1
|
Huang Y, Chen L, Chen Y, Zhou S, Xie X, Xie J, Yu M, Chen J. High-density lipoprotein-based nanoplatform reprograms tumor microenvironment and enhances chemotherapy against pancreatic ductal adenocarcinoma. Biomaterials 2025; 318:123147. [PMID: 39908877 DOI: 10.1016/j.biomaterials.2025.123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 01/26/2025] [Indexed: 02/07/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive, with limited success in traditional therapies due to the fibrotic, immunosuppressive, pro-metastatic tumor microenvironment (TME), which collectively impede the drug accumulation and accelerate the tumor progression. In this work, we developed a PDAC-customized nutrient-mimicking reconstituted high-density lipoprotein (rHDL) capable of efficiently co-encapsulate versatile TME regulating cannabidiol and cytotoxic gemcitabine to simultaneously reprogram TME while suppressing PDAC progression. Specifically, a small-sized, nutrient-like rHDL was constructed to realize deep PDAC parenchyma penetration and efficient intra-tumoral uptake. Next, natural herbal compound cannabidiol was screened and incorporated into rHDL to regulate TME via attenuating fibrosis, reliving immunosuppression and mitigating metastatic tendency. At last, gemcitabine, the PDAC gold standard first-line therapy was co-delivered by the PDAC-customized rHDL to overcome drug resistance and amplify its PDAC suppression. Our findings demonstrate the feasibility of an integrated multi-stage TME regulation strategy for improved PDAC therapy, and might represent a modality in promoting chemotherapy against PDAC.
Collapse
Affiliation(s)
- Yukun Huang
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China; Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liang Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yu Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Songlei Zhou
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Xiaoying Xie
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Jing Xie
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Minghua Yu
- Fudan University Clinical Research Center for Cell-based Immunotherapy & Department of Oncology, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China
| | - Jun Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
2
|
Chang IY, Boo HJ, Hyun JW, Yoon SP. The feasible role of soluble E‑cadherin in spheroidogenesis of HCT116 colorectal cancer cells, a candidate biomarker for liquid biopsy. Oncol Lett 2025; 29:245. [PMID: 40182609 PMCID: PMC11967162 DOI: 10.3892/ol.2025.14991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
Although E-cadherin is known as a tumor suppressor via its effects on cell to cell adhesion, the effects of E-cadherin on malignant transformation have not yet been thoroughly investigated. In the present study, after malignant transformation was induced by spheroid formation in a fetal bovine serum-supplemented environment, the effects of soluble E-cadherin on the spheroidogenesis of colorectal cancer cells were investigated. E-cadherin knock-out (KO) was performed in HCT116 cells, targeting exon 3 of the CDH1 gene. A cell viability assay was performed to determine the proliferation and viability of wild type and CDH1 KO HCT116 cells after treatment with anticancer drugs. Spheroidogenesis was compared with or without exogenous E-cadherin, antibody against the ectodomain of E-cadherin (DECMA-1) and PD98059 treatment. In addition, morphometry, immunocytochemistry and western blotting were performed. Soluble E-cadherin in culture media was measured using an enzyme-linked immunosorbent assay. Firstly, CDH1 KO was confirmed by western blotting. Notably, the proliferation and viability of cells following treatment with 5-fluorouracil, epidermal growth factor receptor inhibitor and src kinase inhibitor were similar between the cell lines. Exogenous E-cadherin or DECMA-1 treatment did not affect spheroidogenesis, although long-term maintenance was slightly disturbed in CDH1 KO spheroids compared with that in wild type spheroids. In addition, E-cadherin was increased in spheroid culture as compared with that in conventional culture. Soluble E-cadherin was increased in a time-dependent manner, particularly in wild type HCT116 cells. PD98059 inhibited ERK activation and enhanced E-cadherin expression in conventional culture without affecting spheroidogenesis. These results suggested that soluble E-cadherin may be considered as a biomarker for colorectal cancer, although exogenous E-cadherin might not have a further role in malignant transformation.
Collapse
Affiliation(s)
- In-Youb Chang
- Department of Anatomy, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Hye-Jin Boo
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Sang-Pil Yoon
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Department of Anatomy, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
3
|
Chávez LF, Schweitzer K, Alonso EG, Ferronato MJ, Fermento ME, Alonso EN, Facchinetti MM, Curino AC, Coló GP. GEF-H1 drives breast cancer cells to tumor progression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167816. [PMID: 40154811 DOI: 10.1016/j.bbadis.2025.167816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Rho GTPases are involved in several biological processes, including cytoskeletal remodeling, gene transcription, cell proliferation and differentiation. Dysregulation of Rho GTPases activity can lead to enhanced tumor cell proliferation and metastasis. Rho guanine nucleotide exchange factor-H1 (GEFH1) is a RhoA activator that is associated with microtubules (MT) and its localization and activity are regulated, in part, by MT and fibronectin-binding integrins. Our findings showed that GEF-H1 expression is significantly higher in human breast cancer biopsies than in normal tissues. Moreover, patients with increased GEF-H1 expression had a lower survival rate and a higher incidence of metastasis. We generated a GEF-H1 knockout (KO) breast cancer cell line and observed a significant reduction in the number of focal adhesions, formation of stress fibers, and activation of downstream signaling pathways. Concordantly, cell proliferation, migration, adhesion, and invasion were reduced. Furthermore, when GEF-H1 knockout (KO) cells were orthotopically implanted into the mammary fat pads of BALB/c mice, a significant decrease was observed in both tumor formation and lung metastasis compared to control breast cancer cells. These results suggest that GEF-H1/RhoA activation mediates cytoskeletal remodeling and signaling pathways critical for breast cancer cell proliferation, migration, and invasion. In vivo assays and human biopsy studies further support GEF-H1 as a potential biomarker of breast tumor progression.
Collapse
Affiliation(s)
- Lucía Fernández Chávez
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Karen Schweitzer
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Exequiel Gonzalo Alonso
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Julia Ferronato
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Eugenia Fermento
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Eliana Noelia Alonso
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Marta Facchinetti
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Alejandro Carlos Curino
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Georgina Pamela Coló
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
4
|
Schoenit A, Monfared S, Anger L, Rosse C, Venkatesh V, Balasubramaniam L, Marangoni E, Chavrier P, Mège RM, Doostmohammadi A, Ladoux B. Force transmission is a master regulator of mechanical cell competition. NATURE MATERIALS 2025:10.1038/s41563-025-02150-9. [PMID: 40087537 DOI: 10.1038/s41563-025-02150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 01/22/2025] [Indexed: 03/17/2025]
Abstract
Cell competition is a tissue surveillance mechanism for eliminating unwanted cells, being indispensable in development, infection and tumourigenesis. Although studies have established the role of biochemical mechanisms in this process, due to challenges in measuring forces in these systems, how mechanical forces determine the competition outcome remains unclear. Here we report a form of cell competition that is regulated by differences in force transmission capabilities, selecting for cell types with stronger intercellular adhesion. Direct force measurements in ex vivo tissues and different cell lines reveal that there is an increased mechanical activity at the interface between two competing cell types, which can lead to large stress fluctuations resulting in upward forces and cell elimination. We show how a winning cell type endowed with a stronger intercellular adhesion exhibits higher resistance to elimination and benefiting from efficient force transmission to the neighbouring cells. This cell elimination mechanism could have broad implications for keeping the strong force transmission ability for maintaining tissue boundaries and cell invasion pathology.
Collapse
Affiliation(s)
- Andreas Schoenit
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Siavash Monfared
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lucas Anger
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Carine Rosse
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institut Curie, Paris Université Sciences et Lettres, CNRS, Paris, France
| | - Varun Venkatesh
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Elisabetta Marangoni
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Philippe Chavrier
- Institut Curie, Paris Université Sciences et Lettres, CNRS, Paris, France
| | - René-Marc Mège
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
| | | | - Benoit Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Max-Planck-Zentrum für Physik und Medizin and Max Planck Institute for the Science of Light, Erlangen, Germany.
| |
Collapse
|
5
|
Yun H, Han GH, Wee DJ, Chay DB, Chung JY, Kim JH, Cho H. Loss of E-cadherin Activates EGFR-MEK/ERK Signaling, Promoting Cervical Cancer Progression. Cancer Genomics Proteomics 2025; 22:271-284. [PMID: 39993806 PMCID: PMC11880930 DOI: 10.21873/cgp.20501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/AIM This study investigated the relationship between E-cadherin down-regulation and enhanced pERK1/2 signaling in cervical cancer, evaluated their combined prognostic impact, and explored potential therapeutic targets. MATERIALS AND METHODS We analyzed 188 cervical cancer specimens and 300 normal cervical tissue samples using tissue microarray and immunohistochemistry. Small interfering RNA transfection and western blotting were used to study molecular interactions in cervical cancer cell lines. RESULTS We observed a significant inverse correlation between E-cadherin and pERK1/2 expression, as well as poor disease-free survival and overall survival. Additionally, molecular analysis indicated that E-cadherin silencing enhanced ERK signaling and promoted cancer cell proliferation. CONCLUSION The findings suggest that E-cadherin and pERK1/2 are crucial biomarkers for cervical cancer prognosis and their interaction provides a potential target for therapeutic interventions. Further studies are recommended to explore these pathways in the clinical setting.
Collapse
Affiliation(s)
- Hee Yun
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gwan Hee Han
- Department of Obstetrics and Gynecology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Daniel J Wee
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Doo-Byung Chay
- Department of Obstetrics and Gynecology, Sahmyook Medical Center, Seoul, Republic of Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea;
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Miyano T, Sera T, Sakamoto N. Pharmacological activation of TRPML1 enhances autophagy regulating hypertonicity and TGF-β-induced EMT in proximal tubular epithelial cells. Biochem Biophys Res Commun 2025; 750:151432. [PMID: 39893888 DOI: 10.1016/j.bbrc.2025.151432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Proximal tubular epithelial cells (PTECs) are central to maintaining kidney homeostasis. Under pathological conditions, such as ischemia or inflammation, PTECs promote profibrotic signals, including transforming growth factor (TGF)-β, and undergo epithelial-mesenchymal transition (EMT). EMT is characterized by decreased epithelial markers (e.g., E-cadherin) and increased mesenchymal markers (e.g., α-smooth muscle actin [α-SMA]), which promote myofibroblast activation and fibrosis progression. We previously demonstrated that hyperosmotic stress, characterized by elevated extracellular solute concentrations, induces EMT in PTECs. However, we observed that hyperosmotic stress simultaneously activates autophagy, a cellular process that has antagonistic effects on EMT, primarily mediated by transient receptor potential mucolipin 1 (TRPML1). However, the interplay between hyperosmotic stress-induced EMT and autophagy remains unclear. This study examined whether enhancing autophagy via TRPML1 activation could modulate EMT under hyperosmotic stress. Using the TRPML1 agonist ML-SA1, we observed a significantly increased autophagic flux, indicated by elevated LC3-II levels, without cytotoxic effects. Under hyperosmotic conditions, ML-SA1 further amplified autophagic flux in PTECs compared to hyperosmotic stress alone. Notably, this enhanced autophagy suppressed EMT by maintaining E-cadherin expression and reducing α-SMA levels. Furthermore, the ML-SA1-mediated autophagy enhancement attenuated EMT and profibrotic factor production in TGF-β-treated cells, suggesting a broader protective role beyond hyperosmotic stress. These findings reveal a novel interaction between hyperosmotic stress-induced autophagy and EMT, emphasizing TRPML1 activation's therapeutic potential to mitigate PTEC injury and fibrosis progression.
Collapse
Affiliation(s)
- Takashi Miyano
- Department of Medical and Robotic Engineering Design, Tokyo University of Science, Tokyo, Japan; Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan.
| | - Toshihiro Sera
- Department of Medical and Robotic Engineering Design, Tokyo University of Science, Tokyo, Japan
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
7
|
Wang Y, Ding L, Feng J, Lin Z, Yao H, You X, Zhang X, Sun W, Liu Y, Wang P. Mesoporous cerium oxide nanoenzyme for Efficacious impeding tumor and metastasis via Conferring resistance to anoikis. Biomaterials 2025; 314:122876. [PMID: 39383776 DOI: 10.1016/j.biomaterials.2024.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Tumor cells can survive when detached from the extracellular matrix or lose cell-to-cell connections, leading to a phenomenon known as anoikis resistance (AR). AR is closely associated with the metastasis and proliferation of tumor cells, enabling them to disseminate, migrate, and invade after detachment. Here, we have investigated a novel composite nanoenzyme comprising mesoporous silica/nano-cerium oxide (MSN-Ce@SP/PEG). This nanoenzyme exhibited satisfactory catalase (CAT) activity, efficiently converting high levels of H2O2 within tumor cells into O2, effectively alleviating tumor hypoxia. Furthermore, MSN-Ce@SP/PEG nanoenzyme demonstrated high peroxidase (POD) activity, elevating reactive oxygen species (ROS) levels and attenuating AR in hepatocellular carcinoma (HCC) cells. The MSN-Ce@SP/PEG nanoenzyme exhibited satisfactory dual bioactivity in CAT and POD and was significantly enhanced under favorable photothermal conditions. Through the synergistic effects of these capabilities, the nanoenzyme disrupted the epithelial-mesenchymal transition (EMT) process in detached HCC cells, ultimately inhibiting the recurrence and metastasis potential of anoikis-resistant HCC cells. This study represents the first report of a novel nanoenzyme based on mesoporous silica/nano-cerium oxide for treating AR in HCC cells, thereby suppressing HCC recurrence and metastasis. The findings of this work offer a pioneering perspective for the development of innovative strategies to prevent the recurrence and metastasis of HCC.
Collapse
Affiliation(s)
- Yunhao Wang
- Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Lei Ding
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China; School of Rare Earths, University of Science and Technology of China, Hefei, 230026, PR China
| | - Juan Feng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China
| | - Ziguo Lin
- Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Hanlin Yao
- Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Xinyu You
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| | - Yang Liu
- Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China.
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China.
| |
Collapse
|
8
|
Janjua D, Chaudhary A, Joshi U, Tripathi T, Bharti AC. Circulating tumor cells in solid malignancies: From advanced isolation technologies to biological understanding and clinical relevance in early diagnosis and prognosis. Biochim Biophys Acta Rev Cancer 2025; 1880:189236. [PMID: 39662757 DOI: 10.1016/j.bbcan.2024.189236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Circulating tumor cells (CTCs) are shed from primary tumors and travel through the body via circulation, eventually settling to form micrometastases under favorable conditions. Numerous studies have identified CTCs as a negative prognostic indicator for survival across various cancer types. CTCs mirror the current heterogeneity and genetic and biological state of tumors, making their study invaluable for understanding tumor progression, cell senescence, and cancer dormancy. However, their isolation and characterization still poses a major challenge that limits their clinical translation. A wide array of methods, each with different levels of specificity, utility, cost, and sensitivity, have been developed to isolate and characterize CTCs. Moreover, innovative techniques are emerging to address the limitations of existing methods. In this review, we provide insights into CTC biology addressing spectra of markers employed for molecular analysis and functional characterization. It also emphasizes current label-dependent and label-independent isolation procedures, addressing their strengths and limitations. SIGNIFICANCE: A comprehensive overview of CTC biology, their molecular and functional characterization, along with their current clinical utility will help in understanding the present-day extent to which the clinical potential of CTCs is getting tapped in personalized medicine.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
9
|
Cao ZJ, You J, Fan YM, Yang JY, Sun J, Ma X, Zhang J, Li Z, Wang X, Feng YX. Noncanonical UPR factor CREB3L2 drives immune evasion of triple-negative breast cancer through Hedgehog pathway modulation in T cells. SCIENCE ADVANCES 2025; 11:eads5434. [PMID: 39792663 PMCID: PMC11721608 DOI: 10.1126/sciadv.ads5434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
The unfolded protein response (UPR) pathway is crucial for tumorigenesis, mainly by regulating cancer cell stress responses and survival. However, whether UPR factors facilitate cell-cell communication between cancer cells and immune cells to drive cancer progression remains unclear. We found that adenosine 3',5'-monophosphate response element-binding protein 3-like protein 2 (CREB3L2), a noncanonical UPR factor, is overexpressed and activated in triple-negative breast cancer, where its cleavage releases a C-terminal fragment that activates the Hedgehog pathway in neighboring CD8+ T cells. The enhanced Hedgehog pathway represses CD8+ T cell activation and inhibits its cytotoxic effects. Consequently, overexpression of CREB3L2 not only promotes tumor growth but also causes resistance to immune checkpoint blockade (ICB). Inhibition of the Hedgehog pathway impedes the growth of CREB3L2-overexpressed tumors and sensitizes them to ICB therapy. In summary, we identified a previously unidentified mechanism by which the UPR pathway dictates cross-talk between cancer cells and immune cells, providing important anticancer therapeutic opportunities.
Collapse
Affiliation(s)
- Zi-Jian Cao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yu-Meng Fan
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Jia-Ying Yang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
- K2 Oncology Co., Ltd., Beijing, China
| | - Jirui Sun
- Department of Pathology, First Central Hospital of Baoding, Baoding, China
- Hebei Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor, Baoding, China
| | - Xiuli Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinku Zhang
- Department of Pathology, First Central Hospital of Baoding, Baoding, China
- Hebei Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor, Baoding, China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
- Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Cancer Hospital, Hohhot, China
| | - Xiang Wang
- Zhejiang Key Laboratory of Integrated Oncology and Intelligent Medicine, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Yu-Xiong Feng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Chen X, Agustinus AS, Li J, DiBona M, Bakhoum SF. Chromosomal instability as a driver of cancer progression. Nat Rev Genet 2025; 26:31-46. [PMID: 39075192 DOI: 10.1038/s41576-024-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Chromosomal instability (CIN) refers to an increased propensity of cells to acquire structural and numerical chromosomal abnormalities during cell division, which contributes to tumour genetic heterogeneity. CIN has long been recognized as a hallmark of cancer, and evidence over the past decade has strongly linked CIN to tumour evolution, metastasis, immune evasion and treatment resistance. Until recently, the mechanisms by which CIN propels cancer progression have remained elusive. Beyond the generation of genomic copy number heterogeneity, recent work has unveiled additional tumour-promoting consequences of abnormal chromosome segregation. These mechanisms include complex chromosomal rearrangements, epigenetic reprogramming and the induction of cancer cell-intrinsic inflammation, emphasizing the multifaceted role of CIN in cancer.
Collapse
Affiliation(s)
- Xuelan Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Albert S Agustinus
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Teodoro L, Carreira ACO, Sogayar MC. Exploring the Complexity of Pan-Cancer: Gene Convergences and in silico Analyses. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:913-934. [PMID: 39691553 PMCID: PMC11651076 DOI: 10.2147/bctt.s489246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024]
Abstract
Cancer is a complex and multifaceted group of diseases characterized by highly intricate mechanisms of tumorigenesis and tumor progression, which complicates diagnosis, prognosis, and treatment. In recent years, targeted therapies have gained prominence by focusing on specific mutations and molecular features unique to each tumor type, offering more effective and personalized treatment options. However, it is equally critical to explore the genetic commonalities across different types of cancer, which has led to the rise of pan-cancer studies. These approaches help identify shared therapeutic targets across various tumor types, enabling the development of broader and potentially more widely applicable treatment strategies. This review aims to provide a comprehensive overview of key concepts related to tumors, including tumorigenesis processes, the tumor microenvironment, and the role of extracellular vesicles in tumor biology. Additionally, we explore the molecular interactions and mechanisms driving tumor progression, with a particular focus on the pan-cancer perspective. To achieve this, we conducted an in silico analysis using publicly available datasets, which facilitated the identification of both common and divergent genetic and molecular patterns across different tumor types. By integrating these diverse areas, this review offers a clearer and deeper understanding of the factors influencing tumorigenesis and highlights potential therapeutic targets.
Collapse
Affiliation(s)
- Leandro Teodoro
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| | - Ana Claudia O Carreira
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Center of Human and Natural Sciences, Federal University of ABC, Santo André, São Paulo, 09280-560, Brazil
| | - Mari C Sogayar
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| |
Collapse
|
12
|
Guo W, Liu M, Luo W, Peng J, Liu F, Ma X, Wang L, Yang S. FERMT1 promotes epithelial-mesenchymal transition of hepatocellular carcinoma by activating EGFR/AKT/β-catenin and EGFR/ERK pathways. Transl Oncol 2024; 50:102144. [PMID: 39353234 PMCID: PMC11472111 DOI: 10.1016/j.tranon.2024.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/10/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of fermitin family member 1 (FERMT1) on epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) via the EGFR/AKT/β-catenin and EGFR/ERK pathways. METHODS The expression of FERMT1 encoding protein kindlin-1 in HCC tissues was determined by immunohistochemistry, and FERMT1 mRNA expression in HCC tissues and cell lines was analyzed by qRT-PCR. After the FERMT1 expression of SNU182 and SNU387 interfered with siRNA, the cell viability, invasion, migration, and EMT were tested by CCK-8, transwell invasion, scratching, immunofluorescence/WB, respectively. Similarly, the effects of FERMT1 on the viability and metastasis of HCC were investigated in transplanted tumor and lung metastasis mouse models. The protein expressions of EGFR/AKT/β-catenin and EGFR/ERK pathways were analyzed by WB. In addition, the relationship between FERMT1 and EGFR was further determined by immunofluorescence double staining and Co-IP. RESULTS FERMT1 was significantly upregulated in HCC, and silencing FERMT1 inhibited the viability, invasion, migration, and EMT of HCC. Silencing FERMT1 also inhibited the activation of EGFR/AKT/β-catenin and EGFR/ERK pathways. In addition, inhibition of EGFR, AKT, or ERK confirmed that EGFR/AKT/β-catenin and EGFR/ERK pathways were involved in the promoting effects of FERMT1 on HCC. Co-IP and immunofluorescence experiments confirmed the targeting relationship between FERMT1 and EGFR. CONCLUSION FERMT1 was highly expressed in HCC and promoted viability, invasion, migration, and EMT of HCC by targeting EGFR to activate the EGFR/AKT/β-catenin and EGFR/ERK pathways. Our study revealed the role of FERMT1 in HCC and suggested that FERMT1 exerts biological effects through activating the EGFR/AKT/β-catenin and EGFR/ERK pathways.
Collapse
Affiliation(s)
- Wubin Guo
- Department of General Surgery, The Affifiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China; National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Mengnan Liu
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China; National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Wei Luo
- Department of General Surgery, The Affifiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jing Peng
- Department of General Surgery, The Affifiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Fei Liu
- Department of General Surgery, The Affifiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xin Ma
- Department of General Surgery, The Affifiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Li Wang
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China; National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Sijin Yang
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China; National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Chen T, Karedla N, Enderlein J. Observation of E-cadherin adherens junction dynamics with metal-induced energy transfer imaging and spectroscopy. Commun Biol 2024; 7:1596. [PMID: 39613901 DOI: 10.1038/s42003-024-07281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
Epithelial cadherin (E-cad) mediated cell-cell junctions play a crucial role in the establishment and maintenance of tissues and organs. In this study, we employed metal-induced energy transfer imaging and spectroscopy to investigate variations in intermembrane distance during adhesion between two model membranes adorned with E-cad. By correlating the measured intermembrane distances with the distinct E-cad junction states, we probed the dynamic behavior and diversity of E-cad junctions across different binding pathways. Our observations led to the identification of a transient intermediate state referred to as the X-dimeric state and enabled a detailed analysis of its kinetics. We discovered that the formation of the X-dimer leads to significant membrane displacement, subsequently impacting the formation of other X-dimers. These direct experimental insights into the subtle dynamics of E-cad-modified membranes and the resultant changes in intermembrane distance provide perspectives on the assembly of E-cad junctions between cells. This knowledge enhances our comprehension of tissue and organ development and may serve as a foundation for the development of innovative therapeutic strategies for diseases linked to cell-cell adhesion abnormalities.
Collapse
Affiliation(s)
- Tao Chen
- Third Institute of Physics-Biophysics, Georg August University, Göttingen, Germany.
| | - Narain Karedla
- The Rosalind Franklin Institute, Didcot, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Jörg Enderlein
- Third Institute of Physics-Biophysics, Georg August University, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Universitätsmedizin Göttingen, Göttingen, Germany.
| |
Collapse
|
14
|
Guo Z, Xie L, Cui H, Yang X, Qi H, Yu M, Gong Y, Tu J, Na S. The Role of the Cytoskeletal Regulatory Protein, Mammalian Enabling Protein (Mena), in Invasion and Metastasis of HPV16-Related Oral Squamous Cell Carcinoma. Cells 2024; 13:1972. [PMID: 39682720 PMCID: PMC11640048 DOI: 10.3390/cells13231972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND The objective of this study was to investigate the effect of mammalian-enabled protein (Mena) on invasion and metastasis of HPV16-related oral squamous cell carcinoma (OSCC) and the underlying mechanism. MATERIALS AND METHODS The Mena gene expression profile of HPV-related OSCC was analyzed from the TCGA, GEO and TIMER databases. Immunohistochemistry was performed to study Mena, and the expression of invasion and metastasis-related markers and their clinicopathological characteristics. The role of Mena in the biological behavior of OSCC cell lines was assessed through both non-transfected and stably transfected models, analyzing EMT-related markers in vitro. The effect of Mena on HPV16-related OSCC metastasis through immunodeficient mouse model in vivo. RESULTS Mena expression was significantly decreased in HPV16-positive OSCC, and Mena expression in HPV16-negative OSCC was related with lymphatic metastasis and TNM stages, and E-cadherin, vimentin and MMP-2, but it was not statistically significant in HPV16-positive OSCC. Increased Mena expression was significantly correlated with a poor overall survival and disease-free survival in an HPV16-negative OSCC patient. Mena plays a vital role in promoting OSCC cell migration, invasion and metastasis. CONCLUSIONS Mena promotes OSCC invasion and metastasis in HPV-negative OSCC by activating the EMT process. However, Mena expression in OSCC infected with HPV16 is inhibited, thus suppressing its invasion and metastasis ability.
Collapse
Affiliation(s)
- Zhichen Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (Z.G.); (L.X.); (H.C.); (X.Y.); (M.Y.); (Y.G.)
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Linyang Xie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (Z.G.); (L.X.); (H.C.); (X.Y.); (M.Y.); (Y.G.)
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Hao Cui
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (Z.G.); (L.X.); (H.C.); (X.Y.); (M.Y.); (Y.G.)
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Xin Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (Z.G.); (L.X.); (H.C.); (X.Y.); (M.Y.); (Y.G.)
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Hong Qi
- Department of Pathology, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Ming Yu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (Z.G.); (L.X.); (H.C.); (X.Y.); (M.Y.); (Y.G.)
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Yuxin Gong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (Z.G.); (L.X.); (H.C.); (X.Y.); (M.Y.); (Y.G.)
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Junbo Tu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (Z.G.); (L.X.); (H.C.); (X.Y.); (M.Y.); (Y.G.)
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Sijia Na
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (Z.G.); (L.X.); (H.C.); (X.Y.); (M.Y.); (Y.G.)
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
15
|
Zhang G, Duan G, Yang Z, Deng X, Han L, Zhu M, Jia X, Li L. Fractionated irradiation promotes radioresistance and decreases oxidative stress by increasing Nrf2 of ALDH-positive nasopharyngeal cancer stem cells. Ann Med Surg (Lond) 2024; 86:5793-5801. [PMID: 39359823 PMCID: PMC11444553 DOI: 10.1097/ms9.0000000000002559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Radiotherapy is widely regarded as the primary therapeutic modality for nasopharyngeal cancer (NPC). Studies have shown that cancer cells with high resistance to radiation, known as radioresistant cancer cells, may cause residual illness, which in turn might contribute to the occurrence of cancer recurrence and metastasis. It has been shown that cancer stem-like cells (CSCs) exhibit resistance to radiation therapy. In the present study, fractionated doses of radiation-induced epithelial-mesenchymal transition (EMT) and ALDH+ CSCs phenotype of NPC tumor spheroids. Furthermore, it has been shown that cells with elevated ALDH activity have increased resistance to the effects of fractionated irradiation. Nuclear factor erythroid-2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular antioxidant systems. A large body of evidence suggests that Nrf2 plays a significant role in the development of radioresistance in cancer. The authors' research revealed that the application of fractionated irradiation resulted in a decline in Nrf2-dependent reactive oxygen species (ROS) levels, thereby mitigating DNA damage in ALDH+ stem-like NPC cells. In addition, immunofluorescence analysis revealed that subsequent to the process of fractionated irradiation of ALDH+ cells, activated Nrf2 was predominantly localized inside the nucleus. Immunofluorescent analysis also revealed that the presence of the nuclear Nrf2+/NQO1+/ALDH1+ axis might potentially serve as an indicator of poor prognosis and resistance to radiotherapy in patients with NPC. Thus, the authors' findings strongly suggest that the radioresistance of ALDH-positive NPC CSCs to fractionated irradiation is regulated by nuclear Nrf2 accumulation. Nrf2 exerts its effects through the downstream effector NQO1/ALDH1, which depends on ROS attenuation.
Collapse
Affiliation(s)
- Gong Zhang
- Department of Radiotherapy of the Fifth Clinical Medical College of Shanxi Medical University, People’s Hospital of Shanxi Province, Taiyuan, Shanxi
| | - Guosheng Duan
- Department of Radiotherapy of the Fifth Clinical Medical College of Shanxi Medical University, People’s Hospital of Shanxi Province, Taiyuan, Shanxi
| | - Zhengyan Yang
- Department of Radiotherapy of the Fifth Clinical Medical College of Shanxi Medical University, People’s Hospital of Shanxi Province, Taiyuan, Shanxi
| | - Xubin Deng
- Department of Oncology of the Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Luwei Han
- Department of Radiotherapy of the Fifth Clinical Medical College of Shanxi Medical University, People’s Hospital of Shanxi Province, Taiyuan, Shanxi
| | - Meiling Zhu
- Department of Radiotherapy of the Fifth Clinical Medical College of Shanxi Medical University, People’s Hospital of Shanxi Province, Taiyuan, Shanxi
| | - Xiaorong Jia
- Department of Radiotherapy of the Fifth Clinical Medical College of Shanxi Medical University, People’s Hospital of Shanxi Province, Taiyuan, Shanxi
| | - Lei Li
- Department of Radiotherapy of the Fifth Clinical Medical College of Shanxi Medical University, People’s Hospital of Shanxi Province, Taiyuan, Shanxi
| |
Collapse
|
16
|
Wang J, Xiu J, Battaglin F, Arai H, Soni S, Zhang W, Goldberg RM, Philip PA, Seeber A, Hwang JJ, Shields AF, Marshall JL, Astaturov I, Liu T, Lockhart AC, Korn WM, Shen L, Lenz HJ. Large-scale analysis of CDH1 mutations defines a distinctive molecular subset with treatment implications in gastric cancer. NPJ Precis Oncol 2024; 8:214. [PMID: 39349771 PMCID: PMC11442451 DOI: 10.1038/s41698-024-00694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Although histological and molecular classifications have been extensively studied for gastric cancer (GC), targeted therapies for GC remain limited. CDH1 mutations (MT) are characteristic of genomically stable GC and are associated with poor prognosis, but lack effective or targeted therapies. Here, we showed the overall mutation frequency of CDH1 was 9.7% (155 of 1596). CDH1-MT GC showed significantly lower rates of PD-L1 positivity (CPS score ≥1) than CDH1-wildtype (WT) GC (56.7% vs. 73.3%, p < 0.05). Compared to CDH1-WT GC, mutations of ARID1A, WRN, POT1, CDK12, and FANCC were significantly higher, while TP53 and APC were significantly lower in CDH1-MT GC (p < 0.05); The rates of KRAS and HER2 amplifications were significantly lower, while CRKL and IGF1R amplifications were significantly higher in CDH1-MT GC, compared to CDH1-WT GC (p < 0.05). Frequently altered genes in CDH1-MT GC were especially enriched in DNA damage repair and cell cycle checkpoint pathways. Inhibition of E-cadherin sensitized GC cell lines to PARP and Wee1 inhibitors by disrupting DNA damage repair pathway and cell cycle checkpoint. This is the largest study to investigate the distinct genomic landscape of CDH1-MT GC. Our data indicated GC patients with CDH1 mutations could potentially benefit from agents targeting PARP and Wee1.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Medical Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | | | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hiroyuki Arai
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Jimmy J Hwang
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC, USA
| | - Anthony F Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - John L Marshall
- Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | - Tianshu Liu
- Department of Medical Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - A Craig Lockhart
- University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | | | - Lin Shen
- Department of Medical Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Zhang X, Zhang X, Li M, Jiao S, Zhang Y. Monitoring Partial EMT Dynamics through Cell Mechanics Using Scanning Ion Conductance Microscopy. Anal Chem 2024; 96:14835-14842. [PMID: 39238086 DOI: 10.1021/acs.analchem.4c02612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Tumor cells undergo an epithelial-mesenchymal transition (EMT) accompanied by a reduction in elasticity to initiate metastasis. However, in vivo, tumor cells typically exhibit partial EMT rather than fully EMT. Whether cell mechanics can accurately identify the status of partial EMT, especially the dynamic process, remains unclear. To elucidate the relationship between cell mechanics and partial EMT, we employed scanning ion conductance microscopy (SICM) to analyze the dynamic changes in cell mechanics during the TGFβ-induced partial EMT of HCT116 colon cancer cells. Cells undergoing partial EMT, characterized by increased expression of EMT transcription factors, Snai1 and Zeb1, and EMT-related genes, Fn1 and MMP9, while retaining the expression of the epithelial markers E-cadherin (E-cad) and EpCAM, did not exhibit significant changes in cell morphology, suggesting that morphological changes alone were inadequate for identifying partial EMT status. However, cell elasticity markedly decreased in partial EMT cells, and this reduction was reversed with the reversible transition of partial EMT. These findings suggest a strong correlation between cell mechanics and the dynamic process of partial EMT, indicating that cell mechanics could serve as a valuable label-free marker for identifying the status of partial EMT while preserving the physiological characteristics of tumor cells.
Collapse
Affiliation(s)
- Xufang Zhang
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Xueqia Zhang
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Mingkun Li
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Shuopei Jiao
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Yanjun Zhang
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa 920-1192, Japan
- Department of Medicine, Imperial College London, London W12 0NN, U.K
| |
Collapse
|
18
|
Lee G, Wong C, Cho A, West JJ, Crawford AJ, Russo GC, Si BR, Kim J, Hoffner L, Jang C, Jung M, Leone RD, Konstantopoulos K, Ewald AJ, Wirtz D, Jeong S. E-Cadherin Induces Serine Synthesis to Support Progression and Metastasis of Breast Cancer. Cancer Res 2024; 84:2820-2835. [PMID: 38959339 PMCID: PMC11374473 DOI: 10.1158/0008-5472.can-23-3082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/27/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
The loss of E-cadherin, an epithelial cell adhesion molecule, has been implicated in metastasis by mediating the epithelial-mesenchymal transition, which promotes invasion and migration of cancer cells. However, recent studies have demonstrated that E-cadherin supports the survival and proliferation of metastatic cancer cells. Here, we identified a metabolic role for E-cadherin in breast cancer by upregulating the de novo serine synthesis pathway (SSP). The upregulated SSP provided metabolic precursors for biosynthesis and resistance to oxidative stress, enabling E-cadherin+ breast cancer cells to achieve faster tumor growth and enhanced metastases. Inhibition of phosphoglycerate dehydrogenase, a rate-limiting enzyme in the SSP, significantly and specifically hampered proliferation of E-cadherin+ breast cancer cells and rendered them vulnerable to oxidative stress, inhibiting their metastatic potential. These findings reveal that E-cadherin reprograms cellular metabolism, promoting tumor growth and metastasis of breast cancers. Significance: E-Cadherin promotes the progression and metastasis of breast cancer by upregulating the de novo serine synthesis pathway, offering promising targets for inhibiting tumor growth and metastasis in E-cadherin-expressing tumors.
Collapse
Affiliation(s)
- Geonhui Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Claudia Wong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Cho
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Junior J. West
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ashleigh J. Crawford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Gabriella C. Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Bishwa Ranjan Si
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Jungwoo Kim
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lauren Hoffner
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Moonjung Jung
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Robert D. Leone
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew J. Ewald
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sangmoo Jeong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Herndon ME, Ayers M, Gibson-Corley KN, Wendt MK, Wallrath LL, Henry MD, Stipp CS. The highly metastatic 4T1 breast carcinoma model possesses features of a hybrid epithelial/mesenchymal phenotype. Dis Model Mech 2024; 17:dmm050771. [PMID: 39104192 PMCID: PMC11391819 DOI: 10.1242/dmm.050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) are thought to promote metastasis via downregulation of E-cadherin (also known as Cdh1) and upregulation of mesenchymal markers such as N-cadherin (Cdh2) and vimentin (Vim). Contrary to this, E-cadherin is retained in many invasive carcinomas and promotes collective cell invasion. To investigate how E-cadherin regulates metastasis, we examined the highly metastatic, E-cadherin-positive murine 4T1 breast cancer model, together with the less metastatic, 4T1-related cell lines 4T07, 168FARN and 67NR. We found that 4T1 cells display a hybrid epithelial/mesenchymal phenotype with co-expression of epithelial and mesenchymal markers, whereas 4T07, 168FARN, and 67NR cells display progressively more mesenchymal phenotypes in vitro that relate inversely to their metastatic capacity in vivo. Using RNA interference and constitutive expression, we demonstrate that the expression level of E-cadherin does not determine 4T1 or 4T07 cell metastatic capacity in mice. Mechanistically, 4T1 cells possess highly dynamic, unstable cell-cell junctions and can undergo collective invasion without E-cadherin downregulation. However, 4T1 orthotopic tumors in vivo also contain subregions of EMT-like loss of E-cadherin. Thus, 4T1 cells function as a model for carcinomas with a hybrid epithelial/mesenchymal phenotype that promotes invasion and metastasis.
Collapse
Affiliation(s)
- Mary E. Herndon
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Mitchell Ayers
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Katherine N. Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Michael K. Wendt
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lori L. Wallrath
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Michael D. Henry
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher S. Stipp
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
20
|
Rajan AAN, Hutchins EJ. Post-transcriptional regulation as a conserved driver of neural crest and cancer-cell migration. Curr Opin Cell Biol 2024; 89:102400. [PMID: 39032482 PMCID: PMC11346372 DOI: 10.1016/j.ceb.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Cells have evolved mechanisms to migrate for diverse biological functions. A process frequently deployed during metazoan cell migration is the epithelial-mesenchymal transition (EMT). During EMT, adherent epithelial cells undergo coordinated cellular transitions to mesenchymalize and reduce their intercellular attachments. This is achieved via tightly regulated changes in gene expression, which modulates cell-cell and cell-matrix adhesion to allow movement. The acquisition of motility and invasive properties following EMT allows some mesenchymal cells to migrate through complex environments to form tissues during embryogenesis; however, these processes may also be leveraged by cancer cells, which often co-opt these endogenous programs to metastasize. Post-transcriptional regulation is now emerging as a major conserved mechanism by which cells modulate EMT and migration, which we discuss here in the context of vertebrate development and cancer.
Collapse
Affiliation(s)
- Arvind Arul Nambi Rajan
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Erica J Hutchins
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Liu L, Feng Y, Xiang X, Xu M, Tang G. Biological effect of ETV4 and the underlying mechanism of its regulatory effect on epithelial‑mesenchymal transition in intrahepatic cholangiocarcinoma cells. Oncol Lett 2024; 28:346. [PMID: 38872859 PMCID: PMC11170264 DOI: 10.3892/ol.2024.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/26/2024] [Indexed: 06/15/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly invasive malignant tumor. The prognosis of patients with ICC after radical surgical resection remains poor, due to local infiltration, distant metastasis, a high recurrence rate and lack of effective treatment strategies. E26 transformation-specific sequence variant 4 (ETV4) is a pro-carcinogenic factor that is upregulated in several tumors; however, the role of ETV4 in ICC is relatively unknown. The present study aimed to determine the role of ETV4 in the Hccc9810 ICC cell line and to assess how it contributes to epithelial-mesenchymal transition (EMT) in ICC. Hccc9810 cells were infected with lentiviruses to construct stable ETV4-overexpressing cells, stable ETV4 knockdown cells and corresponding control groups. The Cell Counting Kit-8 and Transwell assays were used to quantify cell proliferation, invasion and migration, and the effects on cell cycle progression and apoptosis were detected by flow cytometry. ETV4 was identified as a driver of cell growth, invasion, migration and cell cycle progression, while restraining apoptosis in Hccc9810 cells. Reverse transcription-quantitative PCR and western blotting revealed that increased ETV4 levels may drive EMT by triggering the TGF-β1/Smad signaling pathway. This cascade, in turn, may foster tumor cell proliferation, migration, invasion and cell cycle advancement, and hinder apoptosis.
Collapse
Affiliation(s)
- Li Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yong Feng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xuelian Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Mengtao Xu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guodu Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
22
|
Ragot H, Gaucher S, Bonnet des Claustres M, Basset J, Boudan R, Battistella M, Bourrat E, Hovnanian A, Titeux M. Citrullinated Histone H3, a Marker for Neutrophil Extracellular Traps, Is Associated with Poor Prognosis in Cutaneous Squamous Cell Carcinoma Developing in Patients with Recessive Dystrophic Epidermolysis Bullosa. Cancers (Basel) 2024; 16:2476. [PMID: 39001538 PMCID: PMC11240819 DOI: 10.3390/cancers16132476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare severe hereditary skin disease characterized by skin and mucosa fragility, resulting in blister formation. The most severe complication in RDEB patients is the development of cutaneous squamous cell carcinoma (SCC), leading to premature death. There is a great deal of evidence suggesting a permissive tumor microenvironment (TME) as a driver of SCC development in RDEB patients. In a cohort of RDEB patients, we characterized the immune profiles of RDEB-SCCs and compared them with clinical, histopathological, and prognostic features. RDEB-SCCs were subdivided into four groups based on their occurrence (first onset or recurrences) and grading according to clinical, histopathological parameters of aggressiveness. Thirty-eight SCCs from 20 RDEB patients were analyzed. Five RDEB patients experienced an unfavorable course after the diagnosis of the first SCC, with early recurrence or metastasis, whereas 15 patients developed multiple SCCs without metastasis. High-risk primary RDEB-SCCs showed a higher neutrophil-to-lymphocyte ratio in the tumor microenvironment and an increased proportion of neutrophil extracellular traps (NETs). Additionally, citrullinated histone H3, a marker of NETs, was increased in the serum of RDEB patients with high-risk primary SCC, suggesting that this modified form of histone H3 may serve as a potential blood marker of unfavorable prognosis in RDEB-SCCs.
Collapse
Affiliation(s)
- Hélène Ragot
- Laboratory of Genetic Skin Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, 75015 Paris, France
| | - Sonia Gaucher
- Laboratory of Genetic Skin Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, 75015 Paris, France
| | | | - Justine Basset
- Laboratory of Genetic Skin Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, 75015 Paris, France
| | - Rose Boudan
- Reference Center for Genodermatoses ("Maladies Génétiques à Expression Cutanée", MAGEC), Saint-Louis Hospital (Assistance Publique-Hôpitaux de Paris), 75010 Paris, France
| | - Maxime Battistella
- Department of Pathology, Saint-Louis Hospital (Assistance Publique-Hôpitaux de Paris), Université Paris Cité, 75010 Paris, France
| | - Emmanuelle Bourrat
- Reference Center for Genodermatoses ("Maladies Génétiques à Expression Cutanée", MAGEC), Saint-Louis Hospital (Assistance Publique-Hôpitaux de Paris), 75010 Paris, France
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, 75015 Paris, France
- Department of Genomic Medicine of Rare Diseases, Necker Hospital for Sick Children (Assistance Publique-Hôpitaux de Paris), Université Paris Cité, 75015 Paris, France
| | - Matthias Titeux
- Laboratory of Genetic Skin Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, 75015 Paris, France
| |
Collapse
|
23
|
Zhang Z, Sha W. MicroRNA-513b-5p inhibits epithelial mesenchymal transition of colon cancer stem cells through IL-6/STAT3 signaling pathway. Discov Oncol 2024; 15:267. [PMID: 38967742 PMCID: PMC11226582 DOI: 10.1007/s12672-024-01137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
OBJECTIVE To reveal the mechanisms by which miR-513b-5p inhibits metastasis of colon cancer stem cells (CCSCs) through IL-6/STAT3 in HCT116 cells. METHODS Sphere formation media and magnetic cell sorting were used to enrich and screen CCSCs. We used a colony formation assay, cell proliferation and viability assays, and a nude mouse transplantation tumor assay to identify CCSCs. ELISA was performed to identify IL-6 in the cell culture medium, and the growth, viability, wound healing, and transwell migration of distinct cell groups were compared to differentiate them. Dual-luciferase reporter assay, RT-PCR, and/or Western Blot analysis were conducted to determine the correlation between them. RESULTS CD133+CD44+ HCT116 cells were shown to have higher cloning efficiency, greater proliferation ability and viability, and stronger tumorigenicity. A dual-luciferase reporter assay revealed that miR-513b-5p negatively affected STAT3 expression. RT-PCR and/or Western Blot analysis suggested that miR-513b-5p negatively affected STAT3 and Vimentin, while positively affecting E-cadherin expression. The STAT3 overexpression vector + miR-513b-5p inhibitor cell group had the highest efficiency, greatest proliferation ability and viability, and the highest IL-6 level in the experiments. CONCLUSIONS Mir-513b-5p inhibited the epithelial-mesenchymal transition (EMT) of CCSCs through IL-6/STAT3. This potential mechanism may provide a new therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Zefeng Zhang
- Department of Gastroenterology and Digestive Endoscopy Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Weihong Sha
- Department of Gastroenterology and Digestive Endoscopy Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
24
|
Wang Y, Cheng S, Fleishman JS, Chen J, Tang H, Chen ZS, Chen W, Ding M. Targeting anoikis resistance as a strategy for cancer therapy. Drug Resist Updat 2024; 75:101099. [PMID: 38850692 DOI: 10.1016/j.drup.2024.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Anoikis, known as matrix detachment-induced apoptosis or detachment-induced cell death, is crucial for tissue development and homeostasis. Cancer cells develop means to evade anoikis, e.g. anoikis resistance, thereby allowing for cells to survive under anchorage-independent conditions. Uncovering the mechanisms of anoikis resistance will provide details about cancer metastasis, and potential strategies against cancer cell dissemination and metastasis. Here, we summarize the principal elements and core molecular mechanisms of anoikis and anoikis resistance. We discuss the latest progress of how anoikis and anoikis resistance are regulated in cancers. Furthermore, we summarize emerging data on selective compounds and nanomedicines, explaining how inhibiting anoikis resistance can serve as a meaningful treatment modality against cancers. Finally, we discuss the key limitations of this therapeutic paradigm and possible strategies to overcome them. In this review, we suggest that pharmacological modulation of anoikis and anoikis resistance by bioactive compounds could surmount anoikis resistance, highlighting a promising therapeutic regimen that could be used to overcome anoikis resistance in cancers.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Sihang Cheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Wenkuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Mingchao Ding
- Department of Peripheral Vascular Intervention, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| |
Collapse
|
25
|
Bracken CP, Goodall GJ, Gregory PA. RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer. Semin Cancer Biol 2024; 102-103:4-16. [PMID: 38917876 DOI: 10.1016/j.semcancer.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-β signalling. Both EMT and TGF-β pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-β signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-β signaling with a focus on their functions in cancer progression.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
26
|
Stehbens SJ, Scarpa E, White MD. Perspectives in collective cell migration - moving forward. J Cell Sci 2024; 137:jcs261549. [PMID: 38904172 DOI: 10.1242/jcs.261549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Collective cell migration, where cells move as a cohesive unit, is a vital process underlying morphogenesis and cancer metastasis. Thanks to recent advances in imaging and modelling, we are beginning to understand the intricate relationship between a cell and its microenvironment and how this shapes cell polarity, metabolism and modes of migration. The use of biophysical and mathematical models offers a fresh perspective on how cells migrate collectively, either flowing in a fluid-like state or transitioning to more static states. Continuing to unite researchers in biology, physics and mathematics will enable us to decode more complex biological behaviours that underly collective cell migration; only then can we understand how this coordinated movement of cells influences the formation and organisation of tissues and directs the spread of metastatic cancer. In this Perspective, we highlight exciting discoveries, emerging themes and common challenges that have arisen in recent years, and possible ways forward to bridge the gaps in our current understanding of collective cell migration.
Collapse
Affiliation(s)
- Samantha J Stehbens
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, Brisbane, QLD 4072, Australia
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Brisbane, QLD 4072, Australia
| | - Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3DY, UK
| | - Melanie D White
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Brisbane, QLD 4072, Australia
- The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
27
|
Lin S, Chen Q, Tan C, Su M, Min L, Ling L, Zhou J, Zhu T. ZEB family is a prognostic biomarker and correlates with anoikis and immune infiltration in kidney renal clear cell carcinoma. BMC Med Genomics 2024; 17:153. [PMID: 38840097 PMCID: PMC11151722 DOI: 10.1186/s12920-024-01895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Zinc finger E-box binding homEeobox 1 (ZEB1) and ZEB2 are two anoikis-related transcription factors. The mRNA expressions of these two genes are significantly increased in kidney renal clear cell carcinoma (KIRC), which are associated with poor survival. Meanwhile, the mechanisms and clinical significance of ZEB1 and ZEB2 upregulation in KIRC remain unknown. METHODS Through the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database, expression profiles, prognostic value and receiver operating characteristic curves (ROCs) of ZEB1 and ZEB2 were evaluated. The correlations of ZEB1 and ZEB2 with anoikis were further assessed in TCGA-KIRC database. Next, miRTarBase, miRDB, and TargetScan were used to predict microRNAs targeting ZEB1 and ZEB2, and TCGA-KIRC database was utilized to discern differences in microRNAs and establish the association between microRNAs and ZEBs. TCGA, TIMER, TISIDB, and TISCH were used to analyze tumor immune infiltration. RESULTS It was found that ZEB1 and ZEB2 expression were related with histologic grade in KIRC patient. Kaplan-Meier survival analyses showed that KIRC patients with low ZEB1 or ZEB2 levels had a significantly lower survival rate. Meanwhile, ZEB1 and ZEB2 are closely related to anoikis and are regulated by microRNAs. We constructed a risk model using univariate Cox and LASSO regression analyses to identify two microRNAs (hsa-miR-130b-3p and hsa-miR-138-5p). Furthermore, ZEB1 and ZEB2 regulate immune cell invasion in KIRC tumor microenvironments. CONCLUSIONS Anoikis, cytotoxic immune cell infiltration, and patient survival outcomes were correlated with ZEB1 and ZEB2 mRNA upregulation in KIRC. ZEB1 and ZEB2 are regulated by microRNAs.
Collapse
Affiliation(s)
- Sheng Lin
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qi Chen
- Department of Urology, Foshan First People's Hospital, Foshan City, Guangdong Province, China
| | - Canliang Tan
- Department of general surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Manyi Su
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ling Min
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lv Ling
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Junhao Zhou
- Department of general surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
- KingMed school of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
- KingMed school of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
28
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
29
|
Ran XM, Yang J, Wang ZY, Xiao LZ, Deng YP, Zhang KQ. M2 macrophage-derived exosomal circTMCO3 acts through miR-515-5p and ITGA8 to enhance malignancy in ovarian cancer. Commun Biol 2024; 7:583. [PMID: 38755265 PMCID: PMC11098810 DOI: 10.1038/s42003-024-06095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/22/2024] [Indexed: 05/18/2024] Open
Abstract
Tumor-associated macrophages of the M2 phenotype promote cancer initiation and progression. Importantly, M2 macrophage-derived exosomes play key roles in the malignancy of cancer cells. Here, we report that circTMCO3 is upregulated in ovarian cancer patients, and its high expression indicates poor survival. M2-derived exosomes promote proliferation, migration, and invasion in ovarian cancer, but these effects are abolished by knockdown of circTMCO3. Furthermore, circTMCO3 functions as a competing endogenous RNA for miR-515-5p to reduce its abundance, thus upregulating ITGA8 in ovarian cancer. miR-515-5p inhibits ovarian cancer malignancy via directly downregulating ITGA8. The decreased oncogenic activity of circTMCO3-silencing exosomes is reversed by miR-515-5p knockdown or ITGA8 overexpression. Exosomal circTMCO3 promotes ovarian cancer progression in nude mice. Thus, M2 macrophage-derived exosomes promote malignancy by delivering circTMCO3 and targeting the miR-515-5p/ITGA8 axis in ovarian cancer. Our findings not only provide mechanistic insights into ovarian cancer progression, but also suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Xiao-Min Ran
- Department of Gynecologic Oncology Ward 5, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Juan Yang
- Department of Gynecologic Oncology Ward 5, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Zi-Yi Wang
- Department of Gynecologic Oncology Ward 5, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ling-Zhi Xiao
- Department of Gynecologic Oncology Ward 5, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yu-Ping Deng
- Department of Gynecologic Oncology Ward 5, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ke-Qiang Zhang
- Department of Gynecologic Oncology Ward 5, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, PR China.
| |
Collapse
|
30
|
Wang X, Shen H, Chen Y, Zhang Y, Wang J, Liu S, Xu B, Wang H, Frangou C, Zhang J. MEF2D Functions as a Tumor Suppressor in Breast Cancer. Int J Mol Sci 2024; 25:5207. [PMID: 38791246 PMCID: PMC11121549 DOI: 10.3390/ijms25105207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The myocyte enhancer factor 2 (MEF2) gene family play fundamental roles in the genetic programs that control cell differentiation, morphogenesis, proliferation, and survival in a wide range of cell types. More recently, these genes have also been implicated as drivers of carcinogenesis, by acting as oncogenes or tumor suppressors depending on the biological context. Nonetheless, the molecular programs they regulate and their roles in tumor development and progression remain incompletely understood. The present study evaluated whether the MEF2D transcription factor functions as a tumor suppressor in breast cancer. The knockout of the MEF2D gene in mouse mammary epithelial cells resulted in phenotypic changes characteristic of neoplastic transformation. These changes included enhanced cell proliferation, a loss of contact inhibition, and anchorage-independent growth in soft agar, as well as the capacity for tumor development in mice. Mechanistically, the knockout of MEF2D induced the epithelial-to-mesenchymal transition (EMT) and activated several oncogenic signaling pathways, including AKT, ERK, and Hippo-YAP. Correspondingly, a reduced expression of MEF2D was observed in human triple-negative breast cancer cell lines, and a low MEF2D expression in tissue samples was found to be correlated with a worse overall survival and relapse-free survival in breast cancer patients. MEF2D may, thus, be a putative tumor suppressor, acting through selective gene regulatory programs that have clinical and therapeutic significance.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, USA; (X.W.); (H.S.); (Y.C.)
| | - He Shen
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, USA; (X.W.); (H.S.); (Y.C.)
| | - Yanmin Chen
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, USA; (X.W.); (H.S.); (Y.C.)
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, USA; (Y.Z.); (J.W.); (S.L.)
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, USA; (Y.Z.); (J.W.); (S.L.)
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, USA; (Y.Z.); (J.W.); (S.L.)
| | - Bo Xu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, USA;
| | - Hai Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, USA;
| | - Costa Frangou
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, USA;
| | - Jianmin Zhang
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, USA; (X.W.); (H.S.); (Y.C.)
| |
Collapse
|
31
|
Knapen DG, Hone Lopez S, de Groot DJA, de Haan JJ, de Vries EGE, Dienstmann R, de Jong S, Bhattacharya A, Fehrmann RSN. Independent transcriptional patterns reveal biological processes associated with disease-free survival in early colorectal cancer. COMMUNICATIONS MEDICINE 2024; 4:79. [PMID: 38702451 PMCID: PMC11068726 DOI: 10.1038/s43856-024-00504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Bulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect biological processes associated with disease-free survival (DFS) if the transcriptional patterns are subtle and/or obscured by other processes' patterns. Consensus-independent component analysis (c-ICA) can dissect such transcriptomes into statistically independent transcriptional components (TCs), capturing both pronounced and subtle biological processes. METHODS In this study we (1) integrated transcriptomes (n = 4228) from multiple early CRC studies, (2) performed c-ICA to define the TC landscape within this integrated data set, 3) determined the biological processes captured by these TCs, (4) performed Cox regression to identify DFS-associated TCs, (5) performed random survival forest (RSF) analyses with activity of DFS-associated TCs as classifiers to identify subgroups of patients, and 6) performed a sensitivity analysis to determine the robustness of our results RESULTS: We identify 191 TCs, 43 of which are associated with DFS, revealing transcriptional diversity among DFS-associated biological processes. A prominent example is the epithelial-mesenchymal transition (EMT), for which we identify an association with nine independent DFS-associated TCs, each with coordinated upregulation or downregulation of various sets of genes. CONCLUSIONS This finding indicates that early CRC may have nine distinct routes to achieve EMT, each requiring a specific peri-operative treatment strategy. Finally, we stratify patients into DFS patient subgroups with distinct transcriptional patterns associated with stage 2 and stage 3 CRC.
Collapse
Affiliation(s)
- Daan G Knapen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sara Hone Lopez
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Derk Jan A de Groot
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jacco-Juri de Haan
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rodrigo Dienstmann
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Steven de Jong
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arkajyoti Bhattacharya
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
32
|
Lee WS, Shin JS, Jang SY, Chung KS, Kim SD, Cho CW, Hong HD, Rhee YK, Lee KT. Anti-Metastatic Effects of Standardized Polysaccharide Fraction from Diospyros kaki Leaves via GSK3β/β-Catenin and JNK Inactivation in Human Colon Cancer Cells. Polymers (Basel) 2024; 16:1275. [PMID: 38732748 PMCID: PMC11085380 DOI: 10.3390/polym16091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
A polysaccharide fraction from Diospyros kaki (PLE0) leaves was previously reported to possess immunostimulatory, anti-osteoporotic, and TGF-β1-induced epithelial-mesenchymal transition inhibitory activities. Although a few beneficial effects against colon cancer metastasis have been reported, we aimed to investigate the anti-metastatic activity of PLE0 and its underlying molecular mechanisms in HT-29 and HCT-116 human colon cancer cells. We conducted a wound-healing assay, invasion assay, qRT-PCR analysis, western blot analysis, gelatin zymography, luciferase assay, and small interfering RNA gene silencing in colon cancer cells. PLE0 concentration-dependently inhibited metastasis by suppressing cell migration and invasion. The suppression of N-cadherin and vimentin expression as well as upregulation of E-cadherin through the reduction of p-GSK3β and β-catenin levels resulted in the outcome of this effect. PLE0 also suppressed the expression and enzymatic activity of matrix metalloproteinases (MMP)-2 and MMP-9, while simultaneously increasing the protein and mRNA levels of the tissue inhibitor of metalloproteinases (TIMP-1). Furthermore, signaling data disclosed that PLE0 suppressed the transcriptional activity and phosphorylation of p65 (a subunit of NF-κB), as well as the phosphorylation of c-Jun and c-Fos (subunits of AP-1) pathway. PLE0 markedly suppressed JNK phosphorylation, and JNK knockdown significantly restored PLE0-regulated MMP-2/-9 and TIMP-1 expression. Collectively, our data indicate that PLE0 exerts an anti-metastatic effect in human colon cancer cells by inhibiting epithelial-mesenchymal transition and MMP-2/9 via downregulation of GSK3β/β-catenin and JNK signaling.
Collapse
Affiliation(s)
- Woo-Seok Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (W.-S.L.); (J.-S.S.); (S.-Y.J.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (W.-S.L.); (J.-S.S.); (S.-Y.J.); (K.-S.C.)
- Department of Orthopaedic Surgery, College of Medicine, Hallym University, Hwaseong-si 18450, Republic of Korea
| | - Seo-Yun Jang
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (W.-S.L.); (J.-S.S.); (S.-Y.J.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (W.-S.L.); (J.-S.S.); (S.-Y.J.); (K.-S.C.)
| | - Soo-Dong Kim
- Department of Urology, College of Medicine, Dong-A University, Busan 49315, Republic of Korea;
| | - Chang-Won Cho
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (C.-W.C.); (H.-D.H.); (Y.K.R.)
| | - Hee-Do Hong
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (C.-W.C.); (H.-D.H.); (Y.K.R.)
| | - Young Kyoung Rhee
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (C.-W.C.); (H.-D.H.); (Y.K.R.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (W.-S.L.); (J.-S.S.); (S.-Y.J.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
33
|
Hu J, Wang J, Guo X, Fan Q, Li X, Li K, Wang Z, Liang S, Amin B, Zhang N, Chen C, Zhu B. MSLN induced EMT, cancer stem cell traits and chemotherapy resistance of pancreatic cancer cells. Heliyon 2024; 10:e29210. [PMID: 38628720 PMCID: PMC11019237 DOI: 10.1016/j.heliyon.2024.e29210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Chemoresistance is one of the main reasons for poor prognosis of pancreatic cancer. The effects of mesothelin (MSLN) on chemoresistance in pancreatic cancer are still unclear. We aim to investigate potential roles of MSLN in chemoresistance and its relationship with proliferation, epithelial-mesenchymal transition (EMT) and cancer stemness of pancreatic cancer cells. Human pancreatic cancer cell lines ASPC-1 and Mia PaCa-2 with high and low expression of MSLN, respectively, were selected. The ASPC-1 with MSLN knockout (KO) and Mia PaCa-2 of MSLN overexpression (OE) were generated. The effects of MSLN on cell phenotypes, expression of EMT-related markers, clone formation, tumor sphere formation, and pathologic role of MSLN in tumorigenesis were detected. Sensitivity of tumor cells to gemcitabine was evaluated. The results showed that adhesion, proliferation, migration and invasion were decreased significantly in ASPC-1 with MSLN KO, whereas increased significantly in Mia PaCa-2 with MSLN OE. The size and the number of clones and tumor spheres were decreased in ASPC-1 with MSLN KO, and increased in Mia PaCa-2 with MSLN OE. In xenograft model, tumor volume was decreased (tumor grew slower) in MSLN KO group compared to control group, while increased in MSLN OE group. Mia PaCa-2 with MSLN OE had a higher IC50 of gemcitabine, while ASPC-1 with MSLN KO had a lower IC50. We concluded that MSLN could induce chemoresistance by enhancing migration, invasion, EMT and cancer stem cell traits of pancreatic cancer cells. Targeting MSLN could represent a promising therapeutic strategy for reversing EMT and chemoresistance in pancreatic cancer cells.
Collapse
Affiliation(s)
- Jili Hu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, China
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations In Medical Science & NHC Key Laboratory of Birth Defects Prevention, China
| | - Jia Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Xu Guo
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Qing Fan
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xinming Li
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Kai Li
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Zhuoyin Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Shuntao Liang
- Center for Biomedical Innovation, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Buhe Amin
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Nengwei Zhang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Chaowen Chen
- Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Bin Zhu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of General Surgery, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing, China
| |
Collapse
|
34
|
Lee G, Wong C, Cho A, West JJ, Crawford AJ, Russo GC, Si BR, Kim J, Hoffner L, Jang C, Jung M, Leone RD, Konstantopoulos K, Ewald AJ, Wirtz D, Jeong S. Serine synthesis pathway upregulated by E-cadherin is essential for the proliferation and metastasis of breast cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.24.541452. [PMID: 37292712 PMCID: PMC10245808 DOI: 10.1101/2023.05.24.541452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The loss of E-cadherin (E-cad), an epithelial cell adhesion molecule, has been implicated in the epithelial-mesenchymal transition (EMT), promoting invasion and migration of cancer cells and, consequently, metastasis. However, recent studies have demonstrated that E-cad supports the survival and proliferation of metastatic cancer cells, suggesting that our understanding of E-cad in metastasis is far from comprehensive. Here, we report that E-cad upregulates the de novo serine synthesis pathway (SSP) in breast cancer cells. The SSP provides metabolic precursors for biosynthesis and resistance to oxidative stress, critically beneficial for E-cad-positive breast cancer cells to achieve faster tumor growth and more metastases. Inhibition of PHGDH, a rate-limiting enzyme in the SSP, significantly and specifically hampered the proliferation of E-cad-positive breast cancer cells and rendered them vulnerable to oxidative stress, inhibiting their metastatic potential. Our findings reveal that E-cad adhesion molecule significantly reprograms cellular metabolism, promoting tumor growth and metastasis of breast cancers.
Collapse
|
35
|
Zhou X, Li Y, Pan M, Lu T, Liu C, Wang Z, Tang F, Hu G. PKM2 promotes lymphatic metastasis of hypopharyngeal carcinoma via regulating epithelial-mesenchymal transition: an experimental research. Diagn Pathol 2024; 19:48. [PMID: 38431604 PMCID: PMC10907999 DOI: 10.1186/s13000-024-01474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Patients with hypopharyngeal carcinoma (HPC) have a poor prognosis mainly because of lymphatic metastasis. This research aimed to determine the PKM2 role in lymphatic metastasis in HPC and the underlying molecular mechanism contributing to this phenomenon. METHODS PKM2 in HPC was studied for its expression and its likelihood of overall survival using TCGA dataset. Western blotting, qRT-PCR, and IHC were employed to confirm PKM2 expression. Methods including gain- and loss-of-function were used to examine the PKM2 role in HPC metastasis in vitro and in vivo. In vitro and in vivo studies also confirmed lymphatic metastasis's mechanism. RESULTS Prominent PKM2 overexpression was seen in patients with lymphatic metastasis of HPC, and there was an inherent relationship between a high PKM2 level and poor prognosis. In vitro research showed that knocking down PKM2 decreased tumor cell invasion, migration, and proliferation while promoting apoptosis and inhibiting epithelial-mesenchymal transition, but overexpressing PKM2 had the reverse effect. Animal studies suggested that PKM2 may facilitate tumor development and lymphatic metastasis. CONCLUSIONS Our findings suggest that PKM2 may be a tumor's promoter gene of lymphatic metastasis, which may promote lymphatic metastasis of HPC by regulating epithelial-mesenchymal transition. PKM2 may be a biomarker of metastatic potential, ultimately providing a basis for exploring new therapeutic targets.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Otolaryngology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yanshi Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Min Pan
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tao Lu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Chuan Liu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhihai Wang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Fengxiang Tang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Guohua Hu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
36
|
Sun M, Song P, Zhao Y, Li B, Wang P, Cong Z, Hua S. Mechanisms of LPS-induced epithelial mesenchymal transition in bEECs. Theriogenology 2024; 216:30-41. [PMID: 38154204 DOI: 10.1016/j.theriogenology.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
High-concentrate diets cause subacute ruminal acidosis, resulting in increased blood lipopolysaccharide (LPS) levels in cows. We found that the peak LPS in cows fed with high-concentrate diets coincides the period of embryo implantation in a large-scale dairy farm. As epithelial-mesenchymal transition (EMT) should be tightly regulated during normal embryo implantation in cows, we speculated that increased LPS may cause abnormal EMT, thereby inhibiting embryo implantation in cows. To confirm that elevated LPS levels induce abnormal EMT in cows, we treated bovine endometrial epithelial cells (bEECs) with LPS for 48 h and analyzed the protein levels of ZEB1, a major EMT-related transcription factor, which is positively regulated by the TGFβ/SMAD3 pathway. In addition, we analyzed the changes in expression of three EMT-related genes (E-cadherin, N-cadherin, and Vimentin), and examined the morphology and migratory ability of the cells. The results showed that elevated LPS levels increased protein expression of ZEB1, vimentin, and N-cadherin, and reduced that of E-cadherin. Elevated LPS also increased bEECs migration rate, and induced the cells to acquire a mesenchymal phenotype. Furthermore, benzyl butyl phthalate (BBP)-induced ZEB1 overexpression significantly decreased E-cadherin levels and increased N-cadherin levels. As LPS treatment also decreased the expression of Bta-miR-200b, we further found that Bta-miR-200b targets to the 3'UTR of ZEB1 through the confirmation of dual-luciferase reporter system. And the increased level of Bta-miR-200b by mimic enhanced the expression of E-cadherin and yet inhibited the expression of N-cadherin in protein, which exactly opposite to the results induced by LPS. In conclusion, LPS induced EMT in bEECs by upregulating ZEB1, while Bta-miR-200b could inhibit the occurrence of EMT by binding ZEB1 3'UTR. These results provide a new insight for low reproductive rate of dairy cows under the background of high-concentrate diets.
Collapse
Affiliation(s)
- Mingkun Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengjie Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Bowen Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Ping Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhipeng Cong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Song Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
37
|
Feng L, Tang X, You Z. Undifferentiated sarcomatoid carcinoma of the pancreas-a single-institution experience with 23 cases. BMC Cancer 2024; 24:250. [PMID: 38389041 PMCID: PMC10885366 DOI: 10.1186/s12885-024-11988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The clinical course and surgical outcomes of undifferentiated sarcomatoid carcinoma of the pancreas (USCP) remain poorly characterized owing to its rarity. This study aimed to describe the histology, clinicopathologic features, perioperative outcomes, and overall survival (OS) of 23 resected USCP patients. METHODS We retrospectively described the histology, clinicopathologic features, perioperative outcomes and OS of patients who underwent pancreatectomy with a final diagnosis of USCP in a single institution. RESULTS A total of 23 patients were included in this study. Twelve patients were male, the median age at diagnosis was 61.5 ± 13.0 years (range: 35-89). Patients with USCP had no specific symptoms and characteristic imaging findings. The R0 resection was achieved in 21 cases. The En bloc resection and reconstruction of mesenteric-portal axis was undertaken in 9 patients. There were no deaths attributed to perioperative complications in this study. The intraoperative tumor-draining lymph nodes (TDLNs) dissection was undergone in 14 patients. The 1-, 3- and 5-year survival rates were 43.5%, 4.8% and 4.8% in the whole study, the median survival was 9.0 months. Only 1 patient had survived more than 5 years and was still alive at last follow-up. The presence of distant metastasis (p = 0.004) and the presence of pathologically confirmed mesenteric-portal axis invasion (p = 0.007) was independently associated with poor OS. CONCLUSIONS USCP was a rare subgroup of pancreatic malignancies with a bleak prognosis. To make a diagnose of USCP by imaging was quite difficult because of the absence of specific manifestations. Accurate diagnosis depended on pathological biopsy, and the IHC profile of USCP was mainly characterized by co-expression of epithelial and mesenchymal markers. A large proportion of patients have an early demise, especially for patients with distant metastasis and pathologically confirmed mesenteric-portal axis invasion. Long-term survival after radical resection of USCPs remains rare.
Collapse
Affiliation(s)
- Lei Feng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, China
| | - Xiaojuan Tang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, China
| | - Zhen You
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37, Guoxue Lane, Wuhou District, Chengdu, Sichuan, China.
| |
Collapse
|
38
|
Acosta LH, Pino MTL, Rocca MV, Cabilla JP. Soluble guanylyl cyclase beta1 subunit targets epithelial-to-mesenchymal transition and downregulates Akt pathway in human endometrial and cervical cancer cells. Heliyon 2024; 10:e23927. [PMID: 38205317 PMCID: PMC10777080 DOI: 10.1016/j.heliyon.2023.e23927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Endometrial and cervical cancer are among the most frequently diagnosed malignancies globally. Nitric oxide receptor-soluble guanylyl cyclase (sGC) is a heterodimeric enzyme composed of two subunits, α1 and β1. Previously we showed that sGCα1 subunit promotes cell survival, proliferation, and migration, but the role of sGCβ1 subunit has not been addressed. The aim of the present work was to study the impact of sGCβ1 restoration in proliferation, survival, migration, and cell signaling in endometrial and cervical cancer cells. We found that sGCβ1 transcript levels are reduced in endometrial and cervical tumors vs normal tissues. We confirmed nuclear enrichment of sGCβ1, unlike sGCα1. Overexpression of sGCβ1 reduced cell viability and augmented apoptotic index. Cell migration and invasion were also negatively affected. All these sGCβ1-driven effects were independent of sGC enzymatic activity. sGCβ1 reduced the expression of epithelial-to-mesenchymal transition factors such as N-cadherin and β-catenin and increased the expression of E-cadherin. sGCβ1 impacted signaling in endometrial and cervical cancer cells through significant downregulation of Akt pathway affecting some of its main targets such as GSK-3β and c-Raf. Our results show for the first time that sGCβ1 exerts several antiproliferative actions in ECC-1 and HeLa cell lines by targeting key regulatory pathways.
Collapse
Affiliation(s)
- Lucas H. Acosta
- CONICET-Universidad Abierta Interamericana. Centro de Altos Estudios en Ciencias Humanas y de la Salud. Buenos Aires, Argentina
| | - María Teresa L. Pino
- CONICET-Universidad Abierta Interamericana. Centro de Altos Estudios en Ciencias Humanas y de la Salud. Buenos Aires, Argentina
| | - María Victoria Rocca
- CONICET-Universidad Abierta Interamericana. Centro de Altos Estudios en Ciencias Humanas y de la Salud. Buenos Aires, Argentina
| | - Jimena P. Cabilla
- CONICET-Universidad Abierta Interamericana. Centro de Altos Estudios en Ciencias Humanas y de la Salud. Buenos Aires, Argentina
| |
Collapse
|
39
|
den Hollander P, Maddela JJ, Mani SA. Spatial and Temporal Relationship between Epithelial-Mesenchymal Transition (EMT) and Stem Cells in Cancer. Clin Chem 2024; 70:190-205. [PMID: 38175600 PMCID: PMC11246550 DOI: 10.1093/clinchem/hvad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is often linked with carcinogenesis. However, EMT is also important for embryo development and only reactivates in cancer. Connecting how EMT occurs during embryonic development and in cancer could help us further understand the root mechanisms of cancer diseases. CONTENT There are key regulatory elements that contribute to EMT and the induction and maintenance of stem cell properties during embryogenesis, tissue regeneration, and carcinogenesis. Here, we explore the implications of EMT in the different stages of embryogenesis and tissue development. We especially highlight the necessity of EMT in the mesodermal formation and in neural crest cells. Through EMT, these cells gain epithelial-mesenchymal plasticity (EMP). With this transition, crucial morphological changes occur to progress through the metastatic cascade as well as tissue regeneration after an injury. Stem-like cells, including cancer stem cells, are generated from EMT and during this process upregulate factors necessary for stem cell maintenance. Hence, it is important to understand the key regulators allowing stem cell awakening in cancer, which increases plasticity and promotes treatment resistance, to develop strategies targeting this cell population and improve patient outcomes. SUMMARY EMT involves multifaceted regulation to allow the fluidity needed to facilitate adaptation. This regulatory mechanism, plasticity, involves many cooperating transcription factors. Additionally, posttranslational modifications, such as splicing, activate the correct isoforms for either epithelial or mesenchymal specificity. Moreover, epigenetic regulation also occurs, such as acetylation and methylation. Downstream signaling ultimately results in the EMT which promotes tissue generation/regeneration and cancer progression.
Collapse
Affiliation(s)
- Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Joanna Joyce Maddela
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Sendurai A Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
40
|
Frey N, Ouologuem L, Blenninger J, Siow WX, Thorn-Seshold J, Stöckl J, Abrahamian C, Fröhlich T, Vollmar AM, Grimm C, Bartel K. Endolysosomal TRPML1 channel regulates cancer cell migration by altering intracellular trafficking of E-cadherin and β 1-integrin. J Biol Chem 2024; 300:105581. [PMID: 38141765 PMCID: PMC10825694 DOI: 10.1016/j.jbc.2023.105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/25/2023] Open
Abstract
Metastasis still accounts for 90% of all cancer-related death cases. An increase of cellular mobility and invasive traits of cancer cells mark two crucial prerequisites of metastasis. Recent studies highlight the involvement of the endolysosomal cation channel TRPML1 in cell migration. Our results identified a widely antimigratory effect upon loss of TRPML1 function in a panel of cell lines in vitro and reduced dissemination in vivo. As mode-of-action, we established TRPML1 as a crucial regulator of cytosolic calcium levels, actin polymerization, and intracellular trafficking of two promigratory proteins: E-cadherin and β1-integrin. Interestingly, KO of TRPML1 differentially interferes with the recycling process of E-cadherin and β1-integrin in a cell line-dependant manner, while resulting in the same phenotype of decreased migratory and adhesive capacities in vitro. Additionally, we observed a coherence between reduction of E-cadherin levels at membrane site and phosphorylation of NF-κB in a β-catenin/p38-mediated manner. As a result, an E-cadherin/NF-κB feedback loop is generated, regulating E-cadherin expression on a transcriptional level. Consequently, our findings highlight the role of TRPML1 as a regulator in migratory processes and suggest the ion channel as a suitable target for the inhibition of migration and invasion.
Collapse
Affiliation(s)
- Nadine Frey
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lina Ouologuem
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Julia Blenninger
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wei-Xiong Siow
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Julia Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan Stöckl
- Gene Center, Laboratory for Functional Genome Analysis, Ludwig Maximilians-University Munich, Munich, Germany
| | - Carla Abrahamian
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Fröhlich
- Gene Center, Laboratory for Functional Genome Analysis, Ludwig Maximilians-University Munich, Munich, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Grimm
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karin Bartel
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
41
|
Golconda P, Andrade-Medina M, Oberstein A. Subconfluent ARPE-19 Cells Display Mesenchymal Cell-State Characteristics and Behave like Fibroblasts, Rather Than Epithelial Cells, in Experimental HCMV Infection Studies. Viruses 2023; 16:49. [PMID: 38257749 PMCID: PMC10821009 DOI: 10.3390/v16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Human cytomegalovirus (HCMV) has a broad cellular tropism and epithelial cells are important physiological targets during infection. The retinal pigment epithelial cell line ARPE-19 has been used to model HCMV infection in epithelial cells for decades and remains a commonly used cell type for studying viral entry, replication, and the cellular response to infection. We previously found that ARPE-19 cells, despite being derived from an epithelial cell explant, express extremely low levels of canonical epithelial proteins, such as E-cadherin and EpCAM. Here, we perform comparative studies of ARPE-19 and additional epithelial cell lines with strong epithelial characteristics. We find that ARPE-19 cells cultured under subconfluent conditions resemble mesenchymal fibroblasts, rather than epithelial cells; this is consistent with previous studies showing that ARPE-19 cultures require extended periods of high confluency culture to maintain epithelial characteristics. By reanalyzing public gene expression data and using machine learning, we find evidence that ARPE-19 cultures maintained across many labs exhibit mesenchymal characteristics and that the majority of studies employing ARPE-19 use them in a mesenchymal state. Lastly, by performing experimental HCMV infections across mesenchymal and epithelial cell lines, we find that ARPE-19 cells behave like mesenchymal fibroblasts, producing logarithmic yields of cell-free infectious progeny, while cell lines with strong epithelial character exhibit an atypical infectious cycle and naturally restrict the production of cell-free progeny. Our work highlights important characteristics of the ARPE-19 cell line and suggests that subconfluent ARPE-19 cells may not be optimal for modeling epithelial infection with HCMV or other human viruses. It also suggests that HCMV biosynthesis and/or spread may occur quite differently in epithelial cells compared to mesenchymal cells. These differences could contribute to viral persistence or pathogenesis in epithelial tissues.
Collapse
Affiliation(s)
| | | | - Adam Oberstein
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Ave., Chicago, IL 60612, USA; (P.G.); (M.A.-M.)
| |
Collapse
|
42
|
Zheng J, Sun B, Berardi D, Lu L, Yan H, Zheng S, Aladelokun O, Xie Y, Cai Y, Godri Pollitt KJ, Khan SA, Johnson CH. Perfluorooctanesulfonic Acid and Perfluorooctanoic Acid Promote Migration of Three-Dimensional Colorectal Cancer Spheroids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21016-21028. [PMID: 38064429 DOI: 10.1021/acs.est.3c04844] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are persistent environmental contaminants that are of increasing public concern worldwide. However, their relationship with colorectal cancer (CRC) is poorly understood. This study aims to comprehensively investigate the effect of PFOS and PFOA on the development and progression of CRC in vitro using a series of biological techniques and metabolic profiling. Herein, the migration of three-dimensional (3D) spheroids of two CRC cell lines, SW48 KRAS wide-type (WT) and SW48 KRAS G12A, were observed after exposure to PFOS and PFOA at 2 μM and 10 μM for 7 days. The time and dose-dependent migration phenotype induced by 10 μM PFOS and PFOA was further confirmed by wound healing and trans-well migration assays. To investigate the mechanism of action, derivatization-mass spectrometry-based metabolic profiles were examined from 3D spheroids of SW48 cell lines exposed to PFOS and PFOA (2 μM and 10 μM). Our findings revealed this exposure altered epithelial-mesenchymal transition related metabolic pathways, including fatty acid β-oxidation and synthesis of proteins, nucleotides, and lipids. Furthermore, this phenotype was confirmed by the downregulation of E-cadherin and upregulation of N-cadherin and vimentin. These findings show novel insight into the relationship between PFOS, PFOA, and CRC.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Boshi Sun
- Division of Surgical Oncology, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510, United States
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Domenica Berardi
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Hong Yan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Shujian Zheng
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, United States
| | - Oladimeji Aladelokun
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Yangzhouyun Xie
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Yujun Cai
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Sajid A Khan
- Division of Surgical Oncology, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| |
Collapse
|
43
|
Nagai-Singer MA, Woolls MK, Leedy K, Hendricks-Wenger A, Brock RM, Coutermarsh-Ott S, Paul T, Morrison HA, Imran KM, Tupik JD, Fletcher EJ, Brown DA, Allen IC. Cellular Context Dictates the Suppression or Augmentation of Triple-Negative Mammary Tumor Metastasis by NLRX1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1844-1857. [PMID: 37909827 PMCID: PMC10694032 DOI: 10.4049/jimmunol.2200834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Prior studies have defined multiple, but inconsistent, roles for the enigmatic pattern recognition receptor NLRX1 in regulating several cancer-associated biological functions. In this study, we explore the role of NLRX1 in the highly metastatic murine 4T1 mammary tumor model. We describe a functional dichotomy of NLRX1 between two different cellular contexts: expression in healthy host cells versus expression in the 4T1 tumor cells. Using Nlrx1-/- mice engrafted with 4T1 tumors, we demonstrate that NLRX1 functions as a tumor suppressor when expressed in the host cells. Specifically, NLRX1 in healthy host cells attenuates tumor growth and lung metastasis through suppressing characteristics of epithelial-mesenchymal transition and the lung metastatic niche. Conversely, we demonstrate that NLRX1 functions as a tumor promoter when expressed in 4T1 tumor cells using gain- and loss-of-function studies both in vitro and in vivo. Mechanistically, NLRX1 in the tumor cells augments 4T1 aggressiveness and metastasis through regulating epithelial-mesenchymal transition hallmarks, cell death, proliferation, migration, reactive oxygen species levels, and mitochondrial respiration. Collectively, we provide critical insight into NLRX1 function and establish a dichotomous role of NLRX1 in the 4T1 murine mammary carcinoma model that is dictated by cellular context.
Collapse
Affiliation(s)
- Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Mackenzie K. Woolls
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Katerina Leedy
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | | | - Rebecca M. Brock
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Tamalika Paul
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Khan M. Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA
| | - Juselyn D. Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Endia J. Fletcher
- Postbaccalaureate Research Education Program, Virginia Tech, Blacksburg, VA
| | | | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| |
Collapse
|
44
|
Dai CL, Yang HX, Liu QP, Rahman K, Zhang H. CXCL6: A potential therapeutic target for inflammation and cancer. Clin Exp Med 2023; 23:4413-4427. [PMID: 37612429 DOI: 10.1007/s10238-023-01152-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023]
Abstract
Chemokines were originally defined as cytokines that affect the movement of immune cells. In recent years, due to the increasing importance of immune cells in the tumor microenvironment (TME), the role of chemokines has changed from a single "chemotactic agent" to a key factor that can regulate TME and affect the tumor phenotype. CXCL6, also known as granulocyte chemoattractant protein-2 (GCP-2), can recruit neutrophils to complete non-specific immunity in the process of inflammation. Cancer-related genes and interleukin family can promote the abnormal secretion of CXCL6, which promotes tumor growth, metastasis, epithelial mesenchymal transformation (EMT) and angiogenesis in the TME. CXCL6 also has a role in promoting fibrosis and tissue damage repair. In this review, we focus on the regulatory network affecting CXCL6 expression, its role in the progress of inflammation and how it affects tumorigenesis and progression based on the TME, in an attempt to provide a potential target for the treatment of diseases such as inflammation and cancer.
Collapse
Affiliation(s)
- Chun-Lan Dai
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Xuan Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
45
|
Nasr MM, Lynch CC. How circulating tumor cluster biology contributes to the metastatic cascade: from invasion to dissemination and dormancy. Cancer Metastasis Rev 2023; 42:1133-1146. [PMID: 37442876 PMCID: PMC10713810 DOI: 10.1007/s10555-023-10124-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Circulating tumor cells (CTCs) are known to be prognostic for metastatic relapse and are detected in patients as solitary cells or cell clusters. Circulating tumor cell clusters (CTC clusters) have been observed clinically for decades and are of significantly higher metastatic potential compared to solitary CTCs. Recent studies suggest distinct differences in CTC cluster biology regarding invasion and survival in circulation. However, differences regarding dissemination, dormancy, and reawakening require more investigations compared to solitary CTCs. Here, we review the current state of CTC cluster research and consider their clinical significance. In addition, we discuss the concept of collective invasion by CTC clusters and molecular evidence as to how cluster survival in circulation compares to that of solitary CTCs. Molecular differences between solitary and clustered CTCs during dormancy and reawakening programs will also be discussed. We also highlight future directions to advance our current understanding of CTC cluster biology.
Collapse
Affiliation(s)
- Mostafa M Nasr
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
46
|
Zhang W, Dong J. Suppressing epithelial-mesenchymal-transition blue light therapy for reducing macrophage-mediated cancerous pulmonary fibrosis: An in-vitro study. JOURNAL OF BIOPHOTONICS 2023; 16:e202300253. [PMID: 37589213 DOI: 10.1002/jbio.202300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Lung cancer is the leading killer among all types of cancer globally. As a key factor, epithelial-mesenchymal transition (EMT) plays a crucial role in pathological fibrosis and lung cancer metastasis. This study endeavors to investigate the effect of blue light at specific wavelengths of 405 nm and 415 nm (54 J/cm2 ) on EMT induced by TGF-β1 in A549 cells. The results revealed that the blue light irradiation reduced the morphological characteristics of EMT in the A549 cells, and cell-to-cell connections were weakened significantly. Molecular analysis showed upregulation of epithelial marker E-cadherin and downregulation of EMT marker vimentin. Additionally, exposure to blue light irradiation at 405 nm and 415 nm significantly decelerated the ability of invasion and migration. Moreover, cell viability was also investigated. Based on these findings, blue light can serve as a useful therapeutic option for inhibiting EMT in cases of lung cancer and fibrotic lung disease.
Collapse
Affiliation(s)
- Wenjun Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jianfei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Future Science and Engineering, Soochow University, Suzhou, China
| |
Collapse
|
47
|
Guo M, Shen D, Su Y, Xu J, Zhao S, Zhang W, Wang Y, Jiang W, Wang J, Geng X, Ding X, Xu X. Syndecan-1 shedding destroys epithelial adherens junctions through STAT3 after renal ischemia/reperfusion injury. iScience 2023; 26:108211. [PMID: 37942007 PMCID: PMC10628745 DOI: 10.1016/j.isci.2023.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/22/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Adherens junctions between tubular epithelial cells are disrupted in renal ischemia/reperfusion (I/R) injury. Syndecan-1 (SDC-1) is involved in maintaining cell morphology. We aimed to study the role of SDC-1 shedding induced by renal I/R in the destruction of intracellular adherens junctions. We found that SDC-1 shedding was increased while the expression of E-cadherin was decreased. This observation was accompanied by the activation of STAT3 in the kidneys. Inhibiting the shedding of SDC-1 induced by I/R could alleviate this effect. Mild renal I/R could induce more severe renal injury, lower E-cadherin expression, damaged cell junctions, and activated STAT3 in knockout mice with the tubule-specific deletion of SDC-1 mice. The results in vitro were consistent with those in vivo. Inhibiting the shedding of SDC-1 could alleviate the decreased expression of E-cadherin and damage of cell adherens junctions through inhibiting the activation of STAT3 during ischemic acute kidney injury.
Collapse
Affiliation(s)
- Man Guo
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Daoqi Shen
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Yiqi Su
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jiarui Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Shuan Zhao
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Weidong Zhang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Yaqiong Wang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Wuhua Jiang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jialin Wang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Xuemei Geng
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Xialian Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| |
Collapse
|
48
|
Zhong Y, Yu F, Yang L, Wang Y, Liu L, Jia C, Cai H, Yang J, Sheng S, Lv Z, Weng L, Wu B, Zhang X. HOXD9/miR-451a/PSMB8 axis is implicated in the regulation of cell proliferation and metastasis via PI3K/AKT signaling pathway in human anaplastic thyroid carcinoma. J Transl Med 2023; 21:817. [PMID: 37974228 PMCID: PMC10652604 DOI: 10.1186/s12967-023-04538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/17/2023] [Indexed: 11/19/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a deadly disease with a poor prognosis. Thus, there is a pressing need to determine the mechanism of ATC progression. The homeobox D9 (HOXD9) transcription factor has been associated with numerous malignancies but its role in ATC is unclear. In the present study, the carcinogenic potential of HOXD9 in ATC was investigated. We assessed the differential expression of HOXD9 on cell proliferation, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT) in ATC and explored the interactions between HOXD9, microRNA-451a (miR-451a), and proteasome 20S subunit beta 8 (PSMB8). In addition, subcutaneous tumorigenesis and lung metastasis in mouse models were established to investigate the role of HOXD9 in ATC progression and metastasis in vivo. HOXD9 expression was enhanced in ATC tissues and cells. Knockdown of HOXD9 inhibited cell proliferation, migration, invasion, and EMT but increased apoptosis in ATC cells. The UCSC Genome Browser and JASPAR database identified HOXD9 as an upstream regulator of miR-451a. The direct binding of miR-451a to the untranslated region (3'-UTR) of PSMB8 was established using a luciferase experiment. Blocking or activation of PI3K by LY294002 or 740Y-P could attenuate the effect of HOXD9 interference or overexpression on ATC progression. The PI3K/AKT signaling pathway was involved in HOXD9-stimulated ATC cell proliferation and EMT. Consistent with in vitro findings, the downregulation of HOXD9 in ATC cells impeded tumor growth and lung metastasis in vivo. Our research suggests that through PI3K/AKT signaling, the HOXD9/miR-451a/PSMB8 axis may have significance in the control of cell proliferation and metastasis in ATC. Thus, HOXD9 could serve as a potential target for the diagnosis of ATC.
Collapse
Affiliation(s)
- Yong Zhong
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Fan Yu
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Ling Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Jianshe Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Shiyang Sheng
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University and Shanghai Center of Thyroid Diseases, No. 301 Middle Yanchang Road, Shanghai, 200072, China.
| | - Li Weng
- Department of Intervention, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Bo Wu
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Xiaoping Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
49
|
Qiang L, Zhao B, Ming M, Wang N, He TC, Hwang S, Thorburn A, He YY. Autophagy regulates tumor growth and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564991. [PMID: 37961427 PMCID: PMC10635024 DOI: 10.1101/2023.10.31.564991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The role of autophagy in tumorigenesis and tumor metastasis remains poorly understood. Here we show that inhibition of autophagy stabilizes the transcription factor Twist1 through Sequestosome-1 (SQSTM1, also known as p62) and thus increases cell proliferation, migration, and epithelial-mesenchymal transition (EMT) in tumor development and metastasis. Inhibition of autophagy or p62 overexpression blocks Twist1 protein degradation in the proteasomes, while p62 inhibition enhances it. SQSTM1/p62 interacts with Twist1 via the UBA domain of p62, in a Twist1-ubiquitination-dependent manner. Lysine 175 in Twist1 is critical for Twist1 ubiquitination, degradation, and SQSTM1/p62 interaction. For squamous skin cancer and melanoma cells that express Twist1, SQSTM1/p62 increases tumor growth and metastasis in mice. Together, our results identified Twist1 as a key downstream protein for autophagy and suggest a critical role of the autophagy/p62/Twist1 axis in cancer development and metastasis.
Collapse
Affiliation(s)
- Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Baozhong Zhao
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Mei Ming
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Ning Wang
- Department of Orthopaedic Surgery & Rehabilitation Medicine, University of Chicago, Chicago, IL, USA
| | - Tong-Chuan He
- Department of Orthopaedic Surgery & Rehabilitation Medicine, University of Chicago, Chicago, IL, USA
| | - Seungmin Hwang
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
50
|
Li S, Wang Z, Geng R, Zhang W, Wan H, Kang X, Guo S. TMEM16A ion channel: A novel target for cancer treatment. Life Sci 2023; 331:122034. [PMID: 37611692 DOI: 10.1016/j.lfs.2023.122034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Cancer draws attention owing to the high morbidity and mortality. It is urgent to develop safe and effective cancer therapeutics. The calcium-activated chloride channel TMEM16A is widely distributed in various tissues and regulates physiological functions. TMEM16A is abnormally expressed in several cancers and associate with tumorigenesis, metastasis, and prognosis. Knockdown or inhibition of TMEM16A in cancer cells significantly inhibits cancer development. Therefore, TMEM16A is considered as a biomarker and therapeutic target for some cancers. This work reviews the cancers associated with TMEM16A. Then, the molecular mechanism of TMEM16A overexpression in cancer was analyzed, and the possible signal transduction mechanism of TMEM16A regulating cancer development was summarized. Finally, TMEM16A inhibitors with anticancer effect and their anticancer mechanism were concluded. We hope to provide new ideas for pharmacological studies on TMEM16A in cancer.
Collapse
Affiliation(s)
- Shuting Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Zhichen Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Ruili Geng
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Weiwei Zhang
- School of Basic Medical Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Haifu Wan
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|