1
|
Kulich P, Marvanová S, Skoupý R, Škorič M, Vysloužil J, Šerý O, Mikuška P, Alexa L, Coufalík P, Křůmal K, Moravec P, Večeřa Z, Machala M. Subchronic Inhalation of TiO 2 Nanoparticles Leads to Deposition in the Lung and Alterations in Erythrocyte Morphology in Mice. J Appl Toxicol 2025; 45:1004-1018. [PMID: 39933250 PMCID: PMC12061548 DOI: 10.1002/jat.4759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025]
Abstract
TiO2 nanoparticles (NPs) are extensively used in various applications, highlighting the importance of ongoing research into their effects. This work belongs among rare whole-body inhalation studies investigating the effects of TiO2 NPs on mice. Unlike previous studies, the concentration of TiO2 NPs in the inhalation chamber (130.8 μg/m3) was significantly lower. This 11-week study on mice confirmed in vivo the presence of TiO2 NPs in lung macrophages and type II pneumocytes including their intracellular localization by using the electron microscopy and the state-of-the-art methods detecting NPs' chemical identity/crystal structure, such as the energy-dispersed X-ray spectroscopy (EDX), cathodoluminescence (CL), and detailed diffraction pattern analysis using powder nanobeam diffraction (PNBD). For the first time in inhalation study in vivo, the alterations in erythrocyte morphology with evidence of echinocytes and stomatocytes, accompanied by iron accumulation in spleen, liver, and kidney, are reported following NP's exposure. Together with the histopathological evidence of hyperaemia in the spleen and kidney, and haemosiderin presence in the spleen, the finding of NPs containing iron might suggest the increased decomposition of damaged erythrocytes. The detection of TiO2 NPs on erythrocytes through CL analysis confirmed their potential systemic availability. On the contrary, TiO2 NPs were not confirmed in other organs (spleen, liver, and kidney); Ti was detected only in the kidney near the detection limit.
Collapse
Affiliation(s)
- Pavel Kulich
- Department of Pharmacology and ToxicologyVeterinary Research InstituteBrnoCzech Republic
| | - Soňa Marvanová
- Department of Pharmacology and ToxicologyVeterinary Research InstituteBrnoCzech Republic
| | - Radim Skoupý
- Institute of Scientific InstrumentsCzech Academy of SciencesBrnoCzech Republic
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| | - Miša Škorič
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary MedicineUniversity of Veterinary SciencesBrnoCzech Republic
| | - Jan Vysloužil
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Omar Šerý
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| | - Pavel Mikuška
- Department of Environmental Analytical Chemistry, Institute of Analytical ChemistryCzech Academy of SciencesBrnoCzech Republic
| | - Lukáš Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical ChemistryCzech Academy of SciencesBrnoCzech Republic
| | - Pavel Coufalík
- Department of Environmental Analytical Chemistry, Institute of Analytical ChemistryCzech Academy of SciencesBrnoCzech Republic
| | - Kamil Křůmal
- Department of Environmental Analytical Chemistry, Institute of Analytical ChemistryCzech Academy of SciencesBrnoCzech Republic
| | - Pavel Moravec
- Department of Environmental Engineering, Institute of Chemical Process FundamentalsCzech Academy of SciencesPragueCzech Republic
| | - Zbyněk Večeřa
- Department of Environmental Analytical Chemistry, Institute of Analytical ChemistryCzech Academy of SciencesBrnoCzech Republic
| | - Miroslav Machala
- Department of Pharmacology and ToxicologyVeterinary Research InstituteBrnoCzech Republic
| |
Collapse
|
2
|
Chen Z, Dou J, Zhang X. Chinese medicine targets cellular autophagy against cardiovascular diseases: research progress and future prospects. Front Cardiovasc Med 2025; 12:1585407. [PMID: 40491718 PMCID: PMC12146376 DOI: 10.3389/fcvm.2025.1585407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/08/2025] [Indexed: 06/11/2025] Open
Abstract
Cardiovascular diseases (CVDs) pose a serious threat to human health and represent one of the leading causes of death worldwide. Cellular autophagy, an essential intracellular self-degradation and homeostasis maintenance mechanism, plays a pivotal role in the pathogenesis of cardiovascular diseases. Traditional Chinese Medicine (TCM), with its unique theoretical framework and therapeutic principles, has demonstrated remarkable efficacy in CVDs management, garnering increasing scientific attention. In recent years, growing research attention has focused on TCM's autophagy regulation for CVDs treatment. However, most studies remain limited to cellular and animal models, with insufficient clinical data and unclear specific metabolic pathways and targets. Therefore, it is imperative to (1) investigate autophagy mechanisms in depth (2), explore methods for autophagy balance, and (3) clarify drug interactions to establish a foundation for clinical applications. This article comprehensively summarizes relevant research findings, provides an in-depth discussion of TCM's mechanisms in autophagy regulation for CVDs treatment, reviews current research status, and outlines future development trends, aiming to offer valuable theoretical foundations and therapeutic strategies for clinical CVDs management.
Collapse
Affiliation(s)
- Zhengyu Chen
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jinjin Dou
- Department of Cardiovascular, The Fourth Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Gong G, Wan W, Zhang X, Chen X, Yin J. Management of ROS and Regulatory Cell Death in Myocardial Ischemia-Reperfusion Injury. Mol Biotechnol 2025; 67:1765-1783. [PMID: 38852121 DOI: 10.1007/s12033-024-01173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 06/10/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is fatal to patients, leading to cardiomyocyte death and myocardial remodeling. Reactive oxygen species (ROS) and oxidative stress play important roles in MIRI. There is a complex crosstalk between ROS and regulatory cell deaths (RCD) in cardiomyocytes, such as apoptosis, pyroptosis, autophagy, and ferroptosis. ROS is a double-edged sword. A reasonable level of ROS maintains the normal physiological activity of myocardial cells. However, during myocardial ischemia-reperfusion, excessive ROS generation accelerates myocardial damage through a variety of biological pathways. ROS regulates cardiomyocyte RCD through various molecular mechanisms. Targeting the removal of excess ROS has been considered an effective way to reverse myocardial damage. Many studies have applied antioxidant drugs or new advanced materials to reduce ROS levels to alleviate MIRI. Although the road from laboratory to clinic has been difficult, many scholars still persevere. This article reviews the molecular mechanisms of ROS inhibition to regulate cardiomyocyte RCD, with a view to providing new insights into prevention and treatment strategies for MIRI.
Collapse
Affiliation(s)
- Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Xinghu Zhang
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Xiangxuan Chen
- Department of Cardiology, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical Medical College of Jiangsu Medical Vocational College, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical Medical College of Nanjing Medical University Kangda College, Nanjing, 211100, China.
| |
Collapse
|
4
|
Mishra AK, Hossain MM, Sata TN, Pant K, Yadav AK, Sah AK, Gupta P, Ismail M, Nayak B, Shalimar, Venugopal SK. ALR inhibits HBV replication and autophagosome formation by ameliorating HBV-induced ROS production in hepatic cells. Virus Genes 2025; 61:167-178. [PMID: 39934594 DOI: 10.1007/s11262-025-02139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
HBV has a small genome and thrives in the infected hepatocytes by hijacking the cellular machinery and cellular pathways. HBV induces incomplete autophagy for its replication and survival. This study showed that HBV replication induces Reactive oxygen species (ROS) production, which in turn augments the formation of autophagosomes. Augmenter of liver regeneration (ALR) is a sufhydryl oxidase and has an anti-oxidative property. We sought to determine the interplay between HBV and antioxidant protein ALR. We showed that HBV downregulated ALR expression in hepatic cells. There was increased ROS production in HBV-infected cells while ALR downregulated ROS levels and expression of NADPH oxidase NOX4. N-acetyl cysteine, a ROS scavenger, downregulated ROS level and autophagosome formation in HBV-expressing cells. ALR overexpression in HBV-expressing cells downregulated the expression of autophagy marker proteins while upregulated the expression of p-MTOR. ALR overexpression decreased the expression of HBx, HBsAg, and total HBV load. This study showed that HBx relieved ALR-mediated inhibition by upregulating the miR-181a expression in HBV-infected cells, which in turn downregulated ALR expression.
Collapse
Affiliation(s)
- Amit Kumar Mishra
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Md Musa Hossain
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
| | - Teja Naveen Sata
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
| | - Kishor Pant
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Ajay K Yadav
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
- Indiana University, Bloomington, IN, USA
| | - Amrendra Kumar Sah
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
| | - Parul Gupta
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
- UT Southwestern Medical Center, Dallas, TX, USA
| | - Md Ismail
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
| | - Baibaswata Nayak
- Dept. of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Dept. of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Senthil Kumar Venugopal
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India.
| |
Collapse
|
5
|
Ayilam Ramachandran R, Titone R, Abdallah JT, Rehman M, Cao M, Baniasadi H, Robertson DM. Inhibition of Unc-51-like-kinase is mitoprotective during Pseudomonas aeruginosa infection in corneal epithelial cells. mSphere 2025; 10:e0053724. [PMID: 39791872 PMCID: PMC11852725 DOI: 10.1128/msphere.00537-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic gram-negative pathogen that can infect the cornea, leading to permanent vision loss. Autophagy is a cannibalistic process that drives cytoplasmic components to the lysosome for degradation and/or recycling. Autophagy has been shown to play a key role in the removal of intracellular pathogens and, as such, is an important component of the innate immune response. Autophagy is intimately linked to mitochondria, organelles that mediate energy homeostasis, immune signaling, and cell death. Using a combination of biochemical and imaging approaches, we investigated the effects of PA on autophagy and host cell mitochondria in relation to pro-inflammatory cytokine expression. Using a standard invasive test strain of PA, we show that PA infection triggers dephosphorylation of the mechanistic target of rapamycin in corneal epithelial cells, leading to the induction of autophagy through ULK1/2. This was associated with robust mitochondrial depolarization, changes in mitochondrial ultrastructure, and an increase in IL-6 and IL-8 secretion. PA infection was also associated with an increase in purine metabolism by host cells. Treatment with the ULK1/2 inhibitor, MRT68921, which blocks phagophore formation, attenuated levels of intracellular PA in corneal epithelial cells. Unexpectedly, treatment of cells with MRT68921 blocked PA-induced mitochondrial depolarization and downregulated purine and pyrimidine metabolism. While MRT68921 attenuated the PA-induced increase in IL-6, it further increased IL-8 and neutrophil chemotaxis. This was associated with the nuclear internalization of NFκB. Taken together, these findings highlight a novel mechanism whereby the inhibition of ULK1/2 activity confers mitoprotection during PA infection in corneal epithelial cells.IMPORTANCEPseudomonas aeruginosa (PA) is a common pathogen that can cause severe disease in man. In the eye, PA infection can lead to blindness. In this study, we show that PA induces autophagy, a mechanism whereby cells recycle damaged proteins and organelles. PA infection further depolarizes mitochondria, leading to the release of pro-inflammatory mediators. Unexpectedly, the inhibition of ULK1/2, an enzyme involved in the early stages of autophagy, not only inhibits autophagy but enhances mitochondrial polarization. This leads to a reduction in intracellular levels of PA and changes in the inflammatory milieu. Together, these data suggest that the inhibition of ULK1/2 may be mitoprotective in corneal epithelial cells during PA infection.
Collapse
Affiliation(s)
| | | | - Joelle T. Abdallah
- Departments of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mahad Rehman
- Departments of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mou Cao
- Departments of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hamid Baniasadi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Danielle M. Robertson
- Departments of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Yousefi P, Ghadirian S, Mobedi M, Jafarzadeh M, Alirezaei A, Gholami A, Tabibzadeh A. Autophagy related genes polymorphisms in Parkinson's Disease; A systematic review of literature. Clin Park Relat Disord 2025; 12:100312. [PMID: 40093192 PMCID: PMC11910361 DOI: 10.1016/j.prdoa.2025.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/12/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Background Neurodegenerative diseases are mainly a consequence of degenerated proteins in neurons. Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by Lewy body deposition. Autophagy is known as one of the cell maintenance mechanisms. Autophagy targets are damaged or degenerated macromolecules and organelles for lysosomal degradation. The role of disrupted autophagy in PD was established earlier. In this regard, the current study aimed to evaluate the frequency and status of the autophagy gene polymorphisms in PD by a systematic review approach. Materials and methods In the current study, electronic databases including Scopus, PubMed, and Science Direct were used for the search. The search was performed by using Parkinson's disease, autophagy, autophagy-related gene, ATG, Single-nucleotide polymorphisms, variant, Sequence variants, and with a date limitation of 2010 to 2023. All original research papers in the English language that evaluate the ATG polymorphisms in PD were included in the study. Results The conducted search leads to 2626 primary studies screened based on the inclusion criteria. After the screening stage, 8 studies were included. ATG7 rs1375206 and ATG5 rs510432, rs573775 and rs17587319 were associated with PD. However, some other polymorphisms in ATGs that were not associated with PD were listed. Conclusion In conclusion, regardless of the critical role of autophagy in PD pathogenesis, it seems that ATG16 and ATG7 polymorphisms are not associated with PD; however, ATG7 rs1375206 needs more evaluation for a clearer conclusion in future studies. ATG5 and ATG12 polymorphisms seem to be more important in PD. More comprehensive studies about all ATG5, 7, 12, and 16 seem to be urgently required for a conclusive judgment about their role in PD or even other neurodegenerative disorders.
Collapse
Affiliation(s)
- Parastoo Yousefi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Ghadirian
- Department of Biochemistry and Biophysics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Mobedi
- Department of Pediatrics Neurology, Arak University of Medical Sciences, Arak, Iran
| | - Mehrzad Jafarzadeh
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Adib Alirezaei
- Department of Medical Laboratory, Arak Branch, Islamic Azad University, Arak, Iran
| | - Ali Gholami
- School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Alireza Tabibzadeh
- Department of Medical Laboratory, Arak Branch, Islamic Azad University, Arak, Iran
- Rajaei Clinical Research Development Unit (CRDU) of Shahid Rajaei Hospital, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
7
|
Vona R, Cittadini C, Ortona E, Matarrese P. Sex Disparity in Cancer: Role of Autophagy and Estrogen Receptors. Cells 2025; 14:273. [PMID: 39996745 PMCID: PMC11854201 DOI: 10.3390/cells14040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Autophagy, a cellular process essential for maintaining homeostasis, plays a fundamental role in recycling damaged components and in adapting to stress. The dysregulation of autophagy is implicated in numerous human diseases, including cancer, where it exhibits a dual role as both a suppressor and a promoter, depending on the context and the stage of tumor development. The significant sex differences observed in autophagic processes are determined by biological factors, such as genetic makeup and sex hormones. Estrogens, through their interaction with specific receptors, modulate autophagy and influence tumor progression, therapy resistance, and the immune response to tumors. In females, the escape from X inactivation and estrogen signaling may be responsible for the advantages, in terms of lower incidence and longer survival, observed in oncology. Women often show better responses to traditional chemotherapy, while men respond better to immunotherapy. The action of sex hormones on the immune system could contribute to these differences. However, women experience more severe adverse reactions to anticancer drugs. The estrogen/autophagy crosstalk-involved in multiple aspects of the tumor, i.e., development, progression and the response to therapy-deserves an in-depth study, as it could highlight sex-specific mechanisms useful for designing innovative and gender-tailored treatments from the perspective of precision medicine.
Collapse
Affiliation(s)
- Rosa Vona
- Center for Gender-Specific Medicine, National Institute of Health, 00161 Rome, Italy; (C.C.); (E.O.)
| | | | | | - Paola Matarrese
- Center for Gender-Specific Medicine, National Institute of Health, 00161 Rome, Italy; (C.C.); (E.O.)
| |
Collapse
|
8
|
Miyano T, Suzuki A, Konta H, Sakamoto N. Hyperosmotic Stress Promotes the Nuclear Translocation of TFEB in Tubular Epithelial Cells Depending on Intracellular Ca 2+ Signals via TRPML Channels. Cell Mol Bioeng 2025; 18:39-52. [PMID: 39949488 PMCID: PMC11814421 DOI: 10.1007/s12195-024-00839-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/13/2024] [Indexed: 02/16/2025] Open
Abstract
Purpose We previously demonstrated that hyperosmotic stress, which acts as mechanical stress, induces autophagy of tubular epithelial cells. This study aims to elucidate the molecular mechanisms of hyperosmolarity-induced autophagy. The research question addresses how hyperosmotic stress activates autophagy through transcription factor EB (TFEB) and Ca2+ signaling pathways, contributing to understanding cellular responses to mechanical stress. Methods NRK-52E normal rat kidney cells were subjected to hyperosmotic stress using mannitol-containing medium. Fluorescence microscopy was utilized to observe TFEB nuclear translocation, a crucial event in autophagy regulation. An intracellular Ca2+ chelator, BAPTA-AM, and a calcineurin inhibitor were used to dissect the Ca2+ signaling pathway involved in TFEB translocation. The phosphorylation of p70S6K, a substrate of the mammalian target of rapamycin complex 1 kinase, was analyzed to explore its role in TFEB localization. Additionally, the function of transient receptor potential mucolipin 1 (TRPML1), an intracellular Ca2+ channel, was assessed using pharmacological inhibition to determine its impact on TFEB translocation and autophagy marker LC3-II levels. Results Mannitol-induced hyperosmotic stress promoted the nuclear translocation of TFEB, which was completely abolished by treatment with BAPTA-AM. Inhibition of calcineurin suppressed TFEB nuclear translocation under hyperosmolarity, indicating that a signaling pathway governed by intracellular Ca2+ is involved in TFEB's nuclear translocation. In contrast, hyperosmotic stress did not significantly alter p70S6K phosphorylation. Pharmacological inhibition of TRPML1 attenuated both TFEB nuclear translocation and LC3-II upregulation in response to hyperosmotic stress. Conclusions Hyperosmotic stress promotes TFEB nuclear localization, and TRPML1-induced activation of calcineurin is involved in the mechanism of hyperosmolarity-induced autophagy. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00839-6.
Collapse
Affiliation(s)
- Takashi Miyano
- Department of Medical and Robotic Engineering Design, Tokyo University of Science, Tokyo, Japan
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Atsushi Suzuki
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Hisaaki Konta
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
9
|
Sui H, Sun Z, Liu C, Xi H. Ferritinophagy promotes microglia ferroptosis to aggravate neuroinflammation induced by cerebral ischemia-reperfusion injury via activation of the cGAS-STING signaling pathway. Neurochem Int 2025; 183:105920. [PMID: 39732341 DOI: 10.1016/j.neuint.2024.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a common and serious complication of reperfusion therapy in patients with ischemic stroke (IS). The regulation of microglia-mediated neuroinflammation to control CIRI has garnered considerable attention. The balance of iron metabolism is key to maintaining the physiological functions of microglia. Nuclear Receptor Coactivator 4 (NCOA4)-mediated ferritinophagy, an important pathway in regulating iron metabolism, is a promising intervention target. However, studies on the impacts of ferritinophagy on microglia-mediated neuroinflammation are lacking. This study aimed to identify potential treatments for CIRI-induced neuroinflammation by focusing on ferritinophagy and the specific mechanisms whereby iron metabolism regulates microglia-mediated neuroinflammation. CIRI induced the activation of ferritinophagy in microglia, characterized by the upregulation of NCOA4, downregulation of Ferritin Heavy Chain 1 (FTH1), and increased intracellular iron levels. This activation contributes to increased ferroptosis, oxidative stress, and the release of inflammatory factors. Silencing NCOA4 or application of the ferroptosis-specific inhibitor Ferrostatin-1 (Fer-1) effectively suppressed the CIRI-induced damage in vivo and in vitro. While Fer-1 addition did not inhibit the CIRI-activated ferritinophagy, it did partially reverse the alleviation of NCOA4 depletion-induced neuroinflammation, suggesting that ferroptosis is an essential intermediate step in ferritinophagy-induced neuroinflammatory damage. Furthermore, using IS-related transcriptomic data, the cGAS-STING pathway was identified as a crucial mechanism connecting ferritinophagy and ferroptosis. Specific inhibition of the cGAS-STING pathway reduced ferritinophagy-induced ferroptosis and neuroinflammation. In summary, our results indicated that ferritinophagy activates the cGAS-STING signaling pathway, which promotes the inflammatory response and oxidative stress in microglia in a ferroptosis-dependent manner, thereby exacerbating CIRI-induced neuroinflammation. These findings provide theoretical support for the clinical treatment of CIRI.
Collapse
Affiliation(s)
- Haijing Sui
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, 150001, China
| | - Zhenyu Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, 150001, China
| | - Chang Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Hongjie Xi
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, 150001, China.
| |
Collapse
|
10
|
Fan W, Wu Z, Xu S, Liu Z, Huang Y, Wang P. Mendelian randomization analysis of plasma proteins reveals potential novel tumor markers for gastric cancer. Sci Rep 2025; 15:3537. [PMID: 39875498 PMCID: PMC11775103 DOI: 10.1038/s41598-025-88118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025] Open
Abstract
This study aimed to elucidate the potential causal relationship between 4,907 plasma proteins and the risk of gastric cancer using a two-sample Mendelian randomization approach. We utilized genome-wide association study (GWAS) data to perform two-sample Mendelian randomization analyses, treating the 4,907 plasma proteins as exposure factors and gastric cancer as the outcome. Instrumental variables for plasma proteins were selected based on strongly correlated SNPs identified through data processing and screening of the GWAS data provided by the deCode database. We employed a set of statistical methods centered on inverse variance weighting (IVW) for Mendelian randomization analysis to estimate the odds ratios (ORs) for the effects of these plasma proteins on gastric cancer susceptibility. According to the IVW method, 14 plasma proteins were associated with gastric cancer (p < 0.005). Specifically, CHST15 (OR = 0.7553, 95% CI = 0.6346 - 0.8988), L1CAM (OR = 0.7230, 95% CI = 0.5876 - 0.8896), FTMT (OR = 0.8246, 95% CI = 0.7241 - 0.9391), and PMM2 (OR = 0.5767, 95% CI = 0.3943 - 0.8433) were negatively correlated with GASTRIC CANCER, whereas ABO (OR = 1.1868, 95% CI = 1.0638 - 1.3240), FAM3D (OR = 1.2109, 95% CI = 1.0850 - 1.3515), FAM3B (OR = 1.2988, 95% CI = 1.0953 - 1.5402), ADH7 (OR = 1.3568, 95% CI = 1.1044 - 1.6670), MAP1LC3A (OR = 1.3704, 95% CI = 1.1194 - 1.6778), PGLYRP1 (OR = 1.4071, 95% CI = 1.1235 - 1.7623), PDE5A (OR = 1.7446, 95% CI = 1.2693 - 2.3978), GLUL (OR = 3.1203, 95% CI = 1.5017 - 6.4839), NFE2L1 (OR = 3.1759, 95% CI = 1.6163 - 6.2402), and MAFG (OR = 3.1945, 95% CI = 1.5329 - 6.6575) were positively correlated. Convergent results from Weighted Median and MR-Egger analyses confirmed these associations. Reverse Mendelian randomization analysis indicated that gastric cancer does not significantly alter the levels of these 14 plasma proteins (p > 0.05). Sensitivity analyses, including assessments of heterogeneity and horizontal pleiotropy, confirmed the robustness and reliability of our findings without significant bias. Pathway enrichment analysis of gene expression associated with these 14 plasma proteins, using GO and KEGG pathways, revealed that CHST15, L1CAM, FTMT, and PMM2 may serve as protective factors against gastric cancer, while ABO, FAM3D, FAM3B, ADH7, MAP1LC3A, PGLYRP1, PDE5A, GLUL, NFE2L1, and MAFG may contribute to gastric cancer pathogenesis. These results highlight the complex biological interactions between plasma proteins and tumorigenesis, providing valuable insights for preventive and therapeutic strategies in gastric malignancy management.
Collapse
Affiliation(s)
- Wenhai Fan
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Zhenjiang Wu
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Shenghao Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Zhiheng Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Yiming Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Pan Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China.
- Department of Gastrointestinal Surgery, Institute of Hepatobiliology and Pancreaticoenterology of the Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
11
|
Junli W, Zhihong H, Lina W, Qiaoqun O, Jing Q, Jiaqi H, Yu S. Research hotspots and frontiers of endoplasmic reticulum in glomerular podocytes: a bibliometric and visual analysis from 2005 to 2023. Front Pharmacol 2025; 15:1488340. [PMID: 39840101 PMCID: PMC11747773 DOI: 10.3389/fphar.2024.1488340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Background The glomerular podocyte endoplasmic reticulum is a critical component in renal function, yet its research landscape is not fully understood. This study aims to map the existing research on podocyte endoplasmic reticulum by analyzing publications in the Web of Science Core Collection (WOSCC) from the past 19 years. Methods We conducted a bibliometric analysis using Citespace, VOSviewer, the Metrology Literature Online platform, and the Bibliometrix software package to visualize and interpret the data from WOSCC. The analysis focused on publication volume, authorship, institutional contributions, and research trends. Results The analysis revealed a significant growth in publications, indicating a surge in interest in podocyte endoplasmic reticulum research. Cybulsky, Andrey V, and Papillon, Joan emerge as the most prolific authors, and the Journal of the American Society of Nephrology is the leading journal in this field. China is the top contributor in terms of publications, with McGill University being the most productive institution. The research primarily focuses on endoplasmic reticulum stress, diabetic nephropathy, and apoptosis, with emerging trends in "foot cell apoptosis," "cell signaling pathways," and "autophagy." Conclusion The findings highlight the expanding scope of podocyte endoplasmic reticulum research, with a particular emphasis on the mechanisms of endoplasmic reticulum stress and podocyte apoptosis. Future research directions may include the identification of specific therapeutic targets, detailed exploration of podocyte signaling pathways, and the role of autophagy. This study provides a comprehensive overview of the major research areas, frontiers, and trends in podocyte endoplasmic reticulum research, which are pivotal for guiding future investigations.
Collapse
Affiliation(s)
- Wang Junli
- Department of Pediatrics, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Hao Zhihong
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Wang Lina
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ou Qiaoqun
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Qu Jing
- Department of Pediatrics, Guangzhou First People’s Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hu Jiaqi
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shengyou Yu
- Department of Pediatrics, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pediatrics, Guangzhou First People’s Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
12
|
Azizian M, Tamaddon GH, Ashrafi M, Chahardahcherik M, Gharechahi F. Impact of carboxymethyl dextran-asparaginase in NALM-6 cell apoptosis and autophagy. IRANIAN JOURNAL OF VETERINARY RESEARCH 2025; 25:344-352. [PMID: 40386102 PMCID: PMC12085209 DOI: 10.22099/ijvr.2024.49166.7208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Background Acute lymphoblastic leukemia (ALL) is a malignant disorder in both humans and animals. L-asparaginase (L-ASNase) has limitations as a chemotherapy agent due to adverse effects and low serum stability. In a previous study, L-ASNase was chemically modified with carboxymethyl dextran to enhance its properties. Aims This study aimed to validate the potential of these modifications using the NALM-6 cell line. Methods NALM-6 cells were cultured and treated with various concentrations, including 0 IU/ml as negative control, 0.5, 1, 1.5, and 2 IU/ml of modified L-ASNase and L-ASNase. The optimal concentration was determined at specific intervals, and viability and metabolic activity were assessed through Trypan blue and MTT tests. Flow cytometry, using Annexin V/PI staining, was employed to evaluate apoptosis. Real-time RT-PCR techniques were used to determine changes in the expression of the ATG2B and LC3-II genes (important genes in autophagy), with data analysis conducted using PRISM software. Results The modified L-ASNase reduced the viability of NALM-6 cells and induced higher levels of apoptosis (P=0.001). Interestingly, the modified enzyme had a lesser impact on autophagy, which is important for avoiding treatment resistance. Conclusion The modified L-ASNase showed enhanced effectiveness in reducing the viability of NALM-6 cells and induced higher levels of apoptosis. Interestingly, the modified enzyme had a lesser effect on autophagy, which is important as excessive autophagy can lead to treatment resistance. These findings suggest that the modified L-ASNase may have the potential to be a more effective chemotherapeutic agent for ALL treatments.
Collapse
Affiliation(s)
- M. Azizian
- Ph.D. Student in Biochemistry, Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - G. H. Tamaddon
- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences and Health Services, Shiraz, Iran
| | - M. Ashrafi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - M. Chahardahcherik
- Ph.D. Student in Biochemistry, Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - F. Gharechahi
- MSc Student in Hematology, Department of Laboratory Sciences, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences and Health Services, Shiraz, Iran
| |
Collapse
|
13
|
Zhang JY, Li XY, Li DX, Zhang ZH, Hu LQ, Sun CX, Zhang XN, Wu M, Liu LT. Endoplasmic reticulum stress in intestinal microecology: A controller of antineoplastic drug-related cardiovascular toxicity. Biomed Pharmacother 2024; 181:117720. [PMID: 39631125 DOI: 10.1016/j.biopha.2024.117720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is extensively studied as a pivotal role in the pathological processes associated with intestinal microecology. In antineoplastic drug treatments, ER stress is implicated in altering the permeability of the mechanical barrier, depleting the chemical barrier, causing dysbiosis, exacerbating immune responses and inflammation in the immune barrier. Enteric dysbiosis and intestinal dysfunction significantly affect the circulatory system in various heart disorders. In antineoplastic drug-related cardiovascular (CV) toxicity, ER stress constitutes a web of relationships in the host-microbiome symbiotic regulatory loop. Therefore, understanding the holobiont perspective will help de-escalate spatial and temporal restrictions. This review investigates the role of ER stress-mediated gut microecological alterations in antineoplastic treatment-induced CV toxicity.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Ya Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - De-Xiu Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Zi-Hao Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lan-Qing Hu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chang-Xin Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Nan Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Long-Tao Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
14
|
Wang Y, Hou Y, He C, Zhao Y, Duan C, Nie X, Li J. Toxic effects of acute and chronic atorvastatin exposure on antioxidant systems, autophagy processes, energy metabolism and life history in Daphnia magna. CHEMOSPHERE 2024; 369:143792. [PMID: 39577804 DOI: 10.1016/j.chemosphere.2024.143792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Atorvastatin (ATV) is a representative for hypolipidemic pharmaceuticals and is widely detectable in aquatic environments around the world. However, there are limited studies on the potential effects of ATV on aquatic non-target organisms, especially on aquatic invertebrates. In the present study, the model organism, Daphnia magna was used to investigate the responses of antioxidant system, autophagy process and energy metabolism under the acute exposure of ATV (24 h-96 h), and the changes of physiological parameters of D. magna in response to chronic ATV exposure (21 d) was addressed as well. The results showed that ATV caused oxidative stress in D. magna and elevated activities of antioxidant enzymes (SOD, GST, GPx, and TrxR) at 48 h. However, the progressively increasing oxidative pressure eventually suppressed antioxidant capacities and triggered the transcriptional autophagy process in organism under the regulation of Sestrin as well as its regulated genes (P62, LC3, ATG1, and ATG4B). ATV also altered the expression of DNA methylation related genes. Unlike the clinical response, we found acute ATV exposure led to lipid accumulation in D. magna, affecting energy metabolism. Chronic exposure of higher concentration of ATV (50, 500 μg L-1) adversely affected growth and reproduction parameters of D. magna, caused delayed molting, reduced body length, and decreased number and delayed time of neonates production. Lethal effects were observed in the 5000 μg L-1 of ATV. The present study investigated the toxic effects and mechanisms of acute and chronic ATV exposure on D. magna to provide a scientific basis for evaluating the potential ecological risks of statins on aquatic invertebrates.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou, 510663, China
| | - Yingshi Hou
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Cuiping He
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| | - Jianjun Li
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou, 510663, China
| |
Collapse
|
15
|
Yang K, Wang X, Zhang C, Liu D, Tao L. Metformin improves HPRT1-targeted purine metabolism and repairs NR4A1-mediated autophagic flux by modulating FoxO1 nucleocytoplasmic shuttling to treat postmenopausal osteoporosis. Cell Death Dis 2024; 15:795. [PMID: 39500875 PMCID: PMC11538437 DOI: 10.1038/s41419-024-07177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Osteoporosis is a major degenerative metabolic bone disease that threatens the life and health of postmenopausal women. Owing to limitations in detection methods and prevention strategy awareness, the purpose of osteoporosis treatment is more to delay further deterioration rather than to fundamentally correct bone mass. We aimed to clarify the pathogenesis of postmenopausal osteoporosis and optimize treatment plans. Our experiments were based on previous findings that oxidative stress mediates bone metabolism imbalance after oestrogen deficiency. Through energy metabolism-targeted metabolomics, we revealed that purine metabolism disorder is the main mechanism involved in inducing oxidative damage in bone tissue, which was verified via the use of machine-learning data from human databases. Xanthine and xanthine oxidase were used to treat osteoblasts to construct a purine metabolism disorder model. The activity and differentiation ability of osteoblasts decreased after X/XO treatment. Transcriptomic sequencing indicated that autophagic flux damage was involved in purine metabolism-induced oxidative stress in osteoblasts. Additionally, we performed serum metabolomics combined with network pharmacology to determine the pharmacological mechanism of metformin in the treatment of postmenopausal osteoporosis. HPRT1 was the potential target filtered from the hub genes, and FoxO1 signalling was the key pathway mediating the effect of metformin in osteoblasts. We also revealed that SIRT3-mediated deacetylation promoted the nuclear localization of FoxO1 to increase the expression of HPRT1. HPRT1 upregulation promoted purine anabolism and prevented the accumulation of ROS caused by purine catabolism to reverse oxidative damage in osteoblasts. We propose that purine metabolism disorder-induced oxidative stress is important for the pathogenesis of postmenopausal osteoporosis. The therapeutic mechanism of metformin should be confirmed through subsequent drug optimization and development studies to improve bone health in postmenopausal women.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Xiaochuan Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Chi Zhang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Dian Liu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Verma A, Goyal A. Beyond insulin: The Intriguing role of GLP-1 in Parkinson's disease. Eur J Pharmacol 2024; 982:176936. [PMID: 39182542 DOI: 10.1016/j.ejphar.2024.176936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
GLP-1 (Glucagon-like peptide 1) serves as both a peptide hormone and a growth factor, is released upon nutrient intake and contributes to insulin secretion stimulated by glucose levels. Also, GLP-1 is synthesized within several brain areas and plays a vital function in providing neuroprotection and reducing inflammation through the activation of the GLP-1 receptor. Parkinson's Disease (PD) is a neurodegenerative illness that worsens with time and is defined by considerable morbidity. Presently, there are few pharmaceutical choices available, and none of the existing therapies are capable of modifying the course of the disease. There is a suggestion that type 2 diabetes mellitus (T2DM) could increase the risk of PD, and the presence of both conditions concurrently might exacerbate PD symptoms and hasten neurodegeneration. GLP-1 receptor (GLP-1R) agonists exhibit numerous implications like enhancement of glucose-dependent insulin release and biosynthesis, suppression of glucagon secretion and gastric emptying. Also, some GLP-1R agonists have received clinical approval for the management of T2DM. Moreover, the use of GLP-1R agonists has demonstrated counter-inflammatory, neurotrophic, and neuroprotective actions in various preclinical models of neurodegenerative disorders. Considering the significant amount of evidence backing the potential of GLP-1R agonists to protect the nervous system across different research settings, this article delves into examining the hopeful prospect of GLP-1R agonists as a treatment option for PD. This review sheds light on combined neuroprotective benefits of GLP-1R agonists and the possible mechanisms driving the protective effects on the PD brain, through the collection of data from various preclinical and clinical investigations.
Collapse
Affiliation(s)
- Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
17
|
Lin L, Lin Y, Han Z, Wang K, Zhou S, Wang Z, Wang S, Chen H. Understanding the molecular regulatory mechanisms of autophagy in lung disease pathogenesis. Front Immunol 2024; 15:1460023. [PMID: 39544928 PMCID: PMC11560454 DOI: 10.3389/fimmu.2024.1460023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Lung disease development involves multiple cellular processes, including inflammation, cell death, and proliferation. Research increasingly indicates that autophagy and its regulatory proteins can influence inflammation, programmed cell death, cell proliferation, and innate immune responses. Autophagy plays a vital role in the maintenance of homeostasis and the adaptation of eukaryotic cells to stress by enabling the chelation, transport, and degradation of subcellular components, including proteins and organelles. This process is essential for sustaining cellular balance and ensuring the health of the mitochondrial population. Recent studies have begun to explore the connection between autophagy and the development of different lung diseases. This article reviews the latest findings on the molecular regulatory mechanisms of autophagy in lung diseases, with an emphasis on potential targeted therapies for autophagy.
Collapse
Affiliation(s)
- Lin Lin
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medicine, Southeast University, Nanjing, China
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- Department of Science and Education, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Shuwei Zhou
- Department of Radiology, Zhongda Hospital, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, School of Medicine, Southeast University, Nanjing, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Siyu Wang
- Department of Preventive Medicine, Kunshan Hospital of Chinese Medicine, Kunshan, China
| | - Haoran Chen
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
18
|
Abd Rahman IZ, Adam SH, Hamid AA, Mokhtar MH, Mustafar R, Kashim MIAM, Febriza A, Mansor NI. Potential Neuroprotective Effects of Alpinia officinarum Hance (Galangal): A Review. Nutrients 2024; 16:3378. [PMID: 39408345 PMCID: PMC11478918 DOI: 10.3390/nu16193378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: This review aims to provide a detailed understanding of the current evidence on Alpinia officinarum Hance (A. officinarum) and its potential therapeutic role in central nervous system (CNS) disorders. CNS disorders encompass a wide range of disorders affecting the brain and spinal cord, leading to various neurological, cognitive and psychiatric impairments. In recent years, natural products have emerged as potential neuroprotective agents for the treatment of CNS disorders due to their outstanding bioactivity and favourable safety profile. One such plant is A. officinarum, also known as lesser galangal, a perennial herb from the Zingiberaceae family. Its phytochemical compounds such as flavonoids and phenols have been documented to have a powerful antioxidants effect, capable of scavenging free radicals and preventing oxidative damage. Methods: In this review, we critically evaluate the in vitro and in vivo studies and examine the mechanisms by which A. officinarum exerts its neuroprotective effect. Results: Several studies have confirmed that A. officinarum exerts its neuroprotective effects by reducing oxidative stress and cell apoptosis, promoting neurite outgrowth, and modulating neurotransmitter levels and signalling pathways. Conclusions: Although previous studies have shown promising results in various models of neurological disorders, the underlying mechanisms of A. officinarum in Alzheimer's (AD) and Parkinson's disease (PD) are still poorly understood. Further studies on brain tissue and cognitive and motor functions in animal models of AD and PD are needed to validate the results observed in in vitro studies. In addition, further clinical studies are needed to confirm the safety and efficacy of A. officinarum in CNS disorders.
Collapse
Affiliation(s)
- Izzat Zulhilmi Abd Rahman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Siti Hajar Adam
- Preclinical Department, Faculty of Medicine & Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Ruslinda Mustafar
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Mohd Izhar Ariff Mohd Kashim
- Centre of Shariah, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
- Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ami Febriza
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar 90221, South Sulawesi, Indonesia;
| | - Nur Izzati Mansor
- Department of Nursing, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
19
|
Zhou XZ, Huang P, Wu YK, Yu JB, Sun J. Autophagy in benign prostatic hyperplasia: insights and therapeutic potential. BMC Urol 2024; 24:198. [PMID: 39261818 PMCID: PMC11391623 DOI: 10.1186/s12894-024-01585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Autophagy is a cellular homeostatic mechanism characterized by cyclic degradation. It plays an essential role in maintaining cellular quality and survival by eliminating dysfunctional cellular components. This process is pivotal in various pathophysiological processes. Benign prostatic hyperplasia (BPH) is a common urological disorder in middle-aged and elderly men. It frequently presents as lower urinary tract symptoms due to an increase in epithelial and stromal cells surrounding the prostatic urethra. The precise pathogenesis of BPH is complex. In recent years, research on autophagy in BPH has gained significant momentum, with accumulating evidence indicating its crucial role in the onset and progression of the disease. This review aims to outline the various roles of autophagy in BPH and elucidate potential therapeutic strategies targeting autophagy for managing BPH.
Collapse
Affiliation(s)
- Xian-Zhao Zhou
- Department of Andrology, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Pei Huang
- Department of Andrology, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Yao-Kan Wu
- Department of Andrology, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Jin-Ben Yu
- Department of Andrology, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Jie Sun
- Department of Andrology, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
20
|
Chowdhury R, Bhuia MS, Al Hasan MS, Hossain Snigdha S, Afrin S, Büsselberg D, Habtemariam S, Sönmez Gürer E, Sharifi‐Rad J, Ahmed Aldahish A, Аkhtayeva N, Islam MT. Anticancer potential of phytochemicals derived from mangrove plants: Comprehensive mechanistic insights. Food Sci Nutr 2024; 12:6174-6205. [PMID: 39554337 PMCID: PMC11561795 DOI: 10.1002/fsn3.4318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer is a collection of illnesses characterized by aberrant cellular proliferation that can infiltrate or metastasize to distant anatomical sites, posing a notable threat to human well-being due to its substantial morbidity and death rates worldwide. The potential of plant-derived natural compounds as anticancer medicines has been assessed owing to their favorable attributes of few side effects and significant antitumor activity. Mangrove plants and their derived compounds have been scientifically shown to exhibit many significant beneficial biological activities, such as anti-inflammatory, immunomodulatory, antioxidant, neuroprotective, cardioprotective, and hepatoprotective properties. This study summarized mangrove plants and their derived compounds as potential anticancer agents, with an emphasis on the underlying molecular mechanisms. To explore this, we gathered data on the preclinical (in vivo and in vitro) anticancer effects of mangrove plants and their derived compounds from reputable literature spanning 2000 to 2023. We conducted thorough searches in various academic databases, including PubMed, ScienceDirect, Wiley Online, SpringerLink, Google Scholar, Scopus, and the Web of Science. The results demonstrated that mangrove plants and their derived compounds have promising anticancer properties in preclinical pharmacological test systems through various molecular mechanisms, including induction of oxidative stress and mitochondrial dysfunction, cytotoxicity, genotoxicity, cell cycle arrest, apoptosis, autophagy, antiproliferative, antimetastatic, and other miscellaneous actions. Upon thorough observation of the pertinent information, it is suggested that mangrove plants and their derived chemicals may serve as a potential lead in the development of novel drugs for cancer therapy.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Shimul Bhuia
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Sakib Al Hasan
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | | | - Sadia Afrin
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| | | | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of PharmacognosySivas Cumhuriyet UniversitySivasTurkey
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Nursulu Аkhtayeva
- Department of Biodiversity and Bioresources of Al‐Farabi Kazakh National UniversityAlmatyKazakhstan
| | - Muhammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| |
Collapse
|
21
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
22
|
McMann E, Gorski SM. Last but not least: emerging roles of the autophagy-related protein ATG4D. Autophagy 2024; 20:1916-1927. [PMID: 38920354 PMCID: PMC11346562 DOI: 10.1080/15548627.2024.2369436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
The evolutionarily conserved ATG4 cysteine proteases regulate macroautophagy/autophagy through the priming and deconjugation of the Atg8-family proteins. In mammals there are four ATG4 family members (ATG4A, ATG4B, ATG4C, ATG4D) but ATG4D has been relatively understudied. Heightened interest in ATG4D has been stimulated by recent links to human disease. Notably, genetic variations in human ATG4D were implicated in a heritable neurodevelopmental disorder. Genetic analyses in dogs, along with loss-of-function zebrafish and mouse models, further support a neuroprotective role for ATG4D. Here we discuss the evidence connecting ATG4D to neurological diseases and other pathologies and summarize its roles in both autophagy-dependent and autophagy-independent cellular processes.Abbrevation: ATG: autophagy related; BafA1: bafilomycin A1; BCL2: BCL2 apoptosis regulator; BH3: BCL2 homology region 3; CASP3: caspase 3; EV: extracellular vesicle; GABA: gamma aminobutyric acid; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; LIR: LC3-interacting region; MAP1LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; MYC: MYC proto-oncogene, bHLH transcription factor; PE: phosphatidylethanolamine; PS: phosphatidylserine; QKO: quadruple knockout; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel; SQSTM1: sequestosome 1.
Collapse
Affiliation(s)
- Emily McMann
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
23
|
Qiu P, Zhou K, Wang Y, Chen X, Xiao C, Li W, Chen Y, Chang Y, Liu J, Zhou F, Wang X, Shang J, Liu L, Qiu Z. Revitalizing gut barrier integrity: role of miR-192-5p in enhancing autophagy via Rictor in enteritis. Am J Physiol Gastrointest Liver Physiol 2024; 327:G317-G332. [PMID: 38954822 DOI: 10.1152/ajpgi.00291.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Intestinal inflammation and compromised barrier function are critical factors in the pathogenesis of gastrointestinal disorders. This study aimed to investigate the role of miR-192-5p in modulating intestinal epithelial barrier (IEB) integrity and its association with autophagy. A DSS-induced colitis model was used to assess the effects of miR-192-5p on intestinal inflammation. In vitro experiments involved cell culture and transient transfection techniques. Various assays, including dual-luciferase reporter gene assays, quantitative real-time PCR, Western blotting, and measurements of transepithelial electrical resistance, were performed to evaluate changes in miR-192-5p expression, Rictor levels, and autophagy flux. Immunofluorescence staining, H&E staining, TEER measurements, and FITC-dextran analysis were also used. Our findings revealed a reduced expression of miR-192-5p in inflamed intestinal tissues, correlating with impaired IEB function. Overexpression of miR-192-5p alleviated TNF-induced IEB dysfunction by targeting Rictor, resulting in enhanced autophagy flux in enterocytes (ECs). Moreover, the therapeutic potential of miR-192-5p was substantiated in colitis mice, wherein increased miR-192-5p expression ameliorated intestinal inflammatory injury by enhancing autophagy flux in ECs through the modulation of Rictor. Our study highlights the therapeutic potential of miR-192-5p in enteritis by demonstrating its role in regulating autophagy and preserving IEB function. Targeting the miR-192-5p/Rictor axis is a promising approach for mitigating gut inflammatory injury and improving barrier integrity in patients with enteritis.NEW & NOTEWORTHY We uncover the pivotal role of miR-192-5p in fortifying intestinal barriers amidst inflammation. Reduced miR-192-5p levels correlated with compromised gut integrity during inflammation. Notably, boosting miR-192-5p reversed gut damage by enhancing autophagy via suppressing Rictor, offering a potential therapeutic strategy for fortifying the intestinal barrier and alleviating inflammation in patients with enteritis.
Collapse
Affiliation(s)
- Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Kezhi Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Youwei Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiaoyu Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Cong Xiao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wenjie Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiaobing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jian Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Zhao Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
24
|
Vornic I, Nesiu A, Ardelean AM, Todut OC, Pasare VC, Onel C, Raducan ID, Furau CG. Antioxidant Defenses, Oxidative Stress Responses, and Apoptosis Modulation in Spontaneous Abortion: An Immunohistochemistry Analysis of First-Trimester Chorionic Villi. Life (Basel) 2024; 14:1074. [PMID: 39337859 PMCID: PMC11432807 DOI: 10.3390/life14091074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) and apoptosis are critical factors in placental development and function. Their interplay influences trophoblast proliferation, differentiation, and invasion, as well as vascular development. An imbalance between these processes can lead to pregnancy-related disorders such as preeclampsia, intrauterine growth restriction, and even spontaneous abortion. Our study seeks to elucidate the associations between preventive antioxidant/protective OS response factors-glutathione (GSH), MutT Homolog 1 (MTH1), and apoptotic regulation modulators-tumor protein p53 and B-cell lymphoma (Bcl-2) transcripts, in the context of spontaneous abortion (30 samples) versus elective termination of pregnancy (20 samples), using immunohistochemistry (IHC) to determine their proteomic expression in chorionic villi within abortive fetal placenta tissue samples. Herein, comparative statistical analyses revealed that both OS response factors, GSH and MTH1, were significantly under-expressed in spontaneous abortion cases as compared to elective. Conversely, for apoptotic regulators, p53 expression was significantly higher in spontaneous abortion cases, whereas Bcl-2 expression was significantly lower in spontaneous abortion cases. These findings suggest that a strong pro-apoptotic signal is prevalent within spontaneous abortion samples, alongside reduced anti-apoptotic protection, depleted antioxidant defenses and compromised oxidative DNA damage prevention/repair, as compared to elective abortion controls. Herein, our hypothesis that OS and apoptosis are closely linked processes contributing to placental dysfunction and spontaneous abortion was thus seemingly corroborated. Our results further highlight the importance of maintaining redox homeostasis and apoptotic regulation for a successful pregnancy. Understanding the mechanisms underlying this interplay is essential for developing potential therapies to manage OS, promote placentation, and avoid unwanted apoptosis, ultimately improving pregnancy outcomes. Antioxidant supplementation, modulation of p53 activity, and the enhancement of DNA repair mechanisms may represent potential approaches to mitigate OS and apoptosis in the placenta. Further research is needed to explore these strategies and their efficacy in preventing spontaneous abortion.
Collapse
Affiliation(s)
- Ioana Vornic
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Alexandru Nesiu
- Discipline of Urology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Ana Maria Ardelean
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Oana Cristina Todut
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Victoria Cristina Pasare
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Cristina Onel
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Ionuț Daniel Raducan
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Cristian George Furau
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| |
Collapse
|
25
|
Bano N, Kainat KM, Ansari MI, Pal A, Sarkar S, Sharma PK. Identification of chemoresistance targets in doxorubicin-resistant lung adenocarcinoma cells using LC-MS/MS-based proteomics. J Chemother 2024:1-15. [PMID: 39101797 DOI: 10.1080/1120009x.2024.2385267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Acquired chemoresistance remains a significant challenge in the clinics as most of the treated cancers eventually emerge as hard-to-treat phenotypes. Therefore, identifying chemoresistance targets is highly warranted to manage the disease better. In this study, we employed a label-free LC-MS/MS-based quantitative proteomics analysis to identify potential targets and signaling pathways underlying acquired chemoresistance in a sub-cell line (A549DR) derived from the parental lung adenocarcinoma cells (A549) treated with gradually increasing doses of doxorubicin (DOX). Our proteomics analysis identified 146 upregulated and 129 downregulated targets in A549DR cells. The KEGG pathway and Gene ontology (GO) analysis of differentially expressed upregulated and downregulated proteins showed that most abundant upregulated pathways were related to metabolic pathways, cellular senescence, cell cycle, and p53 signaling. Meanwhile, the downregulated pathways were related to spliceosome, nucleotide metabolism, DNA replication, nucleotide excision repair, and nuclear-cytoplasmic transport. Further, STRING analysis of upregulated biological processes showed a protein-protein interaction (PPI) between CDK1, AKT2, SRC, STAT1, HDAC1, FDXR, FDX1, NPC1, ALDH2, GPx1, CDK4, and B2M, proteins. The identified proteins in this study might be the potential therapeutic targets for mitigating DOX resistance.
Collapse
Affiliation(s)
- Nuzhat Bano
- Food Toxicology Group, Food, Drug & Chemical, Environment, and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - K M Kainat
- Food Toxicology Group, Food, Drug & Chemical, Environment, and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohammad Imran Ansari
- Food Toxicology Group, Food, Drug & Chemical, Environment, and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anjali Pal
- Food Toxicology Group, Food, Drug & Chemical, Environment, and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sana Sarkar
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Food Toxicology Group, Food, Drug & Chemical, Environment, and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
26
|
Guo Z. The role of glucagon-like peptide-1/GLP-1R and autophagy in diabetic cardiovascular disease. Pharmacol Rep 2024; 76:754-779. [PMID: 38890260 DOI: 10.1007/s43440-024-00609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Diabetes leads to a significantly accelerated incidence of various related macrovascular complications, including peripheral vascular disease and cardiovascular disease (the most common cause of mortality in diabetes), as well as microvascular complications such as kidney disease and retinopathy. Endothelial dysfunction is the main pathogenic event of diabetes-related vascular disease at the earliest stage of vascular injury. Understanding the molecular processes involved in the development of diabetes and its debilitating vascular complications might bring up more effective and specific clinical therapies. Long-acting glucagon-like peptide (GLP)-1 analogs are currently available in treating diabetes with widely established safety and extensively evaluated efficacy. In recent years, autophagy, as a critical lysosome-dependent self-degradative process to maintain homeostasis, has been shown to be involved in the vascular endothelium damage in diabetes. In this review, the GLP-1/GLP-1R system implicated in diabetic endothelial dysfunction and related autophagy mechanism underlying the pathogenesis of diabetic vascular complications are briefly presented. This review also highlights a possible crosstalk between autophagy and the GLP-1/GLP-1R axis in the treatment of diabetic angiopathy.
Collapse
Affiliation(s)
- Zi Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
27
|
Abu El-Hamd M, Abdel-Hamid S, Hamdy AT, Abdelhamed A. Increased serum ATG5 as a marker of autophagy in psoriasis vulgaris patients: a cross-sectional study. Arch Dermatol Res 2024; 316:491. [PMID: 39066827 DOI: 10.1007/s00403-024-03219-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/16/2024] [Accepted: 07/06/2024] [Indexed: 07/30/2024]
Abstract
Psoriasis (PsO) is a prevalent chronic inflammatory skin disease. It is a complex condition that is affected by environmental and hereditary variables. Numerous pathogens, including viruses, bacteria, and even fungi, have been linked to PsO. One of the mechanisms that clears infections is autophagy. The mechanism by which a cell feeds itself is called autophagy by reusing cytoplasmic components in the lysosome. The autophagy-related (ATG) proteins are essential components of the system that control the strictly regulated process of autophagy. Among these 41 proteins, ATG5 is one that is required in order for autophagic vesicles to develop. This research aimed to compare ATG5 levels in serum among those suffering from psoriasis vulgaris and healthy controls. This cross-sectional research was carried out on 45 individuals with vulgaris psoriasis and 45 healthy, sex and age-matched control subjects. All participants underwent a clinical examination, a laboratory investigation, and a history taking, including lipid profiles and serum ATG5. The mean age of the control and PsO were 40.6 ± 9.6, and 43.7 ± 9.3 years respectively. The mean total PASI score was 13.9 ± 8.9, with a median of 11.7 (8.8). According to the PASI score, about 38% (n = 17) had mild disease (PASI < 10), and about 62% (n = 28) had moderate/severe disease (PASI ≥ 10). There was a significantly higher median (IQR) (25th-75th) ATG5 level in PsO 206 (97) (145-242) ng/ml than in the control 147 (98) (111-209) ng/ml (p = 0.002). An insignificant higher median level (IQR) was observed in PsO with mild disease 207(95) compared with those with moderate/severe disease 183(98.5) (p = 0.057). Dissimilarly, the median (IQR) ATG5 level was significantly lower in PsO individuals with metabolic syndrome 170(72) compared with those without 207(104) (p = 0.044). Four predictors were identified following sex and age adjustments, in the final linear regression model: PASI score, triglyceride, High-Density Lipoprotein, and presence of metabolic syndrome. There can be a connection between autophagy as measured by ATG5 and psoriasis vulgaris. ATG5 was elevated in the serum of individuals with psoriasis vulgaris. However, it decreased in patients with metabolic syndrome. No relation was found between serum ATG5 and PASI score. Psoriasis vulgaris patients may benefit from using an autophagy enhancer as a potential treatment target.
Collapse
Affiliation(s)
- Mohammed Abu El-Hamd
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Soheir Abdel-Hamid
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, South Valley University, Qena, Egypt.
| | - Aya-Tollah Hamdy
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Amr Abdelhamed
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
28
|
Zhao X, Ma D, Yang B, Wang Y, Zhang L. Research progress of T cell autophagy in autoimmune diseases. Front Immunol 2024; 15:1425443. [PMID: 39104538 PMCID: PMC11298352 DOI: 10.3389/fimmu.2024.1425443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
T cells, as a major lymphocyte population involved in the adaptive immune response, play an important immunomodulatory role in the early stages of autoimmune diseases. Autophagy is a cellular catabolism mediated by lysosomes. Autophagy maintains cell homeostasis by recycling degraded cytoplasmic components and damaged organelles. Autophagy has a protective effect on cells and plays an important role in regulating T cell development, activation, proliferation and differentiation. Autophagy mediates the participation of T cells in the acquired immune response and plays a key role in antigen processing as well as in the maintenance of T cell homeostasis. In autoimmune diseases, dysregulated autophagy of T cells largely influences the pathological changes. Therefore, it is of great significance to study how T cells play a role in the immune mechanism of autoimmune diseases through autophagy pathway to guide the clinical treatment of diseases.
Collapse
Affiliation(s)
| | | | | | | | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
29
|
Huang J, Yu Y, Pang D, Li C, Wei Q, Cheng Y, Cui Y, Ou R, Shang H. Lnc-HIBADH-4 Regulates Autophagy-Lysosome Pathway in Amyotrophic Lateral Sclerosis by Targeting Cathepsin D. Mol Neurobiol 2024; 61:4768-4782. [PMID: 38135852 PMCID: PMC11236912 DOI: 10.1007/s12035-023-03835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most prevalent and lethal class of severe motor neuron diseases (MND) with no efficacious treatment. The pathogenic mechanisms underlying ALS remain unclear. Nearly 90% of patients exhibit sporadic onset (sALS). Therefore, elucidating the pathophysiology of ALS is imperative. Long non-coding RNA (lncRNA) is a large class of non-coding RNAs that regulate transcription, translation, and post-translational processes. LncRNAs contribute to the pathogenesis of diverse neurodegenerative disorders and hold promise as targets for interference in the realm of neurodegeneration. However, the mechanisms of which lncRNAs are involved in ALS have not been thoroughly investigated. We identified and validated a downregulated lncRNA, lnc-HIBADH-4, in ALS which correlated with disease severity and overall survival. Lnc-HIBADH-4 acted as a "molecular sponge" regulating lysosomal function through the lnc-HIBADH-4/miR-326/CTSD pathway, thereby impacting autophagy-lysosome dynamics and the levels of cell proliferation and apoptosis. Therefore, this study discovered and revealed the role of lnc-HIBADH-4 in the pathogenesis of ALS. With further research, lnc-HIBADH-4 is expected to provide a new biomarker in the diagnosis and treatment of ALS.
Collapse
Affiliation(s)
- Jingxuan Huang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yujiao Yu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yiyuan Cui
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
30
|
Ping K, Yang R, Chen H, Xie S, Li M, Xiang Y, Lu Y, Dong J. Gypenoside XLIX alleviates intestinal injury by inhibiting sepsis-induced inflammation, oxidative stress, apoptosis, and autophagy. Chem Biol Interact 2024; 397:111077. [PMID: 38810818 DOI: 10.1016/j.cbi.2024.111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024]
Abstract
Intestinal barrier dysfunction is a significant complication induced by sepsis, yet therapeutic strategies targeting such dysfunction remain inadequate. This study investigates the protective effects of Gypenoside XLIX (Gyp XLIX) against intestinal damage induced by sepsis. Septic intestinal injury in mice was induced by cecum ligation and puncture (CLP) surgery. The biological activity and potential mechanisms of Gyp XLIX were explored through intraperitoneal injection of Gyp XLIX (40 mg/kg). The study demonstrates that Gyp XLIX improves the pathological structural damage of the intestine and increases tight junction protein expression as well as the number of cup cells. Through activation of the nuclear factor erythroid 2-related factor 2 - Kelch-like ECH-associated protein 1 (Nrf2-Keap1) pathway, Gyp XLIX enhances antioxidant enzyme levels while reducing the excessive accumulation of reactive oxygen species (ROS). In addition, Gyp XLIX effectively alleviates sepsis-induced intestinal inflammation by inhibiting the nuclear factor kappa B (NF-κB) pathway and activation of the NLRP3 inflammasome. Moreover, Gyp XLIX inhibits cell death through modifying phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, further enhancing its ability to shield the intestinal barrier. The combined action of these molecular mechanisms promotes the restoration of immune balance and reduces excessive autophagy activity induced under septic conditions. In summary, Gyp XLIX exhibits a significant preventive action against intestinal damage brought on by sepsis, with its mechanisms involving the improvement of intestinal barrier function, antioxidative stress, inhibition of inflammatory response, and cell apoptosis. This research offers a potential strategy for addressing intestinal barrier impairment brought on by sepsis.
Collapse
Affiliation(s)
- Kaixin Ping
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China; Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Rongrong Yang
- Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Huizhen Chen
- Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Shaocheng Xie
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mengxin Li
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China; Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Yannan Xiang
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China; Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Yingzhi Lu
- Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China.
| | - Jingquan Dong
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
31
|
Zhang B, Wu H, Zhang J, Cong C, Zhang L. The study of the mechanism of non-coding RNA regulation of programmed cell death in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:1673-1696. [PMID: 38189880 DOI: 10.1007/s11010-023-04909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024]
Abstract
Diabetic cardiomyopathy (DCM) represents a distinct myocardial disorder elicited by diabetes mellitus, characterized by aberrations in myocardial function and structural integrity. This pathological condition predominantly manifests in individuals with diabetes who do not have concurrent coronary artery disease or hypertension. An escalating body of scientific evidence substantiates the pivotal role of programmed cell death (PCD)-encompassing apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis-in the pathogenic progression of DCM, thereby emerging as a prospective therapeutic target. Additionally, numerous non-coding RNAs (ncRNAs) have been empirically verified to modulate the biological processes underlying programmed cell death, consequently influencing the evolution of DCM. This review systematically encapsulates prevalent types of PCD manifest in DCM as well as nascent discoveries regarding the regulatory influence of ncRNAs on programmed cell death in the pathogenesis of DCM, with the aim of furnishing novel insights for the furtherance of research in PCD-associated disorders relevant to DCM.
Collapse
Affiliation(s)
- Bingrui Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Hua Wu
- Tai'an Special Care Hospital Clinical Laboratory Medical Laboratory Direction, Tai'an, 271000, Shandong, China
| | - Jingwen Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Cong Cong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Lin Zhang
- Tai'an Hospital of Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, No.216, Yingxuan Street, Tai'an, 271000, Shandong, China.
| |
Collapse
|
32
|
Yun ZS, Zhihua S, Xuelian T, Min X, Rongjing H, Mei L. Rosmarinic acid activates the Ras/Raf/MEK/ERK signaling pathway to regulate CD8+ T cells and autophagy to clear Chlamydia trachomatis in reproductive tract-infected mice. Mol Immunol 2024; 171:105-114. [PMID: 38820902 DOI: 10.1016/j.molimm.2024.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Chlamydia trachomatis (CT) is the leading cause of bacterial sexually transmitted diseases worldwide, which can cause diseases such as pelvic inflammatory disease, and cervical and fallopian tube inflammation, and poses a threat to human health. Rosmarinic acid (RosA) is an active ingredient of natural products with anti-inflammatory and immunomodulatory effects. This study aimed to investigate the role of RosA in inhibiting autophagy-regulated immune cells-CD8+ T cells via the Ras/Raf/MEK/ERK signaling pathway in a CT-infected mouse model. Mice were inoculated with CT infection solution vaginally, and the mechanistic basis of RosA treatment was established using H&E staining, flow cytometry, immunofluorescence, transmission electron microscopy, and western blot. The key factors involved in RosA treatment were further validated using the MEK inhibitor cobimetinib. Experimental results showed that both RosA and the reference drug azithromycin could attenuate the pathological damage to the endometrium caused by CT infection; flow cytometry showed that peripheral blood CD8+ T cells increased after CT infection and decreased after treatment with RosA and the positive drug azithromycin (positive control); immunofluorescence showed that endometrial CD8 and LC3 increased after CT infection and decreased after RosA and positive drug treatment; the results of transmission electron microscopy showed that RosA and the positive drug azithromycin inhibited the accumulation of autophagosomes; western bolt experiments confirmed the activation of autophagy proteins LC3Ⅱ/Ⅰ, ATG5, Beclin-1, and p62 after CT infection, as well as the inhibition of Ras/Raf/MEK/ERK signaling. RosA and azithromycin inhibition of autophagy proteins activates Ras/Raf/MEK/ERK signaling. In addition, the MEK inhibitor cobimetinib attenuated RosA's protective effect on endometrium by further activating CD8+ T cells on a CT-induced basis, while transmission electron microscopy, immunofluorescence, and western blots showed that cobimetinib blocked ERK signals activation and further induced phagocytosis on a CT-induced basis. These data indicated that RosA can activate the Ras/Raf/MEK/ERK signaling pathway to inhibit autophagy, and RosA could also regulate the activation of immune cells-CD8+T cells to protect the reproductive tract of CT-infected mice.
Collapse
Affiliation(s)
- Zhou Si Yun
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Zhihua
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Xuelian
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Min
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Hu Rongjing
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Luo Mei
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China; Department of Traditional Chinese Medicine, Chongqing college of Traditional Chinese Medicine, Chongqing 402760, China; The Fourth Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chongqing 400021, China.
| |
Collapse
|
33
|
Ayub A, Hasan MK, Mahmud Z, Hossain MS, Kabir Y. Dissecting the multifaceted roles of autophagy in cancer initiation, growth, and metastasis: from molecular mechanisms to therapeutic applications. Med Oncol 2024; 41:183. [PMID: 38902544 DOI: 10.1007/s12032-024-02417-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
Autophagy is a cytoplasmic defense mechanism that cells use to break and reprocess their intracellular components. This utilization of autophagy is regarded as a savior in nutrient-deficient and other stressful conditions. Hence, autophagy keeps contact with and responds to miscellaneous cellular tensions and diverse pathways of signal transductions, such as growth signaling and cellular death. Importantly, autophagy is regarded as an effective tumor suppressor because regular autophagic breakdown is essential for cellular maintenance and minimizing cellular damage. However, paradoxically, autophagy has also been observed to promote the events of malignancies. This review discussed the dual role of autophagy in cancer, emphasizing its influence on tumor survival and progression. Possessing such a dual contribution to the malignant establishment, the prevention of autophagy can potentially advocate for the advancement of malignant transformation. In contrast, for the context of the instituted tumor, the agents of preventing autophagy potently inhibit the advancement of the tumor. Key regulators, including calpain 1, mTORC1, and AMPK, modulate autophagy in response to nutritional conditions and stress. Oncogenic mutations like RAS and B-RAF underscore autophagy's pivotal role in cancer development. The review also delves into autophagy's context-dependent roles in tumorigenesis, metastasis, and the tumor microenvironment (TME). It also discusses the therapeutic effectiveness of autophagy for several cancers. The recent implication of autophagy in the control of both innate and antibody-mediated immune systems made it a center of attention to evaluating its role concerning tumor antigens and treatments of cancer.
Collapse
Affiliation(s)
- Afia Ayub
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Md Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh.
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St. W., Hamilton, L8S 4K1, Canada.
- Department of Public Health, North South University, Dhaka, Bangladesh.
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Sabbir Hossain
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
34
|
Liu M, Ma L, Tang Y, Yang W, Yang Y, Xi J, Wang X, Zhu W, Xue J, Zhang X, Xu S. Maize Autophagy-Related Protein ZmATG3 Confers Tolerance to Multiple Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1637. [PMID: 38931070 PMCID: PMC11207562 DOI: 10.3390/plants13121637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Abiotic stresses pose a major increasing problem for the cultivation of maize. Autophagy plays a vital role in recycling and re-utilizing nutrients and adapting to stress. However, the role of autophagy in the response to abiotic stress in maize has not yet been investigated. Here, ZmATG3, which is essential for ATG8-PE conjugation, was isolated from the maize inbred line B73. The ATG3 sequence was conserved, including the C-terminal domains with HPC and FLKF motifs and the catalytic domain in different species. The promoter of the ZmATG3 gene contained a number of elements involved in responses to environmental stresses or hormones. Heterologous expression of ZmATG3 in yeast promoted the growth of strain under salt, mannitol, and low-nitrogen stress. The expression of ZmATG3 could be altered by various types of abiotic stress (200 mM NaCl, 200 mM mannitol, low N) and exogenous hormones (500 µM ABA). GUS staining analysis of ZmATG3-GUS transgenic Arabidopsis revealed that GUS gene activity increased after abiotic treatment. ZmATG3-overexpressing Arabidopsis plants had higher osmotic and salinity stress tolerance than wild-type plants. Overexpression of ZmATG3 up-regulated the expression of other AtATGs (AtATG3, AtATG5, and AtATG8b) under NaCl, mannitol and LN stress. These findings demonstrate that overexpression of ZmATG3 can improve tolerance to multiple abiotic stresses.
Collapse
Affiliation(s)
- Mengli Liu
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Li Ma
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Yao Tang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Wangjing Yang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Yuying Yang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Jing Xi
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Xuan Wang
- Yangling Qinfeng Seed-Industry Co., Ltd., Yangling 712100, China;
| | - Wanchao Zhu
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Xinghua Zhang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| |
Collapse
|
35
|
Yadav A, Dabur R. Skeletal muscle atrophy after sciatic nerve damage: Mechanistic insights. Eur J Pharmacol 2024; 970:176506. [PMID: 38492879 DOI: 10.1016/j.ejphar.2024.176506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
Sciatic nerve injury leads to molecular events that cause muscular dysfunction advancement in atrophic conditions. Nerve damage renders muscles permanently relaxed which elevates intracellular resting Ca2+ levels. Increased Ca2+ levels are associated with several cellular signaling pathways including AMPK, cGMP, PLC-β, CERB, and calcineurin. Also, multiple enzymes involved in the tricarboxylic acid cycle and oxidative phosphorylation are activated by Ca2+ influx into mitochondria during muscle contraction, to meet increased ATP demand. Nerve damage induces mitophagy and skeletal muscle atrophy through increased sensitivity to Ca2+-induced opening of the permeability transition pore (PTP) in mitochondria attributed to Ca2+, ROS, and AMPK overload in muscle. Activated AMPK interacts negatively with Akt/mTOR is a highly prevalent and well-described central pathway for anabolic processes. Over the decade several reports indicate abnormal behavior of signaling machinery involved in denervation-induced muscle loss but end up with some controversial outcomes. Therefore, understanding how the synthesis and inhibitory stimuli interact with cellular signaling to control muscle mass and morphology may lead to new pharmacological insights toward understanding the underlying mechanism of muscle loss after sciatic nerve damage. Hence, the present review summarizes the existing literature on denervation-induced muscle atrophy to evaluate the regulation and expression of differential regulators during sciatic damage.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
36
|
Loubet F, Robert C, Leclaire C, Theillière C, Saint-Béat C, Lenga Ma Bonda W, Zhai R, Minet-Quinard R, Belville C, Blanchon L, Sapin V, Garnier M, Jabaudon M. Effects of sevoflurane on lung alveolar epithelial wound healing and survival in a sterile in vitro model of acute respiratory distress syndrome. Exp Cell Res 2024; 438:114030. [PMID: 38583855 DOI: 10.1016/j.yexcr.2024.114030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious lung condition that often leads to hospitalization in intensive care units and a high mortality rate. Sevoflurane is a volatile anesthetic with growing interest for sedation in ventilated patients with ARDS. It has been shown to have potential lung-protective effects, such as reduced inflammation and lung edema, or improved arterial oxygenation. In this study, we investigated the effects of sevoflurane on lung injury in cultured human carcinoma-derived lung alveolar epithelial (A549) cells. We found that sevoflurane was associated with improved wound healing after exposure to inflammatory cytokines, with preserved cell proliferation but no effect on cell migration properties. Sevoflurane exposure was also associated with enhanced cell viability and active autophagy in A549 cells exposed to cytokines. These findings suggest that sevoflurane may have beneficial effects on lung epithelial injury by promoting alveolar epithelial wound healing and by influencing the survival and proliferation of A549 epithelial cells in vitro. Further research is needed to confirm these findings and to investigate the key cellular mechanisms explaining sevoflurane's potential effects on lung epithelial injury.
Collapse
Affiliation(s)
- Florian Loubet
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Cédric Robert
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Charlotte Leclaire
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Camille Theillière
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Cécile Saint-Béat
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | | | - Ruoyang Zhai
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Régine Minet-Quinard
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Corinne Belville
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Loic Blanchon
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Vincent Sapin
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Marc Garnier
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Matthieu Jabaudon
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.
| |
Collapse
|
37
|
Liu B, Han Y, Ye Y, Wei X, Li G, Jiang W. Atmospheric fine particulate matter (PM 2.5) induces pulmonary fibrosis by regulating different cell fates via autophagy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171396. [PMID: 38438032 DOI: 10.1016/j.scitotenv.2024.171396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
The presence of respiratory diseases demonstrates a positive correlation with atmospheric fine particulate matter (PM2.5) exposure. The respiratory system is the main target organ affected by PM2.5, and exposure to PM2.5 elevates the likelihood of developing pulmonary fibrosis (PF). In this study, lung epithelial cell (BEAS-2B) and fibroblast (NIH-3T3) were used as in vitro exposure models to explore the mechanisms of PF. PM2.5 exposure caused mitochondrial damage in BEAS-2B cells and increased a fibrotic phenotype in NIH-3T3 cells. Epithelial cells and fibroblasts have different fates after PM2.5 exposure due to their different sensitivities to trigger autophagy. Exposure to PM2.5 inhibits mitophagy in BEAS-2B cells, which hinders the removal of damaged mitochondria and triggers cell death. In this process, the nuclear retention of the mitophagy-related protein Parkin prevents it from being recruited to mitochondria, resulting in mitophagy inhibition. In contrast, fibroblasts exhibit increased levels of autophagy, which may isolate PM2.5 and cause abnormal fibroblast proliferation and migration. Fibrotic phenotypes such as collagen deposition and increased α-actin also appear in fibroblasts. Our results identify PM2.5 as a trigger of PF and delineate the molecular mechanism of autophagy in PM2.5 induced PF, which provides new insights into the pulmonary injury.
Collapse
Affiliation(s)
- Bingyan Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yangchen Han
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yiyuan Ye
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Gang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
38
|
Cai H, Meng Z, Yu F. The involvement of ROS-regulated programmed cell death in hepatocellular carcinoma. Crit Rev Oncol Hematol 2024; 197:104361. [PMID: 38626849 DOI: 10.1016/j.critrevonc.2024.104361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Reactive oxidative species (ROS) is a crucial factor in the regulation of cellular biological activity and function, and aberrant levels of ROS can contribute to the development of a variety of diseases, particularly cancer. Numerous discoveries have affirmed that this process is strongly associated with "programmed cell death (PCD)," which refers to the suicide protection mechanism initiated by cells in response to external stimuli, such as apoptosis, autophagy, ferroptosis, etc. Research has demonstrated that ROS-induced PCD is crucial for the development of hepatocellular carcinoma (HCC). These activities serve a dual function in both facilitating and inhibiting cancer, suggesting the existence of a delicate balance within healthy cells that can be disrupted by the abnormal generation of reactive oxygen species (ROS), thereby influencing the eventual advancement or regression of a tumor. In this review, we summarize how ROS regulates PCD to influence the tumorigenesis and progression of HCC. Studying how ROS-induced PCD affects the progression of HCC at a molecular level can help develop better prevention and treatment methods and facilitate the design of more effective preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Hanchen Cai
- The First Afliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ziqi Meng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
39
|
Xu X, Wang J, Xia Y, Yin Y, Zhu T, Chen F, Hai C. Autophagy, a double-edged sword for oral tissue regeneration. J Adv Res 2024; 59:141-159. [PMID: 37356803 PMCID: PMC11081970 DOI: 10.1016/j.jare.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Oral health is of fundamental importance to maintain systemic health in humans. Stem cell-based oral tissue regeneration is a promising strategy to achieve the recovery of impaired oral tissue. As a highly conserved process of lysosomal degradation, autophagy induction regulates stem cell function physiologically and pathologically. Autophagy activation can serve as a cytoprotective mechanism in stressful environments, while insufficient or over-activation may also lead to cell function dysregulation and cell death. AIM OF REVIEW This review focuses on the effects of autophagy on stem cell function and oral tissue regeneration, with particular emphasis on diverse roles of autophagy in different oral tissues, including periodontal tissue, bone tissue, dentin pulp tissue, oral mucosa, salivary gland, maxillofacial muscle, temporomandibular joint, etc. Additionally, this review introduces the molecular mechanisms involved in autophagy during the regeneration of different parts of oral tissue, and how autophagy can be regulated by small molecule drugs, biomaterials, exosomes/RNAs or other specific treatments. Finally, this review discusses new perspectives for autophagy manipulation and oral tissue regeneration. KEY SCIENTIFIC CONCEPTS OF REVIEW Overall, this review emphasizes the contribution of autophagy to oral tissue regeneration and highlights the possible approaches for regulating autophagy to promote the regeneration of human oral tissue.
Collapse
Affiliation(s)
- Xinyue Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Jia Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Yunlong Xia
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Tianxiao Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Faming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Chunxu Hai
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
40
|
Kulkarni PG, Mohire VM, Waghmare PP, Banerjee T. Interplay of mitochondria-associated membrane proteins and autophagy: Implications in neurodegeneration. Mitochondrion 2024; 76:101874. [PMID: 38514017 DOI: 10.1016/j.mito.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Since the discovery of membrane contact sites between ER and mitochondria called mitochondria-associated membranes (MAMs), several pieces of evidence identified their role in the regulation of different cellular processes such as Ca2+ signalling, mitochondrial transport, and dynamics, ER stress, inflammation, glucose homeostasis, and autophagy. The integrity of these membranes was found to be essential for the maintenance of these cellular functions. Accumulating pieces of evidence suggest that MAMs serve as a platform for autophagosome formation. However, the alteration within MAMs structure is associated with the progression of neurodegenerative diseases. Dysregulated autophagy is a hallmark of neurodegeneration. Here, in this review, we highlight the present knowledge on MAMs, their structural composition, and their roles in different cellular functions. We also discuss the association of MAMs proteins with impaired autophagy and their involvement in the progression of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007 India
| | - Vaibhavi M Mohire
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India
| | - Pranjal P Waghmare
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India
| | - Tanushree Banerjee
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India; Infosys Ltd., SEZ unit VI, Plot No. 1, Rajiv Gandhi Infotech Park, Hinjawadi Phase I, Pune, Maharashtra 411057, India.
| |
Collapse
|
41
|
Zhou K, Xu S. Corydaline alleviates Parkinson's disease by regulating autophagy and GSK-3β phosphorylation. Psychopharmacology (Berl) 2024; 241:1027-1036. [PMID: 38289512 DOI: 10.1007/s00213-024-06536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/17/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Jitai tablet, a traditional Chinese medicine, has a neuroprotective effect on 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mice. As one of the main active ingredients in the Jitai tablet, corydaline (Cory) has analgesic and anti-allergic effects, but it has not been studied in PD. Here, we investigated the role and mechanism of Cory in PD. METHODS The PD model was induced by MPTP. Cell viability was measured by 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide assay. The Pole test and traction test were performed to detect the behaviors of mice. The expression of tyrosine hydroxylase (Th) was detected by immunohistochemistry and Western blot. Immunofluorescence staining, monodansylcadaverine staining, and Western blot were conducted to assess autophagy. A lactic dehydrogenase release assay was used to detect cytotoxicity. Network pharmacology was used to screen the targets. RESULTS There existed cytotoxicity when the concentration of Cory reached 40 μg/mL. Cory (not exceeding 20 μg/mL) could alleviate MPTP-induced cell damage. In vivo experiments indicated that Cory could improve the motor coordination of mice with PD. Besides, Cory could increase LC3-II/LC3-I levels both in vivo and in vitro. In addition, the Th levels reduced in the striatum and middle brain tissues of Parkinson's mice were recovered by Cory injection. We also found that Cory decreased the phosphorylation of glucogen synthase kinase-3 beta (GSK-3β) at Tyr216 and increased the phosphorylation of GSK-3β at Ser9 not only in primary neurons and SH-SY5Y cells but also in the striatum and middle brain tissues. Furthermore, Cory increased LC3-II/LC3-I levels and decreased p62 levels by regulating GSK-3β. CONCLUSION Cory enhanced autophagy, attenuated MPTP-induced cytotoxicity, and alleviated PD partly through the regulation of GSK-3β phosphorylation.
Collapse
Affiliation(s)
- Kaikai Zhou
- School of Energy and Intelligence Engineering, Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou City, 454000, People's Republic of China.
| | - Shasha Xu
- the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
42
|
Ahmed KR, Rahman MM, Islam MN, Fahim MMH, Rahman MA, Kim B. Antioxidants activities of phytochemicals perspective modulation of autophagy and apoptosis to treating cancer. Biomed Pharmacother 2024; 174:116497. [PMID: 38552443 DOI: 10.1016/j.biopha.2024.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
The study of chemicals extracted from natural sources should be encouraged due to the significant number of cancer deaths each year and the financial burden imposed by this disease on society. The causes of almost all cancers involve a combination of lifestyle, environmental factors, and genetic and inherited factors. Modern medicine researchers are increasingly interested in traditional phytochemicals as they hold potential for new bioactive compounds with medical applications. Recent publications have provided evidence of the antitumor properties of phytochemicals, a key component of traditional Chinese medicine, thereby opening new avenues for their use in modern medicine. Various studies have demonstrated a strong correlation between apoptosis and autophagy, two critical mechanisms involved in cancer formation and regulation, indicating diverse forms of crosstalk between them. Phytochemicals have the ability to activate both pro-apoptotic and pro-autophagic pathways. Therefore, understanding how phytochemicals influence the relationship between apoptosis and autophagy is crucial for developing a new cancer treatment strategy that targets these molecular mechanisms. This review aims to explore natural phytochemicals that have demonstrated anticancer effects, focusing on their role in regulating the crosstalk between apoptosis and autophagy, which contributes to uncontrolled tumor cell growth. Additionally, the review highlights the limitations and challenges of current research methodologies while suggesting potential avenues for future research in this field.
Collapse
Affiliation(s)
- Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, South Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Md Masudur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Md Nahidul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Md Maharub Hossain Fahim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, South Korea
| | - Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, South Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
43
|
Lin Y, Wu X, Yang Y, Wu Y, Xiang L, Zhang C. The multifaceted role of autophagy in skin autoimmune disorders: a guardian or culprit? Front Immunol 2024; 15:1343987. [PMID: 38690268 PMCID: PMC11058840 DOI: 10.3389/fimmu.2024.1343987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Autophagy is a cellular process that functions to maintain intracellular homeostasis via the degradation and recycling of defective organelles or damaged proteins. This dynamic mechanism participates in various biological processes, such as the regulation of cellular differentiation, proliferation, survival, and the modulation of inflammation and immune responses. Recent evidence has demonstrated the involvement of polymorphisms in autophagy-related genes in various skin autoimmune diseases. In addition, autophagy, along with autophagy-related proteins, also contributes to homeostasis maintenance and immune regulation in the skin, which is associated with skin autoimmune disorders. This review aims to provide an overview of the multifaceted role of autophagy in skin autoimmune diseases and shed light on the potential of autophagy-targeting therapeutic strategies in dermatology.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Kapuy O. Mechanism of Decision Making between Autophagy and Apoptosis Induction upon Endoplasmic Reticulum Stress. Int J Mol Sci 2024; 25:4368. [PMID: 38673953 PMCID: PMC11050573 DOI: 10.3390/ijms25084368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Dynamic regulation of the cellular proteome is mainly controlled in the endoplasmic reticulum (ER). Accumulation of misfolded proteins due to ER stress leads to the activation of unfolded protein response (UPR). The primary role of UPR is to reduce the bulk of damages and try to drive back the system to the former or a new homeostatic state by autophagy, while an excessive level of stress results in apoptosis. It has already been proven that the proper order and characteristic features of both surviving and self-killing mechanisms are controlled by negative and positive feedback loops, respectively. The new results suggest that these feedback loops are found not only within but also between branches of the UPR, fine-tuning the response to ER stress. In this review, we summarize the recent knowledge of the dynamical characteristic of endoplasmic reticulum stress response mechanism by using both theoretical and molecular biological techniques. In addition, this review pays special attention to describing the mechanism of action of the dynamical features of the feedback loops controlling cellular life-and-death decision upon ER stress. Since ER stress appears in diseases that are common worldwide, a more detailed understanding of the behaviour of the stress response is of medical importance.
Collapse
Affiliation(s)
- Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
45
|
Hull A, Atilano ML, Gergi L, Kinghorn KJ. Lysosomal storage, impaired autophagy and innate immunity in Gaucher and Parkinson's diseases: insights for drug discovery. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220381. [PMID: 38368939 PMCID: PMC10874704 DOI: 10.1098/rstb.2022.0381] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/08/2023] [Indexed: 02/20/2024] Open
Abstract
Impairment of autophagic-lysosomal pathways is increasingly being implicated in Parkinson's disease (PD). GBA1 mutations cause the lysosomal storage disorder Gaucher disease (GD) and are the commonest known genetic risk factor for PD. GBA1 mutations have been shown to cause autophagic-lysosomal impairment. Defective autophagic degradation of unwanted cellular constituents is associated with several pathologies, including loss of normal protein homeostasis, particularly of α-synuclein, and innate immune dysfunction. The latter is observed both peripherally and centrally in PD and GD. Here, we will discuss the mechanistic links between autophagy and immune dysregulation, and the possible role of these pathologies in communication between the gut and brain in these disorders. Recent work in a fly model of neuronopathic GD (nGD) revealed intestinal autophagic defects leading to gastrointestinal dysfunction and immune activation. Rapamycin treatment partially reversed the autophagic block and reduced immune activity, in association with increased survival and improved locomotor performance. Alterations in the gut microbiome are a critical driver of neuroinflammation, and studies have revealed that eradication of the microbiome in nGD fly and mouse models of PD ameliorate brain inflammation. Following these observations, lysosomal-autophagic pathways, innate immune signalling and microbiome dysbiosis are discussed as potential therapeutic targets in PD and GD. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Alexander Hull
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Magda L Atilano
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Laith Gergi
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Kerri J Kinghorn
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
46
|
Del Grosso A, Carpi S, De Sarlo M, Scaccini L, Colagiorgio L, Alabed HBR, Angella L, Pellegrino RM, Tonazzini I, Emiliani C, Cecchini M. Chronic Rapamycin administration via drinking water mitigates the pathological phenotype in a Krabbe disease mouse model through autophagy activation. Biomed Pharmacother 2024; 173:116351. [PMID: 38422660 DOI: 10.1016/j.biopha.2024.116351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
Krabbe disease (KD) is a rare disorder arising from the deficiency of the lysosomal enzyme galactosylceramidase (GALC), leading to the accumulation of the cytotoxic metabolite psychosine (PSY) in the nervous system. This accumulation triggers demyelination and neurodegeneration, and despite ongoing research, the underlying pathogenic mechanisms remain incompletely understood, with no cure currently available. Previous studies from our lab revealed the involvement of autophagy dysfunctions in KD pathogenesis, showcasing p62-tagged protein aggregates in the brains of KD mice and heightened p62 levels in the KD sciatic nerve. We also demonstrated that the autophagy inducer Rapamycin (RAPA) can partially reinstate the wild type (WT) phenotype in KD primary cells by decreasing the number of p62 aggregates. In this study, we tested RAPA in the Twitcher (TWI) mouse, a spontaneous KD mouse model. We administered the drug ad libitum via drinking water (15 mg/L) starting from post-natal day (PND) 21-23. We longitudinally monitored the mouse motor performance through grip strength and rotarod tests, and a set of biochemical parameters related to the KD pathogenesis (i.e. autophagy markers expression, PSY accumulation, astrogliosis and myelination). Our findings demonstrate that RAPA significantly enhances motor functions at specific treatment time points and reduces astrogliosis in TWI brain, spinal cord, and sciatic nerves. Utilizing western blot and immunohistochemistry, we observed a decrease in p62 aggregates in TWI nervous tissues, corroborating our earlier in-vitro results. Moreover, RAPA treatment partially removes PSY in the spinal cord. In conclusion, our results advocate for considering RAPA as a supportive therapy for KD. Notably, as RAPA is already available in pharmaceutical formulations for clinical use, its potential for KD treatment can be rapidly evaluated in clinical trials.
Collapse
Affiliation(s)
- Ambra Del Grosso
- Istituto Nanoscienze - CNR, Pisa, Piazza San Silvestro 12, Pisa 56127, Italy; Laboratorio NEST, Scuola Normale Superiore, Piazza S. Silvestro 12, 56127, Pisa, Italy.
| | - Sara Carpi
- Istituto Nanoscienze - CNR, Pisa, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Miriam De Sarlo
- Istituto Nanoscienze - CNR, Pisa, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Luca Scaccini
- Laboratorio NEST, Scuola Normale Superiore, Piazza S. Silvestro 12, 56127, Pisa, Italy
| | - Laura Colagiorgio
- Istituto Nanoscienze - CNR, Pisa, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Husam B R Alabed
- Department of Chemistry, Biology, and Biotechnologies, University of Perugia, Perugia, Italy
| | - Lucia Angella
- Istituto Nanoscienze - CNR, Pisa, Piazza San Silvestro 12, Pisa 56127, Italy
| | | | - Ilaria Tonazzini
- Istituto Nanoscienze - CNR, Pisa, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology, and Biotechnologies, University of Perugia, Perugia, Italy
| | - Marco Cecchini
- Istituto Nanoscienze - CNR, Pisa, Piazza San Silvestro 12, Pisa 56127, Italy.
| |
Collapse
|
47
|
Song H, Xie C, Dong M, Zhang Y, Huang H, Han Y, Liu Y, Wei L, Wang X. Effects of ambient UVB light on Pacific oyster Crassostrea gigas mantle tissue based on multivariate data. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116236. [PMID: 38503101 DOI: 10.1016/j.ecoenv.2024.116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Ambient ultraviolet radiation (UVB) from solar and artificial light presents serious environmental risks to aquatic ecosystems. The Pacific oyster, Crassostrea gigas, perceives changes in the external environment primarily through its mantle tissue, which contains many nerve fibers and tentacles. Changes within the mantles can typically illustrate the injury of ambient UVB. In this study, a comprehensive analysis of phenotypic, behavioral, and physiological changes demonstrated that extreme UVB radiation (10 W/m²) directly suppressed the behavioral activities of C. gigas. Conversely, under ambient UVB radiation (5 W/m²), various physiological processes exhibited significant alterations in C. gigas, despite the behavior remaining relatively unaffected. Using mathematical model analysis, the integrated analysis of the full-length transcriptome, proteome, and metabolome showed that ambient UVB significantly affected the metabolic processes (saccharide, lipid, and protein metabolism) and cellular biology processes (autophagy, apoptosis, oxidative stress) of the C. gigas mantle. Subsequently, using Procrustes analysis and Pearson correlation analysis, the association between multi-omics data and physiological changes, as well as their biomarkers, revealed the effect of UVB on three crucial biological processes: activation of autophagy signaling (key factors: Ca2+, LC3B, BECN1, caspase-7), response to oxidative stress (reactive oxygen species, heat shock 70, cytochrome c oxidase), and recalibration of energy metabolism (saccharide, succinic acid, translation initiation factor IF-2). These findings offer a fresh perspective on the integration of multi-data from non-model animals in ambient UVB risk assessment.
Collapse
Affiliation(s)
- Hongce Song
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Chaoyi Xie
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Meiyun Dong
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Yuxuan Zhang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Haifeng Huang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China.
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China.
| |
Collapse
|
48
|
Lecot-Connan T, Boumerdassi Y, Magnin F, Binart N, Kamenický P, Sonigo C, Beau I. Anti-Müllerian hormone induces autophagy to preserve the primordial follicle pool in mice. FASEB J 2024; 38:e23506. [PMID: 38411466 DOI: 10.1096/fj.202302141r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024]
Abstract
The reserve pool of primordial follicles (PMFs) is finely regulated by molecules implicated in follicular growth or PMF survival. Anti-Müllerian hormone (AMH), produced by granulosa cells of growing follicles, is known for its inhibitory role in the initiation of PMF growth. We observed in a recent in vivo study that injection of AMH into mice seemed to induce an activation of autophagy. Furthermore, injection of AMH into mice activates the transcription factor FOXO3A which is also known for its implication in autophagy regulation. Many studies highlighted the key role of autophagy in the ovary at different stages of folliculogenesis, particularly in PMF survival. Through an in vitro approach with organotypic cultures of prepubertal mouse ovaries, treated or not with AMH, we aimed to understand the link among AMH, autophagy, and FOXO3A transcription factor. Autophagy and FOXO3A phosphorylation were analyzed by western blot. The expression of genes involved in autophagy was quantified by RT-qPCR. In our in vitro model, we confirmed the decrease in FOXO3A phosphorylation and the induction of autophagy in ovaries incubated with AMH. AMH also induces the expression of genes involved in autophagy. Interestingly, most of these genes are known to be FOXO3A target genes. In conclusion, we have identified a new role for AMH, namely the induction of autophagy, probably through FOXO3A activation. Thus, AMH protects the ovarian reserve not only by inhibiting the growth of PMFs but also by enabling their survival through activation of autophagy.
Collapse
Affiliation(s)
- Tatiana Lecot-Connan
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Yasmine Boumerdassi
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Françoise Magnin
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Nadine Binart
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Peter Kamenický
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
- AP-HP, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Le Kremlin-Bicêtre, France
| | - Charlotte Sonigo
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
- AP-HP, Hôpital Antoine Béclère, Service de Médecine de la reproduction et Préservation de la Fertilité, Clamart, France
| | - Isabelle Beau
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| |
Collapse
|
49
|
Basei FL, e Silva IR, Dias PRF, Ferezin CC, Peres de Oliveira A, Issayama LK, Moura LAR, da Silva FR, Kobarg J. The Mitochondrial Connection: The Nek Kinases' New Functional Axis in Mitochondrial Homeostasis. Cells 2024; 13:473. [PMID: 38534317 PMCID: PMC10969439 DOI: 10.3390/cells13060473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria provide energy for all cellular processes, including reactions associated with cell cycle progression, DNA damage repair, and cilia formation. Moreover, mitochondria participate in cell fate decisions between death and survival. Nek family members have already been implicated in DNA damage response, cilia formation, cell death, and cell cycle control. Here, we discuss the role of several Nek family members, namely Nek1, Nek4, Nek5, Nek6, and Nek10, which are not exclusively dedicated to cell cycle-related functions, in controlling mitochondrial functions. Specifically, we review the function of these Neks in mitochondrial respiration and dynamics, mtDNA maintenance, stress response, and cell death. Finally, we discuss the interplay of other cell cycle kinases in mitochondrial function and vice versa. Nek1, Nek5, and Nek6 are connected to the stress response, including ROS control, mtDNA repair, autophagy, and apoptosis. Nek4, in turn, seems to be related to mitochondrial dynamics, while Nek10 is involved with mitochondrial metabolism. Here, we propose that the participation of Neks in mitochondrial roles is a new functional axis for the Nek family.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil; (F.L.B.); (P.R.F.D.)
| |
Collapse
|
50
|
Park A, Heo TH. Celastrol regulates psoriatic inflammation and autophagy by targeting IL-17A. Biomed Pharmacother 2024; 172:116256. [PMID: 38367550 DOI: 10.1016/j.biopha.2024.116256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024] Open
Abstract
Anti-IL-17A antibodies, such as secukinumab and ixekizumab, are effective proinflammatory cytokine inhibitors for autoimmune disorders, including psoriasis. However, anti-IL-17A small molecule treatments are yet to be commercialized. Celastrol, a natural compound extracted from the roots of traditional Chinese medicinal plants, has anti-inflammatory and antioxidant properties. However, the binding of celastrol to IL-17A and the associated anti-inflammatory mechanisms remain unclear. This study investigated whether celastrol could directly bind to IL-17A and regulate inflammation in psoriatic in vitro and in vivo models. The results showed that celastrol directly binds to IL-17A and inhibits its downstream signaling, including the NF-kB and MAPK pathways. Interestingly, celastrol restored autophagy dysfunction and reduced proinflammatory cytokine secretion in keratinocytes. In addition, celastrol increased autophagy in the epidermis of a mouse model of psoriasis. Celastrol decreased Th17 cell populations and proinflammatory cytokine levels in mice. Thus, IL-17A-targeting celastrol reduced inflammation by rescuing impaired autophagy in in vitro and in vivo models of psoriasis, demonstrating its potential as a substitute for anti-IL-17A antibodies for treating psoriasis.
Collapse
Affiliation(s)
- Aeri Park
- Laboratory of PharmacoImmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of PharmacoImmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|