality judgments. The majority of patients experienced all-cause adverse events, with diarrhea, fatigue, and nausea being the most commonly reported adverse events of any grade. The objective response rate (ORR) was up to 75%, and the median progression-free survival (PFS) was up to 9.3 months. The disease control rate after 24 weeks varied from 41% to 64%. Overall survival (OS) ranged between 3.0 and 18.8 months. Notably, treatment-related adverse events were observed in more than 50% of patients, including serious adverse events such as colitis, febrile neutropenia, and pulmonary infection. Some adverse events led to dose limitation and drug discontinuation in five studies. Additionally, five studies reported cases of death, mostly due to disease progression. The median duration of treatment ranged from 14.8 weeks to 8.4 months. The most common dosage of binimetinib was 30 mg or 45 mg twice daily, sometimes used in combination with other agents like encorafenib or hydroxychloroquine. CONCLUSIONS Only a few studies have shown binimetinib to be effective, in terms of improving OS, PFS, and ORR, while most of the studies found nonsignificant efficacy with increased toxicity for binimetinib compared with traditional chemotherapy in patients with lung cancer. Further large-scale randomized controlled trials are recommended.
Collapse
Affiliation(s)
- Mahdi Zahmatyar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ladan Kharaz
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Jahanian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Shokri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Aria Nejadghaderi
- HIV/STI Surveillance Research Center, WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.
- Systematic Review and Meta‑analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
18
|
Son J, Zhang Y, Lin H, Mirallas O, Ballesteros PA, Nardo M, Clark N, Hillman RT, Campbell E, Holla V, Johnson AM, Biter AB, Yuan Y, Cobb LP, Gershenson DM, Jazaeri AA, Lu KH, Soliman PT, Westin SN, Euscher ED, Lawson BC, Yang RK, Meric-Bernstam F, Hong DS. Clinical and Genomic Landscape of RAS Mutations in Gynecologic Cancers. Clin Cancer Res 2024; 30:2986-2995. [PMID: 38687597 PMCID: PMC11250057 DOI: 10.1158/1078-0432.ccr-23-2819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/03/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE We aimed to describe RAS mutations in gynecologic cancers as they relate to clinicopathologic and genomic features, survival, and therapeutic implications. EXPERIMENTAL DESIGN Gynecologic cancers with available somatic molecular profiling data at our institution between February 2010 and August 2022 were included and grouped by RAS mutation status. Overall survival was estimated by the Kaplan-Meier method, and multivariable analysis was performed using the Cox proportional hazard model. RESULTS Of 3,328 gynecologic cancers, 523 (15.7%) showed any RAS mutation. Patients with RAS-mutated tumors were younger (57 vs. 60 years nonmutated), had a higher prevalence of endometriosis (27.3% vs. 16.9%), and lower grades (grade 1/2, 43.2% vs. 8.1%, all P < 0.0001). The highest prevalence of KRAS mutation was in mesonephric-like endometrial (100%, n = 9/9), mesonephric-like ovarian (83.3%, n = 5/6), mucinous ovarian (60.4%), and low-grade serous ovarian (44.4%) cancers. After adjustment for age, cancer type, and grade, RAS mutation was associated with worse overall survival [hazard ratio (HR) = 1.3; P = 0.001]. Specific mutations were in KRAS (13.5%), NRAS (2.0%), and HRAS (0.51%), most commonly KRAS G12D (28.4%) and G12V (26.1%). Common co-mutations were PIK3CA (30.9%), PTEN (28.8%), ARID1A (28.0%), and TP53 (27.9%), of which 64.7% were actionable. RAS + MAPK pathway-targeted therapies were administered to 62 patients with RAS-mutated cancers. While overall survival was significantly higher with therapy [8.4 years [(95% confidence interval (CI), 5.5-12.0) vs. 5.5 years (95% CI, 4.6-6.6); HR = 0.67; P = 0.031], this effect did not persist in multivariable analysis. CONCLUSIONS RAS mutations in gynecologic cancers have a distinct histopathologic distribution and may impact overall survival. PIK3CA, PTEN, and ARID1A are potentially actionable co-alterations. RAS pathway-targeted therapy should be considered.
Collapse
Affiliation(s)
- Ji Son
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yingao Zhang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Oriol Mirallas
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Research Unit for Molecular Therapy of Cancer (UITM), Medical Oncology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Pablo Alvarez Ballesteros
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Medical Oncology Department, Ramón y Cajal University Hospital, Madrid, Spain
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie Clark
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Obstetrics and Gynecology, University of Louisville, Louisville, KY, USA
| | - R Tyler Hillman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erick Campbell
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vijaykumar Holla
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber M Johnson
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amadeo B Biter
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren P Cobb
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David M Gershenson
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pamela T Soliman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth D Euscher
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barrett C Lawson
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard K Yang
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Yin H, Tang Q, Xia H, Bi F. Targeting RAF dimers in RAS mutant tumors: From biology to clinic. Acta Pharm Sin B 2024; 14:1895-1923. [PMID: 38799634 PMCID: PMC11120325 DOI: 10.1016/j.apsb.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
RAS mutations occur in approximately 30% of tumors worldwide and have a poor prognosis due to limited therapies. Covalent targeting of KRAS G12C has achieved significant success in recent years, but there is still a lack of efficient therapeutic approaches for tumors with non-G12C KRAS mutations. A highly promising approach is to target the MAPK pathway downstream of RAS, with a particular focus on RAF kinases. First-generation RAF inhibitors have been authorized to treat BRAF mutant tumors for over a decade. However, their use in RAS-mutated tumors is not recommended due to the paradoxical ERK activation mainly caused by RAF dimerization. To address the issue of RAF dimerization, type II RAF inhibitors have emerged as leading candidates. Recent clinical studies have shown the initial effectiveness of these agents against RAS mutant tumors. Promisingly, type II RAF inhibitors in combination with MEK or ERK inhibitors have demonstrated impressive efficacy in RAS mutant tumors. This review aims to clarify the importance of RAF dimerization in cellular signaling and resistance to treatment in tumors with RAS mutations, as well as recent progress in therapeutic approaches to address the problem of RAF dimerization in RAS mutant tumors.
Collapse
Affiliation(s)
- Huanhuan Yin
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongwei Xia
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
de Sena Murteira Pinheiro P, Franco LS, Montagnoli TL, Fraga CAM. Molecular hybridization: a powerful tool for multitarget drug discovery. Expert Opin Drug Discov 2024; 19:451-470. [PMID: 38456452 DOI: 10.1080/17460441.2024.2322990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION The current drug discovery paradigm of 'one drug, multiple targets' has gained attention from both the academic medicinal chemistry community and the pharmaceutical industry. This is in response to the urgent need for effective agents to treat multifactorial chronic diseases. The molecular hybridization strategy is a useful tool that has been widely explored, particularly in the last two decades, for the design of multi-target drugs. AREAS COVERED This review examines the current state of molecular hybridization in guiding the discovery of multitarget small molecules. The article discusses the design strategies and target selection for a multitarget polypharmacology approach to treat various diseases, including cancer, Alzheimer's disease, cardiac arrhythmia, endometriosis, and inflammatory diseases. EXPERT OPINION Although the examples discussed highlight the importance of molecular hybridization for the discovery of multitarget bioactive compounds, it is notorious that the literature has focused on specific classes of targets. This may be due to a deep understanding of the pharmacophore features required for target binding, making targets such as histone deacetylases and cholinesterases frequent starting points. However, it is important to encourage the scientific community to explore diverse combinations of targets using the molecular hybridization strategy.
Collapse
Affiliation(s)
- Pedro de Sena Murteira Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Silva Franco
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tadeu Lima Montagnoli
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Fang KT, Su CS, Layos JJ, Lau NYS, Cheng KH. Haploinsufficiency of Adenomatous Polyposis Coli Coupled with Kirsten Rat Sarcoma Viral Oncogene Homologue Activation and P53 Loss Provokes High-Grade Glioblastoma Formation in Mice. Cancers (Basel) 2024; 16:1046. [PMID: 38473403 DOI: 10.3390/cancers16051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and deadly type of brain tumor originating from glial cells. Despite decades of clinical trials and research, there has been limited success in improving survival rates. However, molecular pathology studies have provided a detailed understanding of the genetic alterations associated with the formation and progression of glioblastoma-such as Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling activation (5%), P53 mutations (25%), and adenomatous polyposis coli (APC) alterations (2%)-laying the groundwork for further investigation into the biological and biochemical basis of this malignancy. These analyses have been crucial in revealing the sequential appearance of specific genetic lesions at distinct histopathological stages during the development of GBM. To further explore the pathogenesis and progression of glioblastoma, here, we developed the glial-fibrillary-acidic-protein (GFAP)-Cre-driven mouse model and demonstrated that activated KRAS and p53 deficiencies play distinct and cooperative roles in initiating glioma tumorigenesis. Additionally, the combination of APC haploinsufficiency with mutant Kras activation and p53 deletion resulted in the rapid progression of GBM, characterized by perivascular inflammation, large necrotic areas, and multinucleated giant cells. Consequently, our GBM models have proven to be invaluable resources for identifying early disease biomarkers in glioblastoma, as they closely mimic the human disease. The insights gained from these models may pave the way for potential advancements in the diagnosis and treatment of this challenging brain tumor.
Collapse
Affiliation(s)
- Kuan-Te Fang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chuan-Shiang Su
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jhoanna Jane Layos
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Nga Yin Sadonna Lau
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
22
|
Sabbah DA, Hajjo R, Bardaweel SK, Zhong HA. Targeting the PI3K/AKT signaling pathway in anticancer research: a recent update on inhibitor design and clinical trials (2020-2023). Expert Opin Ther Pat 2024; 34:141-158. [PMID: 38557273 DOI: 10.1080/13543776.2024.2338100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Recent years have witnessed great achievements in drug design and development targeting the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling pathway, a pathway central to cell growth and proliferation. The nearest neighbor protein-protein interaction networks for PI3K and AKT show the interplays between these target proteins which can be harnessed for drug discovery. In this review, we discuss the drug design and clinical development of inhibitors of PI3K/AKT in the past three years. We review in detail the structures, selectivity, efficacy, and combination therapy of 35 inhibitors targeting these proteins, classified based on the target proteins. Approaches to overcoming drug resistance and to minimizing toxicities are discussed. Future research directions for developing combinational therapy and PROTACs of PI3K and AKT inhibitors are also discussed. AREA COVERED This review covers clinical trial reports and patent literature on inhibitors of PI3K and AKT published between 2020 and 2023. EXPERT OPINION To address drug resistance and drug toxicity of inhibitors of PI3K and AKT, it is highly desirable to design and develop subtype-selective PI3K inhibitors or subtype-selective AKT1 inhibitors to minimize toxicity or to develop allosteric drugs that can form covalent bonds. The development of PROTACs of PI3Kα or AKT helps to reduce off-target toxicities.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Center for Epidemics and Communicable Disease Control (JCDC), Amman, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Haizhen A Zhong
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
23
|
Jansen RA, Mainardi S, Dias MH, Bosma A, van Dijk E, Selig R, Albrecht W, Laufer SA, Zender L, Bernards R. Small-molecule inhibition of MAP2K4 is synergistic with RAS inhibitors in KRAS-mutant cancers. Proc Natl Acad Sci U S A 2024; 121:e2319492121. [PMID: 38377196 PMCID: PMC10907260 DOI: 10.1073/pnas.2319492121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
The Kirsten rat sarcoma viral oncogene homologue KRAS is among the most commonly mutated oncogenes in human cancers, thus representing an attractive target for precision oncology. The approval for clinical use of the first selective inhibitors of G12C mutant KRAS therefore holds great promise for cancer treatment. However, despite initial encouraging clinical results, the overall survival benefit that patients experience following treatment with these inhibitors has been disappointing to date, pointing toward the need to develop more powerful combination therapies. Here, we show that responsiveness to KRASG12C and pan-RAS inhibitors in KRAS-mutant lung and colon cancer cells is limited by feedback activation of the parallel MAP2K4-JNK-JUN pathway. Activation of this pathway leads to elevated expression of receptor tyrosine kinases that reactivate KRAS and its downstream effectors in the presence of drug. We find that the combination of sotorasib, a drug targeting KRASG12C, and the MAP2K4 inhibitor HRX-0233 prevents this feedback activation and is highly synergistic in a panel of KRASG12C-mutant lung and colon cancer cells. Moreover, combining HRX-0233 and sotorasib is well-tolerated and resulted in durable tumor shrinkage in mouse xenografts of human lung cancer cells, suggesting a therapeutic strategy for KRAS-driven cancers.
Collapse
Affiliation(s)
- Robin A. Jansen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | - Sara Mainardi
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | - Matheus Henrique Dias
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | - Astrid Bosma
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | - Emma van Dijk
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | | | | | - Stefan A. Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen72074, Germany
- Tübingen Center for Academic Drug Discovery and Development, Tübingen72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” (EXC 2180), Eberhard Karls Universität Tübingen, Tübingen72076, Germany
| | - Lars Zender
- Tübingen Center for Academic Drug Discovery and Development, Tübingen72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” (EXC 2180), Eberhard Karls Universität Tübingen, Tübingen72076, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen72076, Germany
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg69120, Germany
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| |
Collapse
|
24
|
Tan YQ, Sun B, Zhang X, Zhang S, Guo H, Basappa B, Zhu T, Sethi G, Lobie PE, Pandey V. Concurrent inhibition of pBADS99 synergistically improves MEK inhibitor efficacy in KRAS G12D-mutant pancreatic ductal adenocarcinoma. Cell Death Dis 2024; 15:173. [PMID: 38409090 PMCID: PMC10897366 DOI: 10.1038/s41419-024-06551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
Therapeutic targeting of KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) has remained a significant challenge in clinical oncology. Direct targeting of KRAS has proven difficult, and inhibition of the KRAS effectors have shown limited success due to compensatory activation of survival pathways. Being a core downstream effector of the KRAS-driven p44/42 MAPK and PI3K/AKT pathways governing intrinsic apoptosis, BAD phosphorylation emerges as a promising therapeutic target. Herein, a positive association of the pBADS99/BAD ratio with higher disease stage and worse overall survival of PDAC was observed. Homology-directed repair of BAD to BADS99A or small molecule inhibition of BADS99 phosphorylation by NCK significantly reduced PDAC cell viability by promoting cell cycle arrest and apoptosis. NCK also abrogated the growth of preformed colonies of PDAC cells in 3D culture. Furthermore, high-throughput screening with an oncology drug library to identify potential combinations revealed a strong synergistic effect between NCK and MEK inhibitors in PDAC cells harboring either wild-type or mutant-KRAS. Mechanistically, both mutant-KRAS and MEK inhibition increased the phosphorylation of BADS99 in PDAC cells, an effect abrogated by NCK. Combined pBADS99-MEK inhibition demonstrated strong synergy in reducing cell viability, enhancing apoptosis, and achieving xenograft stasis in KRAS-mutant PDAC. In conclusion, the inhibition of BADS99 phosphorylation enhances the efficacy of MEK inhibition, and their combined inhibition represents a mechanistically based and potentially effective therapeutic strategy for the treatment of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Yan Qin Tan
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, 519087, Guangdong, People's Republic of China
| | - Bowen Sun
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Xi Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Shuwei Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Hui Guo
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
25
|
Ruiz de Porras V, Bernat-Peguera A, Alcon C, Laguia F, Fernández-Saorin M, Jiménez N, Senan-Salinas A, Solé-Blanch C, Feu A, Marín-Aguilera M, Pardo JC, Ochoa-de-Olza M, Montero J, Mellado B, Font A. Dual inhibition of MEK and PI3Kβ/δ-a potential therapeutic strategy in PTEN-wild-type docetaxel-resistant metastatic prostate cancer. Front Pharmacol 2024; 15:1331648. [PMID: 38318136 PMCID: PMC10838968 DOI: 10.3389/fphar.2024.1331648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background: Docetaxel remains the standard treatment for metastatic castration-resistant prostate cancer (mCRPC). However, resistance frequently emerges as a result of hyperactivation of the PI3K/AKT and the MEK/ERK pathways. Therefore, the inhibition of these pathways presents a potential therapeutic approach. In this study, we evaluated the efficacy of simultaneous inhibition of the PI3K/AKT and MEK/ERK pathways in docetaxel-resistant mCRPC, both in vitro and in vivo. Methods: Docetaxel-sensitive and docetaxel-resistant mCRPC cells were treated with selumetinib (MEK1/2 inhibitor), AZD8186 (PI3Kβ/δ inhibitor) and capivasertib (pan-AKT inhibitor) alone and in combination. Efficacy and toxicity of selumetinib+AZD8186 were tested in docetaxel-resistant xenograft mice. CRISPR-Cas9 generated a PTEN-knockdown docetaxel-resistant cell model. Changes in phosphorylation of AKT, ERK and downstream targets were analyzed by Western blot. Antiapoptotic adaptations after treatments were detected by dynamic BH3 profiling. Results: PI3K/AKT and MEK/ERK pathways were hyperactivated in PTEN-wild-type (wt) docetaxel-resistant cells. Selumetinib+AZD8186 decreased cell proliferation and increased apoptosis in PTEN-wt docetaxel-resistant cells. This observation was further confirmed in vivo, where docetaxel-resistant xenograft mice treated with selumetinib+AZD8186 exhibited reduced tumor growth without additional toxicity. Conclusion: Our findings on the activity of selumetinib+AZD8186 in PTEN-wt cells and in docetaxel-resistant xenograft mice provide an excellent rationale for a novel therapeutic strategy for PTEN-wt mCRPC patients resistant to docetaxel, in whom, unlike PTEN-loss patients, a clinical benefit of treatment with single-agent PI3K and AKT inhibitors has not been demonstrated. A phase I-II trial of this promising combination is warranted.
Collapse
Affiliation(s)
- Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Adrià Bernat-Peguera
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
| | - Clara Alcon
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Fernando Laguia
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Maria Fernández-Saorin
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
| | - Natalia Jiménez
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Fundació de Recerca Clínic Barcelona–Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Ana Senan-Salinas
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
| | - Carme Solé-Blanch
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
| | - Andrea Feu
- Department of Pathology, Germans Trias i Pujol University Hospital, Badalona, Barcelona, Spain
| | - Mercedes Marín-Aguilera
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Fundació de Recerca Clínic Barcelona–Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Juan Carlos Pardo
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
- Medical Oncology Department, Catalan Institute of Oncology, Badalona, Barcelona, Spain
| | - Maria Ochoa-de-Olza
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
- Medical Oncology Department, Catalan Institute of Oncology, Badalona, Barcelona, Spain
| | - Joan Montero
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Begoña Mellado
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Fundació de Recerca Clínic Barcelona–Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Albert Font
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Badalona, Barcelona, Spain
- Medical Oncology Department, Catalan Institute of Oncology, Badalona, Barcelona, Spain
| |
Collapse
|
26
|
Newell S, van der Watt PJ, Leaner VD. Therapeutic targeting of nuclear export and import receptors in cancer and their potential in combination chemotherapy. IUBMB Life 2024; 76:4-25. [PMID: 37623925 PMCID: PMC10952567 DOI: 10.1002/iub.2773] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 08/26/2023]
Abstract
Systemic modalities are crucial in the management of disseminated malignancies and liquid tumours. However, patient responses and tolerability to treatment are generally poor and those that enter remission often return with refractory disease. Combination therapies provide a methodology to overcome chemoresistance mechanisms and address dose-limiting toxicities. A deeper understanding of tumorigenic processes at the molecular level has brought a targeted therapy approach to the forefront of cancer research, and novel cancer biomarkers are being identified at a rapid rate, with some showing potential therapeutic benefits. The Karyopherin superfamily of proteins is soluble receptors that mediate nucleocytoplasmic shuttling of proteins and RNAs, and recently, nuclear transport receptors have been recognized as novel anticancer targets. Inhibitors against nuclear export have been approved for clinical use against certain cancer types, whereas inhibitors against nuclear import are in preclinical stages of investigation. Mechanistically, targeting nucleocytoplasmic shuttling has shown to abrogate oncogenic signalling and restore tumour suppressor functions through nuclear sequestration of relevant proteins and mRNAs. Hence, nuclear transport inhibitors display broad spectrum anticancer activity and harbour potential to engage in synergistic interactions with a wide array of cytotoxic agents and other targeted agents. This review is focussed on the most researched nuclear transport receptors in the context of cancer, XPO1 and KPNB1, and highlights how inhibitors targeting these receptors can enhance the therapeutic efficacy of standard of care therapies and novel targeted agents in a combination therapy approach. Furthermore, an updated review on the therapeutic targeting of lesser characterized karyopherin proteins is provided and resistance to clinically approved nuclear export inhibitors is discussed.
Collapse
Affiliation(s)
- Stella Newell
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Virna D. Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- UCT/SAMRC Gynaecological Cancer Research CentreUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
27
|
Tripathi PK, Mittal KR, Jain N, Sharma N, Jain CK. KRAS Pathways: A Potential Gateway for Cancer Therapeutics and Diagnostics. Recent Pat Anticancer Drug Discov 2024; 19:268-279. [PMID: 37038676 DOI: 10.2174/1574892818666230406085120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 04/12/2023]
Abstract
One of the major disturbing pathways within cancer is "The Kirsten rat sarcoma viral oncogene homolog (KRAS) pathway", and it has recently been demonstrated to be the most crucial in therapies and diagnostics. KRAS pathway includes numerous genes. This multi-component signaling system promotes cell growth, division, survival, and death by transferring signals from outside the cell to its interior. KRAS regulates the activation of a variety of signaling molecules. The KRAS oncogene is a key player in advancing a wide range of malignancies, and the mutation rank of this gene is a key feature of several tumors. For some malignancies, the mutation type of the gene may offer information about prognostic, clinical, and predictive. KRAS belongs to the RAS oncogene family, which consists of a compilation of minor GTP-binding proteins that assimilate environmental inputs and trigger internal signaling pathways that control survival, cell differentiation, and proliferation. This review aims to examine the recent and fascinating breakthroughs in the identification of new therapies that target KRAS, including the ever-expanding experimental approaches for reducing KRAS activity and signaling as well as direct targeting of KRAS. A literature survey was performed. All the relevant articles and patents related to the KRAS pathway, the mutation in the KRAS gene, cancer treatment, and diagnostics were found on PubMed and Google Patents. One of the most prevalent causes of cancer in humans is a mutation in the K-RAS protein. It is extremely difficult to decipher KRAS-mediated signaling. It allows transducing signals to go from the cell's outer surface to its nucleus, having an influence on a variety of crucial cellular functions including cell chemotaxis, division, dissemination, and cell death. Other involved signaling pathways are RAF, and the phosphatidylinositol 3 kinase also known as AKT. The EGFR pathway is incomplete without KRAS. The activation of PI3K significantly contributes to acquiring resistance to a mixture of MEK inhibitors and anti-EGFR in colorectal cancer cell lines which are mutated by KRAS. A series of recent patent studies towards cancer diagnostics and therapeutics reveals the paramount importance of mutated protein KRAS as an extensive driver in human tumors. For the prognosis, diagnosis, and treatment of colorectal cancer, KRAS plays a critical role. This review concludes the latest and vowing developments in the discovery of novel techniques for diagnosis and drugs that target KRAS, the advancements in experimental techniques for signaling and inhibiting KRAS function, and the direct targeting of KRAS for cancer therapeutics.
Collapse
Affiliation(s)
- Pankaj Kumar Tripathi
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62 Noida, 201307, India
| | - Khushi R Mittal
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62 Noida, 201307, India
| | - Nandini Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62 Noida, 201307, India
| | - Naveen Sharma
- Divion of Bioinformatics, Indian Council of Medical Research, New Delhi, 110029, India
| | - Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62 Noida, 201307, India
| |
Collapse
|
28
|
Prahallad A, Weiss A, Voshol H, Kerr G, Sprouffske K, Yuan T, Ruddy D, Meistertzheim M, Kazic-Legueux M, Kottarathil T, Piquet M, Cao Y, Martinuzzi-Duboc L, Buhles A, Adler F, Mannino S, Tordella L, Sansregret L, Maira SM, Graus Porta D, Fedele C, Brachmann SM. CRISPR Screening Identifies Mechanisms of Resistance to KRASG12C and SHP2 Inhibitor Combinations in Non-Small Cell Lung Cancer. Cancer Res 2023; 83:4130-4141. [PMID: 37934115 PMCID: PMC10722132 DOI: 10.1158/0008-5472.can-23-1127] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Although KRASG12C inhibitors show clinical activity in patients with KRAS G12C mutated non-small cell lung cancer (NSCLC) and other solid tumor malignancies, response is limited by multiple mechanisms of resistance. The KRASG12C inhibitor JDQ443 shows enhanced preclinical antitumor activity combined with the SHP2 inhibitor TNO155, and the combination is currently under clinical evaluation. To identify rational combination strategies that could help overcome or prevent some types of resistance, we evaluated the duration of tumor responses to JDQ443 ± TNO155, alone or combined with the PI3Kα inhibitor alpelisib and/or the cyclin-dependent kinase 4/6 inhibitor ribociclib, in xenograft models derived from a KRASG12C-mutant NSCLC line and investigated the genetic mechanisms associated with loss of response to combined KRASG12C/SHP2 inhibition. Tumor regression by single-agent JDQ443 at clinically relevant doses lasted on average 2 weeks and was increasingly extended by the double, triple, or quadruple combinations. Growth resumption was accompanied by progressively increased KRAS G12C amplification. Functional genome-wide CRISPR screening in KRASG12C-dependent NSCLC lines with distinct mutational profiles to identify adaptive mechanisms of resistance revealed sensitizing and rescuing genetic interactions with KRASG12C/SHP2 coinhibition; FGFR1 loss was the strongest sensitizer, and PTEN loss the strongest rescuer. Consistently, the antiproliferative activity of KRASG12C/SHP2 inhibition was strongly enhanced by PI3K inhibitors. Overall, KRAS G12C amplification and alterations of the MAPK/PI3K pathway were predominant mechanisms of resistance to combined KRASG12C/SHP2 inhibitors in preclinical settings. The biological nodes identified by CRISPR screening might provide additional starting points for effective combination treatments. SIGNIFICANCE Identification of resistance mechanisms to KRASG12C/SHP2 coinhibition highlights the need for additional combination therapies for lung cancer beyond on-pathway combinations and offers the basis for development of more effective combination approaches. See related commentary by Johnson and Haigis, p. 4005.
Collapse
Affiliation(s)
| | - Andreas Weiss
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hans Voshol
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Grainne Kerr
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Tina Yuan
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - David Ruddy
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | | | - Michelle Piquet
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Yichen Cao
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | - Flavia Adler
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Luca Tordella
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | | | - Carmine Fedele
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | |
Collapse
|
29
|
Chai K, Wang C, Zhou J, Mu W, Gao M, Fan Z, Lv G. Quenching thirst with poison? Paradoxical effect of anticancer drugs. Pharmacol Res 2023; 198:106987. [PMID: 37949332 DOI: 10.1016/j.phrs.2023.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Anticancer drugs have been developed with expectations to provide long-term or at least short-term survival benefits for patients with cancer. Unfortunately, drug therapy tends to provoke malignant biological and clinical behaviours of cancer cells relating not only to the evolution of resistance to specific drugs but also to the enhancement of their proliferation and metastasis abilities. Thus, drug therapy is suspected to impair long-term survival in treated patients under certain circumstances. The paradoxical therapeutic effects could be described as 'quenching thirst with poison', where temporary relief is sought regardless of the consequences. Understanding the underlying mechanisms by which tumours react on drug-induced stress to maintain viability is crucial to develop rational targeting approaches which may optimize survival in patients with cancer. In this review, we describe the paradoxical adverse effects of anticancer drugs, in particular how cancer cells complete resistance evolution, enhance proliferation, escape from immune surveillance and metastasize efficiently when encountered with drug therapy. We also describe an integrative therapeutic framework that may diminish such paradoxical effects, consisting of four main strategies: (1) targeting endogenous stress response pathways, (2) targeting new identities of cancer cells, (3) adaptive therapy- exploiting subclonal competition of cancer cells, and (4) targeting tumour microenvironment.
Collapse
Affiliation(s)
- Kaiyuan Chai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianpeng Zhou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wentao Mu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Menghan Gao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
30
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
31
|
Malvi P, Chava S, Cai G, Hu K, Zhu LJ, Edwards YJK, Green MR, Gupta R, Wajapeyee N. HOXC6 drives a therapeutically targetable pancreatic cancer growth and metastasis pathway by regulating MSK1 and PPP2R2B. Cell Rep Med 2023; 4:101285. [PMID: 37951219 PMCID: PMC10694669 DOI: 10.1016/j.xcrm.2023.101285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, which lacks effective therapies. Here, we demonstrate that the transcription factor, homeobox C6 (HOXC6), is overexpressed in most PDACs, and its inhibition blocks PDAC tumor growth and metastasis. HOXC6 transcriptionally activates tumor-promoting kinase MSK1 and suppresses tumor-inhibitory protein PPP2R2B in PDAC. HOXC6-induced PPP2R2B suppression causes mammalian target of rapamycin (mTOR) pathway activation, which facilitates PDAC growth. Also, MSK1 upregulation by HOXC6 is necessary for PDAC growth because of its ability to suppress apoptosis via its substrate DDX17. Combinatorial pharmacological inhibition of MSK1 and mTOR potently suppressed PDAC tumor growth and metastasis in PDAC mouse models. PDAC cells with acquired resistance to MSK1/mTOR-inhibitors displayed activated insulin-like growth factor 1 receptor (IGF1R) signaling and were successfully eradicated by IGF1R inhibitor. Furthermore, MEK inhibitor trametinib enhanced the efficacy of dual MSK1 and mTOR inhibition. Collectively, these results identify therapeutic vulnerabilities of PDAC and an approach to overcome acquired drug resistance to prolong therapeutic benefit.
Collapse
Affiliation(s)
- Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh Chava
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kai Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yvonne J K Edwards
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
32
|
Xie J, Mo T, Li R, Zhang H, Liang G, Ma T, Chen J, Xie H, Wen X, Hu T, Xian Z, Pan W. The m 7G Reader NCBP2 Promotes Pancreatic Cancer Progression by Upregulating MAPK/ERK Signaling. Cancers (Basel) 2023; 15:5454. [PMID: 38001714 PMCID: PMC10670634 DOI: 10.3390/cancers15225454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
PDAC is one of the most common malignant tumors worldwide. The difficulty of early diagnosis and lack of effective treatment are the main reasons for its poor prognosis. Therefore, it is urgent to identify novel diagnostic and therapeutic targets for PDAC patients. The m7G methylation is a common type of RNA modification that plays a pivotal role in regulating tumor development. However, the correlation between m7G regulatory genes and PDAC progression remains unclear. By integrating gene expression and related clinical information of PDAC patients from TCGA and GEO cohorts, m7G binding protein NCBP2 was found to be highly expressed in PDAC patients. More importantly, PDAC patients with high NCBP2 expression had a worse prognosis. Stable NCBP2-knockdown and overexpression PDAC cell lines were constructed to further perform in-vitro and in-vivo experiments. NCBP2-knockdown significantly inhibited PDAC cell proliferation, while overexpression of NCBP2 dramatically promoted PDAC cell growth. Mechanistically, NCBP2 enhanced the translation of c-JUN, which in turn activated MEK/ERK signaling to promote PDAC progression. In conclusion, our study reveals that m7G reader NCBP2 promotes PDAC progression by activating MEK/ERK pathway, which could serve as a novel therapeutic target for PDAC patients.
Collapse
Affiliation(s)
- Jiancong Xie
- Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (J.X.); (H.Z.); (T.M.)
| | - Taiwei Mo
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China;
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
| | - Ruibing Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Hao Zhang
- Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (J.X.); (H.Z.); (T.M.)
| | - Guanzhan Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Tao Ma
- Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (J.X.); (H.Z.); (T.M.)
| | - Jing Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Hanlin Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xiaofeng Wen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Tuo Hu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zhenyu Xian
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (R.L.); (G.L.); (J.C.); (H.X.); (X.W.); (T.H.)
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Weidong Pan
- Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; (J.X.); (H.Z.); (T.M.)
| |
Collapse
|
33
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
34
|
Castro-Pérez E, Singh M, Sadangi S, Mela-Sánchez C, Setaluri V. Connecting the dots: Melanoma cell of origin, tumor cell plasticity, trans-differentiation, and drug resistance. Pigment Cell Melanoma Res 2023; 36:330-347. [PMID: 37132530 PMCID: PMC10524512 DOI: 10.1111/pcmr.13092] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Melanoma, a lethal malignancy that arises from melanocytes, exhibits a multiplicity of clinico-pathologically distinct subtypes in sun-exposed and non-sun-exposed areas. Melanocytes are derived from multipotent neural crest cells and are present in diverse anatomical locations, including skin, eyes, and various mucosal membranes. Tissue-resident melanocyte stem cells and melanocyte precursors contribute to melanocyte renewal. Elegant studies using mouse genetic models have shown that melanoma can arise from either melanocyte stem cells or differentiated pigment-producing melanocytes depending on a combination of tissue and anatomical site of origin and activation of oncogenic mutations (or overexpression) and/or the repression in expression or inactivating mutations in tumor suppressors. This variation raises the possibility that different subtypes of human melanomas (even subsets within each subtype) may also be a manifestation of malignancies of distinct cells of origin. Melanoma is known to exhibit phenotypic plasticity and trans-differentiation (defined as a tendency to differentiate into cell lineages other than the original lineage from which the tumor arose) along vascular and neural lineages. Additionally, stem cell-like properties such as pseudo-epithelial-to-mesenchymal (EMT-like) transition and expression of stem cell-related genes have also been associated with the development of melanoma drug resistance. Recent studies that employed reprogramming melanoma cells to induced pluripotent stem cells have uncovered potential relationships between melanoma plasticity, trans-differentiation, and drug resistance and implications for cell or origin of human cutaneous melanoma. This review provides a comprehensive summary of the current state of knowledge on melanoma cell of origin and the relationship between tumor cell plasticity and drug resistance.
Collapse
Affiliation(s)
- Edgardo Castro-Pérez
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama City, Panama
- Department of Genetics and Molecular Biology, University of Panama, Panama City, Panama
| | - Mithalesh Singh
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
| | - Shreyans Sadangi
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
| | - Carmen Mela-Sánchez
- Department of Genetics and Molecular Biology, University of Panama, Panama City, Panama
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
- William S. Middleton VA Hospital, Madison, WI, U.S.A
| |
Collapse
|
35
|
Datta I, Vassel T, Linkous B, Odum T, Drew C, Taylor A, Bangi E. A targeted genetic modifier screen in Drosophila uncovers vulnerabilities in a genetically complex model of colon cancer. G3 (BETHESDA, MD.) 2023; 13:jkad053. [PMID: 36880303 PMCID: PMC10151408 DOI: 10.1093/g3journal/jkad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
Received on 16 January 2023; accepted on 21 February 2023Kinases are key regulators of cellular signal transduction pathways. Many diseases, including cancer, are associated with global alterations in protein phosphorylation networks. As a result, kinases are frequent targets of drug discovery efforts. However, target identification and assessment, a critical step in targeted drug discovery that involves identifying essential genetic mediators of disease phenotypes, can be challenging in complex, heterogeneous diseases like cancer, where multiple concurrent genomic alterations are common. Drosophila is a particularly useful genetic model system to identify novel regulators of biological processes through unbiased genetic screens. Here, we report 2 classic genetic modifier screens focusing on the Drosophila kinome to identify kinase regulators in 2 different backgrounds: KRAS TP53 PTEN APC, a multigenic cancer model that targets 4 genes recurrently mutated in human colon tumors and KRAS alone, a simpler model that targets one of the most frequently altered pathways in cancer. These screens identified hits unique to each model and one shared by both, emphasizing the importance of capturing the genetic complexity of human tumor genome landscapes in experimental models. Our follow-up analysis of 2 hits from the KRAS-only screen suggests that classical genetic modifier screens in heterozygous mutant backgrounds that result in a modest, nonlethal reduction in candidate gene activity in the context of a whole animal-a key goal of systemic drug treatment-may be a particularly useful approach to identify the most rate-limiting genetic vulnerabilities in disease models as ideal candidate drug targets.
Collapse
Affiliation(s)
- Ishwaree Datta
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Tajah Vassel
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Benjamin Linkous
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Tyler Odum
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Christian Drew
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Andrew Taylor
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Erdem Bangi
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| |
Collapse
|
36
|
Tria SM, Burge ME, Whitehall VLJ. The Therapeutic Landscape for KRAS-Mutated Colorectal Cancers. Cancers (Basel) 2023; 15:cancers15082375. [PMID: 37190303 DOI: 10.3390/cancers15082375] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Colorectal cancer is one of the world's most prevalent and lethal cancers. Mutations of the KRAS gene occur in ~40% of metastatic colorectal cancers. While this cohort has historically been difficult to manage, the last few years have shown exponential growth in the development of selective inhibitors targeting KRAS mutations. Their foremost mechanism of action utilizes the Switch II binding pocket and Cys12 residue of GDP-bound KRAS proteins in G12C mutants, confining them to their inactive state. Sotorasib and Adagrasib, both FDA-approved for the treatment of non-small cell lung cancer (NSCLC), have been pivotal in paving the way for KRAS G12C inhibitors in the clinical setting. Other KRAS inhibitors in development include a multi-targeting KRAS-mutant drug and a G12D mutant drug. Treatment resistance remains an issue with combination treatment regimens including indirect pathway inhibition and immunotherapy providing possible ways to combat this. While KRAS-mutant selective therapy has come a long way, more work is required to make this an effective and viable option for patients with colorectal cancer.
Collapse
Affiliation(s)
- Simon Manuel Tria
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Matthew E Burge
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Medicine, The University of Queensland, Herston, QLD 4029, Australia
- Department of Medical Oncology, Cancer Care Services, The Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
- Department of Medical Oncology, The Prince Charles Hospital, Chermside, QLD 4032, Australia
| | - Vicki L J Whitehall
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Medicine, The University of Queensland, Herston, QLD 4029, Australia
- Conjoint Internal Medicine Laboratory, Pathology Queensland, Queensland Health, Brisbane, QLD 4006, Australia
| |
Collapse
|
37
|
Voutsadakis IA. KRAS mutated colorectal cancers with or without PIK3CA mutations: Clinical and molecular profiles inform current and future therapeutics. Crit Rev Oncol Hematol 2023; 186:103987. [PMID: 37059275 DOI: 10.1016/j.critrevonc.2023.103987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Colorectal cancer is one of the most prevalent malignancies and its molecular pathogenesis has been intensely investigated for several decades. As a result, great progress has been made and targeted therapies have been introduced in the clinic. This paper examines colorectal cancers based on two of the most common molecular alterations, KRAS and PIK3CA mutations as a basis for therapeutic targeting. METHODS Two publicly available genomic series with clinical data were evaluated for prevalence and characteristics of cases with and without KRAS and PIK3CA mutations and the literature was reviewed for relevant information on the therapeutic implication of these alterations as well as other coincident alterations to derive therapeutic individualized options of targeted treatments. RESULTS Colorectal cancers without KRAS and PIK3CA mutations represent the most prevalent group (48% to 58% of patients) and present therapeutic targeted opportunities with BRAF inhibitors and immune checkpoint inhibitors in the subsets with BRAF mutations (15% to 22%) and Microsatellite Instability (MSI, 14% to 16%), respectively. The second most prevalent sub-set, with KRAS mutations and PIK3CA wild type, representing 20% to 25% of patients, has currently few targeted options, besides specific KRAS G12C inhibitors for the small percentage of cases (9%-10%) that bear this mutation. Cancers with KRAS wild type and PIK3CA mutations are observed in 12% to 14% of colorectal cancer patients, harbor the highest percentage of cases with BRAF mutations and Microsatellite Instability (MSI), and are candidates for the respective targeted therapies. New targeted therapies in development, such as ATR inhibitors could be effective in cases with ATM mutations and ARID1A mutations that are also most prevalent in this sub-group (14% to 22% and 30%, respectively). KRAS and PIK3CA double mutant cancers have also few targeted options currently and could benefit from combination therapies with PI3K inhibitors and new KRAS inhibitors in development. CONCLUSION The backbone of common KRAS and PIK3CA mutations is a rational frame for development of therapeutic algorithms in colorectal cancer and can help guide new drug therapies development. In addition, the prevalence of different molecular groups presented here may help with planning of combination clinical trials by providing estimations of sub-sets with more than one alteration.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada, and Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| |
Collapse
|
38
|
Wu CP, Hung CY, Hsieh YJ, Murakami M, Huang YH, Su TY, Hung TH, Yu JS, Wu YS, Ambudkar SV. ABCB1 and ABCG2 Overexpression Mediates Resistance to the Phosphatidylinositol 3-Kinase Inhibitor HS-173 in Cancer Cell Lines. Cells 2023; 12:cells12071056. [PMID: 37048130 PMCID: PMC10093605 DOI: 10.3390/cells12071056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Constitutive activation of the phosphoinositide-3-kinase (PI3K)/Akt signaling pathway is crucial for tumor growth and progression. As such, this pathway has been an enticing target for drug discovery. Although HS-173 is a potent PI3K inhibitor that halts cancer cell proliferation via G2/M cell cycle arrest, the resistance mechanisms to HS-173 have not been investigated. In this study, we investigated the susceptibility of HS-173 to efflux mediated by the multidrug efflux transporters ABCB1 and ABCG2, which are two of the most well-known ATP-binding cassette (ABC) transporters associated with the development of cancer multidrug resistance (MDR). We found that the overexpression of ABCB1 or ABCG2 significantly reduced the efficacy of HS-173 in human cancer cells. Our data show that the intracellular accumulation of HS-173 was substantially reduced by ABCB1 and ABCG2, affecting G2/M arrest and apoptosis induced by HS-173. More importantly, the efficacy of HS-173 in multidrug-resistant cancer cells could be recovered by inhibiting the drug-efflux function of ABCB1 and ABCG2. Taken together, our study has demonstrated that HS-173 is a substrate for both ABCB1 and ABCG2, resulting in decreased intracellular concentration of this drug, which may have implications for its clinical use.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Cheng-Yu Hung
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ya-Ju Hsieh
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Tsung-Yao Su
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Khan S, Budamagunta V, Zhou D. Targeting KRAS in pancreatic cancer: Emerging therapeutic strategies. Adv Cancer Res 2023; 159:145-184. [PMID: 37268395 DOI: 10.1016/bs.acr.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
KRAS, a predominant member of the RAS family, is the most frequently mutated oncogene in human pancreatic cancer (∼95% of cases). Mutations in KRAS lead to its constitutive activation and activation of its downstream signaling pathways such as RAF/MEK/ERK and PI3K/AKT/mTOR that promote cell proliferation and provide apoptosis evasion capabilities to cancer cells. KRAS had been considered 'undruggable' until the discovery of the first covalent inhibitor targeting the G12C mutation. While G12C mutations are frequently found in non-small cell lung cancer, these are relatively rare in pancreatic cancer. On the other hand, pancreatic cancer harbors other KRAS mutations such as G12D and G12V. The inhibitors targeting G12D mutation (such as MRTX1133) have been recently developed, whereas those targeting other mutations are still lacking. Unfortunately, KRAS inhibitor monotherapy-associated resistance hinders their therapeutic efficacy. Therefore, various combination strategies have been tested and some yielded promising results, such as combinations with receptor tyrosine kinase, SHP2, or SOS1 inhibitors. In addition, we recently demonstrated that the combination of sotorasib with DT2216 (a BCL-XL-selective degrader) synergistically inhibits G12C-mutated pancreatic cancer cell growth in vitro and in vivo. This is in part because KRAS-targeted therapies induce cell cycle arrest and cellular senescence, which contributes to therapeutic resistance, while their combination with DT2216 can more effectively induce apoptosis. Similar combination strategies may also work for G12D inhibitors in pancreatic cancer. This chapter will review KRAS biochemistry, signaling pathways, different mutations, emerging KRAS-targeted therapies, and combination strategies. Finally, we discuss challenges associated with KRAS targeting and future directions, emphasizing pancreatic cancer.
Collapse
Affiliation(s)
- Sajid Khan
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| | - Vivekananda Budamagunta
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| |
Collapse
|
40
|
Zhang X, Zhao J, Li Q, Qin D, Li W, Wang X, Bi M, Li Q, Li T. Lamprey prohibitin 2 inhibits non-small cell lung carcinoma cell proliferation by down-regulating the expression and phosphorylation levels of cell cycle-associated proteins. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108560. [PMID: 36681363 DOI: 10.1016/j.fsi.2023.108560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Prohibitin 2 (PHB2) is an evolutionarily conserved and functionally diverse protein that plays an important role in multiple cellular functions, including cell proliferation, cell migration, and apoptosis, and is also known to participate in the process of tumorigenesis and development. In this study, the lamprey PHB2 (Lm-PHB2) gene was over-expressed in KRAS (kirsten rat sarcoma viral oncogene homolog)-mutated non-small cell lung carcinoma (NSCLC) cells to investigate its effect on cell proliferation. The effects of Lm-PHB2 protein on the proliferation of NSCLC cells were determined by treating cells with the purified recombinant Lm-PHB2 protein (rLm-PHB2) followed by cell counting kit (CCK) assays and flow cytometry. Analysis showed that rLm-PHB2 blocked cells in the G2 phase and inhibited the cell proliferation of A549, Calu-1, and NCI-H226 to various degrees. The effect on Calu-1 cells was the most obvious and was concentration- and time-dependent. Similarly, cells transfected with the pEGFP-N1-Lm-PHB2 plasmid also resulted in the suppression of proliferation in A549 cells and Calu-1 cells. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that Lm-PHB2 inhibited cell proliferation by repressing the transcription of PLK1 (polo-like kinase 1), Wee1 (wee1 kinase), CCNB1 (cyclin B1), and CDC25C (cell division control protein 25C). According to western blot analysis, Lm-PHB2 not only down-regulated the expression of PLK1, Wee1, CCNB1, and CDC25C but also reduced the phosphorylation levels of CCNB1 and CDC25C, thus blocking Calu-1 cells in G2/M phase. Our findings demonstrate a function of lamprey PHB2 that may inhibit the proliferation of some NSCLC cells by down-regulating the expression and phosphorylation of cell cycle-associated proteins.
Collapse
Affiliation(s)
- Xue Zhang
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Jianzhu Zhao
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Qing Li
- School of Science and Engineering, University of Dundee, Dundee, DD1 5EN, UK
| | - Di Qin
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Wenwei Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Xinyu Wang
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Mengfei Bi
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China
| | - Tiesong Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China.
| |
Collapse
|
41
|
Feng J, Lian Z, Xia X, Lu Y, Hu K, Zhang Y, Liu Y, Hu L, Yuan K, Sun Z, Pang X. Targeting metabolic vulnerability in mitochondria conquers MEK inhibitor resistance in KRAS-mutant lung cancer. Acta Pharm Sin B 2022; 13:1145-1163. [PMID: 36970205 PMCID: PMC10031260 DOI: 10.1016/j.apsb.2022.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/01/2022] Open
Abstract
MEK is a canonical effector of mutant KRAS; however, MEK inhibitors fail to yield satisfactory clinical outcomes in KRAS-mutant cancers. Here, we identified mitochondrial oxidative phosphorylation (OXPHOS) induction as a profound metabolic alteration to confer KRAS-mutant non-small cell lung cancer (NSCLC) resistance to the clinical MEK inhibitor trametinib. Metabolic flux analysis demonstrated that pyruvate metabolism and fatty acid oxidation were markedly enhanced and coordinately powered the OXPHOS system in resistant cells after trametinib treatment, satisfying their energy demand and protecting them from apoptosis. As molecular events in this process, the pyruvate dehydrogenase complex (PDHc) and carnitine palmitoyl transferase IA (CPTIA), two rate-limiting enzymes that control the metabolic flux of pyruvate and palmitic acid to mitochondrial respiration were activated through phosphorylation and transcriptional regulation. Importantly, the co-administration of trametinib and IACS-010759, a clinical mitochondrial complex I inhibitor that blocks OXPHOS, significantly impeded tumor growth and prolonged mouse survival. Overall, our findings reveal that MEK inhibitor therapy creates a metabolic vulnerability in the mitochondria and further develop an effective combinatorial strategy to circumvent MEK inhibitors resistance in KRAS-driven NSCLC.
Collapse
|
42
|
A Novel Defined RAS-Related Gene Signature for Predicting the Prognosis and Characterization of Biological Function in Osteosarcoma. JOURNAL OF ONCOLOGY 2022; 2022:5939158. [PMID: 36052285 PMCID: PMC9427258 DOI: 10.1155/2022/5939158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022]
Abstract
Background Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents with a high incidence and poor prognosis. Activation of the RAS pathway promotes progression and metastasis of osteosarcoma. RAS has been studied in many different tumors; however, the prognostic value of RAS-associated genes in OS remains unclear. On this basis, we investigated the RAS-related gene signature and explored the intrinsic biological features of OS. Methods We obtained RNA transcriptome sequencing data and clinical information of osteosarcoma patients from the TARGET database. RAS pathway-related genes were obtained from the KEGG pathway database. Molecular subgroups and risk models were developed using consensus clustering and least absolute shrinkage and selection operator (LASSO) regression, respectively. ESTIMATE algorithm and ssGSEA analysis were used to assess the tumor microenvironment and immune penetrance between the two groups. A comprehensive review of gene ontology (GO) and KEGG analyses revealed inherent biological functional differences between the two groups. Results The consistent clustering showed stratification of osteosarcoma patients into two subtypes based on RAS-associated genes and provided a robust prediction of prognosis. A risk model further confirmed that RAS-related genes are the best prognostic indicators for OS patients. GO analysis showed that GDP/GTP binding, focal adhesion, cytoskeletal motor activity, and cell-matrix junctions were associated with the RAS-related model group. Furthermore, RAS signaling in osteosarcoma based on KEGG analysis was significantly associated with cancer progression, with immune function and tumor microenvironment particularly affected. Conclusion We constructed a prognostic model founded on RAS-related gene and demonstrated its predictive ability. Then, furtherly exploration of the molecular mechanisms and immune characteristics proved the role of RAS-related gene in the dysregulation in OS.
Collapse
|
43
|
Seidlitz T, Schmäche T, Garcίa F, Lee JH, Qin N, Kochall S, Fohgrub J, Pauck D, Rothe A, Koo BK, Weitz J, Remke M, Muñoz J, Stange DE. Sensitivity towards HDAC inhibition is associated with RTK/MAPK pathway activation in gastric cancer. EMBO Mol Med 2022; 14:e15705. [PMID: 35993110 PMCID: PMC9549728 DOI: 10.15252/emmm.202215705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer ranks the fifth most common and third leading cause of cancer-related deaths worldwide. Alterations in the RTK/MAPK, WNT, cell adhesion, TP53, TGFβ, NOTCH, and NFκB signaling pathways could be identified as main oncogenic drivers. A combination of altered pathways can be associated with molecular subtypes of gastric cancer. In order to generate model systems to study the impact of different pathway alterations in a defined genetic background, we generated three murine organoid models: a RAS-activated (KrasG12D , Tp53R172H ), a WNT-activated (Apcfl/fl , Tp53R172H ), and a diffuse (Cdh1fl/fl , Apcfl/fl ) model. These organoid models were morphologically and phenotypically diverse, differed in proteome expression signatures and possessed individual drug sensitivities. A differential vulnerability to RTK/MAPK pathway interference based on the different mitogenic drivers and according to the level of dependence on the pathway could be uncovered. Furthermore, an association between RTK/MAPK pathway activity and susceptibility to HDAC inhibition was observed. This finding was further validated in patient-derived organoids from gastric adenocarcinoma, thus identifying a novel treatment approach for RTK/MAPK pathway altered gastric cancer patients.
Collapse
Affiliation(s)
- Therese Seidlitz
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tim Schmäche
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Fernando Garcίa
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Joon Ho Lee
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nan Qin
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Susan Kochall
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Juliane Fohgrub
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - David Pauck
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Alexander Rothe
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria.,Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
44
|
Lin L, Miao L, Lin H, Cheng J, Li M, Zhuo Z, He J. Targeting RAS in neuroblastoma: Is it possible? Pharmacol Ther 2022; 236:108054. [PMID: 34915055 DOI: 10.1016/j.pharmthera.2021.108054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is a common solid tumor in children and a leading cause of cancer death in children. Neuroblastoma exhibits genetic, morphological, and clinical heterogeneity that limits the efficacy of current monotherapies. With further research on neuroblastoma, the pathogenesis of neuroblastoma is found to be complex, and more and more treatment therapies are needed. The importance of personalized therapy is growing. Currently, various molecular features, including RAS mutations, are being used as targets for the development of new therapies for patients with neuroblastoma. A recent study found that RAS mutations are frequently present in recurrent neuroblastoma. RAS mutations have been shown to activate the MAPK pathway and play an important role in neuroblastoma. Treating RAS mutated neuroblastoma is a difficult challenge, but many preclinical studies have yielded effective results. At the same time, many of the therapies used to treat RAS mutated tumors also have good reference values for treating RAS mutated neuroblastoma. The success of KRAS-G12C inhibitors has greatly stimulated confidence in the direct suppression of RAS. This review describes the biological role of RAS and the frequency of RAS mutations in neuroblastoma. This paper focuses on the strategies, preclinical, and clinical progress of targeting carcinogenic RAS in neuroblastoma, and proposes possible prospects and challenges in the future.
Collapse
Affiliation(s)
- Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
45
|
A phase I clinical trial of trametinib in combination with TAS-102 in patients with chemotherapy-resistant RAS-mutated (PIK3CA/PTEN-wild type) metastatic colorectal cancer. Clin Colorectal Cancer 2022; 21:252-258. [DOI: 10.1016/j.clcc.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
|
46
|
Kilmister EJ, Tan ST. Insights Into Vascular Anomalies, Cancer, and Fibroproliferative Conditions: The Role of Stem Cells and the Renin-Angiotensin System. Front Surg 2022; 9:868187. [PMID: 35574555 PMCID: PMC9091963 DOI: 10.3389/fsurg.2022.868187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Cells exhibiting embryonic stem cell (ESC) characteristics have been demonstrated in vascular anomalies (VAs), cancer, and fibroproliferative conditions, which are commonly managed by plastic surgeons and remain largely unsolved. The efficacy of the mTOR inhibitor sirolimus, and targeted therapies that block the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways in many types of cancer and VAs, further supports the critical role of ESC-like cells in the pathogenesis of these conditions. ESC-like cells in VAs, cancer, and fibroproliferative conditions express components of the renin-angiotensin system (RAS) – a homeostatic endocrine signaling cascade that regulates cells with ESC characteristics. ESC-like cells are influenced by the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways, which directly regulate cellular proliferation and stemness, and interact with the RAS at multiple points. Gain-of-function mutations affecting these pathways have been identified in many types of cancer and VAs, that have been treated with targeted therapies with some success. In cancer, the RAS promotes tumor progression, treatment resistance, recurrence, and metastasis. The RAS modulates cellular invasion, migration, proliferation, and angiogenesis. It also indirectly regulates ESC-like cells via its direct influence on the tissue microenvironment and by its interaction with the immune system. In vitro studies show that RAS inhibition suppresses the hallmarks of cancer in different experimental models. Numerous epidemiological studies show a reduced incidence of cancer and improved survival outcomes in patients taking RAS inhibitors, although some studies have shown no such effect. The discovery of ESC-like cells that express RAS components in infantile hemangioma (IH) underscores the paradigm shift in the understanding of its programmed biologic behavior and accelerated involution induced by β-blockers and angiotensin-converting enzyme inhibitors. The findings of SOX18 inhibition by R-propranolol suggests the possibility of targeting ESC-like cells in IH without β-adrenergic blockade, and its associated side effects. This article provides an overview of the current knowledge of ESC-like cells and the RAS in VAs, cancer, and fibroproliferative conditions. It also highlights new lines of research and potential novel therapeutic approaches for these unsolved problems in plastic surgery, by targeting the ESC-like cells through manipulation of the RAS, its bypass loops and converging signaling pathways using existing low-cost, commonly available, and safe oral medications.
Collapse
Affiliation(s)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Swee T. Tan
| |
Collapse
|
47
|
Negri F, Bottarelli L, de’Angelis GL, Gnetti L. KRAS: A Druggable Target in Colon Cancer Patients. Int J Mol Sci 2022; 23:4120. [PMID: 35456940 PMCID: PMC9027058 DOI: 10.3390/ijms23084120] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/18/2022] Open
Abstract
Mutations in KRAS are among the most frequent aberrations in cancer, including colon cancer. KRAS direct targeting is daunting due to KRAS protein resistance to small molecule inhibition. Moreover, its elevated affinity to cellular guanosine triphosphate (GTP) has made the design of specific drugs challenging. Indeed, KRAS was considered 'undruggable'. KRASG12C is the most commonly mutated variant of KRAS in non-small cell lung cancer. Currently, the achievements obtained with covalent inhibitors of this variant have given the possibility to assess the best therapeutic approach to KRAS-driven tumors. Mutation-related biochemical assets and the tissue of origin are expected to influence responses to treatment. Further attempts to obtain mutant-specific KRAS (KRASG12C) switch-II covalent inhibitors are ongoing and the results are promising. Drugs targeted to block KRAS effector pathways could be combined with direct KRAS inhibitors, immunotherapy or T cell-targeting approaches in KRAS-mutant tumors. The development of valuable combination regimens will be essential against potential mechanisms of resistance that may arise during treatment.
Collapse
Affiliation(s)
- Francesca Negri
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
| | - Lorena Bottarelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Gian Luigi de’Angelis
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Letizia Gnetti
- Pathology Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
| |
Collapse
|
48
|
Yan N, Guo S, Zhang H, Zhang Z, Shen S, Li X. BRAF-Mutated Non-Small Cell Lung Cancer: Current Treatment Status and Future Perspective. Front Oncol 2022; 12:863043. [PMID: 35433454 PMCID: PMC9008712 DOI: 10.3389/fonc.2022.863043] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022] Open
Abstract
V-Raf murine sarcoma viral oncogene homolog B (BRAF) kinase, which was encoded by BRAF gene, plays critical roles in cell signaling, growth, and survival. Mutations in BRAF gene will lead to cancer development and progression. In non-small cell lung cancer (NSCLC), BRAF mutations commonly occur in never-smokers, women, and aggressive histological types and accounts for 1%-2% of adenocarcinoma. Traditional chemotherapy presents limited efficacy in BRAF-mutated NSCLC patients. However, the advent of targeted therapy and immune checkpoint inhibitors (ICIs) have greatly altered the treatment pattern of NSCLC. However, ICI monotherapy presents limited activity in BRAF-mutated patients. Hence, the current standard treatment of choice for advanced NSCLC with BRAF mutations are BRAF-targeted therapy. However, intrinsic or extrinsic mechanisms of resistance to BRAF-directed tyrosine kinase inhibitors (TKIs) can emerge in patients. Hence, there are still some problems facing us regarding BRAF-mutated NSCLC. In this review, we summarized the BRAF mutation types, the diagnostic challenges that BRAF mutations present, the strategies to treatment for BRAF-mutated NSCLC, and resistance mechanisms of BRAF-targeted therapy.
Collapse
Affiliation(s)
- Ningning Yan
- Department of Medical Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | - Xingya Li
- Department of Medical Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
49
|
Sasaki K, Yamauchi T, Semba Y, Nogami J, Imanaga H, Terasaki T, Nakao F, Akahane K, Inukai T, Verhoeyen E, Akashi K, Maeda T. Genome-wide CRISPR-Cas9 screen identifies rationally designed combination therapies for CRLF2-rearranged Ph-like ALL. Blood 2022; 139:748-760. [PMID: 34587248 PMCID: PMC9632759 DOI: 10.1182/blood.2021012976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) harboring the IgH-CRLF2 rearrangement (IgH-CRLF2-r) exhibits poor clinical outcomes and is the most common subtype of Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL). While multiple chemotherapeutic regimens, including ruxolitinib monotherapy and/or its combination with chemotherapy, are being tested, their efficacy is reportedly limited. To identify molecules/pathways relevant for IgH-CRLF2-r ALL pathogenesis, we performed genome-wide CRISPR-Cas9 dropout screens in the presence or absence of ruxolitinib using 2 IgH-CRLF2-r ALL lines that differ in RAS mutational status. To do so, we employed a baboon envelope pseudotyped lentiviral vector system, which enabled, for the first time, highly efficient transduction of human B cells. While single-guide RNAs (sgRNAs) targeting CRLF2, IL7RA, or JAK1/2 significantly affected cell fitness in both lines, those targeting STAT5A, STAT5B, or STAT3 did not, suggesting that STAT signaling is largely dispensable for IgH-CRLF2-r ALL cell survival. We show that regulators of RAS signaling are critical for cell fitness and ruxolitinib sensitivity and that CRKL depletion enhances ruxolitinib sensitivity in RAS wild-type (WT) cells. Gilteritinib, a pan-tyrosine kinase inhibitor that blocks CRKL phosphorylation, effectively killed RAS WT IgH-CRLF2-r ALL cells in vitro and in vivo, either alone or combined with ruxolitinib. We further show that combining gilteritinib with trametinib, a MEK1/2 inhibitor, is an effective means to target IgH-CRLF2-r ALL cells regardless of RAS mutational status. Our study delineates molecules/pathways relevant for CRLF2-r ALL pathogenesis and could suggest rationally designed combination therapies appropriate for disease subtypes.
Collapse
Affiliation(s)
- Kensuke Sasaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Takuji Yamauchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jumpei Nogami
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroshi Imanaga
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tatsuya Terasaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Fumihiko Nakao
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Els Verhoeyen
- CIRI-International Center for Infectiology Research, INSERM, Unité 1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France; and
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiro Maeda
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
- CIRI-International Center for Infectiology Research, INSERM, Unité 1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France; and
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
50
|
Middleton G, Robbins H, Andre F, Swanton C. A state-of-the-art review of stratified medicine in cancer: towards a future precision medicine strategy in cancer. Ann Oncol 2022; 33:143-157. [PMID: 34808340 DOI: 10.1016/j.annonc.2021.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Building on the success of targeted therapy in certain well-defined cancer genotypes, three platform studies-NCI-MATCH, LUNG-MAP and The National Lung Matrix Trial (NLMT)-have attempted to discover new genotype-matched therapies for people with cancer. PATIENTS AND METHODS We review the outputs from these platform studies. This review led us to propose a series of recommendations and considerations that we hope will inform future precision medicine programmes in cancer. RESULTS The three studies collectively screened over 13 000 patients. Across 37 genotype-matched cohorts, there have been 66/875 responders, with an overall response rate of 7.5%. Targeting copy number gain yielded 5/199 responses across nine biomarker-drug matched cohorts, with a response rate of 2.5%. CONCLUSIONS The majority of these studies used single-agent targeted therapies. Whilst preclinical data can suggest rational combination treatment to reverse adaptive resistance or block parallel activated pathways, there is an essential need for accurate modelling of the toxicity-activity trade-off of combinations. Agent selection is often suboptimal; dose expansion should only be carried out with agents with clear clinical proof of mechanism and high target selectivity. Targeting copy number change has been disappointing; it is crucial to define the drivers on shared amplicons that include the targeted aberration. Maximising outcomes with currently available targeted therapies requires moving towards a more contextualised stratified medicine acknowledging the criticality of the genomic, transcriptional and immunological context on which the targeted aberration is inscribed. Genomic complexity and instability is likely to be a leading cause of targeted therapy failure in genomically complex cancers. Preclinical models must be developed that more accurately capture the genomic complexity of human disease. The degree of attrition of studies carried out after standard-of-care therapy suggests that serious efforts be made to develop a suite of precision medicine studies in the minimal residual disease setting.
Collapse
Affiliation(s)
- G Middleton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| | - H Robbins
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - F Andre
- Institut Gustave Roussy, INSERM Unité 981, Université Paris-Sud, Villejuif, France; PRISM Center for Precision Medicine
| | - C Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|